

Reference number
ISO 13584-24:2003(E)

© ISO 2003

INTERNATIONAL
STANDARD

ISO
13584-24

First edition
2003-11-01

Industrial automation systems and
integration — Parts library —
Part 24:
Logical resource: Logical model of
supplier library

Systèmes d'automatisation industrielle et intégration — Bibliothèque de
composants —

Partie 24: Ressource logique: Modèle logique de fournisseur

ISO 13584-24:2003(E)

PDF disclaimer
This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but
shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In
downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat
accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation
parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In
the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

© ISO 2003
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or
ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

ii © ISO 2003 — All rights reserved

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved iii

Contents Page

1 Scope ...1

2 Normative references...2

3 Terms, definitions and abbreviations ...3

4 Structure of ISO 13584-24 ...19
4.1 Generic resources..19

4.1.1 ISO13584_instance_resource_schema...19
4.1.2 ISO13584_library_expressions_schema ...19
4.1.3 ISO13584_table_resource_schema ..19
4.1.4 ISO13584_variable_semantics_schema ...20
4.1.5 ISO13584_domain_resource_schema ..20

4.2 Parts library specific resources ..20
4.2.1 ISO13584_extended_dictionary_schema..20
4.2.2 ISO13584_library_content_schema...20
4.2.3 ISO13584_external_file_schema...21
4.2.4 ISO13584_method_schema..21

4.3 Library integrated information models..21
4.3.1 ISO13584_g_m_iim_schema and LIIM 24-1 ...21
4.3.2 ISO13584_f_m_iim_schema and LIIM 24-2 ..21
4.3.3 ISO13584_f_v_iim_schema and LIIM 24-3 ...22

5 Fundamental concepts and assumptions ..22
5.1 Conceptual model of a supplier library...22
5.2 Implicit versus explicit description of a parts library ...22

5.2.1 Explicit modelling of simple families of parts: by set extension22
5.2.2 Implicit modeling of simple families by entity data type ...23
5.2.3 Explicit and implicit description of classes in this part of ISO 1358424

5.3 Direct use of EXPRESS versus meta-modelling for implicit description25
5.3.1 Direct use of the EXPRESS language for modelling classes ..25
5.3.2 Meta-modelling of classes using EXPRESS..26

5.4 Two level description of a supplier library and the ISO/IEC common dictionary
schema...27

5.4.1 Common dictionary description for ISO 13584 and IEC 6136028
5.4.2 Dictionary descriptions for ISO 13584 ...28
5.4.3 Interoperability of ISO 13584 and IEC 61360 ..28

5.5 Independence between dictionary_elements and content_items: the BSU mechanism28
5.5.1 Reference between several EXPRESS schema populations via the BSU mechanism ..29
5.5.2 Expressing constraints between dictionary entries ..29

5.6 ISO 13584 and the Internet ..29
5.6.1 Documents represented within a library exchange context ...29
5.6.2 Support of the HTTP protocol and local Internet server ..29
5.6.3 Particular HTTP formats to be supported by an implementation.....................................30
5.6.4 Remote access to a document through the Internet..31

6 ISO13584_instance_resource_schema...31
6.1 Introduction to the ISO13584_instance_resource_schema ...33
6.2 Fundamental concepts and assumptions for the

ISO13584_instance_resource_schema...34
6.2.1 Two-fold description of classes and instance representation ..34
6.2.2 Representation of a context-dependent characteristic value...37
6.2.3 Optional properties...37

6.3 ISO13584_instance_resource_schema type definitions ..37
6.3.1 Null_value ..37

ISO 13584-24:2003(E)

iv © ISO 2003 – All rights reserved

6.3.2 Primitive_value...38
6.3.3 Null_or_primitive_value..38
6.3.4 Simple_value ...38
6.3.5 Null_or_simple_value...39
6.3.6 Number_value..39
6.3.7 Null_or_number_value...39
6.3.8 Integer_value ...39
6.3.9 Null_or_integer_value ..40
6.3.10 Real_value ...40
6.3.11 Null_or_real_value ...40
6.3.12 Boolean_value ...40
6.3.13 Null_or_boolean_value ..41
6.3.14 Translatable_string_value..41
6.3.15 Translated_string_value...41
6.3.16 String_value ...42
6.3.17 Null_or_translatable_string_value..42
6.3.18 Complex_value ..42
6.3.19 Null_or_complex_value..43
6.3.20 Entity_instance_value ..43
6.3.21 Null_or_entity_instance_value ...44
6.3.22 Defined_entity_instance_value ..44
6.3.23 Controlled_entity_instance_value ..44
6.3.24 STEP_entity_instance_value ...45
6.3.25 PLIB_entity_instance_value...45
6.3.26 Uncontrolled_entity_instance_value ..46
6.3.27 Property_or_data_type_BSU ...46

6.4 ISO13584_instance_resource_schema entity definitions ..46
6.4.1 Level_spec_value ..46
6.4.2 Null_or_level_spec_value ..47
6.4.3 Int_level_spec_value ...47
6.4.4 Null_or_int_level_spec_value ..48
6.4.5 Real_level_spec_value ..48
6.4.6 Null_or_real_level_spec_value ..48
6.4.7 Class instances..48
Property_value ...56
Context_dependent_property_value ..57

6.5 ISO13584_instance_resource_schema rule definition...58
6.5.1 Valued_properties_are_allowed_for_implicit_spec_rule rule...58
6.5.2 Valued_properties_are_allowed_for_explicit_spec_rule rule...59
6.5.3 Identification_properties_are_valued_for_implicit_spec_rule rule59
6.5.4 Identification_properties_are_valued_for_explicit_spec_rule rule60
6.5.5 Fm_valued_properties_are_allowed_for_implicit_spec_rule rule....................................61
6.5.6 Fm_valued_properties_are_allowed_for_explicit_spec_rule rule....................................62
6.5.7 Fm_free_properties_are_valued_for_implicit_spec_rule rule..63
6.5.8 Fm_free_properties_are_valued_for_explicit_spec_rule rule..64

6.6 ISO13584_instance_resource_schema function definitions ..64
6.6.1 Compatible_class_and_class function...64
6.6.2 Right_values_for_level_spec function ...66
6.6.3 Compatible_level_type_and_instance function..67
6.6.4 Compatible_type_and_value function..68
6.6.5 Collects_assigned_instance_properties function...71
6.6.6 Correct_view_from_model function ...72
6.6.7 Is_condition_det function ...72
6.6.8 Is_dependent_p_det function...73
6.6.9 All_context_parameters_referenced function ..73
6.6.10 Collects_property_context function..74
6.6.11 Check_class_type_for_dic_item_instance function ...75
6.6.12 Check_class_type_for_dic_f_model_instance function...76

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved v

6.6.13 Check_class_type_for_dic_f_view_instance function..76
6.6.14 Check_property_values_translations function ...77
6.6.15 Same_translations function ...77
6.6.16 Compatible_item_caseof_with_class_definition function...78
6.6.17 Compatible_model_caseof_with_class_definition function..79
6.6.18 superclass_closure function ..79
6.6.19 compute_superclass_closure procedure...80
6.6.20 item_caseof_closure function ..81
6.6.21 next_item_caseof function ...81
6.6.22 compute_item_caseof_closure procedure...82
6.6.23 model_caseof_closure function ...83
6.6.24 next_model_caseof function ..83
6.6.25 compute_model_caseof_closure procedure..84

7 ISO13584_library_expressions_schema ...85
7.1 Introduction to the ISO13584_library_expressions_schema..86
7.2 Fundamental concepts and assumptions for the

ISO13584_library_expressions_schema ...87
7.2.1 Information model of a variable ...87
7.2.2 Strong typing of variables and expressions ...87

7.3 ISO13584_library_expressions_schema type definitions...88
7.3.1 Library_expression...88
7.3.2 Library_variable..88

7.4 ISO13584_library_expressions_schema entity definitions...89
7.4.1 Level_spec_expression ...89
7.4.2 Entity_instance_expression ...93
7.4.3 Class_instance_expression ...95
7.4.4 Exists_value...102
7.4.5 Instance_comparison_equal..102

7.5 ISO13584_library_expressions_schema rule definition ...103
7.5.1 Two_fold_variable_representation_rule rule..103

1. ISO13584_library_expressions_schema function definitions...104
7.5.2 Syntax_of function ...104
7.5.3 Semantics_of function ...104
7.5.4 Collects_assigned_properties function ..105
7.5.5 Collects_referenced_library_expressions function ..105
7.5.6 Compatible_simple_type_and_expression function ..106
7.5.7 Compatible_type_and_library_expression function ...107
7.5.8 Compatible_variable_and_expression function ...109
7.5.9 Compatible_variable_and_library_expression function ...110

8 ISO13584_table_resource_schema...111
8.1 Introduction to the ISO13584_table_resource_schema...113
8.2 Fundamental concepts and assumptions for the ISO13584_table_resource_schema114

8.2.1 Description of tables ..114
8.2.2 Description of table expressions..115

8.3 ISO13584_table_resource_schema entity definitions..115
8.3.1 Table_identification ..115
8.3.2 Table_specification ..116
8.3.3 Table_extension...117
8.3.4 Column...119
8.3.5 Simple_column ..120
8.3.6 Complex_column ...123
8.3.7 Table expressions..126

8.4 ISO13584_table_resource_schema functions definition..136
8.4.1 Compatible_column_and_variable function...136
8.4.2 Compatible_column_and_variable_semantics function...139
8.4.3 Compatible_list_variable_semantics_and_columns function ..139
8.4.4 Compatible_variable_semantics_and_expression function...140
8.4.5 Compatible_list_variable_semantics_and_expressions function...................................141

ISO 13584-24:2003(E)

vi © ISO 2003 – All rights reserved

8.4.6 Collects_columns function ...141
8.4.7 Diff_columns function ..143
8.4.8 Return_key function ...143
8.4.9 Is_SQL_mappable_table_expression function ..145
8.4.10 Used_table_literals function...147
8.4.11 Check_iterator_context function ..148
8.4.12 Check_iterator_domain_uniqueness function..148
8.4.13 No_null_values_in_key_columns function ...149
8.4.14 Same_translations_for_string_values function ..150
8.4.15 Same_translations_for_table_extension function ..151
8.4.16 Get_translated_string_values_of_tuple function..151

9 ISO13584_variable_semantics_schema..152
9.1 Introduction to the ISO13584_variable_semantics_schema..153
9.2 Fundamental concepts and assumptions for the

ISO13584_variable_semantics_schema..153
9.2.1 Instance related operation ...153
9.2.2 Instance structure ..153
9.2.3 Context of a method ..154

9.3 ISO13584_variable_semantics_schema type definition ..154
9.3.1 Property_semantics_or_path ...154

9.4 ISO13584_variable_semantics_schema entity definitions...154
9.5 Property_semantics..154
9.6 Sub_property_path...155
9.7 Variable_semantics referring to the SELF entity..156

9.7.1 Self_variable_semantics ..156
9.7.2 Self_property_semantics ...156
9.7.3 Self_property_value_semantics...157
9.7.4 Self_property_name_semantics ..157
9.7.5 Self_class_variable_semantics..161
9.7.6 Self_class_name_semantics ...161

9.8 Variables referring to the open view characteristics...164
9.8.1 Open_view_variable_semantics ..164
9.8.2 Open_view_property_semantics..164
9.8.3 Open_view_property_value_semantics ...165

9.9 ISO13584_variable_semantics_schema function definitions...165
9.9.1 BSU_of_property_semantics function ...165
9.9.2 Check_property_semantics function..166

10 ISO13584_domain_resource_schema ..166
10.1 Introduction to the ISO13584_domain_resource_schema...167
10.2 Fundamental concepts and assumption for the

ISO13584_domain_resource_schema ..168
10.3 ISO13584_domain_resource_schema type definition ...169

10.3.1 Boolean_expression_or_others ...169
10.4 ISO13584_domain_resource_schema entity definitions..170

10.4.1 Others ..170
10.4.2 Domain_restriction...170
10.4.3 Guarded_simple_domain...171
10.4.4 Simple_domain ..172
10.4.5 Table_defined_domain ..172
10.4.6 Type_defined_domain ...173
10.4.7 Subclass_defined_domain...173
10.4.8 Constant_range_defined_domain..174
10.4.9 Variable_range_defined_domain ...175
10.4.10 Predicate_defined_domain...177
10.4.11 Functional_domain_restriction ...177
10.4.12 Guarded_functional_domain ..178

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved vii

10.4.13 Simple_functional_domain ...178
10.4.14 Library_expression_defined_value...178
10.4.15 Table_defined_value ..179
10.4.16 Null_defined_value...180

10.5 ISO13584_domain_resource_schema function definitions..181
10.5.1 Collects_variables function ..181
10.5.2 Collects_var_sem function...181
10.5.3 Used_tables_in_domain function...182
10.5.4 Used_variables_in_domain function..183
10.5.5 Variables_belong_to_assumes function ..184

11 ISO13584_extended_dictionary_schema ..185
11.1 Introduction to the ISO13584_extended_dictionary_schema ..187
11.2 Fundamental concepts and assumptions for the

ISO13584_extended_dictionary_schema ..188
11.2.1 Dictionary structure ..188
11.2.2 Class related elements ..188
11.2.3 Supplier related elements ..188
11.2.4 Three-fold description of dictionary elements ..189
11.2.5 Unique identification of dictionary elements...189
11.2.6 Applicable elements...189
11.2.7 Visibility rule ...189
11.2.8 Semantic relationships between classes ...190
11.2.9 A priori semantic relationships and importation rule ..190
11.2.10 Type checking for the tables referenced in the dictionary..191

11.3 ISO13584_extended_dictionary_schema constant definitions ..191
11.3.1 Element_code_len ...191
11.3.2 Dictionary_code_len...192

11.4 ISO13584_extended_dictionary_schema type definitions ...192
11.4.1 Document_code_type ..192
11.4.2 Program_library_code_type...192
11.4.3 Table_code_type ...193
11.4.4 Absolute_URL_type ...193
11.4.5 Dictionary_code_type...193

11.5 ISO13584_extended_dictionary_schema identification of a dictionary................................194
11.6 ISO13584_extended_dictionary_schema overall architecture of a dictionary......................195
11.7 Dictionary_in_standard_format ..200
11.8 Data_exchange_specification_identification ..201
11.9 Library_iim_identification..202
11.10 View_exchange_protocol_identification ...202
11.11 ISO13584_extended_dictionary_schema entity definitions: additional entity instance

types...203
11.11.1 Representation_type ..203
11.11.2 Geometric_representation_context_type ...203
11.11.3 Representation_reference_type ...204
11.11.4 Program_reference_type..204

11.12 ISO13584_extended_dictionary_schema entity definitions: additional basic semantic
units..205

11.12.1 Program_library_BSU ..205
11.12.2 Table_BSU...206
11.12.3 Document_BSU..207

11.13 ISO13584_extended_dictionary_schema entity definitions: supplier BSU relationship208
11.13.1 Supplier_program_library_relationship...208

11.14 ISO13584_extended_dictionary_schema entity definitions: class BSU relationships..........209
11.14.1 Class_table_relationship ..209
11.14.2 Class_document_relationship ..209

11.15 ISO13584_extended_dictionary_schema entity definitions: properties of functional
models and functional views ..210

11.15.1 Representation_P_DET ...210

ISO 13584-24:2003(E)

viii © ISO 2003 – All rights reserved

11.16 ISO13584_extended_dictionary_schema entity definitions: specific dictionary
elements...211

11.16.1 Supplier_related_dictionary_element ...211
11.16.2 Class_related_dictionary_element ...211
11.16.3 Program_library_element ...212

11.17 ISO13584_extended_dictionary_schema entity definitions: class related elements............212
11.17.1 Table_element..212
11.17.2 RDB_table_element ...214
11.17.3 Document_element ..214
11.17.4 Document_element_with_http_access ..215
11.17.5 Document_element_with_translated_http_access...215
11.17.6 Referenced_document...216
11.17.7 Referenced_graphics ...217

11.18 ISO13584_extended_dictionary_schema entity definitions: feature class217
11.19 ISO13584_extended_dictionary_schema entity definitions: a priori semantic

relationship ...218
11.20 ISO13584_extended_dictionary_schema entity definitions: functional model class219

11.20.1 Abstract_functional_model_class...220
11.20.2 Functional_model_class...223
11.20.3 Fm_class_view_of..224

11.21 ISO13584_extended_dictionary_schema entity definitions: functional view class...............225
11.21.1 Functional_view_class ...226
11.21.2 Non_instantiable_functional_view_class..228
11.21.3 Specification of the range of a view control variable ..228

11.22 ISO13584_extended_dictionary_schema entity definitions: item class a priori case of.......229
11.22.1 Item_class_case_of ...229
11.22.2 Component_class_case_of..230
11.22.3 Material_class_case_of..231
11.22.4 Feature_class_case_of ..231

11.23 ISO13584_extended_dictionary_schema entity definitions: a posteriori semantic
relationships ...231

11.23.1 A_posteriori_semantic_relationship ...232
11.23.2 A_posteriori_case_of..232
11.23.3 A_posteriori_view_of ..233

11.24 ISO13584_extended_dictionary_schema entity definitions: table contents234
11.24.1 Table_content...234
11.24.2 RDB_table_content ..235

11.25 ISO13584_extended_dictionary_schema: RULE definitions ...236
11.25.1 Representation_properties_for_model_and_view_rule rule.......................................236
11.25.2 Allowed_named_type_usage_rule rule ..237
11.25.3 Assert_oneof_for_table_rule rule ...238
11.25.4 Assert_oneof_for_class_rule rule...238
11.25.5 No_forward_reference_from_table_rule rule ...239
11.25.6 Imported_properties_are_visible_or_applicable_rule rule..240
11.25.7 Imported_data_types_are_visible_or_applicable_rule rule ..240
11.25.8 Imported_tables_are_visible_or_applicable_rule rule ..241
11.25.9 Imported_documents_are_visible_or_applicable_rule rule..241

11.26 ISO13584_extended_dictionary_schema: function definitions ..242
11.26.1 Visible_properties function ...242
11.26.2 Visible_types function...243
11.26.3 Visible_tables function..244
11.26.4 Visible_documents function ...245
11.26.5 Applicable_properties function ...246
11.26.6 Applicable_types function...247
11.26.7 Applicable_tables function..248
11.26.8 Retrieve_tables function...249
11.26.9 Applicable_documents function ...249
11.26.10 Retrieve_documents function...251

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved ix

11.26.11 Makes_reference_outside function ..251
11.26.12 Prefix_ordered_class_list function ...253
11.26.13 Functional_view_v_c_v function...256
11.26.14 Retrieve_functional_view_v_c_v function ..257
11.26.15 Data_type_named_type function..258
11.26.16 Data_type_typeof function..259
11.26.17 Data_type_class_of function ..260
11.26.18 Data_type_type_name function..261
11.26.19 Data_type_level_spec function ..262
11.26.20 Data_type_level_value_typeof function..264
11.26.21 Simple_type_data_type function ..265
11.26.22 Complex_type_data_type function ...265
11.26.23 Compatible_subclass function ...266
11.26.24 Compatible_types function ...267
11.26.25 Ordered_index_value function ...270
11.26.26 Makes_sub_list...271
11.26.27 Sub_list_until ..271
11.26.28 Get_property_BSU_from_property_semantics function...272
11.26.29 Compatible_list_library_types_and_columns function ...272
11.26.30 Data_type_non_quantitative_int_type function...276
11.26.31 Data_type_non_quantitative_code_type function...278
11.26.32 Applicable_properties_for_applicable_tables function ...279
11.26.33 Superclass_of_item_is_item function...280
11.26.34 Compatible_content_and_specification function..280
11.26.35 Check_view_of_instance_datatype function ..281
11.26.36 View_control_variables_attributes_belong_to_domain function281
11.26.37 Created_view_is_functional_view function...282
11.26.38 Check_is_case_of_referenced_classes_definition function282

12 ISO13584_library_content_schema...284
12.1 Introduction to the ISO13584_library_content_schema ...286
12.2 Fundamental concepts and assumption for the ISO13584_library_content_schema..........287

12.2.1 Class extension of non-leaf classes ..287
12.2.2 Explicit description of class extensions..287
12.2.3 Implicit description of class extensions..288
12.2.4 Common pieces of information in implicit description and in explicit description of class
extensions 288
12.2.5 Properties modeling in explicit description of class extensions289
12.2.6 Typical usage of explicit description of class extensions...290
12.2.7 Properties modeling in implicit description of class extensions292
12.2.8 Assemblies modeling in explicit description of class extensions294
12.2.9 Assemblies modeling in implicit description of class extensions295
12.2.10 Instances satisfying a class definition in an implicit description of a class extension 296
12.2.11 Mandatory support of the user selection process when implicit description of class
extensions are used ...298

12.3 ISO13584_library_content_schema constant definitions ...301
12.3.1 Classification_value ...302

12.4 ISO13584_library_content_schema: overall architecture of a library...................................302
12.5 Library_in_standard_format ...303
12.6 Extension of a class ...304

12.6.1 Class_extension...304
12.6.2 Opt_or_mand_property_BSU ..304
12.6.3 Property_classification ...305
12.6.4 Property_value_recommended_presentation..305
12.6.5 Model_class_extension..306
12.6.6 Explicit_model_class_extension ..308
12.6.7 Explicit_item_class_extension ...310
12.6.8 Explicit_functional_model_class_extension...311
12.6.9 Implicit_model_class_extension ..315

ISO 13584-24:2003(E)

x © ISO 2003 – All rights reserved

12.6.10 Item_class_extension...319
12.6.11 Functional_model_class_extension ...322

12.7 ISO13584_library_content_schema: RULE definitions ..326
12.7.1 Assert_oneof_for_library_rule rule...326
12.7.2 Declared_created_views_are_created_rule rule ...327
12.7.3 Complete_identification_for_instance_rule rule...327
12.7.4 Complete_identification_for_item_instance_rule rule ..328
12.7.5 Complete_identification_for_model_instance_rule rule ...329
12.7.6 All_views_available_for_each_component_rule rule ...330

12.8 ISO13584_library_content_schema function definitions ..330
12.8.1 Acyclic_class_extension_definition..330
12.8.2 Acyclic_order ...331
12.8.3 Defined_domain function ...332
12.8.4 Defined_derivation_function function...332
12.8.5 Allowed_properties function...333
12.8.6 Provided_properties_list function...333
12.8.7 Provided_properties_or_method_variables function ...334
12.8.8 Selectable_properties_list function ..335
12.8.9 Required_defined_properties function...335
12.8.10 Derived_properties_list function ...336
12.8.11 Optional_properties_list function ..337
12.8.12 Method_variables function ...338
12.8.13 Gm_identification_characteristics_list function ..338
12.8.14 Fm_free_model_properties_list function..339
12.8.15 Exists_super function ...340
12.8.16 Super function ..341
12.8.17 Is_in_v_c_v_range function..341
12.8.18 Get_v_c_v_range function ...342
12.8.19 All_v_c_v_range_available function ...342
12.8.20 Make_ordered_list_of_v_c_v_range function ..343
12.8.21 Cdr_list function..344
12.8.22 Make_tuple function ...344
12.8.23 Computable_set_of_created_views_from_model..345
12.8.24 Declared_created_views function ..346
12.8.25 Created_views_by_methods function ..347
12.8.26 In_typeof function ...347
12.8.27 Referenced_veps_exist_in_supported_veps function ..348
12.8.28 Referenced_protocols_exist_in_supported_protocols function348
12.8.29 Required_properties_are_non_dependent_p_det function..349
12.8.30 Required_properties_are_imported_properties function..350
12.8.31 Same_order_for_properties function..351
12.8.32 All_properties_are_applicable function ..353
12.8.33 Required_values_are_non_dependent_p_det function..353
12.8.34 Required_values_are_imported_properties function ...355
12.8.35 Data_type_of_BSU function ...356
12.8.36 Presentation_unit_is_correct function ..357
12.8.37 Exists_representation_for_instanciable_view function...358
12.8.38 Is_provided_once_property_value function..359
12.8.39 Number_of_instance_representations ...360
12.8.40 Correct_parameters_for_explicit_program function...361
12.8.41 Get_dic_item_instances_from_required_item_properties function............................362
12.8.42 Get_list_of_required_properties function ...364
12.8.43 Properties_projection_on_population function ...364
12.8.44 All_views_available_for_components function...365
12.8.45 Available_components_views function...366
12.8.46 All_view_control_variables_belong_to_each_view function.......................................368
12.8.47 Check_all_view_control_variables_belong_to_view function.....................................369
12.8.48 All_vcvs_belong_to_instance_identification function ...369

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved xi

12.8.49 Same_string_values_translations_for_class_extension function...............................370

13 ISO13584_external_file_schema...371
13.1 Introduction to the ISO13584_external_file_schema ...373
13.2 Fundamental concepts and assumptions for the ISO13584_external_file_schema............375

13.2.1 Representations of items ...375
13.2.2 Explicit and implicit description of item representations ..376
13.2.3 Support of user dialogue..376
13.2.4 Http files storage..376
13.2.5 Hyper-text link usage ...377
13.2.6 Escape mechanism from document navigation to data retrieval and selection.............377
13.2.7 Common Gateway Interface access..378
13.2.8 Common Gateway Interface implementation rule..380

13.3 ISO13584_external_file_schema constant definitions ...380
13.3.1 Compiler_version_length ...380
13.3.2 External_file_address_length...380
13.3.3 External_item_code_length ...381
13.3.4 Http_file_name_length ...381
13.3.5 Http_directory_name_length..381

13.4 ISO13584_external_file_schema type definitions ..381
13.4.1 External_file_address ..381
13.4.2 External_item_code_type ..382
13.4.3 Http_file_name_type ..382
13.4.4 Http_directory_name_type...383
13.4.5 MIME_type...383
13.4.6 MIME_subtype ...384
13.4.7 IAB_RFC..384
13.4.8 Character_set_type..385
13.4.9 Content_encoding_type ...385
13.4.10 Program_status..385
13.4.11 Program_reference_name_type ..386
13.4.12 Compiler_version_type...386
13.4.13 Illustration_type ..387

13.5 ISO13584_external_file_schema entity definitions: external_file_protocols387
13.5.1 External_file_protocol ..387
13.5.2 Standard_protocol..388
13.5.3 Non_standard_protocol..389
13.5.4 Data_protocol...389
13.5.5 Program_protocol ..390
13.5.6 Simple_program_protocol..390
13.5.7 Standard_simple_program_protocol..391
13.5.8 Non_standard_simple_program_protocol..391
13.5.9 Linked_interface_program_protocol ..392
13.5.10 Standard_data_protocol ...393
13.5.11 Non_standard_data_protocol ...393
13.5.12 Http_protocol ..393

13.6 ISO13584_external_file_schema entity definitions: dictionary external items394
13.6.1 External_item ...394
13.6.2 Dictionary_external_item ...395
13.6.3 Supplier_BSU_related_content..395
13.6.4 Program_library_content..396
13.6.5 Class_BSU_related_content..396
13.6.6 Document_content...397

13.7 ISO13584_external_file_schema entity definition: class extension external items..............397
13.7.1 Class_extension_external_item...398
13.7.2 Representation_reference ...399
13.7.3 Program_reference..399
13.7.4 Dialogue_resource...400
13.7.5 Message ..400

ISO 13584-24:2003(E)

xii © ISO 2003 – All rights reserved

13.7.6 Illustration...401
13.7.7 A6_illustration ..402
13.7.8 A9_illustration ..402

13.8 ISO13584_external_file_schema entity definition: property_value_external_item...............402
13.9 ISO13584_external_file_schema rule definition...403

13.9.1 Unique_http_file_name_per_supplier_element_rule rule ..403
13.9.2 Unique_http_directory_name_per_supplier_rule rule ..404
13.9.3 No_http_directory_for_supplier_related_file_rule rule ...404
13.9.4 Http_directory_refers_to_bsu_related_class_rule rule ..405
13.9.5 Http_directory_refers_to_class_extension_rule rule..405
13.9.6 Illustration_is_not_a_referenced_graphics_rule rule ...406

13.10 ISO13584_external_file_schema entity definitions: external content...................................406
13.10.1 External_content ..407
13.10.2 Translated_external_content..408
13.10.3 Not_translated_external_content ...408
13.10.4 Not_translatable_external_content...409
13.10.5 Language_specific_content..409
13.10.6 External_file_unit..410
13.10.7 Http_file ..411
13.10.8 Http_class_directory...413

13.11 ISO13584_external_file_schema function definitions ..413
13.11.1 Supplier_associated_http_files...413
13.11.2 Control_compiler_version_format ..415

14 ISO13584_method_schema ..415
14.1 Introduction to the ISO13584_method_schema...417
14.2 Fundamental concepts and assumptions for the ISO13584_method_schema417
14.3 ISO13584_method_schema type definitions ...419

14.3.1 Accessible_variable_for_method...419
14.3.2 Assignment_allowed_variable ...420
14.3.3 Control_allowed_variable...421

14.4 ISO13584_method_schema entity definitions..422
14.4.1 Method ...422
14.4.2 Method_specif..423
14.4.3 Method_body ...424
14.4.4 Method_statement ...426
14.4.5 Guarded_statement ...427
14.4.6 Simple_statement ..428
14.4.7 Null_statement ...428
14.4.8 Modelling statement...428
14.4.9 Set_reference_lcs ..429
14.4.10 Begin_set ...431
14.4.11 Close_set ...432
14.4.12 Set_2d_relative_view_level ..432
14.4.13 Predefined_representation_call_statement..433
14.4.14 Send_representation_statement ..434
14.4.15 Send_representation_reference_statement...436
14.4.16 Call_program_statement..438
14.4.17 Assignment_statement...440
14.4.18 Sub_object_view_statement ..442
14.4.19 Referenced_sub_item_view_statement ...443
14.4.20 Constructed_sub_model_view_statement ...444

14.5 ISO13584_method_schema rules definitions ..446
14.5.1 Created_view_v_c_v_rule rule...446
14.5.2 V_c_v_values_set_and_created_view_v_c_v_set_equality_rule rule446
14.5.3 No_v_c_v_in_assigned_variables_set_rule rule..447

14.6 ISO13584_method_schema function definitions ...447
14.6.1 Checks_classes_in_path function ...447

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved xiii

14.6.2 Checks_applicable_properties_in_path function ...448
14.6.3 same_view_model_method ...449
14.6.4 self_property_value_semantics_is_item_class..450

15 Conformance requirements ...451

16 Exchange of general model classes: library integrated information model 24-1..................453
16.1 ISO13584_g_m_iim_schema short listing ...454
16.2 ISO13584_g_m_iim_schema global rule definitions..462

16.2.1 At_most_one_dictionary_rule rule ...462
16.2.2 Class_associated_items_rule rule ...462

16.3 Conformance class requirements ..463
16.3.1 Conformance class 0 ...463
16.3.2 Conformance class 1 ...465
16.3.3 Conformance class 1E...467
16.3.4 Conformance class 2 ...467
16.3.5 Conformance class 2E...468
16.3.6 Conformance class 3 ...468
16.3.7 Conformance class 3E...470
16.3.8 Conformance class 4 ...470
16.3.9 Conformance class 4E...472
16.3.10 Conformance class 5 ...472
16.3.11 Conformance class 5E ...473
16.3.12 Conformance class 6 ...474
16.3.13 Conformance class 6E ...475

17 Exchange of functional model classes: library integrated information model 24-2475
17.1 ISO13584_f_m_iim_schema short listing ..477
17.2 ISO13584_f_m_iim_schema global rule definitions...485

17.2.1 Exactly_one_dictionary_rule rule ...485
17.2.2 Class_associated_items_rule rule ...485
17.2.3 Supplier_associated_items_rule rule...486

17.3 Conformance class requirements ..487
17.3.1 Conformance class 1 ...487
17.3.2 Conformance class 1E...489
17.3.3 Conformance class 2 ...490
17.3.4 Conformance class 2E...490
17.3.5 Conformance class 3 ...490
17.3.6 Conformance class 3E...493
17.3.7 Conformance class 4 ...493
17.3.8 Conformance class 4E...495
17.3.9 Conformance class 5 ...495
17.3.10 Conformance class 5E ...496
17.3.11 Conformance class 6 ...497
17.3.12 Conformance class 6E ...498

18 Exchange of functional view classes: library integrated information model 24-3498
18.1 ISO13584_f_v_iim_schema short listing..499
18.2 ISO13584_f_v_iim_schema global rule definitions ..503

18.2.1 Exactly_one_dictionary_rule rule ...503
18.2.2 Class_associated_items_rule rule ...503

18.3 Conformance class requirements ..504
18.3.1 Conformance class 1 ...504
18.3.2 Conformance class 1E...506
18.3.3 Conformance class 2 ...506
18.3.4 Conformance class 2E...507

Annex A (normative) Short names of entities defined in this part ...508

Annex B (normative) Information object registration ...515

ISO 13584-24:2003(E)

xiv © ISO 2003 – All rights reserved

Annex C (normative) ISO13584_g_m_iim_library_implicit_schema expanded listing517

Annex D (informative) ISO13584_g_m_iim_schema short names of entities.....................................519

Annex E (normative) Standard data requirements for the library integrated information model 24-1 .520

Annex F (normative) Implementation method specific requirements for the library integrated
information model 24-1..529

Annex G (normative) ISO13584_f_m_iim_library_implicit_schema expanded listing530

Annex H (informative) ISO13584_f_m_iim_schema short names of entities......................................532

Annex I (normative) Standard data requirements for the library integrated information model 24-2...533

Annex J (normative) Implementation method specific requirements for the library integrated
information model 24-2..542

Annex K (normative) ISO13584_f_v_iim_library_implicit_schema expanded listing...........................543

Annex L (informative) ISO13584_f_v_iim_schema short names of entities..545

Annex M (normative) Standard data requirements for the library integrated information model 24-3545

Annex N (normative) Implementation method specific requirements for the library integrated
information model 24-3..555

Annex O (informative) Logical description of the compiling process of ISO 13584-conformant
dictionaries and libraries ..556

Annex P (informative) Commented example of Parts Library physical files..559

Annex Q (informative) Guidelines for creating functional model classes ..609

Annex R (informative) EXPRESS-G diagrams..611

Annex S (informative) Notational Conventions and Generic Grammar for URL-encoded strings......640

Bibliography ...642

Index ..643

Figures

Figure 1 — Simplified example of an explicit information model for families of parts23

Figure 2 — Example of explicit description of a family of parts...23

Figure 3 — Example of implicit description of a parts family in the EXPRESS language24

Figure 4 — Capturing context parameters in an implicit description ...25

Figure 5 — Simple meta-model of a part class in EXPRESS ...26

Figure 6 — Model of a part family using a meta-modelling approach ...27

Figure 7 — Planning model of the relationships between class definition and the instance level........36

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved xv

Figure 8 – External_item planning model ..374

Figure 9 — Class_extension_external_items planning model...398

Figure 10 — External_content planning model ...407

Figure P.1 — PAW family description ...559

Figure P.2 — Instance of a dictionary description ...560

Figure P.3 — Explicit representation of a dictionary description ...560

Figure P.4 — Implicit representation of a dictionary description ...561

Figure P.5 — Identifiers of the concepts involved in the PAW family..562

Figure P.6 — The BSU / Dictionary element relationship..562

Figure P.7 — Dictionary_element of the concepts involved in the PAW family...................................563

Figure P.8 — The Dictionary Element / Library Content relationship ..563

Figure P.9 — Description of one particular instance of the PAW parts family564

Figure P.10 — Description of the PAW explicit class extension ...564

Figure P.11 — Description of the supplier identifiers ..564

Figure P.12 — Description of the class identifiers...565

Figure P.13 — Description of the general model property identifiers ..565

Figure P.14 — Description of the functional model / view property identifiers565

Figure P.15 — Functional model supplier description ...565

Figure P.16 — Property description for referencing programs..566

Figure P.17 — View control variables range definition ..566

Figure P.18 — Specification of the view created by a functional model class.....................................567

Figure P.19 — Description by extension of the instances of a functional a functional model567

Figure P.20 — References to FORTRAN programs that display geometry.568

Figure P.21 — The BSU / Dictionary element relationship..568

Figure P.22 — Identifiers of the concepts involved in the PAW family..581

Figure P.23 — The BSU / Dictionary element relationship..582

Figure P.24 — Dictionary_element of the concepts involved in the PAW family.................................583

Figure P.25 — The Dictionary Element / Library Content relationship ..583

Figure P.26 — Syntax / Semantics variable association ...584

ISO 13584-24:2003(E)

xvi © ISO 2003 – All rights reserved

Figure P.27 — Data model of the variable that stands of the inner diameter of a PAW instance......584

Figure P.28 — Displayable and optional properties ..584

Figure P.29 — Content of a table ..585

Figure P.30 — Domain restriction description ...585

Figure P.31 — Specification of a domain as a table..586

Figure P.32 — Derivation ..586

Figure P.33 — Derivation by algebraic expressions..587

Figure P.34 — Specification of a property value by an algebraic expression......................................587

Figure P.35 — Derivation table..587

Figure P.36 — Specification of a property value by a table...588

Figure P.37 — Description of the PAW implicit class extension ...588

Figure P.38 — Association mechanism between a general model and a functional model................589

Figure P.39 — View control variables range definition ..591

Figure P.40 — Specification of the view created by a functional model class.....................................591

Figure P.41 — The view creation mechanism...592

Figure P.42 — Description of a method ..594

Figure P.43 — Library specification of a functional model class ...594

Figure R.1 — ISO13584_instance_resource_schema diagram 1 of 3..612

Figure R.2 — ISO13584_instance_resource_schema diagram 2 of 3..613

Figure R.3 — ISO13584_instance_resource_schema diagram 3 of 3..614

Figure R.4 — ISO13584_library_expressions_schema diagram 1 of 3 ..615

Figure R.5 — ISO13584_library_expressions_schema diagram 2 of 3 ..616

Figure R.6 — ISO13584_library_expressions_schema diagram 3 of 3 ..617

Figure R.7 — ISO13584_table_resource_schema diagram 1 of 4 ...618

Figure R.8 — ISO13584_table_resource_schema diagram 2 of 4 ...619

Figure R.9 — ISO13584_table_resource_schema diagram 3 of 4 ...620

Figure R.10 — ISO13584_table_resource_schema diagram 4 of 4 ...621

Figure R.11 — ISO13584_variable_semantics_schema diagram 1 of 1 ..622

Figure R.12 — ISO13584_domain_resource_schema diagram 1 of 1 ...623

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved xvii

Figure R.13 — ISO13584_extended_dictionary_schema diagram 1 of 7 ...624

Figure R.14 — ISO13584_extended_dictionary_schema diagram 2 of 7 ...625

Figure R.15 — ISO13584_extended_dictionary_schema diagram 3 of 7 ...626

Figure R.16 — ISO13584_extended_dictionary_schema diagram 4 of 7 ...627

Figure R.17 — ISO13584_extended_dictionary_schema diagram 5 of 7 ...628

Figure R.18 — ISO13584_extended_dictionary_schema diagram 6 of 7 ...629

Figure R.19 — ISO13584_extended_dictionary_schema diagram 7 of 7 ...630

Figure R.20 — ISO13584_library_content_schema diagram 1 of 4..631

Figure R.21 — ISO13584_library_content_schema diagram 2 of 4..632

Figure R.22 — ISO13584_library_content_schema diagram 3 of 4..633

Figure R.23 — ISO13584_library_content_schema diagram 4 of 4..634

Figure R.24 — ISO13584_external_file_schema diagram 1 of 3..635

Figure R.25 — ISO13584_external_file_schema diagram 2 of 3..636

Figure R.26 — ISO13584_external_file_schema diagram 3 of 3..637

Figure R.27 — ISO13584_method_schema diagram 1 of 2 ...638

Figure R.28 — ISO13584_method_schema diagram 2 of 2 ...639

Tables

Table 1 — Conformance options of library integrated information model 24-1454

Table 2 — Conformance options of library integrated information model 24-2477

Table A.1 — Short names of entities ..508

Table E.1 — ISO 13584 LIIM 24-1 conformance class specification ..521

Table I.1 — ISO 13584 LIIM 24-2 conformance class specification..534

Table M.1 — ISO 13584 LIIM 24-3 conformance class specification..547

Table P.1 — View control variables of the geometry functional view class...590

ISO 13584-24:2003(E)

xviii © ISO 2003 – All rights reserved

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies
(ISO member bodies). The work of preparing International Standards is normally carried out through ISO
technical committees. Each member body interested in a subject for which a technical committee has been
established has the right to be represented on that committee. International organizations, governmental and
non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the
International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards
adopted by the technical committees are circulated to the member bodies for voting. Publication as an
International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 13584-24 was prepared by Technical Committee ISO/TC 184, Industrial automation systems and
integration, Subcommittee SC 4, Industrial data.

ISO 13584 consists of the following parts, under the general title Industrial automation systems and
integration — Parts library :

 Part 1: Overview and fundamental principles

 Part 20: Logical resource: Logical model of expressions

 Part 24: Logical resource: Logical model of supplier library

 Part 25: Logical resource: Logical model of supplier library with aggregate values and explicit content

 Part 26: Logical resource: Information supplier identification

 Part 31: Implementation resources: Geometric programming interface

 Part 42: Description methodology: Methodology for structuring part families

 Part 101: Geometrical view exchange protocol by parametric program

 Part 102: View exchange protocol by ISO 10303 conforming specification

The structure of this International Standard is described in ISO 13584-1. The numbering of the parts of this
International Standard reflects its structure:

 Parts 10 to 19 specifiy the conceptual descriptions;

 Parts 20 to 29 specify the logical resources;

 Parts 30 to 39 specifiy the implentation resources;

 Parts 40 to 49 specifiy the description methodology;

 Parts 100 to 199 specifiy the view exchange protocol.

Should further parts of ISO 13584 be published, they will follow the same numbering pattern.

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved xix

Introduction

ISO 13584 is an International Standard for the computer-interpretable representation and exchange of
parts library data. The objective is to provide a neutral mechanism capable of transferring parts library
data, independent of any application that is using a parts library data system. The nature of this
description makes it suitable not only for the exchange of files containing parts, but also as a basis for
implementing and sharing databases of parts library data.

This International Standard is organized as a series of parts, each published separately. The parts of
ISO 13854 fall into one of the following series: conceptual descriptions, logical resources,
implementation resources, description methodology and view exchange protocol. The series are
described in ISO 13584-1. This part of ISO 13584 is a member of the logical resources series.

This part of ISO 13584 specifies the generic resources needed for supplier library modelling and
exchange. It also provides the EXPRESS integrated information models that permit the exchange of
libraries that consist either of definitions of families of parts, representations of families of parts, or
definitions of new representation categories that may be provided for any family of parts. Knowledge of
EXPRESS as defined in ISO 10303-11 is required to understand this part of ISO 13584. Basic
knowledge of ISO 13584-20 and ISO 13584-42 is also required.

INTERNATIONAL STANDARD ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 1

1 Scope

This part of ISO 13584 specifies generic EXPRESS resource constructs that support the description of
different kinds of information about supplier libraries. It also contains a set of integrated EXPRESS
information models for representing supplier libraries for the purpose of exchange. These integrated
information models integrate EXPRESS resource constructs from different parts of ISO 13584 and
ISO 10303 into a single schema. Supplier libraries may consist of definitions or representations of
families of parts. Supplier libraries may also define new representation categories. Supplier libraries
may consist only of dictionary elements, or they may also contain specifications of permitted instances.

When used together with view exchange protocols, these integrated information models also permit
the exchange of one or several representation categories for the parts defined in a parts library.

NOTE 1 View exchange protocols are defined in the view exchange protocol series of ISO 13584.

The following are within the scope of this part of ISO 13584:

— Generic resource constructs for representing hierarchies of families of parts. The parts in the
families may be components or assembled parts, and may be abstract parts or physical parts.

— Generic resource constructs for representing implicitly the definitions of the different parts that
belong to a family of parts.

— Generic resource constructs for representing the different kinds of possible representations of the
different parts that belong to a family of parts.

— Generic resource constructs for representing families of materials, together with their definitions
and possible representations.

— Library integrated information models that gather generic resource constructs from different parts
of ISO 13584 and ISO 10303 into one single schema for representing supplier libraries for the
purpose of exchange. The supplier libraries may consist either of definitions of families of parts, or
of representations of families of parts or of definitions of new representation categories that may
be provided for any family of parts.

The following are outside the scope of this part of ISO 13584:

— Description of assembled parts that may contain an unlimited number of constituent components.

— Specification of a software system able to manage supplier libraries represented according to the
information models defined in this part of ISO 13584.

— Description of the different representation categories that a supplier library may contain.

NOTE 2 The description of the different representation categories that a supplier library may contain are
defined in the view exchange protocol series of parts of ISO 13584.

Industrial automation systems and integration — Parts
library —

Part 24:
Logical resource: Logical model of supplier library

ISO 13584-24:2003(E)

2 © ISO 2003 – All rights reserved

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.

ISO 3166:1993, Codes for the representation of names of countries

ISO 6093:1985, Information processing — Representation of numerical values in character strings for
information interchange

ISO/IEC 8824-1:2003, Information technology — Abstract Syntax Notation One (ASN.1): Specification
of basic notation

ISO 8859-1:1987, Information processing — 8-bit single-byte coded graphic character sets — Part 1:
Latin alphabet No. 1

ISO 8879:1986, Information processing — Text and office systems — Standard Generalized Markup
Language (SGML)

ISO/IEC 9075:1992, Information technology — Database languages — SQL

ISO 10303-11:1994, Industrial automation systems and integration — Product data representation
and exchange — Part 11: Description methods: The EXPRESS language reference manual

ISO 10303-21:2002, Industrial automation systems and integration — Product data representation and
exchange — Part 21: Implementation methods: Clear text encoding of the exchange structure

ISO 10303-41:2000, Industrial automation systems and integration — Product data representation and
exchange — Part 41: Integrated generic resource: Fundamentals of product description and support

ISO 10303-42:2003, Industrial automation systems and integration — Product data representation and
exchange — Part 42: Integrated generic resource: Geometric and topological representation

ISO 10303-43:2003, Industrial automation systems and integration — Product data representation
and exchange — Part 43: Integrated generic resource: Representation structures

ISO 10303-227:2001, Industrial automation systems and integration — Product data representation
and exchange — Application protocol: Plant spatial configuration

ISO 13584-1:2001, Industrial automation systems and integration — Parts library — Part 1: Overview
and fundamental principles

ISO 13584-20:1998, Industrial automation systems and integration — Parts library — Part 20: Logical
resource: Logical model of expressions

ISO 13584-26:2000, Industrial automation systems and integration — Parts library — Part 26: Logical
resource: Information supplier identification

ISO 13584-31:1999, Industrial automation systems and integration — Parts library — Part 31:
Implementation resources: Geometric programming interface

ISO 13584-42:1998, Industrial automation systems and integration — Parts library — Part 42:
Description methodology: Methodology for structuring part families

IEC 61360-2:2002, Standard data element types with associated classification scheme for electric
components — Part 2: EXPRESS dictionary schema

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 3

IAB RFC 1700:1994, Internet architecture board internet standard (STD 2): Assigned numbers

IAB RFC 1739:1994, Internet architecture board proposed standard protocol: A primer on Internet and
TCP/IP tools

IAB RFC 1808:1995, Internet architecture board proposed standard protocol: Relative uniform
resource locators (URL)

IAB RFC 1866:1995, Internet architecture board proposed standard protocol: Hypertext markup
language 2.0 (HTML-2.0)

IAB RFC 2045:1996, Internet architecture board draft standard protocol: Multipurpose internet mail
extensions (MIME)

IAB RFC 2049:1996, Internet architecture board draft standard protocol: MIME conformance criteria
(MIME-CONF)

IAB RFC 2068:1997, Internet architecture board proposed standard protocol: Hypertext transfer
protocol HTTP/1.1 (HTTP-1.1)

IAB RFC 2231:1997, Internet architecture board Proposed standard protocol: MIME parameter value
and encoded word extensions: Character sets, languages and continuations

IAB RFC 2400:1998, Internet architecture board internet standard (STD 1): Internet official protocol
standard

3 Terms, definitions and abbreviations

For the purposes of this document, the following terms and definitions apply. Some of these terms and
definitions are repeated for convenience from:

— ISO 10303-1:1994;

— ISO 10303-11:1994;

— ISO 13584-1:2001;

— ISO 13584-31:1999.

— ISO 13584-42:1998.

3.1

absolute uniform resource locator
a string, the content of which uniquely identifies a network resource over the Internet

NOTE 1 The structure of absolute uniform resource locators are defined in IAB RFC 1738 [2].

NOTE 2 The information represented in an absolute uniform resource locator includes the following:

— the protocol to be used by the Internet client to access the resource, and

— the Internet address of the Internet server.

ISO 13584-24:2003(E)

4 © ISO 2003 – All rights reserved

3.2

abstract part
a part that is only defined by a partial specification and that cannot be materially provided by the
organisation that defines the specification, e.g., International Standard, functional specification
(compare with a physical part)
[ISO 13584-1]

3.3

applicable property
a property that is defined for some family of parts and that shall apply to any part that belongs to this
family of parts
EXAMPLE For a generic family of screws, the threaded diameter is an applicable property. This characteristic
applies to any screw.

3.4

application
a group of one or more processes creating or using product data
[ISO 10303-1, definition 3.2.2]

3.5

application context
the conditions that define the intended use of product data within an application
[ISO 10303-1, definition 3.2.4]

3.6

application programming interface
API
a set of functions that may be triggered by a program

3.7

application protocol
AP
a part of ISO 10303 that describes the use of (ISO 10303) integrated resources satisfying the scope
and information requirements for a specific application context
[ISO 10303-1, definition 3.2.7]

3.8

assembled item
an item that is defined as a composition of other items

3.9

atomic item
an item that is not defined as a composition of other items

NOTE A part that consists of several subassemblies may be described as an atomic item if its class
definition does not define its constituent subassemblies.

© ISO 2003 – All rights reserved 5

3.10

augmented Backus-Naur form
ABNF
the augmented version of Backus-Naur syntax notation defined in clause 2 of IAB RFC 1808

NOTE The notational conventions used in ABNF are summarised for convenience in the informative
annex T.

3.11

basic semantic unit
BSU
the entity that provides an absolute and universally unique identification of certain objects of the
application domain (e.g. classes, data element types)
[ISO 13584-42, definition 3.4.1]

3.12

characteristic of a part (part characteristic)
a constant property, characteristic of a part, of which the value is fixed once the part is defined

NOTE Changing the value of a characteristic of a part would mean changing the part.

EXAMPLE For a ball-bearing, the inner and outer diameters are part characteristics.

3.13

class extension
the set of all instances satisfying the class definition

3.14

class valued property
a property that has one single value for a whole family of parts. Its value is not defined individually for
every single part of that family, but for the family itself
[ISO 13584-42, definition 3.4.2]

NOTE Class valued properties may be used to capture some commonality between different families
when such a commonality is not captured by the hierarchy structure.

3.15

common dictionary schema
the information model for a dictionary, using the EXPRESS modelling language, resulting from a joint
effort between ISO TC184/SC4/WG2 and IEC SC3D
[ISO 13584-42, definition 3.4.3]

NOTE The common dictionary schema is specified in IEC 61360-2. Its content is provided in the
informative annex D of ISO 13584-42.

3.16

completely defined instance
any particular instance of a class extension (compare with: partially defined instance)

ISO 13584-24:2003(E)

ISO 13584-24:2003(E)

6 © ISO 2003 – All rights reserved

3.17

conformance class
a subset of a standard for which conformance may be claimed

NOTE Adapted from ISO 10303-1.

3.18

conformance requirement
a precise text definition of a characteristic required to be present in a conforming implementation
[ISO 10303-1, definition 2.1.14]

3.19

conforming implementation
an implementation which satisfies the conformance requirements defined by one or several
conformance classes of a standard

3.20

conformity; conformance
the fulfilment by an implementation of all specified requirements
[ISO 10303-31, definition 3.2.25]

3.21

context
the circumstances relevant to something under consideration

3.22

context-dependent characteristic of a part
a property of a part whose value depends on some context parameter(s)

NOTE For a given part a context-dependent characteristic is mathematically defined as a function whose
domain is defined by some context parameter(s) that defines the part environment.

EXAMPLE For a ball-bearing, the life-time is a context-dependent characteristic that depends on the radial
load, the axial load and the rotational speed.

3.23

context parameter
a variable of which the value characterises the context in which it is intended to insert a part

EXAMPLE The dynamic-load applied to a bearing is a context parameter for this bearing.

3.24

data
a representation of facts, concepts or instructions in a formal manner suitable for communication,
interpretation, or processing by human beings or computers
[ISO 10303-1, definition 3.2.14]

© ISO 2003 – All rights reserved 7

3.25

data element type
DET
a unit of data for which the identification, description and value representation have been specified
[ISO 13584-42, definition 3.4.4]

3.26

data exchange
the storing, accessing, transferring, and archiving of data
[ISO 10303-1, definition 3.2.15]

3.27

data type
a domain of values
[ISO 10303-11, definition 3.2.4]

3.28

database oriented navigation
within a user library, a navigation that results from querying the data delivered by library data suppliers
as library delivery files

3.29

definition table
the definition of the set of parts that belong to a family of parts by means of a two-dimensional array
finite or infinite where each row defines a part and where each column describes the corresponding
values of a part characteristics

NOTE 1 In ISO 13584, only those family of parts that are associated with a class extension include the
description of their definition tables.

NOTE 2 In ISO 13584, a definition table may be defined either explicitly or implicitly by means of basic
domains, set operators and relational algebra operators.

3.30

derivation function
relationship serving to compute the value of a property from the values of other properties

3.31

derived characteristics
in a family of parts associated with a definition table, a set of part characteristics that does not belong
to the (library data supplier defined) key of this definition table

NOTE A functional dependency exists between the identification characteristics and the derived
characteristics. In ISO 13584, this functional dependency is represented by a derivation function.

3.32

dictionary
a table consisting of a series of entries. One meaning corresponds to each entry in the dictionary and
one dictionary entry identifies one single meaning
[ISO 13584-1]

ISO 13584-24:2003(E)

ISO 13584-24:2003(E)

8 © ISO 2003 – All rights reserved

NOTE 1 In ISO 13584, the kinds of meaning intended to constitute dictionary entries are: supplier, class,
property, program library, type, table and document.

NOTE 2 In ISO 13584, the information that represents a dictionary entry is split into three entities: a
basic_semantic_unit (BSU), that provides for reference, a dictionary_element that describes the dictionary
entry by means of attributes, and, possibly, a content_item entity that describes the dictionary entry by
describing its content.

3.33

dictionary data
the set of data that describes hierarchies of families of parts and properties of these parts
[ISO 13584-42, definition 3.4.6]

NOTE The dictionary data should be exchanged using the common dictionary schema.

3.34

dictionary element
the set of attributes that constitutes the dictionary description of certain objects of the application
domain (e.g. classes, data element types)
[ISO 13584-42, definition 3.4.7]

3.35

document oriented navigation
within a user library navigation that follows hypertext links to navigate between documents delivered by
library data suppliers as library external files

3.36

entity
a class of information defined by common properties
[ISO 10303-11, definition 3.2.5]

3.37

entity data type
a representation of an entity. An entity data type establishes a domain of values defined by common
attributes and constraints
[ISO 10303-11, definition 3.2.6]

3.38

entity (data type) instance
a named unit of data that represents a unit of information within the class defined by an entity. It is a
member of the domain established by an entity data type
[ISO 10303-11, definition 3.2.7]

3.39

exchange structure
a computer-interpretable format used for storing, accessing, transferring, and archiving data
[ISO 10303-1, definition 3.2.17]

© ISO 2003 – All rights reserved 9

3.40

family of parts
a simple or generic family of parts

3.41

feature
an aspect of an item that can be captured by a class structure and set of properties and that cannot
exist independently of the item

EXAMPLE 1 A form feature is an aspect of a part that conforms to some preconceived shape stereotype
associated to dimensioning properties. It may be represented as an instance of a class that captures this shape
stereotype.

EXAMPLE 2 In a piping component, an outlet is an aspect of a part that conforms to some preconceived
function stereotype that is associated with properties (e.g., its name, its role). It may be represented as a feature.

3.42

functional model of a part
the library data that represent one representation category of a part in an integrated library
[ISO 13584-1]

3.43

functional view of a part
a data that represents one representation category of a part in product data
[ISO 13584-1]

NOTE The structure of a functional view does not depend on the part it represents.

3.44

generic family of parts
a grouping of simple or generic families of parts done for purposes of classification or for factoring
common information

3.45

hypertext markup language
HTML
a particular implementation of ISO 8879 (SGML) that enables access to the network resources
available on the Internet

NOTE 1 The current version of HTML, HTML/2.0, is defined by IAB RFC 1866.

NOTE 2 An HTML document encapsulates uniform resource locators (URL) as a means of accessing
network resources available on the Internet.

3.46

general model of a part
the library data that carries the definition and identity of a part in an integrated library
[ISO 13584-1]

3.47

http file
 a MIME-like file that may contain reference to other Internet resources by means of http URLs

ISO 13584-24:2003(E)

ISO 13584-24:2003(E)

10 © ISO 2003 – All rights reserved

NOTE 1 http URLs are URLs used to locate network resources via the HTTP protocol. Their particular
syntax and semantics are defined in the RFC that specifies the HTTP protocol.

NOTE 2 The current version of the HTTP protocol, HTTP/1.1, is defined by IAB RFC 2068.

3.48

hypertext transfer protocol
HTTP
a particular application-level network protocol between an Internet server and an Internet client defined
by a RFC from the IAB

NOTE The current version of the HTTP protocol, HTTP/1.1, is defined by IAB RFC 2068.

3.49

identification characteristics
 a simple family of parts associated with a definition table, a set of part characteristics that constitute
the (library data supplier-defined) key of this definition table

NOTE 1 When there exist several sets of part characteristics that might constitute a key of the definition
table (candidate keys), the particular set that defines the identification characteristics is chosen by the library
data supplier.

NOTE 2 Identification characteristics identify a part within its family.

NOTE 3 It is not allowed by ISO 13584 to reuse the same values of the identification characteristics at any
time for two different parts, i.e., for two parts of which some non-identification characteristics are different. If such
a situation is anticipated, some additional identification characteristics, such that a version, shall be added to
discriminate both parts.

NOTE 4 A functional dependency exists between the identification characteristics and the other part
characteristics. In ISO 13584, this functional dependency is represented by a derivation function.

3.50

implementation method
a technique used by computers to exchange data that is described using the EXPRESS data
specification language

NOTE Adapted from ISO 10303-1.

3.51

implementation resources
the capabilities of a software system that shall be available to claim conformance to a particular
conformance class of a view exchange protocol or both view exchange protocol and library integrated
information model

3.52

information
facts, concepts or instructions
[ISO 10303-1, definition 3.2.20]

© ISO 2003 – All rights reserved 11

3.53

information model
a formal model of a set of facts, concepts or instructions to meet a specific requirement
[ISO 10303-1, definition 3.2.21]

3.54

instance
a named value
[ISO 10303-11, definition 3.2.8]

3.55

integrated library
operational system consisting of a library management system and a user library
[ISO 13584-1]

3.56

Internet
the network that complies with the standard rules defined by the Internet Architecture Board (IAB)

3.57

Internet architecture board
IAB
the organisation that specifies by means of Request For Comments (RFC) the standard rules that
shall be followed by the Internet client and Internet server

NOTE Current versions of standard documents from the Internet Architecture Board (IAB) may be found
on the Internet Official Server at the following uniform resource locator: http//DS.INTERNIC.NET.

3.58

Internet assigned numbers authority
IANA
the central coordinator for the assignment of unique parameter values for Internet protocols

NOTE Currently assigned values for the various series of protocol parameters for the Internet protocol
suite are currently available as: ftp://ftp.isi.edu/in-notes/iana/assignments/.

3.59

Internet client
program that establishes connections over the Internet for the purpose of sending requests

NOTE Requests conformant with the hypertext transfer protocol are defined by IAB RFC 2068.

3.60

Internet server
program that accepts connections in order to service requests by sending back responses

NOTE Requests conformant with the hypertext transfer protocol are defined by IAB RFC 2068.

ISO 13584-24:2003(E)

ISO 13584-24:2003(E)

12 © ISO 2003 – All rights reserved

3.61

is-a relationship
the inheritance relationship defined in the object oriented paradigm

NOTE In ISO 13584 the is-a relationship holds between a family of parts and a generic family of parts to
which the former family belongs.

3.62

is-case-of relationship
a relationship providing a formal expression of the fact that an object conforms to the partial
specification defined by another object

NOTE In ISO 13584, all the properties and data types visible or applicable for some family of parts may
be imported by all the families of parts that declare to be case-of the former family. These properties and data
types may then be used to describe the latter families.

3.63

is-part-of
the aggregation part/whole relationship

NOTE In ISO 13584 the is-part-of relationship holds between a family of constituent parts and a family of
assembled parts to which the constituent parts belongs.

3.64

is-view-of
a relationship providing a formal expression of the fact that an object is a representation of another
object according to a particular perspective

EXAMPLE A set of geometric entities might provide a drafting representation of a particular screw. If both the
set of geometric entities and the particular screw are represented as object, the is-view-of relationship holds
between the former object and the latter object (in a drafting perspective).

3.65

item
a thing that can be captured by a class structure and a set of properties
[ISO 13584-42, definition 3.4.8]

3.66

library
See: Parts library, supplier library, user library
[ISO 13584-1]

3.67

library data supplier
an organisation that delivers a supplier library in the standard format defined in ISO 13584 and is
responsible for its content
[ISO 13584-1]

© ISO 2003 – All rights reserved 13

3.68

library delivery file
a population of EXPRESS entity instances conforming to a library integrated information model and
represented according to one of the implementation methods specified in ISO 10303

NOTE A library delivery file specifies the structure and the content of a supplier library. It may reference
library external files.

3.69

library end-user
the user of an integrated library
[ISO 13584-1]

NOTE The library end-user:

— consults the data contained in the library;
— selects a given part;
— requests the transmission of a selected view of this part from the library system.

3.70

library exchange context
the set of one library delivery file and zero, one or more library external files that represent together a
supplier library

3.71

library external file
a file, referenced from a library delivery file, that contributes to the definition of a supplier library

NOTE The structure and the format of a library external file is specified in the library delivery file that
references it.

3.72

library integrated information model
LIIM
an EXPRESS schema that integrates resource constructs from different EXPRESS schemas for
representing supplier libraries for the purpose of exchange and that is associated with conformance
requirements

NOTE Three library integrated information models are defined in this part of ISO 13584 for representing
different kinds of supplier libraries.

3.73

library management system
LMS
a software system enabling the library end-user to use the content of an integrated library
[ISO 13584-1]

NOTE This software system is not standardised.

ISO 13584-24:2003(E)

ISO 13584-24:2003(E)

14 © ISO 2003 – All rights reserved

3.74

library part
a part associated with a set of data that represents it in a library
[ISO 13584-1]

3.75

library part data
the data that represent a part in a library
[ISO 13584-1]

3.76

library specification of a class
the explicit representation of a class extension in a supplier library

NOTE In the ISO 13584 series, every class is intentionally defined through a dictionary element. A
dictionary element allows defining a kind of part, characterized by abstract properties. A class extension enables
the library data supplier to define those parts of the kind defined by a dictionary element that are existing in
some context. They may be e.g., sold by the library data supplier.

3.77

local coordinate system
LCS
an orthogonal right-handed coordinate system used to orientate and to locate geometrical entities in
space
[ISO 13584-31]

3.78

mandatory property
a property that shall have a value in any completely defined instance of a class (compare with: optional
property)

NOTE As in the EXPRESS language, a NULL value for a property in an instance is represented by the
fact that this property is associated with no value. No difference is made, at the data model level, between a still
non-assigned value, and a NULL value.

3.79

MIME-like file
a file whose format is described by the MIME-defined set of fields of information

NOTE 1 Standard values for MIME-defined fields of information may be registered by IANA. In the context
of ISO 13584-24, only such registered values are allowed for use to describe the format of files exchanged as
library external file.

NOTE 2 IANA registration procedures for MIME-related facilities are defined by RFCs from the IAB. They
are currently defined by IAB RFC 2048 [5].

NOTE 3 Currently assigned values for the various series of protocol parameters for the Internet protocol
suite are currently available as: ftp://ftp.isi.edu/in-notes/iana/assignments/.

ftp://ftp.isi.edu/in-notes/iana/assignments/

© ISO 2003 – All rights reserved 15

3.80

multi-purpose Internet mail extensions
MIME
a set of fields of information that enables one to specify the format of a file on the Internet

NOTE 1 The MIME set of fields of information, and their meaning, are currently defined by IAB RFC 2045,
IAB RFC 2046 [3], IAB RFC 2047 [4], IAB RFC 2049, and IAB RFC 2231.

NOTE 2 Particular values for MIME fields of information may be registered by IANA. Such values are
intended to be recognised by any Internet agent.

3.81

network resource
an addressable unit of information or service that can be accessed through a network

3.82

object view coordinate
OVC
a Cartesian coordinate system used to describe geometric representations of library parts

3.83

optional property
a property that does not need a value for some completely defined instance of some class

EXAMPLE Consider the class that describes an assembled part consisting of bolt + nut + optional washer
components. It contains a characteristic, called the_washer, whose type is defined by a washer class. For those
instances of this class that do not contain a washer, the the_washer characteristic is not assigned a value.

3.84

part
a material or functional element that is intended to constitute a component of different products
[ISO 13584-1]

3.85

partially defined instance
an abstraction of several different instances of a class extension that may prove useful to capture in
some state of a design process

NOTE This part of ISO 13584 does not specify whether partially defined instances may be created by a
library in a user modelling system. This is implementation dependent.

3.86

parts library
an identified set of data and possibly programs which may generate information about a set of parts
[ISO 13584-1]

3.87

physical part
a part that can exist in several equivalent copies and which is capable of being supplied by the library
data supplier who describes the library data for this part (compare to: abstract part)
[ISO 13584-1]

ISO 13584-24:2003(E)

ISO 13584-24:2003(E)

16 © ISO 2003 – All rights reserved

3.88

population
a collection of entity data type instances
[ISO 10303-11, definition 3.2.11]

3.89

product
a thing or substance produced by a natural or artificial process
[ISO 10303-1, definition 3.2.26]

3.90

product data
a representation of information about a product in a formal manner suitable for communication,
interpretation, or processing by human beings or by computers
[ISO 10303-1, definition 3.2.27]

3.91

property
an information that may be represented by a data element type
[ISO 13584-42, definition 3.4.10]

3.92

relative uniform resource locator
a simplified URL that uniquely identifies a network resource provided by the same Internet server as
the one which served the document where the URL is used

NOTE 1 A relative uniform resource locator does not contain the location of the Internet server.

NOTE 2 The relative URL content and structure is currently defined by IAB RFC 1808.

3.93

representation
a description, drawing or depiction of something
[ISO 10303-227]

3.94

representation category
a concept used to distinguish between different possible user requirements regarding a part
representation
[ISO 13584-1]

NOTE In the model defined in this International Standard, this distinction is formally expressed in terms of
a view logical name and the view control variables.

3.95

representation property
a property of a representation of a part that is not a part characteristics

© ISO 2003 – All rights reserved 17

EXAMPLE In a functional model class that represents some simulation model for the different parts of a parts
family, all the coefficients of these simulation models are representation properties. Unlike part characteristics,
the values of these properties may be changed for a given part without changing the part. For instance, It is the
case when the coefficients are more accurately computed.

3.96

request for comments
RFC
a document issued by the Internet Architecture Board(IAB) to specify a rule to be followed on the
Internet

NOTE This part of ISO 13584 references, in its Normative reference clauses, several IAB RFCs for
representing and accessing documents which constitute provisions of this part of ISO 13584. Parties to
agreements based on this part of ISO 13584 are encouraged to investigate the possibility of applying the most
recent RFCs released by the IAB for representing documents associated with a supplier library.

3.97

resource construct
the collection of EXPRESS language entities, types, functions, rules and references that together
define a valid description of data

NOTE Adapted from ISO 10303-1.

3.98

simple family of parts
a set of parts of which each part may be described by the same group of properties

3.99

standard data
a requirement on a software system defined by means of EXPRESS entity (data type) instances that
are supposed to be recognised by this software system

3.100

standardised identification hierarchy
a dictionary data that is defined by a standardisation organisation
[ISO 13584-42, definition 3.4.11]

3.101

structured query language
SQL
the query language for relational database defined by ISO/IEC 9075

3.102

supplier library
a set of data, and possibly of programs, for which the supplier is defined and that describes in the
standard format defined in ISO 13584 a set of parts and/or a set of representation of parts
[ISO 13584-1]

ISO 13584-24:2003(E)

ISO 13584-24:2003(E)

18 © ISO 2003 – All rights reserved

3.103

uniform resource locator
URL
a mechanism specified by the Internet Architecture Board(IAB) to uniquely identify a network resource
on the Internet

NOTE 1 An URL may be either an absolute URL or a relative URL.

NOTE 2 The URL mechanism is currently defined by IAB RFC 1738 [2] and IAB RFC 1808.

3.104

user library
the information that results from the integration of one or more supplier libraries by the library
management system and possibly from a later adaptation performed by the user
[ISO 13584-1]

3.105

user modeling system
 a software system enabling the library end-user to use the part representations generated by an
integrated library

3.106

view control variable
a variable of enumerated type, that may be associated with a view logical name and intended to
further specify the perspective adopted by the user regarding a part. (e.g., for geometry: 2D, wire
frame, solid)
[ISO 13584-1]

3.107

view exchange protocol
VEP
a part of ISO 13584 that describes the use of resource constructs and of representation transmission
interfaces that satisfy the information requirement for the exchange of one representation category of
parts

3.108

view logical name
the identifier of a representation category corresponding to a perspective that can be adopted by a
user regarding a part (e.g., geometry, inertia, kinematics, etc.)
[ISO 13584-1]

3.109

visible property
a property that is defined for some family of parts and that may or not apply to the different parts of this
family of parts

EXAMPLE For a generic family of screws, the non-threaded length is a visible property: it is clearly defined for
any screw, but only those screws with a non-threaded part have a value for this property.

© ISO 2003 – All rights reserved 19

4 Structure of ISO 13584-24

ISO 13584-24 has three main parts.

— The generic resources part provides resource constructs that are generic in nature. They are
intended to be used both inside and outside the ISO 13584 Standard series. This intent was taken
into account in their design.

— The parts library specific resources part provides resource constructs that are specific to the parts
library application domain. They were not designed with the intent to be used outside the
ISO 13584 Standard series.

— The library integrated information models part provides EXPRESS schemas that integrate
resource constructs from the previous schemas, other parts of ISO 13584 and other International
Standards for representing supplier libraries for the purpose of exchange.

4.1 Generic resources

The generic resources consist of the following EXPRESS schemas:

— ISO13584_instance_resource_schema,

— ISO13584_library_expressions_schema,

— ISO13584_table_resource_schema,

— ISO13584_variable_semantics_schema,

— ISO13584_domain_resource_schema.

These schemas provide resource constructs that are generic in nature. They may be used outside
ISO 13584, and particularly in all the applications that use a data dictionary conformant with the
ISO/IEC dictionary schema specified in IEC 61360-2 and whose content is duplicated in an informative
annex of ISO 13584-42.

4.1.1 ISO13584_instance_resource_schema

The ISO13584_instance_resource_schema provides the resource constructs needed to describe
instances of classes, or values of properties, whose corresponding data types are specified in
accordance with the ISO13584_ISO61360_dictionary_schema specified in IEC 61360-2 or with the
ISO13584_extended_dictionary_schema specified in this part of ISO 13584.

4.1.2 ISO13584_library_expressions_schema

The ISO13584_library_expressions_schema provides the resource constructs for representing
expressions that evaluate to a value belonging to any of the data types defined in the
ISO13584_ISO61360_dictionary_schema, specified in IEC 61360-2 or in the
ISO13584_extended_dictionary_schema specified in this part of ISO 13584.

4.1.3 ISO13584_table_resource_schema

The ISO13584_table_resource_schema defines the set of resource constructs needed to describe
tables and algebraic operations in tables. The algebraic operations in tables considered in the
ISO13584_table_resource_schema include relational algebra, and set operations. This schema may
be used to represent any kind of tables, regardless of whether they relate to the parts library
application domain.

ISO 13584-24:2003(E)

ISO 13584-24:2003(E)

20 © ISO 2003 – All rights reserved

4.1.4 ISO13584_variable_semantics_schema

The ISO13584_variable_semantics_schema provides the resource constructs needed to reference
the current values of the different elements that characterise an instance of a class, whether this class
is modelled according to the ISO13584_IEC61360_dictionary_schema, or according to its extensions
defined in the ISO13584_extended_dictionary_schema. Following the data model defined in
ISO 13584-20 for representing variables and their value-assignment mechanism, these resources are
defined as subtypes of variable_semantics.

NOTE variable_semantics is defined in ISO 13584-20.

4.1.5 ISO13584_domain_resource_schema

The ISO13584_domain_resource_schema provides the resource constructs needed to represent the
set of allowed values that constitutes the domain of a variable in a given context. This set of allowed
values may be independent of any other variables, or it may depend on the values of some other
variables. The resource constructs introduced in this schema enable the characterisation of both kinds
of domains. These resources are generic in nature and can be used for various purposes and in
different application contexts. In this part of ISO 13584, these resources are used in the
ISO13584_library_content_schema to define the extension of a class.

4.2 Parts library specific resources

The parts library specific resources consist of the following EXPRESS schemas:

— ISO13584_extended_dictionary_schema,

— ISO13584_library_content_schema,

— ISO13584_external_file_schema,

— ISO13584_method_schema.

These schemas provide resource constructs that are specific to the parts library application domain.
They enable the representation, within a supplier library, of hierarchies of item classes and
representations for a library of those item classes.

4.2.1 ISO13584_extended_dictionary_schema

The ISO13584_extended_dictionary_schema contains the extensions of the ISO/IEC dictionary
schema required for parts library representing and exchange. These extensions include the following:

— representation of classes of features;

— representation of functional model classes and functional view classes;

— representation of properties of functional model classes and functional view classes; and

— association of tables and documents with classes defined in a supplier library.

4.2.2 ISO13584_library_content_schema

In a dictionary, classes are intentionally defined. Their sets of possible instances are neither explicitly
nor implicitly specified. The role of the ISO13584_library_content_schema is to enable the

© ISO 2003 – All rights reserved 21

representation of class extensions. The set of possible instances is either explicitly described using a
simple set structure, or implicitly defined by using the resources of the
ISO13584_domain_resource_schema.

4.2.3 ISO13584_external_file_schema

The ISO13584_external_file_schema defines a mechanism and provides the resource constructs for
referencing external files, whether these external files conform to an EXPRESS information model,
and whether their file formats conform to an implementation method defined in ISO 10303. The
ISO13584_external_file_schema includes, in particular, all the material needed to support Internet-
oriented documents and access mechanisms in a supplier library.

4.2.4 ISO13584_method_schema

The ISO13584_method_schema provides the resource constructs for representing methods for
creating library item representations in a user modelling system.

4.3 Library integrated information models

A library integrated information model is an EXPRESS schema that integrates resource constructs
from the above schemas and from other parts of ISO 13584 or other International Standards for
representing supplier libraries for the purpose of exchange. Library integrated information models are
associated with conformance requirements. The library integrated information models defined in this
part of ISO 13584 enable the exchange of three kinds of libraries between a library data supplier and a
library end-user:

— libraries that consist of hierarchies of classes of parts, materials or features,

— libraries that consist of representations of parts, materials or features, and

— libraries that define new representation categories capable of being provided for any family of
parts, materials or features.

NOTE Each library integrated information model defined in this part of ISO 13584 allows the exchange of
only one of the above three kinds of libraries. However, due to the dictionary mechanism, these three kinds of
libraries may be exchanged separately as three different supplier libraries, and then, these three different
supplier libraries might be integrated in the same user library.

4.3.1 ISO13584_g_m_iim_schema and LIIM 24-1

The ISO13584_g_m_iim_schema specifies the information requirements for exchanging hierarchies
of item classes, where items may be parts, materials or features. This schema is associated with a set
of standard data, that defines the formats of library external files that may be referenced by
ISO13584_g_m_iim_schema entity data type instances, and with implementation methods for the
library delivery file. Together with the standard data specified in annex E and with the implementation
methods specified in annex F, the ISO13584_g_m_iim_schema constitutes the library integrated
information model LIIM 24-1. Conformance requirements to LIIM 24-1 are defined in clause 16 of this
part of ISO 13584.

4.3.2 ISO13584_f_m_iim_schema and LIIM 24-2

The ISO13584_f_m_iim_schema specifies the information requirements for exchanging hierarchies
of library representations of library-defined item classes. This schema is associated with a set of
standard data, that defines the formats of library external files that may be referenced by
ISO13584_f_m_iim_schema entity data type instances, and with implementation methods for the
library delivery file. Together with the standard data specified in annex I and with the implementation
methods specified in annex J, the ISO13584_f_m_iim_schema constitutes the library integrated
information model LIIM 24-2. Conformance requirements to LIIM 24-2 are defined in clause 17 of this
part of ISO 13584.

ISO 13584-24:2003(E)

ISO 13584-24:2003(E)

22 © ISO 2003 – All rights reserved

4.3.3 ISO13584_f_v_iim_schema and LIIM 24-3

The ISO13584_f_v_iim_schema specifies the information requirements for exchanging hierarchies of
classes that define new representation categories capable of being provided for any library-defined
item classes. This schema is associated with a set of standard data, that defines the formats of library
external files that may be referenced by ISO13584_f_v_iim_schema entity data type instances, and
with implementation methods for the library delivery file. Together with the standard data specified in
annex M and with the implementation methods specified in annex N, the ISO13584_f_v_iim_schema
constitutes the library integrated information model LIIM 24-3. Conformance requirements to LIIM 24-3
are defined in clause 18 of this part of ISO 13584.

NOTE 1 Classes that define representation categories are functional view classes. Functional view classes
are defined in ISO 13584-1.

NOTE 2 Only supplier-defined functional view classes need to be exchanged using the library integrated
information model LIIM 24-3. Functional view classes defined by view exchange protocols are already stored in
the dictionary of any implementation that claims conformance to these view exchange protocols.

5 Fundamental concepts and assumptions

The following concepts and assumptions apply to this part of ISO 13584.

5.1 Conceptual model of a supplier library

The conceptual model of a supplier library is described in Part 10 of ISO 13584. This conceptual
model uses the object oriented paradigm for representing as a class:

— a family of parts; such a class is called a general model class,

— the representations of the different parts of a parts family belonging to the same representation
category; such a class is called a functional model class, and

— the definitions of the different representation categories capable of being provided for any family of
parts; such a class is called a functional view class.

These classes are structured hierarchically following the simple inheritance relationship.

This part of ISO 13584 provides the EXPRESS resource constructs for representing such a hierarchy
of classes for the purpose of exchange.

5.2 Implicit versus explicit description of a parts library

At the lower level of the hierarchy of general model classes are represented simple families of parts.
Two approaches may be used for representing simple families of parts.

NOTE a simple family of parts is a set of parts where each part may be described by the same group of
properties (see clause 3).

5.2.1 Explicit modelling of simple families of parts: by set extension

Explicit description consists of representing separately each part of the family, and gathering all these
descriptions within a set structure.

EXAMPLE Let's assume a family F is to be captured. It is described by part characteristics a, b and c, and
contains 90 different parts defined by:

— a = 1, 2, ..., 10;

© ISO 2003 – All rights reserved 23

— b = 1, 2, ..., 10;

— c = (a + b) / 2, and;

— there exists no part such that a = b.

A simplified information model stated in EXPRESS is presented in Figure 1. Following this information model,
the family F might be described, using the ISO 10303-21 implementation method, as presented in Figure 2.

ENTITY dic_part;
family_name: STRING;
properties: LIST [1:?] OF property_value;

END_ENTITY;

ENTITY property_value;
property_name: STRING;
value: REAL;

END_ENTITY;

Figure 1 — Simplified example of an explicit information model for families of parts

#10=DIC_PART('F', (#100, #101, #102));
#100=PROPERTRY_VALUE('a', 1.0);
#101=PROPERTRY_VALUE('b', 2.0);
#102=PROPERTRY_VALUE('c', 1.5);

...
#90=DIC_PART('F', (#900, #901, #902));

#900=PROPERTRY_VALUE('a', 10.0);
#901=PROPERTRY_VALUE('b', 9.0);
#902=PROPERTRY_VALUE('c', 9.5);

Figure 2 — Example of explicit description of a family of parts

The set of instances is defined by set extension: every instance of the set is explicitly defined.

NOTE As shown by the above example the description and the data management of explicitly described
families is rather simple provided that the number of instances is not too large.

5.2.2 Implicit modeling of simple families by entity data type

Using an entity-data-type-oriented information modeling language, implicit description consists of
capturing all the set of instances in an entity data type, using the capabilities of the modeling language
to restrict the implicit content of this set of instances.

EXAMPLE Using the EXPRESS language, the family F defined in the previous example might be modeled
according to Figure 3. Such an information model implicitly describes that there exist 90 value-different
instances of the F family. The set of instances is defined by intention.

ISO 13584-24:2003(E)

ISO 13584-24:2003(E)

24 © ISO 2003 – All rights reserved

ENTITY F;
a: REAL;
b: REAL;

DERIVE
c: REAL := (a + b) / 2;

WHERE
WR1: SELF.a IN

[1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0];
WR2: SELF.b IN

[1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0];
WR3: SELF.a <> SELF.b;

END_ENTITY;

Figure 3 — Example of implicit description of a parts family in the EXPRESS language

NOTE From the user perspective, an implicitly-decribed parts family is a black-box where the user puts in
some parameters values and gets back a set of part instances that conform to those values. Within the black-
box, the family may be represented using tables, query functions, expressions, etc.

5.2.3 Explicit and implicit description of classes in this part of ISO 13584

This part of ISO 13584 lets the library data suppliers choose which approach they want to use for
describing the content of their families. A family is always described by a class, but the set of all
instances satisfying a class definition may be represented either explicitly, or implicitly.

Advantages of the implicit approach for family representation are:

— Storage reduction for families that contain a large number of parts.

EXAMPLE 1 More than 5 billion of different screws conforming to ISO screw standards exist.

— The capability to model families of customisable parts where some properties may have any value
in some continuous ranges.

EXAMPLE 2 In the catalogue of a linear bearings supplier, the length of the guide way of a linear bearing may
be ordered for any value within some continuous range.

— The capability to model not only the characteristics of the parts, but also the context parameters
whose values do not belong to part definition but that enable a part to be selected through the
requirements that must be fulfilled for it to meet the user’s needs.

EXAMPLE 3 Assume that, in a family of parts called F, there exists a context parameter called requirement, that
may take any integer value between 1 and 9. Assume that, for each value, there exists only one part that fulfil
the corresponding requirements, the part whose attribute a equals "requirement -1", and whose attribute b
equals "requirement +1". The corresponding constraints may be modelled in EXPRESS. The family F might be
modelled as shown in Figure 4. Using such a description, a part of the family may be selected either through the
a or b characteristics, or through the requirement context parameter.

© ISO 2003 – All rights reserved 25

ENTITY F;
requirement: INTEGER;
a: REAL;
b: REAL;

WHERE
WR1: SELF.a IN

[1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0];
WR2: SELF.b IN

[1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0];
WR3: SELF.a <> SELF.b;
WR4: {1 < SELF.requirement <= 9};
WR5: (SELF.a = SELF.requirement - 1.0) AND

(SELF.b = SELF.requirement + 1.0);
END_ENTITY;

Figure 4 — Capturing context parameters in an implicit description

NOTE In Figure 4, the constraints are directly defined in EXPRESS. They cannot be exchanged using
any of the implementation methods defined in ISO 10303. The ISO13584_domain_resource_schema
documented in clause 10 of this part of ISO 13584 provides EXPRESS resource constructs that permit
implementations to exchange such constraints.

Advantages of the explicit approach for family representing include:

— Easiness of description of a library by the library data supplier;

— Easiness of implementation of LMS that support only explicit description of class extension;

— Easiness of modeling assemblies when the number of possible configurations is rather small;

— Easiness of splitting the properties associated with a part in a general model and various
functional models and of gathering them again during user access.

5.3 Direct use of EXPRESS versus meta-modelling for implicit description

Two approaches may be used for implicitly representing families of parts using the EXPRESS
language.

5.3.1 Direct use of the EXPRESS language for modelling classes

The use of a direct EXPRESS model of a class, as shown in Figures 3 and 4 has the following
advantages:

— the notion of a class in this International Standard may be mapped onto the EXPRESS notion of
an entity data type;

— some required aspects of classes are enforced by the syntax of the EXPRESS language;

EXAMPLE 1 The constraint that an attribute shall be followed by a unique data type is a syntactic constraint.

— other required aspects of classes are enforced by the semantics of the EXPRESS language;

EXAMPLE 2 The constraint that only inherited or defined attributes may be referred to in the description of an
entity data type is a semantic constraint.

— a mapping of a population of an EXPRESS model to an external file format exists.

EXAMPLE 3 The mapping defined in ISO 10303-21 is such a mapping.

ISO 13584-24:2003(E)

ISO 13584-24:2003(E)

26 © ISO 2003 – All rights reserved

Directly modelling classes in EXPRESS has the following disadvantages:

— classes and instances are modelled and processed completely differently;

EXAMPLE 4 An EXPRESS schema is represented in ASCII and is intended to be compiled. A set of instances
is represented, e. g., according to ISO 10303-21 and is intended to be read by a STEP processor.

— only those concepts that exist in the EXPRESS language may be used in a class description.

EXAMPLE 5 In EXPRESS, it is not possible to capture the fact that the requirement attribute in Figure 4 is
semantically different from the attributes a and b. The value of the requirement attribute may be changed without
changing the part, whereas changing either a or b would change the part.

5.3.2 Meta-modelling of classes using EXPRESS

A meta-model is a model that provides the ability to represent other models.

Using the meta-modelling approach, a class is represented as a set of instances of the EXPRESS
entities belonging to a meta-model.

Figure 5 shows a simple meta-model of a part class. The actual information model of a part class is
located in the ISO13584_library_content_schema in clause 12. The class shown in Figure 4 directly
modelled in EXPRESS might be represented in a similar way as shown in Figure 6 using the meta-
model of Figure 5. Note that the actual information model of constraints is located in the
ISO13584_domain_resource_schema in clause 10.

This part of ISO 13584 uses a meta-modelling approach for representing the three kinds of classes
described in clause 5.1.

NOTE As shown in Figure 1, another information model may be defined for representing instances.
Therefore, class and instance descriptions may be modelled at the same level and exchanged within the same
population of EXPRESS entity data type instances. The ISO13584_instance_resource_schema, documented
in clause 6, provides EXPRESS resource constructs for representing class instances.

...
ENTITY part_class;

characteristics: SET [0:?] OF property_definition;
domain: SET [0:?] OF constraint;

END_ENTITY;

ENTITY property_definition;
property_name: STRING;
value_domain: data_type_specification;

END_ENTITY;

ENTITY data_type_specification;
type_name: STRING;

END_ENTITY;
...

Figure 5 — Simple meta-model of a part class in EXPRESS

...
#10=PART_CLASS((#20,#30,#40),(#50,#60,#70,#80,#90));
#20=PROPERTY_DEFINITION("a", #120);
#30=PROPERTY_DEFINITION("b", #120);
#40=PROPERTY_DEFINITION("requirement", #120);

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 27

#50= ... /* constraint: a is in [1.0, 2.0, ..., 10.0] */
#60= ... /* constraint: b is in [1.0, 2.0, ..., 10.0] */
#70=CONSTRAINT(.NOT_EQUAL.,#20,#30); /* SELF.a <> SELF.b */
#80=CONSTRAINT(.EQUAL., #20, #100); /* SELF.a = value of #100 */
#90= ... /* constraint that b = SELF.requirement + 1.0 */
#100=LESS_EXPRESSION(#40, #110); /* SELF.requirement - 1.0 */
#110=REAL_VALUE(1.0);
#120=DATA_TYPE_SPECIFICATION('REAL_TYPE');
...

Figure 6 — Model of a part family using a meta-modelling approach

5.4 Two level description of a supplier library and the ISO/IEC common dictionary
schema

Each parts family that constitutes a supplier library has two levels of description:

— The first level describes the concepts about the parts family. Each parts family is both informally
defined by a natural language description and formally defined by a set of attributes. This first level
constitutes the dictionary definition of the corresponding parts family. It is represented as a
dictionary_element. A dictionary_element may be exchanged. It may also be stored in the
semantic dictionary of the receiving system.

— The second level describes the set of parts belonging to the family. This second level constitutes
the library specification of the corresponding parts family. It is represented as a content_item
intended to be stored in a user library.

The dictionary_element describes only the abstract concept to which the parts family corresponds. It
provides the information that determines whether a part may belong to that parts family. It does not
define the set of parts that constitute the parts family.

The content_item, when present, completes the above description by specifying all the parts
belonging to the parts family.

A large degree of independence separates these two levels of description. First, some parts families
have only a dictionary element, and not a formally defined content. This is the case for the abstract
parts families described in the terminology or dictionary standards.

EXAMPLE IEC 61360-4 is an example of dictionary standard. This Standard describes, through a hierarchical
structure, many families of parts that exist in electronics.

Secondly, the extension of a class, modelled by content_item, may change without altering the
dictionary elements that apply to this class. This is the case when a product standard or a catalogue is
updated by adding or withdrawing some parts of a parts family.

This part of ISO 13584 provides for representing either the first level, or both the first and second
levels:

a) Parts libraries that contain only dictionary_elements are modelled through the dictionary
entity defined in the ISO13584_extended_dictionary_schema. They correspond to
conformance classes 1, 2 and 3 of library integrated information model 24-1 specified in clause
16 of this part of ISO 13584.

ISO 13584-24:2003(E)

28 © ISO 2003 – All rights reserved

b) Parts libraries that contain both dictionary_elements and content_items are modelled through
the library entity defined in the ISO13584_library_content_schema. They correspond to
conformance class 4, 5 and 6 of library integrated information model 24-1 specified in clause 16
of this part of ISO 13584.

5.4.1 Common dictionary description for ISO 13584 and IEC 61360

The ISO13584_IEC61360_dictionary_schema, documented in an informative annex of
ISO 13584-42: 1998, is a common resource for ISO 13584 and for IEC 61360. This schema has been
defined by ISO TC 184/SC4/WG2 and IEC SC3D for the exchange of those dictionary_elements that
address their common scope. This scope consists of families of parts linked by the is-a relationship
and described by a set of properties.

5.4.2 Dictionary descriptions for ISO 13584

The resource constructs needed to represent the dictionary_elements that are in scope for
ISO 13584 and out of scope for IEC 61360, are provided in the
ISO13584_extended_dictionary_schema defined in clause 11 of this part of ISO 13584. The scope
of the ISO13584_extended_dictionary_schema is an extension of the
ISO13584_IEC61360_dictionary_schema. It references all the resources defined in the
ISO13584_IEC61360_dictionary_schema.

NOTE The dictionary_elements that are in scope for ISO 13584 and out of scope for IEC 61360 include:
representation of functional model classes, representation of functional view classes, aggregation relationships.

5.4.3 Interoperability of ISO 13584 and IEC 61360

This part of ISO 13584 specifies a number of options that may be supported by an implementation.
These options have been grouped into conformance classes. Conformance requirements are defined
in clause 15 of this part of ISO 13584. In particular, conformance to a particular conformance class
requires that all entities, types, and associated constraints defined as part of that conformance class
be supported.

Conformance class 0 of the library integrated information model 24-1, documented in clause 16 of this
part of ISO 13584, only requires an implementation to support the common ISO and IEC requirements
defined in the ISO13584_IEC61360_dictionary_schema. Thus, an ISO 13584 implementation that
conforms to that conformance class is able to handle any instance population of the ISO/IEC common
ISO13584_IEC61360_dictionary_schema, using an implementation method defined for conformance
class 0. Moreover, any conformance class of the library integrated information model 24-1 including
the requirements defined in conformance class 0, is able to do the same.

NOTE The achievement of such an interoperability has introduced more complexity in both the ISO/IEC
common ISO13584_IEC61360_dictionary_schema, that provides hooks for the extensions needed for
ISO 13584, and in the ISO13584_extended_dictionary_schema.

5.5 Independence between dictionary_elements and content_items: the BSU
mechanism

In the ISO 13584 Standard series, each piece of information intended to constitute a dictionary entry is
represented through three entities:

a) the basic_semantic_unit (BSU) entity carries the universal identification of this piece of
information;

b) the dictionary_element entity contains the set of attributes that constitutes the dictionary
description of this piece of information;

EXAMPLE 1 Name, definition and type of value are examples of attributes that constitute the dictionary
description of a piece of information.

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 29

c) the content_item entity represents the possible values of this piece of information.

EXAMPLE 2 The content_item of a class, represented by the class_extension entity, specifies the possible
instance values of this class.

NOTE In ISO 13584, the pieces of information intended to constitute dictionary entries are: supplier,
class, property, program library, type, table and document.

5.5.1 Reference between several EXPRESS schema populations via the BSU mechanism

All the references between dictionary entries shall be done through their BSUs. Thus, when a
dictionary entry is intended to be referenced in some population, only its BSU entity instance is
requested to belong to this population. Reference to a BSU stands for a reference to the complete
piece of information that constitute a dictionary entry, whether its dictionary_element and
content_item entities belong to the same population. Thus, this three levels model ensures
independence between the dictionary_element entity instance, the content_item entity instance, and
the BSU entity instance for any dictionary entry. This mechanism also provides a means to implement
references between dictionary entries belonging to different EXPRESS schema populations, possibly
stored in different exchange files or data repositories.

EXAMPLE 1 The content_item of a class may references the properties that characterise the instances of the
class through their BSUs. If the dictionary_elements that describe those properties are assumed to be
available on the receiving system, the sending system may decide not to send these dictionary_elements
together with the content_items that reference them.

EXAMPLE 2 In product model data, a product may be associated with a particular value for some property.
When this property is modeled according to the ISO13584_IEC61360_dictionary_schema, only the BSU of this
property needs to be represented in product data.

5.5.2 Expressing constraints between dictionary entries

All the constraints between dictionary_elements and/or content_items of dictionary entries are
expressed by means of references to their BSUs. But these dictionary_elements and/or
content_items may not be available in the exchange context where the BSUs are available.
Thus, when the role of a constraint is to restrict the allowed set of values of an attribute of either a
dictionary_element or a content_item, the constraint may only be checked when and where the
corresponding instance is available, otherwise the constraint shall be ignored. This behaviour is
specified, at the EXPRESS code level, either by using the definition_available_implies function, for
dictionary_element availability, or by checking the size of the aggregate value of the referenced_by
attribute of a basic_semantic_unit, for content_item availability.

NOTE definition_available_implies and basic_semantic_unit are defined in the
ISO13584_IEC61360_dictionary_schema specified in IEC 61360-2, and duplicated for convenience in
informative annex D of ISO 13584-42.

5.6 ISO 13584 and the Internet

5.6.1 Documents represented within a library exchange context

A library exchange context includes a library delivery file conforming to one conformance class of a
library integrated information model and several library external files. These library external files are
referenced from the library delivery file using external_item entities. Such entities specify the content
of the external files, the protocol that shall be used to process them and the external file addresses
that identify the various library external files within the library exchange context.

This part of ISO 13584 includes provisions for exchanging documents as library external files.

5.6.2 Support of the HTTP protocol and local Internet server

One particular network protocol for accessing documents is the HTTP protocol. This protocol provides
for accessing documents whose contents are represented by means of several files, possibly encoded

ISO 13584-24:2003(E)

30 © ISO 2003 – All rights reserved

according to different file formats defined as MIME-like file, and possibly referencing other Internet
resources by means of HTTP URLs.

This part of ISO 13584 includes provisions for exchanging documents by means of library external
files intended to be accessed using the HTTP protocol. Such library external files are called http files.
Only http files whose values of MIME-defined fields of information registered by IANA are allowed for
use in the context of this part of ISO 13584.

When a conformance class of a LIIM or a conformance class of a VEP specifies that library external
files according to the HTTP protocol shall be supported, an implementation that claims conformance
to this conformance class shall include:

a) the capabilities of an Internet server, as defined in IAB RFC 2068, for the purpose of storing
documents;

b) the capabilities of an Internet client, as defined in IAB RFC 2068, and the capabilities defined in
IAB RFC 2049 for the purpose of recognising and browsing these documents; and

c) a data repository, and its management system, to store and retrieve the data exchanged in the
library delivery file.

The mechanisms defined in clause 13 of this part of ISO 13584 ensure that the hyperlink references
specified by the library data supplier remain valid on the local Internet server. They also enable the
library end-user to switch from document navigation to data retrieval and selection.

5.6.3 Particular HTTP formats to be supported by an implementation

In the context of the HTTP protocol, files exchanged over the Internet are MIME-like files. MIME
defines the format of an exchanged file by means of several fields of information, called header fields
and parameters, that are supposed to be added in the header of the files by the HTTP server.

In the context of this part of ISO 13584, the values of MIME-defined fields of information that
characterise the format of the http files that are exchanged as a library external files are represented
explicitly in the http_file entity that references them. When the supplier library is compiled on the
receiving system site, these values are supposed to be used both to filter the files that the
implementation intends to record, and to initiate the receiving site Internet server. These values are
not duplicated in any header part of the library external files.

This part of ISO 13584 uses the following MIME-defined header fields and parameters to specify the
format of a file:

NOTE 1 These MIME-defined header fields and parameters are documented in IAB RFC 2045 and
IAB RFC 2184.

— MIME-Version that defines the version of MIME: the value of this attribute is implicit, and it equals
1.0;

— Content-Type that defines the media type and subtype of data in the file;

EXAMPLE 1 "image" is an example of media type; "jpeg" is an example of subtype.

— Content-Transfer-Encoding that defines the encoding, or lack of encoding, of the file data for the
purpose of exchange in the library exchange context.

EXAMPLE 2 "base64" is an example of data encoding defined in IAB RFC 2045.

— Character set parameter that specifies a method of converting a sequence of octets into a
sequence of characters;

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 31

EXAMPLE 3 "ISO-8859-1" is an example of MIME "character set". The corresponding method of converting a
sequence of bytes into a sequence of characters is defined in ISO 8859-1.

NOTE 2 ISO 8859-1 defines an 8-bit character encoding that includes most of the specific characters of
western languages.

— Language parameter that specifies, either implicitly or explicitly, the language of a document.

This part of ISO 13584 does not specify the formats that are allowed for use for the http files belonging
to a library exchange context. It only specifies that:

— only values of MIME header fields and parameters registered by IANA are allowed;

— the local Internet client defined in the previous clause shall meet, at the minimum, the MIME
conformance criteria defined in IAB RFC 2049 for the purpose of recognising and browsing http
files;

— the local Internet client defined in the previous clause shall recognise "text" documents conforming
to HTML as defined by IAB RFC 1866.

Apart from private agreement between the sender and the receiver, this part of ISO 13584 also
strongly recommends to restrict to a small number of formats:

— that are mature;

— that are stable;

— that are unambiguously characterised by MIME Content-Type;

— whose specifications are publicly available, or that are associated with public domain Internet-
available readers.

5.6.4 Remote access to a document through the Internet

This part of ISO 13584 contains provisions that enable a library data supplier to deliver documents
within a library exchange context. It also contains provisions for providing a location where a document
may be found by means of an absolute URL. Remote access to such documents is not required for
the implementation that claims conformance to any library integrated information model defined in this
part of ISO 13584.

6 ISO13584_instance_resource_schema

This clause defines the requirements for the ISO13584_instance_resource_schema. The following
EXPRESS declaration introduces the ISO13584_instance_resource_schema block and identifies the
necessary external references.

EXPRESS specification:

*)
SCHEMA ISO13584_instance_resource_schema;

REFERENCE FROM ISO13584_IEC61360_dictionary_schema
(all_class_descriptions_reachable,
basic_semantic_unit,
class,
class_BSU,
condition_det,

ISO 13584-24:2003(E)

32 © ISO 2003 – All rights reserved

content_item,
data_type_BSU,
definition_available_implies,
dependent_p_det,
is_subclass,
level,
list_to_set,
non_quantitative_code_type,
non_quantitative_int_type,
property_BSU,
version_type);

REFERENCE FROM ISO13584_IEC61360_language_resource_schema
(translatable_label,
present_translations);

REFERENCE FROM ISO13584_extended_dictionary_schema
(a_priori_semantic_relationship,
abstract_functional_model_class,
applicable_properties,
data_type_class_of,
data_type_level_spec,
data_type_level_value_typeof,
data_type_type_name,
data_type_typeof,
functional_view_v_c_v,
data_type_non_quantitative_code_type,
data_type_non_quantitative_int_type);

REFERENCE FROM ISO13584_library_content_schema
(allowed_properties,
explicit_functional_model_class_extension,
explicit_item_class_extension,
functional_model_class_extension,
fm_free_model_properties_list,
item_class_extension,
gm_identification_characteristics_list,
method_variables,
selectable_properties_list);

REFERENCE FROM ISO13584_external_file_schema
(program_reference,
representation_reference,
property_value_external_item);

REFERENCE FROM geometry_schema
(axis1_placement,
axis2_placement_2d,
axis2_placement_3d,
placement);

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 33

REFERENCE FROM representation_schema
(representation,
representation_context,
representation_item);

REFERENCE FROM product_definition_schema
(product,
product_category,
product_definition,
product_definition_formation);

REFERENCE FROM product_property_definition_schema
(property_definition);

USE FROM person_organization_schema
(address,
organization,
person,
person_and_organization,
personal_address,
organizational_address);

USE FROM date_time_schema
(date,
date_and_time,
local_time,
calendar_date,
ordinal_date,
week_of_year_and_day_date);

REFERENCE FROM geometry_schema
(geometric_representation_context);

(*

NOTE The schemas referenced above can be found in the following documents:
ISO13584_IEC61360_dictionary_schema IEC 61360-2

(which is duplicated for convenience in informative annex D of ISO 13584-42),
ISO13584_IEC61360_language_resource_schema IEC 61360-2

(which is duplicated for convenience in informative annex D of ISO 13584-42),
ISO13584_extended_dictionary_schema This part of ISO 13584,
ISO13584_library_content_schema This part of ISO 13584,
ISO13584_external_file_schema This part of ISO 13584,
geometry_schema ISO 10303-42,
representation_schema ISO 10303-43,
product_definition_schema ISO 10303-41,
product_property_definition_schema ISO 10303-41,
person_organization_schema ISO 10303-41.
date_time_schema ISO 10303-41.

6.1 Introduction to the ISO13584_instance_resource_schema

The ISO13584_instance_resource_schema defines the resources needed to describe instances of
classes and values of properties whose data types are specified in accordance with this International
Standard.

ISO 13584-24:2003(E)

34 © ISO 2003 – All rights reserved

NOTE The approach followed in this schema is largely based on the SDAI approach for describing
EXPRESS types and instances, which is specified in ISO 10303-22 [7].

The ISO13584_instance_resource_schema models:

— the description of instances of properties whose types are specified either by the
ISO13584_IEC61360_dictionary_schema resource constructs or by the
ISO13584_extended_dictionary_schema resource constructs;

— the description of instances of classes whose dictionary elements are specified either by
ISO13584_IEC61360_dictionary_schema resource constructs or
ISO13584_extended_dictionary_schema resource constructs;

— the description of instances of classes whose contents are specified by
ISO13584_library_content_schema resource constructs;

— the mechanisms for computing the data type to which an instance belongs and for ensuring type
checking.

The ISO13584_instance_resource_schema does not model:

— the specification of the internal representation of a created instance or a selected property in a
user library during a user selection process.

6.2 Fundamental concepts and assumptions for the
ISO13584_instance_resource_schema

Description of classes requires capabilities for representing values of properties and instances of
classes.

EXAMPLE To represent the domain of a data type that is restricted by a constraint defined by a table, one
needs to represent the various values contained in the table. These values are values of properties or instances
of classes.

NOTE 1 A value of a property is an instance of a class when the data type of this property is a
class_instance_type.

NOTE 2 class_instance_type is defined in the ISO13584_IEC61360_dictionary_schema documented in
IEC 61360-2 (which is duplicated for convenience in informative annex D of ISO 13584-42).

6.2.1 Two-fold description of classes and instance representation

In this International Standard, a class may be specified at two levels of abstraction, either in intention
by means of dictionary data, or as a class extension, by means of the resource constructs defined in
the ISO13884_library_content_schema contained in this part of ISO 13584. Figure 7 shows a
planning model of this two-fold class description, with the associated instance descriptions.

A dictionary description, provided by a class entity, defines the properties that are applicable to the
class and their data types. An instance of a class that is only described by a class entity is
represented as a dic_class_instance. It may include any of these applicable properties, and each
property may have any value conformant with its data type.

A library specification, represented as a model_class_extension, further specifies the class by
defining:

— what subset of the applicable properties have their values provided in the library to describe the
different instances;

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 35

EXAMPLE 1 In the class dictionary definition of a screw class, the "mass" property may be listed as an
applicable property. Nevertheless, the library data supplier may decide not to provide the "mass" values
for the various screws represented by the screw class.

— the allowed set of values for those properties provided;

— the subset of these properties that is needed to completely identify one instance in this class;

— how the other property values may be derived from the above properties (derivation functions).

NOTE 1 Derivation functions are used to specify how values of some properties may be computed from
values of other properties.

An instance of such a class, represented either as a lib_item_instance, in the case of an item_class,
or as a lib_f_model_instance, in the case of a functional_model_class, shall only be defined:

— by properties that are provided in the class extension description, and

— by property values belonging to the allowed set of values for the class instance.

Each instance of such a class shall be associated with all the properties that are needed to identify
one instance within its class. When such an instance is a partially defined instance, some of these
properties may be associated with no value.

ISO 13584-24:2003(E)

36 © ISO 2003 – All rights reserved

Class definition Instance level

 L[0:?]

identified_by

identified_by

identified_by

described_by L[0:?]

name_scope

defined_by

class_def

prop_def

properties S[0:?]

its_value

dictionary_definition

class_extension
S[0:?]

derivation
S[0:?]

free_characteristics

derived_characteristics

property

Dictionary

Library

supplier_element supplier_BSU

property_DET

class

dic_class_instance

null_or_
primitive_value

property_value

dic_item_instance

lib_item_instance

model_class_extension

domain_restriction

functional_domain
_restriction

class_BSU

item_class_extensionopt_or_mand_property_BSU

class_extension

property_BSU

(actual population)

(abstract population)

 L[0:?]

constraints

Figure 7 — Planning model of the relationships between class definition
and the instance level

NOTE 2 Classes only specified by a dictionary element are able to represent standardised identification
hierarchies intended to provide common semantics for computer interpretable data exchange. Classes also
specified by a library specification are able to represent supplier catalogues or product standards.

NOTE 3 When a class is represented by an item_class, the properties needed to completely identify an
instance are computed by the gm_identification_characteristics_list function. When a class corresponds with
a functional_model_class, the properties needed to completely characterise an instance are computed by the
selectable_properties_list function.

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 37

EXAMPLE 2 The component classes and data element types defined in IEC 61360-4 describe the components
and properties used in the electronic applications area. This description constitutes a set of
dictionary_elements conformant to this International Standard. An instance of a component class defined in
IEC 61360-4 (for instance, a fixed_linear_resistor) may be modelled as a dic_class_instance.

NOTE 4 When a class is only defined through a dictionary element, such as the various classes defined in
IEC 61360-4, the properties applicable to this class are only associated with a data type. In an instance of such
a class, each property may have whatever value belonging to its data type.

EXAMPLE 3 For describing its own parts catalogue, John Croke Inc. does not need only to capture the fact that
the components produced in the factory are kind of "light_dependent_resistors", as defined in IEC 61360-4. It
also wants to describe which particular "light_dependent_resistors" the company is able to provide. This can be
done by a library specification.

In the library specification, John Croke Inc describes the different light_dependent_resistors contained in its
catalogue. It also specifies that the resistance is the only property needed to identify any resistor when such a
resistor is ordered in its company. It may also provide tables that enable the system to generate the values of all
the other properties he wants to provide for its light_dependent_resistors from the value of the resistance.

A resistor that is an instance of light_dependent_resistors class may be modeled as a
lib_component_instance (a subtype of lib_item_instance). It will contain a property_value that references its
resistance property. The values of the other properties of its light_dependent_resistors may also be associated
with this lib_component_instance. In this case, these values should comply with the values computed by the
derivation function specified in the item_class_extension.

NOTE 5 resistor_noise_index is an example of property of resistors whose definition is provided in
IEC 61360-4.

6.2.2 Representation of a context-dependent characteristic value

A context-dependent characteristic is a property whose value depends on some context parameter(s).
If an instance is associated with a value of such a property, values shall also be provided for all the
context parameters on which this value depends.

EXAMPLE The life span of a ball-bearing is a context-dependent characteristic. Its value depends on the
radial load, the axial load and the rotational speed supported by that bearing. If an instance of a class that
represents a ball-bearing family is associated with a value for the life span property, it shall also be associated
with values for the radial load, the axial load and the rotational speed context parameters.

6.2.3 Optional properties

In the ISO13584_library_content_schema, a property of an item belonging to a library may be
specified as optional. Such a property may be assigned a NULL value for some class instances. In the
ISO13584_instance_resource_schema, the value of such a property is represented as an
OPTIONAL value for the corresponding property_value.

NOTE This part of ISO 13584 does not make any difference between a NULL value and an indeterminate
value (?). In a property_value, a lack of value is represented as indeterminate. In a table column, that is a list,
a lack of value is represented by a NULL value.

6.3 ISO13584_instance_resource_schema type definitions

This clause defines the types for modelling the values that may be assigned to properties in the
ISO13584_instance_resource_schema.

6.3.1 Null_value

The null_value entity provides for the definition of data values which may be indeterminate value
according to the ? value of the EXPRESS language.

EXPRESS specification:

*)

ISO 13584-24:2003(E)

38 © ISO 2003 – All rights reserved

ENTITY null_value;
END_ENTITY; -- null_value
(*

6.3.2 Primitive_value

A primitive_value is any value that may be assigned to a property in the
ISO13584_extended_dictionary_schema.

EXPRESS specification:

*)
TYPE primitive_value = SELECT(

simple_value,
complex_value);

END_TYPE; -- primitive_value
(*

6.3.3 Null_or_primitive_value

A null_or_primitive_value is any value, included the null_value, that may be assigned to a property
in the ISO13584_extended_dictionary_schema.

EXPRESS specification:

*)
TYPE null_or_primitive_value = SELECT(

null_value,
primitive_value);

END_TYPE; -- null_or_primitive_value
(*

6.3.4 Simple_value

A simple_value is an unstructured value belonging to the EXPRESS NUMBER, STRING or
BOOLEAN types. A STRING value may be represented in different languages.

NOTE 1 A translatable_string_value is considered as a simple_value as only one particular
string_value is supposed to be displayed in any context

NOTE 2 The function that chooses in any context the particular value to be displayed shall be
implementation dependent and is outside the scope of this part of ISO 13584.

EXPRESS specification:

*)
TYPE simple_value = SELECT(

number_value,
translatable_string_value,
boolean_value);

END_TYPE; -- simple_value
(*

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 39

6.3.5 Null_or_simple_value

A null_or_simple_value is an unstructured value belonging to the EXPRESS NUMBER, STRING or
BOOLEAN types, included the null_value.

EXPRESS specification:

*)
TYPE null_or_simple_value = SELECT(

null_value,
simple_value);

END_TYPE; -- null_or_simple_value
(*

6.3.6 Number_value

A number_value is a value belonging to the EXPRESS NUMBER type.

EXPRESS specification:

*)
TYPE number_value = SELECT(

integer_value,
real_value);

END_TYPE; -- nunmber_value
(*

6.3.7 Null_or_number_value

A null_or_number_value is a value belonging to the EXPRESS NUMBER type, included the
null_value.

EXPRESS specification:

*)
TYPE null_or_number_value = SELECT(

null_value,
number_value);

END_TYPE; -- nunmber_value
(*

6.3.8 Integer_value

An integer_value is a value belonging to the EXPRESS INTEGER type.

EXPRESS specification:

*)
TYPE integer_value = INTEGER;
END_TYPE; -- integer_value
(*

ISO 13584-24:2003(E)

40 © ISO 2003 – All rights reserved

6.3.9 Null_or_integer_value

A null_or_integer_value is a value belonging to the EXPRESS INTEGER type, included the
null_value.

EXPRESS specification:

*)
TYPE null_or_integer_value = SELECT(

null_value,
integer_value);

END_TYPE; -- null_or_integer_value
(*

6.3.10 Real_value

A real_value is a value belonging to the EXPRESS REAL type.

EXPRESS specification:

*)
TYPE real_value = REAL;
END_TYPE; -- real_value
(*

6.3.11 Null_or_real_value

A null_or_real_value is a value belonging to the EXPRESS REAL type, included the null_value.

EXPRESS specification:

*)
TYPE null_or_real_value = SELECT(

null_value,
real_value);

END_TYPE; -- null_or_real_value
(*

6.3.12 Boolean_value

A boolean_value is a value belonging to the EXPRESS BOOLEAN type.

EXPRESS specification:

*)
TYPE boolean_value = BOOLEAN;
END_TYPE; -- boolean_value
(*

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 41

6.3.13 Null_or_boolean_value

A null_or_boolean_value is a value belonging to the EXPRESS BOOLEAN type, included the
null_value.

EXPRESS specification:

*)
TYPE null_or_boolean_value = SELECT(

null_value,
boolean_value);

END_TYPE; -- null_or_boolean_value
(*

6.3.14 Translatable_string_value

A translatable_string_value defines a type of value that is a STRING that may be translated in
various languages.

NOTE 1 A translatable_string_value is considered as a simple_value as only one particular
string_value is supposed to be displayed in any context

NOTE 2 The function that chooses in any context the particular value to be displayed shall be
implementation dependant and is outside the scope of this part of ISO 13584.

EXPRESS specification:

*)
TYPE translatable_string_value = SELECT(string_value,

translated_string_value);
END_TYPE; -- translatable_string_value
(*

6.3.15 Translated_string_value

A translated_string_value entity defines the string_values that are translated in various languages,
and the corresponding languages of translation.

EXPRESS specification:

*)
ENTITY translated_string_value;

string_values: LIST [1:?] OF string_value;
languages: present_translations;

WHERE
WR1: SIZEOF(string_values) = SIZEOF(languages.language_codes);

END_ENTITY; -- translated_string_value
(*

Attribute definitions:

string_values: the list of string_values that represent the string in various languages.

languages: the list of languages in which the same string is represented as a string_value.

ISO 13584-24:2003(E)

42 © ISO 2003 – All rights reserved

Formal propositions:

WR1: the number of string_values contained in the string_values list shall be equal to the number of
languages provided in the languages.language_codes attribute.

Informal propositions:

IP1: the content of string_values[i] is in the language identified by languages.language_codes[i].

IP2: within a supplier library, all the translated_string_values shall refer to present_translations that
are value equal: same list of languages in the same order. Only in a user library that integrates
libraries from different sources there may exist different present_translations entities with different
values.

6.3.16 String_value

A string_value is a value belonging to the EXPRESS STRING type.

EXPRESS specification:

*)
TYPE string_value = STRING;
END_TYPE; -- string_value
(*

6.3.17 Null_or_translatable_string_value

A null_or_translatable_string_value is a value belonging to the EXPRESS STRING type, included
the null_value.

EXPRESS specification:

*)
TYPE null_or_translatable_string_value = SELECT(

null_value,
translatable_string_value);

END_TYPE; -- null_or_translatable_string_value
(*

6.3.18 Complex_value

A complex_value is any value that can be represented as an entity instance.

EXPRESS specification:

*)
TYPE complex_value = SELECT(

entity_instance_value,
level_spec_value,
dic_class_instance);

END_TYPE; -- complex_value
(*

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 43

6.3.19 Null_or_complex_value

A null_or_complex_value is any value that can be represented as an entity instance, included the
null_value.

EXPRESS specification:

*)
TYPE null_or_complex_value = SELECT(

null_value,
complex_value);

END_TYPE; -- null_or_complex_value
(*

6.3.20 Entity_instance_value

An entity_instance_value is a value that is an instance of some EXPRESS ENTITY data type.

This part of ISO 13584 makes distinctions among three kinds of references to EXPRESS ENTITY
data types.

a) defined_entity_instance_value enables reference to instances of EXPRESS ENTITY data types
that are explicitly referenced as possible property data types in the
ISO13584_IEC61360_dictionary_schema.

b) controlled_entity_instance_value enables reference to either:

1) instances of EXPRESS ENTITY data types that are explicitly referenced as possible
property data type in the ISO13584_extended_dictionary_schema, or

2) instances of EXPRESS ENTITY data types that are defined in ISO 10303-41.

NOTE 1 The ISO 10303-defined EXPRESS ENTITY data types considered in the
controlled_entity_instance_value select type definition are those entities that are considered as possibly
relevant in the development process of the view exchange protocol series of parts of ISO 13584.

NOTE 2 The compatible_type_and_value function enables to check whether a
controlled_entity_instance_value is type compatible with the EXPRESS ENTITY data type that defines the
data type of the property to which the controlled_entity_instance_value is associated in a property_value
couple.

NOTE 3 compatible_type_and_value function and property_value entity are defined in this clause of
ISO 13584-24.

c) an uncontrolled_entity_instance_value enables reference to any other EXPRESS ENTITY data
types.

NOTE 4 The data type of such instances cannot be checked by the compatible_type_and_value function
defined in this clause of ISO 13584-24.

NOTE 5 Each view exchange protocol shall specify which entity_instance_types (and subtypes) and
which entity_instance_values are allowed in a library exchange context that conforms to this view exchange
protocol.

ISO 13584-24:2003(E)

44 © ISO 2003 – All rights reserved

EXPRESS specification:

*)
TYPE entity_instance_value = SELECT(

defined_entity_instance_value,
controlled_entity_instance_value,
uncontrolled_entity_instance_value);

END_TYPE; -- entity_instance_value
(*

6.3.21 Null_or_entity_instance_value

A null_or_entity_instance_value is a value that is an instance of some EXPRESS ENTITY data
types, included the null_value.

EXPRESS specification:

*)
TYPE null_or_entity_instance_value = SELECT(

null_value,
entity_instance_value);

END_TYPE; -- null_or_entity_instance_value
(*

6.3.22 Defined_entity_instance_value

A defined_entity_instance_value is an instance of one of the EXPRESS ENTITY data types that are
explicitly referenced as possible property data types in the ISO13584_IEC61360_dictionary_schema.

NOTE 1 These instances are completely type controllable in the framework defined in the
ISO13584_instance_resource_schema.

NOTE 2 The ISO13584_IEC61360_dictionary_schema is defined in IEC 61360-2 and duplicated for
convenience in informative annex D of ISO 13584-42.

EXPRESS specification:

*)
TYPE defined_entity_instance_value = SELECT(

placement,
axis1_placement,
axis2_placement_2d,
axis2_placement_3d);

END_TYPE; -- defined_entity_instance_value
(*

6.3.23 Controlled_entity_instance_value

A controlled_entity_instance_value is an instance of one of the EXPRESS ENTITY data types that
are explicitly referenced as possible property data types in the
ISO13584_extended_dictionary_schema, or one of the EXPRESS ENTITY data types that are
defined in ISO 10303-41.

NOTE These instances are completely type controllable in the framework defined in the
ISO13584_instance_resource_schema.

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 45

EXPRESS specification:

*)
TYPE controlled_entity_instance_value = SELECT(

STEP_entity_instance_value,
PLIB_entity_instance_value);

END_TYPE; -- controlled_entity_instance_value
(*

6.3.24 STEP_entity_instance_value

A STEP_entity_instance_value entity is an instance of one of the EXPRESS ENTITY data types
defined in ISO 10303 that is considered as possibly relevant in the development process of the view
exchange protocol series of parts of ISO 13584.

EXPRESS specification:

*)
TYPE STEP_entity_instance_value = SELECT(

product_category,
product,
product_definition,
product_definition_formation,
property_definition,
person_organization_select,
representation,
representation_context,
geometric_representation_context,
representation_item,
date,
date_and_time,
local_time,
calendar_date,
ordinal_date,
week_of_year_and_day_date,
person,
organization,
person_and_organization,
address,
personal_address,
organizational_address);

END_TYPE; -- STEP_entity_instance_value
(*

6.3.25 PLIB_entity_instance_value

A PLIB_entity_instance_value entity is an instance of one of the EXPRESS ENTITY data types that
are explicitly referenced as possible property data types in the
ISO13584_extended_dictionary_schema.

ISO 13584-24:2003(E)

46 © ISO 2003 – All rights reserved

EXPRESS specification:

*)
TYPE PLIB_entity_instance_value = SELECT(

program_reference,
representation_reference,
property_value_external_item);

END_TYPE; -- PLIB_entity_instance_value
(*

6.3.26 Uncontrolled_entity_instance_value

An uncontrolled_entity_instance_value entity is an instance of any other EXPRESS ENTITY data
types.

NOTE These instances are not type controllable in the framework defined in the
ISO13584_instance_resource_schema.

EXPRESS specification:

*)
ENTITY uncontrolled_entity_instance_value
ABSTRACT SUPERTYPE;
END_ENTITY; -- uncontrolled_entity_instance_value
(*

6.3.27 Property_or_data_type_BSU

A property_or_data_type_BSU is a select type used for type control. It is either a property_BSU or a
data_type_BSU.

EXPRESS specification:

*)
TYPE property_or_data_type_BSU = SELECT(

property_BSU,
data_type_BSU);

END_TYPE; -- property_or_data_type_BSU
(*

6.4 ISO13584_instance_resource_schema entity definitions

This clause defines the entities in the ISO13584_instance_resource_schema.

6.4.1 Level_spec_value

level_spec_value is an ARRAY of four optional numbers, that carries the additional meaning:

— the first value corresponds to the minimum value of some property;

— the second value corresponds to the nominal value of some property;

— the third value corresponds to the typical value of some property;

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 47

— the fourth value corresponds to the maximum value of some property.

NOTE The four numbers shall be either INTEGER or REAL.

EXPRESS specification:

*)
ENTITY level_spec_value
ABSTRACT SUPERTYPE OF(ONEOF(

int_level_spec_value,
real_level_spec_value));
values: ARRAY [1:4] OF OPTIONAL NUMBER;

END_ENTITY; -- level_spec_value
(*

Attribute definitions:

values: an array of four optional numbers that represent the values associated with the described
entity.

6.4.2 Null_or_level_spec_value

A null_or_level_spec_value is a value that is either a level_spec_value or a null_value.

EXPRESS specification:

*)
TYPE null_or_level_spec_value = SELECT(

null_value,
level_spec_value);

END_TYPE; -- null_or_level_spec_value
(*

6.4.3 Int_level_spec_value

A int_level_spec_value is a level_spec_value whose values are INTEGER.

EXPRESS specification:

*)
ENTITY int_level_spec_value
SUBTYPE OF(level_spec_value);

SELF\level_spec_value.values: ARRAY [1:4] OF OPTIONAL INTEGER;
END_ENTITY; -- int_level_spec_value
(*

Attribute definitions:

values: an inherited attribute specialised to contain integer elements only.

ISO 13584-24:2003(E)

48 © ISO 2003 – All rights reserved

6.4.4 Null_or_int_level_spec_value

A null_or_int_level_spec_value is the null_value or a level_spec_value whose values are
INTEGER.

EXPRESS specification:

*)
TYPE null_or_int_level_spec_value = SELECT(

null_value,
int_level_spec_value);

END_TYPE; -- null_or_int_level_spec_value
(*

6.4.5 Real_level_spec_value

A real_level_spec_value is a level_spec_value whose values are REAL.

EXPRESS specification:

*)
ENTITY real_level_spec_value
SUBTYPE OF(level_spec_value);

SELF\level_spec_value.values: ARRAY [1:4] OF OPTIONAL REAL;
END_ENTITY; -- real_level_spec_value
(*

Attribute definitions:

values: an inherited attribute specialised to contain real elements only.

6.4.6 Null_or_real_level_spec_value

A null_or_real_level_spec_value is the null_value or a level_spec_value whose values are REAL.

EXPRESS specification:

*)
TYPE null_or_real_level_spec_value = SELECT(

null_value,
real_level_spec_value);

END_TYPE; -- null_or_real_level_spec_value
(*

6.4.7 Class instances

A class instance is a value that is an instance of a class described by means of the EXPRESS
resource constructs defined in the ISO 13584 Standard series for modelling classes of general
models, classes of functional models or classes of functional views.

NOTE 1 The EXPRESS resource constructs for modelling classes of general models, classes of functional
models or classes of functional views are defined in the ISO13584_IEC61360_dictionary_schema,
ISO13584_extended_dictionary_schema and ISO13584_library_content_schema.

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 49

NOTE 2 The ISO13584_IEC61360_dictionary_schema is defined in IEC 61360-2 and duplicated for
convenience in informative annex D of ISO 13584-42: 1998. The ISO13584_extended_dictionary_schema and
the ISO13584_library_content_schema are defined in this part of ISO 13584.

NOTE 3 A class instance refers, through its class_def attribute, to the class it belongs to, and, through its
properties attribute, to a set of property_values. According to the nature of the class associated with the
class_BSU, constraints specify which property values shall be provided.

NOTE 4 The properties that are to be represented in a class instance entity may be further specified in a
view exchange protocol.

6.4.7.1 Dic_class_instance

A dic_class_instance is an instance of a class as defined by the
ISO13584_IEC61360_dictionary_schema or by the ISO13584_extended_dictionary_schema. This
instance refers, through its class_BSU, to the class to which it belongs. It may refer, through its
case_of attributes, to classes that define partial specifications to which the instance also conforms.
The list of properties characterises the instance within its class. The list order provides a default order
for displaying this instance.

EXAMPLE A capacitor defined as a member of its class "my-capacitor" by supplier "J. Dogs and Sons" might
be a "fixed capacitor" as defined by class AAA021-002 of IEC 61360-4. In this case, the instance of a "my-
capacitor" class might refer through its case_of attribute to the AAA021-002 class of IEC 61360-4.

NOTE 1 The above example corresponds to the case where the dic_class_instance is also a
dic_component_instance.

NOTE 2 When a class is only specified by a dictionary element, any property applicable to this class may
be used to describe the class instance.

NOTE 3 When a class is also specified by a library specification, further constraints defined as global rules
apply to the properties that are used to characterise the class instance (see lib_item_instance,
lib_f_model_instance).

EXPRESS specification:

*)
ENTITY dic_class_instance
ABSTRACT SUPERTYPE OF(ONEOF(dic_item_instance,

dic_f_model_instance, dic_f_view_instance));
class_def: class_BSU;
properties: LIST [0:?] OF property_value;
case_of: SET [0:?] OF class_BSU;

WHERE
WR1: (QUERY(prop <* SELF.properties |

NOT((applicable_properties(
SELF.class_def, [prop.prop_def])))) = []);

WR2: QUERY(prop <* SELF.properties
| (SIZEOF(QUERY (prop1 <* SELF.properties
| prop1.prop_def = prop.prop_def)) = 1))
= SELF.properties;

WR3: check_property_values_translations(QUERY(prop_val <*
properties | 'ISO13584_INSTANCE_RESOURCE_SCHEMA.' +
'TRANSLATED_STRING_VALUE' IN TYPEOF(prop_val.its_value)));

END_ENTITY; -- dic_class_instance

(*

ISO 13584-24:2003(E)

50 © ISO 2003 – All rights reserved

Attribute definitions:

class_def: the class for which the current entity is an instance.

properties: the list of property_values for the properties of the class instance.

case_of: the classes that define specifications to which the instance conforms.

Formal propositions:

WR1: all the properties referenced in the properties list shall be applicable_properties for the
referenced class.

WR2: the property_BSUs referenced in the properties list shall be different from each other.

WR3: all the property_values of which values are translated_string_values shall be translated in the
same language(s).

6.4.7.2 Null_or_dic_class_instance

A null_or_dic_class_instance is a null_value or an instance of a class as defined by the
ISO13584_IEC61360_dictionary_schema or by the ISO13584_extended_dictionary_schema.

EXPRESS specification:

*)
TYPE null_or_dic_class_instance = SELECT(

null_value,
dic_class_instance);

END_TYPE; -- null_or_dic_class_instance
(*

6.4.7.3 Dic_item_instance

A dic_item_instance entity is an instance of a class defined in a
ISO13584_IEC61360_dictionary_schema conformant dictionary as an item_class. The nature of the
item_class is defined by subtyping.

EXPRESS specification:

*)
ENTITY dic_item_instance
SUPERTYPE OF(ONEOF(dic_component_instance,

dic_material_instance,
dic_feature_instance) ANDOR lib_item_instance)

SUBTYPE OF(dic_class_instance);
WHERE

WR1: check_class_type_for_dic_item_instance(SELF);
WR2: QUERY(prop <* SELF.properties

| (SIZEOF(prop.prop_def.definition) = 1)
AND (('ISO13584_IEC61360_DICTIONARY_SCHEMA' +
'.DEPENDENT_P_DET')
IN TYPEOF(prop.prop_def.definition[1]))

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 51

AND (prop.prop_def.definition[1]\dependent_P_DET.depends_on
>= collects_property_context(prop.prop_def, SELF)))
= [];

WR3: compatible_item_caseof_with_class_definition(SELF);
END_ENTITY; -- dic_item_instance
(*

Formal propositions:

WR1: the instance class shall be defined as item_class.

WR2: each context parameter of the set of context parameters of which every context-dependent
property depends, as defined in its dictionary definition, shall be provided either as a global context
parameter or in the context attribute of the context_dependent_property_value where the context-
dependent property value is defined.

WR3: if the dic_item_instance refers to classes that define the specifications to which it conforms
through its inherited case_of attribute, these classes must be compatible with the set of case-of
classes defined in the class_def class definition.

6.4.7.4 Dic_component_instance

A dic_component_instance entity is an instance of a class defined as a component_class in a
dictionary compliant with the ISO13584_IEC61360_dictionary_schema.

NOTE A component_class describes a family of parts intended to be used in different products.

EXPRESS specification:

*)
ENTITY dic_component_instance
SUPERTYPE OF(lib_component_instance)
SUBTYPE OF(dic_item_instance);
WHERE

WR1: check_class_type_for_dic_item_instance(SELF);
END_ENTITY; -- dic_component_instance
(*

Formal propositions:

WR1: the class to which the instance belongs shall be defined as a component_class.

6.4.7.5 Dic_material_instance

A dic_material_instance entity is an instance of a class defined as a material_class in a dictionary
compliant with the ISO13584_IEC61360_dictionary_schema.

EXPRESS specification:

*)
ENTITY dic_material_instance
SUPERTYPE OF(lib_material_instance)
SUBTYPE OF(dic_item_instance);

ISO 13584-24:2003(E)

52 © ISO 2003 – All rights reserved

WHERE
WR1: check_class_type_for_dic_item_instance(SELF);

END_ENTITY; -- dic_material_instance
(*

Formal propositions:

WR1: the class to which the instance belongs shall be defined as a material_class.

6.4.7.6 Dic_feature_instance

A dic_feature_instance entity is an instance of a class defined as a feature_class in a dictionary
compliant with the ISO13584_extended_dictionary_schema.

EXPRESS specification:

*)
ENTITY dic_feature_instance
SUPERTYPE OF(lib_feature_instance)
SUBTYPE OF(dic_item_instance);
WHERE

WR1: check_class_type_for_dic_item_instance(SELF);
END_ENTITY; -- dic_feature_instance
(*

Formal propositions:

WR1: the class to which the instance belongs shall be defined as a feature_class.

6.4.7.7 Lib_item_instance

A lib_item_instance entity is a class instance that is both defined by a dictionary element specified as
an item_class, and a library specification specified either as an item_class_extension or as an
explicit_item_class_extension. The property_values contained in a lib_item_instance shall
contain all the identification properties defined by the item class extension. It may contain the
supplier_identification and supplier_designation that provide a human-readable identification of
the class instance as defined by the class supplier. It may also contain a user_identification and a
user_designation of the class instance. It also contains an is_global_id attribute that specifies
whether the class items are identified globally, or they are identified through their constituent
components. Interpretation of these attributes shall be as follows. When is_global_id is FALSE, the
item is an assembly. Its human-readable identification shall consists of its supplier_identification if
any, followed by the set of identifications of its constituent components computed recursively until
those components for which is_global_id is TRUE. When is_global_id is TRUE, the item is identified
on its own. If present, supplier_identification contains enough information for identifying
unambiguously the item, whether it is a component or a sub-system.

NOTE 1 In electronic commerce, the above specifies what pieces of information need to be exchanged
when ordering a component: If is_global_id is TRUE, the supplier_identification value, if it exists, completely
identify the item. If is_global_id is FALSE, the set of supplier_identification values of the item and of all its
constituent components until those for which is_global_id equals TRUE are needed to completely identifies the
assembly. This corresponds to a bill-of-material-like identification. When is_global_id equals TRUE and
supplier_identification does not exist, no human-readable identification string is known.

NOTE 2 The mechanism used to associate user_identification and user_description to an item_class
instance is outside the scope of this International Standard.

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 53

EXPRESS specification:

*)
ENTITY lib_item_instance
SUPERTYPE OF(ONEOF(lib_component_instance,

lib_material_instance, lib_feature_instance))
SUBTYPE OF(dic_item_instance);

supplier_identification: OPTIONAL STRING;
supplier_designation: OPTIONAL translatable_label;
user_identification: OPTIONAL STRING;
user_designation: OPTIONAL translatable_label;
is_global_id: BOOLEAN;
source_class_content: OPTIONAL version_type;

END_ENTITY; -- lib_item_instance
(*

Attribute definitions:

supplier_identification: the OPTIONAL STRING that specifies completely or partially the item
identification defined by the library data supplier.

NOTE 3 An assembly has no identification of its own.

supplier_designation: the OPTIONAL translatable_label that specifies completely or partially the
item designation defined by the library data supplier.

NOTE 4 An assembly has no designation of its own.

user_identification: the OPTIONAL STRING that specifies the item identification defined by the
library user.

user_designation: the OPTIONAL translatable_label that specifies the item designation defined by
the library user.

NOTE 5 The capability of a library end-user to assign user_identification and user_designation to the
different parts of its integrated library is implementation dependent.

is_global_id: a Boolean value that specifies whether the instance is identified by the
supplier_identification attribute alone, or it is also identified by its constituent components.

source_class_content: the version number that characterises the extension of the class from which
the instance was instantiated.

NOTE 6 The content_version attribute of a class will change less often than the class version. If the user
only records one class version per content_version value, e. g., the latest one, the source_class_content
attribute allows to know which class versions should be used to be able to instanciate again this instance if it
was created with a previous version.

NOTE 7 This attribute is meaningless and should not exist when a library data supplier explicitly describes
a class extension by means of lib_item_instance.

Informal propositions:

IP12: the values of the instance properties shall belong to the allowed set of values defined in the
item_class_extension or in the explicit_item_class_extension.

ISO 13584-24:2003(E)

54 © ISO 2003 – All rights reserved

6.4.7.8 Lib_component_instance

A lib_component_instance entity is an instance of a component_class that is associated with a
library specification captured as an item_class_extension.

EXPRESS specification:

*)
ENTITY lib_component_instance
SUBTYPE OF(dic_component_instance, lib_item_instance);
END_ENTITY; -- lib_component_instance
(*

6.4.7.9 Lib_material_instance

A lib_material_instance entity is an instance of a material_class that is associated with a library
specification captured as an item_class_extension.

EXPRESS specification:

*)
ENTITY lib_material_instance
SUBTYPE OF(dic_material_instance, lib_item_instance);
END_ENTITY; -- lib_material_instance
(*

6.4.7.10 Lib_feature_instance

A lib_feature_instance entity is an instance of a feature_class that is associated with a library
specification captured as an item_class_extension.

EXPRESS specification:

*)
ENTITY lib_feature_instance
SUBTYPE OF(dic_feature_instance, lib_item_instance);
END_ENTITY; -- lib_feature_instance
(*

6.4.7.11 Dic_f_model_instance

A dic_f_model_instance entity is an instance of a class defined in a
ISO13584_extended_dictionary_schema-conformant dictionary as a functional_model_class.

EXPRESS specification:

*)
ENTITY dic_f_model_instance
SUPERTYPE OF(lib_f_model_instance)
SUBTYPE OF(dic_class_instance);
WHERE

WR1: check_class_type_for_dic_f_model_instance(SELF);

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 55

WR2: compatible_model_caseof_with_class_definition(SELF);
END_ENTITY; -- dic_f_model_instance
(*

Formal propositions:

WR1: the instance class shall be defined as functional_model_class.

WR2: if the dic_f_model_instance refers to classes that define the specifications to which it conforms
through its inherited case_of attribute, these classes must be compatible with the set of case-of
classes defined in the class_def class definition.

6.4.7.12 Lib_f_model_instance

A lib_f_model_instance entity is an instance of a functional_model_class that is associated with a
library specification captured as a functional_model_class_extension. The property_values
contained in a lib_f_model_instance shall contain all the free properties that are defined by the
functional_model_class_extension.

EXPRESS specification:

*)
ENTITY lib_f_model_instance
SUBTYPE OF(dic_f_model_instance);
END_ENTITY; -- lib_f_model_instance

(*

Informal propositions:

IP1: the set of values of the instance properties shall belong to the allowed set of values defined in the
functional_model_class_extension.

6.4.7.13 Dic_f_view_instance

A dic_f_view_instance is an instance of a functional_view_class conformant with the
ISO13584_extended_dictionary_schema. This instance refers, through its inherited class_def
attribute, to the functional_view_class to which it belongs. The property_values referenced in a
dic_f_view_instance are either:

— view control variable values that specify the view level within the representation category the view
belongs to and shall always be provided, or

— view properties that define the specific properties of the view.

A dic_f_view_instance contains OPTIONAL attributes that specify the dic_f_model_instance that
produced the view, and the dic_item_instance represented by the view.

A dic_f_view_instance is a subtype of an ISO 10303-43 representation. Therefore, it contains two
inherited attributes:

— a context_of_items attribute, that contains the representation_context that defines the context
of the representation_item elements that constitute the view, and

— an items attribute that contains a set of representation_items.

ISO 13584-24:2003(E)

56 © ISO 2003 – All rights reserved

EXPRESS specification:

*)
ENTITY dic_f_view_instance
SUBTYPE OF(dic_class_instance, representation);

generated_by: OPTIONAL dic_f_model_instance;
view_of: OPTIONAL dic_item_instance;

DERIVE
SELF\dic_class_instance.case_of: SET OF class_BSU := [];

WHERE
WR1: check_class_type_for_dic_f_view_instance(SELF);
WR2: NOT all_class_descriptions_reachable(

SELF\dic_class_instance.class_def)
OR (QUERY(prop <* functional_view_v_c_v(
SELF\dic_class_instance.class_def)
| SIZEOF(QUERY(prop2 <* SELF.properties
| prop2.prop_def = prop))<>1) = []);

WR3: correct_view_from_model(SELF);
END_ENTITY; -- dic_f_view_instance
(*

Attribute definitions:

generated_by: the OPTIONAL dic_f_model_instance that produced the view.

view_of: the OPTIONAL dic_item_instance to which the representation defined by the
dic_f_view_instance is associated.

Formal propositions:

WR1: the instance class shall be defined as a functional_view_class.

WR2: all the view control variables of the functional_view_class, as returned by the
functional_view_v_c_v function, shall be represented in the properties set.

NOTE When some of the view control variables are not required to specify the created view, some of the
property_values corresponding to the view control variables may not contain any value in their its_value
attribute.

WR3: the generated_by functional_model_class shall be able to create the class_def functional
view.

6.4.8 Property_value

A property_value is the value associated with a particular property of some dic_class_instance. If
the its_value attribute does not exist, this property has no value.

NOTE The properties associated with a dic_class_instance through property_value are the properties
that define the instance. When inserted in product model data, other properties may be associated with this
instance according to the requirements and information model of this product model data.

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 57

EXPRESS specification:

*)
ENTITY property_value;

its_value: OPTIONAL primitive_value;
prop_def: property_BSU;

WHERE
WR1: (EXISTS(SELF.its_value) AND (compatible_type_and_value(

SELF.prop_def, SELF.its_value)))
OR NOT EXISTS(SELF.its_value);

END_ENTITY; -- property_value
(*

Attribute definitions:

its_value: the value associated with the property.

prop_def: the property that describes the instance property to which the its_value refers.

Formal propositions:

WR1: the value of the property, if it exists, shall be type compatible with the referenced property.

6.4.9 Context_dependent_property_value

A context_dependent_property_value allows to associate with the value of a context dependent
characteristics (i.e., dependent_P_DET) values of context parameters (i.e., values of
condition_DET) that specify all or part of the dependent characteristics measure.

NOTE When describing a part instance by a set of property values, it is not possible to represent that a
context dependent characteristics (i.e., dependent_P_DET) depends on one particular context (i.e., values of
condition_DETs). In fact, it is a current practice in electronic to have different values of the same context
parameters (i.e., values of condition_DETs) that define the context of different context dependent
characteristics (i.e., dependent_P_DET).

EXPRESS specification:

*)
ENTITY context_dependent_property_value
SUBTYPE OF(property_value);

the_context: LIST[1:?] OF property_value;
WHERE

WR1: QUERY(c <* SELF.the_context | NOT(is_condition_det(c)))
= [];

WR2: is_dependent_p_det(SELF\property_value.prop_def);
WR3: all_context_parameters_referenced(SELF);

END_ENTITY; -- context_dependent_property_value
(*

ISO 13584-24:2003(E)

58 © ISO 2003 – All rights reserved

Attribute definitions:

the_context: the list of context parameter values that specifies all or part of the context in which the
SELF\property_value.its_value context dependent property value is valid; the list order providing a
default display order.

Formal propositions:

WR1: every property referenced in the SELF.the_context set of property_values shall be a
condition_DET.

WR2: the SELF\property_value.prop_def property shall be a dependent_P_DET.

WR3: the set of properties referenced in the SELF.the_context set of property_values shall be
included in the set of context parameter of which the SELF\property_value.prop_def property
depends as defined in its dictionary definition.

6.5 ISO13584_instance_resource_schema rule definition

6.5.1 Valued_properties_are_allowed_for_implicit_spec_rule rule

The valued_properties_are_allowed_for_implicit_spec_rule rule checks that when a PLIB
conformant exchange context includes lib_item_instance and item_class_extension, and when
lib_item_instances reference such an available item_class_extension, these lib_item_instances
are described by a set of properties that are allowed, as returned by the allowed_properties function.

EXPRESS specification:

*)
RULE valued_properties_are_allowed_for_implicit_spec_rule FOR

(lib_item_instance, item_class_extension);
LOCAL

allowed_valued_properties: LOGICAL := TRUE;
END_LOCAL;

REPEAT i := 1 TO SIZEOF(lib_item_instance);
IF (SIZEOF(lib_item_instance[i]\dic_class_instance.class_def

.referenced_by) = 1)
THEN

IF ('ISO13584_INSTANCE_RESOURCE_SCHEMA' +
'.ITEM_CLASS_EXTENSION' IN TYPEOF(lib_item_instance[i]\
dic_class_instance.class_def.referenced_by[1]))

THEN
allowed_valued_properties := allowed_valued_properties
AND (QUERY(prop <* lib_item_instance[i].properties |
NOT((allowed_properties(lib_item_instance[i]\
dic_class_instance.class_def, [prop.prop_def])))) = []);

END_IF;
END_IF;

END_REPEAT;

WHERE
WR1: allowed_valued_properties;

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 59

END_RULE; -- valued_properties_are_allowed_for_implicit_spec_rule
(*

6.5.2 Valued_properties_are_allowed_for_explicit_spec_rule rule

The valued_properties_are_allowed_for_explicit_spec_rule rule checks that when a PLIB
conformant exchange context includes lib_item_instance and explicit_item_class_extension, and
when lib_item_instances reference such an available explicit_item_class_extension, these
lib_item_instances are described by a set of properties that are applicable for the referenced
explicit_item_class_extension.

EXPRESS specification:

*)
RULE valued_properties_are_allowed_for_explicit_spec_rule FOR

(lib_item_instance, explicit_item_class_extension);
LOCAL

allowed_valued_properties: LOGICAL := TRUE;
END_LOCAL;

REPEAT i := 1 TO SIZEOF(lib_item_instance);
IF SIZEOF(lib_item_instance[i]\dic_class_instance.class_def

.referenced_by) = 1
THEN

IF ('ISO13584_LIBRARY_CONTENT_SCHEMA' +
'.EXPLICIT_ITEM_CLASS_EXTENSION' IN
TYPEOF(lib_item_instance[i]\dic_class_instance.
class_def.referenced_by[1]))

THEN
allowed_valued_properties := allowed_valued_properties
AND (QUERY(prop <* lib_item_instance[i].properties
| NOT((applicable_properties(
lib_item_instance[i]\dic_class_instance
.class_def, [prop.prop_def])))) = []);

END_IF;
END_IF;

END_REPEAT;

WHERE
WR1: allowed_valued_properties;

END_RULE; -- valued_properties_are_allowed_for_explicit_spec_rule
(*

6.5.3 Identification_properties_are_valued_for_implicit_spec_rule rule

The identification_properties_are_valued_for_implicit_spec_rule rule checks that when a PLIB
conformant exchange context includes lib_item_instance and item_class_extension, and when
lib_item_instances reference such an available item_class_extension, these lib_item_instances
are at least described by the set of identification characteristics as returned by the
gm_identification_characteristics_list function.

ISO 13584-24:2003(E)

60 © ISO 2003 – All rights reserved

EXPRESS specification:

*)
RULE identification_properties_are_valued_for_implicit_spec_rule FOR

(lib_item_instance, item_class_extension);
LOCAL

valued_identification_properties: LOGICAL := TRUE;
END_LOCAL;

REPEAT i := 1 TO SIZEOF(lib_item_instance);
IF (SIZEOF(lib_item_instance[i]\dic_class_instance.

class_def.referenced_by) = 1)
THEN

IF ('ISO13584_INSTANCE_RESOURCE_SCHEMA' +
'.ITEM_CLASS_EXTENSION' IN
TYPEOF(lib_item_instance[i]\dic_class_instance.
class_def.referenced_by[1]))

THEN
valued_identification_properties :=
valued_identification_properties
AND (NOT all_class_descriptions_reachable(
lib_item_instance[i]\dic_class_instance.class_def)
OR (QUERY(prop <*
gm_identification_characteristics_list(
lib_item_instance[i]\dic_class_instance.class_def)
| NOT(prop IN collects_assigned_instance_properties
(list_to_set(lib_item_instance[i]\
dic_class_instance.properties)))) = []));

END_IF;
END_IF;

END_REPEAT;

WHERE
WR1: valued_identification_properties;

END_RULE;-- identification_properties_are_valued_for_implicit_spec_rule
(*

6.5.4 Identification_properties_are_valued_for_explicit_spec_rule rule

The identification_properties_are_valued_for_explicit_spec_rule rule checks that when a PLIB
conformant exchange context includes lib_item_instance and explicit_item_class_extension, and
when lib_item_instances reference such an available explicit_item_class_extension, these
lib_item_instances are at least described by the set of explicit_item_class_extension
instance_identification properties.

EXPRESS specification:

*)
RULE identification_properties_are_valued_for_explicit_spec_rule FOR

(lib_item_instance, explicit_item_class_extension);
LOCAL

valued_identification_properties: LOGICAL := TRUE;

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 61

END_LOCAL;

REPEAT i := 1 TO SIZEOF(lib_item_instance);
IF SIZEOF(lib_item_instance[i]\dic_class_instance.

class_def.referenced_by) = 1
THEN

IF ('ISO13584_LIBRARY_CONTENT_SCHEMA' +
'.EXPLICIT_ITEM_CLASS_EXTENSION' IN
TYPEOF(lib_item_instance[i]\dic_class_instance.
class_def.referenced_by[1]))

THEN
valued_identification_properties :=
valued_identification_properties
AND (QUERY(prop <*
lib_item_instance[i]\dic_class_instance.
class_def.referenced_by[1].instance_identification
| NOT(prop IN collects_assigned_instance_properties
(list_to_set(lib_item_instance[i]\
dic_class_instance.properties)))) = []);

END_IF;
END_IF;

END_REPEAT;

WHERE
WR1: valued_identification_properties;

END_RULE; --identification_properties_are_valued_for_explicit_spec_rule
(*

6.5.5 Fm_valued_properties_are_allowed_for_implicit_spec_rule rule

The fm_valued_properties_are_allowed_for_implicit_spec_rule rule checks that when a PLIB
conformant exchange context includes lib_f_model_instance and
functional_model_class_extension, and when lib_f_model_instances reference such an available
functional_model_class_extension, these lib_f_model_instances are described by a set of
properties that are allowed, as returned by the allowed_properties function.

EXPRESS specification:

*)
RULE fm_valued_properties_are_allowed_for_implicit_spec_rule FOR

(lib_f_model_instance, functional_model_class_extension);
LOCAL

allowed_valued_properties: LOGICAL := TRUE;
END_LOCAL;

REPEAT i := 1 TO SIZEOF(lib_f_model_instance);
IF (SIZEOF(lib_f_model_instance[i]\dic_class_instance.

class_def.referenced_by) = 1)
THEN

IF ('ISO13584_INSTANCE_RESOURCE_SCHEMA' +
'.FUNCTIONAL_MODEL_CLASS_EXTENSION' IN
TYPEOF(lib_f_model_instance[i]\dic_class_instance.

ISO 13584-24:2003(E)

62 © ISO 2003 – All rights reserved

class_def.referenced_by[1]))
THEN

allowed_valued_properties := allowed_valued_properties
AND (QUERY(prop <* lib_f_model_instance[i].properties
| NOT((allowed_properties(lib_f_model_instance[i]\
dic_class_instance.class_def, [prop.prop_def])))) = []);

END_IF;
END_IF;

END_REPEAT;

WHERE
WR1: allowed_valued_properties;

END_RULE; -- fm_valued_properties_are_allowed_for_implicit_spec_rule
(*

6.5.6 Fm_valued_properties_are_allowed_for_explicit_spec_rule rule

The fm_valued_properties_are_allowed_for_explicit_spec_rule rule checks that when a PLIB
conformant exchange context includes lib_f_model_instance and
explicit_functional_model_class_extension, and when lib_f_model_instances reference such an
available explicit_functional_model_class_extension, these lib_f_model_instances are described
by a set of properties that are applicable for the referenced
explicit_functional_model_class_extension.

EXPRESS specification:

*)
RULE fm_valued_properties_are_allowed_for_explicit_spec_rule FOR(

lib_f_model_instance,
explicit_functional_model_class_extension);

LOCAL
allowed_valued_properties: LOGICAL := TRUE;

END_LOCAL;

REPEAT i := 1 TO SIZEOF(lib_f_model_instance);
IF SIZEOF(lib_f_model_instance[i]\dic_class_instance.

class_def.referenced_by) = 1
THEN

IF ('ISO13584_LIBRARY_CONTENT_SCHEMA' +
'.EXPLICIT_FUNCTIONAL_MODEL_CLASS_EXTENSION' IN
TYPEOF(lib_f_model_instance[i]\dic_class_instance.
class_def.referenced_by[1]))

THEN
allowed_valued_properties := allowed_valued_properties
AND(QUERY(prop <* lib_f_model_instance[i].properties
| NOT((applicable_properties(
lib_f_model_instance[i]\dic_class_instance.
class_def, [prop.prop_def])))) = []);

END_IF;
END_IF;

END_REPEAT;

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 63

WHERE
WR1: allowed_valued_properties;

END_RULE; -- fm_valued_properties_are_allowed_for_explicit_spec_rule
(*

6.5.7 Fm_free_properties_are_valued_for_implicit_spec_rule rule

The fm_free_properties_are_valued_for_implicit_spec_rule rule checks that when a PLIB
conformant exchange context includes lib_f_model_instance and
functional_model_class_extension, and when lib_f_model_instances reference such an available
functional_model_class_extension, these lib_f_model_instances are at least described by the set
of identification characteristics as returned by the gm_identification_characteristics_list function.

EXPRESS specification:

*)
RULE fm_free_properties_are_valued_for_implicit_spec_rule FOR

(lib_f_model_instance, functional_model_class_extension);
LOCAL

valued_free_properties: LOGICAL := TRUE;
END_LOCAL;

REPEAT i := 1 TO SIZEOF(lib_f_model_instance);
IF (SIZEOF(lib_f_model_instance[i]\dic_class_instance.

class_def.referenced_by) = 1)
THEN

IF ('ISO13584_INSTANCE_RESOURCE_SCHEMA' +
'.FUNCTIONAL_MODEL_CLASS_EXTENSION' IN TYPEOF(
lib_f_model_instance[i]\dic_class_instance.
class_def.referenced_by[1]))

THEN
valued_free_properties := valued_free_properties
AND (NOT all_class_descriptions_reachable(
lib_f_model_instance[i]\dic_class_instance.class_def)
OR (QUERY(prop <*

fm_free_model_properties_list(
lib_f_model_instance[i]\dic_class_instance.
class_def) | NOT(prop IN
collects_assigned_instance_properties(
list_to_set(lib_f_model_instance[i]\
dic_class_instance.properties)))) = []));

END_IF;
END_IF;

END_REPEAT;

WHERE
WR1: valued_free_properties;

END_RULE; -- fm_free_properties_are_valued_for_implicit_spec_rule
(*

ISO 13584-24:2003(E)

64 © ISO 2003 – All rights reserved

6.5.8 Fm_free_properties_are_valued_for_explicit_spec_rule rule

The fm_free_properties_are_valued_for_explicit_spec_rule rule checks that when a PLIB
conformant exchange context includes lib_f_model_instance and
explicit_functional_model_class_extension, and when lib_f_model_instances reference such an
available explicit_functional_model_class_extension, these lib_f_model_instances are at least
described by the set of explicit_functional_model_class_extension instance_identification
properties.

EXPRESS specification:

*)
RULE fm_free_properties_are_valued_for_explicit_spec_rule FOR(

lib_f_model_instance, explicit_functional_model_class_extension);
LOCAL

valued_free_properties: LOGICAL := TRUE;
END_LOCAL;

REPEAT i := 1 TO SIZEOF(lib_f_model_instance);
IF SIZEOF(lib_f_model_instance[i]\dic_class_instance.

class_def.referenced_by) = 1
THEN

IF ('ISO13584_LIBRARY_CONTENT_SCHEMA' +
'.EXPLICIT_FUNCTIONAL_MODEL_CLASS_EXTENSION' IN
TYPEOF(lib_f_model_instance[i]\dic_class_instance.
class_def.referenced_by[1]))

THEN
valued_free_properties := valued_free_properties
AND (QUERY(prop <* lib_f_model_instance[i]\
dic_class_instance.class_def.referenced_by[1].
instance_identification |
NOT(prop IN collects_assigned_instance_properties(
list_to_set(lib_f_model_instance[i]\
dic_class_instance.properties)))) = []);

END_IF;
END_IF;

END_REPEAT;

WHERE
WR: valued_free_properties;

END_RULE; -- fm_free_properties_are_valued_for_explicit_spec_rule
(*

6.6 ISO13584_instance_resource_schema function definitions

This clause defines the functions in the ISO13584_instance_resource_schema. These functions
enable the schema to perform type control for instances.

6.6.1 Compatible_class_and_class function

The function compatible_class_and_class checks if the instances of a class cl2 are compatible with
the domain defined by the class cl1.

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 65

An instance of class cl2 is compatible with the domain defined by a class cl1 if one of the following
condition holds:

a) the class cl2:

— is defined by the same supplier as cl1, and

— has the same code as cl1, and

— has a version less than or equal to the version of cl1.

b) the domain of one superclass of the class cl2 is compatible with the domain of a class cl1.

If a BSU definition required to evaluate the compatibility is not available, the function returns
UNKNOWN.

NOTE This compatibility does not ensure that the set of property values that may be associated with an
instance of class cl2 belongs to the allowed set of property values for class cl1 (a subclass may define more
properties than its super-class).

EXPRESS specification:

*)
FUNCTION compatible_class_and_class(cl1:class_BSU;

cl2:class_BSU): LOGICAL;

IF (cl1.defined_by\basic_semantic_unit.code =
cl2.defined_by\basic_semantic_unit.code) AND
(cl1\basic_semantic_unit.code =
cl2\basic_semantic_unit.code) AND
(cl1\basic_semantic_unit.version >=
cl2\basic_semantic_unit.version)

THEN (* the two classes have the same identification and are version
compatible *)
RETURN(TRUE);

END_IF;

IF (SIZEOF(cl2\basic_semantic_unit.definition) = 0)
THEN (* the superclass of cl2 is not available *)

RETURN(UNKNOWN);
END_IF;

IF (SIZEOF(cl2\basic_semantic_unit.definition) = 1)
AND (NOT EXISTS(cl2\basic_semantic_unit.
definition[1]\class.its_superclass))

THEN (* cl2 has no superclass *)
RETURN(FALSE);

END_IF;

RETURN(compatible_class_and_class(cl1, cl2\basic_semantic_unit.
definition[1]\class.its_superclass));

END_FUNCTION; -- compatible_class_and_class
(*

ISO 13584-24:2003(E)

66 © ISO 2003 – All rights reserved

6.6.2 Right_values_for_level_spec function

The function right_values_for_level_spec checks if the existing values val of the level_spec_value
are in the places defined by the levels parameter.

EXPRESS specification:

*)
FUNCTION right_values_for_level_spec(

levels: LIST [1:4] OF UNIQUE level;
val: level_spec_value): BOOLEAN;

LOCAL
c_place: BOOLEAN;
lev: SET [1:4] OF level;

END_LOCAL;

c_place := TRUE;
lev := list_to_set(levels);

IF EXISTS(val.values[1])
THEN

IF level.min IN lev
THEN

lev := lev - [level.min];
ELSE

c_place := FALSE;
END_IF;

END_IF;

IF EXISTS(val.values[2])
THEN

IF level.nom IN lev
THEN

lev := lev - [level.nom];
ELSE

c_place := FALSE;
END_IF;

END_IF;

IF EXISTS(val.values[3])
THEN

IF level.typ IN lev
THEN

lev := lev - [level.typ];
ELSE

c_place := FALSE;
END_IF;

END_IF;

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 67

IF EXISTS(val.values[4])
THEN

IF level.max IN lev
THEN

lev := lev - [level.max];
ELSE

c_place := FALSE;
END_IF;

END_IF;

IF (c_place)
THEN

RETURN(TRUE);
ELSE

RETURN(FALSE);
END_IF;

END_FUNCTION; -- right_values_for_level_spec
(*

6.6.3 Compatible_level_type_and_instance function

The function compatible_level_type_and_instance checks if a level_spec_value is compatible with
the domain defined by a level_type specification, described in terms of:

— a LIST of unique level, that corresponds to the levels attribute of the level_type, and

— a SET of STRINGs that contains the result of the TYPEOF function, applied to the value_type
attribute of the level_type.

A level_spec_value is compatible with the domain defined by a level_type if the two following
conditions hold:

a) the values of the level_spec_value:

— either are INTEGER, and the result of the TYPEOF function applied to
level_type.value_type does not contain 'REAL_TYPE', or

— are REAL, and the result of the TYPEOF function applied to level_type.value_type does
not contain 'INT_TYPE';

b) the existing values of the level_spec_value are in the places defined by the levels attribute of
the level_type.

EXPRESS specification:

*)
FUNCTION compatible_level_type_and_instance(

levels: LIST [1:4] OF UNIQUE level; value_typeof: SET OF STRING;
val: level_spec_value): BOOLEAN;

LOCAL
c_val: BOOLEAN;

END_LOCAL;

ISO 13584-24:2003(E)

68 © ISO 2003 – All rights reserved

c_val := FALSE;

IF ('ISO13584_INSTANCE_RESOURCE_SCHEMA.INT_LEVEL_SPEC_VALUE'
IN TYPEOF(val))
AND NOT('ISO13584_IEC61360_DICTIONARY_SCHEMA.REAL_TYPE' IN
value_typeof)

THEN
c_val := TRUE;

END_IF;

IF ('ISO13584_INSTANCE_RESOURCE_SCHEMA.REAL_LEVEL_SPEC_VALUE'
IN TYPEOF(val))
AND NOT('ISO13584_IEC61360_DICTIONARY_SCHEMA.INT_TYPE'
IN value_typeof)

THEN
c_val := TRUE;

END_IF;

RETURN(c_val AND (right_values_for_level_spec(levels, val)));

END_FUNCTION; -- compatible_level_type_and_instance
(*

6.6.4 Compatible_type_and_value function

The function compatible_type_and_value checks if a value val of a primitive_value is type
compatible with the types defined by a type dom defined by a property_or_data_type_BSU. It
returns a LOGICAL that is TRUE when they are compatible and FALSE when they are not. This
function returns UNKNOWN when some required basic_semantic_unit definition is not present, or
when the val data type is an uncontrolled_instance_value.

NOTE The value val may or may not exist.

EXPRESS specification:

*)
FUNCTION compatible_type_and_value(dom: property_or_data_type_BSU;

val: primitive_value): LOGICAL;

LOCAL
temp: SET[0:1] OF class_BSU;
set_string: SET OF STRING := [];
set_integer: SET OF INTEGER := [];
code_type: non_quantitative_code_type;
int_type: non_quantitative_int_type;

END_LOCAL;

IF data_type_typeof(dom) = []
THEN (* the final domain of the type is not available *)

RETURN(UNKNOWN);
END_IF;

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 69

(* The following express statements deal with simple types *)

IF ('ISO13584_INSTANCE_RESOURCE_SCHEMA.INTEGER_VALUE' IN TYPEOF(val))
THEN

IF (('ISO13584_IEC61360_DICTIONARY_SCHEMA.' +
'NON_QUANTITATIVE_INT_TYPE' IN data_type_typeof(dom))
AND (SIZEOF(data_type_non_quantitative_int_type(dom)) = 1))

THEN
set_integer := [];
code_type := data_type_non_quantitative_int_type(dom)[1];

REPEAT j := 1 TO SIZEOF(code_type.domain.its_values);
set_integer := set_integer +

code_type.domain.its_values[j].value_code;
END_REPEAT;

RETURN(val IN set_integer);

ELSE
RETURN(('ISO13584_IEC61360_DICTIONARY_SCHEMA.INT_TYPE'

IN data_type_typeof(dom)) OR
(('ISO13584_IEC61360_DICTIONARY_SCHEMA.NUMBER_TYPE'
IN data_type_typeof(dom))
AND NOT('ISO13584_IEC61360_DICTIONARY_SCHEMA.REAL_TYPE'
IN data_type_typeof(dom))));

END_IF;
END_IF;

IF ('ISO13584_INSTANCE_RESOURCE_SCHEMA.REAL_VALUE' IN TYPEOF(val))
THEN

RETURN(('ISO13584_IEC61360_DICTIONARY_SCHEMA.REAL_TYPE'
IN data_type_typeof(dom)) OR
(('ISO13584_IEC61360_DICTIONARY_SCHEMA.NUMBER_TYPE'
IN data_type_typeof(dom))
AND NOT('ISO13584_IEC61360_DICTIONARY_SCHEMA.INT_TYPE'
IN data_type_typeof(dom))));

END_IF;

IF ('ISO13584_INSTANCE_RESOURCE_SCHEMA.NUMBER_VALUE' IN TYPEOF(val))
THEN

RETURN('ISO13584_IEC61360_DICTIONARY_SCHEMA.NUMBER_TYPE'
IN data_type_typeof(dom));

END_IF;

IF ('ISO13584_INSTANCE_RESOURCE_SCHEMA.BOOLEAN_VALUE' IN TYPEOF(val))
THEN

RETURN('ISO13584_IEC61360_DICTIONARY_SCHEMA.BOOLEAN_TYPE'
IN data_type_typeof(dom));

END_IF;

IF ('ISO13584_INSTANCE_RESOURCE_SCHEMA.TRANSLATABLE_STRING_VALUE'

ISO 13584-24:2003(E)

70 © ISO 2003 – All rights reserved

IN TYPEOF(val))
THEN

IF (('ISO13584_IEC61360_DICTIONARY_SCHEMA' +
'.NON_QUANTITATIVE_CODE_TYPE') IN data_type_typeof(dom))

THEN
IF (SIZEOF(data_type_non_quantitative_code_type(dom)) = 1)
THEN

set_string := [];
code_type :=

data_type_non_quantitative_code_type(dom)[1];

REPEAT j := 1 TO SIZEOF(code_type.domain.its_values);
set_string := set_string +

code_type.domain.its_values[j].value_code;
END_REPEAT;

RETURN(('ISO13584_INSTANCE_RESOURCE_SCHEMA.STRING_VALUE'
IN TYPEOF(val)) AND (val IN set_string));

ELSE
RETURN(UNKNOWN);

END_IF;
ELSE

RETURN('ISO13584_IEC61360_DICTIONARY_SCHEMA' +
'.STRING_TYPE' IN data_type_typeof(dom));

END_IF;
END_IF;

(* The following express statements deal with complex types *)

IF 'ISO13584_INSTANCE_RESOURCE_SCHEMA.ENTITY_INSTANCE_VALUE'
IN TYPEOF(val)

THEN
IF 'ISO13584_INSTANCE_RESOURCE_SCHEMA' +

'.UNCONTROLLED_ENTITY_INSTANCE_VALUE'
IN TYPEOF(val)

THEN
RETURN(UNKNOWN);

END_IF;
IF ('ISO13584_IEC61360_DICTIONARY_SCHEMA.ENTITY_INSTANCE_TYPE'

IN data_type_typeof(dom))
AND (SIZEOF(data_type_type_name(dom)) <> 0)

AND (data_type_type_name(dom) <= TYPEOF(val))
THEN

RETURN(TRUE);
ELSE

RETURN(FALSE);
END_IF;

END_IF;

IF 'ISO13584_INSTANCE_RESOURCE_SCHEMA.DIC_CLASS_INSTANCE'

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 71

IN TYPEOF(val)
THEN

IF ('ISO13584_IEC61360_DICTIONARY_SCHEMA.CLASS_INSTANCE_TYPE'
IN data_type_typeof(dom))
AND (SIZEOF(data_type_class_of(dom)) <> 0)

THEN
temp := data_type_class_of(dom);
RETURN(compatible_class_and_class(temp[1],

val\dic_class_instance.class_def));
ELSE

RETURN(FALSE);
END_IF;

END_IF;

IF 'ISO13584_INSTANCE_RESOURCE_SCHEMA.LEVEL_SPEC_VALUE' IN TYPEOF(val)
THEN

IF ('ISO13584_IEC61360_DICTIONARY_SCHEMA.LEVEL_TYPE'
IN data_type_typeof(dom))

THEN
RETURN(compatible_level_type_and_instance(

data_type_level_spec(dom),
data_type_level_value_typeof(dom),
val));

ELSE
RETURN(FALSE);

END_IF;
END_IF;

RETURN(FALSE);

END_FUNCTION; -- compatible_type_and_value
(*

6.6.5 Collects_assigned_instance_properties function

The collects_assigned_instance_properties function computes the properties that are referenced in
its properties attribute of a dic_class_instance.

EXPRESS specification:

*)
FUNCTION collects_assigned_instance_properties(

props: SET [0:?] OF property_value): SET OF property_BSU;

LOCAL
assign_prop: SET OF property_BSU;

-- assigned properties of the dic_class_instance
END_LOCAL;

assign_prop := [];

REPEAT i := 1 TO SIZEOF(props);

ISO 13584-24:2003(E)

72 © ISO 2003 – All rights reserved

assign_prop := assign_prop + props[i].prop_def;
END_REPEAT;

RETURN(assign_prop);

END_FUNCTION; -- collects_assigned_instance_properties
(*

6.6.6 Correct_view_from_model function

The correct_view_from_model function checks that the generated_by functional_model_class
attribute of a fv dic_f_view_instance is able to create the class_def functional view. It returns
UNKNOWN when some dictionary_element is not available.

EXPRESS specification:

*)
FUNCTION correct_view_from_model(fv: dic_f_view_instance): LOGICAL;

IF NOT EXISTS(fv.generated_by)
THEN

RETURN(UNKNOWN);
END_IF;

IF NOT(SIZEOF(fv.generated_by\dic_class_instance.class_def.
definition) = 1)

THEN
RETURN(UNKNOWN);

ELSE
RETURN(fv.generated_by\dic_class_instance.class_def

.definition[1].created_view =
fv\dic_class_instance.class_def);

END_IF;

END_FUNCTION; -- correct_view_from_model
(*

6.6.7 Is_condition_det function

The is_condition_det function returns TRUE if the property definition of the given prop
property_value is a condition_det. Otherwise, it returns FALSE. If the property definition is not
available, the function returns UNKNOWN.

EXPRESS specification:

*)
FUNCTION is_condition_det(prop: property_value): LOGICAL;

IF(SIZEOF(prop.prop_def.definition) > 0) THEN
RETURN('ISO13584_IEC61360_DICTIONARY_SCHEMA.CONDITION_DET'

IN TYPEOF(prop.prop_def.definition[1]));
ELSE

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 73

RETURN(UNKNOWN);
END_IF;

END_FUNCTION; -- is_condition_det
(*

6.6.8 Is_dependent_p_det function

The is_dependent_p_det function returns TRUE if the property definition of the given prop
property_value is a dependent_p_det. Otherwise, it returns FALSE. If the property definition is not
available, the function returns UNKNOWN.

EXPRESS specification:

*)

FUNCTION is_dependent_p_det(prop: property_bsu): LOGICAL;

IF(SIZEOF(prop.definition) > 0) THEN
RETURN('ISO13584_IEC61360_DICTIONARY_SCHEMA.DEPENDENT_P_DET'

IN TYPEOF(prop.definition[1]));
ELSE

RETURN(UNKNOWN);
END_IF;

END_FUNCTION; -- is_dependent_p_det
(*

6.6.9 All_context_parameters_referenced function

The all_context_parameters_referenced function returns TRUE if the set of property_values of the
cdpv context_dependent_property_value is included in the set of context parameters of which the
cdpv context_dependent_property_value.prop_def property depends as defined in its dictionary
definition. Otherwise, it returns FALSE.

EXPRESS specification:

*)
FUNCTION all_context_parameters_referenced(

cdpv: context_dependent_property_value): LOGICAL;

IF(SIZEOF(cdpv\property_value.prop_def.definition) > 0) THEN
RETURN(cdpv\property_value.prop_def.definition[1]\

dependent_p_det.depends_on
>= collects_assigned_instance_properties(
list_to_set(cdpv.the_context)));

ELSE
RETURN(UNKNOWN);

END_IF;

END_FUNCTION; -- all_context_parameters_referenced
(*

ISO 13584-24:2003(E)

74 © ISO 2003 – All rights reserved

6.6.10 Collects_property_context function

The collects_property_context function computes the context parameters that define the context of
a property prop that is referenced in its properties attribute by a dic_class_instance denoted inst.
This context consists of the context parameters referenced by the properties attribute of a
dic_class_instance, more, if the property prop is referenced by means of a
context_dependent_property_value, the context parameters referenced by the context attribute of
this context_dependent_property_value. Each property referenced in the properties attribute of the
inst dic_class_instance is returned by the collects_property_context function if its definition is not
available to decide whether it is a context parameter. The collects_property_context function
requires that property prop be referenced in the properties attribute of the inst dic_class_instance,
otherwise it returns the empty set.

EXPRESS specification:

*)
FUNCTION collects_property_context(prop: property_BSU;

inst: dic_class_instance): SET OF property_BSU;

LOCAL
assigned_context_parameters: SET OF property_BSU;

--assigned context parameters of the dic_class_instance
correct: BOOLEAN; --prop belongs to inst properties

END_LOCAL;

assigned_context_parameters := [];
correct := FALSE;

REPEAT i := 1 TO SIZEOF(inst.properties);

IF inst.properties[i].prop_def :=: prop
THEN

correct := TRUE;
END_IF;

IF ((SIZEOF(inst.properties[i].prop_def.definition) = 0)
OR ((SIZEOF(inst.properties[i].prop_def.definition) = 1)
AND (('ISO13584_IEC61630_DICTIONARY_SCHEMA.CONDITION_DET')
IN TYPEOF(inst.properties[i].prop_def.definition[1]))))

THEN
assigned_context_parameters := assigned_context_parameters

+ inst.properties[i].prop_def;
END_IF;

IF (('ISO13584_INSTANCE_RESOURCE_SCHEMA' +
'.CONTEXT_DEPENDENT_PROPERTY_VALUE') IN
TYPEOF(inst.properties[i]))

THEN
assigned_context_parameters := assigned_context_parameters

+ collects_assigned_instance_properties(list_to_set(
inst.properties[i].the_context));

END_IF;

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 75

END_REPEAT;

IF NOT correct
THEN

assigned_context_parameters := [];
END_IF;

RETURN(assigned_context_parameters);

END_FUNCTION; -- collects_property_context

(*

6.6.11 Check_class_type_for_dic_item_instance function

The check_class_type_for_dic_item_instance returns TRUE if the referenced class dictionary
definition is type compatible with the given dic_cl dic_item_instance, otherwise it returns FALSE. If
this dictionary definition is not available, it returns UNKNOWN.

EXPRESS specification:

*)
FUNCTION check_class_type_for_dic_item_instance(

dic_cl: dic_item_instance): LOGICAL;

IF (SIZEOF(dic_cl.class_def.definition) = 1) THEN

IF ('ISO13584_INSTANCE_RESOURCE_SCHEMA.' +
'DIC_COMPONENT_INSTANCE') IN TYPEOF(dic_cl)

THEN
RETURN(('ISO13584_IEC61360_DICTIONARY_SCHEMA'

+ '.COMPONENT_CLASS'
IN TYPEOF(dic_cl.class_def.definition[1])));

END_IF;

IF ('ISO13584_INSTANCE_RESOURCE_SCHEMA.' +
'DIC_MATERIAL_INSTANCE') IN TYPEOF(dic_cl)

THEN
RETURN(('ISO13584_IEC61360_DICTIONARY_SCHEMA'

+ '.MATERIAL_CLASS'
IN TYPEOF(dic_cl.class_def.definition[1])));

END_IF;

IF ('ISO13584_INSTANCE_RESOURCE_SCHEMA.' +
'DIC_FEATURE_INSTANCE') IN TYPEOF(dic_cl)

THEN
RETURN('ISO13584_EXTENDED_DICTIONARY_SCHEMA'

+ '.FEATURE_CLASS'
IN TYPEOF(dic_cl.class_def.definition[1]));

END_IF;

IF ('ISO13584_INSTANCE_RESOURCE_SCHEMA.' +
'DIC_ITEM_INSTANCE') IN TYPEOF(dic_cl)

ISO 13584-24:2003(E)

76 © ISO 2003 – All rights reserved

THEN
RETURN(('ISO13584_IEC61360_DICTIONARY_SCHEMA'

+ '.ITEM_CLASS'
IN TYPEOF(dic_cl.class_def.definition[1])));

END_IF;

ELSE
RETURN(UNKNOWN);

END_IF;
END_FUNCTION; -- check_class_type_for_dic_item_instance

(*

6.6.12 Check_class_type_for_dic_f_model_instance function

The check_class_type_for_dic_model_instance returns TRUE if the referenced class dictionary
definition is type compatible with the given dic_cl dic_f_model_instance, otherwise it returns FALSE.
If this dictionary definition is not available, it returns UNKNOWN.

EXPRESS specification:

*)
FUNCTION check_class_type_for_dic_f_model_instance(

dic_cl: dic_f_model_instance): LOGICAL;

IF (SIZEOF(dic_cl.class_def.definition) = 1)
THEN

RETURN (('ISO13584_EXTENDED_DICTIONARY_SCHEMA'
+ '.ABSTRACT_FUNCTIONAL_MODEL_CLASS'
IN TYPEOF(dic_cl.class_def.definition[1])));

ELSE
RETURN(UNKNOWN);

END_IF;
END_FUNCTION; -- check_class_type_for_dic_f_model_instance

(*

6.6.13 Check_class_type_for_dic_f_view_instance function

The check_class_type_for_dic_f_view_instance returns TRUE if the referenced class dictionary
definition is type compatible with the given dic_cl dic_f_view_instance, otherwise it returns FALSE. If
this dictionary definition is not available, it returns UNKNOWN.

EXPRESS specification:

*)
FUNCTION check_class_type_for_dic_f_view_instance(

dic_cl: dic_f_model_instance): LOGICAL;

IF (SIZEOF(dic_cl.class_def.definition) = 1)
THEN

IF ('ISO13584_EXTENDED_DICTIONARY_SCHEMA' +
'.DIC_F_VIEW_INSTANCE') IN TYPEOF(dic_cl)

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 77

THEN
RETURN('ISO13584_EXTENDED_DICTIONARY_SCHEMA'
+ '.FUNCTIONAL_VIEW_CLASS'
IN TYPEOF(dic_cl.class_def.definition[1]));

END_IF;

ELSE
RETURN(UNKNOWN);

END_IF;
END_FUNCTION; -- check_class_type_for_dic_f_view_instance
(*

6.6.14 Check_property_values_translations function

The check_property_values_translations function returns TRUE if all the given property_values
are translated in the same language. Otherwise, it returns FALSE. If none of the property_values are
translated, it returns UNKNOWN.

EXPRESS specification:

*)
FUNCTION check_property_values_translations(props:

LIST OF property_value): LOGICAL;
LOCAL

translated_string_values: SET OF translated_string_value := [];
END_LOCAL;

REPEAT i := 1 TO SIZEOF(props);
translated_string_values :=

translated_string_values + props[i].its_value;
END_REPEAT;

RETURN(same_translations(translated_string_values));

END_FUNCTION; -- check_property_values_translations
(*

6.6.15 Same_translations function

The same_translations function returns TRUE if all the given translated_string_values are defined
using the same languages. Otherwise, it returns FALSE. If no translated_string_value is provided, it
returns UNKNOWN.

EXPRESS specification:

*)
FUNCTION same_translations(translated_string_values: SET OF

translated_string_value): LOGICAL;
LOCAL

comp: translated_string_value;
END_LOCAL;

IF (SIZEOF(translated_string_values) <> 0)

ISO 13584-24:2003(E)

78 © ISO 2003 – All rights reserved

THEN
comp := translated_string_values[1];
REPEAT i := 2 TO SIZEOF(translated_string_values);

IF (translated_string_values[i].languages <>
comp.languages)

THEN
RETURN(FALSE);

END_IF;
END_REPEAT;

RETURN(TRUE);
ELSE

RETURN(UNKNOWN);
END_IF;

END_FUNCTION; -- same_translations
(*

6.6.16 Compatible_item_caseof_with_class_definition function

The compatible_item_caseof_with_class_definition function checks that the inst
dic_item_instance refers through its case_of attribute to compatible classes according to the inst
class_def class definition.

The case-of relationship is inherited and transitive, thus, the classes that are allowed to be referenced
by the case_of attribute of a dic_item_instance are all the classes that may be attained through
transitive closure of the two relationships: case-of and inheritance.

The compatible_item_caseof_with_class_definition function returns TRUE if the inst case_of set
is empty, or if all the classes referenced in the inst case_of set belong to the transitive closure of the
case-of and inheritance relationships for the inst class_def class. It returns UNKNOWN if the inst
class_def dictionary definition is not available, or if some dictionary definitions of some classes
referenced by a case_of relationship are not available. Otherwise, it returns FALSE.

EXPRESS specification:

*)
FUNCTION compatible_item_caseof_with_class_definition(

inst: dic_item_instance): LOGICAL;

IF (SIZEOF(inst.case_of) > 0)
THEN

IF (SIZEOF(inst.class_def.definition) = 1)
THEN

RETURN (inst.case_of
<= item_caseof_closure([inst.class_def]));

ELSE
RETURN(UNKNOWN);

END_IF;
ELSE

RETURN(TRUE);
END_IF;

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 79

END_FUNCTION; -- compatible_item_caseof_with_class_definition
(*

6.6.17 Compatible_model_caseof_with_class_definition function

The compatible_model_caseof_with_class_definition function checks that the inst
dic_f_model_instance refers through its case_of attribute to compatible classes according to the
inst class_def class definition.

The case-of relationship is inherited and transitive, thus, the classes that are allowed to be referenced
by the case_of attribute of a dic_f_model_instance are all the classes that may be attained through
transitive closure of the two relationships: case-of and inheritance.

The compatible_model_caseof_with_class_definition function returns TRUE if the inst case_of
set is empty, or if all the classes referenced in the inst case_of set belong to the transitive closure of
the case-of and inheritance relationships for the inst class_def class. It returns UNKNOWN if the inst
class_def dictionary definition is not available, or if some dictionary definitions of some classes
referenced by a case_of relationship are not available. Otherwise, it returns FALSE.

EXPRESS specification:

*)
FUNCTION compatible_model_caseof_with_class_definition(

inst: dic_f_model_instance): LOGICAL;

IF (SIZEOF(inst.case_of) > 0)
THEN

IF (SIZEOF(inst.class_def.definition) = 1)
THEN

RETURN (inst.case_of
<= model_caseof_closure([inst.class_def]));

ELSE
RETURN(UNKNOWN);

END_IF;
ELSE

RETURN(TRUE);
END_IF;

END_FUNCTION; -- compatible_model_caseof_with_class_definition
(*

6.6.18 superclass_closure function

The superclass_closure function computes all the superclasses of the set of classes defined by the
current set of class_BSU. It returns indeterminate (?) when some dictionary definitions are not
available to compute this set.

EXPRESS specification:

*)

FUNCTION superclass_closure (

ISO 13584-24:2003(E)

80 © ISO 2003 – All rights reserved

current: SET OF class_BSU) -- which classes
:SET OF class_BSU; -- all their superclasses or ?

LOCAL
superclasses : SET OF class_BSU := [];

END_LOCAL;

compute_superclass_closure (current, superclasses);
RETURN (superclasses);

END_FUNCTION; -- superclass_closure
(*

6.6.19 compute_superclass_closure procedure

The compute_superclass_closure procedure computes recursively all the superclasses of the set of
classes defined by the current set of class_BSU and returns them in the visited parameter. The
visited parameter is indeterminate (?) when some dictionary definitions are not available to compute
the set of all the superclasses.

EXPRESS specification:

*)

PROCEDURE compute_superclass_closure (
current: SET OF class_BSU; -- new superclasses
var visited: SET OF class_BSU); -- already known superclasses

IF EXISTS(current) THEN
IF SIZEOF(current) <> 0 THEN

REPEAT i := 1 TO SIZEOF(current);
IF SIZEOF (current[i].definition) = 0
THEN visited := ?;

-- all superclasses cannot be computed
SKIP;

ELSE
IF EXISTS

(current[i].definition[1]\class.its_superclass)
AND NOT
(current[i].definition[1]\class.its_superclass
IN visited)

THEN visited := visited
+ [current[i].definition[1]\class.its_superclass];
compute_superclass_closure(
[current[i].definition[1]\class.its_superclass]
, visited);
END_IF;

END_IF;
END_REPEAT;

END_IF;
ELSE

visited := ?; -- all superclasses cannot be computed

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 81

END_IF;
END_PROCEDURE; -- compute_superclass_closure

(*

6.6.20 item_caseof_closure function

The item_caseof_closure function computes all the item classes of which the set of item classes
defined by the current set of class_BSU are case-of, by means of direct or indirect case-of
declaration, or by means of inheritance of a case-of relationship declared by some superclass. It
returns indeterminate (?) when some dictionary definitions are not available to compute the result set.

EXPRESS specification:

*)
FUNCTION item_caseof_closure (

current: SET OF class_BSU) -- which classes
:SET OF class_BSU; -- all classes they are caseof or ?

LOCAL
caseof : SET OF class_BSU

:= next_item_caseof(superclass_closure (current));
END_LOCAL;

compute_item_caseof_closure (caseof, caseof);
RETURN (caseof);

END_FUNCTION; -- item_caseof_closure
(*

6.6.21 next_item_caseof function

The next_item_caseof function computes all the item classes of which the set of item classes defined
by the current set of class_BSU are case-of by means of a direct declaration. It returns indeterminate
(?) when some dictionary definitions are not available to compute th e result set.

EXPRESS specification:

*)

FUNCTION next_item_caseof (
current: SET OF class_BSU) -- which classes
:SET OF class_BSU; -- classes they are directly caseof or ?

LOCAL
caseof : SET OF class_BSU := [];

END_LOCAL;
IF EXISTS(current) THEN

REPEAT i := 1 TO SIZEOF(current);
IF SIZEOF (current[i].definition) = 0

THEN caseof := ?;
-- all classes they are caseof cannot be computed

SKIP;
ELSE
IF ('ISO13584_EXTENDED_DICTIONARY_SCHEMA.'

+'ITEM_CLASS_CASE_OF' IN
TYPEOF(current[i].definition[1]))

ISO 13584-24:2003(E)

82 © ISO 2003 – All rights reserved

THEN caseof := caseof
+ current[i].definition[1]
\item_class_case_of.is_case_of;

END_IF;
END_IF;

END_REPEAT;
RETURN (caseof);

ELSE
RETURN (?); -- all classes they are caseof cannot be computed

END_IF;
END_FUNCTION; -- next_item_caseof
(*

6.6.22 compute_item_caseof_closure procedure

The compute_item_caseof_closure procedure computes recursively all the item classes of which
the set of item classes defined by the current set of class_BSU are case-of, by means of direct or
indirect case-of declaration, or by means of inheritance of a case-of relationship declared by some
superclass. The compute_item_caseof_closure procedure returns them in the visited attribute. The
visited attribute is indeterminate (?) when some dictionary definitions are not available to compute the
result set.

EXPRESS specification:

*)

PROCEDURE compute_item_caseof_closure (
current: SET OF class_BSU; -- last found caseof
var visited: SET OF class_BSU);

-- already known classes that are caseof (including current)
LOCAL

next : SET OF class_BSU ; -- computed new caseof
END_LOCAL;
IF EXISTS(current) THEN

IF SIZEOF(current) <> 0 THEN
next := superclass_closure (current);-- caseof by inheritance
next := next_item_caseof (next)+ next;

-- and caseof by transitivity
REPEAT i := 1 TO SIZEOF(next);

IF NOT (next[i] IN visited)
THEN

visited := visited + next[i] ;
compute_item_caseof_closure([next[i]], visited);

END_IF;
END_REPEAT;

END_IF;
ELSE

visited := ?;
-- all classes that are caseof cannot be computed
END_IF;
END_PROCEDURE; -- compute_item_caseof_closure

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 83

(*
6.6.23 model_caseof_closure function

The model_caseof_closure function computes all the functional model classes of which the set of
functional model classes defined by the current set of class_BSU are case-of, by means of direct or
indirect case-of declaration, or by means of inheritance of a case-of relationship declared by some
superclass. It returns indeterminate (?) when some dictionary definitions are not available to compute
the result set.

EXPRESS specification:

*)
FUNCTION model_caseof_closure (

current: SET OF class_BSU) -- which classes
:SET OF class_BSU; -- all classes they are caseof or ?

LOCAL
caseof : SET OF class_BSU

:= next_model_caseof(superclass_closure (current));
END_LOCAL;

compute_model_caseof_closure (caseof, caseof);
RETURN (caseof);

END_FUNCTION; -- model_caseof_closure
(*

6.6.24 next_model_caseof function

The next_model_caseof function computes all the functional model classes of which the set of
functional model classes defined by the current set of class_BSU are case-of by means of a direct
declaration. It returns indeterminate (?) when some dictionary definitions are not available to compute
th e result set.

EXPRESS specification:

*)

FUNCTION next_model_caseof (
current: SET OF class_BSU) -- which classes
:SET OF class_BSU; -- classes they are directly caseof or ?

LOCAL
caseof : SET OF class_BSU := [];

END_LOCAL;
IF EXISTS(current) THEN

REPEAT i := 1 TO SIZEOF(current);
IF SIZEOF (current[i].definition) = 0

THEN caseof := ?;
-- all classes they are caseof cannot be computed

SKIP;
ELSE
IF ('ISO13584_EXTENDED_DICTIONARY_SCHEMA.'

+'ABSTRACT_FUNCTIONAL_MODEL_CLASS' IN
TYPEOF(current[i].definition[1]))

THEN caseof := caseof
+ current[i].definition[1]

ISO 13584-24:2003(E)

84 © ISO 2003 – All rights reserved

\abstract_functional_model_class.case_of;
END_IF;

END_IF;
END_REPEAT;
RETURN (caseof);

ELSE
RETURN (?); -- all classes they are caseof cannot be computed

END_IF;
END_FUNCTION; -- next_model_caseof
(*

6.6.25 compute_model_caseof_closure procedure

The compute_model_caseof_closure procedure computes recursively all the functional model
classes of which the set of functional model classes defined by the current set of class_BSU are
case-of, by means of direct or indirect case-of declaration, or by means of inheritance of a case-of
relationship declared by some superclass. The compute_model_caseof_closure procedure returns
them in the visited attribute. The visited attribute is indeterminate (?) when some dictionary
definitions are not available to compute the result set.

EXPRESS specification:

*)

PROCEDURE compute_model_caseof_closure (
current: SET OF class_BSU; -- last found caseof
var visited: SET OF class_BSU);

-- already known classes that are caseof (including current)
LOCAL

next : SET OF class_BSU ; -- computed new caseof
END_LOCAL;
IF EXISTS(current) THEN

IF SIZEOF(current) <> 0 THEN
next := superclass_closure (current);-- caseof by inheritance
next := next_model_caseof (next)+ next;

-- and caseof by transitivity
REPEAT i := 1 TO SIZEOF(next);

IF NOT (next[i] IN visited)
THEN

visited := visited + next[i] ;
compute_model_caseof_closure([next[i]],visited);

END_IF;
END_REPEAT;

END_IF;
ELSE

visited := ?;
-- all classes that are caseof cannot be computed
END_IF;
END_PROCEDURE; -- compute_model_caseof_closure

(*

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 85

*)

END_SCHEMA; -- ISO13584_instance_resource_schema

(*

7 ISO13584_library_expressions_schema

This clause defines the requirements for the ISO13584_library_expressions_schema. The following
EXPRESS declaration introduces the ISO13584_library_expressions_schema block and identifies
the necessary external references.

EXPRESS specification:

*)
SCHEMA ISO13584_library_expressions_schema;

REFERENCE FROM ISO13584_IEC61360_dictionary_schema
(class_BSU,
definition_available_implies,
level,
list_to_set,
number_type,
property_BSU);

REFERENCE FROM ISO13584_generic_expressions_schema
(binary_generic_expression,
environment,
generic_expression,
generic_literal,
generic_variable,
multiple_arity_generic_expression,
simple_generic_expression,
unary_generic_expression,
variable_semantics);

REFERENCE FROM ISO13584_expressions_schema
(boolean_defined_function,
expression,
is_int_expr,
variable);

REFERENCE FROM ISO13584_instance_resource_schema
(compatible_class_and_class,
compatible_level_type_and_instance,
dic_class_instance,
entity_instance_value,
int_level_spec_value,
level_spec_value,
property_or_data_type_BSU,
real_level_spec_value);

ISO 13584-24:2003(E)

86 © ISO 2003 – All rights reserved

REFERENCE FROM ISO13584_extended_dictionary_schema
(applicable_properties,
data_type_class_of,
data_type_level_spec,
data_type_level_value_typeof,
data_type_type_name,
data_type_typeof);

(*

NOTE The schemas referenced above can be found in the following documents:
ISO13584_IEC61360_dictionary_schema IEC 61360-2

(which is duplicated for convenience in informative annex D of ISO 13584-42),
ISO13584_generic_expressions_schema ISO 13584-20,
ISO13584_expressions_schema ISO 13584-20,
ISO13584_instance_resource_schema This part of ISO 13584,
ISO13584_extended_dictionary_schema This part of ISO 13584.

7.1 Introduction to the ISO13584_library_expressions_schema

The role of the ISO13584_library_expressions_schema is to provide resources for representing
expressions that evaluate to a value belonging to any one of the data types defined in the
ISO13584_ISO61360_dictionary_schema. Therefore, the resource constructs provided in the
ISO13584_library_expressions_schema enable the specification of the value of any property
defined in a dictionary conformant with ISO 13584-42 by means of an expression.

The ISO13584_library_expressions_schema extends the type of expressions defined in the
ISO13584_expressions_schema by subtyping the generic resources defined in the
ISO13584_generic_expressions_schema for each of the complex types defined in the
ISO13584_IEC61360_dictionary_schema. For all these expressions, except the
class_instance_expressions, the expressions defined in this schema consists only of variables and
literals.

NOTE The expressions defined in the ISO13584_expressions_schema correspond to simple EXPRESS
data types.

For a class_instance_expression, an operator similar to the EXPRESS entity instance constructor is
introduced. This operator enables to specificy how an instance of a class defined according to the
ISO13584_IEC61360_dictionary_schema may be generated from other expressions.

In ISO 13584, a variable may be associated with a content of no value. It is the case in particular when
the variable represents the value of an instance property, and when this property is specified as being
optional in a class extension described according to the ISO13584_library_content_schema.

The exists_value entity is the second operator introduced in the
ISO13584_library_expressions_schema. This operator applies to any library_variable. It shall
evaluate to TRUE if the variable has a value, and to FALSE if it does not.

The instance_comparison_equal entity is the third operator introduced in the
ISO13584_library_expressions_schema. This operator applies to any couple of
generic_expressions. It evaluates to TRUE if both generic_expressions evaluate to the same
simple value or to the same instance value, and to FALSE if they evaluate to two different values.

The ISO13584_library_expressions_schema models:

— the representation for strongly typed variables whose types of value shall belong to one of the
complex_types defined in the ISO13584_IEC61360_dictionary_schema;

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 87

— the representation for strongly typed literals whose types of value shall belong to one of the
complex_types defined in the ISO13584_IEC61360_dictionary_schema;

— the definition of an operator that evaluates to a class instance of which the property values are
specified by means of other expressions;

— the definition of an operator that controls whether a variable has been assigned a value;

— the definition of an operator that controls whether two generic expression evaluate to the same
instance value.

The ISO13584_library_expressions_schema does not model:

— the representation for strongly typed variables or literals whose types of value belong to one of the
simple_types defined in the ISO13584_IEC61360_dictionary_schema;

NOTE The representation of the variables and literals whose types of value shall belong to one of the
simple_types of ISO13584_IEC61360_dictionary_schema is defined in ISO 13584-20: 1998.

— the representation for other types of expressions than the ones defined in the
ISO13584_IEC61360_dictionary_schema to specify the data types of the values that may be
associated with a property;

— the computer-interpretable or human-readable definition of the interpretation function that assigns
values to variables.

7.2 Fundamental concepts and assumptions for the
ISO13584_library_expressions_schema

7.2.1 Information model of a variable

In accordance with ISO 13584-20, a variable may be modelled by a threefold information model:

— a generic_variable representing the syntactical aspect of the variable and enabling to model its
involvement in a generic_expression,

— a variable_semantics capturing the meaning of the variable, i.e., specifying the context within
which the variable shall be used together with the interpretation function that associates a value
with this variable, and

— an environment associating a variable_semantics with a generic_variable.

NOTE 1 generic_variable, variable_semantics and environment are specified in ISO 13584-20.

NOTE 2 When the value of a variable is to be represented explicitly, this value may be modelled using the
resource constructs specified in the ISO13584_instance_resource_schema.

7.2.2 Strong typing of variables and expressions

Strong typing requires that each syntactical object be associated with a data type.

For a variable, this information may be modelled by subtyping generic_variable. ISO 13584-20
defines variable as the subtype of generic_variables that contains all the variables whose data types
are simple_types. The role of the ISO13584_library_expressions_schema is to define other
subtypes of generic_variables that correspond to the complex_types defined in the
ISO13584_IEC61360_dictionary_schema. A library_variable is either a variable as defined by
ISO 13584-20, or any one of the other subtypes defined in the
ISO13584_library_expressions_schema.

ISO 13584-24:2003(E)

88 © ISO 2003 – All rights reserved

NOTE ISO 13584-20 defines the following subtypes of variable: numeric_variable, boolean_variable
and string_variable. It also defines the following subtypes of numeric_variable: int_numeric_variable and
real_numeric_variable.

For an expression, this information may be modelled by subtyping generic_expression.
ISO 13584-20 defines three subtypes of generic_expressions that are numeric_expressions,
boolean_expressions and string_expressions. The role of the
ISO13584_library_expressions_schema is to define other subtypes of generic_expressions that
correspond to the complex_types defined in the ISO13584_IEC61360_dictionary_schema. A
library_expression is either an expression as defined by ISO 13584-20, or any one of the other
subtypes of generic_expressions defined in the ISO13584_library_expressions_schema.

7.3 ISO13584_library_expressions_schema type definitions

This clause provides the type definitions of the ISO13584_library_expressions_schema. These
types specify the expressions and variables that may be associated with a property defined according
to ISO 13584-42.

7.3.1 Library_expression

A library_expression is either an expression as defined in ISO13584_expressions_schema, or an
expression that evaluates to a value belonging to one of the complex types defined in the
ISO13584_IEC61360_dictionary_schema.

NOTE 1 expression is defined in the ISO13584_expressions_schema documented in ISO 13584-20.
The expression entity data type models expressions that evaluate to a value belonging to one of the following
types: number, string and Boolean.

NOTE 2 The complex types defined in the ISO13584_IEC61360_dictionary_schema are level_type,
entity_instance_type, and class_instance_type. The ISO13584_IEC61360_dictionary_schema is defined in
IEC 61360-2, and duplicated for convenience in informative annex D of ISO 13584-42.

NOTE 3 An expression that evaluates to a value belonging to a level_type is modelled by a
level_spec_expression entity. An expression that evaluates to a value belonging to an entity_instance_type is
modelled by an entity_instance_expression entity. An expression that evaluates to a value belonging to a
class_instance_type is modelled by a class_instance_expression entity.

EXPRESS specification:

*)
TYPE library_expression = SELECT(

expression,
level_spec_expression,
entity_instance_expression,
class_instance_expression);

END_TYPE; -- library_expression
(*

7.3.2 Library_variable

A library_variable is either a variable as defined in ISO13584_expressions_schema, or a variable,
that is associated with a value belonging to one of the complex types defined in the
ISO13584_IEC61360_dictionary_schema, i.e., a level_spec_variable, an entity_instance_variable
or a class_instance_variable.

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 89

EXPRESS specification:

*)
TYPE library_variable = SELECT(

variable,
level_spec_variable,
entity_instance_variable,
class_instance_variable);

END_TYPE; -- library_variable
(*

7.4 ISO13584_library_expressions_schema entity definitions

This clause provides the entity definitions of the ISO13584_library_expressions_schema. These
entities define a strongly typed set of expressions for all the complex data types that may appear in an
ISO 13584 conformant dictionary. They specialise the resources defined in the
ISO13584_generic_expressions_schema in order to cover the whole type system defined in the
ISO13584_IEC61360_dictionary_schema.

NOTE Strong typing requires that each syntactical object is associated with a data type.

7.4.1 Level_spec_expression

A level_spec_expression entity is an expression of which the range is defined as an ARRAY of four
optional numbers, that carries the additional meaning that:

— the first value corresponds to the minimum value of some property;

— the second value corresponds to the nominal value of some property;

— the third value corresponds to the typical value of some property;

— the fourth value corresponds to the maximum value of some property.

The four numbers shall be either NUMBERs or their data type shall be redefined through the
value_type attribute.

NOTE No operators are defined in the ISO13584_library_expressions_schema for
level_spec_expression.

EXPRESS specification:

*)
ENTITY level_spec_expression
ABSTRACT SUPERTYPE OF(simple_level_spec_expression)
SUBTYPE OF(generic_expression);

levels: LIST[1:4] OF UNIQUE level;
value_type: number_type;

END_ENTITY; -- level_spec_expression
(*

Attribute definitions:

levels: the list of unique levels that specifies which of the optional values shall exist when the
level_spec_expression is evaluated.

ISO 13584-24:2003(E)

90 © ISO 2003 – All rights reserved

value_type: the type of value for the different values in the level_spec_expression; this shall be
number_type, int_type or real_type.

NOTE The ISO13584_IEC61360_dictionary_schema only references number_type, int_type or
real_type.

7.4.1.1 Simple_level_spec_expression

A simple_level_spec_expression is either a level_spec_variable or a level_spec_literal.

EXPRESS specification:

*)
ENTITY simple_level_spec_expression
ABSTRACT SUPERTYPE OF(ONEOF(

level_spec_variable,
level_spec_literal))

SUBTYPE OF(level_spec_expression, simple_generic_expression);
END_ENTITY; -- simple_level_spec_expression
(*

7.4.1.2 Level_spec_variable

A level_spec_variable is a variable whose value is a level_spec_value. As defined in the
ISO13584_instance_resource_schema, a level_spec_value is an ARRAY of four optional numbers,
that carry the additional meaning that:

— the first value corresponds to the minimum value of some property;

— the second value corresponds to the nominal value of some property;

— the third value corresponds to the typical value of some property;

— the fourth value corresponds to the maximum value of some property.

The four numbers shall be NUMBERs.

EXPRESS specification:

*)
ENTITY level_spec_variable
ABSTRACT SUPERTYPE OF(ONEOF(

int_level_spec_variable,
real_level_spec_variable))

SUBTYPE OF(simple_level_spec_expression, generic_variable);
END_ENTITY; -- level_spec_variable
(*

7.4.1.3 Int_level_spec_variable

An int_level_spec_variable is a level_spec_variable whose values, if present are all INTEGER.

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 91

EXPRESS specification:

*)
ENTITY int_level_spec_variable
SUBTYPE OF(level_spec_variable);
WHERE

WR1: 'ISO13584_IEC61360_DICTIONARY_SCHEMA.INT_TYPE'
IN TYPEOF(SELF\level_spec_expression.value_type);

END_ENTITY; -- int_level_spec_variable
(*

Formal propositions:

WR1: the value_type of the level_spec_expression shall contain int_type.

7.4.1.4 Real_level_spec_variable

A real_level_spec_variable is a level_spec_variable whose optional values are all REAL.

EXPRESS specification:

*)
ENTITY real_level_spec_variable
SUBTYPE OF(level_spec_variable);
WHERE

WR1: 'ISO13584_IEC61360_DICTIONARY_SCHEMA.REAL_TYPE'
IN TYPEOF(SELF\level_spec_expression.value_type);

END_ENTITY; -- real_level_spec_variable
(*

Formal propositions:

WR1: the value_type of the level_spec_expression shall contain real_type.

7.4.1.5 Level_spec_literal

A level_spec_literal is a literal whose value is a level_spec_value as defined in the
ISO13584_instance_resource_schema. It is an abstract supertype of int_level_spec_literal and
real_level_spec_literal.

EXPRESS specification:

*)
ENTITY level_spec_literal
ABSTRACT SUPERTYPE OF(ONEOF(

int_level_spec_literal,
real_level_spec_literal))

SUBTYPE OF(simple_level_spec_expression, generic_literal);
the_value: level_spec_value;

WHERE
WR1: compatible_level_type_and_instance(

SELF\level_spec_expression.levels,

ISO 13584-24:2003(E)

92 © ISO 2003 – All rights reserved

TYPEOF(SELF\level_spec_expression.value_type),
SELF.the_value);

END_ENTITY; -- level_spec_literal
(*

Attribute definitions:

the_value: the level_spec_value that defines the value of the literal.

Formal propositions:

WR1: the level_spec_value shall be compatible with the type defined in the level_spec_expression.

7.4.1.6 Int_level_spec_literal

An int_level_spec_literal is a literal whose value is an int_level_spec_value as defined in the
ISO13584_instance_resource_schema.

EXPRESS specification:

*)
ENTITY int_level_spec_literal
SUBTYPE OF(level_spec_literal);

SELF\level_spec_literal.the_value: int_level_spec_value;
WHERE

WR1: 'ISO13584_IEC61360_DICTIONARY_SCHEMA.INT_TYPE'
IN TYPEOF(SELF\level_spec_expression.value_type);

WR2: compatible_level_type_and_instance(
SELF\level_spec_expression.levels,
['ISO13584_IEC61360_DICTIONARY_SCHEMA.INT_TYPE'],
SELF.the_value);

END_ENTITY; -- int_level_spec_literal
(*

Formal propositions:

WR1: the value_type of the level_spec_expression shall contain int_type.

WR2: the existing values shall all be INTEGERs.

7.4.1.7 Real_level_spec_literal

A real_level_spec_literal is a literal whose value is an real_level_spec_value as defined in the
ISO13584_instance_resource_schema.

EXPRESS specification:

*)
ENTITY real_level_spec_literal
SUBTYPE OF(level_spec_literal);

SELF\level_spec_literal.the_value: real_level_spec_value;

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 93

WHERE
WR1: 'ISO13584_IEC61360_DICTIONARY_SCHEMA.REAL_TYPE'

IN TYPEOF(SELF\level_spec_expression.value_type);
WR2: compatible_level_type_and_instance(

SELF\level_spec_expression.levels,
['ISO13584_IEC61360_DICTIONARY_SCHEMA.REAL_TYPE'],
SELF.the_value);

END_ENTITY; -- real_level_spec_literal
(*

Formal propositions:

WR1: the value_type of the level_spec_expression shall contain real_type.

WR2: the existing values shall all be REALs.

7.4.2 Entity_instance_expression

An entity_instance_expression is an expression whose value is some EXPRESS ENTITY data type.
Each entity_instance_expression has a type_name attribute that specifies, as a set of STRINGs,
the type of the entity_instance_expression. This set of STRINGs shall be contained in the result of
the EXPRESS TYPEOF function applied to any value to which the entity_instance_expression
evaluates, in order for this value to be compatible with the type of the expression.

NOTE 1 No operators are defined in the ISO13584_library_expressions_schema for
entity_instance_expression.

NOTE 2 If an EXPRESS ENTITY data type is compatible with the type of an entity_instance_expression,
all the subtypes of this EXPRESS ENTITY data type are compatible with the type of this
entity_instance_expression. Thus entity_instance_expression supports inheritance.

NOTE 3 View exchange protocols specify which entity_instance_types (and subtypes) and
entity_instance_values are permitted.

EXPRESS specification:

*)
ENTITY entity_instance_expression
ABSTRACT SUPERTYPE OF(simple_entity_instance_expression)
SUBTYPE OF(generic_expression);

type_name: SET [1:?] OF STRING;
END_ENTITY; -- entity_instance_expression
(*

Attribute definitions:

type_name: the set of STRINGs that specifies the type of the entity_instance_expression.

Informal propositions:

IP1: the type_name attribute of an entity_instance_expression shall be contained in the result of the
EXPRESS TYPEOF applied to any entity_instance_value to which the entity_instance_expression
evaluates.

ISO 13584-24:2003(E)

94 © ISO 2003 – All rights reserved

7.4.2.1 Simple_entity_instance_expression

A simple_entity_instance_expression is either an entity_instance_variable or an
entity_instance_literal.

EXPRESS specification:

*)
ENTITY simple_entity_instance_expression
ABSTRACT SUPERTYPE OF(ONEOF(

entity_instance_variable,
entity_instance_literal))

SUBTYPE OF(entity_instance_expression, simple_generic_expression);
END_ENTITY; -- simple_entity_instance_expression
(*

7.4.2.2 Entity_instance_variable

An entity_instance_variable is a variable whose value is an entity_instance_value. As defined in
the ISO13584_instance_resource_schema, an entity_instance_value is a value that is represented
by an instance of some EXPRESS ENTITY data type. The type of the entity instance data type is
defined by the inherited type_name attribute that is intended to be contained in the result of the
EXPRESS TYPEOF function applied to any value of this variable, in order for this value to be
compatible with the type of the variable.

NOTE The value of an entity_instance_variable may belong to any subtype of the type defined by the
type_name inherited attribute. Thus, the entity_instance_variables support polymorphism.

EXPRESS specification:

*)
ENTITY entity_instance_variable
SUBTYPE OF(simple_entity_instance_expression, generic_variable);
END_ENTITY; -- entity_instance_variable
(*

7.4.2.3 Entity_instance_literal

An entity_instance_literal is a literal whose value is an entity_instance_value as defined in the
ISO13584_instance_resource_schema.

EXPRESS specification:

*)
ENTITY entity_instance_literal
SUBTYPE OF(simple_entity_instance_expression, generic_literal);

the_value: entity_instance_value;
WHERE

WR1: (SELF\entity_instance_expression.type_name
<= TYPEOF(SELF.the_value))
OR (('ISO13584_INSTANCE_RESOURCE_SCHEMA'
+ '.UNCONTROLLED_ENTITY_INSTANCE_VALUE')
IN TYPEOF(SELF.the_value));

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 95

END_ENTITY; -- entity_instance_literal
(*

Formal propositions:

WR1: the value of the entity_instance_literal shall be compatible with its data type as defined by the
type_name attribute, or this value shall be an uncontrolled_entity_instance_value, as defined by
the ISO13584_instance_resource_schema.

7.4.3 Class_instance_expression

A class_instance_expression is an expression for which the range is defined by some class as
defined in the ISO13584_IEC61360_dictionary_schema. Each class_instance_expression has a
expr_type attribute that specifies, as a class_BSU, the type of the class_instance_expression. Any
value to which the class_instance_expression evaluates shall be an instance of this class or any of
its version-compatible subclasses, in order for this value to be compatible with the type of the
expression. Thus a class_instance_expression supports polymorphism.

NOTE 1 The only operator defined in the ISO13584_library_expressions_schema for
class_instance_expression is the class_instance_constructor. This operator enables to specify how an
instance of a class defined according to the ISO13584_IEC61360_dictionary_schema may be generated from
other expressions. This operator is further decomposed according to its arity.

NOTE 2 A subclass of a class (cl1) whose dictionary element complies with the
ISO13584_IEC61360_dictionary_schema is version-compatible with this class cl1 if it is one of its subclass, or
if it is a subclass of a class cl2 such that:

— cl2 is defined by the same supplier as cl1, and

— cl2 has the same code as cl1, and

— cl2 has a version smaller or equal to the version of cl1.

This compatibility requirement is documented in the compatible_class_and_class function of the
ISO13584_instance_resource_schema.

NOTE 3 Note that a class_instance_expression supports a double inheritance mechanism:

— the value of the class_instance_expression may be any EXPRESS subtype of
dic_class_instance as defined in clause 6;

— the class of this value may be any version-compatible subclass of the class defined by the
expr_type attribute.

EXPRESS specification:

*)
ENTITY class_instance_expression
ABSTRACT SUPERTYPE OF(ONEOF(

simple_class_instance_expression,
unary_class_instance_expression,
binary_class_instance_expression,
multiple_arity_class_instance_expression))

SUBTYPE OF(generic_expression);
expr_type: class_BSU;

ISO 13584-24:2003(E)

96 © ISO 2003 – All rights reserved

END_ENTITY; -- class_instance_expression
(*

Attribute definitions:

expr_type: the class_BSU of which associated class specifies the type of the
class_instance_expression.

Informal propositions:

IP1: the value to which the class_instance_expression evaluates shall be an instance of the class
defined by the expr_type attribute or any of its version-compatible subclasses.

NOTE 4 The evaluation function of a class_instance_expression, or any generic_expression, is
outside the scope of this part of ISO 13584.

7.4.3.1 Simple_class_instance_expression

A simple_class_instance_expression is either a class_instance_variable or a
class_instance_literal.

EXPRESS specification:

*)
ENTITY simple_class_instance_expression
ABSTRACT SUPERTYPE OF(ONEOF(

class_instance_variable,
class_instance_literal))

SUBTYPE OF(class_instance_expression, simple_generic_expression);
END_ENTITY; -- simple_class_instance_expression
(*

7.4.3.2 Class_instance_variable

A class_instance_variable is a variable whose value is a dic_class_instance. As defined in the
ISO13584_instance_resource_schema, a dic_class_instance is an instance of some class as
defined in the ISO13584_IEC61360_dictionary_schema.

NOTE 1 Each class_instance_variable has an inherited expr_type attribute, that specifies, through its
class_BSU, the class of which the value shall be an instance.

NOTE 2 The instance that corresponds to the value of a class_instance_variable may belong to any
version-compatible subclass of the class specified by its expr_type attribute. Thus the
class_instance_variables support polymorphism.

EXPRESS specification:

*)
ENTITY class_instance_variable
SUBTYPE OF(simple_class_instance_expression, generic_variable);
END_ENTITY; -- class_instance_variable
(*

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 97

Informal propositions:

IP1: the value of the class_instance_variable shall be compatible with the domain defined by its
inherited expr_type attribute.

7.4.3.3 Class_instance_literal

A class_instance_literal is a literal whose value is a dic_class_instance or one of its subtypes as
defined in the ISO13584_instance_resource_schema.

EXPRESS specification:

*)
ENTITY class_instance_literal
SUBTYPE OF(simple_class_instance_expression, generic_literal);

the_value: dic_class_instance;
WHERE

WR1: compatible_class_and_class(
SELF\class_instance_expression.expr_type,
SELF.the_value\dic_class_instance.class_def);

END_ENTITY; -- class_instance_literal
(*

Attribute definitions:

the_value: the dic_class_instance that defines the value of the literal.

Formal propositions:

WR1: the dic_class_instance that is the value of the literal shall be an instance of the class defined
by the inherited expr_type or any of its version-compatible subclasses.

7.4.3.4 Class_instance_constructor

A class_instance_constructor is a class_instance_expression that specifies an instance of a class
by defining:

— through its expr_type inherited attribute, the class the instance belongs to, and

— the values of some instance properties through library_expressions that specify their values.

Following the approach defined in the ISO13584_generic_expressions_schema, a
class_instance_constructor is further decomposed according to its arity, i.e., the number of
expressions used to specify the values of some instance properties. A class_instance_constructor
is either an unary_class_instance_constructor or a binary_class_instance_constructor or a
multiple_arity_class_instance_constructor.

NOTE 1 The set of the properties that are represented in a class_instance_constructor entity shall be
applicable properties for the class referenced by the expr_type attribute.

NOTE 2 A class_instance_constructor does not specify which applicable properties shall be assigned a
value. When this resource construct is used, a class_instance_constructor may be further constrained.

EXAMPLE In the ISO13584_library_content_schema, a class_instance_constructor is used to specify
how the components that constitute a structured part may be derived from the identification of the structured

ISO 13584-24:2003(E)

98 © ISO 2003 – All rights reserved

part. A WHERE RULE ensures that the components belongs to an item_class and that all the identification
characteristics of the class are referenced in the properties set.

NOTE 3 A class_instance_constructor is similar to the entity instance constructor defined in the
EXPRESS language.

EXPRESS specification:

*)
ENTITY class_instance_constructor
ABSTRACT SUPERTYPE OF(ONEOF(

unary_class_instance_constructor,
binary_class_instance_constructor,
multiple_arity_class_instance_constructor))

SUBTYPE OF(class_instance_expression);
properties: SET [1:?] OF property_assignment;

WHERE
WR1: definition_available_implies

(SELF\class_instance_expression.expr_type,
applicable_properties(
SELF\class_instance_expression.expr_type,
list_to_set(collects_assigned_properties(SELF.properties))));

END_ENTITY; -- class_instance_constructor
(*

Attribute definitions:

properties: the set of property_assignments that define the values for the properties of the class
instance.

Formal propositions:

WR1: if data are available, then IP1 holds;

Informal propositions:

IP1: the set of properties that are represented in a class_instance_constructor entity shall be
applicable properties for the class referenced by the expr_type attribute.

7.4.3.5 Property_assignment

A property_assignment is the assignment of the value of an optional library_expression to a
property of a class instance specified by a class_instance_constructor. A property_assignment
also enables a property to specify that it has no value by referencing this property in a
property_assignment where the its_value attribute does not exist.

NOTE If a property is defined in some application context as optional, assigning no value to this property
means that it does not exist.

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 99

EXPRESS specification:

*)
ENTITY property_assignment;

its_value: OPTIONAL library_expression;
prop_def: property_BSU;

WHERE
WR1: (EXISTS(SELF.its_value) AND

(compatible_type_and_library_expression(
SELF.prop_def, SELF.its_value)))
OR NOT EXISTS(SELF.its_value);

END_ENTITY; -- property_assignment
(*

Attribute definitions:

its_value: the library_expression value assigned to the prop_def property.

prop_def: the property that describes the instance property to which the its_value refers.

Formal propositions:

WR1: the type of the value assigned to the property shall be compatible with the type of the property.

7.4.3.6 Unary_class_instance_expression

A unary_class_instance_expression is a unary operator of which range is a class instance. Its only
subtype is the unary_class_instance_constructor.

EXPRESS specification:

*)
ENTITY unary_class_instance_expression
ABSTRACT SUPERTYPE OF(unary_class_instance_constructor)
SUBTYPE OF(class_instance_expression, unary_generic_expression);
END_ENTITY; -- unary_class_instance_expression
(*

7.4.3.7 Binary_class_instance_expression

A binary_class_instance_expression is a binary operator of which range is a class instance. Its only
subtype is the binary_class_instance_constructor.

EXPRESS specification:

*)
ENTITY binary_class_instance_expression
ABSTRACT SUPERTYPE OF(binary_class_instance_constructor)
SUBTYPE OF(class_instance_expression, binary_generic_expression);
END_ENTITY; -- binary_class_instance_expression
(*

ISO 13584-24:2003(E)

100 © ISO 2003 – All rights reserved

7.4.3.8 Multiple_arity_class_instance_expression

A multiple_arity_class_instance_expression is a multiple-arity operator of which range is a class
instance. Its only subtype is the multiple_arity_class_instance_constructor.

EXPRESS specification:

*)
ENTITY multiple_arity_class_instance_expression
ABSTRACT SUPERTYPE OF(multiple_arity_class_instance_constructor)
SUBTYPE OF(class_instance_expression,

multiple_arity_generic_expression);
END_ENTITY; -- multiple_arity_class_instance_expression
(*

7.4.3.9 Unary_class_instance_constructor

A unary_class_instance_constructor is a class_instance_constructor of which only one property
is assigned a value through a library_expression.

EXPRESS specification:

*)
ENTITY unary_class_instance_constructor
SUBTYPE OF(class_instance_constructor,

unary_class_instance_expression);
SELF\class_instance_constructor.properties:

SET [1:1] OF property_assignment;
DERIVE

SELF\unary_generic_expression.operand: library_expression
:= collects_referenced_library_expressions(
SELF.properties)[1];

END_ENTITY; -- unary_class_instance_constructor
(*

Attribute definitions:

properties: the property_assignment that defines the value for the property of the class instance.

SELF\unary_generic_expression.operand: the library_expression that is the operand of the
unary_generic_expression.

7.4.3.10 Binary_class_instance_constructor

A binary_class_instance_constructor is a class_instance_constructor of which two properties are
assigned a value through a library_expression. It is a subtype of binary_generic_expression.

EXPRESS specification:

*)
ENTITY binary_class_instance_constructor
SUBTYPE OF(class_instance_constructor,

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 101

binary_class_instance_expression);
SELF\class_instance_constructor.properties:

SET [2:2] OF property_assignment;
DERIVE

SELF\binary_generic_expression.operands:
LIST [2:2] OF library_expression
:= collects_referenced_library_expressions(SELF.properties);

WHERE
WR1: SIZEOF(list_to_set(collects_assigned_properties(

SELF.properties)))
= SIZEOF(collects_assigned_properties(SELF.properties));

END_ENTITY; -- binary_class_instance_constructor
(*

Attribute definitions:

properties: the list of two property_assignments that define the values for the properties of the class
instance.

SELF\binary_generic_expression.operands: the two library_expressions that are the operands of
the binary_generic_expression.

Formal propositions:

WR1: a property may be referenced only once in a class_instance_constructor.

7.4.3.11 Multiple_arity_class_instance_constructor

A multiple_arity_class_instance_constructor is a class_instance_constructor of which two or
more properties are assigned values through library_expressions. It is a subtype of
multiple_arity_generic_expression.

EXPRESS specification:

*)
ENTITY multiple_arity_class_instance_constructor
SUBTYPE OF(class_instance_constructor,

multiple_arity_class_instance_expression);
SELF\class_instance_constructor.properties:

SET [2:?] OF property_assignment;
DERIVE

SELF\multiple_arity_generic_expression.operands:
LIST [2:?] OF library_expression
:= collects_referenced_library_expressions(SELF.properties);

WHERE
WR1: SIZEOF(list_to_set(collects_assigned_properties(

SELF.properties)))
= SIZEOF(collects_assigned_properties(SELF.properties));

END_ENTITY; -- multiple_arity_class_instance_constructor
(*

ISO 13584-24:2003(E)

102 © ISO 2003 – All rights reserved

Attribute definitions:

properties: the list of property_assignments that define the values for the properties of the class
instance.

SELF\multiple_arity_generic_expression.operands: the library_expressions that are the
operands of the multiple_arity_generic_expression.

Formal propositions:

WR1: a property may be referenced only once in a class_instance_constructor.

7.4.4 Exists_value

An exists_value entity is an operator that applies to any library_variable and of which range is
BOOLEAN. It shall evaluate to TRUE if the variable has a value, and to FALSE if it does not have
value.

NOTE If a property is defined in some application context as optional, assigning no value to the variable
that substitutes for the value of this property means that this property does not exist.

EXPRESS specification:

*)
ENTITY exists_value
SUBTYPE OF(unary_generic_expression, boolean_defined_function);

for_variable: library_variable;
DERIVE

SELF\unary_generic_expression.operand: generic_expression
:= SELF.for_variable;

END_ENTITY; -- exists_value
(*

Attribute definitions:

for_variable: the library_variable for which the value existence is checked.

Informal propositions:

IP1: the exists_value operator shall evaluate to TRUE if the for_variable variable has a value, and to
FALSE if it does not.

7.4.5 Instance_comparison_equal

An instance_comparison_equal entity carries the semantics of the value instance equal (':=:')
operator defined in ISO 10303-11 restricted to operands that shall have a value.

NOTE 1 When applied to numeric, Boolean and string data types, the instance_comparison_equal is
equivalent to value comparison, i.e., to the comparison_equal entity.

NOTE 2 The comparison_equal entity is defined in ISO 13584-20.

NOTE 3 When applied to instances whose data types are complex_types, instance_comparison_equal
evaluates to TRUE when both operands evaluate to the same instance entity, i.e., if the implementation

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 103

dependent identifiers are the same. It evaluates to FALSE if both operands evaluate to two different entity
instances.

NOTE 4 The complex_type entity is defined in ISO 13584-42. complex_type is a supertype of level_type,
class_instance_type and entity_instance_type.

EXPRESS specification:

*)
ENTITY instance_comparison_equal
SUBTYPE OF(binary_generic_expression, boolean_defined_function);
WHERE

WR1: ('ISO13584_LIBRARY_EXPRESSIONS_SCHEMA.LIBRARY_EXPRESSION' IN
TYPEOF (SELF\binary_generic_expression.operands[1]))
AND ('ISO13584_LIBRARY_EXPRESSIONS_SCHEMA.LIBRARY_EXPRESSION'
IN TYPEOF(SELF\binary_generic_expression.operands[2]));

END_ENTITY; -- instance_comparison_equal
(*

Formal proposition:

WR1: the operands generic_expressions shall be library_expressions.

Informal proposition:

IP1: the instance_comparison_equal operator shall evaluate to TRUE if
SELF\binary_generic_expression.operand[1] and SELF\binary_generic_expression.operand[2]
evaluate to the same simple value or to the same instance value, and to FALSE if they evaluate to two
different values.

7.5 ISO13584_library_expressions_schema rule definition

ISO 13584-20: 1998 enables a variable_semantics to be bounded with several generic_variables. In
an ISO 13584 conformant exchange context, only one generic_variable may represent a
variable_semantics. This is documented in the two_fold_variable_representation_rule.

7.5.1 Two_fold_variable_representation_rule rule

The two_fold_variable_representation_rule rule ensures that, in an ISO 13584 conformant
exchange context, each variable_semantics is associated with no more than one generic_variable.

EXPRESS specification:

*)
RULE two_fold_variable_representation_rule FOR(variable_semantics);
WHERE

WR1: QUERY(vs <* variable_semantics
| SIZEOF(syntax_of(vs)) > 1) = [];

END_RULE; -- two_fold_variable_representation_rule
(*

ISO 13584-24:2003(E)

104 © ISO 2003 – All rights reserved

Formal propositions:

WR1: a variable_semantics may only be represented by one library_variable.

1. ISO13584_library_expressions_schema function definitions

This clause defines the functions of the ISO13584_library_expressions_schema. The first two
functions are not used within the ISO13584_library_expressions_schema. They are intended to
facilitate the use of the twofold representation of variables that is used throughout this part of
ISO 13584.

7.5.2 Syntax_of function

The syntax_of function computes the generic_variables that are associated with a
variable_semantics through an environment.

NOTE Due to the two_fold_variable_representation_rule rule (see the RULE clause of this schema), in
the ISO13584_library_expressions_schema, a variable_semantics may be associated with no more than one
generic_variable.

EXPRESS specification:

*)
FUNCTION syntax_of(sem: variable_semantics): SET OF generic_variable;

LOCAL
env: BAG OF environment;
vars: SET OF generic_variable;

END_LOCAL;

env := USEDIN(sem,
'ISO13584_GENERIC_EXPRESSIONS_SCHEMA.ENVIRONMENT.SEMANTICS');

vars := [];

REPEAT i := LOINDEX(env) TO HIINDEX(env);
vars := vars + env[i].syntactic_representation;

END_REPEAT;

RETURN(vars);

END_FUNCTION; -- syntax_of
(*

7.5.3 Semantics_of function

The semantics_of function computes the variable_semantics that is associated with a
generic_variable through an environment.

EXPRESS specification:

*)
FUNCTION semantics_of(vars: generic_variable): variable_semantics;

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 105

RETURN(vars.interpretation.semantics);

END_FUNCTION; -- semantics_of
(*

7.5.4 Collects_assigned_properties function

The collects_assigned_properties function computes the properties that appears in the prop_def
attribute of a property_assignment belonging to the p_a aggregate of property_assignment.

NOTE the value associated with such a property may be indeterminate

EXPRESS specification:

*)
FUNCTION collects_assigned_properties(

p_a: AGGREGATE OF property_assignment): LIST OF property_BSU;

LOCAL
assign_prop: LIST OF property_BSU;
-- assigned properties of the
-- multiple_arity_class_instance_constructor

END_LOCAL;

assign_prop := [];

REPEAT i := 1 TO SIZEOF(p_a);
assign_prop := assign_prop + p_a[i].prop_def;

END_REPEAT;

RETURN(assign_prop);

END_FUNCTION; -- collects_assigned_properties
(*

7.5.5 Collects_referenced_library_expressions function

The function collects_referenced_library_expressions computes the library_expressions that are
used in an aggregate of property_assignment to specify the values of some instance properties. The
number of these library_expressions is used to define the arity of a class_instance_constructor
operator.

EXPRESS specification:

*)
FUNCTION collects_referenced_library_expressions(

p_a: AGGREGATE OF property_assignment)
: LIST [1:?] OF library_expression;

LOCAL
assign_exp: LIST [0:?] OF library_expression := [];

END_LOCAL;

ISO 13584-24:2003(E)

106 © ISO 2003 – All rights reserved

REPEAT i := 1 TO SIZEOF(p_a);
IF EXISTS(p_a[i].its_value)
THEN

assign_exp := assign_exp + p_a[i].its_value;
END_IF;

END_REPEAT;

RETURN(assign_exp);

END_FUNCTION; -- collects_referenced_library_expressions
(*

7.5.6 Compatible_simple_type_and_expression function

The function compatible_simple_type_and_expression checks if the result of an expression (expr)
is type compatible with the domain (dom) defined by a property_or_data_type_BSU. It returns a
LOGICAL that is TRUE when they are compatible and FALSE when they are not. This function returns
UNKNOWN when the required basic_semantic_unit definition is not available.

EXPRESS specification:

*)

FUNCTION compatible_simple_type_and_expression(
dom: property_or_data_type_BSU; expr: expression): LOGICAL;

IF (data_type_typeof(dom) = [])
THEN

RETURN(UNKNOWN);
END_IF;

IF (('ISO13584_EXPRESSIONS_SCHEMA.NUMERIC_EXPRESSION' IN TYPEOF(expr))
AND is_int_expr(expr))

THEN
IF (('ISO13584_IEC61360_DICTIONARY_SCHEMA.INT_TYPE' IN

data_type_typeof(dom)) OR
(('ISO13584_IEC61360_DICTIONARY_SCHEMA.NUMBER_TYPE' IN
data_type_typeof(dom))
AND NOT('ISO13584_IEC61360_DICTIONARY_SCHEMA.REAL_TYPE' IN
data_type_typeof(dom))))

THEN
RETURN(TRUE);

ELSE
RETURN(FALSE);

END_IF;
END_IF;

IF ('ISO13584_EXPRESSIONS_SCHEMA.NUMERIC_EXPRESSION' IN TYPEOF(expr))
AND NOT is_int_expr(expr)

THEN
IF (('ISO13584_IEC61360_DICTIONARY_SCHEMA.REAL_TYPE' IN

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 107

data_type_typeof(dom)) OR
(('ISO13584_IEC61360_DICTIONARY_SCHEMA.NUMBER_TYPE' IN
data_type_typeof(dom))
AND NOT('ISO13584_IEC61360_DICTIONARY_SCHEMA.INT_TYPE' IN
data_type_typeof(dom))))

THEN
RETURN(TRUE);

ELSE
RETURN(FALSE);

END_IF;
END_IF;

IF ('ISO13584_EXPRESSIONS_SCHEMA.BOOLEAN_EXPRESSION' IN TYPEOF(expr))
THEN

IF ('ISO13584_IEC61360_DICTIONARY_SCHEMA.BOOLEAN_TYPE' IN
data_type_typeof(dom))

THEN
RETURN(TRUE);

ELSE
RETURN(FALSE);

END_IF;
END_IF;

IF ('ISO13584_EXPRESSIONS_SCHEMA.STRING_EXPRESSION' IN TYPEOF(expr))
THEN

IF ('ISO13584_IEC61360_DICTIONARY_SCHEMA.STRING_TYPE' IN
data_type_typeof(dom))

THEN
RETURN(TRUE);

ELSE
RETURN(FALSE);

END_IF;
END_IF; -- all simple types have been considered

END_FUNCTION; -- compatible_simple_type_and_expression
(*

7.5.7 Compatible_type_and_library_expression function

The function compatible_type_and_library_expression checks if the result of a library_expression
(expr) is type compatible with the domain (dom) defined by a property_or_data_type_BSU. It returns
a LOGICAL that is TRUE when they are compatible and FALSE when they are not. This function
returns UNKNOWN when the required basic_semantic_unit definitions are not present.

EXPRESS specification:

*)
FUNCTION compatible_type_and_library_expression(

dom: property_or_data_type_BSU;
expr: library_expression): LOGICAL;

LOCAL

ISO 13584-24:2003(E)

108 © ISO 2003 – All rights reserved

temp: SET[0:1] OF class_BSU;
END_LOCAL;

IF (data_type_typeof(dom) = [])
THEN (* the final domain of the type is not available *)

RETURN(UNKNOWN);
END_IF;

(* The following EXPRESS statements deal with level_spec_expression *)
IF ('ISO13584_LIBRARY_EXPRESSIONS_SCHEMA.LEVEL_SPEC_EXPRESSION'

IN TYPEOF(expr))
THEN

IF ('ISO13584_IEC61360_DICTIONARY_SCHEMA.LEVEL_TYPE'
IN data_type_typeof(dom))
AND (list_to_set(data_type_level_spec(dom))
= list_to_set(expr\level_spec_expression.levels))
AND (TYPEOF(expr\level_spec_expression.value_type)
<= data_type_level_value_typeof(dom))

THEN
RETURN(TRUE);

ELSE
RETURN(FALSE);

END_IF;
END_IF;

(* The following EXPRESS statements deal with
entity_instance_expression *)

IF ('ISO13584_LIBRARY_EXPRESSIONS_SCHEMA.ENTITY_INSTANCE_EXPRESSION'
IN TYPEOF(expr))

THEN
IF ('ISO13584_IEC61360_DICTIONARY_SCHEMA.ENTITY_INSTANCE_TYPE'

IN data_type_typeof(dom))
AND (data_type_type_name(dom)
<= expr\entity_instance_expression.type_name)

THEN
RETURN(TRUE);

ELSE
RETURN(FALSE);

END_IF;
END_IF;

(* The following EXPRESS statements deal with
class_instance_expression *)

IF ('ISO13584_LIBRARY_EXPRESSIONS_SCHEMA.CLASS_INSTANCE_EXPRESSION'
IN TYPEOF(expr))

THEN
IF ('ISO13584_IEC61360_DICTIONARY_SCHEMA.CLASS_INSTANCE_TYPE'

IN data_type_typeof(dom)) AND
(SIZEOF(data_type_class_of(dom)) = 1)

THEN
temp := data_type_class_of(dom);

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 109

RETURN(compatible_class_and_class(
temp[1], expr\class_instance_expression.expr_type));

ELSE
RETURN(FALSE);

END_IF;
END_IF;

(* simple types *)
RETURN(compatible_simple_type_and_expression(dom, expr));

END_FUNCTION; -- compatible_type_and_library_expression
(*

7.5.8 Compatible_variable_and_expression function

The function compatible_variable_and_expression checks if the result of an expression (expr) is
assignment compatible with a variable (va). It returns a LOGICAL that is TRUE when they are
compatible and FALSE when they are not.

EXPRESS specification:

*)
FUNCTION compatible_variable_and_expression(va: generic_variable;

expr: expression): LOGICAL;

IF ('ISO13584_EXPRESSIONS_SCHEMA.NUMERIC_EXPRESSION' IN TYPEOF(expr))
AND is_int_expr(expr)

THEN
IF ('ISO13584_EXPRESSIONS_SCHEMA.INT_NUMERIC_VARIABLE'

IN TYPEOF(va))
THEN

RETURN(TRUE);
ELSE

RETURN(FALSE);
END_IF;

END_IF;

IF ('ISO13584_EXPRESSIONS_SCHEMA.NUMERIC_EXPRESSION' IN TYPEOF(expr))

THEN
IF ('ISO13584_EXPRESSIONS_SCHEMA.REAL_NUMERIC_VARIABLE'

IN TYPEOF(va))
THEN

RETURN(TRUE);
ELSE

RETURN(FALSE);
END_IF;

END_IF;

IF ('ISO13584_EXPRESSIONS_SCHEMA.BOOLEAN_EXPRESSION' IN TYPEOF(expr))
THEN

IF('ISO13584_EXPRESSIONS_SCHEMA.BOOLEAN_VARIABLE' IN TYPEOF(va))

ISO 13584-24:2003(E)

110 © ISO 2003 – All rights reserved

THEN
RETURN(TRUE);

ELSE
RETURN(FALSE);

END_IF;
END_IF;

IF ('ISO13584_EXPRESSIONS_SCHEMA.STRING_EXPRESSION'
IN TYPEOF(expr))

THEN
IF ('ISO13584_EXPRESSIONS_SCHEMA.STRING_VARIABLE' IN TYPEOF(va))
THEN

RETURN(TRUE);
ELSE

RETURN(FALSE);
END_IF;

END_IF;

-- all simple types have been considered
RETURN(UNKNOWN);

END_FUNCTION; -- compatible_variable_and_expression
(*

7.5.9 Compatible_variable_and_library_expression function

The function compatible_variable_and_library_expression checks if the result of a
library_expression (expr) is assignment compatible with a library_variable (va). It returns a
LOGICAL that is TRUE when they are compatible and FALSE when they are not. This function returns
UNKNOWN when the required basic_semantic_unit definitions are not present.

EXPRESS specification:

*)
FUNCTION compatible_variable_and_library_expression(

va: library_variable; expr: library_expression): LOGICAL;

(* The following express statements deal with level_spec_expression *)
IF ('ISO13584_LIBRARY_EXPRESSIONS_SCHEMA.LEVEL_SPEC_EXPRESSION'

IN TYPEOF(expr))
THEN

IF (('ISO13584_LIBRARY_EXPRESSIONS_SCHEMA.LEVEL_SPEC_VARIABLE'
IN TYPEOF(va))
AND ((list_to_set(va\level_spec_expression.levels))
= list_to_set(expr\level_spec_expression.levels))
AND (TYPEOF(va\level_spec_expression.value_type)
<= TYPEOF(expr\level_spec_expression.value_type)))

THEN
RETURN(TRUE);

ELSE
RETURN(FALSE);

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 111

END_IF;
END_IF;

(*The following express statements deals with
entity_instance_expression *)

IF ('ISO13584_LIBRARY_EXPRESSIONS_SCHEMA.ENTITY_INSTANCE_EXPRESSION'
IN TYPEOF(expr))

THEN
IF ('ISO13584_LIBRARY_EXPRESSIONS_SCHEMA.ENTITY_INSTANCE_VARIABLE'

IN TYPEOF(va))
AND (va\entity_instance_expression.type_name
<= expr\entity_instance_expression.type_name)

THEN
RETURN(TRUE);

ELSE
RETURN(FALSE);

END_IF;
END_IF;

(* The following express statements deals with
class_instance_expression *)

IF ('ISO13584_LIBRARY_EXPRESSIONS_SCHEMA.CLASS_INSTANCE_EXPRESSION'
IN TYPEOF(expr))

THEN
IF ('ISO13584_LIBRARY_EXPRESSIONS_SCHEMA.CLASS_INSTANCE_VARIABLE'

IN TYPEOF(va))
THEN

RETURN(compatible_class_and_class(
va\class_instance_expression.expr_type,
expr\class_instance_expression.expr_type));

ELSE
RETURN(FALSE);

END_IF;
END_IF;

(* simple types *)
RETURN(compatible_variable_and_expression(va, expr));

END_FUNCTION; -- compatible_variable_and_library_expression
(*

*)
END_SCHEMA; -- ISO13584_library_expressions_schema
(*

8 ISO13584_table_resource_schema

This clause defines the requirements for the ISO13584_table_resource_schema. The following
EXPRESS declaration introduces the ISO13584_library_content_schema block and identifies the
necessary external references.

ISO 13584-24:2003(E)

112 © ISO 2003 – All rights reserved

EXPRESS specification:

*)
SCHEMA ISO13584_table_resource_schema;

REFERENCE FROM ISO13584_IEC61360_dictionary_schema
(class_BSU,
date_type,
level,
list_to_set,
revision_len,
revision_type,
value_format_len,
value_format_type);

REFERENCE FROM ISO13584_generic_expressions_schema
(binary_generic_expression,
generic_expression,
generic_literal,
generic_variable,
multiple_arity_generic_expression,
simple_generic_expression,
unary_generic_expression,
used_variables,
variable_semantics);

REFERENCE FROM ISO13584_expressions_schema
(boolean_defined_function,
expression,
is_sql_mappable,
SQL_mappable_defined_function,
variable);

REFERENCE FROM ISO13584_instance_resource_schema
(boolean_value,
compatible_class_and_class,
complex_value,
dic_class_instance,
entity_instance_value,
int_level_spec_value,
integer_value,
level_spec_value,
null_or_boolean_value,
null_or_complex_value,
null_or_dic_class_instance,
null_or_entity_instance_value,
null_or_int_level_spec_value,
null_or_integer_value,
null_or_level_spec_value,
null_or_number_value,
null_or_primitive_value,

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 113

null_or_real_level_spec_value,
null_or_real_value,
null_or_simple_value,
null_or_translatable_string_value,
number_value,
primitive_value,
real_level_spec_value,
real_value,
right_values_for_level_spec,
same_translations,
simple_value,
string_value,
translatable_string_value,
translated_string_value);

REFERENCE FROM ISO13584_library_expressions_schema
(class_instance_expression,
compatible_variable_and_expression,
entity_instance_expression,
entity_instance_variable,
level_spec_expression,
level_spec_variable,
semantics_of,
syntax_of);

(*

NOTE The schemas referenced above can be found in the following documents:
ISO13584_IEC61360_dictionary_schema IEC 61360-2

(which is duplicated for convenience in informative annex D of ISO 13584-42),
ISO13584_generic_expressions_schema ISO 13584-20,
ISO13584_expressions_schema ISO 13584-20,
ISO13584_instance_resource_schema This part of ISO 13584,
ISO13584_library_expressions_schema This part of ISO 13584.

8.1 Introduction to the ISO13584_table_resource_schema

The ISO13584_table_resource_schema defines the set of resources needed to describe tables and
algebraic operations in tables.

Tables are represented by a three level data model:

— the table_identification identifies a table; this entity enables reference to a table, whether the
description and content of this table are or are not represented in the same exchange context;

— the table_specification describes a table; this entity specifies the columns of a table and its
corresponding key; the table columns are specified by their semantics modelled as a subtype of
variable_semantics referenced from ISO 13584-20: 1998;

— the table_extension defines the values of the columns representing the content of the table; the
data type of the values of each column shall conform to the data type of any generic_variable
that may be associated with the variable_semantics that specifies the corresponding column.

NOTE 1 generic_variable is defined in ISO 13584-20.

The algebraic operations in tables considered in the ISO13584_table_resource_schema include:

— relational algebra, and

ISO 13584-24:2003(E)

114 © ISO 2003 – All rights reserved

— set operations.

The ISO13584_table_resource_schema models:

— the tables that may be stored in relational databases;

— the tables in which some columns contain instances of some EXPRESS entity data type;

— the characterisation of each column by its semantics;

— the content of each column as type compatible with any generic_variable that may be associated
with the column;

— a table as the result of an expression in which the leaves are tables and the operators are either
relational operators or set-theory operators;

— the key computation of the result of a table expression;

— a table variable.

The ISO13584_table_resource_schema does not model:

— how these tables are used or accessed.

NOTE 2 In the context of this part of ISO13584, tables are used to model the relations between the values
of the properties associated with a class. This is done by subtyping the resources defined in this schema.

8.2 Fundamental concepts and assumptions for the
ISO13584_table_resource_schema

8.2.1 Description of tables

The following assumptions apply to the portions of this schema that deal with table description:

a) a table is an ordered list of columns;

b) a subset of this list of columns constitutes the table key;

c) a column is associated with a particular semantic. In the same table, two different columns shall
correspond to two different semantics;

d) a column contains an ordered list of values of the same type, or subtypes of a common type;

e) the length of all the columns of a table shall be the same;

g) the tuple of values obtained by selecting in each column the value located at the same position is
called a line of the table;

h) a simple_column contains values of type BOOLEAN, REAL, INTEGER, or STRING;

i) a table intended to be stored in a relational database contains only simple_columns;

j) a complex_column is a column whose values are represented as EXPRESS ENTITY instances;

k) this schema provides resources for three types of complex_columns:

1) level_spec_column enables one to represent an array of four optional values associated
with a same semantics;

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 115

2) entity_instance_column enables one to represent values of which types are defined by
an EXPRESS entity data type;

3 class_instance_column enables one to represent values of which types are defined by an
ISO 13584-conformant specification of a class;

l) both entity_instance_column and class_instance_column provide for inheritance:

1) entity_instance_column may contain instances of various subtypes of the same entity
data type;

2) class_instance_column may contain instances of various subclasses of the same class;

m) a table is represented by three entities:

1) the table_identification, that provides for referencing the table;

2) the table_specification, that specifies the semantics of the columns of a table and its
corresponding key;

3) the table_content, that describes the values of the columns.

8.2.2 Description of table expressions

The following assumptions apply to the portions of this schema that deal with table expressions:

— Tables may be combined by operators to specify other tables. Such a table specification
constitutes a table_expression.

— In a table_expression, a subset of the columns may be defined as a key: if one selects in each of
these columns the value corresponding to the same position, this tuple is unique among all the
tuples based on the same columns.

— Each column of a table_expression may be associated with a variable for which it defines the
domain. The semantics of this variable is defined by the table_expression it refers to, and by the
variable_semantics that identifies (uniquely) the column of this table.

EXAMPLE Such a variable may be used in a select_expression to perform a traversal of the column values.

NOTE The semantics of such a variable (see: column_traversal_variable_semantics) is different from
the variable_semantics used to identify the column. The latter may stand for a well-defined value when the
former just stands for an iterator on the different values of the column. In the SQL language, a variable
associated with the latter would be a parameter-reference, a variable associated with the former would be a
column-reference.

8.3 ISO13584_table_resource_schema entity definitions

These subclauses contain the EXPRESS entity definitions in the ISO13584_table_resource_schema.

8.3.1 Table_identification

A table_identification entity identifies a table. Reference to that entity enables reference to both the
table_specification and the table_extension of the corresponding table, whether they are or are not
represented in the same exchange context.

NOTE 1 This resource is generic in nature and enables one to represent any kind of table. It is intended to
be subtyped for any particular kind of table.

NOTE 2 In this part of ISO 13584, tables are used to model tuples of values that are associated with
properties that are visible in some ISO 13584-conformant classes. Such tables are identified by a table_BSU
(see clause 10).

ISO 13584-24:2003(E)

116 © ISO 2003 – All rights reserved

EXPRESS specification:

*)
ENTITY table_identification
ABSTRACT SUPERTYPE;
WHERE

WR1: SIZEOF(USEDIN(SELF,
'ISO13584_TABLE_RESOURCE_SCHEMA.TABLE_SPECIFICATION'
+ '.TABLE_IDENTIFIER'))
<= 1;

WR2: SIZEOF(USEDIN(SELF,
'ISO13584_TABLE_RESOURCE_SCHEMA.TABLE_EXTENSION'
+ '.TABLE_IDENTIFIER')) <= 1;

END_ENTITY; -- table_identification
(*

Formal propositions:

WR1: the table_identification identifies a unique table_specification that refers to its
table_identification through the table_identifier attribute;

NOTE 1 The table_specification may or may not be present in the same exchange context (see 5.5).

WR2: the table_identification identifies a unique table_extension that refers to its
table_identification through the table_identifier attribute.

NOTE 2 The table_extension may or may not be present in the same exchange context (see 5.5).

8.3.2 Table_specification

A table_specification entity describes a table. A table is described in terms of the semantics of its
columns. A subset of these columns defines the key of this table.

EXPRESS specification:

*)
ENTITY table_specification
SUPERTYPE OF(RDB_table_specification);

table_identifier: table_identification;
column_meaning: LIST[1:?] OF UNIQUE variable_semantics;
key: SET[1:?] OF variable_semantics;

WHERE
WR1: SELF.key <= list_to_set(SELF.column_meaning);

END_ENTITY; -- table_specification
(*

Attribute definitions:

table_identifier: the table_identification that identifies the currently specified table.

column_meaning: the list of columns descriptions that are contained in the table.

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 117

key: the subset of columns that defines the key of the currently described table.

Formal propositions:

WR1: the columns that define the key shall belong to the list of columns that define the table.

8.3.2.1 RDB_table_specification

The RDB_table_specification specialises a table_specification to define a relational database
table.

EXPRESS specification:

*)
ENTITY RDB_table_specification
SUBTYPE OF(table_specification);
WHERE

WR1: QUERY(col <* SELF\table_specification.column_meaning |
QUERY(v <* syntax_of(col) |
NOT('ISO13584_EXPRESSIONS_SCHEMA.VARIABLE'

IN TYPEOF(v))) <> []) = [];
WR2: (SIZEOF(USEDIN(SELF\table_specification.table_identifier,

'ISO13584_TABLE_RESOURCE_SCHEMA.TABLE_EXTENSION' +
'.TABLE_IDENTIFIER')) = 0)
OR ('ISO13584_TABLE_RESOURCE_SCHEMA.RDB_TABLE_EXTENSION'
IN TYPEOF(USEDIN(SELF\table_specification.table_identifier,
'ISO13584_TABLE_RESOURCE_SCHEMA.TABLE_EXTENSION'+
'.TABLE_IDENTIFIER')[1]));

END_ENTITY; -- RDB_table_specification
(*

Formal propositions:

WR1: the types of the columns shall be simple types; this is ensured by asserting that the variables
that may be associated with the column_meanings variable_semantics are simple variables.

WR2: the content specification corresponding to a RDB_table_specification shall be a
RDB_table_extension.

8.3.3 Table_extension

The table_extension entity defines the content of a given table. The content is given by the list of
column values.

A table_extension has a revision_of_content attribute, that specifies the revision number of the set
of values contained in the table, and a content_revision_date attribute that specifies when this set of
values was defined. A revision shall neither change the set of key values in the table, nor change the
list of columns. It may only change values of non-key columns.

NOTE 1 Changing the set of key values contained in a table and/or the list of columns that constitute its
content defines a new table. The new table may be represented using a new table_identification.

ISO 13584-24:2003(E)

118 © ISO 2003 – All rights reserved

EXPRESS specification:

*)
ENTITY table_extension
SUPERTYPE OF(rdb_table_extension);

table_identifier: table_identification;
content: LIST[1:?] OF UNIQUE column;
revision_of_content: revision_type;
content_revision_date: date_type;

WHERE
WR1: QUERY(col <* SELF.content | SIZEOF(col.values) <>

SIZEOF(SELF.content[1].values)) = [];
WR2: (SIZEOF(USEDIN(SELF.table_identifier,

'ISO13584_TABLE_RESOURCE_SCHEMA' +
'.TABLE_SPECIFICATION.TABLE_IDENTIFIER')) = 0) OR
compatible_list_variable_semantics_and_columns(
USEDIN(SELF.table_identifier,
'ISO13584_TABLE_RESOURCE_SCHEMA' +
'.TABLE_SPECIFICATION.TABLE_IDENTIFIER')[1].
column_meaning, SELF.content);

WR3: (SIZEOF(USEDIN(SELF.table_identifier,
'ISO13584_TABLE_RESOURCE_SCHEMA' +
'.TABLE_SPECIFICATION.TABLE_IDENTIFIER')) = 0) OR
no_null_values_in_key_columns(USEDIN(SELF.table_identifier,
'ISO13584_TABLE_RESOURCE_SCHEMA' +
'.TABLE_SPECIFICATION.TABLE_IDENTIFIER')[1].
column_meaning, USEDIN(SELF.table_identifier,
'ISO13584_TABLE_RESOURCE_SCHEMA' +
'.TABLE_SPECIFICATION.TABLE_IDENTIFIER')[1].
key, SELF.content);

WR4: same_translations_for_table_extension(SELF.content);
END_ENTITY; -- table_extension
(*

Attribute definitions:

identified_by: attribute to reference the table for which the current entity describes the content.

content: the list of columns that are contained in the table. It represents the data extension of the table
content described.

revision_of_content: the revision index of the current table content.

content_revision_date: the date of the last revision achieved on the table content.

Formal propositions:

WR1: the sizes of the columns are the same.

WR2: if the table_specification is available in the same exchange context, the data types of the
columns shall be compatible with the data types of the generic_variables that may be associated
with the variable_semantics that define the columns meanings.

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 119

WR3: the values of the key shall not contain any null values. In other words, keys whose values are
null_values are not allowed.

WR4: all the values that are translated_string_values shall be translated in the same language(s).

Informal propositions:

IP1: all the revisions that correspond to the same table_identification shall have the same set of key
values and the same content LIST. The only possible change from revision to revision is correcting
typos in values or providing more accurate values

NOTE 2 This informal proposition specifies the changes allowed from revision to revision.

8.3.3.1 RDB_table_extension

The RDB_table_extension entity describes the content of relational database tables. Such tables
shall only contain values whose data types are simple_types.

NOTE simple_type is defined in ISO 13584-42; it contains: number, real, integer, string and Boolean.

EXPRESS specification:

*)
ENTITY RDB_table_extension
SUBTYPE OF(table_extension);

SELF\table_extension.content: LIST[1:?] OF UNIQUE simple_column;
WHERE

WR1: (SIZEOF(USEDIN(SELF\table_extension.table_identifier,
'ISO13584_TABLE_RESOURCE_SCHEMA.TABLE_SPECIFICATION' +
'.TABLE_IDENTIFIER')) = 0) OR
('ISO13584_TABLE_RESOURCE_SCHEMA.RDB_TABLE_SPECIFICATION'
IN TYPEOF(USEDIN(SELF\table_extension.table_identifier,
'ISO13584_TABLE_RESOURCE_SCHEMA.TABLE_SPECIFICATION' +
'.TABLE_IDENTIFIER')[1]));

END_ENTITY; -- RDB_table_extension
(*

Attribute definitions:

content: the list of simple_columns that constitutes the relational database table.

NOTE simple_columns are columns that contain values belonging to simple_types.

Formal propositions:

WR1: the dictionary definition corresponding to a RDB_table_extension shall be a
RDB_table_specification.

8.3.4 Column

A column is a list of values belonging to the same type.

ISO 13584-24:2003(E)

120 © ISO 2003 – All rights reserved

EXPRESS specification:

*)
ENTITY column
ABSTRACT SUPERTYPE OF(ONEOF(simple_column, complex_column));

values: LIST [1:?] OF null_or_primitive_value;
INVERSE

belongs_to: table_extension FOR content;
END_ENTITY; -- column
(*

Attribute definitions:

values: the list of the values contained in a column. These values shall be primitive_values.

belongs_to: the table_extension to which the column belongs.

8.3.5 Simple_column

A simple_column is a list of values belonging to the same simple_type.

EXPRESS specification:

*)
ENTITY simple_column
ABSTRACT SUPERTYPE OF(ONEOF(boolean_column, formatted_column))
SUBTYPE OF(column);

SELF\column.values: LIST [1:?] OF null_or_simple_value;
END_ENTITY; -- simple_column
(*

8.3.5.1 Boolean_column

A boolean_column is a column of null or BOOLEAN values.

EXPRESS specification:

*)
ENTITY boolean_column
SUBTYPE OF(simple_column);

SELF\column.values: LIST [1:?] OF null_or_boolean_value;
END_ENTITY; -- boolean_column
(*

8.3.5.2 Formatted_column

A formatted_column is a column whose simple_values may be associated with a format
specification.

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 121

EXPRESS specification:

*)
ENTITY formatted_column
ABSTRACT SUPERTYPE OF(ONEOF(number_column, string_column))
SUBTYPE OF(simple_column);

value_format: OPTIONAL value_format_type;
END_ENTITY; -- formatted_column
(*

Attribute definitions:

value_format: the description, in the format of a STRING, of the way the values in the column are to
be represented.

NOTE 1 The structure of a value_format_type is defined in part 42 of this International Standard. This
structure is based on the provisions taken from ISO 6093 and ISO 9735.

NOTE 2 When value_format is not defined the lay out of the column depends on particular agreements
between the sender and the receiver. If there is no particular agreement, the lay out is implementation
dependent.

NOTE 3 When the variable_semantics that defines the meaning of the column is a
SELF_property_value_semantics associated with a property_BSU, and when a value_format exits in the
formatted_column, this value_format takes precedence over the value_format defined for the property_BSU.

NOTE 4 SELF_property_value_semantics in defined in clause 9.

8.3.5.3 Number_column

A number_column is a column of null values or NUMBERs that are associated with a format.

EXPRESS specification:

*)
ENTITY number_column
ABSTRACT SUPERTYPE OF(ONEOF(real_column, integer_column))
SUBTYPE OF(formatted_column);

SELF\column.values: LIST [1:?] OF null_or_number_value;
END_ENTITY; -- number_column
(*

Attribute definitions:

values: the values contained in the column. The type of these values is specialised so as to contain
only NUMBER elements.

8.3.5.4 Real_column

A real_column is a column of null values or REALs that are associated with a format.

EXPRESS specification:

*)
ENTITY real_column

ISO 13584-24:2003(E)

122 © ISO 2003 – All rights reserved

SUBTYPE OF(number_column);
SELF\column.values: LIST [1:?] OF null_or_real_value;

WHERE
WR1: NOT(EXISTS(SELF\formatted_column.value_format)) OR(

(SELF\formatted_column.value_format) LIKE 'NR2*');
END_ENTITY; -- real_column
(*

Formal propositions:

WR1: if the value_format is defined, it shall specify a REAL number format.

8.3.5.5 Integer_column

An integer_column is a column of null values or INTEGERs that are associated with a format.

EXPRESS specification:

*)
ENTITY integer_column
SUBTYPE OF(number_column);

SELF\column.values: LIST [1:?] OF null_or_integer_value;
WHERE

WR1: NOT(EXISTS(SELF\formatted_column.value_format)) OR(
(SELF\formatted_column.value_format) LIKE 'NR1*');

END_ENTITY; -- integer_column
(*

Formal propositions:

WR1: if the value_format is defined, it shall specify an INTEGER number format.

8.3.5.6 String_column

A string_column is a column of null values or STRINGs that may be translated in various languages
and that are associated with a format. When the table column is displayed, even if there exist several
translations for each string, only one string shall be displayed for any value.

NOTE The function that chooses in any context the particular value to be displayed shall be
implementation dependent and is outside the scope of this part of ISO 13584.

EXPRESS specification:

*)
ENTITY string_column
SUBTYPE OF(formatted_column);

SELF\column.values: LIST [1:?] OF
null_or_translatable_string_value;

WHERE
WR1: NOT (EXISTS(SELF\formatted_column.value_format)) OR (

(((SELF\formatted_column.value_format) LIKE 'A*')
OR ((SELF\formatted_column.value_format) LIKE 'M*')

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 123

OR ((SELF\formatted_column.value_format) LIKE 'N*')
OR ((SELF\formatted_column.value_format) LIKE 'X*'))
AND NOT((SELF\formatted_column.value_format) LIKE 'NR*'));

WR2: same_translations_for_string_values(SELF\column.values);
END_ENTITY; -- string_column
(*

Formal propositions:

WR1: if the value_format is defined, it shall specify a STRING format.

WR2: if the column contains some translated_string_values, all the column values shall be some
translated_string_values, and they shall all reference the same present_translations.

8.3.6 Complex_column

A complex_column is a list of values belonging to the same complex_type of which values are
represented as EXPRESS ENTITY instances. A complex_column can not belong to an
RDB_table_extension.

EXPRESS specification:

*)
ENTITY complex_column
ABSTRACT SUPERTYPE OF(ONEOF(level_spec_column,

entity_instance_column,
class_instance_column))

SUBTYPE OF(column);
SELF\column.values: LIST [1:?] OF null_or_complex_value;

END_ENTITY; -- complex_column
(*

8.3.6.1 Level_spec_column

A level_spec_column is a list of level_spec_values. According to the instance_resource_schema,
a level_spec_value is an ARRAY of four optional numbers, that carries the additional meaning that:

— the first value corresponds to the minimum value of some property;

— the second value corresponds to the nominal value of some property;

— the third value corresponds to the typical value of some property;

— the fourth value corresponds to the maximum value of some property.

The four numbers shall be either INTEGER or REAL.

EXPRESS specification:

*)
ENTITY level_spec_column
ABSTRACT SUPERTYPE OF(ONEOF(

int_level_spec_column, real_level_spec_column))
SUBTYPE OF(complex_column);

ISO 13584-24:2003(E)

124 © ISO 2003 – All rights reserved

levels: LIST [1:4] OF UNIQUE level;
SELF\column.values: LIST [1:?] OF null_or_level_spec_value;

WHERE
WR1: QUERY(inst <* SELF\column.values

| NOT right_values_for_level_spec(SELF.levels, inst)) = [];
END_ENTITY; -- level_spec_column
(*

Attribute definitions:

levels: the levels that are intended to be associated with values in level_spec_values assigned to
this variable.

values: the values contained in the column. The type of these values is specialised so as to contain
the level values of the column.

Formal propositions:

WR1: the values provided in each level_spec_value shall correspond to the values that are specified
by the levels attribute.

8.3.6.1.1 Int_level_spec_column

An int_level_spec_column is a column of null values or int_level_spec_value.

EXPRESS specification:

*)
ENTITY int_level_spec_column
SUBTYPE OF(level_spec_column);

SELF\column.values: LIST [1:?] OF null_or_int_level_spec_value;
END_ENTITY; -- int_level_spec_column
(*

8.3.6.1.2 Real_level_spec_column

A real_level_spec_column is a column of null values or real_level_spec_value.

EXPRESS specification:

*)
ENTITY real_level_spec_column
SUBTYPE OF(level_spec_column);

SELF\column.values: LIST [1:?] OF null_or_real_level_spec_value;
END_ENTITY; -- real_level_spec_column
(*

8.3.6.2 Entity_instance_column

An entity_instance_column is a list of null values or entity_instance_values that are instances of
some EXPRESS ENTITY data type. Each entity_instance_column has a type_name attribute that

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 125

specifies the set of STRINGs that shall be contained in the result of the EXPRESS TYPEOF function
applied to any value of the list.

NOTE Each view exchange protocol specifies which entity_instance_value are allowed in a library
exchange context that refers to this view exchange protocol. Only these entity_instance_values may belong to
an entity_instance_column

EXPRESS specification:

*)
ENTITY entity_instance_column
SUBTYPE OF(complex_column);

type_name: SET [1:?] OF STRING;
SELF\column.values: LIST [1:?] OF null_or_entity_instance_value;

WHERE
WR1: QUERY(inst <* SELF\column.values

| (NOT('ISO13584_INSTANCE_RESOURCE_SCHEMA.NULL_VALUE'
IN TYPEOF(inst)))
AND (NOT(SELF.type_name <= TYPEOF(inst)))) = [];

END_ENTITY; -- entity_instance_column
(*

Attribute definitions:

type_name: set of strings containing the type names that shall be contained in the result of the
EXPRESS TYPEOF function when applied to any entity in the column.

Formal propositions:

WR1: all the instances contained in the column shall belong to the entity data type defined by the
type_name attribute, or to any of its subtype, or are null_values.

8.3.6.3 Class_instance_column

A class_instance_column is a list of null values or dic_class_instances that are instances of some
class as defined by the ISO13584_instance_resource_schema. Each class_instance_column has
a class_ref attribute, that specifies, through its class_BSU, the class to which any instance of the list
shall belong. A dic_class_instance of the list may be an instance of this class or any of its
subclasses.

EXPRESS specification:

*)
ENTITY class_instance_column
SUBTYPE OF(complex_column);

class_ref: class_BSU;
SELF\column.values: LIST [1:?] OF null_or_dic_class_instance;

WHERE
WR1: QUERY(inst <* SELF\column.values

| (NOT('ISO13584_INSTANCE_RESOURCE_SCHEMA.NULL_VALUE'
IN TYPEOF(inst)))
AND (NOT compatible_class_and_class(SELF.class_ref,
inst\dic_class_instance.class_def))) = [];

ISO 13584-24:2003(E)

126 © ISO 2003 – All rights reserved

END_ENTITY; -- class_instance_column
(*

Attribute definitions:

class_ref: the class for which the elements of the columns shall be instances.

Formal propositions:

WR1: all the instances contained in the column shall belong to the class defined by the class_ref
attribute or are null_values.

8.3.7 Table expressions

This subclause defines the resources needed to specify a table through operators applied to other
tables.

The resource constructs provided in this subclause enable the following:

— to define expressions that allow the combination of basic tables into more complex ones without
explicitly defining the values contained in the table produced;

— to define variables that are iterators on the different values of a column, and that may be used to
define queries against table_expressions;

— to define a query language that allows the definition of a table through the query of any table
expression produced by the operators defined above;

— to exchange these tables and the corresponding expressions.

The underlying structure of a table expression is a specialisation of a generic_expression. It defines
a direct acyclic graph where the internal nodes represent operators, where the leaves are either tables
or other generic_expressions, and that evaluates to a table.

In order to be conformant to most of the database languages, the following set of table operators is
specified:

— relational operators: projection, selection, join and cartesian product;

— set operators: union, intersection and difference.

In the ISO13584_table_resource_schema, a column is identified by its semantics represented as a
variable_semantics, and no capability of changing this semantics is provided. Therefore the
variable_semantics of the different columns shall be different. This is documented in a where rule in
table_expression.

NOTE 1 In database languages, changing the name of a column in the case of name clash is often
possible. It is known as "renaming".

NOTE 2 The structure of the table expressions has been defined to allow the addition of new operators.
The resources for such extensions are provided.

8.3.7.1 Table_expression

A table_expression entity defines an expression whose range is a table.

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 127

EXPRESS specification:

*)
ENTITY table_expression
ABSTRACT SUPERTYPE OF(ONEOF(simple_table_expression,

unary_table_expression,
binary_table_expression,
multiple_arity_table_expression,
select_expression))

SUBTYPE OF(generic_expression);
DERIVE

its_columns: LIST[1:?] OF variable_semantics
:= collects_columns(SELF);

the_key: SET[1:?] OF variable_semantics := return_key(SELF);
is_SQL_mappable: LOGICAL

:= is_SQL_mappable_table_expression(SELF);
WHERE

WR1: QUERY(sem <* its_columns
| SIZEOF(QUERY(sem_2 <* its_columns
| sem_2 :=: sem)) <> 1) = [];

END_ENTITY; -- table_expression
(*

Attribute definitions:

its_columns: the list of columns that define the table resulting from the current table_expression. It
is computed by the collects_columns function.

the_key: the subset of columns that constitutes a key of the table. It is computed by the return_key
function.

is_sql_mappable: a Boolean value that defines whether the current table_expression is mappable to
SQL. It is computed by the is_SQL_mappable_table_expression function.

Formal propositions:

WR1: each column shall correspond to a different semantic.

8.3.7.2 Column_traversal_variable_semantics

A column_traversal_variable_semantics entity defines the semantics of a generic_variable
intended to play the role of an iterator over the set of values of a column. This variable_semantics
may be associated with a generic_variable by an environment.

NOTE 1 variable_semantics, generic_variable and environment are defined in ISO 13584-20.

NOTE 2 The generic_variables associated with column_traversal_variable_semantics are used in a
select_expression to specify the selection criteria.

EXPRESS specification:

*)
ENTITY column_traversal_variable_semantics
SUBTYPE OF(variable_semantics);

ISO 13584-24:2003(E)

128 © ISO 2003 – All rights reserved

ctxt: table_expression;
domain: variable_semantics;

WHERE
WR1: SELF.domain IN SELF.ctxt.its_columns;
WR2: (SIZEOF(USEDIN(SELF,'ISO13584_GENERIC_EXPRESSIONS_SCHEMA'

+'.ENVIRONMENT.SEMANTICS')) = 0)
OR compatible_variable_semantics_and_expression(
SELF.domain,USEDIN(SELF,'ISO13584_GENERIC_EXPRESSIONS_SCHEMA'
+'.ENVIRONMENT.SEMANTICS')[1].syntactic_representation);

END_ENTITY; -- column_traversal_variable_semantics
(*

Attribute definitions:

ctxt: the table_expression of which a column is referenced.

domain: the variable_semantics that identifies the column that constitutes the domain of the
column_traversal_variable_semantics.

Formal propositions:

WR1: the column shall belong to the table_expression.

WR2: any variable associated with a column_traversal_variable_semantics shall be compatible with
the variable_semantics that identifies the column.

8.3.7.3 Unary_table_expression

A unary_table_expression is a unary operator whose range is a table.

EXPRESS specification:

*)
ENTITY unary_table_expression
ABSTRACT SUPERTYPE OF(projection_expression)
SUBTYPE OF(table_expression, unary_generic_expression);

SELF\unary_generic_expression.operand: table_expression;
END_ENTITY; -- unary_table_expression
(*

8.3.7.4 Binary_table_expression

A binary_table_expression is a binary operator whose range is a table.

EXPRESS specification:

*)
ENTITY binary_table_expression
ABSTRACT SUPERTYPE OF(ONEOF(set_table_expression,

natural_join_expression))
SUBTYPE OF(table_expression, binary_generic_expression);

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 129

SELF\binary_generic_expression.operands:
LIST [2:2] OF table_expression;

END_ENTITY; -- binary_table_expression
(*

8.3.7.5 Multiple_arity_table_expression

A multiple_arity_table_expression is a multiple arity operator whose range is a table.

EXPRESS specification:

*)
ENTITY multiple_arity_table_expression
ABSTRACT SUPERTYPE OF(multiple_arity_cartesian_product)
SUBTYPE OF(table_expression, multiple_arity_generic_expression);

SELF\multiple_arity_generic_expression.operands:
LIST [2:?] OF table_expression;

END_ENTITY; -- multiple_arity_table_expression
(*

8.3.7.6 Simple_table_expression

The simple_table_expression is either a table_variable or a table_literal.

EXPRESS specification:

*)
ENTITY simple_table_expression
ABSTRACT SUPERTYPE OF(ONEOF(

table_variable,
table_literal))

SUBTYPE OF(table_expression, simple_generic_expression);
END_ENTITY; -- simple_table_expression
(*

8.3.7.7 Table_variable

A table_variable is a variable that stands for a table. This table is characterised through the list of its
columns and its key.

EXPRESS specification:

*)
ENTITY table_variable
SUPERTYPE OF(RDB_table_variable)
SUBTYPE OF(simple_table_expression, generic_variable);

structure: LIST [1:?] OF variable_semantics;
its_key: SET [1:?] OF variable_semantics;

WHERE
WR1: SELF.its_key <= list_to_set(SELF.structure);

END_ENTITY; -- table_variable
(*

ISO 13584-24:2003(E)

130 © ISO 2003 – All rights reserved

Formal propositions:

WR1: the key of a table_variable shall be a subset of its columns.

8.3.7.8 RDB_table_variable

A RDB_table_variable is a table_variable that stands for an SQL-mappable table.

EXPRESS specification:

*)
ENTITY RDB_table_variable
SUBTYPE OF(table_variable);
WHERE

WR1: QUERY(col <* SELF\table_expression.its_columns |
QUERY(v <* syntax_of(col) |
NOT('ISO13584_EXPRESSIONS_SCHEMA.VARIABLE'
IN TYPEOF(v))) <> []) = [];

END_ENTITY; -- RDB_table_variable
(*

Formal propositions:

WR1: the types of the columns shall be simple types.

NOTE This is ensured by asserting that the variables that may be associated with the
column_meanings variable_semantics are simple variables.

8.3.7.9 Table_literal

The table_literal entity defines a table constant. It allows a basic table to be involved in an expression.

EXPRESS specification:

*)
ENTITY table_literal
SUBTYPE OF(simple_table_expression, generic_literal);

the_value: table_identification;
WHERE

WR1: SIZEOF(USEDIN(SELF.the_value,
'ISO13584_TABLE_RESOURCE_SCHEMA.TABLE_SPECIFICATION'
+ '.TABLE_IDENTIFIER')) = 1;

END_ENTITY; -- table_literal
(*

Attribute definitions:

the_value: the table_identification that is associated to this literal.

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 131

Formal propositions:

WR1: the table_specification shall be available in the same exchange context.

8.3.7.10 Set_table_expression

A set_table_expression is a binary_table_expression associated with a set-theory operator.

NOTE Set-theory operators require that the structures of their table operands be the same.

EXPRESS specification:

*)
ENTITY set_table_expression
ABSTRACT SUPERTYPE OF(ONEOF(

union_table_expression,
intersect_table_expression,
difference_table_expression))

SUBTYPE OF(binary_table_expression);
WHERE

WR1: SELF\binary_generic_expression.operands[1]
\table_expression.its_columns =
SELF\binary_generic_expression.operands[2]
\table_expression.its_columns;

END_ENTITY; -- set_table_expression
(*

Formal propositions:

WR1: the two operands of the set_table_expression shall have the same structure.

NOTE The structure of a table_expression is defined by the list of variable_semantics that represent
semantics of the various columns.

8.3.7.11 Union_table_expression

A union_table_expression is a set_table_expression that carries the semantics of the set union of
two tables.

EXPRESS specification:

*)
ENTITY union_table_expression
SUBTYPE OF(set_table_expression);
END_ENTITY; -- union_table_expression
(*

8.3.7.12 Intersect_table_expression

An intersect_table_expression is a set_table_expression that carries the semantics of the set
intersection of two tables.

ISO 13584-24:2003(E)

132 © ISO 2003 – All rights reserved

EXPRESS specification:

*)
ENTITY intersect_table_expression
SUBTYPE OF(set_table_expression);

END_ENTITY; -- intersect_table_expression
(*

8.3.7.13 Difference_table_expression

A difference_table_expression is a set_table_expression that carries the semantics of a set
difference of two tables: all the tuples in the first table_expression that do not belong to the second
table_expression.

EXPRESS specification:

*)
ENTITY difference_table_expression
SUBTYPE OF(set_table_expression);
END_ENTITY; -- difference_table_expression
(*

8.3.7.14 Multiple_arity_cartesian_product

A multiple_arity_cartesian_product is a multiple_arity_table_expression that carries the
semantics of the cartesian product of a list of tables. The list of columns is the sequence of the column
of the different tables in the cartesian product order. The key is the union of the keys of the different
tables.

EXPRESS specification:

*)
ENTITY multiple_arity_cartesian_product
SUBTYPE OF(multiple_arity_table_expression);

SELF\multiple_arity_generic_expression.operands:
LIST [2:?] OF table_expression;

END_ENTITY; -- multiple_arity_cartesian_product
(*

8.3.7.15 In_RDB_table_boolean_expression

An in_RDB_table_boolean_expression entity is a boolean_expression that carries the semantics
of the belongs-to operator. It is a multiple_arity_generic_expression whose first operand is a
table_expression. The subsequent operands are expressions the evaluation of which would
constitute a tuple. The in_RDB_table_boolean_expression evaluates to TRUE if the tuple
corresponds to one line of the table, otherwise it evaluates to FALSE.

The in_RDB_table_boolean_expression is only defined for table_expression that are SQL
mappable and whose columns correspond to simple types. The type of each expression shall be
compatible with the type of the corresponding column and shall be SQL mappable. The variables
involved in these expressions shall not contain any column iterator associated with a
column_traversal_variable_semantics.

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 133

An in_RDB_table_boolean_expression may in turn be involved in another boolean_expression. It
is therefore defined as a subtype of boolean_defined_function and of
SQL_mappable_defined_function.

EXPRESS specification:

*)
ENTITY in_RDB_table_boolean_expression
SUBTYPE OF(multiple_arity_generic_expression,

boolean_defined_function,
SQL_mappable_defined_function);

DERIVE
from_table: generic_expression :=

SELF\multiple_arity_generic_expression.operands[1];
tuple: LIST[1:?] OF generic_expression

:= QUERY(element <* SELF\multiple_arity_generic_expression
.operands | 'ISO13584_EXPRESSIONS_SCHEMA.EXPRESSION'
IN TYPEOF(element));

WHERE
WR1: ('ISO13584_TABLE_RESOURCE_SCHEMA.TABLE_EXPRESSION'

IN TYPEOF(from_table))
AND is_sql_mappable_table_expression(from_table);

WR2: SIZEOF(QUERY(simple_expr <*
QUERY(expr <* SELF\multiple_arity_generic_expression.operands
| ('ISO13584_EXPRESSIONS_SCHEMA.EXPRESSION'
IN TYPEOF(expr))) | is_sql_mappable(simple_expr)))
= SIZEOF(SELF\multiple_arity_generic_expression.operands)- 1;

WR3: SIZEOF(from_table\table_expression.its_columns)
= SIZEOF(tuple);

WR4: compatible_list_variable_semantics_and_expressions
(SELF.from_table\table_expression.its_columns, SELF.tuple);

WR5: QUERY(e <* tuple | QUERY(v <* used_variables(e)
| ('ISO13584_TABLE_RESOURCE_SCHEMA'
+ '.COLUMN_TRAVERSAL_VARIABLE_SEMANTICS')
IN TYPEOF(v.interpretation.semantics)) <> []) = [];

END_ENTITY; -- in_RDB_table_boolean_expression
(*

Attribute definitions:

from_table: the table_expression to which the tuple shall belong.

tuple: the list of expressions of which evaluation results constitute the tuple to be searched in the
from_table table expression.

Formal propositions:

WR1: the from_table shall be a table_expression that is SQL mappable.

WR2: all the other generic_expressions of the multiple_arity_generic_expression shall be simple
expressions that are SQL-mappable.

ISO 13584-24:2003(E)

134 © ISO 2003 – All rights reserved

WR3: the size of the tuple shall be equal to the number of columns of the table_expression.

WR4: each value of the tuple shall be type-compatible with the corresponding column, and each value
shall correspond to a simple type.

WR5: no variable in the tuple shall be associated with a column_traversal_variable_semantics.

8.3.7.16 Select_expression

The select_expression entity carries the semantics of the select operator of the SQL language. It
evaluates to a table where all the lines for which the condition evaluates to FALSE are removed.

NOTE 1 A rule enforces the condition generic_expression to be a boolean_expression entity data type.

The select_expression is only defined for cases in which the columns of the from_table attribute
correspond to simple types. The list of columns and keys of the result are not modified.

NOTE 2 A rule enforces the from_table generic_expression to be a table_expression entity data type.

The condition may contain two kinds of variables:

— variables that stand for some previously defined values, and

— variables that constitute column iterators: they are associated with
column_traversal_variable_semantics that reference the different columns of the current table
expression.

NOTE 3 Variables that stand for previously defined values correspond to constants in an SQL statement.

NOTE 4 Column iterators correspond to column references in an SQL statement.

When the condition is evaluated against the different lines of the table, each variable associated with
a column_traversal_variable_semantics is interpreted as the current value of the corresponding
column. The other variables stand for their current values.

EXPRESS specification:

*)
ENTITY select_expression
SUBTYPE OF(table_expression, binary_generic_expression);
DERIVE

from_table: generic_expression :=
SELF\binary_generic_expression.operands[1];

condition: generic_expression :=
SELF\binary_generic_expression.operands[2];

WHERE
WR1: 'ISO13584_TABLE_RESOURCE_SCHEMA.TABLE_EXPRESSION'

IN TYPEOF(SELF.from_table);
WR2: 'ISO13584_EXPRESSIONS_SCHEMA.BOOLEAN_EXPRESSION'

IN TYPEOF(SELF.condition);
WR3: QUERY(va <* used_variables(SELF.condition) |

NOT('ISO13584_EXPRESSIONS_SCHEMA.VARIABLE'
IN TYPEOF(va))) = [];

WR4: QUERY(v <* used_variables(SELF.condition) |
(NOT(check_iterator_context(SELF, v)) OR NOT

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 135

check_iterator_domain_uniqueness(SELF, v))) = [];
END_ENTITY; -- select_expression
(*

Attribute definitions:

from_table: the table expression in which the selection is performed.

condition: the condition that filters the data of the from_table expression.

Formal propositions:

WR1: the from_table shall be a table_expression.

WR2: the condition expression shall be a boolean_expression.

WR3: the condition expression shall only contain simple variables.

WR4: the generic_variables used in the condition expression that are associated with a
column_traversal_variable_semantics shall correspond to different columns of the from_table
table_expression.

8.3.7.17 Projection_expression

The projection_expression carries the semantics of a projection operation. It evaluates to a table
containing only the selected columns. The order of the columns is not changed for those that are not
removed. If some columns are removed from the key, the key becomes the complete set of columns.

EXPRESS specification:

*)
ENTITY projection_expression
SUBTYPE OF(unary_table_expression);

argts_var: SET[1:?] OF variable_semantics;
DERIVE

from_table: table_expression :=
SELF\unary_table_expression.operand;

WHERE
WR1: SELF.argts_var <= list_to_set(SELF\unary_table_expression.

operand.its_columns);
END_ENTITY; -- projection_expression
(*

Attribute definitions:

argts_var: the variable_semantics on which the projection operates.

from_table: the table expression from which the projection is evaluated.

Formal propositions:

WR1: the argts_var set shall belong to the list of columns.

ISO 13584-24:2003(E)

136 © ISO 2003 – All rights reserved

8.3.7.18 Natural_join_expression

The natural_join_expression carries the semantics of the natural joint operation in relational algebra.
The two tables involved in the natural_join_expression shall contain one, or several, couples of
columns that correspond to the same variable_semantics. The natural_join_expression evaluates
to another table built by a succession of three operations:

— the cartesian product is built, then

— the result is filtered by removing all the lines for which two columns corresponding to the same
variable_semantics contain different values, then

— for each pair of columns corresponding to the same semantics, the second column is removed
from the previous result.

The key of the resulting table is the union of the keys of the two operands.

EXPRESS specification:

*)
ENTITY natural_join_expression
SUBTYPE OF(binary_table_expression);
DERIVE

table_1: table_expression :=
SELF\binary_table_expression.operands[1];

table_2: table_expression :=
SELF\binary_table_expression.operands[2];

WHERE
WR1: SIZEOF(list_to_set(table_1\table_expression.its_columns) *

list_to_set(table_2\table_expression.its_columns)) > 0;
END_ENTITY; -- natural_join_expression
(*

Attribute definitions:

table1: the table_expression that is the first argument of the join operation.

table2: the table_expression that is the second argument of the join operation.

Formal propositions:

WR1: there exists at least one common column in the two table_expression operands.

8.4 ISO13584_table_resource_schema functions definition

This section describes the functions required to perform type control for table content.

8.4.1 Compatible_column_and_variable function

The function compatible_column_and_variable checks if a generic_variable (v) is type compatible
with the type defined by a column (col). It returns a LOGICAL that is TRUE when they are compatible
and FALSE when they are not. It returns UNKNOWN when no generic_variable is associated to v.

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 137

EXPRESS specification:

*)
FUNCTION compatible_column_and_variable(col: column;

v: generic_variable): LOGICAL;

(* The following express statements deal with simple types *)

IF ('ISO13584_EXPRESSIONS_SCHEMA.INT_NUMERIC_VARIABLE' IN TYPEOF(v))
THEN

RETURN(('ISO13584_TABLE_RESOURCE_SCHEMA.INTEGER_COLUMN'
IN TYPEOF(col)) OR
(('ISO13584_TABLE_RESOURCE_SCHEMA.NUMBER_COLUMN'
IN TYPEOF(col))
AND NOT('ISO13584_TABLE_RESOURCE_SCHEMA.REAL_COLUMN'
IN TYPEOF(col))));

END_IF;

IF ('ISO13584_EXPRESSIONS_SCHEMA.REAL_NUMERIC_VARIABLE' IN TYPEOF(v))
THEN

RETURN(('ISO13584_TABLE_RESOURCE_SCHEMA.REAL_COLUMN'
IN TYPEOF(col))
OR (('ISO13584_TABLE_RESOURCE_SCHEMA.NUMBER_COLUMN'
IN TYPEOF(col))
AND NOT('ISO13584_TABLE_RESOURCE_SCHEMA.INTEGER_COLUMN'
IN TYPEOF(col))));

END_IF;

IF ('ISO13584_EXPRESSIONS_SCHEMA.BOOLEAN_VARIABLE' IN TYPEOF(v))
THEN

RETURN('ISO13584_TABLE_RESOURCE_SCHEMA.BOOLEAN_COLUMN'
IN TYPEOF(col));

END_IF;

IF ('ISO13584_EXPRESSIONS_SCHEMA.STRING_VARIABLE' IN TYPEOF(v))
THEN

RETURN('ISO13584_TABLE_RESOURCE_SCHEMA.STRING_COLUMN'
IN TYPEOF(col));

END_IF;

(* The following express statements deal with complex types *)

IF ('ISO13584_LIBRARY_EXPRESSIONS_SCHEMA.ENTITY_INSTANCE_VARIABLE')
IN TYPEOF(v)

THEN
RETURN(('ISO13584_TABLE_RESOURCE_SCHEMA.ENTITY_INSTANCE_COLUMN'

IN TYPEOF(col))
AND (v\entity_instance_expression.type_name

<= col\entity_instance_column.type_name));
END_IF;

IF ('ISO13584_LIBRARY_EXPRESSIONS_SCHEMA.CLASS_INSTANCE_VARIABLE')

ISO 13584-24:2003(E)

138 © ISO 2003 – All rights reserved

IN TYPEOF(v)
THEN

IF ('ISO13584_TABLE_RESOURCE_SCHEMA.CLASS_INSTANCE_COLUMN'
IN TYPEOF(col))

THEN
RETURN(compatible_class_and_class

(v\class_instance_expression.expr_type,
col\class_instance_column.class_ref));

ELSE
RETURN(FALSE);

END_IF;
END_IF;

IF ('ISO13584_LIBRARY_EXPRESSIONS_SCHEMA.LEVEL_SPEC_VARIABLE')
IN TYPEOF(v) THEN
IF ('ISO13584_TABLE_RESOURCE_SCHEMA.LEVEL_SPEC_COLUMN'

IN TYPEOF(col))
THEN

IF (list_to_set(v\level_spec_expression.levels)
= list_to_set(col\level_spec_column.levels))

THEN
IF (('ISO13584_LIBRARY_EXPRESSIONS_SCHEMA'

+'.INT_LEVEL_SPEC_VARIABLE' IN TYPEOF(v))
AND NOT('ISO13584_TABLE_RESOURCE_SCHEMA' +
'.INT_LEVEL_SPEC_COLUMN' IN TYPEOF(col)))

THEN
RETURN(FALSE);

END_IF;
IF (('ISO13584_LIBRARY_EXPRESSIONS_SCHEMA'

+'.REAL_LEVEL_SPEC_VARIABLE' IN TYPEOF(v))
AND NOT('ISO13584_TABLE_RESOURCE_SCHEMA' +
'.REAL_LEVEL_SPEC_COLUMN' IN TYPEOF(col)))

THEN
RETURN(FALSE);

END_IF;
RETURN(TRUE);

ELSE
RETURN(FALSE);

END_IF;
ELSE

RETURN(FALSE);
END_IF;

END_IF;

RETURN(FALSE);

END_FUNCTION; -- compatible_column_and_variable
(*

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 139

8.4.2 Compatible_column_and_variable_semantics function

The function compatible_column_and_variable_semantics function checks if all the
generic_variables that are associated with a variable_semantics (sem) are type compatible with the
type defined by a column (col). It returns a LOGICAL that is TRUE when they are compatible and
FALSE when they are not. This function returns UNKNOWN when no generic_variable is associated
to sem.

EXPRESS specification:

*)
FUNCTION compatible_column_and_variable_semantics(col: column;

sem: variable_semantics): LOGICAL;

LOCAL
va: SET OF generic_variable;

END_LOCAL;

va := syntax_of(sem);
IF SIZEOF(va) = 0
THEN

RETURN(UNKNOWN);
ELSE

REPEAT i := LOINDEX(va) TO HIINDEX(va);
IF (NOT compatible_column_and_variable(col, va[i]))
THEN

RETURN(FALSE);
END_IF;

END_REPEAT;
RETURN(TRUE);

END_IF;

END_FUNCTION; -- compatible_column_and_variable_semantics
(*

8.4.3 Compatible_list_variable_semantics_and_columns function

The function compatible_list_variable_semantics_and_columns checks if a list of columns (col) is
type compatible with a list of variable_semantics (sem). It checks if the generic_variables that may
be associated with these variable_semantics are type compatible with the columns. If some
variable_semantics is not associated with any generic_variable, the function returns UNKNOWN.

EXPRESS specification:

*)
FUNCTION compatible_list_variable_semantics_and_columns(

sem: LIST [0:?] of variable_semantics;
col: LIST [0:?] of column): LOGICAL;

LOCAL
res: LOGICAL;

END_LOCAL;

ISO 13584-24:2003(E)

140 © ISO 2003 – All rights reserved

IF SIZEOF(sem) <> SIZEOF(col)
THEN

RETURN(FALSE);
END_IF;

res := TRUE;

REPEAT i := LOINDEX(col) TO HIINDEX(col);
res := res AND

compatible_column_and_variable_semantics(col[i], sem[i]);
END_REPEAT;

RETURN(res);

END_FUNCTION; -- compatible_list_variable_semantics_and_columns
(*

8.4.4 Compatible_variable_semantics_and_expression function

The function compatible_variable_semantics_and_expression function checks if all the variables
that are associated with a variables_semantics (sem) are type compatible with the type defined by an
expression (expr). It returns a LOGICAL that is TRUE when they are compatible and FALSE when
they are not. This function returns UNKNOWN when no variable is associated to sem.

EXPRESS specification:

*)
FUNCTION compatible_variable_semantics_and_expression(

sem: variable_semantics; expr: expression): LOGICAL;

LOCAL
va: SET OF generic_variable;

END_LOCAL;

va := syntax_of(sem);
IF SIZEOF(va) = 0
THEN

RETURN(UNKNOWN);
ELSE

REPEAT i := LOINDEX(va) TO HIINDEX(va);
IF (NOT compatible_variable_and_expression(va[i], expr))
THEN

RETURN(FALSE);
END_IF;

END_REPEAT;
RETURN(TRUE);

END_IF;

END_FUNCTION; -- compatible_variable_semantics_and_expression
(*

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 141

8.4.5 Compatible_list_variable_semantics_and_expressions function

The function compatible_list_variable_semantics_and_expressions checks if a list of
variable_semantics (sem) is type compatible with a list of expression (exprs). It checks if all the
variables that may be associated with these variable_semantics are type compatible with the
corresponding expressions. If some variable_semantics is not associated with any variable, the
function returns UNKNOWN.

EXPRESS specification:

*)
FUNCTION compatible_list_variable_semantics_and_expressions(

sem: LIST [0:?] of variable_semantics;
exprs: LIST [0:?] of expression): LOGICAL;

LOCAL
res: LOGICAL;

END_LOCAL;

IF SIZEOF(sem) <> SIZEOF(exprs)
THEN

RETURN(FALSE);
END_IF;

res := TRUE;

REPEAT i := 1 TO SIZEOF(sem);
res := res AND
compatible_variable_semantics_and_expression(sem[i], exprs[i]);

END_REPEAT;

RETURN(res);

END_FUNCTION; -- compatible_list_variable_semantics_and_expressions
(*

8.4.6 Collects_columns function

The collects_columns function retrieves the list of variable_semantics that occur, as columns, in a
table_expression. It performs a traversal of the tree obtained in the table_expression passed
parameter.

EXPRESS specification:

*)
FUNCTION collects_columns(t: table_expression):

LIST OF variable_semantics;

LOCAL
res, tempo: LIST [0:?] OF variable_semantics := [];
x: BAG [1:1] OF table_specification;

END_LOCAL;

ISO 13584-24:2003(E)

142 © ISO 2003 – All rights reserved

IF ('ISO13584_TABLE_RESOURCE_SCHEMA.TABLE_VARIABLE'IN TYPEOF(t))
THEN

RETURN(t\table_variable.structure);
END_IF;

IF ('ISO13584_TABLE_RESOURCE_SCHEMA.TABLE_LITERAL' IN TYPEOF(t))
THEN

x := USEDIN(t\table_literal.the_value,
'ISO13584_TABLE_RESOURCE_SCHEMA'
+ '.TABLE_SPECIFICATION.TABLE_IDENTIFIER');

RETURN(x[1].column_meaning);
END_IF;

IF ('ISO13584_TABLE_RESOURCE_SCHEMA.NATURAL_JOIN_EXPRESSION'
IN TYPEOF(t))

THEN
RETURN(
diff_columns(collects_columns(

t\natural_join_expression.table_1),
collects_columns(
t\natural_join_expression.table_2)));

END_IF;

IF ('ISO13584_TABLE_RESOURCE_SCHEMA.BINARY_TABLE_EXPRESSION'
IN TYPEOF(t))

THEN
RETURN(collects_columns(t\binary_table_expression.operands[1])+
collects_columns(t\binary_table_expression.operands[2]));

END_IF;

IF ('ISO13584_TABLE_RESOURCE_SCHEMA.MULTIPLE_ARITY_TABLE_EXPRESSION')
IN TYPEOF(t) THEN
REPEAT i := 1 TO

SIZEOF(t\multiple_arity_table_expression.operands);
res := res +

collects_columns(t\multiple_arity_table_expression
.operands[i]);

END_REPEAT;
RETURN(res);

END_IF;

IF ('ISO13584_TABLE_RESOURCE_SCHEMA.SELECT_EXPRESSION' IN TYPEOF(t))
THEN

RETURN(collects_columns(
t\binary_generic_expression.operands[1]));

END_IF;

IF ('ISO13584_TABLE_RESOURCE_SCHEMA.PROJECTION_EXPRESSION'
IN TYPEOF(t))

THEN

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 143

REPEAT i := 1 TO SIZEOF(t\projection_expression.argts_var);
tempo := tempo +t\projection_expression.argts_var[i];

END_REPEAT;
RETURN(tempo);

END_IF;

RETURN([]);

END_FUNCTION; -- collects_columns
(*

8.4.7 Diff_columns function

The diff_columns function takes two lists l1 and l2 of variable_semantics and returns the list l1 of
variable_semantics augmented by the variable_semantics of l2 that do not belong to l1.

EXPRESS specification:

*)
FUNCTION diff_columns(l1, l2:LIST [1:?] OF variable_semantics):

LIST [1:?] OF variable_semantics;

REPEAT i := 1 TO SIZEOF(l2);
IF NOT(l2[i] IN l1)
THEN

l1 := l1 + l2[i];
END_IF;

END_REPEAT;

RETURN(l1);
END_FUNCTION; -- diff_columns
(*

8.4.8 Return_key function

The return_key function computes a key of a table_expression. It performs a traversal of the tree
obtained in the table_expression passed parameter. This key is defined by the following rules:

— the key of a table_variable is given by the key of the referenced table_expression,

— the key of a table_literal is given by the table_identification that shall be referenced,

— the key of a select_expression is given by the key of the table in which the selection is
performed,

— the key of a projection_expression is computed as follows:

a) if the projection does not remove any variable_semantics belonging to the key, the key is
the key of the projected table,

b) if the projection removes at least one variable_semantics of the key of the projected table,
the key of the table is defined by all the variable_semantics on which the projection is
performed,

ISO 13584-24:2003(E)

144 © ISO 2003 – All rights reserved

— the key of a intersect_table_expression or a difference_table_expression is given by the key
of the first table involved in the set expression,

— the key of a union_table_expression or a natural_join_expression is given by the set-union of
the keys of the two tables that are involved in the binary expression,

— the key of a cartesian_product expression is given by the sum of all the keys that define the
tables that are involved in the product.

EXPRESS specification:

*)
FUNCTION return_key(t: table_expression):

SET [1:?] OF variable_semantics;

LOCAL
res: SET [0:?] OF variable_semantics := [];
x: BAG[1:1] OF table_specification;

END_LOCAL;

IF ('ISO13584_TABLE_RESOURCE_SCHEMA.TABLE_VARIABLE'IN TYPEOF(t))
THEN

RETURN(t\table_variable.its_key);
END_IF;

IF ('ISO13584_TABLE_RESOURCE_SCHEMA.TABLE_LITERAL' IN TYPEOF(t))
THEN

x := USEDIN(t\table_literal.the_value,
'ISO13584_TABLE_RESOURCE_SCHEMA.'
+ 'TABLE_SPECIFICATION.TABLE_IDENTIFIER');

RETURN(x[1]\table_specification.key);
END_IF;

IF ('ISO13584_TABLE_RESOURCE_SCHEMA.SELECT_EXPRESSION' IN TYPEOF(t))
THEN

RETURN(return_key(t\binary_generic_expression.operands[1]));
END_IF;

IF ('ISO13584_TABLE_RESOURCE_SCHEMA.PROJECTION_EXPRESSION'
IN TYPEOF(t))

THEN
IF QUERY(col <* t\projection_expression.from_table.the_key | NOT

(col IN t\projection_expression.argts_var)) <> []
THEN

RETURN(list_to_set(t\table_expression.its_columns));
ELSE

RETURN(t\projection_expression.from_table.the_key);
END_IF;

END_IF;

IF (('ISO13584_TABLE_RESOURCE_SCHEMA.INTERSECT_TABLE_EXPRESSION'
IN TYPEOF(t))

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 145

OR
('ISO13584_TABLE_RESOURCE_SCHEMA.DIFFERENCE_TABLE_EXPRESSION'

IN TYPEOF(t)))
THEN

RETURN(return_key(t\binary_table_expression.operands[1]));
END_IF;

IF (('ISO13584_TABLE_RESOURCE_SCHEMA.UNION_TABLE_EXPRESSION'
IN TYPEOF(t))

OR
('ISO13584_TABLE_RESOURCE_SCHEMA.NATURAL_JOIN_EXPRESSION'

IN TYPEOF(t)))
THEN

RETURN(return_key(t\binary_table_expression.operands[1]) +
return_key(t\binary_table_expression.operands[2]));

END_IF;

IF ('ISO13584_TABLE_RESOURCE_SCHEMA.MULTIPLE_ARITY_TABLE_EXPRESSION'
IN TYPEOF(t))

THEN
REPEAT i := 1 TO
SIZEOF(t\multiple_arity_table_expression.operands);

res := res
+ return_key(t\multiple_arity_table_expression.operands[i]);

END_REPEAT;
RETURN(res);

END_IF;

RETURN([]);

END_FUNCTION; -- return_key
(*

8.4.9 Is_SQL_mappable_table_expression function

The is_SQL_mappable_table_expression function checks if the acyclic graph that represents a
table_expression only contains elements that are mappable to SQL.

EXPRESS Specification:

*)
FUNCTION is_SQL_mappable_table_expression(

arg: table_expression): LOGICAL;

IF ('ISO13584_TABLE_RESOURCE_SCHEMA.SIMPLE_TABLE_EXPRESSION'
IN TYPEOF(arg))

THEN
IF ('ISO13584_TABLE_RESOURCE_SCHEMA.RDB_TABLE_VARIABLE'

IN TYPEOF(arg))
THEN

RETURN(TRUE);
END_IF;

ISO 13584-24:2003(E)

146 © ISO 2003 – All rights reserved

IF ('ISO13584_TABLE_RESOURCE_SCHEMA.TABLE_LITERAL'
IN TYPEOF(arg))

THEN
IF (SIZEOF(USEDIN(arg\table_literal.the_value,

'ISO13584_TABLE_RESOURCE_SCHEMA.TABLE_SPECIFICATION'
+ '.TABLE_IDENTIFIER')) = 1)

THEN
RETURN(('ISO13584_TABLE_RESOURCE_SCHEMA'

+ '.RDB_TABLE_SPECIFICATION')
IN TYPEOF(USEDIN(arg\table_literal.the_value,
'ISO13584_TABLE_RESOURCE_SCHEMA'
+ '.TABLE_SPECIFICATION.TABLE_IDENTIFIER')[1]));

ELSE
RETURN(UNKNOWN);

END_IF;
END_IF;
RETURN(FALSE); -- table_variable that is not RDB_table_variable

END_IF;

IF ('ISO13584_TABLE_RESOURCE_SCHEMA.UNARY_TABLE_EXPRESSION'
IN TYPEOF(arg))

THEN
RETURN(is_SQL_mappable_table_expression(

arg\unary_table_expression.operand));
END_IF;

IF ('ISO13584_TABLE_RESOURCE_SCHEMA.SELECT_EXPRESSION'
IN TYPEOF(arg))

THEN
RETURN(is_SQL_mappable_table_expression(

arg\select_expression.from_table)
AND is_SQL_mappable(arg\select_expression.condition));

END_IF;

IF ('ISO13584_TABLE_RESOURCE_SCHEMA.BINARY_TABLE_EXPRESSION'
IN TYPEOF(arg))

THEN
RETURN(is_SQL_mappable_table_expression(

arg\binary_table_expression.operands[1])
AND Is_SQL_mappable_table_expression(
arg\binary_table_expression.operands[2]));

END_IF;

IF ('ISO13584_TABLE_RESOURCE_SCHEMA.MULTIPLE_ARITY_TABLE_EXPRESSION'
IN TYPEOF(arg))

THEN
REPEAT i := 1 TO SIZEOF

(arg\multiple_arity_table_expression.operands);
IF NOT is_SQL_mappable_table_expression

(arg\multiple_arity_table_expression.operands[i])
THEN

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 147

RETURN(FALSE);
END_IF;

END_REPEAT;

RETURN(TRUE);
END_IF;

RETURN(UNKNOWN);

END_FUNCTION; -- is_SQL_mappable_table_expression
(*

8.4.10 Used_table_literals function

The used_table_literals function performs a traversal of the generic expression graph and returns the
table_identifications of all the table_literals used.

EXPRESS Specification:

*)
FUNCTION used_table_literals(arg: generic_expression):

SET OF table_identification;

LOCAL
result: SET OF table_identification := [];

END_LOCAL;

IF ('ISO13584_TABLE_RESOURCE_SCHEMA.TABLE_LITERAL' IN TYPEOF(arg))
THEN

RETURN([arg\table_literal.the_value]);
END_IF;

IF ('ISO13584_GENERIC_EXPRESSIONS_SCHEMA.UNARY_GENERIC_EXPRESSION')
IN TYPEOF(arg)

THEN
RETURN(used_table_literals(

arg\unary_generic_expression.operand));
END_IF;

IF ('ISO13584_GENERIC_EXPRESSIONS_SCHEMA.BINARY_GENERIC_EXPRESSION'
IN TYPEOF(arg))

THEN
RETURN(used_table_literals(arg\binary_generic_expression

.operands[1]) + used_table_literals(
arg\binary_generic_expression.operands[2]));

END_IF;

IF ('ISO13584_GENERIC_EXPRESSIONS_SCHEMA.' +
'MULTIPLE_ARITY_GENERIC_EXPRESSION' IN TYPEOF(arg))

THEN
REPEAT i := 1 TO

SIZEOF(arg\multiple_arity_generic_expression.operands);

ISO 13584-24:2003(E)

148 © ISO 2003 – All rights reserved

result := result + used_table_literals(
arg\multiple_arity_generic_expression.operands[i]);

END_REPEAT;
RETURN(result);

END_IF;

RETURN([]);

END_FUNCTION; -- used_table_literals
(*

8.4.11 Check_iterator_context function

The check_iterator_context function checks, in the case of a generic_variable associated with a
column_traversal_variable_semantics, that this column_traversal_variable_semantics context is
equal to the table expression in which the selection is performed.

EXPRESS specification:

*)
FUNCTION check_iterator_context(expr: select_expression;

v: generic_variable): LOGICAL;

IF ('ISO13584_TABLE_RESOURCE_SCHEMA' +
'.COLUMN_TRAVERSAL_VARIABLE_SEMANTICS' IN
TYPEOF(v.interpretation.semantics))

THEN
IF (v.interpretation.semantics\

column_traversal_variable_semantics.ctxt:<>: expr.from_table)
THEN

RETURN(FALSE);
ELSE

RETURN(TRUE);
END_IF;

ELSE
RETURN(UNKNOWN);

END_IF;

END_FUNCTION; -- check_iterator_context
(*

8.4.12 Check_iterator_domain_uniqueness function

The check_iterator_domain_uniqueness function checks if a generic_variable, used in a
select_expression condition expression, that is associated with a
column_traversal_variable_semantics corresponds to a unique column of the select_expression
from_table table_expression.

EXPRESS specification:

*)
FUNCTION check_iterator_domain_uniqueness(expr: select_expression;

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 149

v: generic_variable): LOGICAL;

LOCAL
vars: SET OF generic_variable := [];
res: SET OF generic_variable := [];

END_LOCAL;

IF ('ISO13584_TABLE_RESOURCE_SCHEMA.'
+ 'COLUMN_TRAVERSAL_VARIABLE_SEMANTICS' IN
TYPEOF(v.interpretation.semantics))

THEN
vars := used_variables(expr.condition);

REPEAT i := 1 TO SIZEOF(vars);
IF ('ISO13584_TABLE_RESOURCE_SCHEMA' +

'.COLUMN_TRAVERSAL_VARIABLE_SEMANTICS' IN
TYPEOF(vars[i].interpretation.semantics))

THEN
IF (vars[i].interpretation.semantics\

column_traversal_variable_semantics.domain
:=: v.interpretation.semantics\
column_traversal_variable_semantics.domain)

THEN
res := res + vars[i];

END_IF;
END_IF;

END_REPEAT;

RETURN(SIZEOF(res) = 1);
END_IF;

RETURN(UNKNOWN);

END_FUNCTION; -- check_iterator_domain_uniqueness
(*

8.4.13 No_null_values_in_key_columns function

The no_null_values_in_key_coulumns function returns TRUE if no null values are defined for each
key column. Otherwise, it returns FALSE.

EXPRESS specification:

*)
FUNCTION no_null_values_in_key_columns(

the_columns: LIST[1:?] OF variable_semantics;
the_key: SET[1:?] OF variable_semantics;
the_values: LIST[1:?] OF column): BOOLEAN;

LOCAL
sem: variable_semantics;
result: BOOLEAN := TRUE;

END_LOCAL;

ISO 13584-24:2003(E)

150 © ISO 2003 – All rights reserved

REPEAT i := 1 TO SIZEOF(the_columns);
sem := the_columns[i];
IF(sem IN the_key) THEN

REPEAT j := 1 TO SIZEOF(the_values[i].values);
IF('ISO13584_INSTANCE_RESOURCE_SCHEMA' +

'.NULL_VALUE' IN TYPEOF(the_values[i].values[j]))
THEN

result := FALSE;
END_IF;

END_REPEAT;
END_IF;

END_REPEAT;

RETURN(result);

END_FUNCTION; -- no_null_values_in_key_columns

(*
8.4.14 Same_translations_for_string_values function

The same_translations_for_string_values function returns TRUE if all the
null_or_translatable_string_values are translated in the same language. It returns FALSE if the
string_values aggregate contains translated and not translated strings, or if the translation are not
given in the same language. It returns UNKNOWN if the string_values are not translated.

EXPRESS specification:

*)
FUNCTION same_translations_for_string_values(string_values:

LIST OF null_or_translatable_string_value): LOGICAL;
LOCAL

translated_values: SET OF translated_string_value := [];
not_translated_values: LIST OF string_value := [];

END_LOCAL;

translated_values := list_to_set(QUERY(val <* string_values |
'ISO13584_INSTANCE_RESOURCE_SCHEMA.TRANSLATED_STRING_VALUE'
IN TYPEOF(val)));

not_translated_values := QUERY(val <* string_values |
'ISO13584_INSTANCE_RESOURCE_SCHEMA.STRING_VALUE'
IN TYPEOF(val));

IF (SIZEOF(translated_values) <> 0)
THEN

IF (SIZEOF(not_translated_values) <> 0)
THEN

RETURN(FALSE);
ELSE

RETURN(same_translations(translated_values));
END_IF;

ELSE

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 151

RETURN(UNKNOWN);
END_IF;

END_FUNCTION; -- same_translations_for_string_values
(*

8.4.15 Same_translations_for_table_extension function

The same_translations_for_table_extension returns TRUE if, for each tuple that defines the table
content, the same translation is used for defining the possible translated_string_values. Otherwise it
returns FALSE.

EXPRESS specification:

*)
FUNCTION same_translations_for_table_extension(

content: LIST[1:?] OF column): BOOLEAN;
LOCAL

translated_values: SET OF translated_string_value := [];
END_LOCAL;

REPEAT i := 1 to SIZEOF(content[1].values);
translated_values :=

get_translated_string_values_of_tuple(content, i);
IF NOT(same_translations(translated_values))
THEN

RETURN(FALSE);
END_IF;

END_REPEAT;

RETURN(TRUE);

END_FUNCTION; -- same_translations_for_table_extension
(*

8.4.16 Get_translated_string_values_of_tuple function

The get_translated_string_values_of_tuple computes the set of translated_string_values that
appear in the content list of columns for the tuple located at the index position.

EXPRESS specification:

*)
FUNCTION get_translated_string_values_of_tuple(

content: LIST[1:?] OF column; index: INTEGER):
SET OF translated_string_value;

LOCAL
translated_values: SET OF translated_string_value := [];

END_LOCAL;

IF (index > SIZEOF(content[1].values)) -- abnormal case
THEN

RETURN([]);

ISO 13584-24:2003(E)

152 © ISO 2003 – All rights reserved

END_IF;

REPEAT i := 1 TO SIZEOF(content);
IF ('ISO13584_INSTANCE_RESOURCE_SCHEMA.TRANSLATED_STRING_VALUE'

IN TYPEOF(content[i].values[index]))
THEN

translated_values := translated_values +
content[i].values[index];

END_IF;
END_REPEAT;

RETURN(translated_values);

END_FUNCTION; -- get_translated_string_values_of_tuple
(*

*)
END_SCHEMA; --ISO13584_table_resource_schema
(*

9 ISO13584_variable_semantics_schema

This clause defines the requirements for the ISO13584_variable_semantics_schema. The following
EXPRESS declaration introduces the ISO13584_variable_semantics_schema block and identifies
the necessary external references.

EXPRESS specification:

*)
SCHEMA ISO13584_variable_semantics_schema;

REFERENCE FROM ISO13584_IEC61360_dictionary_schema
(property_BSU);

REFERENCE FROM ISO13584_generic_expressions_schema
(variable_semantics);

REFERENCE FROM ISO13584_library_expressions_schema
(compatible_type_and_library_expression,
syntax_of);

REFERENCE FROM ISO13584_extended_dictionary_schema
(applicable_properties,
data_type_typeof,
data_type_class_of);

(*

NOTE The schemas referenced above can be found in the following documents:
ISO13584_IEC61360_dictionary_schema IEC 61360-2

(which is duplicated for convenience in informative annex D of ISO 13584-42),
ISO13584_generic_expressions_schema ISO 13584-20,

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 153

ISO13584_library_expressions_schema This part of ISO 13584,
ISO13584_extended_dictionary_schema This part of ISO 13584.

9.1 Introduction to the ISO13584_variable_semantics_schema

The role of the ISO13584_variable_semantics_schema is to provide the resources for referencing
the current values of the various items that characterise an instance of a class modelled according to
ISO13584_IEC61360_dictionary_schema, or its extensions defined in the
ISO13584_extended_dictionary_schema.

The ISO13584_variable_semantics_schema models:

— the variable_semantics that provides access to instance characteristics: class names, codes and
versions, property names, code, version and value of property types that may be defined using the
common ISO13584_IEC61360_dictionary_schema;

— the mechanism that provides access from an operation to the properties of an instance the
operation applies to;

— the mechanism that provides access from a method to the view created by the method;

— the fact that the type of the variables that substitutes for the values defined by these mechanisms
are compatible with the data type of these values.

The ISO13584_variable_semantics_schema does not model:

— the use of these variable_semantics to model the class instance operations.

9.2 Fundamental concepts and assumptions for the
ISO13584_variable_semantics_schema

9.2.1 Instance related operation

In the object oriented framework, instances are modelled through properties and operations.

EXAMPLE 1 In the EXPRESS language, derivation functions are examples of operations that apply to
instances.

Operations always apply to one instance, usually called the SELF instance: they access the properties
of the SELF instance.

Specific mechanisms are required to represent, within the context of one operation, the properties of
the SELF instance.

EXAMPLE 2 In the EXPRESS language, access to the SELF instance is denoted by the "SELF" notation.

9.2.2 Instance structure

An instance may consist of other instances, referred to by means of properties of this instance.

NOTE Such a relationship is called a composition relationship.

It shall be possible, from an operation, to access to the properties of the instances constituting the
SELF instance.

EXAMPLE In programming languages, access to the attribute of some attribute is denoted by the "dot"
notation.

ISO 13584-24:2003(E)

154 © ISO 2003 – All rights reserved

9.2.3 Context of a method

In ISO 13584, views are created by the models' methods.

Specific mechanisms are required to represent, within the context of a method, the properties of the
view created by this method.

9.3 ISO13584_variable_semantics_schema type definition

This clause defines the type resources in the ISO13584_variable_semantics_schema.

9.3.1 Property_semantics_or_path

A property_semantics_or_path is either a property_semantics, or a sub_property_path.

EXPRESS specification:

*)
TYPE property_semantics_or_path = SELECT(

property_semantics,
sub_property_path);

END_TYPE; -- property_semantics_or_path
(*

9.4 ISO13584_variable_semantics_schema entity definitions

This clause defines the entity data types in the ISO13584_variable_semantics_schema.

9.5 Property_semantics

A property_semantics is a variable_semantics that allows the reference to a feature of a property of
a class instance, or when the value of a property is itself a class instance, the reference to a feature of
a property of the value of this property, and so on. The property features that may be referenced are
either their value, or any of the pieces of information used to identify the property. When associated
with a generic_variable, such a property_semantics stands for the interpretation function that
associates the relevant feature of the property with the generic_variable.

EXAMPLE Let x be a particular screw modelled as an instance of a component_class that models a family
of screws. The threaded diameter of x may be modelled by a property_semantics that represents the feature of
this property that is its current value. When a numeric_variable, associated with this property_semantics by
an environment, is involved as an operand of an expression, this numeric_variable stands for this current
value, is to be used as the value of the operand when the expression is evaluated.

NOTE 1 The feature of the threaded diameter represented by the property_semantics is characterised by
subtyping of the property_semantics. The data type of the value of this feature is characterised by subtyping
the associated generic_variable. Such a data type could be a STRING for a name, or a REAL for a value.

NOTE 2 expression, variable_semantics, numeric_variable, generic_variable and environment are
defined in ISO 13584-20: 1998.

EXPRESS specification:

*)
ENTITY property_semantics
ABSTRACT SUPERTYPE OF(ONEOF(

self_property_semantics,

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 155

open_view_property_semantics))
SUBTYPE OF(variable_semantics);

the_property: property_BSU;
its_own_property: OPTIONAL sub_property_path;

WHERE
WR1: check_property_semantics(SELF);

END_ENTITY; -- property_semantics
(*

Attribute definitions:

the_property: the property_BSU that defines the property of the instance that corresponds to the
property_semantics.

its_own_property: when the_property is itself a class instance, the referred property of this instance.

Formal propositions:

WR1: either its_own_property does not exist, or the_property is a class instance and
its_own_property is an applicable_properties of this class instance.

Informal propositions:

IP1: the_property shall be an applicable property for the class to which the instance belongs.

9.6 Sub_property_path

The sub_property_path entity provides for referencing recursively a property of a property that is a
class instance.

EXAMPLE A bolt + nut assembly may have one property that points to the nut. The sub_property_path
entity allows to identify any property of this nut, for instance its threaded diameter.

NOTE 1 The role of a sub_property_path entity is to give precision to the final instance property referred
to by a property_semantics entity. Only one of these latter entities may be used within an operation definition.
The sub_property_path entities enable specification of the "path" that defines the property finally addressed.

NOTE 2 The sub_property_path entity enables representing the dot notation used in data specification
and in programming languages.

EXPRESS specification:

*)
ENTITY sub_property_path;

the_property: property_BSU;
its_own_property: OPTIONAL sub_property_path;

WHERE
WR1: (NOT(EXISTS(SELF.its_own_property)))

OR (data_type_typeof(SELF.the_property) = [])
OR
(('ISO13584_IEC61360_DICTIONARY_SCHEMA.CLASS_INSTANCE_TYPE'
IN data_type_typeof(SELF.the_property))
AND applicable_properties(data_type_class_of(
SELF.the_property)[1],[SELF.its_own_property.the_property]));

ISO 13584-24:2003(E)

156 © ISO 2003 – All rights reserved

END_ENTITY; -- sub_property_path
(*

Attribute definitions:

the_property: the property_BSU that defines the property of the class instance that corresponds to
the sub_property_path.

its_own_property: when the_property is itself a class instance, the referred property of this instance.

Formal propositions:

WR1: either its_own_property does not exist, or the_property is a class instance and
its_own_property is an applicable_properties of this class instance.

9.7 Variable_semantics referring to the SELF entity

The following entities provides for referencing the different features of a class instance from an
operation on this instance.

NOTE These variable_semantics correspond to the SELF notation of data specification or programming
languages.

9.7.1 Self_variable_semantics

A self_variable_semantics is any variable_semantics that refers to the current value of the SELF
instance that supports an operation. It refers either to a property of the SELF instance, or to the class
to which the SELF instance belongs.

EXPRESS specification:

*)
ENTITY self_variable_semantics
ABSTRACT SUPERTYPE OF(ONEOF(

self_property_semantics,
self_class_variable_semantics))

SUBTYPE OF(variable_semantics);
END_ENTITY; -- self_variable_semantics
(*

9.7.2 Self_property_semantics

A self_property_semantics is a variable_semantics that allows the reference to any feature of a
property of the instance that supports an operation, or, when the value of this property is itself a class
instance, the reference to any feature of a property of this class instance, and so on. The feature
referred to is defined by subtyping.

EXPRESS specification:

*)
ENTITY self_property_semantics
ABSTRACT SUPERTYPE OF(ONEOF(

self_property_value_semantics,

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 157

self_property_name_semantics))
SUBTYPE OF(self_variable_semantics, property_semantics);
END_ENTITY; -- self_property_semantics
(*

9.7.3 Self_property_value_semantics

The self_property_value_semantics entity allows the reference to the value of a property of the
instance that supports an operation, or when the value of this property is itself a class instance, the
reference to the value of a property of this class instance, and so on. When a generic_variable, or
any of its subtypes, is associated with a self_property_value_semantics, the type of this
generic_variable shall be compatible with the data type defined for the corresponding property. In the
operation definition, such a generic_variable stands for the current value of the referenced property.

EXPRESS specification:

*)
ENTITY self_property_value_semantics
SUBTYPE OF(self_property_semantics);
WHERE

WR1: QUERY(v <* syntax_of(SELF)
| NOT compatible_type_and_library_expression(
BSU_of_property_semantics(SELF), v)) = [];

END_ENTITY; -- self_property_value_semantics
(*

Formal propositions:

WR1: all the generic_variables that may be associated with a self_property_value_semantics shall
be type-compatible with the final property referenced by this property_semantics.

9.7.4 Self_property_name_semantics

The self_property_name_semantics entity allows reference to the different names of a property of
the instance that supports an operation, or when the value of this property is itself a class instance, the
reference either to the different names that characterize the class to which the current value of the
property belongs or to the different names of a property of this class instance, and so on. The
generic_variables that may be associated with such a variable_semantics shall be
string_variables. In the operation definition, such a string_variable stands for the current value of
the referenced name.

EXPRESS specification:

*)
ENTITY self_property_name_semantics
ABSTRACT SUPERTYPE OF(ONEOF(

self_property_preferred_name_semantics,
self_property_short_name_semantics,
self_property_code_semantics,
self_property_version_semantics,
self_property_class_code_semantics,
self_property_class_supplier_code_semantics,
self_property_class_version_semantics))

ISO 13584-24:2003(E)

158 © ISO 2003 – All rights reserved

SUBTYPE OF(self_property_semantics);
WHERE

WR1: QUERY(v <* syntax_of(SELF)
| NOT('ISO13584_EXPRESSIONS_SCHEMA.STRING_VARIABLE'
IN TYPEOF(v))) = [];

END_ENTITY; -- self_property_name_semantics
(*

Formal propositions:

WR1: only string_variables may be associated to a self_property_name_semantics.

NOTE Following ISO 13584-20, a variable is associated to a variable_semantics by means of an
environment entity.

9.7.4.1 Self_property_preferred_name_semantics

The self_property_preferred_name_semantics entity allows reference to the possibly translated
preferred name of a property of the instance that supports an operation, or when the value of this
property is itself a class instance, the reference to the possibly translated preferred name of a property
of this class instance, and so on. The final value associated to such a variable_semantics is a string
that contains the possibly translated preferred name.

NOTE 1 The interpretation function that selects the language in which the value of such a variable is
expressed is implementation dependent.

EXPRESS specification:

*)
ENTITY self_property_preferred_name_semantics
SUBTYPE OF(self_property_name_semantics);
END_ENTITY; -- self_property_preferred_name_semantics
(*

Informal propositions:

IP1: the value associated with a self_property_preferred_name_semantics shall be a string, the
length of which shall be less than or equal to preferred_name_len specified in ISO 13584-42,
clause D.3.2.

NOTE 2 The value of preferred_name_len is 70 characters.

9.7.4.2 Self_property_short_name_semantics

The self_property_short_name_semantics entity allows reference to the possibly translated short
name of a property of the instance that supports an operation, or when the value of this property is
itself a class instance, the reference to the possibly translated short names of a property of this class
instance, and so on. The final value associated to such a variable_semantics is a string that contains
the possibly translated short name.

NOTE 1 The interpretation function that selects the language in which the value of such a variable is
expressed is implementation dependent.

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 159

EXPRESS specification:

*)
ENTITY self_property_short_name_semantics
SUBTYPE OF(self_property_name_semantics);
END_ENTITY; -- self_property_short_name_semantics
(*

Informal propositions:

IP1: the value associated with a self_property_short_name_semantics shall be a string the length of
which shall be less than or equal to short_name_len specified in ISO 13584-42, clause D.3.2.

NOTE 2 The value of short_name_len is 15 characters.

9.7.4.3 Self_property_code_semantics

The self_property_code_semantics entity allows reference to be made to the code of a property of
the instance that supports an operation, or when the value of this property is itself a class instance, the
reference to the code of a property of this class instance, and so on.. The final value associated to
such a variable_semantics is a string that contains the property code.

EXPRESS specification:

*)
ENTITY self_property_code_semantics
SUBTYPE OF(self_property_name_semantics);
END_ENTITY; -- self_property_code_semantics
(*

Informal propositions:

IP1: the value associated with a self_property_code_semantics shall conform to the
property_code_type specified in ISO 13584-42, clause D.3.8.1.10.

NOTE A property_code_type string value is no more than 14 characters and does not include spaces,
hyphens or dots.

9.7.4.4 Self_property_version_semantics

The self_property_version_semantics entity allows reference to be made to the version of a
property of the instance that supports an operation, or when the value of this property is itself a class
instance, the reference to the version of a property of this class instance, and so on. The final value
associated to such a variable_semantics is a string that contains the property version.

EXPRESS specification:

*)
ENTITY self_property_version_semantics
SUBTYPE OF(self_property_name_semantics);
END_ENTITY; -- self_property_version_semantics
(*

ISO 13584-24:2003(E)

160 © ISO 2003 – All rights reserved

Informal propositions:

IP1: the value associated with a self_property_version_semantics shall conform to the
version_type specified in ISO 13584-42, clause D.3.8.1.18.

NOTE A version_type string value is no more than 9 digits.

9.7.4.5 Self_property_class_code_semantics

The self_property_class_code_semantics entity shall be used only when the value of a property of
the instance that supports an operation is itself a class instance, or when the value of one property of
this class instance is also a class instance, and so on. It allows to refer to the code of the class to
which the current value of the final property referenced by the self_property_variable_semantics
belongs. The final value associated to such a variable_semantics is a string that contains the class
code.

EXPRESS specification:

*)
ENTITY self_property_class_code_semantics
SUBTYPE OF(self_property_name_semantics);
END_ENTITY; -- self_property_class_code_semantics
(*

Informal propositions:

IP1: the value associated with a self_property_class_code_semantics shall conform to the
class_code_type specified in ISO 13584-42, clause D.3.8.1.1.

NOTE A class_code_type string value is no more than 14 characters and does not include spaces,
hyphens or dots.

9.7.4.6 Self_property_class_supplier_code_semantics

The self_property_class_supplier_code_semantics entity shall be used only when the value of a
property of the instance that supports an operation is itself a class instance, or when the value of one
property of this class instance is also a class instance, and so on. It allows to refer to the code of the
supplier of the class to which the current value of the final property referenced by the
self_property_variable_semantics belongs. The final value associated to such a
variable_semantics is a string that contains the supplier code.

EXPRESS specification:

*)
ENTITY self_property_class_supplier_code_semantics
SUBTYPE OF(self_property_name_semantics);
END_ENTITY; -- self_property_class_supplier_code_semantics
(*

Informal propositions:

IP1: the value associated with a self_property_class_supplier_code_semantics shall conform to
the supplier_code_type specified in ISO 13584-42, clause D.3.8.1.14.

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 161

NOTE A supplier_code_type string value is no more than 14 characters and does not include spaces,
hyphens or dots. Its content is defined by ISO 13584-26.

9.7.4.7 Self_property_class_version_semantics

The self_property_class_version_semantics entity shall be used only when the value of a property
of the instance that supports an operation is itself a class instance, or when the value of one property
of this class instance is also a class instance, and so on. It allows to refer to the version of the class to
which the current value of the final property referenced by the self_property_variable_semantics
belongs. The final value associated to such a variable_semantics is a string that contains the class
version.

EXPRESS specification:

*)
ENTITY self_property_class_version_semantics
SUBTYPE OF(self_property_name_semantics);
END_ENTITY; -- self_property_class_version_semantics
(*

Informal propositions:

IP1: the value associated with a self_property_class_version_semantics shall conform to the
version_type specified in ISO 13584-42, clause D.3.8.1.18.

NOTE A version_type string value is no more than 9 digits.

9.7.5 Self_class_variable_semantics

A self_class_variable_semantics is any variable_semantics that refers to a characteristic of the
class to which the SELF instance belongs.

EXPRESS specification:

*)
ENTITY self_class_variable_semantics
ABSTRACT SUPERTYPE OF(self_class_name_semantics)
SUBTYPE OF(self_variable_semantics);
END_ENTITY; -- self_class_variable_semantics
(*

9.7.6 Self_class_name_semantics

A self_class_name_semantics is any variable_semantics that refer to a name of the class to which
the SELF instance belongs

EXPRESS specification:

*)
ENTITY self_class_name_semantics
ABSTRACT SUPERTYPE OF(ONEOF(

self_class_preferred_name_semantics,
self_class_short_name_semantics,
self_class_code_semantics,

ISO 13584-24:2003(E)

162 © ISO 2003 – All rights reserved

self_class_supplier_code_semantics,
self_class_version_semantics))

SUBTYPE OF(self_class_variable_semantics);
WHERE

WR1: SIZEOF(QUERY(v <* syntax_of(SELF) | NOT
('ISO13584_EXPRESSIONS_SCHEMA.STRING_VARIABLE'
IN TYPEOF(v)))) = 0;

END_ENTITY; -- self_class_name_semantics
(*

Formal propositions:

WR1: only string_variables may be associated to a self_class_name_semantics.

NOTE Following ISO 13584-20, a variable is associated to a variable_semantics by means of an
environment entity.

9.7.6.1 Self_class_preferred_name_semantics

The self_class_preferred_name_semantics entity allows reference to the possibly translated
preferred name of the class of the instance that supports an operation. The final value associated to
such a variable_semantics is a string that contains the possibly translated preferred name.

NOTE 1 The interpretation function that selects the language in which the value of such a variable is
expressed is implementation dependent.

EXPRESS specification:

*)
ENTITY self_class_preferred_name_semantics
SUBTYPE OF(self_class_name_semantics);
END_ENTITY; -- self_class_preferred_name_semantics
(*

Informal propositions:

IP1: the value associated with a self_class_preferred_name_semantics shall be a string the length
of which shall be less than or equal to preferred_name_len specified in ISO 13584-42, clause D.3.2.

NOTE 2 The value of preferred_name_len is 70 characters.

9.7.6.2 Self_class_short_name_semantics

The self_class_short_name_semantics entity allows reference to the possibly translated short name
of the class of the instance that supports an operation. The final value associated to such a
variable_semantics is a string that contains the possibly translated short name.

NOTE 1 The interpretation function that selects the language in which the value of such a variable is
expressed is implementation dependent.

EXPRESS specification:

*)
ENTITY self_class_short_name_semantics

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 163

SUBTYPE OF(self_class_name_semantics);
END_ENTITY; -- self_class_short_name_semantics
(*

Informal propositions:

IP1: the value associated with a self_class_short_name_semantics shall be a string the length of
which shall be less than or equal to short_name_len specified in ISO 13584-42, clause D.3.2.

NOTE 2 The value of short_name_len is 15 characters.

9.7.6.3 Self_class_code_semantics

The self_class_code_semantics entity allows reference to the code of the class of the instance that
supports an operation. The final value associated to such a variable_semantics is a string that
contains the class code.

EXPRESS specification:

*)
ENTITY self_class_code_semantics
SUBTYPE OF(self_class_name_semantics);
END_ENTITY; -- self_class_code_semantics
(*

Informal propositions:

IP1: the value associated with a self_class_code_semantics shall conform to the class_code_type
specified in ISO 13584-42, clause D.3.8.1.1.

NOTE A class_code_type string value is no more than 14 characters and does not include spaces,
hyphens or dots.

9.7.6.4 Self_class_supplier_code_semantics

The self_class_supplier_code_semantics entity allows the reference to the code of the supplier of
the class of the instance that supports an operation.

NOTE 1 Such an operation may be a function, a constraint or a method.

The final value associated to such a variable_semantics is a string that contains the supplier code.

EXPRESS specification:

*)
ENTITY self_class_supplier_code_semantics
SUBTYPE OF(self_class_name_semantics);
END_ENTITY; -- self_class_supplier_code_semantics
(*

Informal propositions:

IP1: the value associated with a self_class_supplier_code_semantics shall conform to the
supplier_code_type specified in ISO 13584-42, clause D.3.8.1.14.

ISO 13584-24:2003(E)

164 © ISO 2003 – All rights reserved

NOTE 2 A supplier_code_type string value is no more than 14 characters and does not include spaces,
hyphens or dots. Its content is defined by ISO 13584-26.

9.7.6.5 Self_class_version_semantics

The self_class_version_semantics entity allows reference to the version of the class of the instance
that supports an operation. The final value associated to such a variable_semantics is a string that
contains the class version.

EXPRESS specification:

*)
ENTITY self_class_version_semantics
SUBTYPE OF(self_class_name_semantics);
END_ENTITY; -- self_class_version_semantics
(*

Informal propositions:

IP1: the value associated with a self_class_version variable_semantics shall conform to the
version_type specified in ISO 13584-42, clause D.3.8.1.18.

NOTE A version_type string value is no more than 9 digits.

9.8 Variables referring to the open view characteristics

The following entities may be used within the context of a method to provide access to a view that is
created by the method.

9.8.1 Open_view_variable_semantics

The open_view_variable_semantics is a variable_semantics that enables access to the different
features of a view created by a method.

NOTE Only one subtype of open_view_variable_semantics is defined in the
ISO13584_variable_semantics_schema.

EXPRESS specification:

*)
ENTITY open_view_variable_semantics
ABSTRACT SUPERTYPE OF(open_view_property_semantics)
SUBTYPE OF(variable_semantics);
END_ENTITY; -- open_view_variable_semantics
(*

9.8.2 Open_view_property_semantics

The open_view_property_semantics is a variable_semantics that allows the reference to any
feature of a property of the view that is created by a method, or, when the value of this property is itself
a class instance, the reference to any feature of a property of this class instance, and so on. The
feature referred to is defined by subtyping.

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 165

EXPRESS specification:

*)
ENTITY open_view_property_semantics
ABSTRACT SUPERTYPE OF(open_view_property_value_semantics)
SUBTYPE OF(open_view_variable_semantics, property_semantics);
END_ENTITY; -- open_view_property_semantics
(*

9.8.3 Open_view_property_value_semantics

The open_view_property_value_semantics entity allows the reference he value of a property of the
view that is created by a method, or, when the value of this property is itself a class instance, the
reference he value of a property of this class instance, and so on.

EXPRESS specification:

*)
ENTITY open_view_property_value_semantics
SUBTYPE OF(open_view_property_semantics);
WHERE

WR1: SIZEOF(QUERY(v <* syntax_of(SELF)
| NOT compatible_type_and_library_expression(
BSU_of_property_semantics(SELF), v))) = 0;

END_ENTITY; -- open_view_property_value_semantics
(*

Formal propositions:

WR1: all the generic_variables that may be associated with an
open_view_property_value_semantics shall be type-compatible with the final property referenced
by this property_semantics.

9.9 ISO13584_variable_semantics_schema function definitions

9.9.1 BSU_of_property_semantics function

The BSU_of_property_semantics function computes the property_BSU that defines the final
property of a property_semantics.

EXPRESS specification:

*)
FUNCTION BSU_of_property_semantics(v: property_semantics_or_path):

property_BSU;

LOCAL
prop: property_BSU;

END_LOCAL;

prop := v.the_property;

IF EXISTS(v.its_own_property)

ISO 13584-24:2003(E)

166 © ISO 2003 – All rights reserved

THEN
RETURN(BSU_of_property_semantics(v.its_own_property));

ELSE
RETURN(prop);

END_IF;

END_FUNCTION; -- BSU_of_property_semantics
(*

9.9.2 Check_property_semantics function

The check_property_semantics function checks if either the property_semantics (sem)
its_own_property attribute does not exist, or if the_property is a class instance, and
its_own_property is an applicable_properties of this class instance.

EXPRESS specification:

*)
FUNCTION check_property_semantics(sem: property_semantics): LOGICAL;

LOCAL
res: LOGICAL;

END_LOCAL;

IF (EXISTS(sem.its_own_property)) AND
NOT(data_type_typeof(sem.the_property) = [])

THEN
res := ('ISO13584_IEC61360_DICTIONARY_SCHEMA.CLASS_INSTANCE_TYPE'

IN data_type_typeof(sem.the_property))
AND applicable_properties(data_type_class_of(
sem.the_property)[1], [sem.its_own_property.the_property]);

RETURN(res);
ELSE

RETURN(UNKNOWN);
END_IF;

END_FUNCTION; -- check_property_semantics
(*

*)
END_SCHEMA; -- ISO13584_variable_semantics_schema
(*

10 ISO13584_domain_resource_schema

This clause defines the requirements for the ISO13584_domain_resource_schema. The following
EXPRESS declaration introduces the ISO13584_domain_resource_schema block and identifies the
necessary external references.

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 167

EXPRESS specification:

*)
SCHEMA ISO13584_domain_resource_schema;

REFERENCE FROM ISO13584_IEC61360_dictionary_schema
(class_BSU,
is_subclass,
list_to_set);

REFERENCE FROM ISO13584_generic_expressions_schema
(generic_variable,
variable_semantics,
used_variables);

REFERENCE FROM ISO13584_expressions_schema
(boolean_expression,
literal_number,
numeric_expression);

REFERENCE FROM ISO13584_library_expressions_schema
(class_instance_expression,
compatible_variable_and_library_expression,
library_expression,
semantics_of,
syntax_of);

REFERENCE FROM ISO13584_table_resource_schema
(collects_columns,
column_traversal_variable_semantics,
table_expression,
table_identification,
used_table_literals);

REFERENCE FROM ISO13584_external_file_schema
(message);

(*

NOTE The schemas referenced above can be found in the following documents:
ISO13584_IEC61360_dictionary_schema IEC 61360-2

(which is duplicated for convenience in informative annex D of ISO 13584-42),
ISO13584_generic_expressions_schema ISO 13584-20,
ISO13584_expressions_schema ISO 13584-20,
ISO13584_instance_resource_schema This part of ISO 13584,
ISO13584_library_expressions_schema This part of ISO 13584,
ISO13584_table_resource_schema This part of ISO 13584,
ISO13584_external_file_schema This part of ISO 13584.

10.1 Introduction to the ISO13584_domain_resource_schema

The role of the ISO13584_domain_resource_schema is to provide the resources for modelling the
set of allowed values that constitutes the domain of a variable in some context. The variables
considered in the ISO13584_domain_resource_schema are those that are specified according to the
ISO13584_library_expressions_schema. They are associated with a variable_semantics that
defines their roles and meanings.

ISO 13584-24:2003(E)

168 © ISO 2003 – All rights reserved

The domain of such a variable may be independent of any other variables, or it may depend on the
values of some other variables. The resources introduced in the
ISO13584_domain_resource_schema enable the characterisation of both kinds of domains. These
resources are generic in nature and can be used for various purposes and in different application
contexts. In this part of ISO 13584, these resources are used in the
ISO13584_library_content_schema to define the extension of a class.

The ISO13584_domain_resource_schema models:

— the mechanisms for modelling the domains that constitute the allowed set of values for one, or
several variables;

— the mechanisms for modelling how the domain of some variable is dependent on the value of
some other variables,

EXAMPLE 1 The resources defined in the ISO13584_domain_resource_schema may be used within a screw
family to model what diameters are allowed for a screw that has the length defined.

NOTE 1 In the EXPRESS language, such a relationship would be modelled by a constraint.

— the mechanisms to model how the values of one set of variables may be derived from the values
of another set of variables, when there exist some functional dependency from the latter to the
former.

EXAMPLE 2 The resources defined in the ISO13584_domain_resource_schema may be used to model the
derivation function that enables the system to compute the value of the area of a rectangle from its length and its
width.

NOTE 2 In the EXPRESS language, such a relationship would be modelled by a derivation function.

The ISO13584_domain_resource_schema does not model:

— the use of the resources defined in this schema to express relationships between different
properties referring to the same product or part.

NOTE 3 The resource constructs defined in the ISO13584_domain_resource_schema are used in the
ISO13584_library_content_schema to model both the allowed sets of values of the properties of a family of
parts and the derivation functions that enable the derivation of the values of some properties from the values of
the identification characteristics of such a family.

10.2 Fundamental concepts and assumption for the
ISO13584_domain_resource_schema

Two different mathematical concepts provide for expressing relationships between the values of two
different sets of variables. The more general concept is the one of mathematical relation: the tuple
formed by the ordered list of values of the different variables shall belong to a set of tuples that may
depend on the values of the other variables. Such a relationships is called a relational dependency
between both sets of variables.

An important special case of relation corresponds with the concept of function: when the values of the
variables belonging to the first set are defined, the values of the variables belonging to the second set
are fixed. They may be computed by a system if the specification of the function is available. Such a
relationship is usually called a functional dependency. A functional dependency is a special case of
relational dependency where the allowed set of values degenerates to a singleton and where the
relation that shall hold between two sets of variables degenerates to a function.

When the domain of some variable depends on the values of some other variables, both sets of
variables need to be characterised differently to capture the role they play in the relation. In particular,
when the relation is a function, the variables that define the domain of the function play a different role
from the ones that define its range. In the ISO13584_domain_resource_schema, the variables that

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 169

are supposed to be assigned a value independently of the relation are referenced by the assumes
attribute. The variables of which the values are intended to be restricted by the relation, or computed
by the function, are defined by the defines attribute. When all the variables play the same role with
respect to the relation, they shall all be referenced by the defines attribute, and the assumes attribute
shall be an empty set.

Various means may be used to express a relation, or a function. In the
ISO13584_domain_resource_schema, the same mathematical relation may be associated with
different information models, each one defining a part of the complete relation. Each of these
information models is associated with a predicate, called its guard that is either a
boolean_expression or a specific others entity. When a guard evaluates to TRUE, the specific
information model associated with this guard defines the relation. When several guards evaluate to
TRUE, any one of the information models associated with one of these guards may be considered as
representing the relation, or the function. When no guard evaluates to TRUE, the information model
associated with others defines the relation. The other guard shall always exist. This ensures that the
relation, or the function, is always defined, as a total function.

In the ISO13584_domain_resource_schema the information models used to express a function are
the following:

— a table, of which the assumes attributes includes the table key,

— an expression, and

— a function that specifies that a variable has no value.

The latter information model may be used to specify that a property, defined as optional in some
application context, does not exist. All these specifications are constructive, i.e., from the specification
it is possible to compute the result of the function.

When several properties belong to the defines set, only tables may be used to define the function:
each variable semantics in the defines set shall correspond to one column of the corresponding
tables and all the properties belonging to the defines set shall take a value that corresponds to the
same line of the table.

The information models used to express a relation are:

— a table,

— a range,

— a type, in a subclass/superclass network, and

— a predicate defined relation.

The three first specifications are constructive, i.e., from the specification it is possible to compute the
domain that results from the relation. The last specification is not constructive. It may be used, to filter
some other domain, or to assert that some constraint shall hold.

Only tables and predicate defined relation shall be used when the defines set contains several
variable_semantics.

10.3 ISO13584_domain_resource_schema type definition

This subclause contains the EXPRESS type definition in the ISO13584_domain_resource_schema.

10.3.1 Boolean_expression_or_others

A boolean_expression_or_others is either a boolean_expression or an others entity.

ISO 13584-24:2003(E)

170 © ISO 2003 – All rights reserved

EXPRESS specification:

*)
TYPE boolean_expression_or_others = SELECT(

boolean_expression,
others);

END_TYPE; -- boolean_expression_or_others
(*

10.4 ISO13584_domain_resource_schema entity definitions

This subclause contains the EXPRESS entity definition in the ISO13584_domain_resource_schema.

10.4.1 Others

An others entity specifies the domain that shall be used when no guard evaluates to TRUE in a
domain_restriction.

EXPRESS specification:

*)
ENTITY others;
END_ENTITY; -- others
(*

10.4.2 Domain_restriction

A domain_restriction defines the domain of the variables that may be associated with the
variable_semantics belonging to the defines set, according to the values that are associated with
each variable_semantics of the assumes set. A domain_restriction models a relational
dependency between two sets of variables. This relational dependency may be a functional
dependency modelled as a functional_domain_restriction subtype.

A domain_restriction may be defined by means of tables. The table_identifiers of the tables used in
the specification of the domain are collected in the base_tables derived attribute.

EXPRESS specification:

*)
ENTITY domain_restriction
SUPERTYPE OF(functional_domain_restriction);

defines: SET[1:?] OF variable_semantics;
assumes: SET[0:?] OF variable_semantics;
domains: SET[1:?] OF guarded_simple_domain;
constraint_description: OPTIONAL message;

DERIVE
base_tables: SET [0:?] OF table_identification

:= used_tables_in_domain(SELF);
WHERE

WR1: SIZEOF(QUERY(g <* SELF.domains |
'ISO13584_DOMAIN_RESOURCE_SCHEMA.OTHERS'
IN TYPEOF(g.guard))) = 1;

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 171

END_ENTITY; -- domain_restriction
(*

Attribute definitions:

defines: the set of variable_semantics for which the domain is defined.

assumes: the set of variable_semantics whose associated values are required to evaluate the
domain.

domains: the set of guarded_simple_domains corresponding to the different parts of the domain
according to the values associated with the assumes variable_semantics.

constraint_description: a possibly translated message that defines textually the constraint defined by
the domain_restriction.

NOTE This message is intended to be displayed in some application context when the constraint is only
checked by the system after the user selection (see clause 12.6.9 filters in implicit_model_class_extension).

base_tables: the table_identifiers of the tables used in the specification of the domain.

Formal propositions:

WR1: there shall always be one guard defined as others.

10.4.3 Guarded_simple_domain

A guarded_simple_domain is a domain that is associated with a guard that specifies whether this
domain is allowed for use.

EXPRESS specification:

*)
ENTITY guarded_simple_domain;

guard: boolean_expression_or_others;
domain: simple_domain;

INVERSE
item_of: domain_restriction FOR domains;

WHERE
WR1: variables_belong_to_assumes(SELF);

END_ENTITY; -- guarded_simple_domain
(*

Attribute definitions:

guard: the boolean_expression that specifies whether the domain applies.

domain: the domain that may be used if the guard evaluates to TRUE. In case of several guards
evaluating to TRUE, any simple_domain of which the guard evaluates to TRUE shall define the right
domain.

item_of: the domain_restriction that contains the guarded_simple_domain.

ISO 13584-24:2003(E)

172 © ISO 2003 – All rights reserved

Formal propositions:

WR1: only variables that are associated with the variable_semantics of the assumes set of a
domain_restriction may be used to define the guards of its guarded_simple_domains.

10.4.4 Simple_domain

A simple_domain entity specifies the domain of values for the set of variables associated with a set of
variable semantics.

EXPRESS specification:

*)
ENTITY simple_domain
ABSTRACT SUPERTYPE OF(ONEOF(table_defined_domain,

type_defined_domain,
subclass_defined_domain,
constant_range_defined_domain,
variable_range_defined_domain,
predicate_defined_domain,
simple_functional_domain));

INVERSE
referenced_by: guarded_simple_domain FOR domain;

END_ENTITY; -- simple_domain
(*

Attribute definitions:

referenced_by: the guarded_simple_domain that references the simple_domain.

10.4.5 Table_defined_domain

A table_defined_domain entity is a domain specified by means of a table_expression. All the
variable_semantics of the defines set shall correspond to one column in the table. This column
defines the domain of the corresponding variable, and all the variables shall take their values in the
same row of the table. If some variable_semantics of the assumes set correspond to an entry in the
appropriate table column, the rest of this row in the table shall equal the current values of the variables
corresponding to these variable_semantics.

NOTE The fact that all the variable_semantics in the defines attribute shall take their values in the
same row of the table define a relation between these variable_semantics.

EXPRESS specification:

*)
ENTITY table_defined_domain
SUBTYPE OF(simple_domain);

from_table: table_expression;
WHERE

WR1: SELF\simple_domain.referenced_by.item_of.defines
<= list_to_set(collects_columns(SELF.from_table));

WR2: QUERY(sem <* collects_var_sem(
used_variables(SELF.from_table))

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 173

| NOT((sem IN
(SELF\simple_domain.referenced_by.item_of.assumes
+ SELF\simple_domain.referenced_by.item_of.defines))
OR ((('ISO13584_TABLE_RESOURCE_SCHEMA'
+ '.COLUMN_TRAVERSAL_VARIABLE_SEMANTICS')
IN TYPEOF(sem))) AND
(sem\column_traversal_variable_semantics.domain
IN collects_columns(SELF.from_table)))) = [];

END_ENTITY; -- table_defined_domain
(*

Attribute definitions:

from_table: the table_expression of which rows define the domain of the
SELF\simple_domain.referenced_by.item_of.defines variables.

Formal propositions:

WR1: each SELF\simple_domain.referenced_by.item_of.defines variable_semantics shall belong
to the set of variable_semantics that corresponds to the columns of the table_expression.

WR2: the used_variables in the table_expression shall belong to the set of variables associated with
the SELF\simple_domain.referenced_by.item_of.defines variable_semantics or to the
SELF\simple_domain.referenced_by.item_of.assumes variable_semantics, or they shall be
column iterators associated with column_traversal_variable_semantics that reference one of the
columns of the tables involved in the from_table table_expression.

10.4.6 Type_defined_domain

A type_defined_domain entity is a domain that is the complete set of values associated with the data
type of the defines variable_semantics.

EXPRESS specification:

*)
ENTITY type_defined_domain
SUBTYPE OF(simple_domain);
WHERE

WR1: SIZEOF(SELF\simple_domain.referenced_by
.item_of.defines) = 1;

END_ENTITY; -- type_defined_domain
(*

Formal propositions:

WR1: this entity shall define the domain of only one variable_semantics.

10.4.7 Subclass_defined_domain

A subclass_defined_domain entity defines the domain of one or several variables, whose data types
are class_instance_types as a class. This class shall be a subclass of the classes declared as their
data types by the variables associated with the
SELF\simple_domain.referenced_by.item_of.defines variables_semantics.

ISO 13584-24:2003(E)

174 © ISO 2003 – All rights reserved

EXPRESS specification:

*)
ENTITY subclass_defined_domain
SUBTYPE OF(simple_domain);

from_class: class_BSU;
WHERE

WR1: SIZEOF(SELF\simple_domain.referenced_by.item_of.defines)
= 1;

WR2: QUERY(va <* collects_variables(
SELF\simple_domain.referenced_by.item_of.defines)
| NOT('ISO13584_LIBRARY_EXPRESSIONS_SCHEMA'
+ '.CLASS_INSTANCE_VARIABLE' IN TYPEOF(va))) = [];

WR3: QUERY(va <* collects_variables(
SELF\simple_domain.referenced_by.item_of.defines)
| NOT is_subclass(SELF.from_class.definition[1],
va\class_instance_expression.expr_type.definition[1])) = [];

END_ENTITY; -- subclass_defined_domain
(*

Attribute definitions:

from_class: the class that defines the domain of the variables associated with the
SELF\simple_domain.referenced_by.item_of.defines variable_semantics.

Formal propositions:

WR1: this entity shall define the domain of only one variable_semantics.

WR2: the variables of which the domain is defined shall be class_instance_variables.

WR3: this class shall be a subclass of the class declared as its data type by the variable associated
with the SELF\simple_domain.referenced_by.item_of.defines variable_semantics.

10.4.8 Constant_range_defined_domain

A constant_range_defined_domain entity is a domain that is defined by its low bound, high bound
and interval between allowed values. All of these attributes are expressed as literal numbers. This
range includes its bounds if they belong to the data type of the variable.

If the step between allowed values does not exist, the whole set of values belonging to the data type of
the variables and that are between the low bound and high bound are allowed.

EXPRESS specification:

*)
ENTITY constant_range_defined_domain
SUBTYPE OF(simple_domain);

minimal: literal_number;
maximal: literal_number;
step: OPTIONAL literal_number;

WHERE

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 175

WR1: SIZEOF(SELF\simple_domain.referenced_by.item_of.defines)
= 1;

WR2: minimal.the_value <= maximal.the_value;
WR3: QUERY(va <* collects_variables(

SELF\simple_domain.referenced_by.item_of.defines) | NOT
('ISO13584_EXPRESSIONS_SCHEMA.NUMERIC_VARIABLE'
IN TYPEOF(va))) = [];

WR4: (NOT EXISTS(SELF.step)) OR (SELF.step.the_value > 0);
END_ENTITY; -- constant_range_defined_domain
(*

Attribute definitions:

minimal: the value that corresponds to the low bound of the range that defines the domain of the
variable associated with the SELF\simple_domain.referenced_by.item_of.defines
variable_semantics.

maximal: the value that corresponds to the high bound of the range that defines the domain of the
variable associated with the SELF\simple_domain.referenced_by.item_of.defines
variable_semantics.

step: the value that corresponds to the difference between two allowed values of the variable
associated with the SELF\simple_domain.referenced_by.item_of.defines variable_semantics, the
first allowed value being minimal.

Formal propositions:

WR1: this entity shall define the domain of only one variable_semantics.

WR2: the minimal value shall be less or equal to the maximal value.

WR3: the variable associated with the SELF\simple_domain.referenced_by.item_of.defines
variable_semantics shall be a numeric_variable.

WR4: the step value shall be a positive value.

10.4.9 Variable_range_defined_domain

A variable_range_defined_domain entity is a domain that is defined by its low bound, high bound
and interval between allowed values. All of these attributes are expressed as numeric expressions.
This range includes its bounds if they belong to the data type of the variable.

If the step between allowed values does not exist, the whole set of values belonging to the type of the
variable and that are between the low bound and high bound are allowed.

EXPRESS specification:

*)
ENTITY variable_range_defined_domain
SUBTYPE OF(simple_domain);

minimal: numeric_expression;
maximal: numeric_expression;
step: OPTIONAL numeric_expression;

WHERE

ISO 13584-24:2003(E)

176 © ISO 2003 – All rights reserved

WR1: SIZEOF(SELF\simple_domain.referenced_by.item_of.defines)
= 1;

WR2: collects_var_sem(used_variables(SELF.minimal)
+ used_variables(SELF.maximal))
<= SELF\simple_domain.referenced_by.item_of.assumes;

WR3: NOT(EXISTS(SELF.step)) OR
(collects_var_sem(used_variables(SELF.step))
<= SELF\simple_domain.referenced_by.item_of.assumes);

WR4: QUERY(va <* collects_variables
(SELF\simple_domain.referenced_by.item_of.defines)
| NOT('ISO13584_EXPRESSIONS_SCHEMA.NUMERIC_VARIABLE'
IN TYPEOF(va))) = [];

END_ENTITY; -- variable_range_defined_domain
(*

Attribute definitions:

minimal: the value that corresponds to the low bound of the range that defines the domain of
variables associated with the SELF\simple_domain.referenced_by.item_of.defines
variable_semantics.

maximal: the value that corresponds to the high bound of the range that defines the domain of the
variables associated with the SELF\simple_domain.referenced_by.item_of.defines
variable_semantics.

step: the value that corresponds to the difference between two allowed values of the variables
associated with the SELF\simple_domain.referenced_by.item_of.defines variable_semantics, the
first allowed value being minimal.

Formal propositions:

WR1: this entity shall define the domain of only one variable_semantics.

WR2: the used_variables in the numeric_expressions that define the low bound and the high bound
shall belong to the set of variables associated with the
SELF\simple_domain.referenced_by.item_of.assumes variable_semantics.

WR3: the used_variables in the numeric_expressions that defines the step, when it exists, shall
belong to the set of variables associated with the
SELF\simple_domain.referenced_by.item_of.assumes variable_semantics.

WR4: the variable associated with the SELF\simple_domain.referenced_by.item_of.defines
variable_semantics shall be a numeric_variable.

Informal propositions:

IP1: the step expression shall evaluate to a positive value.

IP2: the value of the minimal expression shall be less or equal to the value of the maximal
expression.

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 177

10.4.10 Predicate_defined_domain

A predicate_defined_domain enables one to specify constraints between a set of variables that shall
evaluate to TRUE for any allowed set of values of these variables. Such simple_domains enable
further restriction on the domains defined constructively using the previous simple_domain subtypes.

EXPRESS specification:

*)
ENTITY predicate_defined_domain
SUBTYPE OF(simple_domain);

constraint: boolean_expression;
WHERE

WR1: collects_var_sem(used_variables(SELF.constraint))
<= SELF\simple_domain.referenced_by.item_of.defines +
SELF\simple_domain.referenced_by.item_of.assumes;

END_ENTITY; -- predicate_defined_domain
(*

Attribute definitions:

constraint: the boolean_expression that shall evaluate to TRUE for any allowed set of values of the
variables associated with the SELF\simple_domain.referenced_by.item_of.defines and
SELF\simple_domain.referenced_by.item_of.assumes variable_semantics.

Formal propositions:

WR1: the variables used in the constraint expression shall correspond to variables associated with
the SELF\simple_domain.referenced_by.item_of.defines and
SELF\simple_domain.referenced_by.item_of.assumes variables_semantics.

10.4.11 Functional_domain_restriction

A functional_domain_restriction is a subtype of a simple_domain that defines a domain that
degenerates into one singleton. The role of such a domain is to specify that the values of the variables
associated with the defines attribute of a domain_restriction may be automatically computed by a
system when the value associated with the assumes attribute of this domain_restriction are fixed.

When a functional_domain_restriction consists of several guarded_domains, each one shall be a
guarded_functional_domain.

EXPRESS specification:

*)
ENTITY functional_domain_restriction
SUBTYPE OF(domain_restriction);

SELF\domain_restriction.domains:
SET[1:?] OF guarded_functional_domain;

END_ENTITY; -- functional_domain_restriction
(*

ISO 13584-24:2003(E)

178 © ISO 2003 – All rights reserved

Attribute definitions:

domains: the set of guarded_functional_domains that specify the different parts of the domain.

10.4.12 Guarded_functional_domain

A guarded_functional_domain is a guarded_simple_domain whose domain attribute evaluates to
a singleton. This singleton is specified by means of a simple_functional_domain.

EXPRESS specification:

*)
ENTITY guarded_functional_domain
SUBTYPE OF(guarded_simple_domain);

SELF\guarded_simple_domain.domain: simple_functional_domain;
END_ENTITY; -- guarded_functional_domain
(*

Attribute definitions:

SELF\guarded_simple_domain.domain: the function that may be used if the guard evaluates to
TRUE. In the case of several guards evaluating to TRUE, any simple_functional_domain of which
the guard evaluates to TRUE shall define the domain.

10.4.13 Simple_functional_domain

A simple_functional_domain defines a domain for variable(s) as a singleton of which the value is
specified as a function. The expression of the function is constructive. Therefore the value of this
variable may be computed by some software system as soon as the variables involved in the domain
of the function are assigned a value.

NOTE The concept of simple_functional_domain enables specification that some functional
dependencies exist between two sets of variables. When this resource is used in some information model, it
shall specify whether the function shall be evaluated as soon as the variables of its domain are assigned a
value.

EXPRESS specification:

*)
ENTITY simple_functional_domain
ABSTRACT SUPERTYPE OF(ONEOF(

library_expression_defined_value,
table_defined_value,
null_defined_value))

SUBTYPE OF(simple_domain);
END_ENTITY; -- simple_functional_domain
(*

10.4.14 Library_expression_defined_value

A library_expression_defined_value is a simple_functional_domain that contains one unique
value that is defined by a library_expression. Such a simple_functional_domain may be used to
define the derivation function that specifies the value of any variable of which data type belongs to one
of the data types defined for properties in the ISO13584_IEC61360_dictionary_schema.

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 179

EXPRESS specification:

*)
ENTITY library_expression_defined_value
SUBTYPE OF(simple_functional_domain);

its_value: library_expression;
WHERE

WR1: SIZEOF(SELF\simple_domain.referenced_by.item_of.defines)
= 1;

WR2: QUERY(va <* collects_variables
(SELF\simple_domain.referenced_by.item_of.defines)
| NOT compatible_variable_and_library_expression
(va, SELF.its_value)) = [];

WR3: collects_var_sem(used_variables(SELF.its_value))
<= SELF\simple_domain.referenced_by.item_of.assumes;

END_ENTITY; -- library_expression_defined_value
(*

Attribute definitions:

its_value: the library_expression that specifies the unique value of the domain of the variables
associated with the SELF\simple_domain.referenced_by.item_of.defines variable_semantics.

Formal propositions:

WR1: this entity shall define the value of only one variable_semantics.

WR2: the type of the library_expression shall be compatible with the type of the library_variable
associated with the SELF\simple_domain.referenced_by.item_of.defines variable_semantics.

WR3: all the variable_semantics associated to a variable in the its_value expression shall belong to
SELF\simple_domain.referenced_by.item_of.assumes set.

10.4.15 Table_defined_value

A table_defined_value is a simple_functional_domain that contains one unique tuple value, a tuple,
that is defined by a line of a table_expression. The line of the table_expression is specified by the
values of the SELF\simple_domain.referenced_by.item_of.assumes set of variable_semantics
that shall include the key of the table.

EXPRESS specification:

*)
ENTITY table_defined_value
SUBTYPE OF(simple_functional_domain);

from_table: table_expression;
WHERE

WR1: SELF\simple_domain.referenced_by.item_of.defines
<= list_to_set(SELF.from_table\table_expression.its_columns);

WR2: SELF\simple_domain.referenced_by.item_of.assumes
>= SELF.from_table\table_expression.the_key;

WR3: QUERY(sem <* collects_var_sem(
used_variables(SELF.from_table))

ISO 13584-24:2003(E)

180 © ISO 2003 – All rights reserved

| NOT((sem IN
(SELF\simple_domain.referenced_by.item_of.assumes
+ SELF\simple_domain.referenced_by.item_of.defines))
OR ((('ISO13584_TABLE_RESOURCE_SCHEMA'
+ '.COLUMN_TRAVERSAL_VARIABLE_SEMANTICS')
IN TYPEOF(sem))) AND
(sem\column_traversal_variable_semantics.domain
IN collects_columns(from_table)))) = [];

END_ENTITY; -- table_defined_value
(*

Attribute definitions:

from_table: the table_expression that defines the table that specifies the domain.

Formal propositions:

WR1: the variable_semantics defined in the SELF\simple_domain.referenced_by.item_of.defines
attribute shall belong to the columns of the table, i.e., to its
SELF.from_table\table_expression.its_columns attribute.

WR2: the variable_semantics defined in the
SELF\simple_domain.referenced_by.item_of.assumes attribute shall contain the key of table
defined by the SELF.from_table\table_expression.the_key attribute.

WR3: the used_variables in the table_expression shall belong to the set of variables associated with
the SELF\simple_domain.referenced_by.item_of.defines variable_semantics or to the
SELF\simple_domain.referenced_by.item_of.assumes variable_semantics, or they shall be
column iterators associated with column_traversal_variable_semantics that reference one of the
columns of the tables involved in the from_table table_expression.

10.4.16 Null_defined_value

A null_defined_value indicates that no value may be assigned to a variable.

NOTE A null_defined_value shall only be used when the value associated with a variable_semantics
is defined as optional. When a null_defined_value defines the domain of a variable, any variable associated
with this variable_semantics shall not have any value.

EXAMPLE In the ISO13584_library_content_schema a property may be defined as optional. If the domain
associated with such a property is a null_defined_value, the meaning is that the property does not exist.

EXPRESS specification:

*)
ENTITY null_defined_value
SUBTYPE OF(simple_functional_domain);
WHERE

WR1: SIZEOF(SELF\simple_domain.referenced_by.item_of.defines)
= 1;

END_ENTITY; -- null_defined_value
(*

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 181

Formal propositions:

WR1: this entity shall define the value of only one variable_semantics.

10.5 ISO13584_domain_resource_schema function definitions

This subclause contains the EXPRESS function definitions in the
ISO13584_domain_resource_schema.

10.5.1 Collects_variables function

The collects_variables function collects all the generic_variables associated with a list of
variable_semantics. It uses the defined function syntax_of defined in the
ISO13584_library_expressions_schema.

EXPRESS specification:

*)
FUNCTION collects_variables(v_sem: AGGREGATE OF variable_semantics):

SET OF generic_variable;

LOCAL
l: SET OF generic_variable := [];

END_LOCAL;

REPEAT i := 1 TO SIZEOF(v_sem);
l := l + syntax_of(v_sem[i]);

END_REPEAT;

RETURN(l);

END_FUNCTION; -- collects_variables
(*

10.5.2 Collects_var_sem function

The collects_var_sem function collects all the variable_semantics associated with a list of
generic_variables. It uses the function semantics_of defined in
ISO13584_library_expressions_schema.

EXPRESS specification:

*)
FUNCTION collects_var_sem(va: AGGREGATE OF generic_variable):

SET OF variable_semantics;

LOCAL
l: SET OF variable_semantics := [];

END_LOCAL;

REPEAT i := 1 TO SIZEOF(va);
l := l + semantics_of(va[i]);

END_REPEAT;

ISO 13584-24:2003(E)

182 © ISO 2003 – All rights reserved

RETURN(l);

END_FUNCTION; -- collects_var_sem
(*

10.5.3 Used_tables_in_domain function

The used_tables_in_domain function performs a traversal of the whole expression graph and returns
the table_identifications of all the table_literal used.

EXPRESS Specification:

*)
FUNCTION used_tables_in_domain(arg: domain_restriction):

SET OF table_identification;

LOCAL
result: SET OF table_identification := [];

END_LOCAL;

REPEAT i := 1 TO SIZEOF(arg.domains);
IF ('ISO13584_EXPRESSIONS_SCHEMA.BOOLEAN_EXPRESSION'

IN TYPEOF(arg.domains[i].guard))
THEN

result := result + used_table_literals
(arg.domains[i].guard);

END_IF;

IF ('ISO13584_DOMAIN_RESOURCE_SCHEMA.TABLE_DEFINED_DOMAIN'
IN TYPEOF(arg.domains[i].domain))

THEN
result := result + used_table_literals

(arg.domains[i].domain\table_defined_domain.from_table);
END_IF;

IF ('ISO13584_DOMAIN_RESOURCE_SCHEMA.PREDICATE_DEFINED_DOMAIN'
IN TYPEOF(arg.domains[i].domain))

THEN
result := result + used_table_literals(
arg.domains[i].domain\predicate_defined_domain.constraint);

END_IF;

IF ('ISO13584_DOMAIN_RESOURCE_SCHEMA'
+'.LIBRARY_EXPRESSION_DEFINED_VALUE' IN TYPEOF(
arg.domains[i].domain))

THEN
result := result + used_table_literals(

arg.domains[i].domain\library_expression_defined_value
.its_value);

END_IF;

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 183

IF ('ISO13584_DOMAIN_RESOURCE_SCHEMA.TABLE_DEFINED_VALUE'
IN TYPEOF(arg.domains[i].domain))

THEN
result := result + used_table_literals

(arg.domains[i].domain\table_defined_value.from_table);
END_IF;

END_REPEAT;

RETURN(result);

END_FUNCTION; -- used_tables_in_domain
(*

10.5.4 Used_variables_in_domain function

The used_variables_in_domain performs a traversal of the whole expression graph and returns the
generic_variables of all the domain_restrictions used.

EXPRESS Specification:

*)
FUNCTION used_variables_in_domain(arg: domain_restriction):

SET OF generic_variable;

LOCAL
result: SET OF generic_variable := [];

END_LOCAL;

REPEAT i := 1 TO SIZEOF(arg.domains);
IF ('ISO13584_EXPRESSIONS_SCHEMA.BOOLEAN_EXPRESSION'

IN TYPEOF(arg.domains [i].guard))
THEN

result := result + used_variables(arg.domains [i].guard);
END_IF;

IF ('ISO13584_DOMAIN_RESOURCE_SCHEMA.TABLE_DEFINED_DOMAIN'
IN TYPEOF(arg.domains [i].domain))

THEN
result := result + used_variables(

arg.domains [i].domain\table_defined_domain
.from_table);

END_IF;

IF ('ISO13584_DOMAIN_RESOURCE_SCHEMA.PREDICATE_DEFINED_DOMAIN'
IN TYPEOF(arg.domains [i].domain))

THEN
result := result + used_variables(

arg.domains[i].domain\predicate_defined_domain
.constraint);

END_IF;

ISO 13584-24:2003(E)

184 © ISO 2003 – All rights reserved

IF ('ISO13584_DOMAIN_RESOURCE_SCHEMA' +
'.LIBRARY_EXPRESSION_DEFINED_VALUE'

IN TYPEOF(arg.domains [i].domain))
THEN

result := result + used_variables(
arg.domains[i].domain\
library_expression_defined_value.its_value);

END_IF;

IF ('ISO13584_DOMAIN_RESOURCE_SCHEMA.TABLE_DEFINED_VALUE'
IN TYPEOF(arg.domains [i].domain))

THEN
result := result + used_variables(

arg.domains [i].domain\table_defined_value.from_table);
END_IF;

END_REPEAT;

RETURN(result);

END_FUNCTION; -- used_variables_in_domain
(*

10.5.5 Variables_belong_to_assumes function

The variables_belong_to_assumes function checks that only variables that are associated with the
variable_semantics of the assumes set of a domain_restriction may be used to define the guards
of its guarded_simple_domains.

EXPRESS Specification:

*)
FUNCTION variables_belong_to_assumes(gsd: guarded_simple_domain):

LOGICAL;

IF ('ISO13584_EXPRESSIONS_SCHEMA.BOOLEAN_EXPRESSION')
IN TYPEOF(gsd)

THEN
RETURN(collects_var_sem(used_variables(gsd.guard))

<= gsd.item_of.assumes);
ELSE

RETURN(TRUE);
END_IF;

END_FUNCTION; -- variables_belong_to_assumes
(*

*)
END_SCHEMA; -- ISO13584_domain_resource_schema
(*

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 185

11 ISO13584_extended_dictionary_schema

This clause defines the requirement for the ISO13584_extended_dictionary_schema. The following
EXPRESS declaration introduces the ISO13584_extended_dictionary_schema block and identifies
the necessary external references.

EXPRESS specification:

*)
SCHEMA ISO13584_extended_dictionary_schema;

REFERENCE FROM ISO13584_IEC61360_dictionary_schema
(all_class_descriptions_reachable,
basic_semantic_unit,
class,
class_BSU,
class_BSU_relationship,
class_instance_type,
class_related_BSU,
code_type,
component_class,
compute_known_visible_data_types,
compute_known_visible_properties,
content_item,
data_type,
data_type_BSU,
data_type_element,
definition_available_implies,
definition_type,
dictionary_element,
document,
entity_instance_type,
graphics,
item_class,
item_names,
level,
level_type,
list_to_set,
material_class,
named_type,
non_quantitative_code_type,
non_quantitative_int_type,
note_type,
property_BSU,
property_DET,
remark_type,
revision_type,
sep_cv,
sep_id,
supplier_BSU,
supplier_BSU_relationship,
supplier_element,

ISO 13584-24:2003(E)

186 © ISO 2003 – All rights reserved

supplier_related_BSU,
value_domain,
version_type);

REFERENCE FROM ISO13584_IEC61360_language_resource_schema
(present_translations);

REFERENCE FROM ISO13584_generic_expressions_schema
(variable_semantics);

REFERENCE FROM ISO13584_instance_resource_schema
(compatible_level_type_and_instance,
property_or_data_type_BSU);

REFERENCE FROM ISO13584_table_resource_schema
(class_instance_column,
column,
entity_instance_column,
RDB_table_extension,
RDB_table_specification,
table_extension,
table_identification,
table_specification);

REFERENCE FROM ISO13584_variable_semantics_schema
(property_semantics,
self_property_semantics);

REFERENCE FROM ISO13584_external_file_schema
(external_file_protocol,
simple_program_protocol);

REFERENCE FROM date_time_schema
(year_number);

REFERENCE FROM support_resource_schema
(identifier,
label);

REFERENCE FROM person_organization_schema
(organization ,
person);

REFERENCE FROM application_context_schema
(application_protocol_definition);

(*

NOTE The schemas referenced above can be found in the following documents:
ISO13584_IEC61360_dictionary_schema IEC 61360-2

(which is duplicated for convenience in informative annex D of ISO 13584-42:1998),
ISO13584_IEC61360_language_resource_schema IEC 61360-2

(which is duplicated for convenience in informative annex D of ISO 13584-42),
ISO13584_generic_expressions_schema ISO 13584-20

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 187

ISO13584_instance_resource_schema This part of ISO 13584,
ISO13584_table_resource_schema This part of ISO 13584,
ISO13584_variable_semantics_schema This part of ISO 13584,
ISO13584_external_file_schema This part of ISO 13584,
date_time_schema ISO 10303-41,
support_resource_schema ISO 10303-41,
person_organization_schema ISO 10303-41,
application_context_schema ISO 10303-41.

11.1 Introduction to the ISO13584_extended_dictionary_schema

The ISO13584_extended_dictionary_schema defines the extensions to the ISO/IEC common
dictionary schema that enable the exchange of ISO 13584 dictionary data.

It extends the the ISO/IEC common dictionary schema in the following four ways:

a) The ISO/IEC common dictionary schema models hierarchies of classes of items, components
and materials. The extended dictionary schema also provides a specialisation for modelling
features. This specialisation of item_class is represented as a feature_class.

EXAMPLE 1 A form feature may be represented as an instance of a feature_class. It is associated with
dimensioning properties and captures one aspect of the shape of a component.

EXAMPLE 2 In a piping component, an outlet is associated with properties (for instance, its name, its role) and
captures one aspect of the definition of a component. It may be represented as an instance of a feature_class.

b) The ISO/IEC common dictionary schema provided for modelling item_class. The extended
dictionary schema defines two new subtypes of class: functional_model_class and
functional_view_class. A functional view is the representation of an item in product data. A
functional model is the representation of an item in a library.

c) The ISO/IEC common dictionary schema defined three kinds of properties that might be used to
describe parts or items: condition_DET, non_dependent_P_DET and dependent_P_DET.
The extended dictionary schema introduces a new subtype of property_DET called
representation_P_DET to represent properties defined in functional models and functional
views.

NOTE 1 It is necessary to introduce representation_P_DET because such a property is not associated
with a part, or an item, but with a representation of a part or item. Therefore, the life cycle of a
representation_P_DET value is independent from the life cycle of any part or item.

d) The ISO/IEC common dictionary schema only associated properties and data types with
classes. The extended dictionary schema defines tables and documents that can be associated
with classes.

The ISO13584_extended_dictionary_schema models:

— the total structure of the elements that belong to an ISO 13584-conformant dictionary; this overall
structure specifies the different elements that shall be processed to be stored in an existing user
dictionary;

— the seven kinds of elements whose references and descriptions are intended to be stored in a
user dictionary; these seven kinds of elements are: supplier, program library, class, property, data
type, table and document;

— those properties that are used in classes of functional models and classes of functional views for
the computation or representation of a functional view of some item;

— the content of the tables referenced in a dictionary.

The ISO13584_extended_dictionary_schema does not model:

ISO 13584-24:2003(E)

188 © ISO 2003 – All rights reserved

— the set of allowed instances of a class (class extension) of which reference and description are
intended to be stored in a user dictionary;

— the content of program libraries and documents of which references and descriptions are intended
to be stored in a user dictionary but of which contents are represented as external files.

NOTE 2 The representations of the external files that may be associated with an ISO 13584-conformant
library are defined in the ISO13584_external_file_schema.

11.2 Fundamental concepts and assumptions for the
ISO13584_extended_dictionary_schema

11.2.1 Dictionary structure

The ISO13584_extended_dictionary_schema describes hierarchies of classes with simple
inheritance intended to be stored in a user dictionary. Three kinds of classes are defined:

a) an item_class is used to define stand-alone and identifiable kinds of objects. item_class has
three subtypes: component_class, material_class and feature_class.

NOTE Component_class and material_class are defined in the ISO/IEC common dictionary schema in
ISO 103584-42. Feature_class is defined in the ISO13584_extended_dictionary_schema in clause 11.18 of
this part of ISO 13584.

b) a functional_model_class is used to record a mechanism that may generate representations
of these identifiable kinds of objects

EXAMPLE A parametric program is a mechanism that may generate geometric representations. A parametric
program may be recorded in a functional model class.

c) a functional_view_class is used to characterize each kind of possible representation of an
item_class, whatever be the item_class.

11.2.2 Class related elements

Four categories of elements are associated with classes:

a) properties, of which the values are used to characterise the instances;

b) tables, that describe relations between properties;

c) documents, that provide human readable information about classes and properties;

d) named data types that may be used to specify the domain of different properties.

These four categories of elements are denoted class related elements.

11.2.3 Supplier related elements

One category of elements is associated with a library data supplier: a program_library is a set of
programs delivered by this library data supplier. Once processed by a LMS, such a library may be
referenced by programs provided as library external files, as a linked_interface_program_protocol.

EXAMPLE ISO 13584-31 defines a programming interface (API) for parametric geometry. An upward
compatibility layer that enables processing programs based on another parametric geometry API may be defined
as a program_library. Referencing a linked_interface_program_protocol that includes this program_library
allows the processing of programs based on this other parametric geometry API.

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 189

11.2.4 Three-fold description of dictionary elements

The ISO13584_extended_dictionary_schema dictionary conforms to the three levels architecture
defined in ISO 13584-42 clause D.3.3.2.

NOTE In the ISO13584_IEC61360_dictionary_schema, each concept is modelled by three entities:

— its basic_semantic_unit that identifies the element, and enables reference to it, whether or not its
description and content are available in the same exchange context, and

— its dictionary_element that provides a human-readable and computer-sensible definition of the element,
and

— its content_item that contains the (possible) additional computer-data that represent the element in a data
processing universe.

11.2.5 Unique identification of dictionary elements

Each library data supplier has a unique identification as defined in ISO 13584-26.

Each class or program_library shall be assigned a unique code by the library data supplier who
defines it.

To provide for unique identification of any other dictionary element, its basic_semantic_unit contains,
as a name_scope attribute, the root of the class tree where it is visible. For each category of
dictionary elements, a unique identification may therefore be derived from:

— its code,

— the code of the class that corresponds to its name scope, and,

— the code of the library data supplier that defined this class.

This mechanism is only an identification mechanism. It does not define which elements are applicable
to a particular class.

11.2.6 Applicable elements

Applicability is inherited. That is, if a class_related_dictionary_element is applicable to a class C,
then it is also applicable to every subclass of C.

NOTE To ensure a full compatibility between the data based on the
ISO13584_IEC61360_dictionary_schema and those that are based on the ISO 13584 extensions, two different
mechanisms are used to specify the class related elements applicable to a class. Applicable properties and
types are specified by class attributes. Applicable tables and documents are specified using the entity
relationship approach. In the receiving system, a different implementation may be used to improve performance.

Visibility rules and importation rules are defined to specify which elements are permitted for explicit
reference in a class description.

11.2.7 Visibility rule

Visibility is inherited. A class related element is visible from a class if this class corresponds to the
name_scope of the class related element or if this class is a subclass of the class that corresponds to
the name_scope of the class related element.

Any visible element may be used to describe a class and therefore may become an element applicable
to the class, and to all of its subclasses.

ISO 13584-24:2003(E)

190 © ISO 2003 – All rights reserved

11.2.8 Semantic relationships between classes

In the object oriented approach, the definition of a class C1 may depend on the definition of another
class C2. When the definition of C2 is not available, C1 is not completely defined. Such relationships
are called semantic relationships between classes.

Beside the inheritance relationship (C1 is a subclass of C2) and the aggregation relationship (C2 is the
data type of a property defined in C1), two other semantics relationships are defined by ISO 13584.

a) The is-case-of relationship enables to specify that some of the properties that apply to C2 apply
also to C1, although they do not belong to the same inheritance tree;

NOTE 1 ISO 13584 supports only simple inheritance. The is-case-of relationship enables for instance a
particular supplier to specify that one of his/her class, belonging to his/her particular inheritance tree, is also
case-of class(es) defined by some standardisation organisation(s).

b) The is-view-of relationship enables to specify that a class C1 contains method(s) able to create
representation(s) of the instances of a class C2 when the values of some properties of these
instances are provided as input parameter of this (these) method(s).

This part of ISO 13584 contains two different approaches for modelling such relationships.

a) In the a priori approach, a class C1 may be defined as having a particular semantic relationship
with a class C2. In this case, it may import properties and data types that are visible or
applicable for C2. This explicit importation makes these properties applicable to C1. But, if class
C2 is not delivered together with class C1, and if it is not already available on the receiving
system, class C1 cannot be processed.

NOTE 2 The library data supplier responsible for class C1 may decide to provide together with class C1,
those information elements that describe class C2 and/or properties, documents, data types and tables
associated with class C2. These information elements reference, as their supplier_bsu, their own library data
supplier, and cannot be guaranted by the library data supplier of class C1. These information elements are
useless when class C2 is already available in the user library.

EXAMPLE Assume that a particular component supplier provides resistors that comply with the concept of a
resistor as defined in IEC 61630-4. When describing its resistor family in an ISO 13584-conformant library, this
supplier may decide to assume that the receiving user library should contain all the classes and properties
defined by IEC 61630-4. In this case, the resistor family is defined as an item_class_case_of. This class
imports the needed properties (through their property_BSU) without having to describe them by means of a
property_DET dictionary element. But, if the user library does not contain all the classes and properties defined
in IEC 61630-4, and if their dictionary definitions are not provided in the library of the component supplier, the
referenced properties may be unknown by the receiving system. In this case, the supplier class would not be
completely defined. According to the logical description of the compiling process of ISO 13584-conformant
dictionaries and libraries, defined in annex O, the compiling of this class should fail.

b) In the a posteriori approach, the C1 class does not include any reference to C2 in its
description. C1 duplicates the complete description (i.e., a different property_BSU and a
property_DET) for each of the properties that correspond to a property defined in C2. The
semantic relationship is defined by a third entity, an a_posteriori_semantic_relationship. This
entity references C1 and C2 and describes the set of couples of properties that correspond to
each other, one being applicable to C1 and the other being applicable to C2. The overhead is to
re-describe properties that might be already available. The advantage is that C1 can always be
processed on the receiving system. Only the compiling of the
a_posteriori_semantic_relationship fails if class C2 is not available on the receiving system.

NOTE 3 A posteriori relationships may also be introduced on the library end-user site, as part of the user
customisation of supplier libraries.

11.2.9 A priori semantic relationships and importation rule

A class defined through an a priori semantic relationship with another class may refer, in its

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 191

description, to the properties, data types, tables or documents that are visible or applicable to this
other class. This reference imports these properties, data types, tables or documents into the
referencing class and makes them applicable to the class that imports them and usable for describing
the class instances.

This importation shall always be explicit, i.e., done through an attribute, or a relation, that specifies
which properties, data types, tables or documents are imported.

The following a priori semantic relationships are specified:

— is-case-of relationship for an item_class: when a class C is defined as item_class_case_of
referring to a class D, C may import properties, data types, tables and documents from D;

— is-case-of relationship for a functional_model_class: a functional model class may refer, through
its case_of attributes to other functional model classes. In this case it may import properties, data
types, tables and documents from these functional model classes;

— when a class C is a functional_model_class that creates a functional view V, C may import
properties, data types, tables and documents from V;

— is-view-of relationship: when a class C is a fm_class_view_of referring to an item_class D, C
may import properties, data types, tables and documents from D.

11.2.10 Type checking for the tables referenced in the dictionary

In the ISO13584_table_resource_schema, type checking for a table is achieved by asserting that the
type of a column shall be type-compatible with any library_variable associated with the
corresponding variable_semantics.

A table referenced in a dictionary contains only columns that refer to self_property_semantics of
which the data types are explicitly declared in the corresponding property_DETs. Type checking is
performed:

— by asserting that any library_variable associated with a property_semantics shall be type-
compatible with the data type declared for this property (this is already documented in the
ISO13584_variable_semantics_schema), and

— by asserting that, if the table_extension of a table is available, the data type of each column shall
be type compatible with the declared data type of the corresponding self_property_semantics
(this is documented in the table_content entity).

11.3 ISO13584_extended_dictionary_schema constant definitions

11.3.1 Element_code_len

element_code_len is the maximum length for the code associated with a subtype of
dictionary_element defined in the ISO13584_extended_dictionary_schema. This length allows the
building of an identifier conformant with ISO 9075: SQL.

NOTE This identifier is the concatenation of the dictionary_element code and version.

EXPRESS specification:

*)
CONSTANT

element_code_len: INTEGER := 14;
(*

ISO 13584-24:2003(E)

192 © ISO 2003 – All rights reserved

11.3.2 Dictionary_code_len

dictionary_code_len is the maximum length for the code that identifies a dictionary.

NOTE This identifier is the concatenation of the dictionary_element code and version.

EXPRESS specification:

*)
dictionary_code_len: INTEGER := 80;

END_CONSTANT;
(*

11.4 ISO13584_extended_dictionary_schema type definitions

This clause introduces the type definitions in the ISO13584_extended_dictionary_schema.

11.4.1 Document_code_type

A document_code_type is a code associated with a document.

EXPRESS specification:

*)
TYPE document_code_type = code_type;
WHERE

WR1: LENGTH(SELF) <= element_code_len;
END_TYPE; -- document_code_type
(*

Formal propositions:

WR1: the length of the code shall be less or equal to the value of element_code_len.

11.4.2 Program_library_code_type

A program_library_code_type is a code associated with a program library.

EXPRESS specification:

*)
TYPE program_library_code_type = code_type;
WHERE

WR1: LENGTH(SELF) <= element_code_len;
END_TYPE; -- program_library_code_type
(*

Formal propositions:

WR1: the length of the code shall be less or equal to the value of element_code_len.

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 193

11.4.3 Table_code_type

A table_code_type is a code associated with a table.

EXPRESS specification:

*)
TYPE table_code_type = code_type;
WHERE

WR1: LENGTH(SELF) <= element_code_len;
END_TYPE; -- table_code_type
(*

Formal propositions:

WR1: the length of the code shall be less or equal to the value of element_code_len.

11.4.4 Absolute_URL_type

An absolute_URL_type is a string, the structure of which is specified by IAB RFC 1739 and that
identifies the absolute location where a resource may be found on the Internet, and the protocol that
shall be used to access resources.

EXPRESS specification:

*)
TYPE absolute_URL_type = identifier;
WHERE

WR1: SELF LIKE '*://*';
END_TYPE; -- absolute_URL_type
(*

Formal propositions:

WR1: an absolute_URL_type shall contain a semi-colon followed by the string ‘//’.

NOTE 1 The Internet protocol shall be specified in an absolute_URL_type, and the address of the server
shall be part of an absolute_URL_type.

NOTE 2 Parties to agreements based on this part of ISO 13584 are encouraged to investigate the
possibility of applying the most recent IAB RFC belonging to the Standards Track RFC and that updates
IAB RFC 1739.

11.4.5 Dictionary_code_type

A dictionary_code_type is a code associated with a dictionary.

EXPRESS specification:

*)
TYPE dictionary_code_type = code_type;
WHERE

WR1: LENGTH(SELF) <= dictionary_code_len;

ISO 13584-24:2003(E)

194 © ISO 2003 – All rights reserved

END_TYPE; -- dictionary_code_type
(*

Formal propositions:

WR1: the length of the code shall be less or equal to the value of dictionary_code_len.

11.5 ISO13584_extended_dictionary_schema identification of a dictionary

A dictionary_identification entity allows to identify unambiguously a particular version of a particular
dictionary of a particular supplier, whether information on this dictionary is available in some exchange
context or not. It contains a code defined by the library data supplier which defines the dictionary, and
a version version number and a revision revision number that characterize a particular state of this
dictionary.

The version shall be incremented whenever the version of any class described in this dictionary is
incremented. When the version is incremented, the revision of the corresponding
dictionary_identification shall be reset to '000'.

NOTE 1 The version of a class is incremented when any change occurs in the dictionary definition of this
class that influence its use, and when the class has a content and this content changes. These cases are
specified in clause 8.3 of ISO 13584-42 and in clause 12.2.4 of this part of ISO 13584.

The revision revision number shall be increased when ever:

— the revision number of some classes described in this dictionary is increased and no class version
number is increased, and

— any other piece of information represented in the dictionary is changed, but the revision numbers
and version numbers of the classes described in this dictionary.

NOTE 2 A new revision number of a class is defined whenever a change in the attributes that describe this
class influences neither its meaning nor its use. These cases are specified in clause 8.3 of ISO 13584-42.

EXPRESS specification:

*)
ENTITY dictionary_identification;

code: dictionary_code_type;
version: version_type;
revision: revision_type;
defined_by: supplier_bsu;

DERIVE
absolute_id: identifier :=

defined_by.absolute_id + sep_id + code + sep_cv + version;
INVERSE

definition: SET [0:1] of dictionary FOR identified_by;
UNIQUE

UR1: absolute_id;
END_ENTITY;
(*

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 195

Attribute definitions:

code: the code that characterizes the dictionary.

version: the version number that characterizes the version of the dictionary.

revision: the revision number that characterizes the revision of the dictionary.

defined_by: the supplier who defines the dictionary.

absolute_id: the unique identification of the dictionary.

definition: a possible dictionary entity that describes whole or part of the dictionary.

Informal propositions:

IP1: when a dictionary is defined by a standard document that contains only one dictionary, the
dictionary code shall be the standard number of the document that describes this dictionary if this
document only defines one dictionary, it shall be the name defined for the pertinent dictionary in the
document that describes it if this document defines several dictionaries. Unless otherwise specified,
version shall be set to 1 and revision numbers shall be set to 0 for dictionaries defined by standard
documents.

NOTE Representation of the standard numbers of standard documents is specified in clauses 5.1 and
5.2 of ISO 13584-26.

11.6 ISO13584_extended_dictionary_schema overall architecture of a dictionary

A dictionary entity gives the summary information about a dictionary. This dictionary entity may
either describe whole or part of the dictionary identified by a dictionary_identification entity, or it may
describe a dictionary that is not associated with any particular dictionary_identification entity. When
identified by a dictionary_identification entity, the dictionary entity specifies, through its
is_complete Boolean attribute, whether it describes the whole dictionary_identification dictionary, or
it describes only part of it. When the dictionary entity only describes part of the whole
dictionary_identification dictionary, it may define the dictionary that is required to be available on the
receiving system to be able to create the complete content of the dictionary_identification dictionary
from the content of the dictionary entity. The dictionary required to be available on the receiving
system is specified by the updates attribute. A dictionary entity may also specify particular rules for
combining the entities referenced by the dictionary entity with the content of the preexisting updates
dictionary to build the dictionary_identification dictionary. This is done by the update_agreement
attribute.

When updates exists and update_agreement does not exists, this means that all the
basic_semantic_units, dictionary_elements or content_items that belongs to the identified_by
dictionary and that are not provided as part of the content of the dictionary entity, already belonged, in
the same version, to the updates dictionary. Thus, the identified_by dictionary may be built from the
updates dictionary and from the up-dating entities provided as part of the context of the dictionary
entity.

The dictionary entity may also specify, by means of its referenced_dictionaries attributes, whether it
references some other dictionaries that are identified by dictionary_identification entities.

NOTE 1 Reference to dictionary_identification entities allows to specify particular versions and/or
revisions of referenced dictionaries. When this information is not needed, a dictionary is not required to
reference any dictionary_identification entity.

A dictionary entity specifies the precise information model of the library delivery file in which a
dictionary entity instance is included by means of two attributes. The library_structure attribute

ISO 13584-24:2003(E)

196 © ISO 2003 – All rights reserved

references the library integrated information model of which the library delivery file contains a
population. This reference is done by means of an library_iim_identification entity instance that
allows to exactly specify a version of the corresponding EXPRESS schema. The supported_vep
specifies which view exchange protocols are referenced by the library delivery file. All the constraints
defined in these view exchange protocols shall be fulfilled by the library delivery file content.

NOTE 2 A view exchange protocol may specify how it should be referenced from a library delivery file by
means of an EXPRESS schema that consists only of constraints. These constraints are fulfilled by any library
delivery file that references this view exchange protocol in any of its conformance class.

EXAMPLE 1 Annex C specifies how to build the complete information model of a library delivery file that
reference ISO13584_g_m_iim_schema and a view exchange protocol "V1".

A dictionary entity contains one particular supplier_BSU that identifies the library data supplier who
is responsible for the dictionary content. Only the dictionary_elements and the content_items
associated with basic semantic units defined by this library data supplier are guaranteed by this library
data supplier. Other dictionary_elements or content_items, if any, are only provided for convenience
and should not be recorded in the user integrated library.

NOTE 3 This part of ISO 13584 does not forbid to deliver dictionary_elements or content_items defined
by supplier B within a dictionary of which supplier A is responsible. But this part of ISO 13584 does not contain
any provision to ensure correctness or updating correctness of such pieces of information.

NOTE 4 basic_semantic_unit, dictionary_element, content_item and the defined_by attribute of
class_BSU are defined in ISO 13584-42.

NOTE 5 A dictionary entity, or one of its subtype, is required to be instantiated in a library delivery file for
all the conformance classes of the library integrated information models defined in this part of ISO 13584, but
the conformance class 0 intended to be compatible with IEC 61360-2.

NOTE 6 Conformance requirements are defined in clauses 15, 16, 17 and 18 of this part of ISO 13584.

A dictionary also contains a set of supplier_BSUs that are the other library data suppliers referred to
in this dictionary. It contains a list of class_BSUs that specifies the ordered list of classes referred to,
or contained. The order of the list shall be such that when a class_BSU is associated with a class, the
class_BSUs referred to either directly or indirectly by this class shall always precede the referring
class_BSU in the contained_classes list.

NOTE 7 This order is only intended to facilitate the compiling process of a dictionary if the implementation
uses a procedural compiling process such as the one defined in the informative annex O. In this case, it avoids
any forward references. This order doesn’t need to be followed provide that the result of the compiling process is
the same that the one that would result from the process defined in the informative annex O.

A dictionary finally defines the set of protocols that are referenced by the elements in this dictionary,
the set of possible view exchange protocols that specify the library external files, the set of possible
a_posteriori_semantic_relationships between library classes. A dictionary also contains various
informative items.

A library exchange context conformant to one of the LIIM specified in this part of ISO 13584 shall
contain only one dictionary.

A class_BSU is referred to directly by a class through the following attributes:

— class.its_superclass: is-a relationship;

and, if the class is defined by means of an a_priori_semantic_relationship:

— class\a_priori_semantic_relationship.referenced_classes.

A class_BSU is referred to indirectly by a class:

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 197

— either when a property_BSU or a data_type_BSU referenced by this class references itself
directly or indirectly by this class_BSU, or

— when a class_BSU_relationship referring to this class by its relating_class attribute refers to
the class_BSU by its related_tokens attributes.

A property_BSU or a data_type_BSU refers to a class_BSU when:

— its name_scope is this class_BSU, or

— its definition dictionary_element is provided and refers, as its domain, to a class_BSU (is-part-of
relationship), or

— its definition dictionary_element is provided and refers, as its domain, to another
data_type_BSU that refers to a class_BSU (recursive definition);

Such references are checked by the makes_reference_outside function.

In the ISO13584_extended_dictionary_schema, a class_BSU makes an indirect forward reference
to a class_BSU with respect to the class list order in five cases.

a) when its described_by attribute contains a property_BSU that makes a
makes_reference_outside;

b) or when the class is defined by means of an a_priori_semantic_relationship, and its imported
properties defined by the referenced_properties inherited attribute contain a property_BSU
that makes a makes_reference_outside;

c) or when its defined_types attribute contains a data_type_BSU that makes a
makes_reference_outside;

d) or when the class is defined by means of an a_priori_semantic_relationship, and its imported
data types defined by the referenced_data_types inherited attribute contain a data_type_BSU
that makes a makes_reference_outside;

e) or when its associated_items attribute contains a class_BSU_relationship whose
related_tokens makes a makes_reference_outside;

In the context of the ISO13584_extended_dictionary_schema, this situation may happen in
two cases:

1) the class_BSU_relationship is a class_table_relationship that contains a table_BSU that
makes through its name_scope attribute a makes_reference_outside, or

2) the class_BSU_relationship is a class_document_relationship that contains a
document_BSU that makes through its name_scope attributes a
makes_reference_outside

The base_protocols attribute enables the library data supplier to specify which external file protocols
shall be supported by the user LMS to be able to process the library external files associated with the
library delivery file. In a dictionary entity, the external_file_protocols referenced by the
base_protocols attribute may be any protocol. This entity may therefore be used for an exchange
between a library data supplier and an end-user who agree on some proprietary protocols. The
dictionary_in_standard_format, subtype of dictionary, only permits those external_file_protocols
that are defined in the referenced library integrated information model, and in the referenced view
exchange protocols.

ISO 13584-24:2003(E)

198 © ISO 2003 – All rights reserved

EXAMPLE 2 A library data supplier and an end-user may agree to use a private encoding for the content of the
documents referenced in a dictionary. Such a dictionary cannot be exchanged as a
dictionary_in_standard_format.

EXPRESS specification:

*)
ENTITY dictionary
SUPERTYPE OF(dictionary_in_standard_format);

identified_by: OPTIONAL dictionary_identification;
is_complete: OPTIONAL BOOLEAN;
updates: OPTIONAL dictionary_identification;
update_agreement: OPTIONAL identifier;
referenced_dictionaries: SET [0:?] OF dictionary_identification;
responsible_supplier: supplier_BSU;
library_structure: library_iim_identification;
base_protocols: SET [0:?] OF external_file_protocol;
supported_vep: SET [0:?] OF

view_exchange_protocol_identification;
referred_suppliers: SET [1:?] OF supplier_BSU;
contained_classes: LIST [0:?] OF UNIQUE class_BSU;
a_posteriori_semantic_relationships: SET [0:?] OF

a_posteriori_semantic_relationship;
names: item_names;
note: OPTIONAL note_type;
remark: OPTIONAL remark_type;

WHERE
WR1: prefix_ordered_class_list(SELF.contained_classes);
WR2: (EXISTS(identified_by) AND EXISTS(is_complete))

OR (NOT(EXISTS(identified_by)) AND NOT(EXISTS(is_complete)));
WR3: NOT(EXISTS(identified_by)) OR

(SELF.identified_by.defined_by = SELF.responsible_supplier);
WR4: NOT(EXISTS(updates)) OR

(EXISTS(identified_by) AND (is_complete = FALSE));
WR5: NOT(EXISTS(update_agreement)) OR EXISTS(updates);
WR6: NOT(EXISTS(updates)) OR

((updates.code = identified_by.code)
AND (updates.defined_by = identified_by.defined_by)
AND (updates.version <= identified_by.version)
AND (NOT(updates.version = identified_by.version) OR
(updates.revision < identified_by.revision)));

END_ENTITY; -- dictionary
(*

Attribute definitions:

identified_by: the dictionary_identification, if any, identifying the dictionary to which the classes
defined in the dictionary entity belong.

is_complete: a Boolean attribute that specifies whether the dictionary entity describes all the classes
belonging to the dictionary identified by the identified_by dictionary_identification entity.

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 199

NOTE 8 is_complete only exists when identified_by exists.

updates: the dictionary_identification, if any,of the dictionary that should be already available on the
receiving system to be able to create the complete content of the dictionary_identification dictionary
from the content of the dictionary entity.

NOTE 9 updates may only exist when identified_by exists and is_complete is equal to false.

update_agreement: the identifier, if any, that identifies the process to be used for creating the
identified_by dictionary on the receiving system from the updates dictionary and the content of the
dictionary entity.

NOTE 10 update_agreement may only exist when updates exists.

NOTE 11 Values to be used for this attribute may be either specified by private agreement between the
sender and the receiver, or may be specified within a library integrated information model.

EXAMPLE 3 A particular value of the update_agreement attribute might mean that only those
dictionary_elements of which some attributes are explicitly modified when moving from the updates dictionary
to the identified_by dictionary shall be provided as part of the content of the dictionary entity.

NOTE 12 When updates exists and update_agreement does not exist, the process to be used to restore
the identified_by dictionary is the one described in Annex O: all the dictionary_elements or the content_items
of the basic_semantic_units defined in the identified_by dictionary either are provided as part of the content of
the dictionary entity, or they already belong to the updates dictionary.

referenced_dictionaries: the dictionary_identifications, if any, identifying the other dictionaries of
which some classes are referenced in the dictionary entity.

NOTE 13 Neither the described dictionary, nor the referenced dictionaries need to be identified by
dictionary_identification entities.

responsible_supplier: the library data supplier responsible for the dictionary_elements.

library_structure: the library integrated information model that the library delivery containing this
dictionary realizes.

base_protocols: the set of referenced external_file_protocols.

NOTE 14 Only the external_file_protocols of which the support is required to successfully compile the
dictionary belong to the base_protocols attribute. The possible external_file_protocols referenced by a
document content do not belong to the base_protocols attribute (see annex O).

supported_vep: the set of view exchange protocols supported by the dictionary.

referred_suppliers: the list of suppliers referred to or defined.

contained_classes: the list of the classes contained, whichever the supplier_bsu they reference.

a_posteriori_semantic_relationships: the list of a_posteriori_semantic_relationships that are
specified.

names: the names of the dictionary.

note: the note that describes the content of the dictionary.

remark: the remarks associated with the current delivery of the described dictionary.

ISO 13584-24:2003(E)

200 © ISO 2003 – All rights reserved

Formal propositions:

WR1: the classes may be compiled without forward references in the order defined by the
contained_classes list.

WR2: when the dictionary entity describes a dictionary identified by a dictionary_identification
entity, it shall specify whether it describes whole or part of this dictionary.

WR3: when the dictionary entity describes a dictionary identified by a dictionary_identification
entity, the supplier referenced by the defined_by attribute of the latter shall be the same as the
supplier referenced by the responsible_supplier attribute of the former.

WR4: updates shall not exists when identified_by does not exist or is_complete equals TRUE.

WR5: update_agreement shall not exist when updates does not exist.

WR6: if both identified_by and updates exist, the identified_by dictionary shall have the same code
and the same supplier as the updates dictionary, and a version/revision greater than the updates
dictionary.

11.7 Dictionary_in_standard_format

A dictionary_in_standard_format entity is a dictionary that only references in its base_protocols
attribute those external file protocols that are allowed either by the library integrated information model
indicated by the library_structure attribute or the view exchange protocols referenced in the
supported_vep attribute.

NOTE 1 Both library_iim_identification, and view_exchange_protocol_identification are meta data
that describes respectively library integrated information models and a view exchange protocols. Standard
values of these entities are specified within the standard documents that specify library integrated information
models and view exchange protocols. Each one of these entities specifies which external file protocol(s) may be
used for exchanging information between conformant implementations.

EXAMPLE By agreement between the sender and the receiver, a dictionary might reference a
program_protocol that corresponds to CATIA® FORTRAN programs. Such a proprietary external file protocol
is allowed neither by a library integrated information model, nor by an ISO 13584 view exchange protocol. Thus
it shall not be referenced by a dictionary_in_standard_format entity, but by a dictionary entity.

Only a user LMS supporting the same conformance classes as the ones referenced in the
library_structure and in the supported_vep attribute of a dictionary shall be able to compile this
dictionary.

NOTE 2 Both library integrated information models and view exchange protocols define various sets of
options that may be selected by a conformant implementation. These sets of options are termed conformance
classes.

EXPRESS specification:

*)
ENTITY dictionary_in_standard_format
SUBTYPE OF(dictionary);
WHERE

WR1: QUERY(int <* SELF\dictionary.base_protocols
| ((SIZEOF(QUERY(vep <* SELF\dictionary.supported_vep
| int IN vep\data_exchange_specification_identification
.external_file_protocols)) = 0) AND NOT(int IN
SELF\dictionary.library_structure

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 201

.external_file_protocols))) = [];
END_ENTITY; -- dictionary_in_standard_format
(*

Formal propositions:

WR1: the set of external_file_protocols in the base_protocols attribute shall be a subset of the
union of the external_file_protocols referenced in the library_structure attribute and the
external_file_protocols referenced in the members of the supported_vep attribute.

11.8 Data_exchange_specification_identification

A data_exchange_specification_identification identifies a data specification published in one part
of ISO 13584 that contributes to the specification of a library exchange context. A
data_exchange_specification_identification may be either a library_iim_identification, or a
view_exchange_protocol_identification.

NOTE The specification of a library exchange context consists of:

a) a library integrated information model,

b) 0 to n view exchange protocol(s), and

c) an implementation method.

EXPRESS specification:

*)
ENTITY data_exchange_specification_identification
ABSTRACT SUPERTYPE OF(ONEOF(library_iim_identification,

view_exchange_protocol_identification));
source_document_identifier: OPTIONAL identifier;
status: label;
name: identifier;
date: year_number;
application: OPTIONAL identifier;
level: OPTIONAL identifier;
external_file_protocols: SET [0:?] OF external_file_protocol;

END_ENTITY; -- data_exchange_specification_identification
(*

Attribute definitions:

source_document_identifier: the identifier of the document that contains the data specification. For
those documents issued by ISO TC184/SC4/WG2 this identifier shall be the integer part of the
N number.

status: a classification of the data specification with respect to its acceptance by the approving body of
this International Standard, possibly followed by an integer version. It may take the values: 'WD', 'CD',
'DIS', 'FDIS', 'IS', 'TS', 'PAS', 'ITA'.

name: the identifier of the data specification as defined in the corresponding part of ISO 13584.

date: the year when the corresponding part of ISO 13584 reached its status.

ISO 13584-24:2003(E)

202 © ISO 2003 – All rights reserved

application: an identifier possibly defined in the corresponding part of ISO 13584 to characterise an
allowed functional subset of the complete data specification.

level: an identifier possibly defined in the corresponding part of ISO 13584 that further characterises
an allowed subset of the application subset.

external_file_protocols: the list of external_file_protocols of which the use is allowed by the view
exchange protocol for the application functional subset.

11.9 Library_iim_identification

A library_iim_identification identifies a library integrated information model that includes the
definition of a library delivery file information model.

NOTE This part of ISO 13584 includes three library integrated information models, which are defined in
clauses 16, 17 and 18.

EXAMPLE The library integrated information model LIIM 24-1 includes the ISO13584_g_m_iim_schema that
is the information model of a library that consists only of general model classes. It also includes the
ISO13584_g_m_iim_conformance_schema documented in annex E.

EXPRESS specification:

*)
ENTITY library_iim_identification
SUBTYPE OF(data_exchange_specification_identification);
END_ENTITY; -- library_iim_identification
(*

11.10 View_exchange_protocol_identification

A view_exchange_protocol_identification identifies a data specification defined in a part of the view
exchange protocol series of parts of ISO 13584. References to such view exchange protocols define
which library external files are used within a library exchange context, which dictionary entries shall be
recognized by a receiving system that claims conformance to this view exchange protocol, and which
additional constraints are fulfilled by a library delivery file.

NOTE 1 A view exchange protocol may specify which standard instance of a
view_exchange_protocol_identification entity data type is to be used to reference it. This is done by means of
an EXPRESS schema that consists only of constraints. These constraints are fulfilled by any library delivery file
that references this view exchange protocol in any of its conformance class. This means that only this standard
instance may be used to reference this view exchange protocol.

NOTE 2 The various kinds of library external files that are allowed for use by a view exchange protocol are
those external files protocols that are referenced by the external_file_protocols inherited attribute of the
view_exchange_protocol_identification entity instance. Reference to such an instance by a dictionary entity
adds these external_file_protocols to those that were allowed by the library integrated model and by the other
view exchange protocols.

When a view_exchange_protocol_identification references an application_protocol_definition,
this means that the corresponding view exchange protocol supports the use of library external files
conformant with one Application Protocol of ISO 10303.

EXPRESS specification:

*)
ENTITY view_exchange_protocol_identification

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 203

SUBTYPE OF(data_exchange_specification_identification);
referenced_ISO10303_AP: OPTIONAL application_protocol_definition;

END_ENTITY; -- view_exchange_protocol_identification
(*

Attribute definitions:

referenced_ISO10303_AP: the ISO 10303 Application Protocol to which library external files shall
conform. The referenced_ISO10303_AP need not to be specified for a particular
view_exchange_protocol_id.

11.11 ISO13584_extended_dictionary_schema entity definitions: additional entity
instance types

This clause specifies some subtypes of entity_instance_type that are needed for the extended
dictionary schema.

NOTE 1 Entity_instance_type is defined in the ISO/IEC common dictionary schema.

NOTE 2 Instances of these subtypes of entity_instance_type might also be represented as instances of
entity_instance_type. These subtypes are defined to enable an EXPRESS schema to use explicitlly some or all
of these subtypes without using the entity_instance_type supertype.

11.11.1 Representation_type

A representation_type is the type of an instance of an ISO 10303-43 representation. View exchange
protocols shall specify the use of this resource.

NOTE According to ISO 10303-42, an instance of placement may only exist if it is related to a
geometric_representation_context in some representation. Therefore, if some class properties are
placements, this class shall contain a property whose data type is a geometric_representation_context_type
(that defines the context of these placements) and a property whose data type is a representation_type (that
gathers these placements with their context).

EXPRESS specification:

*)
ENTITY representation_type

SUBTYPE OF(entity_instance_type);
WHERE

WR1:'REPRESENTATION_SCHEMA.REPRESENTATION'
IN SELF\entity_instance_type.type_name;

END_ENTITY; -- representation_type
(*

Formal propositions:

WR1: the string 'REPRESENTATION_SCHEMA.REPRESENTATION' shall be contained in the
attribute SELF\entity_instance_type.type_name that is a SET of STRINGs.

11.11.2 Geometric_representation_context_type

A geometric_representation_context_type is the type of an instance of an ISO 10303-42
geometric_representation_context. View exchange protocols shall specify the use of this resource.

ISO 13584-24:2003(E)

204 © ISO 2003 – All rights reserved

EXPRESS specification:

*)
ENTITY geometric_representation_context_type

SUBTYPE OF(entity_instance_type);
WHERE

WR1:'GEOMETRY_SCHEMA.GEOMETRIC_REPRESENTATION_CONTEXT'
IN SELF\entity_instance_type.type_name;

END_ENTITY; -- geometric_representation_context_type
(*

Formal propositions:

WR1: the string 'GEOMETRY_SCHEMA.REPRESENTATION_CONTEXT' shall be contained in the
attribute SELF\entity_instance_type.type_name that is a SET of STRINGs.

11.11.3 Representation_reference_type

A representation_reference_type is the type of an instance of representation_reference (see
clause 13.7.2).

EXAMPLE An instance of representation_reference may be used in a library exchange context to refer to a
library external file that contains an instance of an ISO 10303-43 representation. Such a value might be the one
of a functional model property that describes the content of some functional view the functional model may
generate.

NOTE View exchange protocols shall specify the use of this resource.

EXPRESS specification:

*)
ENTITY representation_reference_type

SUBTYPE OF(entity_instance_type);
WHERE

WR1:'ISO13584_EXTERNAL_FILE_SCHEMA.REPRESENTATION_REFERENCE'
IN SELF\entity_instance_type.type_name;

END_ENTITY; -- representation_reference_type
(*

Formal propositions:

WR1: the string 'ISO13584_EXTERNAL_FILE_SCHEMA.REPRESENTATION_REFERENCE' shall be
contained in the attribute SELF\entity_instance_type.type_name that is a SET of STRINGs.

11.11.4 Program_reference_type

A program_reference_type is the type of an external reference, from a library exchange context, to
an external file that contains a program. For example, this external file may be an ISO 13584-31
conforming program that may generate, according to the values of some parameters, different
instances of ISO 10303 representation data types. Such an entity instance may be used, in a library
exchange context, to describe the content of a method associated with a functional model class.

NOTE View exchange protocols specify the use of this resource.

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 205

EXPRESS specification:

*)
ENTITY program_reference_type

SUBTYPE OF(entity_instance_type);
WHERE

WR1: 'ISO13584_EXTERNAL_FILE_SCHEMA.PROGRAM_REFERENCE'
IN SELF\entity_instance_type.type_name;

END_ENTITY; -- program_reference_type
(*

Formal propositions:

WR1: the string 'ISO13584_EXTERNAL_FILE_SCHEMA.PROGRAM_REFERENCE' must be
contained in the attribute SELF\entity_instance_type.type_name that is a SET of STRINGs.

11.12 ISO13584_extended_dictionary_schema entity definitions: additional basic
semantic units

This clause introduces the different basic semantic units that are used to represent the supplier related
elements and class related elements that are specific to the
ISO13584_extended_dictionary_schema. They are obtained by subtyping the
supplier_related_BSU and class_related_BSU described in the
ISO13584_IEC61360_dictionary_schema.

11.12.1 Program_library_BSU

A program_library_BSU is a basic semantic unit associated with a program library.

EXPRESS specification:

*)
ENTITY program_library_BSU
SUBTYPE OF(supplier_related_BSU);

defined_by: supplier_BSU;
SELF\basic_semantic_unit.code: program_library_code_type;

DERIVE
absolute_id: identifier := defined_by.dic_identifier

+ sep_id + dic_identifier;
INVERSE

associated_to_supplier: supplier_BSU_relationship
FOR related_tokens;

UNIQUE
UR1: absolute_id;

WHERE
WR1: defined_by :=: associated_to_supplier.

relating_supplier\dictionary_element.identified_by;
END_ENTITY; -- program_library_BSU
(*

ISO 13584-24:2003(E)

206 © ISO 2003 – All rights reserved

Attribute definitions:

defined_by: the supplier who defined the referenced program library.

absolute_id: the identifier associated with the referenced program library.

associated_to_supplier: the supplier_BSU_relationship referring to this program_library_BSU.

Formal propositions:

UR1: the absolute_id attribute is unique.

WR1: through the supplier_BSU_relationship, the referenced program library is associated with the
same supplier as the supplier who defined it.

Informal propositions:

IP1: when the version of a program_library_BSU is increased, the new program library shall include
one, possibly new, release of each program contained in the previous program library version.

When the version is incremented, the revision of the corresponding dictionary_element and the
content_revision of the possible content_item shall both be reset to '000'.

NOTE This informal proposition ensures the feasibility of upward compatible evolution of program
libraries: any program that makes references to one program library in some version may be run (with a
difference considered by the supplier as acceptable) using any new version.

11.12.2 Table_BSU

A table_BSU entity is a basic_semantic_unit that constitutes the table_identification of a table
referenced in a ISO 13584-conformant dictionary.

The following gives an overview of how updating operations have effects on the version number (V) of
a table_BSU, on the table_element revision number (DR) or on the table_content revision of content
number (CR) concept for the given class, or are forbidden at all (X).— Change of key columns1: X

— Suppression of non-key columns: X

— Addition of non-key columns: V

— Change of number of lines: V

— Other changes in value content2: V

— Change of names, definition, note, and remark: DR

— Change of version of referenced property3: DR/V

— Correction of value errors or imprecision CR

1 Other than change of version of the referenced properties

2 Other than typo correction or value accuracy correction

3 DR if values are unchanged, V if values are changed

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 207

Moreover, a table contributes to the definition of the class where it is applicable. Thus, a change of
version of a table implies a change of version of the classes where it is applicable.

EXPRESS specification:

*)
ENTITY table_BSU
SUBTYPE OF(class_related_BSU, table_identification);

name_scope: class_BSU;
SELF\basic_semantic_unit.code: table_code_type;

DERIVE
absolute_id: identifier:= name_scope.

defined_by.dic_identifier + sep_id
+ name_scope.dic_identifier + sep_id
+ dic_identifier;

UNIQUE
UR1: absolute_id;

END_ENTITY; -- table_BSU
(*

Attribute definitions:

name_scope: the root class where the referenced table is visible.

absolute_id: the identifier associated with the referenced table.

Formal propositions:

UR1: the absolute_id attribute is unique.

Informal propositions:

IP1: when the version of a table_BSU is increased, the new table shall:

— have the same property_BSUs as a key, and

— contain, as its first columns, columns referring to the same property_BSUs as the previous
table version. It may contain additional columns and/or different values in the column.

NOTE This informal proposition ensures the feasibility of upward compatible evolution of tables: any
query or program that makes reference to one table may be run (with a difference considered by the supplier as
acceptable) using any new version.

IP2: when the version is incremented, the revision of the corresponding dictionary_element and the
revision_of_content of the possible table_content shall both be reset to '000'.

11.12.3 Document_BSU

A document_BSU is a basic semantic unit associated with a document.

ISO 13584-24:2003(E)

208 © ISO 2003 – All rights reserved

EXPRESS specification:

*)
ENTITY document_BSU
SUBTYPE OF(class_related_BSU);

name_scope: class_BSU;
SELF\basic_semantic_unit.code: document_code_type;

DERIVE
absolute_id: identifier :=

name_scope.defined_by.dic_identifier + sep_id
+ name_scope.dic_identifier + sep_id
+ dic_identifier;

INVERSE
associate_to_class: class_BSU_relationship FOR related_tokens;

UNIQUE
UR1: absolute_id;

END_ENTITY; -- document_BSU
(*

Attribute definitions:

name_scope: the root class where the referenced document is visible.

absolute_id: the identifier associated with the referenced document.

associate_to_class: the class_BSU_relationship referring to this document_BSU.

Formal propositions:

UR1: the absolute_id attribute is unique.

Informal propositions:

IP1: when the version of a document_BSU is increased, the new document shall have the same
scope as the previous one but may have a different content or use a different protocol.

When the version is incremented, the revision of the corresponding dictionary_element and the
content_revision of the possible content_item shall both be reset to '000'.

NOTE This informal proposition ensures the feasibility of upward compatible evolution of document
usage. When, in any program, a request to display some document takes place. Displaying a new version of the
document provides the same kind of information to the user.

11.13 ISO13584_extended_dictionary_schema entity definitions: supplier BSU
relationship

11.13.1 Supplier_program_library_relationship

A supplier_program_library_relationship is a link between program libraries and the supplier that
provides them. This link is modelled through the entity relationship paradigm.

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 209

EXPRESS specification:

*)
ENTITY supplier_program_library_relationship
SUBTYPE OF(supplier_BSU_relationship);

SELF\supplier_BSU_relationship.related_tokens:
SET [1:?] OF program_library_BSU;

END_ENTITY; -- supplier_program_library_relationship
(*

Attribute definitions:

related_tokens: a set of pogram library units that are provided by the supplier described.

11.14 ISO13584_extended_dictionary_schema entity definitions: class BSU
relationships

This clause introduces the different relationships between a class and class related elements.

11.14.1 Class_table_relationship

A class_table_relationship is a link between tables and the root class(es) where they are applicable.

EXPRESS specification:

*)
ENTITY class_table_relationship
SUBTYPE OF(class_BSU_relationship);

SELF\class_BSU_relationship.related_tokens:
SET [1:?] OF table_BSU;

WHERE
WR1: applicable_properties_for_applicable_tables(SELF);
WR2: visible_tables(SELF\class_BSU_relationship.relating_class.

identified_by, SELF.related_tokens);
END_ENTITY; -- class_table_relationship
(*

Attribute definitions:

related_tokens: the set of tables related to the class.

Formal propositions:

WR1: each table associated with a class shall contain columns that refer to applicable properties for
this class.

WR2: all the tables associated with a class shall be visible from the class, i.e., the tree whose root is
their name_scope shall contain the class.

11.14.2 Class_document_relationship

A class_document_relationship is a link between documents and the root class(es) where they are
applicable.

ISO 13584-24:2003(E)

210 © ISO 2003 – All rights reserved

EXPRESS specification:

*)
ENTITY class_document_relationship
SUBTYPE OF(class_BSU_relationship);

SELF\class_BSU_relationship.related_tokens:
SET [1:?] OF document_BSU;

WHERE
WR1: visible_documents(

SELF\class_BSU_relationship.relating_class.identified_by,
SELF.related_tokens);

END_ENTITY; -- class_document_relationship
(*

Attribute definitions:

related_tokens: the set of document_BSU that are related to the class.

Formal propositions:

WR1: the documents associated with a class shall be visible from the class, i.e., the tree whose root is
their name_scope shall contain the class.

11.15 ISO13584_extended_dictionary_schema entity definitions: properties of
functional models and functional views

The ISO/IEC common dictionary schema makes provision for three kinds of properties that may be
used to describe the library items represented by general model classes:

— context parameters (represented as a condition_DET property_DET),

— item characteristics (represented as a non_dependent_P_DET property_DET),

— context-dependent characteristics (represented as a dependent_P_DET property_DET).

This clause provides the resource to represent model-defined or view-defined properties.

11.15.1 Representation_P_DET

A representation_P_DET entity represents the properties that are defined in classes of functional
models and classes of functional views.

EXAMPLE This subtype of property_DET shall be used to represent the properties that characterise the
insertion context of the representation of a library item, the internal variables used in a method, and the
properties that constitute a representation of a library item.

EXPRESS specification:

*)
ENTITY representation_P_DET
SUBTYPE OF(property_DET);
WHERE

WR1: NOT('ISO13584_IEC61360_DICTIONARY_SCHEMA.CONDITION_DET'

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 211

IN TYPEOF(SELF)) AND
NOT('ISO13584_IEC61360_DICTIONARY_SCHEMA.DEPENDENT_P_DET'
IN TYPEOF(SELF)) AND
NOT('ISO13584_IEC61360_DICTIONARY_SCHEMA' +
'.NON_DEPENDENT_P_DET' IN TYPEOF(SELF));

END_ENTITY; -- representation_P_DET
(*

Formal propositions:

WR1: a representation_P_DET cannot be a non_dependent_P_DET, a dependent_P_DET, or a
condition_DET.

11.16 ISO13584_extended_dictionary_schema entity definitions: specific
dictionary elements

This clause defines the dictionary elements specific to ISO 13584. They are divided into two
categories: one for suppliers and another for classes.

11.16.1 Supplier_related_dictionary_element

A supplier_related_dictionary_element is a dictionary_element that contains information that may
be used to process any library provided by a supplier.

EXPRESS specification:

*)
ENTITY supplier_related_dictionary_element
ABSTRACT SUPERTYPE OF(program_library_element)
SUBTYPE OF(dictionary_element);

SELF\dictionary_element.identified_by: supplier_related_BSU;
names: item_names;
definition: definition_type;
note: OPTIONAL note_type;
remark: OPTIONAL remark_type;

END_ENTITY; -- supplier_related_dictionary_element
(*

Attribute definitions:

identified_by: the basic semantic unit that identifies the dictionary_element.

names: the names of the dictionary_element described.

definition: the definition of the dictionary_element described.

note: the notes associated with the dictionary_element described.

remark: the remark associated with the dictionary_element described.

11.16.2 Class_related_dictionary_element

A class_related_dictionary_element is a dictionary_element that contributes to the definition of a
class.

ISO 13584-24:2003(E)

212 © ISO 2003 – All rights reserved

EXPRESS specification:

*)
ENTITY class_related_dictionary_element
ABSTRACT SUPERTYPE OF(ONEOF(table_element, document_element))
SUBTYPE OF(dictionary_element);

SELF\dictionary_element.identified_by: class_related_BSU;
names: item_names;
definition: definition_type;
note: OPTIONAL note_type;
remark: OPTIONAL remark_type;

END_ENTITY; -- class_related_dictionary_element
(*

Attribute definitions:

identified_by: the basic semantic unit that identifies the dictionary_element.

names: the names of the dictionary_element described.

definition: the definition of the dictionary_element described.

note: the notes associated with the dictionary_element described.

remark: the remarks associated with the dictionary_element described.

11.16.3 Program_library_element

A program_library_element is a description of a program library.

EXPRESS specification:

*)
ENTITY program_library_element
SUBTYPE OF(supplier_related_dictionary_element);

SELF\dictionary_element.identified_by: program_library_BSU;
END_ENTITY; -- program_library_element
(*

Attribute definitions:

identified_by: the basic semantic unit that identifies the program library described.

11.17 ISO13584_extended_dictionary_schema entity definitions: class related
elements

These clauses introduce the class related elements specific to ISO 13584.

11.17.1 Table_element

A table_element is the table_specification of a table associated with a class in an ISO 13584
conformant dictionary. The variable_semantics that define the meaning of its columns shall be

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 213

self_property_semantics that refer to properties that are either visible for the class that constitutes
the name_scope of the table or imported by this class or any of its superclass.

NOTE 1 If a property_semantics, defined in functional view classes, needs to be referenced as their
meaning by columns of a table_element associated with a functional model class in an ISO 13584 conformant
dictionary, the functional model class can import the property_semantics defined in functional view classes
through the imported_properties_from_view attribute of the abstract_functional_model_class entity.

EXPRESS specification:

*)
ENTITY table_element
SUBTYPE OF(class_related_dictionary_element, table_specification);

SELF\dictionary_element.identified_by: table_BSU;
SELF\table_specification.column_meaning:

LIST [1:?] OF UNIQUE self_property_semantics;
SELF\table_specification.key:

SET [1:?] OF self_property_semantics;
DERIVE

SELF\table_specification.table_identifier: table_BSU
:= SELF.identified_by;

WHERE
WR1: QUERY (temp <* SELF.column_meaning

| NOT visible_properties(
SELF\dictionary_element.identified_by.name_scope,
get_property_BSU_from_property_semantics([temp]))
AND NOT applicable_properties(
SELF\dictionary_element.identified_by.name_scope,
list_to_set(get_property_BSU_from_property_semantics(
[temp])))) = [];

END_ENTITY; -- table_element
(*

Attribute definitions:

identified_by: the basic semantic unit that identifies the table.

column_meaning: the list of self_property_semantics that represents the meaning of the different
columns contained in the table.

key: the set of property_semantics that are the key of the table described.

table_identifier: the table_identification that is the table_BSU that identifies the table.

Formal propositions:

WR1: the variable_semantics that define the meaning of the columns of the table shall be
self_property_semantics that refer to properties that are visible for the class that constitutes the
name_scope of the table or imported by this class, or any of its superclasses.

ISO 13584-24:2003(E)

214 © ISO 2003 – All rights reserved

Informal propositions:

IP1: the different revision of the dictionary_element that describes the same version of a table_BSU
may only differ by their informal attributes: names, definition, note and remark.

NOTE 2 This informal proposition states that when updating a dictionary an old revision may be replaced
by a new one without any consequence on the functional behaviour of the integrated library.

11.17.2 RDB_table_element

A RDB_table_element is a table_element that contains columns of simple types.

EXPRESS specification:

*)
ENTITY RDB_table_element
SUBTYPE OF(table_element, RDB_table_specification);
WHERE

WR1: QUERY(temp <* SELF.column_meaning
| simple_type_data_type(temp\property_semantics.the_property)
= FALSE) = [];

END_ENTITY; -- RDB_table_element
(*

Formal propositions:

WR1: all the types of the properties in the column_meaning list shall be simple types.

11.17.3 Document_element

A document_element is a specification of a document.

EXPRESS specification:

*)
ENTITY document_element
SUPERTYPE OF(ONEOF(

document_element_with_http_access,
document_element_with_translated_http_access))

SUBTYPE OF(class_related_dictionary_element);
SELF\dictionary_element.identified_by: document_BSU;
authors: OPTIONAL LIST [1:?] OF person;
publishing_organisation: organization;

END_ENTITY; -- document_element
(*

Attribute definitions:

identified_by: the basic semantic unit that identifies the document.

authors: the author(s) of the document.

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 215

publishing_organisation: the organisation that publishes the document.

Informal propositions:

IP1: the different revision of the dictionary_element that describes the same version of a
document_BSU may only differ by their informal attributes: names, definition, note and remark.

NOTE This informal proposition states that when updating a dictionary an old revision may be replaced
by a new one without any consequence on the functional behaviour of the integrated library.

11.17.4 Document_element_with_http_access

A document_element_with_http_access is a document whose content may be accessed using the
http Internet transfer protocol at some absolute URL. The document is in the language defined by the
unique global_language_assignment associated with the dictionary.

NOTE 1 The global_language_assignment entity is defined in the
ISO13584_IEC61360_language_resource_schema documented in ISO 13584-42: 1998.

NOTE 2 The http protocol is specified in IAB RFC 2068.

NOTE 3 Parties to agreements based on this part of ISO 13584 are encouraged to investigate the
possibility of applying the most recent IAB RFC belonging to the Standards Track RFC and that updates
IAB RFC 2068.

EXPRESS specification:

*)
ENTITY document_element_with_http_access
SUBTYPE OF(document_element);

remote_location: absolute_URL_type;
END_ENTITY; -- document_element_with_http_access
(*

Attribute definitions:

remote_location: the absolute URL that specifies the document locator.

Informal propositions:

IP1: the document format shall correspond to a standard MIME format registered by IAB.

IP2: the language of the document shall correspond to the language defined by the unique
global_language_assignment.

11.17.5 Document_element_with_translated_http_access

A document_element_with_translated_http_access is a document whose content may be
accessed in different languages using the http Internet transfer protocol at several absolute URL. The
translation languages are defined by a present_translations entity, and an URL is given for each
corresponding language.

NOTE 1 The present_translations entity is defined in the
ISO13584_IEC61360_language_resource_schema documented in ISO 13584-42.

NOTE 2 The http protocol is specified in IAB RFC 2068.

ISO 13584-24:2003(E)

216 © ISO 2003 – All rights reserved

NOTE 3 Parties to agreements based on this part of ISO 13584 are encouraged to investigate the
possibility of applying the most recent IAB RFC belonging to the Standards Track RFC and that updates
IAB RFC 2068.

EXPRESS specification:

*)
ENTITY document_element_with_translated_http_access
SUBTYPE OF(document_element);

remote_locations: LIST [1:?] OF absolute_URL_type;
languages: present_translations;

WHERE
WR1: SIZEOF(remote_locations) = SIZEOF(languages.language_codes);

END_ENTITY; -- document_element_with_translated_http_access
(*

Attribute definitions:

remote_locations: the list of absolute URLs that specify the locators where the document may be
found in the different languages specified by the languages attribute.

languages: the list of languages in which the document is translated.

Formal propositions:

WR1: the number of URL contained in the remote_locations list shall be equal to the number of
languages defined in the languages.language_codes attribute.

Informal propositions:

IP1: the possibly different document formats shall correspond to standard MIME registered by the IAB.

IP2: the document located at the remote_locations[i] URL shall be in the language identified by
languages.language_codes[i].

11.17.6 Referenced_document

A referenced_document is a specialisation of a document defined in the ISO/IEC dictionary schema
that enables to reference a document that is identified by a document_BSU.

EXPRESS specification:

*)
ENTITY referenced_document
SUBTYPE OF(document);

document_reference: document_BSU;
WHERE

WR1: NOT('ISO13584_IEC61360_DICTIONARY_SCHEMA' +
'.IDENTIFIED_DOCUMENT' IN TYPEOF(SELF));

END_ENTITY; -- referenced_document
(*

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 217

Attribute definitions:

document_reference: the basic semantic unit associated with the document.

Formal propositions:

WR1: a referenced_document shall not be an identified_document.

11.17.7 Referenced_graphics

A referenced_graphics is a specialisation of a graphics defined in the ISO/IEC dictionary schema
that enables to reference a document that is identified by a document_BSU and which contains the
graphic image.

NOTE A referenced_graphics is a specialisation of a graphics entity defined in ISO 13584-42. Another
specialisation of a graphics entity is an illustration defined in the ISO13584_external_file_schema. The
illustration_is_not_a_referenced_graphics_rule ensures that both subtypes are incompatible. This rule is
defined in the ISO13584_external_file_schema

EXPRESS specification:

*)
ENTITY referenced_graphics
SUBTYPE OF(graphics);

graphics_reference: document_BSU;
END_ENTITY; -- referenced_graphics
(*

Attribute definitions:

graphics_reference: the basic semantic unit associated with the document that provides the graphic
image.

11.18 ISO13584_extended_dictionary_schema entity definitions: feature class

A feature_class captures the dictionary description of items that represent one aspect of another item
and that are themselves associated with properties.

EXAMPLE Such an aspect may be a form feature or an outlet of an electronic component.

A property whose data type is defined by a feature_class captures that some aspect of an item is
defined by an instance of the feature_class.

EXPRESS specification:

*)
ENTITY feature_class
SUBTYPE OF(item_class);
WHERE

WR1: NOT(('ISO13584_IEC61360_DICTIONARY_SCHEMA.'
+ 'COMPONENT_CLASS') IN TYPEOF(SELF));

WR2: NOT(('ISO13584_IEC61360_DICTIONARY_SCHEMA.'
+ 'MATERIAL_CLASS') IN TYPEOF(SELF));

END_ENTITY; -- feature_class

ISO 13584-24:2003(E)

218 © ISO 2003 – All rights reserved

(*

Formal propositions:

WR1: a feature_class shall not be a component_class.

WR2: a feature_class shall not be a material_class.

11.19 ISO13584_extended_dictionary_schema entity definitions: a priori semantic
relationship

An a_priori_semantic_relationship is a kind of class that is defined on the basis of other classes,
and that can import properties, data types, tables and documents contained in these classes. The
properties, data types, tables or documents whose definitions are imported through the
a_priori_semantic_relationship entity became applicable to the class that imports them, but not
visible for this class. This means that they are not considered as visible by the visible_properties
function.

NOTE 1 The inheritance relationship is a well known example of semantic relationship between classes
modelled according to the object oriented paradigm. All the properties and other features defined in a class
usually apply implicitly to all its subclasses. This relationship is used in ISO 13584 where all the properties, data
types, tables or documents visible (respectively applicable) to some classes are implicitly visible (respectively
applicable) to all its subclasses. As usual, in ISO 13584 this inheritance is implicit (i.e., not declared by means of
an a_priori_semantic_relationship) and global (i.e., all the properties and data types are inherited by all its
subclasses). An a_priori_semantic_relationship enables to define other semantic relationships that are
particular to the parts library application domain.

NOTE 2 In ISO 13584, besides the usual inheritance (is-a) and aggregation (is-part-of) relationships, two
additional semantic relationship are defined: is-view-of and is-case-of (see clause 3). These two relationships
are captured by means of the a_priori_semantic_relationship entity.

NOTE 3 The properties, data types, tables or documents whose definitions are imported through the
a_priori_semantic_relationship entity are explicitly defined. They may consist of a subset of all the properties,
data types, tables or documents defined (i.e., visible or applicable) for the referenced_classes class(es).

NOTE 4 The properties, data types, tables or documents whose definitions are imported through the
a_priori_semantic_relationship entity will be visible or already imported through another
a_priori_semantic_relationship for the referenced_classes class(es). This is asserted by a global rule of the
ISO13584_extended_dictionary_schema.

EXPRESS specification:

*)
ENTITY a_priori_semantic_relationship
ABSTRACT SUPERTYPE OF(ONEOF(

item_class_case_of,
fm_class_view_of,
functional_model_class))

SUBTYPE OF(class);
referenced_classes: SET [1:?] OF class_BSU;
referenced_properties: LIST [0:?] OF property_BSU;
referenced_data_types: SET [0:?] OF data_type_BSU;
referenced_tables: SET [0:?] OF table_BSU;
referenced_documents: SET [0:?] OF document_BSU;

END_ENTITY; -- a_priori_semantic_relationship
(*

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 219

Attribute definitions:

referenced_classes: the class(es) from where the properties, data types, tables or documents are
imported.

NOTE 5 The class from which properties, data types, tables or documents are imported cannot be deduced
from the identification of the imported properties, data types, tables or documents because they may be
imported from a class where they are inherited. For instance, in IEC 61360-4, "input-voltage" is a property visible
at the root level of the IEC classification. If a supplier class imports the "input-voltage" property from the IEC
"transistor" class, this means that (1) the supplier class defines a transistor, and (2) these transistors are
described by means of an "input voltage" property.

referenced_properties: the properties whose definitions are imported through the
a_priori_semantic_relationship entity.

NOTE 6 The list order defines the default order for displaying imported properties during user access to the
various subtypes of a_priori_semantic_relationship.

referenced_data_types: the data types whose definitions are imported through the
a_priori_semantic_relationship entity.

referenced_tables: the tables whose definitions are imported through the
a_priori_semantic_relationship entity.

referenced_documents: the documents whose definitions are imported through the
a_priori_semantic_relationship entity.

11.20 ISO13584_extended_dictionary_schema entity definitions: functional model
class

An abstract_functional_model_class entity, is the supertype of the various kinds of functional model
classes. A functional model classes describe a set of representations that may be associated with a
set of items.

NOTE 1 The items to which representations may be associated need not to be specified in a functional
model class.

EXAMPLE 1 Prices and simulation models are examples of representations that are usually associated with a
set of items.

EXAMPLE 2 A schematic representation of a screw is a representation that may defined independently of any
screw.

The representation category provided by a functional model class is specified by the functional view
that is referenced, and, in the case of an instantiable functional view class, that may be created by the
functional model class.

EXAMPLE 3 Geometry view and schematic view are categories of representation that may be created in
product data by a functional model class, for instance through a geometric application programming interface.

The levels of representation provided are specified by the view_control_variable_range.

EXAMPLE 4 The level of representation of a geometry view could be the detail-level of the view: simplified to
extended.

NOTE 2 The standard functional views that may be created by an ISO 13584 conforming library are
specified in the view exchange protocol series of parts of ISO 13584. Non standard functional views may also be
defined by private agreement between the sender and the receiver. The definitions of such non standard
functional view classes may be exchanged using the library integrated information model LIIM 24-3 defined in
clause 18 of this part of ISO 13584.

ISO 13584-24:2003(E)

220 © ISO 2003 – All rights reserved

The distinction established for general model classes between parts characteristics, context
parameters and context-dependent characteristics are no longer significant for functional model
classes. The shape representation of the end of a threaded hole, for example, may be considered
either as an intrinsic characteristics, or as a context-dependent characteristics, depending upon the
level of detail required of the representation. Therefore, all the properties defined within a functional
model class, whether they are intended to play a role of a context parameter, a characteristics of the
representation or a variable internal to the methods, shall be defined as representation_P_DETs.
These properties are specified by the SELF\class.described_by inherited attribute.

An abstract functional model class may be associated with an item class in two different ways.

a) The first way, captured as a functional_model_class entity, is to describe the functional model
class without referring to any item class. The association between this functional model class
and an item class is possibly done afterwards, either by the supplier or by the end-user. It is
called the a posteriori schema. In this approach, the properties (defined by the described_by
inherited attribute), that are intended to match properties defined in the item classes are defined
as representation_P_DETs. According to their role with respect to some item class, they will be
matched with condition_DET, non_dependent_P_DET, dependent_P_DET in the target item
classes.

EXAMPLE 5 The geometry of an H-screw may be described without referring explicitly to any specific
component class. The same geometry applies to some ISO standard component classes, to some DIN standard
component classes, or to various supplier component classes. The relationship between such a functional model
class and one specific component class may be specified outside the functional model class either by the
supplier (see: a_posteriori_view_of entity) or by the end-user. In both cases, when such a relationship between
two classes is specified, the mapping from the component properties onto the representation properties shall be
specified. For example, one property of this functional model class defined as representation_P_DET would
correspond to the threaded diameter. It would be matched with a non_dependent_P_DET of the component
class.

b) The second way, captured as a fm_class_view_of entity, is to directly define the functional
model class by reference to the properties defined in some item class. It is called the a priori
schema. In this case the properties that describe the functional model class consist of both the
properties defined by the described_by inherited attribute and the properties imported from the
item class (imported_properties_from_item).

EXAMPLE 6 Consider the functional model of supplying. It describes the price, quantity of order and so on, of
some well defined component class. It does not apply to any other component class, and it is useless without
this component class. When describing this functional model class, the library data supplier directly refers to the
component class the functional model class is-view-of. This allows the direct reference (through their
property_BSUs) to the properties defined within this component class.

A functional model class is always involved in an a_priori_semantic_relationship with the functional
view class that specifies the user perspective addressed by the functional model class, and, in the
case of an instanciable functional view class, the created representations. In the a priori schema, it is
also involved in an a_priori_semantic_relationship with the item class to which it refers.

EXAMPLE 7 Procurement and design are user perspectives that may be associated to a functional view class.

11.20.1 Abstract_functional_model_class

An abstract_functional_model_class entity captures the dictionary definition of a functional model
class, whether its relationship with an item_class is part of its definition, or is intended to be defined
afterwards. An abstract_functional_model_class may reference other functional model classes by
its case_of attribute.

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 221

EXPRESS specification:

*)
ENTITY abstract_functional_model_class
ABSTRACT SUPERTYPE OF(ONEOF(functional_model_class,

fm_class_view_of))
SUBTYPE OF(class);

created_view: class_BSU;
v_c_v_range: SET [0:?] OF view_control_variable_range;
imported_properties_from_view: LIST [0:?] OF property_BSU;
imported_types_from_view: SET [0:?] OF data_type_BSU;
imported_tables_from_view: SET [0:?] OF table_BSU;
imported_documents_from_view: SET [0:?] OF document_BSU;
case_of: SET [0:?] OF class_BSU;
imported_properties_from_models: LIST [0:?] OF property_BSU;
imported_types_from_models: SET [0:?] OF data_type_BSU;
imported_tables_from_models: SET [0:?] OF table_BSU;
imported_documents_from_models: SET [0:?] OF document_BSU;

WHERE
WR1: created_view_is_functional_view(SELF.created_view);
WR2: QUERY(v_c_v <* SELF.v_c_v_range

| NOT applicable_properties(SELF.created_view,
[v_c_v.parameter_type])) = [];

WR3: QUERY(v_c_v <* SELF.v_c_v_range
| NOT(v_c_v.parameter_type
IN SELF.imported_properties_from_view)) = [];

WR4: NOT EXISTS(SELF\class.its_superclass)
OR ('ISO13584_EXTENDED_DICTIONARY_SCHEMA'
+'.ABSTRACT_FUNCTIONAL_MODEL_CLASS'
IN TYPEOF(SELF\class.its_superclass));

WR5: QUERY(v_c_v <* SELF.v_c_v_range
| SIZEOF(QUERY(v_c_v_2 <* SELF.v_c_v_range
| v_c_v.parameter_type = v_c_v_2.parameter_type)) <> 1) = [];

WR6: QUERY(prop <* SELF\class.described_by
| definition_available_implies(prop,
('ISO13584_EXTENDED_DICTIONARY_SCHEMA'
+'.REPRESENTATION_P_DET') IN TYPEOF(prop.definition[1])))
= SELF\class.described_by;

WR7: QUERY(cl <* SELF.case_of
| definition_available_implies(cl,
('ISO13584_EXTENDED_DICTIONARY_SCHEMA'
+'.ABSTRACT_FUNCTIONAL_MODEL_CLASS')
IN TYPEOF(cl.definition[1])))
= SELF.case_of;

END_ENTITY; -- abstract_functional_model_class
(*

Attribute definitions:

created_view: the functional_view_class that characterises the user perspective addressed by the
functional model class, and, in the case of an instanciable functional view class, the views that may be
generated by the functional_model_class.

ISO 13584-24:2003(E)

222 © ISO 2003 – All rights reserved

v_c_v_range: the list of the view control variable range that specifies the various views the
functional_model_class is able to create.

NOTE 1 When a view control variable of the functional view defined by the created_view attribute is not
represented in the v_c_v_range attribute, its range is its complete value domain.

NOTE 2 The declared_created_views_are_created_rule and
all_views_available_for_each_component_rule rules defined in clause 12 ensures that the set of functional
views that may be created either by a functional_model_class_extension or by an
explicit_functional_model_class_extension includes the set of functional views that its corresponding
functional_model_class declares to be able to create by means of its created_view and v_c_v_range
inherited attributes.

NOTE 3 The all_views_available_for_each_component_rule rule defined in clause 12 ensures that the
set of functional views that may be created by an explicit_functional_model_class_extension includes the set
of functional views that its corresponding functional_model_class declares to be able to create.

imported_properties_from_view: the list of properties that are imported from the described view.

imported_types_from_view: the list of types that are imported from the described view.

imported_tables_from_view: the set of tables that are imported from the described view.

imported_documents_from_view: the set of documents that are imported from the described view.

case_of: the other abstract_functional_model_classes the current
abstract_functional_model_class is case_of.

imported_properties_from_models: the list of properties that are imported from the case_of
abstract_functional_model_classes.

imported_types_from_models: the list of types that are imported from the case_of
abstract_functional_model_classes.

imported_tables_from_models: the set of tables that are imported from the described case_of
abstract_functional_model_classes.

imported_documents_from_models: the set of documents that are imported from the case_of
abstract_functional_model_classes.

Formal propositions:

WR1: the attribute created_view shall correspond to a functional view class.

WR2: each view control variable shall correspond to a view control variable of the functional view that
is referenced by the created_view attribute.

WR3: each view control variable shall belong to the list of imported properties contained in the
imported_properties_from_view.

WR4: either the class has no superclass, or the superclass shall be of
abstract_functional_model_class entity data type.

WR5: each view control variable contained in the attribute v_c_v_range shall be unique.

WR6: if data are available, then IP1 holds.

WR7: the class referenced through the case_of attribute shall correspond to functional model classes.

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 223

Informal propositions:

IP1: all the properties that are defined in the functional model class shall be defined as
representation_P_DET.

11.20.2 Functional_model_class

A functional_model_class entity captures the dictionary definition of a functional model class that is
described without referring to any item_class.

NOTE The association between a functional_model_class and an item_class is intended to be done
afterwards, either by the supplier or by the end-user.

EXPRESS specification:

*)
ENTITY functional_model_class
SUBTYPE OF(a_priori_semantic_relationship,

abstract_functional_model_class);
DERIVE

SELF\a_priori_semantic_relationship.referenced_classes:
SET [1:?] OF class_BSU :=
[SELF\abstract_functional_model_class.created_view]
+ SELF\abstract_functional_model_class.case_of;

SELF\a_priori_semantic_relationship.referenced_properties:
LIST [0:?] OF property_BSU :=
SELF\abstract_functional_model_class

.imported_properties_from_view
+ SELF\abstract_functional_model_class

.imported_properties_from_models;
SELF\a_priori_semantic_relationship.referenced_data_types:

SET [0:?] OF data_type_BSU :=
SELF\abstract_functional_model_class

.imported_types_from_view
+ SELF\abstract_functional_model_class

.imported_types_from_models;
SELF\a_priori_semantic_relationship.referenced_tables:

SET [0:?] OF table_BSU :=
SELF\abstract_functional_model_class

.imported_tables_from_view
+ SELF\abstract_functional_model_class

.imported_tables_from_models;
SELF\a_priori_semantic_relationship.referenced_documents:

SET [0:?] OF document_BSU :=
SELF\abstract_functional_model_class

.imported_documents_from_view
+ SELF\abstract_functional_model_class

.imported_documents_from_models;
END_ENTITY; -- functional_model_class
(*

ISO 13584-24:2003(E)

224 © ISO 2003 – All rights reserved

11.20.3 Fm_class_view_of

A fm_class_view_of entity captures the dictionary definition of a functional model class that is defined
by reference to an item_class to which it applies.

NOTE This kind of association between a functional_model_class and an item_class is an a priori
semantic relationship. The functional_model_class may import properties, data types, tables and documents
from this item_class.

EXPRESS specification:

*)
ENTITY fm_class_view_of
SUBTYPE OF(a_priori_semantic_relationship,

abstract_functional_model_class);
view_of: class_BSU;
imported_properties_from_item: LIST [0:?] OF property_BSU;
imported_types_from_item: SET [0:?] OF data_type_BSU;
imported_tables_from_item: SET [0:?] OF table_BSU;
imported_documents_from_item: SET [0:?] OF document_BSU;

DERIVE
SELF\a_priori_semantic_relationship.referenced_classes:

SET [2:2] OF class_BSU :=
[SELF\abstract_functional_model_class.created_view,
SELF.view_of] + SELF\abstract_functional_model_class.case_of;

SELF\a_priori_semantic_relationship.referenced_properties:
LIST [0:?] OF property_BSU :=
SELF\abstract_functional_model_class
.imported_properties_from_view
+ SELF\abstract_functional_model_class
.imported_properties_from_models
+ SELF.imported_properties_from_item;

SELF\a_priori_semantic_relationship.referenced_data_types:
SET [0:?] OF data_type_BSU :=
SELF\abstract_functional_model_class
.imported_types_from_view
+ SELF\abstract_functional_model_class
.imported_types_from_models
+ SELF.imported_types_from_item;

SELF\a_priori_semantic_relationship.referenced_tables:
SET [0:?] OF table_BSU :=
SELF\abstract_functional_model_class
.imported_tables_from_view
+ SELF\abstract_functional_model_class
.imported_tables_from_models
+ SELF.imported_tables_from_item;

SELF\a_priori_semantic_relationship.referenced_documents:
SET [0:?] OF document_BSU :=
SELF\abstract_functional_model_class
.imported_documents_from_view
+ SELF\abstract_functional_model_class
.imported_documents_from_models

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 225

+ SELF.imported_documents_from_item;
WHERE

WR1: check_view_of_instance_datatype(SELF);
END_ENTITY; -- fm_class_view_of
(*

Attribute definitions:

view_of: the item_class of which the described functional_model_class is able to generate view.

imported_properties_from_item: the properties that are imported from the item_class for which the
present class is able to generate the view.

imported_types_from_item: the types that are imported from the item_class for which the present
class is able to generate the view.

imported_tables_from_item: the tables that are imported from the item_class for which the present
class is able to generate the view.

imported_documents_from_item: the documents that are imported from the item_class for which
the present class is able to generate the view.

Formal propositions:

WR1: the view_of attribute shall refer to an item_class.

11.21 ISO13584_extended_dictionary_schema entity definitions: functional view
class

A functional view class specifies one representation category that may be represented in a dictionary
and/or generated by a library by means of functional model classes associated with item classes.

EXAMPLE 1 Such representation categories may be geometry, kinematics, or procurement.

If a functional view class is instantiable in a user modelling system, this functional view class shall
defines the structure of the representation category it specifies in a modelling system whatever item it
refers to.

EXAMPLE 2 Geometry, kinematics and schematics are representation categories.

This is done by referencing an ISO 10303-43 representation. The view_control_variables precise
the representation category. Their values are to be provided by the user to specify which precise
representation is required. The view_properties define the content of the view. Their values shall be
computed by the user library management system. Both kinds of property shall be represented as
representation_P_DETs.

A functional_view_class is a subtype of ISO 10303-43 representation. Therefore, each functional
view class instance contains implicitly both a representation_context and a set of
representation_items referred to by the items inherited attributes. When a functional view class is a
subtype of a subtype of ISO 10303-43 representation, this latter subtype is specified, in the same
format as the result of the EXPRESS TYPEOF function, by the representation_type attribute of the
functional_view_class instance that represents the functional view class.

EXAMPLE 3 One specific class of functional view of geometry may be specified by a set of view control
variables and by one view property, called insertion_placements, that is a SET of placements: simple
placement, axis1_placement, and/or axis2_placement intended to be computed by functional model classes
and to play a specific role in the representation. As a subtype of representation it also contains a

ISO 13584-24:2003(E)

226 © ISO 2003 – All rights reserved

representation_context and a set of geometric_representation_items (see ISO 10303-42 for details) referred
to by the items attributes.

A functional view class that is not instantiable in a user modelling system shall not contain any view
property. Functional model classes referring to such a functional view class only contains data
intended to be used during the user selection process. Such a functional view class allows the
specification of which user perspective these data are intended to be used.

EXAMPLE 4 Inventory management and procurement may be functional views that are not intended to be
instanciated.

11.21.1 Functional_view_class

A functional_view_class entity is a subtype of a class entity. The content of an instance of a
functional view class is a subtype of an ISO 10303-43 representation. Therefore, it contains two
inherited attributes:

— a context_of_items attribute that contains the representation_context that defines the context
of the representation elements that constitute the view;

— an items attribute that contains the set of representation_items belonging to the content of the
view.

When the content of an instance of a functional view class shall be of a particular subtype of
representation, this subtype may be defined through the representation_type attribute, which
contains its fully qualified name.

A functional_view_class may also contain view_control_variables which allow to distinguish
several representations of the same item in the same representation category, and view_properties
defining properties that shall be contained in any instance of the functional view class.

EXAMPLE ISO 13584-101 defines the basic_geometry functional view class that captures the generic
concept of the shape of a part. Instances of this functional view class are instances of STEP representation.
Five view control variables provide for specifying precisely the various basic_geometry representations that may
be associated with a library item: 'geometry_level', 'detail_level', 'side', 'variant' and 'unreg_variant'. ISO 13584-
101 also specify how to exchange functional model classes that contains FORTRAN parametric programs able
to create basic_geometry representations.

NOTE 1 The standardised functional view classes are defined by the view exchange protocol series of
parts of ISO 13584. Each view exchange protocol specifies the standard data that represents the functional view
class, the view_control_variables, and view_properties of the view, and how to exchange functional model
classes able to create instances of the the functional view class.

EXPRESS specification:

*)
ENTITY functional_view_class
SUPERTYPE OF(non_instantiable_functional_view_class)
SUBTYPE OF(class);

representation_type: OPTIONAL STRING;
view_control_variables: LIST [0:?] OF UNIQUE property_BSU;
view_properties: LIST [0:?] OF UNIQUE property_BSU;

DERIVE
SELF\class.described_by: LIST [0:?] OF UNIQUE property_BSU

:= SELF.view_control_variables + SELF.view_properties;
WHERE

WR1: QUERY(v_c_v <* SELF.view_control_variables

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 227

| NOT((data_type_typeof(v_c_v) = [])
OR (('ISO13584_IEC61360_DICTIONARY_SCHEMA'
+ '.NON_QUANTITATIVE_INT_TYPE' IN data_type_typeof(v_c_v))
AND ordered_index_value(
data_type_non_quantitative_int_type(v_c_v)[1].domain))))
= [];

WR2: NOT EXISTS(SELF.representation_type)
OR ('_SCHEMA.' LIKE SELF.representation_type);

WR3: NOT EXISTS(SELF\class.its_superclass)
OR (('ISO13584_EXTENDED_DICTIONARY_SCHEMA.'
+ 'FUNCTIONAL_VIEW_CLASS')
IN TYPEOF(SELF\class.its_superclass));

WR4: QUERY(prop <* SELF\class.described_by
| definition_available_implies(prop,
('ISO13584_EXTENDED_DICTIONARY_SCHEMA'
+'.REPRESENTATION_P_DET') IN TYPEOF(prop.definition[1])))
= SELF\class.described_by;

END_ENTITY; -- functional_view_class
(*

Attribute definitions:

representation_type: the specification, in the format of a STRING, of the ISO 10303 representation
subtype the functional view content is a subtype of.

view_control_variable: the list of properties that are view control variables of the functional view
class.

view_properties: the list of properties that are contained in the view.

described_by: the whole set of properties of a functional view class. It is a list that contains the
view_control_variable list and the view_properties list.

Formal propositions:

WR1: the parameter_type attribute of all the view control variables shall be a
non_quantitative_int_type whose values are successive integers.

WR2: the representation_type shall contains the string "_SCHEMA.".

NOTE 2 The representation_type conatins a string corresponding to an EXPRESS fully qualified name.

WR3: either the class has no superclass, or if it has, the superclass shall be a
functional_view_class.

WR4: if data are available, then IP1 holds.

Informal propositions:

IP1: all the properties that are defined in the functional view class shall be defined as
representation_P_DET.

IP2: the representation_type shall contain the fully qualified name, in the same format as the
EXPRESS TYPEOF function, of a subtype of ISO 10303-43 representation.

ISO 13584-24:2003(E)

228 © ISO 2003 – All rights reserved

11.21.2 Non_instantiable_functional_view_class

A non_instantiable_functional_view_class specifies a perspective that may be adopted by the user
in a part selection process. No instances of such views shall be created in the user modelling system.

EXPRESS specification:

*)
ENTITY non_instantiable_functional_view_class
SUBTYPE OF(functional_view_class);
DERIVE

SELF\functional_view_class.view_properties
: LIST [0:?] OF UNIQUE property_BSU := [];

WHERE
WR1: NOT EXISTS(SELF\functional_view_class.representation_type);

END_ENTITY; -- non_instantiable_functional_view_class
(*

Attribute definitions:

SELF\functional_view_class.view_properties: a non_instantiable_functional_view_class is not
associated with any view properties.

Formal propositions:

WR1: the representation_type shall not exist.

11.21.3 Specification of the range of a view control variable

A view_control_variable_range specifies a subset of the domain of a view control variable as a
range defined by its low bound and its high bound. This range includes its bounds.

NOTE 1 The domain of a view control variable, represented by a non_quantitative_int_type entity, is an
enumeration type where elements of the enumeration are represented as a set of successive integers. The
range consists of all the values whose associated integers are greater or equal to the integer defined as the
range low bound and less or equal to the integer defined as the range high bound.

NOTE 2 non_quantitative_int_type is defined in the ISO13584_IEC61360_dictionary_schema specified
in IEC 61360-2, and duplicated for convenience in informative annex D of ISO 13584-42. WR1 rule, in the
definition of the functional_view_class entity as specified in 11.21.1, ensures that the integers associated with
the view control variable values constitutes as a set of successive integers.

EXPRESS specification:

*)
ENTITY view_control_variable_range;

parameter_type: property_BSU;
range_lobound: INTEGER;
range_hibound: INTEGER;

WHERE
WR1: (data_type_typeof(SELF.parameter_type) = [])

OR ('ISO13584_IEC61360_DICTIONARY_SCHEMA'
+ '.NON_QUANTITATIVE_INT_TYPE'

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 229

IN data_type_typeof(SELF.parameter_type));
WR2: SELF.range_lobound <= SELF.range_hibound;
WR3: view_control_variables_attributes_belong_to_domain(SELF);

END_ENTITY; -- view_control_variable_range
(*

Attribute definitions:

parameter_type: the view control variable for which the range is described.

range_lobound: the integer that describes the low bound of the range.

range_hibound: the integer that describes the high bound of the range.

Formal propositions:

WR1: the parameter_type attribute shall be a non_quantitative_int_type.

WR2: the low bound of the range shall be less or equal to the high bound of the range.

WR3: the attributes range_lobound and range_hibound shall belong to the domain of a view control
variable.

11.22 ISO13584_extended_dictionary_schema entity definitions: item class a priori
case of

11.22.1 Item_class_case_of

An item_class_case_of is the description of an item class that is defined as a is-case-of of some
other item class(es).

NOTE An item_class_case_of defines an a priori relationship.

EXPRESS specification:

*)
ENTITY item_class_case_of
SUPERTYPE OF(ONEOF(component_class_case_of,

material_class_case_of,
feature_class_case_of))

SUBTYPE OF(item_class, a_priori_semantic_relationship);
is_case_of: SET [1:?] OF class_BSU;
imported_properties: LIST [0:?] OF property_BSU;
imported_types: SET [0:?]OF data_type_BSU;
imported_tables: SET [0:?] OF table_BSU;
imported_documents: SET [0:?] OF document_BSU;

DERIVE
SELF\a_priori_semantic_relationship.referenced_classes:

SET [1:?] OF class_BSU
:= SELF.is_case_of;

SELF\a_priori_semantic_relationship.referenced_properties:
LIST [0:?] OF property_BSU := SELF.imported_properties;

SELF\a_priori_semantic_relationship.referenced_data_types:

ISO 13584-24:2003(E)

230 © ISO 2003 – All rights reserved

SET [0:?] OF data_type_BSU := SELF.imported_types;
SELF\a_priori_semantic_relationship.referenced_tables:

SET [0:?] OF table_BSU := SELF.imported_tables;
SELF\a_priori_semantic_relationship.referenced_documents:

SET [0:?] OF document_BSU := SELF.imported_documents;
WHERE

WR1: superclass_of_item_is_item(SELF);
WR2: check_is_case_of_referenced_classes_definition(SELF);

END_ENTITY; -- item_class_case_of
(*

Attribute definitions:

is_case_of: the item_class(es) of which the present item_class is-case-of.

imported_properties: the list of properties that are imported from the item_class(es) the defined
item_class is-case-of.

imported_types: the set of data types that are imported from the item_class(es) the defined
item_class is-case-of.

Imported_tables: the set of table_BSUs that are imported from the item_class(es) the defined
item_class is-case-of.

Imported_documents: the set of document_BSUs that are imported from the item_class(es) the
defined item_class is-case-of.

Formal propositions:

WR1: the superclass of an item_class_case_of shall be an item_class.

WR2: an item_class_case_of shall be case-of item_class(es).

11.22.2 Component_class_case_of

A component_class_case_of is the description of a component class that is defined as a case of
other component class(es).

NOTE A component_class_case_of defines an a priori relationship.

EXPRESS specification:

*)
ENTITY component_class_case_of
SUBTYPE OF(item_class_case_of, component_class);
WHERE

WR1: check_is_case_of_referenced_classes_definition(SELF);
END_ENTITY; -- component_class_case_of
(*

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 231

Formal propositions:

WR1: a component_class_case_of shall be is-case-of component_class(es).

11.22.3 Material_class_case_of

A material_class_case_of is the description of a material class that is defined as a case of other
material class(es).

NOTE A material_class_case_of defines an a priori relationship.

EXPRESS specification:

*)
ENTITY material_class_case_of
SUBTYPE OF(item_class_case_of, material_class);
WHERE

WR1: check_is_case_of_referenced_classes_definition(SELF);
END_ENTITY; -- material_class_case_of
(*

Formal propositions:

WR1: a material_class_case_of shall be is-case-of material_class(es).

11.22.4 Feature_class_case_of

A feature_class_case_of is the description of a feature class that is defined as a case of other
feature class(es).

NOTE A feature_class_case_of defines an a priori relationship.

EXPRESS specification:

*)
ENTITY feature_class_case_of
SUBTYPE OF(item_class_case_of, feature_class);
WHERE

WR1: check_is_case_of_referenced_classes_definition(SELF);
END_ENTITY; -- feature_class_case_of
(*

Formal propositions:

WR1: a feature_class_case_of shall be is-case-of feature_class(es).

11.23 ISO13584_extended_dictionary_schema entity definitions: a posteriori
semantic relationships

In an a posteriori definition of semantic relationships between classes, each class defines all its
properties. Therefore, it is self sufficient even if the referenced class is not available.

This mechanism also allows suppliers or end-users to define their own semantic relationships.

ISO 13584-24:2003(E)

232 © ISO 2003 – All rights reserved

11.23.1 A_posteriori_semantic_relationship

An a_posteriori_semantic_relationship is a relationship between two classes.

EXPRESS specification:

*)
ENTITY a_posteriori_semantic_relationship
ABSTRACT SUPERTYPE OF(ONEOF(a_posteriori_case_of,

a_posteriori_view_of));
END_ENTITY; -- a_posteriori_semantic_relationship
(*

11.23.2 A_posteriori_case_of

An a_posteriori_case_of specifies a is-case-of relationship between two classes.

EXPRESS specification:

*)
ENTITY a_posteriori_case_of
SUBTYPE OF(a_posteriori_semantic_relationship);

source: class_BSU;
is_case_of: class_BSU;
corresponding_properties: SET [0:?] OF

LIST [2:2] OF property_BSU;
WHERE

WR1: definition_available_implies(SELF.source,
('ISO13584_IEC61360_DICTIONARY_SCHEMA.ITEM_CLASS'
IN TYPEOF(SELF.source.definition[1]))
OR (('ISO13584_EXTENDED_DICTIONARY_SCHEMA'
+ '.ABSTRACT_FUNCTIONAL_MODEL_CLASS')

IN TYPEOF(SELF.source.definition[1])));
WR2: definition_available_implies(SELF.source,

(('ISO13584_IEC61360_DICTIONARY_SCHEMA.ITEM_CLASS'
IN TYPEOF(SELF.source.definition[1]))
AND (definition_available_implies(SELF.is_case_of,
('ISO13584_IEC61360_DICTIONARY_SCHEMA.ITEM_CLASS'
IN TYPEOF(SELF.source.definition[1])))))
OR (('ISO13584_EXTENDED_DICTIONARY_SCHEMA'
+ '.ABSTRACT_FUNCTIONAL_MODEL_CLASS'

IN TYPEOF(SELF.source.definition[1]))
AND (definition_available_implies(SELF.is_case_of,
('ISO13584_EXTENDED_DICTIONARY_SCHEMA'
+ '.ABSTRACT_FUNCTIONAL_MODEL_CLASS'

IN TYPEOF(SELF.source.definition[1]))))));
WR3: QUERY(couple <* SELF.corresponding_properties

| NOT compatible_types(couple[1], couple[2])) = [];
WR4: QUERY(couple <* SELF.corresponding_properties

| (NOT applicable_properties(SELF.source,[couple[1]])
OR NOT applicable_properties(SELF.is_case_of,[couple [2]])))

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 233

= [];
END_ENTITY; -- a_posteriori_case_of
(*

Attribute definitions:

source: the class that is is-case-of of the is_case_of attribute.

is_case_of: the class to which the source attribute is is-case-of.

corresponding_properties: the set of pairs of properties that correspond to each other in the is-case-
of relationship, the first property of each pair belonging to the source class and the second to the
is_case_of class.

Formal propositions:

WR1: if data are available, then IP1 holds.

WR2: if data are available, then IP2 holds.

WR3: all the corresponding properties of the list of corresponding_properties shall be type
compatible.

WR4: each property involved in each pair of the corresponding_properties list shall be applicable
properties for one of the two class involved in the relationship.

Informal propositions:

IP1: the source attribute shall refer either to an item_class or to an
abstract_functioinal_model_class.

IP2: the source and is_case_of attribute shall either be both item_classes or be both
abstract_functional_model_classes.

11.23.3 A_posteriori_view_of

An a_posteriori_view_of entity is a relationship between a functional model class and an item class.

EXPRESS specification:

*)
ENTITY a_posteriori_view_of
SUBTYPE OF(a_posteriori_semantic_relationship);

functional_model: class_BSU;
is_view_of: class_BSU;
corresponding_properties: SET [0:?] OF

LIST [2:2] OF property_BSU;
WHERE

WR1: definition_available_implies(SELF.functional_model,
('ISO13584_EXTENDED_DICTIONARY_SCHEMA'
+'.FUNCTIONAL_MODEL_CLASS' IN TYPEOF(
SELF.functional_model.definition[1])));

WR2: definition_available_implies(SELF.is_view_of,

ISO 13584-24:2003(E)

234 © ISO 2003 – All rights reserved

('ISO13584_IEC61360_DICTIONARY_SCHEMA.ITEM_CLASS'
IN TYPEOF(SELF.is_view_of.definition[1])));

WR3: QUERY(couple <* SELF.corresponding_properties
| NOT compatible_types(couple [1], couple [2])) = [];

WR4: QUERY(couple <* SELF.corresponding_properties
| (NOT applicable_properties(
SELF.functional_model,[couple[1]]) OR NOT
applicable_properties(SELF.is_view_of,[couple [2]]))) = [];

END_ENTITY; -- a_posteriori_view_of
(*

Attribute definitions:

functional_model: the functional model class that is is-view-of of the is_view_of class.

is_view_of: the item_class for which the functional_model class is is-view-of.

corresponding_properties: a set of pairs of properties belonging respectively to the
functional_model class and to the is-view-of item_class class.

Formal propositions:

WR1: if data are available, then IP1 holds.

WR2: if data are available, then IP2 holds.

WR3: all the corresponding properties of the list of corresponding_properties shall be type
compatible.

WR4: the properties defined in each pair of the corresponding_properties list shall be applicable
properties for their corresponding class.

Informal propositions:

IP1: the functional_model attribute shall refer to a functional_model_class.

IP2: the is_view_of attribute shall refer to an item_class.

11.24 ISO13584_extended_dictionary_schema entity definitions: table contents

11.24.1 Table_content

A table_content entity is the table_extension of a table associated with a class in an
ISO 13584-conformant dictionary. The columns that constitute the content of the table_content shall
be type-compatible with the self_property_semantics that define the meaning of these columns.

A table_content inherits a revision_of_content attribute, that specifies the revision number of the set
of values contained in the table, and a content_revision_date attribute that specifies at what time this
set of values has been defined by the supplier. A revision shall neither change the set of key values in
the table, nor change the list of columns. It may only change values of non-key columns.

NOTE A table_BSU has also a version number that characterises the set of key values contained in the
table and the list of columns that constitute its content.

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 235

EXPRESS specification:

*)
ENTITY table_content
SUBTYPE OF(content_item, table_extension);

SELF\content_item.dictionary_definition: table_BSU;
DERIVE

SELF\table_extension.table_identifier: table_bsu
:= SELF\content_item.dictionary_definition;

WHERE
WR1: definition_available_implies(

SELF\content_item.dictionary_definition,
'ISO13584_EXTENDED_DICTIONARY_SCHEMA.TABLE_ELEMENT'
IN TYPEOF(SELF\content_item.dictionary_definition.
definition[1]));

WR2: compatible_content_and_specification(SELF);
END_ENTITY; -- table_content
(*

Attribute definitions:

dictionary_definition: inherited attribute specialised so as to refer to the table for which the current
entity describes the content.

Formal propositions:

WR1: if data are available, then IP1 holds.

WR2: the number of columns is correct with respect to the table table_element description, and the
types and values of each column are compatible and correspond to the type defined in the data_type
specification of the corresponding property_semantics.

Informal propositions:

IP1: the dictionary_element related to the identified_by attribute is a table_element.

IP2: all the revisions that correspond to the same table_BSU version have the same set of key
values and the same content LIST. The only possible change from revision to revision is correcting
typos in values or providing more accurate values

NOTE 1 This informal proposition only specifies the allowed changes from revision to revision. However it
is up to the supplier, when making such a change, to decide whether it is a revision that does not affect the
table_BSU identifier of the table or whether it is a new version of the table that changes its identification version
number.

NOTE 2 This informal proposition states that when updating a dictionary, an old revision may be replaced
by a new one without any consequence on the functional behavioir of the integrated library.

11.24.2 RDB_table_content

A RDB_table_content is a structure that restricts a table_content to tables that are relational
database compatible.

ISO 13584-24:2003(E)

236 © ISO 2003 – All rights reserved

EXPRESS specification:

*)
ENTITY RDB_table_content
SUBTYPE OF(table_content, RDB_table_extension);
WHERE

WR1: definition_available_implies(
SELF\content_item.dictionary_definition,
'ISO13584_EXTENDED_DICTIONARY_SCHEMA.RDB_TABLE_ELEMENT'
IN TYPEOF(SELF\content_item.dictionary_definition.
definition[1]));

END_ENTITY; -- RDB_table_content
(*

Formal propositions:

WR1: if data are available, then IP1 holds.

Informal propositions:

IP1: the dictionary_element related to the identified_by attribute is a RDB_table_element.

IP2: all the revisions that correspond to the same table_BSU version have the same set of key
values and the same rdb_class_extension content LIST. The only possible change from revision to
revision is changing non-key values.

11.25 ISO13584_extended_dictionary_schema: RULE definitions

This section presents the different EXPRESS rules that are used in this part of the ISO 13584
standard. These rules are related to:

— the dictionary element that describes a property defined in a model class,

— the declaration of a property in a class,

— the declaration of a type in a class,

— the usage of the named types,

— the program libraries that are associated with suppliers,

— the documents and tables that are associated with classes,

— the properties, data types, documents and tables that are imported by means of a semantic
relationship,

— the levels that are used in the view control variables.

11.25.1 Representation_properties_for_model_and_view_rule rule

The representation_property_for_model_and_view_rule rule states that a property defined in a
functional_model_class or a functional_view_class shall be described as a
representation_P_DET. Only an item_class may describe properties as condition_DET,
dependent_P_DET or non_dependent_P_DET.

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 237

EXPRESS specification:

*)
RULE representation_properties_for_model_and_view_rule

FOR(property_DET);
WHERE

WR1: QUERY(prop <* property_DET
| (SIZEOF(prop.identified_by.name_scope.definition) = 1)
AND (('ISO13584_EXTENDED_DICTIONARY_SCHEMA'
+'.FUNCTIONAL_MODEL_CLASS' IN TYPEOF(
prop.identified_by.name_scope.definition))
OR ('ISO13584_EXTENDED_DICTIONARY_SCHEMA'
+'.FUNCTIONAL_VIEW_CLASS' IN TYPEOF(
prop.identified_by.name_scope.definition)))
AND NOT('ISO13584_EXTENDED_DICTIONARY_SCHEMA'
+'.REPRESENTATION_P_DET' IN TYPEOF(prop))
) = [];

END_RULE; -- representation_properties_for_model_and_view_rule
(*

Formal propositions:

WR1: a property defined in a functional_model_class or a functional_view_class shall be
described as a representation_P_DET.

11.25.2 Allowed_named_type_usage_rule rule

The allowed_named_type_usage_rule rule is related to the usage of a named type. It states that
only types that are applicable to a class may be used to specify the domain of the properties declared
by a class, through its described_by attribute.

EXPRESS specification:

*)
RULE allowed_named_type_usage_rule FOR(class);
LOCAL

named_type_usage_allowed: LOGICAL := TRUE;
is_app: LOGICAL;
prop: property_bsu;
cl: class;
dtnt: SET[0:1] OF data_type_bsu := [];

END_LOCAL;

REPEAT i := 1 TO SIZEOF(class);
cl := class[i];
REPEAT j := 1 TO SIZEOF(class[i].described_by);

prop := cl.described_by[j];
dtnt := data_type_named_type(prop);

IF (SIZEOF(dtnt) = 1) THEN
is_app := applicable_types(cl.identified_by, dtnt);
IF (NOT is_app) THEN

ISO 13584-24:2003(E)

238 © ISO 2003 – All rights reserved

named_type_usage_allowed := FALSE;
END_IF;

END_IF;
END_REPEAT;

END_REPEAT;

WHERE
WR1: named_type_usage_allowed;

END_RULE; -- allowed_named_type_usage_rule
(*

Formal propositions:

WR1: only types that are applicable to a class may be used to specify the domain of the properties
declared by a class, through its described_by attribute.

11.25.3 Assert_oneof_for_table_rule rule

The assert_oneof_for_table_rule rule states that a table_element that is not a RDB_table_element
cannot be a RDB_table_specification.

EXPRESS specification:

*)
RULE assert_oneof_for_table_rule FOR(table_element);
WHERE

WR1: QUERY(temp <* table_element |
NOT('ISO13584_EXTENDED_DICTIONARY_SCHEMA'
+ '.RDB_TABLE_ELEMENT' IN TYPEOF(temp))
AND ('ISO13584_TABLE_RESOURCE_SCHEMA.RDB_TABLE_SPECIFICATION'
IN TYPEOF(temp))) = [];

END_RULE; -- assert_oneof_for_table_rule
(*

Formal propositions:

WR1: a table that is not a RDB_table_element cannot be a RDB_table_specification.

11.25.4 Assert_oneof_for_class_rule rule

The assert_oneof_for_class_rule rule states that a class shall not be at the same time an
item_class and/or a functional_view_class and/or an abstract_functional_model_class.

EXPRESS specification:

*)
RULE assert_oneof_for_class_rule FOR(class);
WHERE

WR1: QUERY(cl <* class |
('ISO13584_IEC61360_DICTIONARY_SCHEMA.ITEM_CLASS'
IN TYPEOF(cl))

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 239

AND (('ISO13584_EXTENDED_DICTIONARY_SCHEMA'
+'.ABSTRACT_FUNCTIONAL_MODEL_CLASS') IN TYPEOF(cl))) = [];

WR2: QUERY(cl <* class |
('ISO13584_IEC61360_DICTIONARY_SCHEMA.ITEM_CLASS'
IN TYPEOF(cl))
AND (('ISO13584_EXTENDED_DICTIONARY_SCHEMA'
+ '.FUNCTIONAL_VIEW_CLASS') IN TYPEOF(cl))) = [];

WR3: QUERY(cl <* class |
(('ISO13584_EXTENDED_DICTIONARY_SCHEMA'
+ '.ABSTRACT_FUNCTIONAL_MODEL_CLASS')
IN TYPEOF(cl))
AND (('ISO13584_EXTENDED_DICTIONARY_SCHEMA'
+'.FUNCTIONAL_VIEW_CLASS') IN TYPEOF(cl))) = [];

END_RULE; -- assert_oneof_for_class_rule
(*

Formal propositions:

WR1: a class shall not be at the same time an item_class and an
abstract_functional_model_class.

WR2: a class shall not be at the same time an item_class and a functional_view_class.

WR3: a class shall not be at the same time a functional_view_class and an
abstract_functional_model_class.

11.25.5 No_forward_reference_from_table_rule rule

The no_forward_reference_from_table_rule rule checks that when a PLIB conformant library
exchange context includes table_elements, these table_elements do not refer through their
column_meaning inherited attribute to a property_BSU that makes a forward reference to a
class_BSU with respect of the class_BSU list order defined by the contained_classes attribute of
any dictionary entity included in the library exchange context.

NOTE The library integrated information model defined in this part of ISO 13584 only permits one
dictionary entity within a library exchange context.

EXPRESS specification:

*)
RULE no_forward_reference_from_table_rule FOR(

dictionary, table_element);
WHERE

WR1: QUERY(dic <* dictionary | QUERY(tab <* table_element
| makes_reference_outside(
get_property_BSU_from_property_semantics(
tab\table_specification.column_meaning),
sub_list_until(dic.contained_classes,
tab\table_specification.table_identifier\
table_BSU.name_scope))) <> []) = [];

END_RULE; -- no_forward_reference_from_table_rule
(*

ISO 13584-24:2003(E)

240 © ISO 2003 – All rights reserved

Formal propositions:

WR1: there is no forward references from any table_element to a property_bsu with respect of the
class_BSU list order defined by the contained_classes attribute of any dictionary entity included in
the library exchange context.

11.25.6 Imported_properties_are_visible_or_applicable_rule rule

The imported_properties_are_visible_or_applicable_rule rule checks that when a property is
imported by a class by means of an a_priori_semantic_relationship, this property is visible or
applicable for the class it is imported from.

NOTE Applicable properties include the properties imported through a semantic relationship. This rule
enables to import properties from a class where they were already imported.

EXPRESS specification:

*)
RULE imported_properties_are_visible_or_applicable_rule FOR(

a_priori_semantic_relationship, property_DET);
WHERE

WR1: QUERY(rel <* a_priori_semantic_relationship
| QUERY(prop <* rel.referenced_properties
| QUERY(cl <* rel.referenced_classes
| NOT visible_properties(cl, [prop])
AND NOT applicable_properties(cl, [prop]))
= rel.referenced_classes) = [])
= a_priori_semantic_relationship;

END_RULE; -- imported_properties_are_visible_or_applicable_rule
(*

Formal propositions:

WR1: the imported properties defined by the referenced_properties attribute of any
a_priori_semantic_relationship shall be visible or applicable for one of the classes belonging to the
referenced_classes set of this a_priori_semantic_relationship.

11.25.7 Imported_data_types_are_visible_or_applicable_rule rule

The imported_data_types_are_visible_or_applicable_rule rule checks that when a data type is
imported by a class by means of an a_priori_semantic_relationship, this data type is visible or
applicable for the class it is imported from.

NOTE Applicable data types include the data types imported through a semantic relationship. This rule
enables to import data types from a class where they were already imported.

EXPRESS specification:

*)
RULE imported_data_types_are_visible_or_applicable_rule FOR(

a_priori_semantic_relationship, data_type_element);
WHERE

WR1: QUERY(rel <* a_priori_semantic_relationship

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 241

| QUERY(typ <* rel.referenced_data_types
| QUERY(cl <* rel.referenced_classes
| NOT visible_types(cl, [typ])
AND NOT applicable_types(cl, [typ]))
= rel.referenced_classes) = [])
= a_priori_semantic_relationship;

END_RULE; -- imported_data_types_are_visible_or_applicable_rule
(*

Formal propositions:

WR1: the imported types defined by the referenced_data_types attribute of any
a_priori_semantic_relationship shall be visible or applicable for one of the classes belonging to the
referenced_classes set of this a_priori_semantic_relationship.

11.25.8 Imported_tables_are_visible_or_applicable_rule rule

The imported_tables_are_visible_or_applicable_rule rule checks that when a table is imported by
a class by means of an a_priori_semantic_relationship, this table is visible or applicable for the
class it is imported from.

NOTE Applicable tables include the tables imported through a semantic relationship. This rule enables to
import tables from a class where they were already imported.

EXPRESS specification:

*)
RULE imported_tables_are_visible_or_applicable_rule FOR(

a_priori_semantic_relationship, table_element);
WHERE

WR1: QUERY(rel <* a_priori_semantic_relationship
| QUERY(tab <* rel.referenced_tables
| QUERY(cl <* rel.referenced_classes
| NOT visible_tables(cl, [tab])
AND NOT applicable_tables(cl, [tab]))
= rel.referenced_classes) = [])
= a_priori_semantic_relationship;

END_RULE; -- imported_tables_are_visible_or_applicable_rule
(*

Formal propositions:

WR1: the imported tables defined by the referenced_tables attribute of any
a_priori_semantic_relationship shall be visible or applicable for one of the classes belonging to the
referenced_classes set of this a_priori_semantic_relationship.

11.25.9 Imported_documents_are_visible_or_applicable_rule rule

The imported_documents_are_visible_or_applicable_rule rule checks that when a document is
imported by a class by means of an a_priori_semantic_relationship, this document is visible or
applicable for the class it is imported from.

NOTE Applicable documents include the documents imported through a semantic relationship. This rule
enables to import documents from a class where they were already imported.

ISO 13584-24:2003(E)

242 © ISO 2003 – All rights reserved

EXPRESS specification:

*)
RULE imported_documents_are_visible_or_applicable_rule FOR(

a_priori_semantic_relationship, document_element);
WHERE

WR1: QUERY(rel <* a_priori_semantic_relationship
| QUERY(doc <* rel.referenced_documents
| QUERY(cl <* rel.referenced_classes
| NOT visible_documents(cl, [doc])
AND NOT applicable_documents(cl, [doc]))
= rel.referenced_classes) = [])
= a_priori_semantic_relationship;

END_RULE; -- imported_documents_are_visible_or_applicable_rule
(*

Formal propositions:

WR1: the imported documents defined by the referenced_documents attribute of any
a_priori_semantic_relationship shall be visible or applicable for one of the classes belonging to the
referenced_classes set of this a_priori_semantic_relationship.

11.26 ISO13584_extended_dictionary_schema: function definitions

This section gathers the set of functions that are needed for the specification of the constraints on the
entities defined in the ISO13584_extended_dictionary_schema.

11.26.1 Visible_properties function

The visible_properties function checks that the properties corresponding to prop are visible from the
class identified by the cl parameter. A property is visible from a class if its DET refers to the BSU of
this class or any of its superclass.

If the known visible properties are possibly incomplete because a superclass of cl is not available in
the current exchange context, the function returns UNKNOWN.

EXPRESS specification:

*)
FUNCTION visible_properties(cl: class_BSU;

prop: AGGREGATE OF property_BSU): LOGICAL;

LOCAL
ok: BOOLEAN := TRUE;

END_LOCAL;

IF NOT EXISTS(cl)
THEN

RETURN(UNKNOWN);
END_IF;

REPEAT i := 1 to SIZEOF(prop);

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 243

IF NOT(prop[i] IN compute_known_visible_properties(cl))
THEN ok := FALSE;

END_IF;
END_REPEAT;

IF NOT(ok) AND NOT(all_class_descriptions_reachable(cl))
THEN RETURN(UNKNOWN);

END_IF;

IF NOT(ok) AND all_class_descriptions_reachable(cl)
THEN RETURN(FALSE);

END_IF;

RETURN(TRUE);

END_FUNCTION; -- visible_properties
(*

11.26.2 Visible_types function

The visible_types function checks that the types corresponding to typ are visible from the class
identified by the cl parameter. A type is visible from a class if its DET refers to the BSU of this class or
any of its superclass.

If the known visible data types are possibly incomplete because a superclass of cl is not available in
the current exchange context, the function returns UNKNOWN.

EXPRESS specification:

*)
FUNCTION visible_types(cl: class_BSU;

typ: AGGREGATE OF data_type_BSU): LOGICAL;

LOCAL
ok: BOOLEAN := TRUE;

END_LOCAL;

IF NOT EXISTS(cl)
THEN

RETURN(UNKNOWN);
END_IF;

REPEAT i := 1 to SIZEOF(typ);
IF NOT(typ[i] IN compute_known_visible_data_types(cl))

THEN ok := FALSE;
END_IF;
END_REPEAT;

IF NOT(ok) AND NOT(all_class_descriptions_reachable(cl))
THEN RETURN(UNKNOWN);

END_IF;

IF NOT(ok) AND all_class_descriptions_reachable(cl)

ISO 13584-24:2003(E)

244 © ISO 2003 – All rights reserved

THEN RETURN(FALSE);
END_IF;

RETURN(TRUE);

END_FUNCTION; -- visible_types
(*

11.26.3 Visible_tables function

The visible_tables function checks that the tables corresponding to tab are visible from the class
identified by the cl parameter. A table is visible from a class if its DET refers to the BSU of this class or
any of its superclass.

If a BSU definition is not available to compute the whole set of visible tables and if a table_BSU from
tab has not been proved to be visible, the function returns UNKNOWN.

EXPRESS specification:

*)
FUNCTION visible_tables(cl: class_BSU;

tab: AGGREGATE OF table_BSU): LOGICAL;

IF NOT EXISTS(cl)
THEN

RETURN(UNKNOWN);
END_IF;

REPEAT i := SIZEOF(tab) TO 1 BY -1;
IF tab[i].name_scope = cl
THEN

tab := tab - tab[i];
END_IF;

END_REPEAT;

IF SIZEOF(tab) = 0
THEN

RETURN(TRUE);
END_IF;

IF SIZEOF(cl.definition) = 0
THEN

RETURN(UNKNOWN);
END_IF;

IF EXISTS(cl.definition[1]\class.its_superclass)
THEN

RETURN(visible_tables(cl.definition[1]
\class.its_superclass, tab));

ELSE
RETURN(FALSE);

END_IF;

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 245

END_FUNCTION; -- visible_tables
(*

11.26.4 Visible_documents function

The visible_documents function checks that the documents corresponding to doc are visible from
the class identified by the cl parameter. A document is visible from a class if its DET refers to the BSU
of this class or any of its superclass.

If a BSU definition is not available to compute the whole set of visible documents and if a
document_BSU from doc has not been proved to be visible, the function returns UNKNOWN.

EXPRESS specification:

*)
FUNCTION visible_documents(cl: class_BSU;

doc: AGGREGATE OF document_BSU): LOGICAL;

IF NOT EXISTS(cl)
THEN

RETURN(UNKNOWN);
END_IF;

REPEAT i := SIZEOF(doc) TO 1 BY -1;
IF doc[i].name_scope = cl
THEN

doc := doc - doc[i];
END_IF;

END_REPEAT;

IF SIZEOF(doc) = 0
THEN

RETURN(TRUE);
END_IF;

IF SIZEOF(cl.definition) = 0
THEN

RETURN(UNKNOWN);
END_IF;

IF EXISTS(cl.definition[1]\class.its_superclass)
THEN

RETURN(visible_documents(cl.definition[1]
\class.its_superclass, doc));

ELSE
RETURN(FALSE);

END_IF;

END_FUNCTION; -- visible_documents
(*

ISO 13584-24:2003(E)

246 © ISO 2003 – All rights reserved

11.26.5 Applicable_properties function

The applicable_properties function checks that the properties corresponding to prop are applicable
to the class identified by the cl parameter. A property is applicable to a class if its property_BSU
belongs to the described_by attribute of this class or any of its super-classes, or if its property_BSU
is imported by the class, or by any of its super-classes.

Note that, in particular, all the properties belonging to the known_applicable_properties attribute of a
class are applicable to this class.

If a dictionary_element is not available to compute the whole set of applicable properties and if a
property_BSU from prop has not been proved to be applicable, the function returns UNKNOWN.

EXPRESS specification:

*)
FUNCTION applicable_properties(cl: class_BSU;

prop: AGGREGATE OF property_BSU): LOGICAL;

IF SIZEOF(prop) = 0
THEN

RETURN(TRUE);
END_IF;

IF NOT EXISTS(cl)
THEN

RETURN(UNKNOWN);
END_IF;

IF SIZEOF(cl.definition) = 0
THEN

RETURN(UNKNOWN);
END_IF;

prop := prop - list_to_set(cl.definition[1]\class.described_by);

IF 'ISO13584_EXTENDED_DICTIONARY_SCHEMA' +
'.A_PRIORI_SEMANTIC_RELATIONSHIP' IN TYPEOF(cl.definition[1])

THEN
prop := prop - list_to_set(cl.definition[1]

\a_priori_semantic_relationship.referenced_properties);
END_IF;

IF SIZEOF(prop) = 0
THEN

RETURN(TRUE);
ELSE

IF EXISTS(cl.definition[1]\class.its_superclass)
THEN

RETURN(applicable_properties(cl.definition[1]
\class.its_superclass, prop));

ELSE

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 247

RETURN(FALSE);
END_IF;

END_IF;

END_FUNCTION; -- applicable_properties
(*

11.26.6 Applicable_types function

The applicable_types function checks that the types corresponding to typ are applicable to the class
identified by the cl parameter. A type is applicable to a class if its data_type_BSU belongs to the
defined_types attribute of this class or any of its super-classes, or if its data_type_BSU is imported
by the class, or any of its super-classes.

Note that, in particular, all the data types belonging to the known_applicable_data_types attribute of
a class are applicable to this class.

If a dictionary_element is not available to compute the whole set of applicable types and if a
data_type_BSU from typ has not been proved to be applicable, the function returns UNKNOWN.

EXPRESS specification:

*)
FUNCTION applicable_types(cl: class_BSU;

typ: AGGREGATE OF data_type_BSU): LOGICAL;

IF SIZEOF(typ) = 0
THEN

RETURN(TRUE);
END_IF;

IF NOT EXISTS(cl)
THEN

RETURN(UNKNOWN);
END_IF;

IF SIZEOF(cl.definition) = 0
THEN

RETURN(UNKNOWN);
END_IF;

typ := typ - cl.definition[1]\class.defined_types;

IF ('ISO13584_EXTENDED_DICTIONARY_SCHEMA' +
'.A_PRIORI_SEMANTIC_RELATIONSHIP' IN TYPEOF(cl.definition[1]))

THEN
typ := typ -

cl.definition[1]\a_priori_semantic_relationship
.referenced_data_types;

END_IF;

IF SIZEOF(typ) = 0
THEN

ISO 13584-24:2003(E)

248 © ISO 2003 – All rights reserved

RETURN(TRUE);
ELSE

IF EXISTS(cl.definition[1]\class.its_superclass)
THEN

RETURN(applicable_types(cl.definition[1]
\class.its_superclass, typ));

ELSE
RETURN(FALSE);

END_IF;
END_IF;

END_FUNCTION; -- applicable_types
(*

11.26.7 Applicable_tables function

The applicable_tables function checks that the tables corresponding to tab are applicable to the
class identified by the cl parameter. A table is applicable to a class if a class_table_relationship
contains the corresponding table_BSU in its related_tokens list and refers to the class, or to any of its
super-classes, as its relating_class attributes. It is also applicable if the corresponding table_BSU is
imported by the class, or any of its super-classes.

If a dictionary_element is not available to compute the whole set of applicable tables and if a
table_BSUs from tab has not been proved to be applicable, the function returns UNKNOWN.

EXPRESS specification:

*)
FUNCTION applicable_tables(cl: class_BSU;

tab: AGGREGATE OF table_identification): LOGICAL;

IF SIZEOF(tab) = 0
THEN

RETURN(TRUE);
END_IF;

IF NOT EXISTS(cl)
THEN

RETURN(UNKNOWN);
END_IF;

IF SIZEOF(cl.definition) = 0
THEN

RETURN(UNKNOWN);
END_IF;

tab := tab - retrieve_tables(cl);

IF 'ISO13584_EXTENDED_DICTIONARY_SCHEMA' +
'.A_PRIORI_SEMANTIC_RELATIONSHIP' IN TYPEOF(cl.definition[1])

THEN
tab := tab - cl.definition[1]\a_priori_semantic_relationship

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 249

.referenced_tables;
END_IF;

IF SIZEOF(tab) = 0
THEN

RETURN(TRUE);
ELSE

IF EXISTS(cl.definition[1]\class.its_superclass)
THEN
RETURN(

applicable_tables(cl.definition[1]\class.its_superclass,
tab));

ELSE
RETURN(FALSE);

END_IF;
END_IF;

END_FUNCTION; -- applicable_tables
(*

11.26.8 Retrieve_tables function

The retrieve_tables function collects the set of tables directly associated with a class through a
class_table_relationship.

EXPRESS specification:

*)
FUNCTION retrieve_tables(cl: class_BSU): SET[0:?] OF table_BSU;
-- requires: { SIZEOF(cl.definition) <> O }

LOCAL
s: SET[0:?] OF table_BSU := [];

END_LOCAL;

REPEAT i := 1 TO SIZEOF(cl.definition[1]\class.associated_items);
IF 'ISO13584_EXTENDED_DICTIONARY_SCHEMA'

+'.CLASS_TABLE_RELATIONSHIP'
IN TYPEOF(cl.definition[1]\class.associated_items[i])

THEN
s := s + cl.definition[1]\class.associated_items[i]

.related_tokens;
END_IF;

END_REPEAT;
RETURN(s);

END_FUNCTION; -- retrieve_tables
(*

11.26.9 Applicable_documents function

The applicable_documents function checks that the documents corresponding to doc are applicable
to the class identified by the cl parameter. A document is applicable to a class if a

ISO 13584-24:2003(E)

250 © ISO 2003 – All rights reserved

class_document_relationship contains the corresponding document_BSU in its related_tokens
list, and refers to the class, or to any of its super-classes, as its relating_class attributes. It is also
applicable if the corresponding document_BSU is imported by the class, or any of its super-classes.

If a dictionary_element is not available to compute the whole set of applicable documents and if a
document_BSU from doc has not been proved to be applicable, the function returns UNKNOWN.

EXPRESS specification:

*)
FUNCTION applicable_documents(cl: class_BSU;

doc: AGGREGATE OF document_BSU): LOGICAL;

IF SIZEOF(doc) = 0
THEN

RETURN(TRUE);
END_IF;

IF NOT EXISTS(cl)
THEN

RETURN(UNKNOWN);
END_IF;

IF SIZEOF(cl.definition) = 0
THEN

RETURN(UNKNOWN);
END_IF;

doc := doc - retrieve_documents(cl);

IF 'ISO13584_EXTENDED_DICTIONARY_SCHEMA' +
'.A_PRIORI_SEMANTIC_RELATIONSHIP' IN TYPEOF(cl.definition[1])

THEN
Doc := doc - cl.definition[1]\a_priori_semantic_relationship.

referenced_documents;
END_IF;

IF SIZEOF(doc) = 0
THEN

RETURN(TRUE);
ELSE

IF EXISTS(cl.definition[1]\class.its_superclass)
THEN

RETURN(applicable_documents(cl.definition[1]
\class.its_superclass, doc));

ELSE
RETURN(FALSE);

END_IF;
END_IF;

END_FUNCTION; -- applicable_documents

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 251

(*

11.26.10 Retrieve_documents function

The retrieve_documents function collects the set of documents directly associated with a class
through a class_document_relationship.

EXPRESS specification:

*)
FUNCTION retrieve_documents(cl: class_BSU): SET[0:?] OF document_BSU;
-- requires: { SIZEOF(cl.definition) <> O }

LOCAL
s: SET[0:?] OF document_BSU := [];

END_LOCAL;

REPEAT i := 1 TO SIZEOF(cl.definition[1]\class.associated_items);
IF 'ISO13584_EXTENDED_DICTIONARY_SCHEMA' +

'.CLASS_DOCUMENT_RELATIONSHIP'
IN TYPEOF(cl.definition[1]\class.associated_items[i])

THEN
s := s+ cl.definition[1]\class.associated_items[i]

\class_document_relationship.related_tokens;
END_IF;

END_REPEAT;

RETURN(s);

END_FUNCTION; -- retrieve_documents
(*

11.26.11 Makes_reference_outside function

The function makes_reference_outside checks if an aggregate of property_or_data_type_BSU
makes references to class_BSUs that do not belong to the l parameter. It returns FALSE if all the
references are in the l parameter and TRUE if some references are outside the l parameter.

A property_BSU or a data_type_BSU refers to a class_BSU when:

— its name_scope is this class_BSU, or

— its definition dictionary_element is provided and refers, as its domain, to a class_BSU (is-part-of
relationship), or

— its definition dictionary_element is provided and refers, as its domain, to another
data_type_BSU that refers to a class_BSU (recursive definition);

Such references are checked by the makes_reference_outside function.

EXPRESS specification:

*)
FUNCTION makes_reference_outside (

ISO 13584-24:2003(E)

252 © ISO 2003 – All rights reserved

p: AGGREGATE OF property_or_data_type_BSU;
l: LIST[1:?] OF class_BSU): BOOLEAN;

LOCAL
bool: BOOLEAN := FALSE;
temp: SET[0:1] OF class_BSU := [];

END_LOCAL;

REPEAT j := 1 TO SIZEOF(p);
IF ((('ISO13584_IEC61360_DICTIONARY_SCHEMA.PROPERTY_BSU'

IN TYPEOF(p[j]))
AND (NOT(p[j]\property_bsu.name_scope IN l)))
OR
(('ISO13584_IEC61360_DICTIONARY_SCHEMA.DATA_TYPE_BSU'
IN TYPEOF(p[j]))
AND (NOT(p[j]\data_type_bsu.name_scope IN l))))

THEN
bool := TRUE;
RETURN(bool);

END_IF;

IF ((('ISO13584_IEC61360_DICTIONARY_SCHEMA.PROPERTY_BSU'
IN TYPEOF(p[j]))
AND (NOT(SIZEOF(p[j]\basic_semantic_unit.definition) = 0)))
OR
(('ISO13584_IEC61360_DICTIONARY_SCHEMA.DATA_TYPE_BSU'
IN TYPEOF(p[j]))
AND (NOT(SIZEOF(p[j]\basic_semantic_unit.definition) = 0))))

THEN
IF ('ISO13584_IEC61360_DICTIONARY_SCHEMA.CLASS_INSTANCE_TYPE'

IN data_type_typeof(p[j]))
THEN

temp := data_type_class_of(p[j]);
IF NOT(temp[1] IN l)
THEN

bool := bool OR TRUE ;
ELSE

bool := bool OR FALSE;
END_IF;

END_IF;

IF SIZEOF(data_type_named_type(p[j])) = 1
THEN

bool := bool OR makes_reference_outside
(data_type_named_type(p[j]), l);

END_IF;
END_IF;

END_REPEAT;

RETURN(bool);

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 253

END_FUNCTION; -- makes_reference_outside
(*

11.26.12 Prefix_ordered_class_list function

The prefix_ordered_class_list function checks that all the direct or indirect references from one
class_BSU to another class_BSU are backward references with respect to the classes list order.

A class_BSU is referred to directly by a class through the following attributes:

— class.its_superclass: is-a relationship;

and, if the class is defined by means of an a_priori_semantic_relationship:

— class\a_priori_semantic_relationship.referenced_classes.

A class_BSU is referred to indirectly by a class:

— either when a property_BSU or a data_type_BSU referenced by this class references itself
directly or indirectly this class_BSU, or

— when a class_BSU_relationship referring to this class by its relating_class attribute refers to
the class_BSU by its related_tokens attributes.

A property_BSU or a data_type_BSU refers to a class_BSU when:

— its name_scope is this class_BSU, or

— its definition dictionary_element is provided and refers, as its domain, to a class_BSU (is-part-of
relationship), or

— its definition dictionary_element is provided and refers, as its domain, to another
data_type_BSU that refers to a class_BSU (recursive definition);

Such references are checked by the makes_reference_outside function.

In the ISO13584_extended_dictionary_schema, a class_BSU makes an indirect forward reference
to a class_BSU with respect to the class list order in five cases.

a) when its described_by attribute contains a property_BSU that makes a
makes_reference_outside;

b) or when the class is defined by means of an a_priori_semantic_relationship, and its imported
properties defined by the referenced_properties inherited attribute contain a property_BSU
that makes a makes_reference_outside;

c) or when its defined_types attribute contains a data_type_BSU that makes a
makes_reference_outside;

d) or when the class is defined by means of an a_priori_semantic_relationship, and its imported
data types defined by the referenced_data_types inherited attribute contain a data_type_BSU
that makes a makes_reference_outside;

e) or when its associated_items attribute contains a class_BSU_relationship whose
related_tokens makes a makes_reference_outside;

In the context of the ISO13584_extended_dictionary_schema, this situation may happen in
two cases:

ISO 13584-24:2003(E)

254 © ISO 2003 – All rights reserved

1) the class_BSU_relationship is a class_table_relationship that contains a table_BSU that
makes through its name_scope attribute a makes_reference_outside, or

2) the class_BSU_relationship is a class_document_relationship that contains a
document_BSU that makes through its name_scope attributes a
makes_reference_outside.

EXPRESS specification:

*)
FUNCTION prefix_ordered_class_list(classes: LIST[2:?] OF class_BSU):

BOOLEAN;

LOCAL
related_token: class_related_BSU;-- items associated with

-- a class through a class_BSU_relationship
END_LOCAL;

REPEAT i := 1 TO SIZEOF(classes);

IF SIZEOF(classes[i].definition) = 1
THEN

IF (EXISTS(classes[i].definition[1]\class.its_superclass))
AND (NOT((classes[i].definition[1]\class.its_superclass)
IN (makes_sub_list(classes, 1, i - 1))))

THEN
RETURN(FALSE);

END_IF;

IF ('ISO13584_EXTENDED_DICTIONARY_SCHEMA'+
'.A_PRIORI_SEMANTIC_RELATIONSHIP'
IN TYPEOF(classes[i].definition[1]))

THEN
IF (QUERY(x <* classes[i].definition[1]
\a_priori_semantic_relationship.
referenced_classes | NOT(x IN makes_sub_list(
classes, 1, i - 1))) <> [])
THEN

RETURN(FALSE);
END_IF;

END_IF;

IF NOT(SIZEOF(classes[i].definition[1]\class.described_by)
= 0)

THEN
IF (makes_reference_outside(classes[i].definition[1]

\class.described_by, makes_sub_list(
classes, 1, i)))

THEN
RETURN(FALSE);

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 255

END_IF;
END_IF;

IF ('ISO13584_EXTENDED_DICTIONARY_SCHEMA'+
'.A_PRIORI_SEMANTIC_RELATIONSHIP'
IN TYPEOF(classes[i].definition[1]))

THEN
IF makes_reference_outside(classes[i].definition[1]\
a_priori_semantic_relationship.referenced_properties,
makes_sub_list(classes, 1, i - 1))
THEN

RETURN(FALSE);
END_IF;

END_IF;

IF NOT(SIZEOF(classes[i].definition[1]\class.defined_types)
= 0)

THEN
IF makes_reference_outside(classes[i].definition[1]\

class.defined_types, makes_sub_list
(classes, 1, i))

THEN
RETURN(FALSE);

END_IF;
END_IF;

IF ('ISO13584_EXTENDED_DICTIONARY_SCHEMA'+
'.A_PRIORI_SEMANTIC_RELATIONSHIP'
IN TYPEOF(classes[i].definition[1]))

THEN
IF makes_reference_outside(classes[i].definition[1]\
a_priori_semantic_relationship.referenced_data_types,
makes_sub_list(classes, 1, i - 1))
THEN

RETURN(FALSE);
END_IF;

END_IF;

IF NOT(SIZEOF(classes[i].definition[1]\
class.associated_items) = 0)

THEN
REPEAT j := 1 TO SIZEOF(classes[i].definition[1]
\class.associated_items);

REPEAT k := 1 TO SIZEOF(classes[i].definition[1]
\class.associated_items[j]
\class_BSU_relationship.related_tokens);

related_token := classes[i].definition[1]
\class.associated_items[j]
\class_BSU_relationship.related_tokens[k];

IF (('ISO13584_EXTENDED_DICTIONARY_SCHEMA'+

ISO 13584-24:2003(E)

256 © ISO 2003 – All rights reserved

'.TABLE_BSU') IN (TYPEOF(related_token)))
AND NOT(related_token\table_BSU.name_scope
IN makes_sub_list(classes, 1, i))

THEN
RETURN(FALSE);

END_IF;

IF (('ISO13584_EXTENDED_DICTIONARY_SCHEMA'+
'.DOCUMENT_BSU')
IN (TYPEOF(related_token)))
AND NOT(related_token\document_BSU
.name_scope IN makes_sub_list
(classes, 1, i))

THEN
RETURN(FALSE);

END_IF;
END_REPEAT;

END_REPEAT;
END_IF;

END_IF;
END_REPEAT;

RETURN(TRUE);
END_FUNCTION; -- prefix_ordered_class_list
(*

11.26.13 Functional_view_v_c_v function

The functional_view_v_c_v function computes the list of properties defined as
view_control_variables in a class, or any of its super-class(es) by a traversal of the inheritance tree
defined by the class hierarchy. It calls the retrieve_functional_view_v_c_v function that computes
recursively the properties defined as view_control_variables.

This function is intended to be called after the all_class_descriptions_reachable function. Therefore,
if some dictionary_elements are not available, it returns an empty LIST.

If the class_BSU cl does not refer to a functional view class, it returns the empty set.

EXPRESS specification:

*)
FUNCTION functional_view_v_c_v(cl: class_BSU): LIST OF property_BSU;

IF NOT EXISTS(cl)
THEN

RETURN([]); -- cl is indeterminate
END_IF;

IF NOT(all_class_descriptions_reachable(cl))
THEN

RETURN([]); -- some dictionary_element are not available
END_IF;

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 257

IF NOT('ISO13584_EXTENDED_DICTIONARY_SCHEMA.FUNCTIONAL_VIEW_CLASS' IN
TYPEOF(cl.definition[1]))

THEN
RETURN([]);

END_IF;

RETURN(retrieve_functional_view_v_c_v(cl, []));

END_FUNCTION; -- functional_view_v_c_v
(*

11.26.14 Retrieve_functional_view_v_c_v function

The retrieve_functional_view_v_c_v function computes the list of properties defined as
view_control_variables in a class, or any of its super-classes by a traversal of the inheritance tree
defined by the class hierarchy.

If the class_BSU cl does not refer to a functional view class, it returns the empty set.

EXPRESS specification:

*)
FUNCTION retrieve_functional_view_v_c_v(cl: class_BSU;

pr: LIST OF property_BSU): LIST OF property_BSU;

LOCAL
prop: LIST OF property_BSU := pr;

END_LOCAL;

IF SIZEOF(cl.definition) = 0 -- abnormal case
THEN RETURN([]);

END_IF;

IF NOT('ISO13584_EXTENDED_DICTIONARY_SCHEMA.FUNCTIONAL_VIEW_CLASS' IN
TYPEOF(cl.definition[1]))

THEN
RETURN([]);

END_IF;

IF SIZEOF(cl.definition) = 1
THEN

prop := prop + cl.definition[1]
\functional_view_class.view_control_variables;

-- view_control_variables of this class
END_IF;

IF NOT(EXISTS(cl.definition[1]\class.its_superclass))
THEN

RETURN(prop);
ELSE

RETURN(retrieve_functional_view_v_c_v(
cl.definition[1]\class.its_superclass, prop));

ISO 13584-24:2003(E)

258 © ISO 2003 – All rights reserved

END_IF;

END_FUNCTION; -- retrieve_functional_view_v_c_v
(*

11.26.15 Data_type_named_type function

The data_type_named_type function computes the named_type used to specify the domain of a
property_BSU or a data_type_BSU. It returns only the first data_type_BSU used in the domain
definition.

If the data_type is not associated with a named_type, or if the definition of the parameter type_spec
is not available, the function returns an empty set.

EXPRESS specification:

*)
FUNCTION data_type_named_type(type_spec: property_or_data_type_BSU):

SET[0:1] OF data_type_BSU;

LOCAL
res: BOOLEAN := FALSE;
s: SET[0:1] OF data_type_BSU := [];
x: data_type;

END_LOCAL;

IF NOT EXISTS(type_spec)
THEN

RETURN([]); -- type_spec is indeterminate
END_IF;

IF ('ISO13584_IEC61360_DICTIONARY_SCHEMA.PROPERTY_BSU' IN
TYPEOF(type_spec))

THEN
IF NOT(SIZEOF(type_spec.definition) = 0)
THEN

x := type_spec.definition[1]\property_DET.domain;
res := TRUE;

END_IF;
ELSE

IF NOT(SIZEOF(type_spec.definition) = 0)
THEN

x := type_spec.definition[1]\data_type_element
.type_definition;

res := TRUE;
END_IF;

END_IF;

IF res
THEN

IF ('ISO13584_IEC61360_DICTIONARY_SCHEMA.NAMED_TYPE'
IN TYPEOF(x))

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 259

THEN
s := s + x\named_type.referred_type;

END_IF;
END_IF;

RETURN(s);

END_FUNCTION; -- data_type_named_type
(*

11.26.16 Data_type_typeof function

The data_type_typeof function runs as the EXPRESS TYPEOF function concerning the data_type
that defines the final domain of a property_BSU or a data_type_BSU.

If the data_type is associated with named_types, the function recursively traverses their
referred_types attributes, until arriving either to a simple_type or to a complex_type. Then the
function returns the result of the EXPRESS TYPEOF function applied to this entity.

If some BSU definitions are not available, with the result that the function cannot be resolved to a
simple_type or to a complex_type, the function returns an empty set of STRING.

EXPRESS specification:

*)
FUNCTION data_type_typeof(type_spec: property_or_data_type_BSU):

SET OF STRING;

LOCAL
res: BOOLEAN := FALSE;
x: data_type;

END_LOCAL;

IF NOT EXISTS(type_spec)
THEN

RETURN([]); -- type_spec is indeterminate
END_IF;

IF ('ISO13584_IEC61360_DICTIONARY_SCHEMA.PROPERTY_BSU' IN
TYPEOF(type_spec))

THEN
IF NOT(SIZEOF(type_spec.definition) = 0)
THEN

x := type_spec.definition[1]\property_DET.domain;
res := TRUE;

END_IF;
ELSE

IF NOT(SIZEOF(type_spec.definition) = 0)
THEN

x := type_spec.definition[1]
\data_type_element.type_definition;

res := TRUE;
END_IF;

ISO 13584-24:2003(E)

260 © ISO 2003 – All rights reserved

END_IF;

IF NOT(res)
THEN

RETURN([]);
END_IF;

IF ('ISO13584_IEC61360_DICTIONARY_SCHEMA.NAMED_TYPE' IN TYPEOF(x))
THEN

IF NOT(SIZEOF(x\named_type.referred_type.definition) = 0)
THEN

RETURN(data_type_typeof(x\named_type.referred_type));
ELSE

RETURN([]);
END_IF;

ELSE
RETURN(TYPEOF(x));

END_IF;

END_FUNCTION; -- data_type_typeof
(*

11.26.17 Data_type_class_of function

The data_type_class_of function computes the class that defines the final domain of a
property_BSU or a data_type_BSU. This function is intended to be called after the
data_type_typeof function.

If the data_type is not of type class_instance_type, or if a data_type is associated with a
named_type, of which BSU definition is not available, the function returns an empty set.

EXPRESS specification:

*)
FUNCTION data_type_class_of(type_spec: property_or_data_type_BSU):

SET[0:1] OF class_BSU;

LOCAL
res: BOOLEAN := FALSE;
s: SET[0:1] OF class_BSU := [];
x: data_type;

END_LOCAL;

IF NOT EXISTS(type_spec)
THEN

RETURN([]); -- type_spec is indeterminate
END_IF;

IF ('ISO13584_IEC61360_DICTIONARY_SCHEMA.PROPERTY_BSU' IN
TYPEOF(type_spec))

THEN
IF NOT(SIZEOF(type_spec.definition) = 0)

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 261

THEN
x := type_spec.definition[1]\property_DET.domain;
res := TRUE;

END_IF;
ELSE

IF NOT(SIZEOF(type_spec.definition) = 0)
THEN

x := type_spec.definition[1]\data_type_element
.type_definition;

res := TRUE;
END_IF;

END_IF;

IF res
THEN

IF ('ISO13584_IEC61360_DICTIONARY_SCHEMA.CLASS_INSTANCE_TYPE' IN
TYPEOF(x))

THEN
s := s + x\class_instance_type.domain;
RETURN(s);

END_IF;

IF ('ISO13584_IEC61360_DICTIONARY_SCHEMA.NAMED_TYPE'
IN TYPEOF(x))

THEN
s := data_type_class_of(x\named_type.referred_type);
RETURN(s);

END_IF;
END_IF;

RETURN(s);

END_FUNCTION; -- data_type_class_of
(*

11.26.18 Data_type_type_name function

The data_type_type_name function computes the type_name attributes of the entity_instance_type
that defines the final domain of a property_BSU or a data_type_BSU. This function is intended to be
called after the data_type_typeof function.

If the data_type is not of type entity_instance_type, or if a data_type is associated with a
named_type, of which BSU definition is not available, the function returns an empty set.

EXPRESS specification:

*)
FUNCTION data_type_type_name(t: property_or_data_type_BSU):

SET [0:?] OF STRING;

LOCAL
res: BOOLEAN := FALSE;
s: SET [0:1] OF STRING := [];

ISO 13584-24:2003(E)

262 © ISO 2003 – All rights reserved

x: data_type;
END_LOCAL;

IF NOT EXISTS(t)
THEN

RETURN([]); -- t is indeterminate
END_IF;

IF ('ISO13584_IEC61360_DICTIONARY_SCHEMA.PROPERTY_BSU' IN TYPEOF(t))
THEN

IF NOT(SIZEOF(t.definition) = 0)
THEN

x := t.definition[1]\property_DET.domain;
res := TRUE;

END_IF;
ELSE

IF NOT(SIZEOF(t.definition) = 0)
THEN

x := t.definition[1]\data_type_element.type_definition;
res := TRUE;

END_IF;
END_IF;

IF res
THEN

IF ('ISO13584_IEC61360_DICTIONARY_SCHEMA.ENTITY_INSTANCE_TYPE'
IN TYPEOF(x))

THEN
s := x\entity_instance_type.type_name;

END_IF;

IF ('ISO13584_IEC61360_DICTIONARY_SCHEMA.NAMED_TYPE'
IN TYPEOF(x))

THEN
s := data_type_type_name(x\named_type.referred_type);

END_IF;
END_IF;

RETURN(s);

END_FUNCTION; -- data_type_type_name
(*

11.26.19 Data_type_level_spec function

The data_type_level_spec function computes the levels attribute of the level_type that defines the
final domain of a property_BSU or a data_type_BSU. This function is intended to be called after the
data_type_typeof function.

If the data_type is not of type level_type, or if some data_type is associated with a named_type, of
which BSU definition is not available, the function returns an empty LIST.

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 263

EXPRESS specification:

*)
FUNCTION data_type_level_spec(t: property_or_data_type_BSU):

LIST[0:4] OF UNIQUE Level;

LOCAL
res: BOOLEAN := FALSE;
s: LIST[0:4] OF UNIQUE level := [];
x: data_type;

END_LOCAL;

IF NOT EXISTS(t)
THEN

RETURN([]); -- t is indeterminate
END_IF;

IF ('ISO13584_IEC61360_DICTIONARY_SCHEMA.PROPERTY_BSU' IN TYPEOF(t))
THEN

IF NOT(SIZEOF(t.definition) = 0)
THEN

x := t.definition[1]\property_DET.domain;
res := TRUE;

END_IF;
ELSE

IF NOT(SIZEOF(t.definition) = 0)
THEN

x := t.definition[1]\data_type_element.type_definition;
res := TRUE;

END_IF;
END_IF;

IF res
THEN

IF ('ISO13584_IEC61360_DICTIONARY_SCHEMA.LEVEL_TYPE'
IN TYPEOF(x))

THEN
s := x\level_type.levels;

END_IF;

IF ('ISO13584_IEC61360_DICTIONARY_SCHEMA.NAMED_TYPE'
IN TYPEOF(x))

THEN
s := data_type_level_spec(x\named_type.referred_type);

END_IF;
END_IF;

RETURN(s);

END_FUNCTION; -- data_type_level_spec
(*

ISO 13584-24:2003(E)

264 © ISO 2003 – All rights reserved

11.26.20 Data_type_level_value_typeof function

The data_type_level_value_type of function runs like the EXPRESS TYPEOF function applied to the
value_type attribute of the level_type that defines the final domain of a property_BSU or a
data_type_BSU. This function is intended to be called after the data_type_typeof function.

If the data_type is not of type level_type, or if a data_type is associated with a named_type, of
which BSU definition is not available, the function returns an empty set of string.

EXPRESS specification:

*)
FUNCTION data_type_level_value_typeof(t: property_or_data_type_BSU):

SET OF STRING;

LOCAL
res: BOOLEAN := FALSE;
s: SET OF STRING := [];
x: data_type;

END_LOCAL;

IF NOT EXISTS(t)
THEN

RETURN([]); -- t is indeterminate
END_IF;

IF ('ISO13584_IEC61360_DICTIONARY_SCHEMA.PROPERTY_BSU' IN TYPEOF(t))
THEN

IF NOT(SIZEOF(t.definition) = 0)
THEN

x := t.definition[1]\property_DET.domain;
res := TRUE;

END_IF;
ELSE

IF NOT(SIZEOF(t.definition) = 0)
THEN

x := t.definition[1]\data_type_element.type_definition;
res := TRUE;

END_IF;
END_IF;

IF res
THEN

IF ('ISO13584_IEC61360_DICTIONARY_SCHEMA.LEVEL_TYPE'
IN TYPEOF(x))

THEN
s := TYPEOF(x\level_type.value_type);

END_IF;

IF ('ISO13584_IEC61360_DICTIONARY_SCHEMA.NAMED_TYPE'
IN TYPEOF(x))

THEN

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 265

s := data_type_level_value_typeof(
x\named_type.referred_type);

END_IF;

END_IF;

RETURN(s);

END_FUNCTION; -- data_type_level_value_typeof
(*

11.26.21 Simple_type_data_type function

The simple_type_data_type function checks if the final domain of a property_BSU or a
data_type_BSU corresponds to a simple_type.

NOTE Simple type means: integer, real, string or Boolean, or their subtypes.

If a data_type is associated with a named_type, of which BSU definition is not available, the function
returns UNKNOWN.

EXPRESS specification:

*)
FUNCTION simple_type_data_type(type_spec: property_or_data_type_BSU):

LOGICAL;

IF NOT EXISTS(type_spec)
THEN

RETURN(UNKNOWN); -- type_spec is indeterminate
END_IF;

IF ('ISO13584_IEC61360_DICTIONARY_SCHEMA.SIMPLE_TYPE' IN
data_type_typeof(type_spec))

THEN
RETURN(TRUE);

END_IF;

IF ('ISO13584_IEC61360_DICTIONARY_SCHEMA.COMPLEX_TYPE' IN
data_type_typeof(type_spec))

THEN
RETURN(FALSE);

END_IF;

RETURN(UNKNOWN);

END_FUNCTION; -- simple_type_data_type
(*

11.26.22 Complex_type_data_type function

The complex_type_data_type function checks if the final domain of a property_BSU or a
data_type_BSU corresponds to a complex_type.

ISO 13584-24:2003(E)

266 © ISO 2003 – All rights reserved

NOTE Complex type means: class instance, item instance or level specification.

If a data_type is associated with a named_type, of which BSU definition is not available, the function
returns UNKNOWN.

EXPRESS specification:

*)
FUNCTION complex_type_data_type(type_spec: property_or_data_type_BSU):

LOGICAL;

IF NOT EXISTS(type_spec)
THEN

RETURN(UNKNOWN); -- type_spec is indeterminate
END_IF;

IF ('ISO13584_IEC61360_DICTIONARY_SCHEMA.COMPLEX_TYPE'
IN data_type_typeof(type_spec))

THEN
RETURN(TRUE);

END_IF;

IF ('ISO13584_IEC61360_DICTIONARY_SCHEMA.SIMPLE_TYPE' IN
data_type_typeof(type_spec))

THEN
RETURN(FALSE);

END_IF;

RETURN(UNKNOWN);

END_FUNCTION; -- complex_type_data_type
(*

11.26.23 Compatible_subclass function

The compatible_subclass function returns TRUE if c2 is a subclass of c1, or if c2 is a subclass of a
previous version of c1, i.e., a subclass of a class that has the same code as c1, the same supplier as
c1 and a version less or equal to the version of c1. Otherwise, it returns FALSE.

If the result may not be computed because a BSU definition is not available, the function returns
UNKNOWN.

EXPRESS specification:

*)
FUNCTION compatible_subclass(c1, c2: class_BSU): LOGICAL;

IF (NOT EXISTS(c1)) OR (NOT EXISTS(c2))
THEN

RETURN(UNKNOWN); -- c1 or c2 indeterminate
END_IF;

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 267

IF c1 = c2
THEN

RETURN(TRUE);
END_IF;

IF ((c1.code = c2.code) AND (c1.version >= c2.version)
AND (c1.defined_by.code = c2.defined_by.code))

THEN
RETURN(TRUE);

END_IF;

IF SIZEOF(c2.definition) = 0
THEN

RETURN(UNKNOWN);
ELSE

IF EXISTS(c2.definition[1]\class.its_superclass)
THEN

RETURN(compatible_subclass(c1, c2.definition[1]
\class.its_superclass));

ELSE
RETURN(FALSE);

END_IF;
END_IF;

END_FUNCTION; -- compatible_subclass
(*

11.26.24 Compatible_types function

The function compatible_types checks if the two final domains of property_BSUs or
data_type_BSUs whose types are defined by the ISO13584_IEC61360_dictionary_schema are such
that the second type is assignment compatible with the first one.

A type p2 is assignment compatible with a type p1 when one of the following condition holds:

— p1 = p2;

— the EXPRESS TYPEOF function applied to both entities provides the same result, and p2 has the
same code as p1, the same supplier code as p1 and a version number less or equal to the
version number of p1;

— p1 and p2 have the same data_type_element;

— the result of the function data_type_typeof applied to p1 is not empty and is included in the result
of the function data_type_typeof applied to p2, and this latter result does not contain
'ISO13584_IEC61360_DICTIONARY_SCHEMA.COMPLEX_TYPE';

— the results of the function data_type_typeof applied to both types contains
'ISO13584_IEC61360_DICTIONARY_SCHEMA.CLASS_INSTANCE_TYPE' and the class
corresponding to p2 is a compatible_subclass of the class corresponding to p1, i.e., is a
subclass of p1 or is a subclass of a class that has the same supplier code, and the same class
code as p1, and a class version less or equal to the version that corresponds to p1.

ISO 13584-24:2003(E)

268 © ISO 2003 – All rights reserved

— the result of the function data_type_typeof applied to both types contains
'ISO13584_IEC61360_DICTIONARY_SCHEMA.ENTITY_INSTANCE_TYPE' and the type_name
attribute of p1 is not empty and is contained in the type_name attribute of p2;

— the result of the function data_type_typeof applied to both types contains
'ISO13584_IEC61360_DICTIONARY_SCHEMA.LEVEL_TYPE' and the levels attributes of both
types are not empty and have the same (unordered) content, and the result of the function
data_type_level_value_typeof applied to p1 is not empty and is contained in the result of the
function data_type_level_value_typeof applied to p2.

If the result may not be computed because some BSU definitions are not available, the function
returns UNKNOWN.

EXPRESS specification:

*)
FUNCTION compatible_types(p1: property_or_data_type_BSU;

p2: property_or_data_type_BSU): LOGICAL;

LOCAL
p1_domain, p2_domain: data_type;

END_LOCAL;

IF (NOT EXISTS(p1)) OR (NOT EXISTS(p2))
THEN

RETURN(UNKNOWN); -- p1 or p2 indeterminate
END_IF;

(* case 1 *)

IF p1 = p2
THEN

RETURN(TRUE);
END_IF;

(* case 2 *)

IF ((TYPEOF(p1) = TYPEOF(p2))
AND (p1\basic_semantic_unit.code = p2.code)
AND (p1.name_scope\basic_semantic_unit.code =

p2.name_scope\basic_semantic_unit.code)
AND (p1\basic_semantic_unit.version >=

p2\basic_semantic_unit.version))
THEN

RETURN(TRUE);
END_IF;

(* case 8 *)

IF (SIZEOF(p1\basic_semantic_unit.definition) = 0)
OR (SIZEOF(p2\basic_semantic_unit.definition) = 0)

THEN

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 269

RETURN(UNKNOWN);
ELSE

IF ('ISO13584_IEC61360_DICTIONARY_SCHEMA.PROPERTY_BSU'
IN TYPEOF(p1))

THEN
p1_domain := p1.definition [1]\property_DET.domain;

ELSE
p1_domain := p1.definition[1]\data_type_element

.type_definition;
END_IF;

IF ('ISO13584_IEC61360_DICTIONARY_SCHEMA.PROPERTY_BSU'
IN TYPEOF(p2))

THEN
p2_domain := p2.definition [1]\property_DET.domain;

ELSE
p2_domain := p2.definition[1]\data_type_element

.type_definition;
END_IF;

END_IF;

(* case 3 *)

IF p1_domain = p2_domain
THEN

RETURN(TRUE);
END_IF;

(* case 4 *)

IF (NOT(SIZEOF(data_type_typeof(p1)) = 0))
AND (data_type_typeof(p1)<= data_type_typeof(p2))
AND (NOT('ISO13584_IEC61360_DICTIONARY_SCHEMA.COMPLEX_TYPE' IN
data_type_typeof(p2)))

THEN
RETURN(TRUE);

END_IF;

(* case 5 *)

IF ('ISO13584_IEC61360_DICTIONARY_SCHEMA.CLASS_INSTANCE_TYPE' IN
data_type_typeof(p1))
AND ('ISO13584_IEC61360_DICTIONARY_SCHEMA.CLASS_INSTANCE_TYPE' IN
data_type_typeof(p2))

THEN
RETURN(compatible_subclass(data_type_class_of(p1)[1],

data_type_class_of(p2)[1]));
END_IF;

(* case 6 *)

IF ('ISO13584_IEC61360_DICTIONARY_SCHEMA.ENTITY_INSTANCE_TYPE' IN

ISO 13584-24:2003(E)

270 © ISO 2003 – All rights reserved

data_type_typeof(p1))
AND ('ISO13584_IEC61360_DICTIONARY_SCHEMA.ENTITY_INSTANCE_TYPE'
IN data_type_typeof(p2))

THEN
IF ((data_type_type_name(p1) <= data_type_type_name(p2))

AND (data_type_type_name(p1) <> []))
THEN

RETURN(TRUE);
ELSE

RETURN(FALSE);
END_IF;

END_IF;

(* case 7 *)

IF ('ISO13584_IEC61360_DICTIONARY_SCHEMA.LEVEL_TYPE' IN
data_type_typeof(p1))
AND ('ISO13584_IEC61360_DICTIONARY_SCHEMA.LEVEL_TYPE' IN
data_type_typeof(p2))

THEN
IF (data_type_level_spec(p1) = data_type_level_spec(p2))

AND (data_type_level_value_typeof(p1) <> [])
AND (data_type_level_value_typeof(p1)
<= data_type_level_value_typeof(p2))

THEN
RETURN(TRUE);

ELSE
RETURN(FALSE);

END_IF;
END_IF;

(* case 8 *)

IF ((data_type_typeof(p1) = []) OR (data_type_typeof(p2) = []))
THEN

RETURN(UNKNOWN);
ELSE

RETURN(FALSE);
END_IF;

END_FUNCTION; -- compatible_types
(*

11.26.25 Ordered_index_value function

The function ordered_index_value checks that the values of a non_quantitative_int_type are
successive integers.

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 271

EXPRESS specification:

*)
FUNCTION ordered_index_value(x: value_domain): BOOLEAN;

REPEAT i := LOBOUND(x.its_values) TO SIZEOF(x.its_values);
IF x.its_values[i].value_code <> x.its_values[i-1].value_code + 1
THEN

RETURN(FALSE);
END_IF;

END_REPEAT;

RETURN(TRUE);

END_FUNCTION; -- ordered_index_value
(*

11.26.26 Makes_sub_list

The makes_sub_list function builds a sublist from a subset of another list cla of class_BSUs. It
corresponds to cla[i..j].

EXPRESS specification:

*)
FUNCTION makes_sub_list(cla: LIST [1:?] OF class_BSU;

i, j: INTEGER): LIST [1:?] OF class_BSU;

LOCAL
c: LIST [0:?] OF class_BSU := [];

END_LOCAL;

REPEAT k := i TO j;
c := c + cla[k];

END_REPEAT;

RETURN(c);

END_FUNCTION; -- makes_sub_list
(*

11.26.27 Sub_list_until

The sub_list_until function builds a sublist from another list (cla) of class_BSUs. This sublist
consists of the beginning of the cla list up to the cl class. If cl does not belong to the cla list, the whole
cla list is returned.

EXPRESS specification:

*)
FUNCTION sub_list_until(cla: LIST [1:?] OF class_BSU;

cl: class_BSU): LIST [1:?] OF class_BSU;

ISO 13584-24:2003(E)

272 © ISO 2003 – All rights reserved

LOCAL
c: LIST [0:?] OF class_BSU := [];

END_LOCAL;

REPEAT k := 1 TO SIZEOF(cla);
c := c + cla[k];
IF cla[k] :=: cl
THEN

ESCAPE;
END_IF;

END_REPEAT;

RETURN(c);

END_FUNCTION; -- sub_list_until
(*

11.26.28 Get_property_BSU_from_property_semantics function

The get_property_BSU_from_property_semantics function returns the list of property_BSUs
associated to a list of property_semantics.

EXPRESS specification:

*)
FUNCTION get_property_BSU_from_property_semantics(

l: AGGREGATE OF variable_semantics): LIST[1:?] OF property_BSU;

LOCAL
res: LIST[0:?] OF property_BSU := [];

END_LOCAL;

REPEAT i := 1 TO SIZEOF(l);
res := res + l[i]\property_semantics.the_property;

END_REPEAT;

RETURN(res);

END_FUNCTION; -- get_property_BSU_from_property_semantics
(*

11.26.29 Compatible_list_library_types_and_columns function

The function compatible_list_library_types_and_columns checks if a list of columns (col) is type
compatible with a list of types (dom) defined by a list of property_or_data_type_BSUs.

Simple types are, like EXPRESS, not strongly typed: for instance, a real value may be assigned to a
measure.

Complex types support, like EXPRESS, inheritance. Due to the meta-modelling approach used in
ISO 13584, inheritance occurs at two levels:

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 273

— as EXPRESS-encoded: an entity_instance_column that declares, through its type_name
attribute, to contain placements may contain, for instance, axis1_placement, and

— at the meta-level: assuming that A is a superclass of B, and that B is a superclass of C, a column
referring to B may contain instances of C and may be assigned to a property whose type is
defined by A.

The function returns a logical that is TRUE when all the types are compatible and FALSE when they
are not. This function returns UNKNOWN when some required basic_semantic_unit definitions are
not present.

EXPRESS specifications:

*)
FUNCTION compatible_list_library_types_and_columns(

dom: LIST [0:?] of property_or_data_type_BSU;
col: LIST [0:?] of column): LOGICAL;

LOCAL
res: LOGICAL := TRUE;
set_string: SET OF STRING := [];
set_integer: SET OF INTEGER := [];
code_type: non_quantitative_code_type;
int_type: non_quantitative_int_type;

END_LOCAL;

IF SIZEOF(dom) <> SIZEOF(col)
THEN

RETURN(FALSE);
END_IF;

REPEAT i := LOINDEX(col) TO HIINDEX(col);
IF data_type_typeof(dom[i]) = []
THEN (* the final domain of one type is not available *)

res := UNKNOWN;
ELSE

IF ('ISO13584_TABLE_RESOURCE_SCHEMA.INTEGER_COLUMN'
IN TYPEOF(col[i]))

THEN
IF ((('ISO13584_IEC61360_DICTIONARY_SCHEMA' +

'.NON_QUANTITATIVE_INT_TYPE') IN
data_type_typeof(dom[i]))
AND (SIZEOF(data_type_non_quantitative_int_type(
dom[i])) = 1))

THEN
set_integer := [];
int_type := data_type_non_quantitative_int_type(

dom[i])[1];
REPEAT j :=1 TO SIZEOF(int_type.domain.its_values);

set_integer := set_integer
+ int_type.domain.its_values[j]
.value_code;

END_REPEAT;

ISO 13584-24:2003(E)

274 © ISO 2003 – All rights reserved

REPEAT j := 1 TO SIZEOF(col[i].values);
IF (('INTEGER' IN TYPEOF(col[i].values[j]))

AND NOT (col[i].values[j] IN set_integer))
THEN

RETURN (FALSE);
END_IF;

END_REPEAT;
ELSE

IF ('ISO13584_IEC61360_DICTIONARY_SCHEMA.INT_TYPE'
IN data_type_typeof(dom[i]))
OR (('ISO13584_IEC61360_DICTIONARY_SCHEMA' +
'.NUMBER_TYPE' IN data_type_typeof(dom[i]))
AND NOT('ISO13584_IEC61360_DICTIONARY_SCHEMA'
+ '.REAL_TYPE' IN data_type_typeof(dom[i])))

THEN
;

ELSE
RETURN(FALSE);

END_IF;
END_IF;

END_IF;

IF ('ISO13584_TABLE_RESOURCE_SCHEMA.REAL_COLUMN'
IN TYPEOF(col[i]))

THEN
IF ('ISO13584_IEC61360_DICTIONARY_SCHEMA.REAL_TYPE'

IN data_type_typeof(dom[i]))
OR (('ISO13584_IEC61360_DICTIONARY_SCHEMA' +
'.NUMBER_TYPE' IN data_type_typeof(dom[i]))
AND NOT('ISO13584_IEC61360_DICTIONARY_SCHEMA' +
'.INT_TYPE' IN data_type_typeof(dom[i])))

THEN
;

ELSE
RETURN(FALSE);

END_IF;
END_IF;

IF ('ISO13584_TABLE_RESOURCE_SCHEMA.BOOLEAN_COLUMN'
IN TYPEOF(col[i]))

THEN
IF ('ISO13584_IEC61360_DICTIONARY_SCHEMA.BOOLEAN_TYPE'

IN data_type_typeof(dom[i]))
THEN

;
ELSE

RETURN(FALSE);
END_IF;

END_IF;

IF ('ISO13584_TABLE_RESOURCE_SCHEMA.STRING_COLUMN'

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 275

IN TYPEOF(col[i]))
THEN

IF ((('ISO13584_IEC61360_DICTIONARY_SCHEMA' +
'.NON_QUANTITATIVE_CODE_TYPE') IN
data_type_typeof(dom[i]))
AND (SIZEOF(data_type_non_quantitative_code_type(
dom[i])) = 1))

THEN
set_string := [];
code_type := data_type_non_quantitative_code_type(

dom[i])[1];
REPEAT j:=1 TO SIZEOF(code_type.domain.its_values);

set_string := set_string
+ code_type.domain.its_values[j]
.value_code;

END_REPEAT;
REPEAT j := 1 TO SIZEOF(col[i].values);

IF ((('STRING' IN TYPEOF(col[i].values[j]))
AND NOT (col[i].values[j] IN set_string))
OR ('ISO13584_INSTANCE_RESOURCE_SCHEMA'
+ '.TRANSLATED_STRING_VALUE' IN
TYPEOF(col[i].values[j])))

THEN
RETURN (FALSE);

END_IF;
END_REPEAT;

ELSE
IF ('ISO13584_IEC61360_DICTIONARY_SCHEMA' +

'.STRING_TYPE' IN data_type_typeof(dom[i]))
THEN

;
ELSE

RETURN(FALSE);
END_IF;

END_IF;
END_IF;

IF ('ISO13584_TABLE_RESOURCE_SCHEMA.ENTITY_INSTANCE_COLUMN'
IN TYPEOF(col[i]))

THEN
IF ('ISO13584_IEC61360_DICTIONARY_SCHEMA' +

'.ENTITY_INSTANCE_TYPE' IN
data_type_typeof(dom[i]))
AND (data_type_type_name(dom[i]) <= col[i]\
entity_instance_column.type_name)
(* column of subtypes are allowed*)

THEN
;

ELSE
RETURN(FALSE);

END_IF;
END_IF;

ISO 13584-24:2003(E)

276 © ISO 2003 – All rights reserved

IF ('ISO13584_TABLE_RESOURCE_SCHEMA.CLASS_INSTANCE_COLUMN'
IN TYPEOF(col[i]))

THEN
IF ('ISO13584_IEC61360_DICTIONARY_SCHEMA' +

'.CLASS_INSTANCE_TYPE' IN data_type_typeof(dom[i]))
AND (compatible_subclass(
data_type_class_of(dom[i])[1],
col[i]\class_instance_column.class_ref))

THEN
;

ELSE
RETURN(FALSE);

END_IF;
END_IF;

IF ('ISO13584_TABLE_RESOURCE_SCHEMA.LEVEL_SPEC_COLUMN'
IN TYPEOF(col[i]))

THEN
IF ('ISO13584_IEC61360_DICTIONARY_SCHEMA.LEVEL_TYPE'

IN data_type_typeof(dom[i]))
THEN
(* all values are checked against the specified levels*)

REPEAT j := 1 TO SIZEOF(col[i].values);
IF NOT(compatible_level_type_and_instance(

data_type_level_spec(dom[i]),
data_type_level_value_typeof(dom[i]),
col[i].values[j]))

THEN
RETURN(FALSE);

END_IF;
END_REPEAT;

ELSE
RETURN(FALSE);

END_IF;
END_IF;

END_IF;
END_REPEAT;

RETURN(res);

END_FUNCTION; -- compatible_list_library_types_and_columns
(*

11.26.30 Data_type_non_quantitative_int_type function

The data_type_non_quantitative_int_type function computes the non_quantitative_int_type that
defines the final domain of a property_BSU or a data_type_BSU. This function is intended to be
called after the data_type_typeof function.

If the data_type is not of type non_quantitative_int_type, or if a data_type is associated with a
named_type, of which BSU definition is not available, the function returns an empty set.

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 277

EXPRESS specification:

*)
FUNCTION data_type_non_quantitative_int_type(

type_spec: property_or_data_type_BSU):
SET [0:1] OF non_quantitative_int_type;

LOCAL
res: BOOLEAN := FALSE;
s: SET [0:1] OF non_quantitative_int_type := [];
x: data_type;

END_LOCAL;

IF NOT EXISTS(type_spec)
THEN

RETURN([]); -- type_spec is indeterminate
END_IF;

IF ('ISO13584_IEC61360_DICTIONARY_SCHEMA.PROPERTY_BSU' IN
TYPEOF(type_spec))

THEN
IF NOT(SIZEOF(type_spec.definition) = 0)
THEN

x := type_spec.definition[1]\property_DET.domain;
res := TRUE;

END_IF;
ELSE

IF NOT(SIZEOF(type_spec.definition) = 0)
THEN

x := type_spec.definition[1]\
data_type_element.type_definition;
res := TRUE;

END_IF;
END_IF;

IF res
THEN

IF ('ISO13584_IEC61360_DICTIONARY_SCHEMA'+
'.NON_QUANTITATIVE_INT_TYPE') IN TYPEOF(x)

THEN
s := s + x;
RETURN(s);

END_IF;

IF ('ISO13584_IEC61360_DICTIONARY_SCHEMA.NAMED_TYPE')
IN TYPEOF(x)

THEN
s := data_type_non_quantitative_int_type(

x\named_type.referred_type);
RETURN(s);

END_IF;
END_IF;

ISO 13584-24:2003(E)

278 © ISO 2003 – All rights reserved

RETURN([]);

END_FUNCTION; -- data_type_non_quantitative_int_type
(*

11.26.31 Data_type_non_quantitative_code_type function

The data_type_non_quantitative_code_type function computes the non_quantitative_code_type
that defines the final domain of a property_BSU or a data_type_BSU. This function is intended to be
called after the data_type_typeof function.

If the data_type is not of type non_quantitative_code_type, or if a data_type is associated with a
named_type, of which BSU definition is not available, the function returns an empty set.

EXPRESS specification:

*)
FUNCTION data_type_non_quantitative_code_type(

type_spec: property_or_data_type_BSU):
SET [0:1] OF non_quantitative_code_type;

LOCAL
res: BOOLEAN := FALSE;
s: SET [0:1] OF non_quantitative_code_type := [];
x: data_type;

END_LOCAL;

IF NOT EXISTS(type_spec)
THEN

RETURN([]); -- type_spec is indeterminate
END_IF;

IF ('ISO13584_IEC61360_DICTIONARY_SCHEMA.PROPERTY_BSU' IN
TYPEOF(type_spec))

THEN
IF NOT(SIZEOF(type_spec.definition) = 0)
THEN

x := type_spec.definition[1]\property_DET.domain;
res := TRUE;

END_IF;
ELSE

IF NOT(SIZEOF(type_spec.definition) = 0)
THEN

x := type_spec.definition[1]\
data_type_element.type_definition;
res := TRUE;

END_IF;
END_IF;

IF res
THEN

IF ('ISO13584_IEC61360_DICTIONARY_SCHEMA'+
'.NON_QUANTITATIVE_CODE_TYPE') IN TYPEOF(x)

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 279

THEN
s := s + x;
RETURN(s);

END_IF;

IF ('ISO13584_IEC61360_DICTIONARY_SCHEMA.NAMED_TYPE')
IN TYPEOF(x)

THEN
s := data_type_non_quantitative_code_type(

x\named_type.referred_type);
RETURN(s);

END_IF;
END_IF;

RETURN([]);

END_FUNCTION; -- data_type_non_quantitative_code_type
(*

11.26.32 Applicable_properties_for_applicable_tables function

The applicable_properties_for_applicable_tables function checks that all the properties that are
associated with columns of tables associated with a class by a rel class_table_relationship are
applicable to the rel.relating_class class.

If some table_BSU definition is not available, the function returns UNKNOWN.

EXPRESS specification:

*)
FUNCTION applicable_properties_for_applicable_tables(

rel: class_table_relationship): LOGICAL;
LOCAL

table: table_bsu;
cl: class_bsu;
props: LIST OF property_bsu := [];
res: LOGICAL := TRUE;

END_LOCAL;

IF QUERY(table <* rel.related_tokens
| SIZEOF(table.definition) = 0) <> []

THEN
RETURN(UNKNOWN);

END_IF;

REPEAT i := 1 TO SIZEOF(rel.related_tokens);
table := rel.related_tokens[i];
cl := rel\class_BSU_relationship.relating_class.identified_by;
props := get_property_BSU_from_property_semantics(

table\basic_semantic_unit.definition[1]
\table_element.column_meaning);

res := res AND applicable_properties(cl, list_to_set(props));
END_REPEAT;

ISO 13584-24:2003(E)

280 © ISO 2003 – All rights reserved

RETURN(res);

END_FUNCTION; -- visible_properties_for_visible_tables
(*

11.26.33 Superclass_of_item_is_item function

The superclass_of_item_is_item function checks that the superclass of an item_class cl, if it exists,
is an item_class.

If the class associated with a class_BSU cannot be computed, the function returns UNKNOWN.

EXPRESS specification:

*)
FUNCTION superclass_of_item_is_item(cl: item_class): LOGICAL;

IF NOT EXISTS(cl\class.its_superclass)
THEN

RETURN(TRUE);
END_IF;

IF SIZEOF(cl\class.its_superclass.definition) = 0
THEN

RETURN(UNKNOWN);
END_IF;

RETURN(('ISO13584_IEC61360_DICTIONARY_SCHEMA.ITEM_CLASS')
IN TYPEOF(cl\class.its_superclass.definition[1]));

END_FUNCTION; -- superclass_of_item_is_item
(*

11.26.34 Compatible_content_and_specification function

The compatible_content_and_specification function checks that the number of columns of the tab
table_content is correct with respect to the table_element description, and that the types and values
of each column are compatible and correspond to the type defined in the data_type specification of
the corresponding property_semantics.

If the table_element associated with a table_BSU of tab cannot be computed, the function returns
UNKNOWN.

EXPRESS specification:

*)
FUNCTION compatible_content_and_specification(

tab: table_content): LOGICAL;

IF SIZEOF(tab\content_item.dictionary_definition.definition) = 0
THEN

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 281

RETURN(UNKNOWN);
END_IF;

RETURN(compatible_list_library_types_and_columns(
get_property_BSU_from_property_semantics(
tab\content_item.dictionary_definition.definition[1]\
table_specification.column_meaning),
tab\table_extension.content));

END_FUNCTION; -- compatible_content_and_specification
(*

11.26.35 Check_view_of_instance_datatype function

The check_view_of_instance_datatype function checks if the fm_class_view_of view_of attribute
refers to an item_class.

EXPRESS specification:

*)
FUNCTION check_view_of_instance_datatype(

fmc_view_of: fm_class_view_of): LOGICAL;

IF (SIZEOF(fmc_view_of.view_of.definition) = 1)
THEN

RETURN('ISO13584_IEC61360_DICTIONARY_SCHEMA.ITEM_CLASS'
IN TYPEOF(fmc_view_of.view_of.definition[1]));

ELSE
RETURN(UNKNOWN);

END_IF;

END_FUNCTION; -- check_view_of_instance_datatype
(*

11.26.36 View_control_variables_attributes_belong_to_domain function

The view_control_variables_attributes_belong_to_domain function checks whether the
view_control_variable_range attributes range_lobound and range_hibound belong or not belong
to the domain of a view control variable.

EXPRESS specification:

*)
FUNCTION view_control_variables_attributes_belong_to_domain(

vcv_range: view_control_variable_range): LOGICAL;

IF (data_type_typeof(vcv_range.parameter_type) <> [])
THEN

RETURN((data_type_non_quantitative_int_type(
vcv_range.parameter_type)[1].domain
.its_values[1].value_code <= vcv_range.range_lobound)
AND (vcv_range.range_hibound <=

ISO 13584-24:2003(E)

282 © ISO 2003 – All rights reserved

data_type_non_quantitative_int_type(
vcv_range.parameter_type)[1].domain
.its_values[HIINDEX(data_type_non_quantitative_int_type(
vcv_range.parameter_type)[1].domain.its_values)].value_code)

);
ELSE

RETURN(UNKNOWN);
END_IF;

END_FUNCTION; -- view_control_variables_attributes_belong_to_domain
(*

11.26.37 Created_view_is_functional_view function

The created_view_is_functional_view function checks that the cl corresponding dictionary definition
is a functional_view_class if and only if this dictionary definition exists in the same exchange context.

EXPRESS specification:

*)
FUNCTION created_view_is_functional_view(cl: class_BSU): LOGICAL;

IF (SIZEOF(cl\basic_semantic_unit.definition) = 1) THEN
RETURN('ISO13584_EXTENDED_DICTIONARY_SCHEMA' +

'.FUNCTIONAL_VIEW_CLASS'
IN TYPEOF(cl\basic_semantic_unit.definition[1]));

ELSE
RETURN(UNKNOWN);

END_IF;

END_FUNCTION; -- created_view_is_functional_view
(*

11.26.38 Check_is_case_of_referenced_classes_definition function

The check_is_case_of_referenced_classes_definition returns TRUE if the item_class_case_of
is_case_of set of referenced class dictionary definition(s) is type compatible with the given cl
item_class_case_of instance. Otherwise, it returns FALSE.

EXPRESS specification:

*)
FUNCTION check_is_case_of_referenced_classes_definition(

cl: item_class_case_of): BOOLEAN;
LOCAL

class_def_ok: BOOLEAN := TRUE;
done: BOOLEAN := FALSE;

END_LOCAL;

REPEAT i := 1 TO SIZEOF(cl.is_case_of);
IF (SIZEOF(cl.is_case_of[i].definition) = 1)
THEN

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 283

IF ('ISO13584_EXTENDED_DICTIONARY_SCHEMA' +
'.COMPONENT_CLASS_CASE_OF' IN TYPEOF(cl))

THEN
IF (NOT('ISO13584_IEC61360_DICTIONARY_SCHEMA' +

'.COMPONENT_CLASS'
IN TYPEOF(cl.is_case_of[i].definition[1])))

THEN
class_def_ok := FALSE;

END_IF;
done := TRUE;

END_IF;
IF ('ISO13584_EXTENDED_DICTIONARY_SCHEMA' +

'.FEATURE_CLASS_CASE_OF' IN TYPEOF(cl))
THEN

IF (NOT('ISO13584_IEC61360_DICTIONARY_SCHEMA' +
'.FEATURE_CLASS'
IN TYPEOF(cl.is_case_of[i].definition[1])))

THEN
class_def_ok := FALSE;

END_IF;
done := TRUE;

END_IF;
IF ('ISO13584_EXTENDED_DICTIONARY_SCHEMA' +

'.MATERIAL_CLASS_CASE_OF' IN TYPEOF(cl))
THEN

IF (NOT('ISO13584_IEC61360_DICTIONARY_SCHEMA' +
'.MATERIAL_CLASS'
IN TYPEOF(cl.is_case_of[i].definition[1])))

THEN
class_def_ok := FALSE;

END_IF;
done := TRUE;

END_IF;
IF (('ISO13584_EXTENDED_DICTIONARY_SCHEMA' +

'.ITEM_CLASS_CASE_OF' IN TYPEOF(cl))
AND (NOT done))

THEN
IF (NOT('ISO13584_IEC61360_DICTIONARY_SCHEMA' +

'.ITEM_CLASS'
IN TYPEOF(cl.is_case_of[i].definition[1])))

THEN
class_def_ok := FALSE;

END_IF;
END_IF;

done := FALSE;
END_IF;

END_REPEAT;

RETURN(class_def_ok);

END_FUNCTION; -- check_is_case_of_referenced_classes_definition

ISO 13584-24:2003(E)

284 © ISO 2003 – All rights reserved

(*

*)
END_SCHEMA; -- ISO13584_extended_dictionary_schema
(*

12 ISO13584_library_content_schema

This clause defines the requirements for the ISO13584_library_content_schema. The following
EXPRESS declaration introduces the ISO13584_library_content_schema block and identifies the
necessary external references.

EXPRESS specification:

*)
SCHEMA ISO13584_library_content_schema;

REFERENCE FROM ISO13584_IEC61360_dictionary_schema
(all_class_descriptions_reachable,
basic_semantic_unit,
class,
class_BSU,
code_type,
content_item,
data_type,
data_type_element,
definition_available_implies,
dictionary_element,
int_measure_type,
level_type,
list_to_set,
named_type,
non_quantitative_int_type,
property_BSU,
property_DET,
real_measure_type,
revision_type,
value_format_type,
version_type);

REFERENCE FROM ISO13584_variable_semantics_schema
(property_semantics);

REFERENCE FROM ISO13584_domain_resource_schema
(domain_restriction,
functional_domain_restriction);

REFERENCE FROM ISO13584_extended_dictionary_schema
(abstract_functional_model_class,
applicable_properties,
applicable_tables,

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 285

data_exchange_specification_identification,
data_type_non_quantitative_int_type,
data_type_type_name,
data_type_typeof,
dictionary_identification,
dictionary,
dictionary_in_standard_format,
fm_class_view_of,
get_property_BSU_from_property_semantics,
library_iim_identification,
functional_view_class,
functional_view_v_c_v,
view_control_variable_range,
view_exchange_protocol_identification);

REFERENCE FROM ISO13584_external_file_schema
(A6_illustration,
A9_illustration,
class_extension_external_item,
dictionary_external_item,
external_file_protocol,
external_item,
illustration,
illustration_type,
linked_interface_program_protocol,
message,
program_reference);

REFERENCE FROM ISO13584_library_expressions_schema
(class_instance_constructor,
collects_assigned_properties);

REFERENCE FROM ISO13584_method_schema
(method);

REFERENCE FROM ISO13584_instance_resource_schema
(context_dependent_property_value,
dic_class_instance,
dic_f_model_instance,
primitive_value,
property_or_data_type_BSU,
property_value,
same_translations,
translated_string_value);

REFERENCE FROM ISO13584_expressions_schema
(string_expression);

REFERENCE FROM measure_schema
(amount_of_substance_unit,
area_unit,
context_dependent_unit,

ISO 13584-24:2003(E)

286 © ISO 2003 – All rights reserved

conversion_based_unit,
derived_unit,
derive_dimensional_exponents,
derived_unit_element,
dimensional_exponents,
electric_current_unit,
global_unit_assigned_context,
length_unit,
luminous_intensity_unit,
mass_unit,
named_unit,
plane_angle_unit,
ratio_unit,
si_unit,
solid_angle_unit,
thermodynamic_temperature_unit,
time_unit,
unit,
volume_unit);

REFERENCE FROM representation_schema
(representation);

(*

NOTE The schemas referenced above can be found in the following documents:
ISO13584_IEC61360_dictionary_schema IEC 61360-2

(which is duplicated for convenience in informative annex D of ISO 13584-42),
ISO13584_expressions_schema ISO 13584-20,
ISO13584_domain_ressource_schema This part of ISO 13584,
ISO13584_variable_semantics_schema This part of ISO 13584,
ISO13584_extended_dictionary_schema This part of ISO 13584,
ISO13584_external_file_schema This part of ISO 13584,
ISO13584_library_expressions_schema This part of ISO 13584
ISO13584_method_schema This part of ISO 13584,
ISO13584_instance_resource_schema This part of ISO 13584
measure_schema ISO 10303-41,
representation_schema ISO 10303-43.

12.1 Introduction to the ISO13584_library_content_schema

The role of the ISO13584_library_content_schema is to describe the class extension for the classes
that constitute a supplier library.

The ISO13584_library_content_schema models:

— the descriptions of the set of possible instances of a class,

NOTE 1 In a library exchange context, some classes may be associated with a content_item (for instance
the component_classes that model simple families of parts) when some others have none (for instance the
component_classes that model generic families of parts).

— the characterisation of those properties whose values are specified for each instance of a class,

NOTE 2 Only properties that are applicable to the class may be associated with values.

NOTE 3 It is a choice of the library data supplier to decide which (possible subset of the) applicable
properties are associated with values.

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 287

NOTE 4 It is not allowed by ISO 13584 to reuse the same values of the identification characteristics at any
time for two different parts, i.e., for two parts of which some non-identification characteristics are different. If such
a situation is anticipated, some additional identification characteristics, such that a version, shall be added to
discriminate both parts.

— the allowed domains of values for those properties whose values are specified for each instance
of a class,

— the characterisation of those properties whose values may be set by the user to select a class
instance, and associations of those properties with a domain of allowed values,

— the characterisation of those properties whose values may be computed by the system and
associations of those properties with a mechanism that specifies its values,

— the description of the dialogue resources needed to support user access,

— the description of the methods possibly associated with a class specified instance.

The ISO13584_library_content_schema does not model:

— the description of those classes that are not associated with a dictionary element,

— the description of the content of those methods that are associated with class instances,

— the description of a software system that supports class instanciation.

12.2 Fundamental concepts and assumption for the
ISO13584_library_content_schema

12.2.1 Class extension of non-leaf classes

In a component catalogue where component families are arranged in a tree classification structure, all
the leaf classes describe the set of parts belonging to the class. In general, non-leaf classes are
mainly used for classification purpose and do not describe any specific population. When a leaf class
is further specialized and become a non-leaf class, it might contain a population. The
ISO13584_library_content_schema enables a library data supplier to describe class extension both
for leaf classes and for non-leaf class.

NOTE How instances are displayed when a user makes a query again a non-leaf class is implementation
dependent. It is recommended to process the query against both the possible instances defined at the query
level, and the union, of all the instances defined in all the subclasses.

12.2.2 Explicit description of class extensions

Explicit description of a class extension consists of describing the set of all instances satisfying a class
definition by representing explicitly each instance of a class, and gathering all these representations
within a set structure.

The ISO13584_library_content_schema supports the explicit description of extensions of the classes
that are intentionally defined in the dictionary.

In an explicit description of a class extension, each instance is described by a set of property values. A
subset of those properties corresponds to identification properties. The set of values of the
identification properties identifies unambiguously each instance within its class. There is a functional
dependency from the identification properties to the other properties, for any class instance, the value
of any property described in the class extension may be derived by a system from the set of values of
the identification properties of the class instance, and from the explicit description of its class
extension.

ISO 13584-24:2003(E)

288 © ISO 2003 – All rights reserved

When the set of all instances satisfying a class definition is specified by an explicit description, all the
properties are supposed to be selectable by a user for selecting one particular instance within a class.
When a sufficient number of properties have been selected, the system should be able to compute the
identification properties for the selected instance, and then to derive the values of all the other
properties described in the class extension

NOTE 1 Explicit description of class extension is only feasible when there exist a finite number of
instances.

NOTE 2 Explicit description of class extension is a very simple model for describing a class population.

12.2.3 Implicit description of class extensions

Implicit description of a class extension consists of describing the set of all instances satisfying a class
definition without representing explicitly each instance of the class. In an implicit description, the class
is globally modeled, together with a mechanism for deciding whether an instance satisfies the class
definition.

The ISO13584_library_content_schema also supports the implicit description of extensions of the
classes that are intentionally defined in the dictionary.

NOTE 1 Implicit description of class extension is still feasible when there exists an infinite number of
instances.

NOTE 2 Implicit description of class extension is a very powerful model for describing a class population.
At the implementation level, supporting implicit description of class extension is more complex than supporting
explicit class descriptions.

12.2.4 Common pieces of information in implicit description and in explicit description of
class extensions

Together with the description of the set of all instances satisfying a class definition, each class
extension is described by:

— a set of properties whose values are specified in the class extension;

— a set of dialogue_resources intended to enable user access, and exchanged as separate files;

— program_references, representation_references, intended to represent library items, also
exchanged as separate files.

NOTE 1 program_references, representation_references and dialogue_ressources are subtypes of
class_extension_external_item.

All the properties that are used to describe a class extension shall be applicable to the class. But, it is
up to the library data supplier to decide for which applicable properties, values are specified in the
class extension.

EXAMPLE 1 The mass may be defined as an applicable property for a screw class. The supplier may decide to
provide the mass values for the different screws of the screw class. In this case, values of this property shall be
defined in the class extension. The supplier may also decide to not provide a mass value. In this case, this
property shall not be represented in the class extension.

Each class extension is associated with a content_version that characterises the extension of the
class. The content_version shall be incremented when, and only when, the extension of the class is
changed, i.e., new instances become allowed, or previous instances are no longer allowed. When the
content_version of a class extension is incremented, the version of its class dictionary_element
shall also be incremented. Conversely the content_version shall not be changed when the class
definition is changed but its population remains unchanged.

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 289

Each class extension is associated with a content_revision that characterises how the class
extension is described. The class revision shall be incremented for any changes in that description, but
the changes that modifies the allowed instances of this class. In the latter case, the content_revision
shall be reset to '000'.

NOTE 2 The content_version attribute allows to know the minimal set of class versions that needs to be
recorded to be able to instanciate again any instance that was created at some point in time. Only one class per
content_version value, e. g., the latest one, needs to be recorded. This might be useful for instance for
computing the values of some derived properties of any instance, even when these properties were not stored
with the instance.

Both content_version and content_revision are optional. When they are not defined, this means
that the class extension gathers instances that where allowed at different point in time. This provides
the capability to exchange or to record a whole class history.

NOTE 3 The mechanism to be used to specify the life cycle status of each instance gathered in a class
extension without version number is outside the scope of this part of ISO13584.

EXAMPLE 2 A mechanism usable to specify the life cycle status of each instance gathered in an item class
extension without version number might be to associate with this item class a functional model class recording
for each item instance, e. g., the dates were it became allowed and obsolete, and the class version number were
it became allowed and obsolete.

12.2.5 Properties modeling in explicit description of class extensions

In explicit descriptions of class extensions, no operation such that constraint, expression or method
are modeled.

When the value of some context dependent characteristic is a function depending on the value of
some context parameters, each value of the former shall be associated with a set of values of the
latter's.

EXAMPLE For a particular spring, the compressed-length of the spring, that is a context dependent
characteristic, depends on the context parameter that is the strength applied to this spring. In the instance
representing this spring, either the compressed-length will not be represented, or each value of the compressed
length will be associated with each value of the corresponding strength.

NOTE 1 A context_dependent_property_value allows to associate the value of a context dependent
characteristic with values of some context parameters that specify the measure context of the former. Using
context_dependent_property_value, several values may be defined for the same context dependent
characteristics, each one associated with a particular measure context

NOTE 2 When an instance, modeled as a dic_class_instance, contains values for some context
parameters, these context parameters values belong to the measure context of all the context dependent
characteristics that depends on these context parameters. Thus, when an instance, modeled as a
dic_class_instance, contains values for all the context parameters that specify the measure context of one
particular context dependent characteristics, only one value may be provided for the latter property: the one
corresponding to the unique context specified by the context parameters values.

NOTE 3 context_dependent_property_value and dic_class_instance are defined in the
ISO13584_instance_resource_schema documented in clause 6 of this part of ISO 13584.

The following rules define the interpretation of each property that may be associated with a class
instance.

— When the instance is an item class instance:

a) a value of a characteristic property is a characteristic of the corresponding instance;

b) a value of a context parameter partially specifies the measure context of any provided
value of a context dependent characteristic that depends on this context parameter;

ISO 13584-24:2003(E)

290 © ISO 2003 – All rights reserved

c) a value of a context dependent characteristic is a characteristic of the corresponding item
instance in the particular measure context defined by means of context parameter values.

NOTE 4 A where rule, in dic_item_instance, ensures that every context dependent characteristics value is
associated with a complete measure context.

NOTE 5 dic_item_instance is defined in the ISO13584_instance_resource_schema documented in
clause 6 of this part of ISO 13584.

— When the instance is a functional model class instance:

a) a value of a representation property that is a view control variable imported from the
functional view class to which the functional model class refers specifies which particular
view instances the functional model instance is able to create;

NOTE 6 A where rule in explicit_functional_model_class_extension ensures that, when the functional
model class instance creates an instanciable functional view class, all the view control variable of this functional
view class are assigned values in the functional model class instance.

NOTE 7 explicit_functional_model_class_extension is defined in the clause 12.6.8 of this part of ISO
13584.

b) a value of a property that is a part characteristic imported from the item class to which the
functional model class refers allows specifying of which item instance the functional
model instance is view of;

NOTE 8 Part characteristics may only be applicable to a functional model class if there are imported from
an item class.

c) a value of a representation property whose data type is a representation, a
representation_reference or a program_reference defines the representation that
belongs to the functional view class the functional model is able to create.

NOTE 9 A where rule in explicit_functional_model_class_extension ensures that a value of a
representation property whose data type is a representation, a representation_reference or a
program_reference only exists when the functional model creates an instanciable functional view class and that
such a representation property is unique within a functional model instance.

d) a value of a representation property that is not a view control variable, describes the item
the functional model instance is view of, either as part of a functional view class, when the
functional view to which the functional model refers is instanciable, or not when the
functional view is not instanciable.

EXAMPLE 2 The price of a part, and the minimal quantity of order of a part may be represented in a functional
model class whose class extension is explicitly described. This functional model class should import the
identification characteristics of the class of parts the functional model class is view of and there should be one
functional model corresponding to each part instance, this functional model providing the price and minimal
quantity of order of the corresponding part.

12.2.6 Typical usage of explicit description of class extensions

The information model for explicit description of class extensions was designed to support information
exchanges in a number of typical situations including the following.

a) Description of component families where each component is associated with an explicit part
number, and where context dependent characteristics are only defined for one, or a very small
number, of measure contexts.

NOTE 1 In this case, each component is efficiently described by its set of characteristic values and by its
set of context-dependent characteristics values, each one associated with its own measure context. Moreover,
describing each instance according to the same structure allows the LMS to display the entire family instance in
a "table-like" structure.

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 291

NOTE 2 The table_like attribute in the explicit_model_class_extension allows the library data supplier to
specify that all the instances are defined by the same properties described in the same order.

b) Description of assembly families where there exists a restricted number of allowed
configurations.

NOTE 3 When the number of feasible assemblies is small enough, the simple enumeration of all the
allowed assembly configurations may be more efficient than modeling explicitly the assembly constraints.

c) Adding functional properties to part description.

NOTE 4 In the ISO 13584 standard series, only characteristics or context dependent characteristics may
be associated with parts in their general model. A property that may change without changing the part itself shall
be modeled as a functional property, defined in a functional model.

EXAMPLE 1 Price or delivery time are properties that may change without changing the part itself.

NOTE 5 When functional properties are not computed by formulas but stored in tables, a convenient way
for exchanging them together with the item class they refer to might be:

— to define, or to reference, a non-instanciable view class that characterize these properties without any
view control variable;

— to exchange each parts family using an explicit description of this class extension, each instance being
described according to the same structure;

— to associate to each parts family a functional model class defined explicitly whose dictionary definition is
a fm_class_view_of and whose class extension contains one instance for each instance of the parts
family;

— to exchange this functional model class using an explicit description of its class extension, each instance
being described according to the same structure.
If the identification properties of the functional model class only consist of characteristics described in the
parts family, the LMS can display at the same time, and in the same table-like structure, both the
components characteristics and the functional properties described in the functional model class. If view
control variables are associated with the defined functional view class, the same kind of display would be
possible once the user has set the view control variable values.

EXAMPLE 2 A procurement view may be considered as a a non-instanciable view class.

NOTE 6 When an explicit_functional_model_class_extension is associated with an
explicit_item_class_extension, a global rule ensure that there exists a functional model instance for each item
instance.

NOTE 7 The library integrated information model documented in ISO 13584-251 should provide for
exchanging in the same exchange context general model, functional model and functional view classes provided
that all class extensions are described explicitly.

d) Adding representations to part description.

NOTE 8 When there exists, in some functional view class, one or a small number of representations,
distinguished by view control variable values, for each part of some part family, a convenient way for exchanging
them together with the part families to which they refer might be:

— to define, or to reference, an instanciable view class that characterizes these representations;

— to exchange each parts family using an explicit description of its class extension;

— to associate to each parts family a functional model class defined explicitly whose dictionary definition is
a fm_class_view_of and whose class extension contains one instance for each particular representation
of each instance of the parts family;

1 To be published

ISO 13584-24:2003(E)

292 © ISO 2003 – All rights reserved

— to exchange this functional model class using an explicit description of its class extension, each instance
being described according to the same structure.
If the identification properties of the functional model class only consist of (1) characteristics described in
the part family and (2) all the view control variables of the above functional view class, once the user has
specified the view control variable values, the LMS is able to generate the required view for any part in
the part family.

NOTE 9 When an explicit_functional_model_class_extension refers to a functional view class with view
control variables, a global rule ensures that for each item instance there exists one functional model instance
able to create any of the view the fm_class_view_of declares to be able to create.

NOTE 10 fm_class_view_of is defined in the ISO13584_extended_dictionary_schema documented in
clause 11 of this part of ISO 13584.

12.2.7 Properties modeling in implicit description of class extensions

In implicit descriptions of class extensions, relationships between property values may be modeled
intentionally by means of operations. Properties of which values are provided in an implicit description
of a class extension may be split into:

— selectable_properties, whose values are to be set by the user, within an allowed set of values,

— required_properties, whose values are intended to be copied by the system from a pre-existing
instance,

NOTE 1 Such required_properties exist only when the class to be instantiated is associated with another
class by an a priori semantic relationship. The required properties may be either characteristics of an item a
functional model class instance is is-view-of, (in the case of an a priori is-view-of relationship), or view control
variables of the required view for a functional model class instance.

— derived_properties, that depend functionally on the selectable properties and on required
properties and whose values shall be computed by the system as soon as the values of the
selectable properties and required properties of which they depend on, directly or by transitivity are
set, and

— method_variables, that are internal variables, neither user selectable nor derived from the
selectable properties and/or required properties; method-variables are computed during the
running of a method.

These four kinds of properties define the template of a class instance in an object-oriented
environment.

NOTE 2 In an item_class, it is up to the library data supplier to decide which item characteristics are
selectable_properties, and which item characteristics are derived_properties. The only rule is that the set of
characteristics that are selectable (called the identification characteristics) shall identify completely and
unambiguously a part within its class.

EXAMPLE 1 Assume that in a (abstract) screw class, each screw is defined by three part characteristics
total_length, diameter and threaded_length with the constraint: threaded_length = (total_length) / 2. The
following structures may be defined (no context parameters are introduced, therefore all the
selectable_properties are all identification characteristics).

selectable_properties
(identification characteristics)

derived_properties

total_length, diameter

threaded_length, diameter
total_length, diameter, threaded_length

 threaded_length

 total_length

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 293

In any case, the constraints defined for each selectable property must ensure that only allowed instances may
be created at the end of the user selection process.

All the properties may be defined by the library data supplier as either optional or mandatory. If they
are optional, they may be explicitly assigned a lack of value.

EXAMPLE 2 In a bolted assembly family, the washer may be defined as optional. In this case, the library user
might select a bolted assembly instance with no washer.

NOTE 3 An ISO 13584-conformant LMS may enable the user to create partially defined instances of which
all the mandatory properties are still not defined. However the defined values shall fulfil their relevant constraints.

EXAMPLE 3 In a screw family, where length and diameter are mandatory properties, the library end-user might
want to represent a screw instance whose precise length is still not defined but whose diameter equals 5. The
LMS may allow the library end-user to represent this concept as a partially defined instance.

Operations consist of:

— constraints that restrict the set of instances of the class and define implicitly the class extensions,
and

— methods that create views.

All the constraints are modelled as domain_restrictions using the resource constructs defined in the
ISO13584_domain_resource_schema.

Constraints are used in three different roles:

— each selectable_properties is associated with a domain_restriction that defines a set of values
that include all the allowed values for this selectable_properties and enable the user selection;
all the domain_restrictions constraints are gathered in the class_extension attribute of an
implicit_model_class_extension; in this part of ISO 13584, this role is called: domain definition;

— each derived_properties is associated with a functional_domain_restriction that defines the
derivation function that enables computation of its value, directly or indirectly, from the values of
the selectable_properties; these constraints are gathered in the derivation attribute of an
implicit_model_class_extension; in this part of ISO 13584, this role is called: derivation
function definition;

NOTE A derivation function may use, within its parameters, other derived_properties, but these
derived_properties may be derived, directly or indirectly from selectable_properties, and the dependency
graph is acyclic.

— additional domain_restrictions may be specified in the filters attribute of an
implicit_model_class_extension; they permit further restriction of the set of allowed instances
and support different user selection processes; in this part of ISO 13584, this role is called: filter
definition.

The Library Management System shall ensure that:

— for every domain_restriction that plays a role of domain definition and for which the assumes
properties are set, only the values belonging to the specified domain are proposed for user
selection when he/she wants to choose one property of the defines property set;

— when some filters further restrict the set of allowed values of a selectable_properties intended to
be set by the user, either the illegal values are removed from the displayed values, or the
messages associated with these filters are displayed before the user selection;

— for every functional_domain_restriction for which the assumes properties are set, whether it
plays a role of derivation function or a role of filter, the defines properties are automatically
assigned the values specified by the constraint;

ISO 13584-24:2003(E)

294 © ISO 2003 – All rights reserved

— at the end of the selection process, all the constraints, in the three roles, are satisfied.

EXAMPLE 4 Assume that, in an engineering library, a pipe is identified, within its item_class_extension class,
by its diameter, thickness and material. These identification characteristics constitute, together with the possible
context parameters, the selectable properties of the class. Assume that from these properties, its mass and
supported_pressure may be derived. These characteristics are derived properties. Assume that the library data
supplier, or the library user during the user adaptation of the library, wants to enable a user selection based
either on a required_pressure (only the pipes that support this pressure are proposed for user selection) or on
the so-called spec (when the spec is defined, the only selection of the diameter completely defines the pipe).
Under these assumptions, the pipe class extension would be modelled as follows:

— two context parameters, belonging to the selectable_properties would be defined: required_pressure and
spec, each one associated with a domain_restriction that defines a set of allowed values;

— three part characteristics would be defined as selectable_properties, associated with a
domain_restriction (for instance, a table_defined_domain), namely diameter, thickness and material;

— two part characteristics would be defined as derived_properties, associated with a
functional_domain_restriction (for instance, a table_defined_value), namely mass and
supported_pressure,

— two algorithms would be defined: one in the form of a functional_domain_restriction that would derive
the thickness and material from the spec and the diameter, the other, in the form of a domain_restriction
that would define for different intervals of the required required_pressure the triple (diameter, thickness,
material) that support this pressure (for instance, a table_defined_domain). These algorithms would be
recorded in the filters attribute of the implicit_model_class_extension.

NOTE 4 The user might select the pipe in three ways:

— selecting in any order diameter, thickness and material, or

— selecting in any order spec and diameter, or

— selecting first the required required_pressure and then, in the filtered domain, the diameter, material and
thickness.

12.2.8 Assemblies modeling in explicit description of class extensions

A property of an item of which the data type is defined by an item_class stands for the composition
is-part-of relationship in any of its possible meaning: aggregation part / whole relationship if the
item_class is a component_class, composition relationship specifying of which material(s) an object
is made if the item_class is a material_class, etc. Thus, similar assembled items may be defined by
a class of which some or all properties have item_classes as their data types.

Explicit description of an assembled item class extension consists of describing the set of all allowed
configurations of the assembled item as a set of assembled item instances, of which some or all of the
property have item_class instances as values.

EXAMPLE 1 The set of all the allowed bolt + nut assemblies, where each bolt belongs to the C_bolt class, with
two identification characteristics: diameter and length, and where each nut belongs to the C_nut class, with one
identification characteristic: diameter may be modeled as an assembled item class C_bold_and_nut . This class
would specify two properties: the_bolt, of which the data type is the C_bolt class, and the_nut, of which the data
type is the C_nut class. Explicit description of the C_bold_and_nut class extension would consist of a set
instances, each instance having two properties: the_bolt and the_nut, and the value of either property being an
item class instance.

NOTE 1 A value that is an item_class instance is represented as a dic_item_instance, a
lib_item_instance or any of their subtypes.

NOTE 2 dic_item_instance, lib_item_instance and their subtypes are defined in the
ISO13584_instance_resource_schema documented in clause 6 of this part of ISO 13584.

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 295

To avoid the combinatorial blow-up of the number of instances needed to enumerate all the allowed
configurations of an assembly when represented as an assembled item class extension, the following
convention is specified by this part of ISO 13584.

When the item_class instance that constitutes the value of a property of an assembled item class
instance is a dic_item_instance of which only some applicable properties are associated with values,
this means that the assembly configuration remains allowed when this dic_item_instance is replaced
by any instance of the class referenced by the dic_item_instance, or of any of its subclass, or of any
class that is case-of of any of the previous classes provide that the latter instance also contains the set
of property values specified for the former instance.

EXAMPLE 2 In the C_bolt_and_nut class described in EXAMPLE 1, if there exist for a bolt 10 possible lengths
and 5 possible diameters, each length existing in any diameter, and if there exist only one nut per diameter,
enumeration of all possible assembly configurations would request 50 assembled item instances (only one nut
fits with each bolt). The above convention allows to represent only 5 assembled item instances. Each instance
would reference, by means of a dic_item_instance, an instance of the C_bolt class without value for its length
property, and, by means of a lib_item_instance, an fully defined instance of the C_nut class with a value of
diameter equal to the value of the diameter of the instance of bolt. When selecting an assembly according to this
specification, the library user would need to select by some means not only the assembled item instance, but
also the value of the length property of the the_bolt property of the assembled item.

EXAMPLE 3 In the C_bold_and_nut class described in EXAMPLE 2, if the C_nut class has no longer instances,
but is the superclass of two classes, C_hexagonal_nut and C_square_nut with each 5 instances, all the allowed
configurations of the assembly may still be represented with 5 assembled item instances. Each instance would
reference, by means of a dic_item_instance, an instance of C_bolt class without value for its length property,
and, by means of a dic_item_instance, an instance of the C_nut class, with a value of diameter equal to the
value of the diameter of the instance of bolt. When selecting an assembly according to this specification, the
library user would need to select by some means not only the assembled item instance, but also the precise
subclass of C_nut where the nut is taken, and the value of the length property of the bolt.

12.2.9 Assemblies modeling in implicit description of class extensions

Implicit description of an assembled item class extension consists of describing the set of all allowed
configurations of the assembled item by means of constraints between properties that may have
item_class instances as values.

— each selectable_properties of which the data type is defined by an item_class shall be
associated with a domain_restriction that specifies its domain as a class, or part of a class.

NOTE 1 Using the resource constructs defined in clause 10 of this part of ISO 13584, this domain may be
either the class that defines the data type of the property, or any of its subclass;

EXAMPLE 1 In the C_bolt_and_nut class described in EXAMPLE 1 of the previous clause, the the_bolt
property might be defined as an identification characteristics. It might be associated with a domain restriction
that specifies that it shall belong to the C_bolt class.

— each derived_properties of which the data type is defined by an item_class shall be
associated with a functional_domain_restriction that enables computation of the item_class
instance that constitutes its value, directly or indirectly, from the values of the
selectable_properties;

EXAMPLE 2 In the C_bolt_and_nut class described in EXAMPLE 1 of the previous clause, the the_nut property
might be defined as a derived property. It would be associated with a functional_domain_restriction that would
consist of a class_instance_constructor able to generate an instance of the C_nut class with diameter x when
the the_bolt attribute of the assembled item class has a diameter of x. Note that with such a description, the
library user would have to select first the bolt, the nut being computed by the system.

NOTE 2 class_instance_constructor is defined in clause 10 of this part of ISO 13584.

— further restrictions of the set of allowed instances may be specified by additional
domain_restrictions specified in the filters attribute of an implicit_model_class_extension.

ISO 13584-24:2003(E)

296 © ISO 2003 – All rights reserved

EXAMPLE 3 In the C_bolt_and_nut class described in EXAMPLE 1 of the previous clause, both the the_bolt
and the the_nut properties might be defined as identification characteristics, each one with its whole class as its
domain. In this case a filter would be needed to specify the additional constraint that the diameter of the the_bolt
property shall be equal to the diameter oft the the_nut property. Such a description would allow the user to select
first either the bolt or the nut, the system computing the second component of the assembly.

12.2.10 Instances satisfying a class definition in an implicit description of a class extension

In an implicit description of a class extension, the set of allowed instances of a class are all the
instances such that:

— each property is associated with one value of its data type, and

— all the constraints defined by the domain definitions, derivation functions and filter definitions
evaluate to TRUE.

This extension, which may be infinite, is implicitly defined. It may be explicitly computed when all the
data types are discrete and finite.

Thus, in an implicit description of a class extension, like in a number of paper catalogues, the set of
allowed instances of a class is implicitly defined by a set of constraints.

Constraints perform a dual role:

— first, and during the user selection process, they allow the LMS to help the user to choose a
correct instance. For instance, the LMS may generate a table to be looked up by the user. In this
connection they constitute supplier-defined choice guides,

— second, and a posteriori, they allow the LMS to check that the selected instance belongs to the
extension of a class.

In paper documents, numerous methods are used to express these constraints in order to allow the
user to be helped to choose an item within its family and also to ensure final correctness of that
choice. The following subclauses present the capabilities that may be used by library data suppliers to
specify the content of their classes, and the minimal services that shall be provided by any
ISO 13584-conformant LMS to process such a specification during the selection process of a library
end-user.

12.2.10.1 Domain definition of the identification characteristics

The domain of an identification characteristic may be stated by four means.

a) Independent domains constraints: these allow the domains, from which selectable_properties
must be chosen, to be stated. Independent domain constraints can be a range, the whole type
domain, or a table. Independent domain constraints shall be represented by
domain_restrictions that contain a unique guarded_simple_domain whose guard is others.

NOTE 1 When displaying some derived properties appears useful to facilitate the user selection of some
identification characteristics, the domain of these identification characteristics may be defined by the library data
supplier as a table_defined_domain whose table key includes the identification characteristics and whose other
columns contain the values of the derived properties. These columns will be presented to the user when the
selection of the corresponding identification characteristics is required.

b) Conditional domain constraints: when the domains, to which some selectable_properties must
belong, cannot be easily defined unless other selectable_properties have already been
chosen, this form of restriction allows the following to be stated:

1) the property(ies) for which prior choice is necessary;

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 297

2) according to the values of those, the various domains within which the properties to be chosen
must be selected.

Conditional domain constraints shall be represented by domain_restrictions that contain several
guarded_simple_domains guarded by boolean_expressions. Each guarded_simple_domain
defines one of the domains within which the properties to be chosen must be selected.

NOTE 2 The use of conditional domain constraints enforces an order in the user selection process.

NOTE 3 The property(ies) for which prior choice is necessary may include other identification
characteristics, context parameters, and, possibly, derived properties that result from the values of these
identification characteristics and context parameters.

c) Degenerate domain constraints: when the domain to which some identification characteristics
must belong, whether it is an independent domain constraint or a conditional domain constraint,
degenerates to a singleton, i.e., a set that contains only one element, the assignment of this
value to the corresponding identification characteristics shall not require any action from the
user. This value shall be computed by the system as soon as such a domain is known.
Degenerate domain constraints are modelled as domain_restrictions that are
functional_domain_restrictions.

d) Exclusion constraints (domain + filters): the statement of some domains in the form of range or
tables is sometimes impossible, unless excessive sizes are reached for the choice tables.
Exclusion constraints permit statements, in the form of boolean_expressions, of the additional
restrictions to which the values of some subsets of selectable_properties must adhere in order
to make such values actually lawful, even though they already belong to their respective
domains.

NOTE 4 The use of exclusion constraints enables an unordered user selection process. An exclusion
constraint is only taken into account when the last selectable_properties involved in the constraint is selected.

NOTE 5 An exclusion constraint defines a mathematical relation between several properties. If the
projection of this relation onto each involved property, is smaller than the domain defined for this property, a
value for this property selected by the user within its domain may be found to be unlawful when other properties
involved in the relation are selected. It is therefore recommended that the projection of the relation onto each
property equals the domain of the property as defined by its domain definition. It is also recommended that, for
every property involved in the relation, the projection of the relation onto the cross-product of all the other
properties involved in the relation includes any t-tuple of values of these other properties that might be selected
according to their independent or conditional domain constraints.

NOTE 6 Exclusion constraints were mainly introduced in this part of ISO 13584 to enable library data
supplier to capture component selection knowledge. As shown in the next clause, context parameters provide for
modelling design problems. Exclusion constraints provide for modelling component selection rules.

12.2.10.2 Part selection through context parameters

Context parameters enable the specification of the requirements that a part shall fulfil.

EXAMPLE The dynamic_load and the required_life_time of a bearing, the strength of a spring, the
required_working_temperature of a pump and the specifications of a pipe are examples of properties that enable
the specification of the requirements that a part shall fulfil.

Two kinds of relationships may be defined between context parameters and identification
characteristics:

— Domain definition depending on the context. When user selection always starts by defining some
context parameters of the needed part, the domain definition of some identification characteristics
may be defined as a conditional domain constraint whose assumes attribute includes this context
parameter.

NOTE 1 In this approach, the corresponding identification characteristics cannot be directly selected
without first defining these context parameters.

ISO 13584-24:2003(E)

298 © ISO 2003 – All rights reserved

— Filters based on requirements. In this approach, each context parameter that may be used to
describe requirements are represented within filters. When a set of context parameters, and
possibly a subset of the identification characteristics, are sufficient to completely specify the
required part, a filter, associated to a functional_domain_restriction, generates automatically its
missing identification characteristics, and therefore the part itself.

NOTE 2 Filters based on requirements enable the description of different user access methods.

The following subclause specifies the minimal support that shall be provided for user selection by any
ISO 13584-conformant Library Management System.

12.2.11 Mandatory support of the user selection process when implicit description of class
extensions are used

This clause specifies the services that shall be provided by an LMS to a library end-user when
selecting an instance in a library class whose extension is implicitly defined. It defines what pieces of
information shall be presented to the user according to the class extension description defined by the
library data supplier. Thus, this clause defines an abstract protocol between library data suppliers, who
define library classes, and LMS developers, whose software systems process the library classes when
implicit description of class extensions are used.

NOTE When explicit description of class extensions are used, the explicit description of each instance is
rather simple, and the process used to display the set of instances is not specified in this part of ISO 13584.

12.2.11.1 Design a class extension

Representing a class extension includes the following:

a) selecting among the properties, which ones should be selectable by the user, and thus
represented as selectable_properties; this means, for an item_class:

1) selecting among the item characteristics, which are the identification characteristics,

2) deciding which context parameters are to be provided as selectable_properties;

b) selecting among the other dictionary-defined properties, which are the derived_properties that
are to be provided in the class extension; this means, for an item_class:

1) deciding which other item characteristics are to be provided as derived characteristics,

2) deciding which context parameters are to be provided as derived_properties;

3) deciding which context-dependent characteristics are to be provided;

c) for those classes that may only be instantiated when a related instance of another class exists:

1) deciding which properties, called required_properties, shall exist within the related
instance;

EXAMPLE An instance of a functional model class that provides the basic_geometry representation of a
family of screws may only exist associated with an instance of screw of which the length and diameter are
known.

d) defining the relevant constraints, i.e.:

1) defining a single domain definition for each selectable property,

2) designing a single derivation function for each derived properties,

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 299

3) and possibly, adding some filters.

12.2.11.2 Model of a class extension

The mandatory support of the user selection process for some class is based on the dependency
graph, and on the set of constraints of this class.

The dependency graph G of a class is a directed graph built as follows:

a) let X be the set of nodes, and let µµµµ ⊂⊂⊂ ⊂ X x X be the set of edges;

b) the nodes of the graph are the selectable_properties, the required_properties and the
derived_properties defined by the class;

c) the edges of the graph are the dependency relationships between properties that appear in the
defines attributes and properties that appear in the assumes of the same domain definition or
derivation function defined by the class; formally, for every pair (i,j) ∈∈∈∈ X x X, there exists an
edge from i to j in G if and only if:

1) there exists a self_property_semantics that references i through its the_property
attribute and belonging to the assumes set of a domain definition or a derivation function
defined by the class, and

2) there exists a self_property_semantics that references j through its the_property
attribute and belonging to the defines set of the same domain definition or derivation
function as the one obtained above;

NOTE The filters are not represented in dependency graph.

From the acyclic_class_extension_definition function that constrains every
model_class_extension, the result is that the built graph G is a directed acyclic graph.

The set of constraints S is the set of all the domain_restriction(s) defined by the class, whether they
belong to the domain definitions, to the derivation functions or to the filters definitions.

12.2.11.3 Requirements for the user dialogue

At any time during the user selection process:

— let X1 ⊂⊂⊂ ⊂ X be the set of properties that are assigned a value and let X2 ⊂⊂⊂ ⊂ X be the set of
properties that are not assigned a value. We have X = X1 ∪∪∪ ∪ X2.and X1 ∩∩∩∩ X2 = ∅∅∅ ∅ ;

— let S1 ⊂⊂⊂ ⊂ S be the set constraints for which all the defines and assumes properties have been
assigned a value thus ensuring that the constraint holds, and S2 ⊂⊂⊂ ⊂ S the set of constraints that
have not been checked. We have S = S1 ∪∪∪ ∪ S2.and S1 ∩∩∩∩ S2 = ∅∅∅ ∅ .

The minimal mandatory support of the user selection process is defined by the following algorithm:

a) Compute G and S. Assign X1 = ∅∅∅ ∅ , X2 = X, S1 = ∅∅∅ ∅ , S2 = S.

b) Assign values to all the possible required_properties and update X1 and X2.

c) Compute recursively all the properties that are in the set X2 and belonging to the defines set of
a functional_domain_restriction of S2, of which all the assumes set is included in X1. If two
different values are assigned to the same property, display the property(ies) with the double
assigned value(s) together with the messages in the constraint_description of the violated
constraint and raise an error: the class extension shall be empty. Otherwise, move all the

ISO 13584-24:2003(E)

300 © ISO 2003 – All rights reserved

computed properties from X2 to X1 and all the used functional_domain_restrictions from S2
to S1.

d) If there exists in S2 some domain_restriction for which all the properties belonging either to
the assumes set or to the defines set are included in X1, check the corresponding constraints.
If all these constraints hold, move them from S2 to S1. Otherwise, display the message in the
constraint_description of the violated constraints, and raise an error: the class extension shall
be empty.

e) Repeat until the user-defined selection process ends:

1) Save the current state of the instance.

2) Propose basic undo capabilities and propose for selection, at the minimum, all the
selectable_properties that are in the X2 set and of which all the properties of the
assumes set of the corresponding domain definition belong to X1.

NOTE 1 Minimal undo capability consists of coming back to end of step d.

3) When the user has selected one property he/she wants to assign a value:

i) build the set y of all the properties contained in the defines attribute of the domain
definition d of this property,

ii) build the set f of all the filters contained in S2 of which all properties of the defines
attribute and assumes attribute are included in y ∪∪∪∪ X1,

iii) if the domain definition d is a table_defined_domain T, let f' ⊂⊂⊂⊂ f be the set of
filters such that:

— their assumes attribute is a subset of X1, and

— their simple_domain is a table_defined_domain.

then:

For every table ti corresponding to one filter of f':

— select from ti the rows where all the assumes properties have their values in
the current instance,

— project this table on y,

— define the new table T by a natural join of the previous table with T,

— if T is empty, display the message contained in the constraint_description of
the filter corresponding to ti and return to e.2, otherwise

— remove the filter corresponding to ti from f;

iv) if there exists some property(ies) y' in y that are already assigned a value, and if
the domain definition is a table_defined_domain, define the new table T by
selecting in T (possibly modified according to step e.3.iii the row where all the
columns corresponding to y' equal their already assigned value(s). If T is empty,
display the current assigned values for properties in y', and return to e.2, otherwise
remove all the properties of y' from y,

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 301

v) display all the messages contained in the constraint_description attribute of the
filters in f (possibly modified according to step e.3.iii),

vi) display all the properties in y (possibly modified according to step e.3.iv) that are
already assigned a value, and their values,

vii) if there remains only one possible value for each property in y then select these
values for assignment, else get the user assigned values to all the properties in y
by displaying by some means the set of values in their domain definition, the only
mandatory requirement is to display for a table_defined_domain, its table T,
possibly modified according to steps e.3.iii. and e.3.iv, and possibly with some
other columns computed from the class constraint definition.

NOTE 2 If the system removes by some algorithm all the values that would not fulfill the constraints in f, or
that would allow to select a new value for an already assigned property in y', then the display of e.3.v. and e.3.vi.
have not to be done.

EXAMPLE When a filter in f is a predicate_defined_domain and the domain definition is a
table_defined_domain, with a table T, an algorithm for removing from T all the rows that would violate f would
be to remove from T all the rows for which the filter f evaluates to FALSE.

viii) assign to the properties in y the value (or values in the case of a t-uple) resulting
from e.3.vii,

ix) check whether some properties in y have two different values in the current
instance and in the instance recorded in stage e.1. If this is TRUE, display the
property(ies) with double value definition together with the two values and return to
e.2., otherwise

x) check if the constraints that correspond to the filters in f are fulfilled. If not, highlight
the messages contained in the constraint_description of the violated constraints
and return to e.2., otherwise move all the filters in f from S2 to S1, and all the
properties in y ∩∩∩∩ X2 from X2 to X1.

xi) Compute recursively all the properties that are in the X2 set and belonging to the
defines set of a functional_domain_restriction of S2, for which all the assumes
set is included in X1. If two different values are assigned to the same property,
display the property(ies) with the double assigned value(s) together with the
messages in the constraint_description of the violated constraint and raise an
error: the class extension is not consistent. Otherwise, move all the computed
properties from X2 to X1 and all the used functional_domain_restrictions from
S2 to S1.

xii) If there exists in S2 some domain_restriction for which all the properties
belonging both to the assumes set or to the defines set are included in X1, check
the corresponding constraints. If all these constraints hold, move them from S2 to
S1. Otherwise, display the message in the constraint_description of the violated
constraints, and raise an error: the class extension is not consistent.

xiii) End repeat (return to e.).

NOTE 3 When an error is raised, the LMS behavior is implementation dependent.

12.3 ISO13584_library_content_schema constant definitions

This clause introduces the constant definitions in the ISO13584_library_content_schema.

ISO 13584-24:2003(E)

302 © ISO 2003 – All rights reserved

12.3.1 Classification_value

A classification_value is an INTEGER value used to specify that a particular property is intended to
be processed in a particular way on a receiving system. Values from 0 to 9 are reserved for latter
registration. All other values may be used by private agreement between the sender and the receiver.

NOTE This part of ISO 13584 does not make any assumption on how each classification_value should
be interpreted on a receiving system.

EXAMPLE In a catalogue that a manufacturer sends to a reseller, some properties might be provided only for
the reseller usage and not for distribution to customers. By private agreement between the manufacturer and the
reseller these properties might be associated with a classification_value of -1.

EXPRESS specification:

*)
TYPE classification_value = INTEGER;
END_TYPE; -- classification_value
(*

12.4 ISO13584_library_content_schema: overall architecture of a library

library is the entity that specifies the overall architecture of a parts library. library is a subtype of
dictionary that shall be used when an ISO 13584-conformant exchange context contains, for some of
the classes, their class extensions.

In addition to its inherited attributes, a library contains the set of linked_interfaces that are
referenced from the content of the classes belonging to that library.

In a library, all the view exchange protocols referenced in a class extension shall belong to the
supported_vep inherited attribute, and all the program_references, representation_references and
dialogue_ressources referenced in a class extension shall reference protocols belonging either to the
inherited base_protocols set, or to the linked_interfaces set.

In a library entity, the external_file_protocols referenced by the inherited base_protocols attribute
or by the linked_interfaces attribute may be any protocol. These two entities may therefore be used
for an exchange between a library data supplier and an end-user who agree on some proprietary
protocol or interfaces. The library_in_standard_format, subtype of library only permits those
protocols that are defined in the referenced library integrated information model and in the referenced
view exchange protocols.

EXAMPLE A library data supplier and a library end-user may agree to use the native format of some CAD
system for exchanging the representations of the library components. Such a library cannot be exchanged as a
library_in_standard_format.

EXPRESS specification:

*)
ENTITY library
SUPERTYPE OF(library_in_standard_format)
SUBTYPE OF(dictionary);

linked_interfaces: SET [0:?] OF external_file_protocol;

WHERE
WR1: QUERY(class <* SELF\dictionary.contained_classes |

referenced_veps_exist_in_supported_veps(

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 303

SELF, class)) = [];
WR2: QUERY(class <* SELF.contained_classes |

referenced_protocols_exist_in_supported_protocols(
SELF, class)) = [];

WR3: QUERY(int <* SELF.linked_interfaces
| NOT(('ISO13584_EXTERNAL_FILE_SCHEMA'+

'.LINKED_INTERFACE_PROGRAM_PROTOCOL')
IN TYPEOF(int))) = [];

END_ENTITY; -- library
(*

Attribute definitions:

linked_interfaces: the set of external_file_protocols referenced in the library.

Formal propositions:

WR1: all the view exchange protocols referenced in a class extension shall belong to the
supported_vep set.

WR2: all the program_references, representation_references and dialogue_ressources
referenced in a class extension shall reference protocols belonging either to the base_protocols set,
or to the linked_interfaces set.

WR3: the linked_interfaces shall be linked_interface_program_protocols.

12.5 Library_in_standard_format

A library_in_standard_format entity is a library that only references in its base_protocols inherited
attribute and in its linked_interfaces attribute those protocols that are allowed by the conformance
classes of the library integrated information model and of the view exchange protocols to which it
makes reference. Every user LMS supporting these library integrated information model conformance
class and view exchange protocol conformance classes must be able to compile such a library.

EXPRESS specification:

*)
ENTITY library_in_standard_format
SUBTYPE OF(library, dictionary_in_standard_format);
WHERE

WR1: QUERY(int <* SELF\library.linked_interfaces
| SIZEOF(QUERY(vep <* SELF\dictionary.supported_vep
| int\external_file_protocol.base_protocol IN
vep\data_exchange_specification_identification
.external_file_protocols)) = 0) = [];

END_ENTITY; -- library_in_standard_format
(*

Formal propositions:

WR1: the base_protocols external_file_protocols referenced in the linked_interfaces attribute
shall be allowed by the view exchange protocols referenced by the supported_vep attribute.

ISO 13584-24:2003(E)

304 © ISO 2003 – All rights reserved

12.6 Extension of a class

This clause introduces the entities definitions for describing extensions of the various classes that may
belong to a library.

12.6.1 Class_extension

A class_extension is a description of the set of all the different possible instances conforming to the
specification defined by a class.

EXPRESS specification:

*)
ENTITY class_extension
ABSTRACT SUPERTYPE OF(ONEOF(model_class_extension))
SUBTYPE OF(content_item);

SELF\content_item.dictionary_definition: class_BSU;
END_ENTITY; -- class_extension
(*

Attribute definitions:

SELF\content_item.dictionary_definition: the class_BSU that identifies the class extension.

12.6.2 Opt_or_mand_property_BSU

An opt_or_mand_property_BSU entity specifies the status of a property with respect to the user
selection dialogue. An opt_or_mand_property_BSU specifies:

— whether a property is optional, and,

— whether or not the value of this property is intended by the library data supplier to be displayed for
the library end-user.

NOTE 1 opt_or_mand_property_BSU entity is only used in an implicit description of class extensions. In
explicit decription of class extensions, there are no needs to provide non-displayable properties, and optionality
is explicit.

EXPRESS specification:

*)
ENTITY opt_or_mand_property_BSU;

property: property_BSU;
is_optional: BOOLEAN;
displayable: BOOLEAN;

END_ENTITY; -- opt_or_mand_property_BSU
(*

Attribute definitions:

property: the referenced property.

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 305

is_optional: if TRUE, the referenced property may be assigned no value, even for a completely
defined instance.

NOTE 2 Such a value corresponds to the NULL value.

displayable: if TRUE, the name and value of this property shall be displayed during end-user access.

12.6.3 Property_classification

property_classification is a classification_value associated with a particular property to
characterize a particular processing of values of this property on a receiving system.

NOTE 1 A property which is not associated with a classification value is not associated with any particular
processing.

NOTE 2 This part of ISO 13584 does not make any assumption on how each classification_value should
be interpreted on a receiving system. Some values of classification_value are reserved for latter registration.
All other values may be used by private agreement between the sender and the receiver, for instance to control
the distribution of values of the referenced property.

EXAMPLE In a catalogue that a manufacturer sends to a reseller, some properties might be provided only for
the reseller usage and not for distribution to customers. By private agreement between the manufacturer and the
reseller, these properties might be associated with a classification_value of -1.

EXPRESS specification:

*)
ENTITY property_classification;

its_value: classification_value;
prop_def: property_BSU;

END_ENTITY; -- property_classification
(*

Attribute definitions:

its_value: the classification_value associated with the property.

prop_def: the property that describes the instance property to which the its_value refers.

12.6.4 Property_value_recommended_presentation

A property_value_recommended_presentation entity captures a recommendation from the library
data supplier about how to present values of some property on a user display. It contains a unit, that
shall be compatible with the unit defined in the dictionary for the corresponding property, and a value
format for presenting the value if and only if it is converted in the recommended_presentation_unit
unit. Such conversion capabilities are not required to be supported by ISO 13584 implementations. If
they are not supported, values shall be presented as specified in the dictionary definition of the
property, possibly modified according to the possible value_format defined in the
formatted_columns of the tables that contains the properties.

NOTE 1 Within an ISO 13584-exchange context, the value of a property is always represented according to
the unit specified in the dictionary definition of the property.

NOTE 2 formatted_column is defined in the ISO13584_table_resource_schema documented in clause 8
of this part of ISO 13584.

NOTE 3 ISO 13584 does not specify what unit should be used for a value of a property outside an ISO
13584-exchange context.

ISO 13584-24:2003(E)

306 © ISO 2003 – All rights reserved

EXAMPLE In a product model conforming to some ISO 10303 application protocol, some product property
may reference an ISO 13584 dictionary-defined property of which unit is metre. In product data, the value of this
property for one particular product may be expressed in millimeter, using the STEP resource construct
measure_with_unit if the STEP application protocol allows the use this resource construct.

EXPRESS specification:

*)
ENTITY property_value_recommended_presentation;

prop_def: property_BSU;
recommended_presentation_unit: unit;
recommended_presentation_format: value_format_type;

WHERE
WR1: presentation_unit_is_correct(SELF.prop_def,

SELF.recommended_presentation_unit);
END_ENTITY;
(*

Attribute definitions:

prop_def: the property of which the library data supplier recommends to convert data for presentation
purpose.

recommended_presentation_unit: the unit in which the library data supplier recommends to convert
data for presentation purpose.

recommended_presentation_format: the presentation format recommended by the library data
supplier for presenting the values of the prop_def property, if and only if these values are converted
into the recommended_presentation_unit unit.

12.6.5 Model_class_extension

A model_class_extension entity describes the general structure of a model class extension, whether
it is a general_model_class, represented as an item_class_extension, or it is a
functional_model_class, represented as a functional_model_class_extension, and whether the
class extension is explicitly described as a set of instances, or is implicitly described through a
mechanism for deciding whether an instance satisfies the class definition.

EXPRESS specification:

*)
ENTITY model_class_extension
ABSTRACT SUPERTYPE OF(ONEOF(

implicit_model_class_extension,
explicit_model_class_extension))

SUBTYPE OF(class_extension);
referenced_external_items: SET [0:?] OF

class_extension_external_item;
used_protocols: SET [0:?] OF external_file_protocol;
referenced_view_exchange_protocol: LIST [0:?] OF

view_exchange_protocol_identification;
content_version: OPTIONAL version_type;
content_revision: OPTIONAL revision_type;

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 307

recommended_presentation: SET [0:?] OF
property_value_recommended_presentation;

classification: SET [0:?] OF property_classification;
WHERE

WR1: QUERY(item <* SELF.referenced_external_items
| NOT(item\external_item.used_protocol
IN SELF.used_protocols)) = [];

WR2: QUERY (prop <* classification | NOT
applicable_properties(SELF\content_item.
dictionary_definition, [prop.prop_def])) = [];

WR3: (EXISTS (SELF.content_version)
AND EXISTS (SELF.content_revision))
OR (NOT EXISTS (SELF.content_version)
AND NOT EXISTS (SELF.content_revision));

END_ENTITY; -- model_class_extension
(*

Attribute definitions:

referenced_external_items: the set of all the class_extension_external_items referenced in the
class description: these class_extension_external_items include dialogue_resources,
representation_references and program references.

NOTE 1 document_contents are not class_extension_external_items, they do not belong to the
referenced_external_items.

used_protocols: the set of external_file_protocols referenced by the referenced_external_items
protocols.

NOTE 2 The reference in the document_contents do not belong to the used_protocols attribute. If these
referenced protocols are not supported by an implementation, the document content is just skipped, but the
class may nevertheless be successfully compiled (see annex O).

referenced_view_exchange_protocol: the set of view exchange protocols required to process the
model_class_extension.

content_version: the version number that characterises the extension of the class, i.e., the set of all
allowed instances.

NOTE 3 When the content_version does not exist, instances may belong to various versions of the same
class.

content_revision: the revision number that corresponds to the current description of the
content_version version of the class extension.

NOTE 4 When the content_version does not exist, the content_revision shall not exist.

classification: the set of properties that are associated with a classification value.

recommended_presentation: the recommended units and value formats to be used when displaying
the values of some properties.

NOTE 5 The recommended_presentation attribute captures a recommendation from the library data
supplier about how to present values, exchanged according to their dictionary definitions within the exchange
file, on a user display. It may involve a conversion in unit and a particular display format. Such a conversion is
not required to be supported by ISO 13584 implementation. If it is not supported, values are to be presented as
specified in the dictionary definition of the property, possibly modified according to the possible value_format
defined in the formatted_columns of the tables that contains the properties.

ISO 13584-24:2003(E)

308 © ISO 2003 – All rights reserved

NOTE 6 formatted_column is defined in the ISO13584_table_resource_schema documented in clause 8
of this part of ISO 13584.

Formal propositions:

WR1: all the external_file_protocols referenced in referenced_external_items
class_extension_external_items shall belong to the used_protocols attribute.

WR2: all those properties that are associated with a classification value shall be applicable to the
class.

WR3: content_version and content_revision shall exist together.

Informal propositions:

IP1: the content_version shall be incremented when, and only when, the extension of the class is
changed, i.e., new instances become allowed, or previous instances are no longer allowed.

IP2: when the content_version of a class extension is incremented, the version of its class
dictionary_element shall also be incremented.

NOTE 7 The content_version attribute will change less often than the class version. content_version
allows to know the minimal set of class versions that needs to be recorded to be able to instanciate again any
instance that was created at some point in time. Only one class per content_version value, e. g., the latest one,
needs to be recorded.

IP3: the content_revision shall be incremented for any changes in the class extension description,
but the changes that modifies the allowed instances of this class.

IP4: when the content_version of a class extension is incremented, the content_revision shall be
reset to '000'.

12.6.6 Explicit_model_class_extension

An explicit_model_class_extension entity specifies the extension of a class by representing explicitly
each instances of a class, and gathering all these instances within a set structure. The
instance_identification attributes characterizes the subset of properties needed to identify
unambiguously each instance within its class.The table_like attribute allows to specify that the various
instances may be recorded in a table structure, i.e., they are described by the same properties in the
same order, and properties that are themselves instances of classes, are also described by the same
properties in the same order.

EXPRESS specification:

*)
ENTITY explicit_model_class_extension
ABSTRACT SUPERTYPE OF(ONEOF(explicit_item_class_extension,

explicit_functional_model_class_extension))
SUBTYPE OF(model_class_extension);

instance_identification: LIST[1:?] OF UNIQUE property_BSU;
population: LIST[1:?] OF UNIQUE dic_class_instance;
table_like: BOOLEAN;

WHERE
WR1: NOT table_like OR (QUERY(inst <* SELF.population |

NOT same_order_for_properties(population[1].properties,

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 309

inst.properties)) = []);
WR2: applicable_properties(

SELF\content_item.dictionary_definition,
list_to_set(SELF.instance_identification));

WR3: all_properties_are_applicable(SELF);
WR4: same_string_values_translations_for_class_extension(SELF);
WR5: QUERY(inst <* SELF.population |

inst.class_def :<>: SELF\content_item.dictionary_definition)
= [];

WR6: QUERY(inst <* SELF.population | NOT(
QUERY(prop <* inst.properties | NOT(EXISTS(prop.its_value))
AND (prop.prop_def IN SELF.instance_identification)) = []))
= [];

END_ENTITY; -- explicit_model_class_extension
(*

Attribute definitions:

instance_identification: the properties that allow to identify unambiguously each described class
instance.

NOTE It is not allowed by ISO 13584 to reuse the same values of the identification characteristics at any
time for two different parts, i.e., for two parts of which some non-identification characteristics are different. If such
a situation is anticipated, some additional identification characteristics, such that a version, shall be added to
discriminate both parts.

population: the list of instances that describe the class population.

table_like: a Boolean value that specifies whether the described instances may be displayed using a
table structure.

Formal propositions:

WR1: if table_like is TRUE, the properties that are associated with each instance shall be the same
properties given in the same order.

WR2: all the properties in instance_identification shall be applicable to the class.

WR3: all the properties used to define any instance in the class population shall be applicable to the
class.

WR4: all the instances that define the class population shall be such as all the referenced
property_values of which values are translated_string_values be translated in the same
language(s).

WR5: all the instances that define the class population shall reference the same class than the one
referenced by the explicit_model_class_extension through its inherited dictionary_definition
attribute.

WR6: the properties that belong to the instance_identification list shall never be associated to a null
value in all the instances that define the class population.

Informal propositions:

IP1: from version to version of the same class, instance_identification properties shall not change.

ISO 13584-24:2003(E)

310 © ISO 2003 – All rights reserved

IP2: in the same class, whatever be the version, same value of instance_identification properties
shall correspond to the same part.

12.6.7 Explicit_item_class_extension

An explicit_item_class_extension represents explicitly the extension a general model class. The
same structure defines the content of any general model class, whether it is involved in any is-case-of
relationship, and whether it is a component_class, material_class, feature_class, or any other
item_class subtype.

EXPRESS specification:

*)
ENTITY explicit_item_class_extension
SUBTYPE OF(explicit_model_class_extension);

access_icon: OPTIONAL A9_illustration;
content_msg: OPTIONAL message;
create_icon: LIST [0:?] OF A6_illustration;
create_msg: OPTIONAL message;
class_presentation_on_paper: LIST [0:?] OF illustration;
class_presentation_on_screen: LIST [0:?] OF illustration;

WHERE
WR1: QUERY(inst <* SELF\explicit_model_class_extension.population

| NOT('ISO13584_INSTANCE_RESOURCE_SCHEMA' +
'.DIC_ITEM_INSTANCE' IN TYPEOF(inst))) = [];

WR2: definition_available_implies(
SELF\content_item.dictionary_definition,
'ISO13584_IEC61360_DICTIONARY_SCHEMA.ITEM_CLASS' IN TYPEOF(
(SELF\content_item.dictionary_definition.definition[1])));

WR3: NOT(EXISTS(SELF.access_icon)) OR (SELF.access_icon IN
SELF\model_class_extension.referenced_external_items);

WR4: NOT(EXISTS(SELF.content_msg)) OR (SELF.content_msg IN
SELF\model_class_extension.referenced_external_items);

WR5: list_to_set(SELF.create_icon)
<= SELF\model_class_extension.referenced_external_items;

WR6: NOT(EXISTS(SELF.create_msg)) OR (SELF.create_msg IN
SELF\model_class_extension.referenced_external_items);

WR7: list_to_set(SELF.class_presentation_on_paper)
<= SELF\model_class_extension.referenced_external_items;

WR8: list_to_set(SELF.class_presentation_on_screen)
<= SELF\model_class_extension.referenced_external_items;

WR9: QUERY(icon <* SELF.class_presentation_on_paper |
(NOT EXISTS(icon.width)) OR (icon.kind_of_content
= illustration_type.not_static_picture)) = [];

WR10: QUERY(icon <* SELF.class_presentation_on_screen |
(NOT EXISTS(icon.width))) = [];

END_ENTITY; -- explicit_item_class_extension
(*

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 311

Attribute definitions:

access_icon: the icon that enables class presentation in a menu.

content_msg: the message that describes the content of the class if the class is intended to be
instantiated.

create_icon: the icon(s) that enable(s) visual presentation of the selectable properties of the item and
of its reference coordinate system if the class is intended to be instantiated.

create_msg: the message that describes the selectable properties of the item and of its reference
coordinate system if the class is intended to be instantiated.

class_presentation_on_paper: the ordered set of illustrations that are recommended by the library
data supplier to be presented to the user when the content of the class is presented on paper.

class_presentation_on_screen: the ordered set of illustrations that are recommended by the library
data supplier to be presented to the user when the content of the class is presented on a screen.

Formal propositions:

WR1: all the dic_class_instances of the population shall be defined as dic_item_instances.

WR2: if data are available, then IP1 holds.

WR3: the access_icon shall belong to the
SELF\model_class_extension.referenced_external_items set.

WR4: the content_msg shall belong to the
SELF\model_class_extension.referenced_external_items set.

WR5: the create_icon LIST item shall belong to the SELF\model_class_extension.
referenced_external_items set.

WR6: the create_msg shall belong to the
SELF\model_class_extension.referenced_external_items set.

WR7: the class_presentation_on_paper illustrations shall belong to the
SELF\model_class_extension. referenced_external_items set.

WR8: the class_presentation_on_screen illustrations shall belong to the
SELF\model_class_extension. referenced_external_items set.

WR9: the class_presentation_on_paper illustrations shall have width and height attributes but not a
not_static_picture kind of content.

WR10: the class_presentation_on_screen illustrations shall have width and height attributes.

Informal propositions:

IP1: SELF\content_item.dictionary_definition shall be defined as item_class.

12.6.8 Explicit_functional_model_class_extension

An explicit_functional_model_class_extension models explicitly the extension of a functional model
class. The same structure defines the content of any functional_model_class, whether it is involved
in any is-view-of relationship.

ISO 13584-24:2003(E)

312 © ISO 2003 – All rights reserved

When a functional_model_class_extension is defined as a fm_class_view_of
dictionary_element, all the properties intended to match some item instance properties shall be
imported from the item_class and they shall belong to the required_item_values attribute and to the
instance_identification inherited attribute.

NOTE 1 When an explicit_functional_model_class_extension is defined as a fm_class_view_of
dictionary_element with all the instance_identification properties belonging to the required_item_values
properties, during a library user access, each of the explicit_functional_model_class_extension instances
may be displayed together with the item instance it is is-view-of. This allows to display with the item both its part
characteristics and some of its functional properties.

EXAMPLE Price, quantity of order, stock availability are examples of functional properties.

NOTE 2 When an explicit_functional_model_class_extension is defined as a fm_class_view_of
dictionary_element with all the instance_identification properties belonging to the required_item_values
properties, when the extension of the item class it is is-view-of is defined as an explicit_item_class_extension,
and when both explicit_model_class_extensions have their table_like attribute equal to TRUE, each
instances of the functional model class may be displayed together with the item instance it is is-view-of by
making a natural joint of both tables representing both explicit_model_class_extensions populations.

When a functional_model_class_extension is defined as a functional_model_class
dictionary_element, without any a priori is-view-of relationship, the required_item_values shall be
empty, and the properties intended to match some item instance properties shall be defined as
representation_P_DET, and they shall belong to the instance_identification inherited attribute.

NOTE 3 Only representation_P_DETs may be defined in a functional model class. Other kinds of
properties may only be imported.

If the functional view class referenced by the functional_model_class dictionary_element of the
explicit_functional_model_class_extension is instanciable, each functional model instance shall
contain one, and only one property for which the data type is representation_reference,
program_reference or representation. This particular property, referenced by the
referenced_representation attribute, defines the representation to be included in the functional view
class generated by the functional model instance. Moreover, if this representation is created by a
program, referenced by a program_reference, the input parameter(s) of this program shall be defined
by a property_BSU that is represented in each instance, and the program shall have neither output
nor in out parameters. If the functional view class referenced by the functional_model_class
dictionary_element of the explicit_functional_model_class_extension is not instanciable, then
referenced_representation shall not exist.

If the functional view class referenced by the functional_model_class dictionary_element of the
explicit_functional_model_class_extension defines some view control variables, each functional
model instance shall import all these properties and it shall contain one value for each of them. These
imported properties define the particular functional view class generated by the functional model
instance. These imported properties shall belong to the instance_identification inherited attribute.

EXPRESS specification:

*)
ENTITY explicit_functional_model_class_extension
SUBTYPE OF(explicit_model_class_extension);

measure_unit: OPTIONAL global_unit_assigned_context;
required_item_values: SET [0:?] OF property_bsu;
referenced_representation: OPTIONAL property_bsu;
available_views_icon: OPTIONAL A6_illustration;
available_views_msg: OPTIONAL message;
context_param_icon: LIST [0:?] OF A6_illustration;

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 313

context_param_msg: OPTIONAL message;
WHERE

WR1:definition_available_implies(
SELF\content_item.dictionary_definition,
'ISO13584_EXTENDED_DICTIONARY_SCHEMA'+
'.ABSTRACT_FUNCTIONAL_MODEL_CLASS' IN TYPEOF
(SELF\content_item.dictionary_definition.definition[1]));

WR2: required_values_are_non_dependent_p_det(SELF);
WR3: required_values_are_imported_properties(SELF);
WR4: SELF.required_item_values <= list_to_set(

SELF\explicit_model_class_extension.instance_identification);
WR5: NOT(EXISTS(SELF.available_views_icon))

OR (SELF.available_views_icon IN
SELF\model_class_extension.referenced_external_items);

WR6: NOT(EXISTS(SELF.available_views_msg))
OR (SELF.available_views_msg IN
SELF\model_class_extension.referenced_external_items);

WR7: list_to_set(SELF.context_param_icon) <=
SELF\model_class_extension.referenced_external_items;

WR8: NOT(EXISTS(SELF.context_param_msg))
OR (SELF.context_param_msg IN
SELF\model_class_extension.referenced_external_items);

WR9: exists_representation_for_instanciable_view(SELF);
WR10: all_view_control_variables_belong_to_each_view(SELF);
WR11: QUERY(a_view <* SELF\explicit_model_class_extension.

population | NOT('ISO13584_INSTANCE_RESOURCE_SCHEMA' +
'.DIC_F_MODEL_INSTANCE' IN TYPEOF(a_view))) = [];

WR12: all_vcvs_belong_to_instance_identification(SELF);
WR13: NOT EXISTS(referenced_representation)

OR (QUERY(inst <* SELF.population | NOT
(is_provided_once_property_value(
inst, referenced_representation))) = []);

WR14: NOT EXISTS(referenced_representation)
OR (QUERY(inst <* SELF.population | NOT
(number_of_instance_representations(
inst) = 1)) = []);

WR15: EXISTS(referenced_representation)
OR (QUERY(inst <* SELF.population | NOT
(number_of_instance_representations(
inst) = 0)) = []);

WR16: NOT EXISTS(referenced_representation)
OR (SIZEOF(referenced_representation.definition) = 0)
OR NOT ('ISO13584_EXTENDED_DICTIONARY_SCHEMA.' +
'PROGRAM_REFERENCE_TYPE' IN
data_type_typeof(referenced_representation))
OR (QUERY(inst <* SELF.population | NOT
(correct_parameters_for_explicit_program(
inst, referenced_representation))) = []);

END_ENTITY; -- explicit_functional_model_class_extension
(*

ISO 13584-24:2003(E)

314 © ISO 2003 – All rights reserved

Attribute definitions:

measure_unit: the global_unit_assigned_context that defines the measure units for all the
functional views created by the functional_model_class. If this optional attribute is not provided, the
default value for length_measure is millimetre and for planar_angle measure it is degree. No default
values are defined for the other units.

required_item_values: the item characteristics whose values are required to be able to instantiate the
functional model class. These properties shall belong to the imported_properties_from_item of the
fm_class_view_of dictionary_element.

NOTE 4 Only the item characteristics required to instantiate the functional_model_class should appear.

referenced_representations: the representation referenced in the class description; if it exists, this
representation belongs to the content of the view the functional model is able to create

available_views_icon: the icon that enable visual presentation of the various views that may be
created by the functional model class.

available_views_msg: the message that describes the various views that may be created by the
functional model class.

context_param_icon: the icon(s) that enable(s) visual presentation of the selectable properties
required for view creation.

context_param_msg: the message that describes the free model properties required for view
creation.

Formal propositions:

WR1: if data are available, then IP1 holds.

NOTE 5 functional_model_class and fm_class_view_of are subtypes of
abstract_functional_model_class.

WR2: if required_item_values is not empty, SELF\content_item.dictionary_definition shall be
defined as a fm_class_view_of, and all the required_item_values shall be defined as
non_dependent_P_DETs.

WR3: if required_item_values is not empty, SELF\content_item.dictionary_definition shall be
defined as a fm_class_view_of, and all the required_item_values shall belong to the
imported_properties_from_item attribute of this fm_class_view_of.

WR4: the required_item_values properties shall belong to the set of the instance_identification
properties.

NOTE 6 When the two sets are equal, the functional model class instance may be automatically computed
by the system once the item instance is selected.

WR5: the available_views_icon shall belong to the SELF\model_class_extension
referenced_external_file set.

WR6: the available_views_msg shall belong to the SELF\model_class_extension
referenced_external_file set.

WR7: the context_param_icon LIST item shall belong to the SELF\model_class_extension
referenced_external_file set.

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 315

WR8: the context_param_msg shall belong to the SELF\model_class_extension
referenced_external_file set.

WR9: if the functional view class referenced by the explicit_functional_model_class_extension
instance is not a non_instanciable_view_class, then the referenced_representation exists and its
data type is either a representation_type, a representation_reference_type or
program_reference_type. If the functional view class referenced by the
explicit_functional_model_class_extension is a non_instanciable_view_class, then the
referenced_representation does not exist.

WR10: all the view control variables that are defined in the functional view class referenced by the
explicit_functional_model_class_extension dictionary definition shall be used to describe each
dic_class_instance belonging to the SELF\model_class_extension.population list.

WR11: all the dic_class_instances of the population shall be defined as dic_f_model_instances.

WR12: all the view control variables that are defined in the functional view class referenced by the
explicit_functional_model_class_extension dictionary definition and all the required_item_values
shall belong to the SELF\model_class_extension.instance_identification list.

WR13: if referenced_representation exists then this property_BSU is associated with exactly one
value in each explicit_functional_model_class_extension instance.

WR14: if referenced_representation exists then there exists exactly one property_BSU the data
type of which is representation_type, representation_reference_type or program_reference_type
in the properties attribute of each explicit_functional_model_class_extension instance.

WR15: if referenced_representation does not exist then there exists no property_BSU the data type
of which is representation_type, representation_reference_type or program_reference_type in
the properties attribute of each explicit_functional_model_class_extension instance.

WR16: if referenced_representation exists then this property_BSU is associated in each
explicit_functional_model_class_extension instance with one program_reference of which both
the out_parameters and inout_parameters lists are empty, and of which all the values of the
in_parameters attributes are property_BSUs that are associated with one value in the same
explicit_functional_model_class_extension instance.

Informal propositions:

IP1: SELF\content_item.dictionary_definition shall be defined as
abstract_functional_model_class or any of its subtypes.

12.6.9 Implicit_model_class_extension

An implicit_model_class_extension entity specifies the extension of a class through a mechanism
for deciding whether an instance satisfies the class definition.

The class_extension attributes contain a set of domain_restrictions, each one defining the domain
of one, or several, selectable properties. Such a domain_restriction may be a
functional_domain_restriction when the property domain degenerates to a singleton. In the latter
case, the value of the selectable property or properties shall not be selected by the user: it shall be
automatically computed by the system as soon as the corresponding function may be computed.

The derivation attribute contains the derivation functions that enable the computation value of some
derived_properties of the SELF instance as a function of some other instance properties. The
derivation process is defined by a functional_domain_restriction.

ISO 13584-24:2003(E)

316 © ISO 2003 – All rights reserved

Performing a functional_domain_restriction consists of evaluating each guard that guards the
simple_functional_domains, and, if some of them evaluate to TRUE, performing one of the
functions whose guard evaluates to TRUE. If all the guards evaluate to FALSE, an error shall occur.

NOTE If the derivation function does not depend upon any other property, only one
guarded_simple_domain needs to be specified whose guard is a boolean_literal, as defined by
ISO 13584-20.

The filters attribute enables the specification of constraints on selectable_properties that shall
evaluate to TRUE for any allowed instance. Such constraints enable further restriction on the domains
defined, by the class_extension, for the constrained selectable_properties. The use of these
constraints to filter the displayed values of the constrained selectable properties is not mandatory for a
LMS conforming to ISO 13584. Each filter is associated with a constraint_description message that
shall be displayed when the system only checks the filters after a user selection process.

EXPRESS specification:

*)

ENTITY implicit_model_class_extension
ABSTRACT SUPERTYPE OF(ONEOF(item_class_extension,
functional_model_class_extension))
SUBTYPE OF(model_class_extension);

selectable_properties: LIST [0:?] OF UNIQUE
opt_or_mand_property_BSU;

required_properties: LIST [0:?] OF UNIQUE
opt_or_mand_property_BSU;

derived_properties: LIST [0:?] OF UNIQUE
opt_or_mand_property_BSU;

class_extension: SET [0:?] OF domain_restriction;
derivation: SET [0:?] OF functional_domain_restriction;
filters: SET [0:?] OF domain_restriction;

WHERE
WR1: QUERY(opt_or_mand <* SELF.selectable_properties

| NOT applicable_properties
(SELF\content_item.dictionary_definition,
[opt_or_mand.property])) = [];

WR2: QUERY(opt_or_mand <* SELF.derived_properties
| NOT applicable_properties
(SELF\content_item.dictionary_definition,
[opt_or_mand.property])) = [];

WR3: (QUERY(dom <*
(SELF.class_extension + SELF.derivation + SELF.filters)
| (QUERY(sem <* dom.assumes
| NOT('ISO13584_VARIABLE_SEMANTICS_SCHEMA'
+ '.SELF_PROPERTY_SEMANTICS' IN TYPEOF(sem))) <> [])) = [])
AND
(QUERY(dom <* SELF.filters
| (QUERY(sem <* dom.defines
| NOT('ISO13584_VARIABLE_SEMANTICS_SCHEMA'
+ '.SELF_PROPERTY_SEMANTICS' IN TYPEOF(sem))) <> [])) = []);

WR4: QUERY(dom <* (SELF.class_extension + SELF.derivation)
| QUERY(sem <* dom.defines
| NOT('ISO13584_VARIABLE_SEMANTICS_SCHEMA'

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 317

+'.SELF_PROPERTY_VALUE_SEMANTICS' IN TYPEOF(sem))
OR EXISTS(sem.its_own_property))
<> []) = [];

WR5: NOT all_class_descriptions_reachable(
SELF.dictionary_definition) OR (QUERY(dom <*
(SELF.class_extension + SELF.derivation + SELF.filters)
| (QUERY(sem <* dom.assumes
| NOT(sem\property_semantics.the_property IN
provided_properties_list(SELF.dictionary_definition)))
<> [])) = []);

WR6: NOT all_class_descriptions_reachable(
SELF.dictionary_definition) OR (QUERY(dom <*
(SELF.class_extension + SELF.filters)
| (QUERY(sem <* dom.defines
| NOT(sem\property_semantics.the_property IN
selectable_properties_list(SELF.dictionary_definition)))
<> [])) = []);

WR7: NOT all_class_descriptions_reachable(
SELF.dictionary_definition) OR (QUERY(dom <*
(SELF.class_extension + SELF.derivation + SELF.filters)
| (QUERY(tab <* dom.base_tables | NOT applicable_tables(
SELF.dictionary_definition, [tab])) <> [])) = []);

WR8: acyclic_class_extension_definition(
SELF.dictionary_definition);

WR9: QUERY(prop <* SELF.selectable_properties
| SIZEOF(QUERY(choi <* SELF.class_extension
| (prop.property IN get_property_BSU_from_property_semantics(
choi\domain_restriction.defines)))) <> 1) = [];

WR10: QUERY(prop <* SELF.derived_properties
| SIZEOF(QUERY(f <* SELF.derivation
| (prop.property IN get_property_BSU_from_property_semantics(
f.defines)))) <> 1) = [];

WR11: NOT all_class_descriptions_reachable(
SELF.dictionary_definition) OR (QUERY(f <* SELF.derivation
| (QUERY(prop <* f.defines
| NOT(get_property_BSU_from_property_semantics([prop])[1]
IN derived_properties_list(SELF.dictionary_definition)))
<> [])) = []);

WR12: NOT all_class_descriptions_reachable(
SELF.dictionary_definition)
OR (QUERY(prop <* derived_properties_list(
SELF.dictionary_definition)
| SIZEOF(QUERY(f <* defined_derivation_function(
SELF.dictionary_definition) | QUERY(sem <* f.defines
| sem\property_semantics.the_property = prop) <> []))
<> 1) = []);

WR13: QUERY(filt <* filters | NOT(EXISTS(
filt.constraint_description))) = [];

WR14: QUERY(dom_1 <* class_extension | NOT(QUERY(dom_2 <*
dom_1.domains | 'ISO13584_DOMAIN_RESOURCE_SCHEMA' +
'.PREDICATE_DEFINED_DOMAIN' IN TYPEOF(dom_2.domain)) = [])
) = [];

ISO 13584-24:2003(E)

318 © ISO 2003 – All rights reserved

WR15: QUERY(prop <* SELF.required_properties |
prop.is_optional) = [];

END_ENTITY; -- implicit_model_class_extension
(*

Attribute definitions:

selectable_properties: the instance properties that shall be set by the user when selecting an
instance. The LIST order defines the default order they shall be presented to the user.

required_properties: the instance properties that shall exist in another instance when the class is
instantiated through a semantic relationship and that will be copied by the system within the instance to
be created.

derived_properties: the instance properties that will be derived by the system from the
selectable_properties. The LIST order defines the default order to be presented to the user.

class_extension: the domain_restrictions that specify the set of allowed instances of the class by
defining the domain of the various selectable properties.

derivation: the derivation functions that permit the computation of the derived properties.

filters: the domain_restrictions that enable the library data supplier to restrict the domain of some
selectable properties when the values of some other properties are known.

Formal propositions:

WR1: all the selectable_properties shall be applicable to the class.

WR2: all the derived_properties shall be applicable to the class.

WR3: all the domain_restrictions referenced in the class_extension, derivation, and filters
attributes shall refer through their assumes attributes only to variable_semantics that are
self_property_semantics and all the domain_restrictions referenced in the filters attributes shall
refer through their defines attributes only to variable_semantics that are self_property_semantics.

WR4: all the domain_restrictions referenced in the class_extension and derivation attributes shall
refer through their defines attribute only to self_property_value_semantics, and these
self_property_value_semantics shall not have its_own_property value.

WR5: all the domain_restrictions referenced in the class_extension, derivation, and filters
attributes shall refer through their assumes attribute only to self_property_semantics that refer to
property belonging to the provided properties as returned by the provided_properties_list function.

WR6: all the domain_restrictions of the class_extension and of the filters shall refer through their
defines attribute only to self_property_semantics that refer to defined selectable_properties.

WR7: all the domain_restrictions referenced in the class_extension, derivation, and filters
attributes shall only refer to tables that are applicable to the class.

WR8: no property shall be part of its own value definition through a defines/assumes chain of domain
definition.

WR9: each selectable property in the selectable_properties shall correspond to one
domain_restriction in the class_extension.

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 319

WR10: each derived property in the derived_properties shall correspond to one
functional_domain_restriction in the derivation.

WR11: all the functional_domain_restrictions of the derivation shall return only defined
derived_properties.

WR12: their exists exactly one derivation function for every defined derived_properties.

WR13: all the domain_restrictions referenced in filters shall contain a constraint_description
message.

WR14: all the domain_restrictions in the class_extension attribute shall be constructive: no
predicate_defined_domain is allowed.

WR15: all the required_properties shall be mandatory properties.

12.6.10 Item_class_extension

An item_class_extension represents implicitly the extension a general model class. The same
structure defines the content of any general model class, whether it is involved in any is-case-of
relationship, and whether it is a component_class, material_class, feature_class, or any other
item_class subtype. It may contain the supplier_identification and supplier_designation string
expressions that generate a human-readable identification of the class instance as defined by the
class supplier. It also contains an identified_item attribute that specifies whether the class items are
identified globally, or they are identified through their constituent components. Interpretation of these
attributes shall be as follows. When identified_item is FALSE, the item is an assembly. Its human-
readable identification shall consist of its supplier_identification if any, followed by the set of
identifications of its constituent components computed recursively until those components for which
identified_item is TRUE. When identified_item is TRUE, the item is identified on its own. If present,
supplier_identification contains enough information for identifying unambiguously the item, whether it
is a component or a sub-system.

NOTE 1 In electronic commerce, the above specifies what pieces of information need to be exchanged
when ordering a component: if identified_item is TRUE, the supplier_identification value, if it exists,
completely identify the item. If identified_item is FALSE, the set of supplier_identification values of the item
and of all its constituent components until those for which identified_item equals TRUE are needed to
completely identifies the assembly. This corresponds to a bill-of-material-like identification. When
identified_item is TRUE and supplier_identification does not exist, no human-readable identification string is
known.

EXPRESS specification:

*)
ENTITY item_class_extension
SUBTYPE OF(implicit_model_class_extension);

selection_context_parameters: LIST [0:?] OF UNIQUE
opt_or_mand_property_BSU;

identification_characteristics: LIST [0:?] OF UNIQUE
opt_or_mand_property_BSU;

derived_characteristics: LIST [0:?] OF UNIQUE
opt_or_mand_property_BSU;

context_dependent_characteristics: LIST [0:?] OF UNIQUE
opt_or_mand_property_BSU;

identified_item: BOOLEAN;
supplier_identification: OPTIONAL string_expression;
supplier_designation: OPTIONAL string_expression;
access_icon: OPTIONAL A9_illustration;

ISO 13584-24:2003(E)

320 © ISO 2003 – All rights reserved

content_msg: OPTIONAL message;
create_icon: LIST [0:?] OF A6_illustration;
create_msg: OPTIONAL message;
class_presentation_on_paper: LIST [0:?] OF illustration;
class_presentation_on_screen: LIST [0:?] OF illustration;

DERIVE
SELF\implicit_model_class_extension.selectable_properties:

LIST [0:?] OF UNIQUE opt_or_mand_property_BSU
:= SELF.selection_context_parameters
+ SELF.identification_characteristics;

SELF\implicit_model_class_extension.derived_properties:
LIST [0:?] OF UNIQUE opt_or_mand_property_BSU
:= SELF.derived_characteristics
+ SELF.context_dependent_characteristics;

SELF\implicit_model_class_extension.required_properties:
LIST [0:?] OF UNIQUE opt_or_mand_property_BSU
:= [];

WHERE
WR1: definition_available_implies(

SELF\content_item.dictionary_definition,
'ISO13584_IEC61360_DICTIONARY_SCHEMA.ITEM_CLASS' IN
TYPEOF((SELF\content_item.dictionary_definition.
definition[1])));

WR2: QUERY(elt <* SELF.selection_context_parameters |
in_typeof('ISO13584_IEC61360_DICTIONARY_SCHEMA' +
'.CONDITION_DET', elt)) = SELF.selection_context_parameters;

WR3: QUERY(elt <* SELF.identification_characteristics |
in_typeof('ISO13584_IEC61360_DICTIONARY_SCHEMA' +
'.NON_DEPENDENT_P_DET', elt)) =
SELF.identification_characteristics;

WR4: QUERY(elt <* SELF.identification_characteristics |
(data_type_typeof(elt.property) <> [])
AND NOT('ISO13584_IEC61360_DICTIONARY_SCHEMA' +
'.SIMPLE_TYPE' IN data_type_typeof(elt.property))
AND NOT('ISO13584_IEC61360_DICTIONARY_SCHEMA' +
'.CLASS_INSTANCE_TYPE' IN data_type_typeof(elt.property))
) = [];

WR5: QUERY(elt <* SELF.derived_characteristics |
in_typeof('ISO13584_IEC61360_DICTIONARY_SCHEMA' +
'.NON_DEPENDENT_P_DET', elt)) = SELF.derived_properties;

WR6: QUERY(elt <* SELF.context_dependent_characteristics |
in_typeof('ISO13584_IEC61360_DICTIONARY_SCHEMA' +
'.DEPENDENT_P_DET', elt)) =
SELF.context_dependent_characteristics;

WR7: NOT(EXISTS(SELF.access_icon)) OR (SELF.access_icon IN
SELF\model_class_extension.referenced_external_items);

WR8: NOT(EXISTS(SELF.content_msg)) OR (SELF.content_msg IN
SELF\model_class_extension.referenced_external_items);

WR9: list_to_set(SELF.create_icon)
<= SELF\model_class_extension.referenced_external_items;

WR10: NOT(EXISTS(SELF.create_msg)) OR (SELF.create_msg IN

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 321

SELF\model_class_extension.referenced_external_items);
WR11: list_to_set(SELF.class_presentation_on_paper)

<= SELF\model_class_extension.referenced_external_items;
WR12: list_to_set(SELF.class_presentation_on_screen)

<= SELF\model_class_extension.referenced_external_items;
WR13: QUERY(icon <* SELF.class_presentation_on_paper |

(NOT EXISTS(icon.width)) OR (icon.kind_of_content
= illustration_type.not_static_picture)) = [];

WR14: QUERY(icon <* SELF.class_presentation_on_screen |
(NOT EXISTS(icon.width))) = [];

END_ENTITY; -- item_class_extension
(*

Attribute definitions:

selection_context_parameters: the context parameters whose values may be provided by the user
to facilitate the selection of the item.

identification_characteristics: the item characteristics whose values shall be set by the user to
identify an item within its class.

NOTE 2 It is not allowed by ISO 13584 to reuse the same values of the identification characteristics at any
time for two different parts, i.e., for two parts of which some non-identification characteristics are different. If such
a situation is anticipated, some additional identification characteristics, such that a version, shall be added to
discriminate both parts.

derived_characteristics: the item characteristics that are derived by the system through
functional_domain_restriction from the identification_characteristics, directly or indirectly.

context_dependent_characteristics: the item properties that are derived by the system from the
selection_context_parameters and possibly the identification_characteristics.

identified_item: a Boolean value that specifies whether the instances of the class are identified by the
supplier_identification attribute alone, or they are also identified by their constituent components.

NOTE 3 An assembly has no identification on its own: the parts that participate to the assembly are part of
the identification.

supplier_identification: the OPTIONAL string_expression that specifies completely or partially the
item identification defined by the library data supplier.

supplier_designation: the OPTIONAL string_expression that specifies completely or partially the
item designation defined by the library data supplier.

access_icon: the icon that enables class presentation in a menu.

content_msg: the message that describes the content of the class if the class is intended to be
instantiated.

create_icon: the icon(s) that enable(s) visual presentation of the selectable properties of the item and
of its reference coordinate system if the class is intended to be instantiated.

create_msg: the message that describes the selectable properties of the item and of its reference
coordinate system if the class is intended to be instantiated.

class_presentation_on_paper: the ordered set of illustrations that are recommended by the library
data supplier to be presented to the user when the content of the class is presented on paper.

ISO 13584-24:2003(E)

322 © ISO 2003 – All rights reserved

class_presentation_on_screen: the ordered set of illustrations that are recommended by the library
data supplier to be presented to the user when the content of the class is presented on a screen.

Formal propositions:

WR1: if data are available, then IP1 holds.

WR2: all the selection_context_parameters shall be defined as condition_DETs.

WR3: all the identification_characteristics shall be defined as non_dependent_P_DETs.

WR4: the data type of all the identification_characteristics shall be either simple_type, for atomic
items, or class_instance_type, for assemblies.

WR5: all the derived_characteristics shall be defined as non_dependent_P_DETs.

WR6: all the context_dependent_characteristics shall be defined as dependent_P_DETs.

WR7: the access_icon shall belong to the
SELF\model_class_extension.referenced_external_items set.

WR8: the content_msg shall belong to the
SELF\model_class_extension.referenced_external_items set.

WR9: the create_icon LIST item shall belong to the
SELF\model_class_extension.referenced_external_items set.

WR10: the create_msg shall belong to the
SELF\model_class_extension.referenced_external_items set.

WR11: the class_presentation_on_paper illustrations shall belong to the
SELF\model_class_extension.referenced_external_items set.

WR12: the class_presentation_on_screen illustrations shall belong to the
SELF\model_class_extension.referenced_external_items set.

WR13: the class_presentation_on_paper illustrations shall have width and height attributes but
not a not_static_picture kind of content.

WR14: the class_presentation_on_screen illustrations shall have width and height attributes.

Informal propositions:

IP1: SELF\content_item.dictionary_definition shall be defined as item_class.

IP2: from version to version of the same class, identification_characteristics properties shall not
change

IP3: In the same class, whatever be the version, same value of identification_characteristics
properties shall correspond to the same part.

12.6.11 Functional_model_class_extension

A functional_model_class_extension models implicitly the extension of a functional model class.
The same structure defines the content of any functional_model_class, whether it is involved in any
is-view-of relationship.

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 323

The selectable_properties of a functional_model_class_extension are the
free_model_properties. These properties may include properties that are
imported_properties_from_item in the case of a fm_class_view_of.

The required_properties of a functional_model_class_extension may only exist when it is defined
as a fm_class_view_of dictionary_element. In this case, the functional_model_class_extension
may specify, through the required_item_characteristics which item characteristics shall exist in the
item_class instance to be able to instantiate the functional_model_class_extension through the a
priori is-view-of relationship. These required properties are supposed to be copied by the system in the
functional_model_class_extension instance.

The derived_properties of a functional_model_class_extension are the
representation_properties. These properties may include properties that are
imported_properties_from_item in the case of a fm_class_view_of. The derivation functions of
these properties are defined in the functional_model_class_extension.

NOTE 1 When the number of the properties that are applicable to an item_class is very large, it might
prove useful to split the values of these properties into different classes. An item_class contains at the minimum
the values of the properties that are needed to identify an item instance. Several functional_model_class, each
one defined as a fm_class_view_of and corresponding to one particular user perspective on the data, import
those properties that are pertinent for this perspective. The perspective may be characterised by defining
non_instanciable_functional_view_class.

When a functional_model_class_extension is defined as a functional_model_class
dictionary_element, without any a priori is-view-of relationship, all the properties intended to match
some item instance properties shall be defined as free_model_properties without any
required_item_characteristics.

Besides referencing programs or representations provided as external_items, a functional model
class extension may reference ISO 10303-43 representations that are included in the library delivery
file. These representations are intended to be sent to the modelling system on request from the user
(see clause 14, send_representation_statement). All the representations are referenced in the
referenced_representation attribute.

EXPRESS specification:

*)
ENTITY functional_model_class_extension
SUBTYPE OF(implicit_model_class_extension);

measure_unit: OPTIONAL global_unit_assigned_context;
required_item_characteristics: LIST [0:?] OF UNIQUE

opt_or_mand_property_BSU;
free_model_properties: LIST [0:?] OF UNIQUE

opt_or_mand_property_BSU;
representation_properties: LIST [0:?] OF UNIQUE

opt_or_mand_property_BSU;
method_variables: SET [0:?] OF opt_or_mand_property_BSU;
referenced_representation: SET [0:?] OF representation;
provided_methods: SET [0:?] OF method;
available_views_icon: OPTIONAL A6_illustration;
available_views_msg: OPTIONAL message;
context_param_icon: LIST [0:?] OF A6_illustration;
context_param_msg: OPTIONAL message;

DERIVE
SELF\implicit_model_class_extension.selectable_properties

: LIST [0:?] OF UNIQUE opt_or_mand_property_BSU

ISO 13584-24:2003(E)

324 © ISO 2003 – All rights reserved

:= SELF.free_model_properties;
SELF\implicit_model_class_extension.required_properties

: LIST [0:?] OF UNIQUE opt_or_mand_property_BSU
:= SELF.required_item_characteristics;

SELF\implicit_model_class_extension.derived_properties
:LIST [0:?] OF UNIQUE opt_or_mand_property_BSU
:= SELF.representation_properties;

WHERE
WR1:definition_available_implies(

SELF\content_item.dictionary_definition,
'ISO13584_EXTENDED_DICTIONARY_SCHEMA.'+
'ABSTRACT_FUNCTIONAL_MODEL_CLASS' IN TYPEOF
(SELF\content_item.dictionary_definition.definition[1]));

WR2: required_properties_are_non_dependent_p_det(SELF);
WR3: required_properties_are_imported_properties(SELF);
WR4: QUERY(elt <* SELF.method_variables |

in_typeof('ISO13584_EXTENDED_DICTIONARY_SCHEMA' +
'.REPRESENTATION_P_DET', elt)) = SELF.method_variables;

WR5: QUERY(elt <* SELF.method_variables |
applicable_properties(
SELF\content_item.dictionary_definition,[elt.property]))
= SELF.method_variables;

WR6: NOT(EXISTS(SELF.available_views_icon))
OR (SELF.available_views_icon IN
SELF\model_class_extension.referenced_external_items);

WR7: NOT(EXISTS(SELF.available_views_msg))
OR (SELF.available_views_msg IN
SELF\model_class_extension.referenced_external_items);

WR8: list_to_set(SELF.context_param_icon) <=
SELF\model_class_extension.referenced_external_items;

WR9: NOT(EXISTS(SELF.context_param_msg))
OR (SELF.context_param_msg IN
SELF\model_class_extension.referenced_external_items);

END_ENTITY; -- functional_model_class_extension
(*

Attribute definitions:

measure_unit: the global_unit_assigned_context that defines the measure units for all the
functional views created by the functional_model_class. If this optional attribute is not provided, the
default value for length_measure is millimetre and for planar_angle measure it is degree. No default
values are defined for the other units.

required_item_characteristics: the item characteristics whose values are required to be able to
instantiate the functional model class. These properties shall belong to the
imported_properties_from_item of the fm_class_view_of dictionary_element.

NOTE 2 Only the item characteristics required to instantiate the functional_model_class should appear
on this list.

free_model_properties: the properties whose values shall be provided by the user in order to be able
to instantiate the class. In case of a functional model class referring to a part, they normally
correspond to context parameters associated with this part.

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 325

NOTE 3 The dictionary definitions of free_model_properties should either be representation_P_DET
(when the property is defined (or inherited) in the functional model class) or condition_DET (when the property
is imported from an item_class by means of the imported_properties_from_item attribute).

representation_properties: the functional model properties that are derived by the system from the
free_model_properties and from the required_item_characteristics.

NOTE 4 The dictionary definitions of representation_properties may either be representation_P_DET,
when the property is defined (or inherited) in the functional model class, or any of the dictionary elements that
define a property of an item_class (i.e., condition_DET, non_dependent_P_DET or dependent_P_DET),
when the property is imported from an item_class.

method_variables: the properties that are neither set by the user nor derived by derivation functions
from the selectable properties. These properties enable the representation of the possible internal
variables used, for instance in the context of the methods but belonging to the instance slots in an
object oriented system. These properties are only assigned values during method running. They are
not intended to be displayed when the user consults the library.

NOTE 5 When the functional_model_class imports view_control_variables for instance for storing their
values in a table, these properties shall be represented in the method_variable attribute.

referenced_representations: the representations referenced in the class description.

provided_methods: the methods supported by the functional model instance.

NOTE 6 The declared_created_views_are_created_rule rule defined in section 12.7.2 ensures that the
set of functional views that may be created by the various methods of a functional_model_class_extension
includes the set of functional views that its corresponding functional_model_class declares to be able to create
by means of its created_view and v_c_v_range inherited attributes.

NOTE 7 When a view control variable of the SELF\content_item.dictionary_definition.definition[1]\
abstract_functional_model_class.created_view is not represented in the v_c_v_range attribute of the
SELF\content_item.dictionary_definition.definition[1], or for a method, in its specification.v_c_v_range
attribute, its range is its complete value domain.

available_views_icon: the icon that enable visual presentation of the various views that may be
created by the functional model class.

available_views_msg: the message that describes the various views that may be created by the
functional model class.

context_param_icon: the icon(s) that enable(s) visual presentation of the selectable properties
required for view creation.

context_param_msg: the message that describes the free model properties required for view
creation.

Formal propositions:

WR1: if data are available, then IP1 holds.

WR2: when the SELF\content_item.dictionary_definition.definition[1] is defined as
fm_class_view_of, all the required_item_characteristics shall be defined as
non_dependent_P_DETs.

WR3: when the SELF\content_item.dictionary_definition.definition[1] is defined as
fm_class_view_of, all the required_item_characteristics shall be imported from the item_class.
Otherwise, it shall be an empty set.

WR4: all the method_variables shall be defined as representation_P_DETs.

ISO 13584-24:2003(E)

326 © ISO 2003 – All rights reserved

WR5: all the method_variables shall be applicable to the class.

WR6: the available_views_icon shall belong to the
SELF\model_class_extension.referenced_external_file set.

WR7: the available_views_msg shall belong to the
SELF\model_class_extension.referenced_external_file set.

WR8: the context_param_icon LIST item shall belong to the
SELF\model_class_extension.referenced_external_file set.

WR9: the context_param_msg shall belong to the
SELF\model_class_extension.referenced_external_file set.

Informal propositions:

IP1: SELF\content_item.dictionary_definition shall be defined as
abstract_functional_model_class or any of its subtypes.

NOTE functional_model_class and fm_class_view_of are subtypes of
abstract_functional_model_class.

12.7 ISO13584_library_content_schema: RULE definitions

This section presents the EXPRESS rules in the ISO13584_library_content_schema.

12.7.1 Assert_oneof_for_library_rule rule

The assert_oneof_for_library_rule rule states that a library that is not a
library_in_standard_format cannot be a dictionary_in_standard_format.

EXPRESS specification:

*)
RULE assert_oneof_for_library_rule FOR(library);
WHERE

WR1: QUERY(temp <* library |
NOT('ISO13584_LIBRARY_CONTENT_SCHEMA'
+ '.LIBRARY_IN_STANDARD_FORMAT'
IN TYPEOF(temp))
AND('ISO13584_EXTENDED_DICTIONARY_SCHEMA'
+ '.DICTIONARY_IN_STANDARD_FORMAT'
IN TYPEOF(temp))) = [];

END_RULE; -- assert_oneof_for_library_rule
(*

Formal propositions:

WR1: a library that is not a library_in_standard_format cannot be a
dictionary_in_standard_format.

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 327

12.7.2 Declared_created_views_are_created_rule rule

The declared_created_views_are_created_rule rule states that the set of functional views that may
be created by the various methods of an implicitly-defined functional_model_class_extension
includes the set of functional views that its corresponding functional_model_class declares to be
able to create.

EXPRESS specification:

*)
RULE declared_created_views_are_created_rule FOR(

functional_model_class_extension, functional_view_class);
WHERE

WR1: QUERY(a_model <* functional_model_class_extension |
(computable_set_of_created_views_from_model
(a_model\content_item.dictionary_definition)) AND
NOT((declared_created_views(

a_model\content_item.dictionary_definition)
<= (created_views_by_methods(a_model\content_item
.dictionary_definition))))) = [];

END_RULE; -- declared_created_views_are_created_rule
(*

Formal propositions:

WR1: the set of functional views that may be created by the various methods referenced by the
provided_methods attribute of any functional_model_class_extension, as defined by its
specification.v_c_v_range attribute, shall include the set of functional views that its
functional_model_class dictionary_element, defined by its
dictionary_definition\abstract_functional_model_class attribute, declares to be able to create
through its own v_c_v_range attribute.

12.7.3 Complete_identification_for_instance_rule rule

The rule complete_identification_for_instance_rule asserts that the library content (if it exists) of
the class referenced by a a class_instance_constructor is an implicit_model_class_extension,
and that only optional properties have possibly no values.

NOTE When the content of a class does not exists, this rule does not define the properties whose values
shall be provided. Application-dependent constraints may be defined in the view exchange protocol series of
parts for the instance of classes that are only defined as a dictionary_element.

EXPRESS specification:

*)
RULE complete_identification_for_instance_rule FOR(

class_instance_constructor);
WHERE

WR1: (QUERY(inst <* class_instance_constructor |
NOT(definition_available_implies(inst.expr_type,
(SIZEOF(inst.expr_type.referenced_by) = 0) OR
('ISO13584_LIBRARY_CONTENT_SCHEMA.' +
'IMPLICIT_MODEL_CLASS_EXTENSION'

ISO 13584-24:2003(E)

328 © ISO 2003 – All rights reserved

IN TYPEOF(inst.expr_type.referenced_by[1])))))
= []);

WR2: (QUERY(inst <* class_instance_constructor |
QUERY(prop <*
(list_to_set(collects_assigned_properties(inst.properties)) -
list_to_set(optional_properties_list(inst.expr_type))) |
NOT(EXISTS(prop.its_value))) = []) =[]);

END_RULE; -- complete_identification_for_instance_rule
(*

Formal propositions:

WR1: if data are available, then IP1 holds.

WR2: only optional properties may be associated with no values.

Informal propositions:

IP1: the class_extension that corresponds to the class_def attribute of the
class_instance_constructor shall be an implicit_model_class_extension if this content is
available.

12.7.4 Complete_identification_for_item_instance_rule rule

The rule complete_identification_for_item_instance_rule asserts that, in an implicit description of
an item class extension, an instance built by a class_instance_constructor is completely identified
with respect to the class extension data model if it exists. It means that it shall reference all its
identification characteristics,

NOTE 1 In an instance built by a class_instance_constructor, only optional properties have possibly no
values.

NOTE 2 When the content of a class does not exists, this rule does not define the properties whose values
shall be provided. Application-dependent constraints may be defined in the view exchange protocol series of
parts for the instance of classes that are only defined as a dictionary_element.

EXPRESS specification:

*)
RULE complete_identification_for_item_instance_rule FOR(

class_instance_constructor, item_class_extension);
WHERE

WR1: QUERY(inst <* class_instance_constructor |
NOT(
definition_available_implies(inst.expr_type,
(SIZEOF(inst.expr_type.referenced_by) = 0) OR
(('ISO13584_LIBRARY_CONTENT_SCHEMA.ITEM_CLASS_EXTENSION'
IN TYPEOF(inst.expr_type.referenced_by[1]))
AND (collects_assigned_properties(inst.properties)
= (gm_identification_characteristics_list(inst.expr_type))))
))) = [];

END_RULE; -- complete_identification_for_item_instance_rule

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 329

(*

Formal propositions:

WR1: if data are available, then IP1 holds.

Informal propositions:

IP1: the list of properties whose values are specified by the
multiple_arity_class_instance_constructor shall be the whole list of the identification characteristics
for the referenced class.

12.7.5 Complete_identification_for_model_instance_rule rule

The rule complete_identification_for_model_instance_rule asserts that, in an implicit description of
a functional model class extension, an instance built by a class_instance_constructor is completely
identified with respect to the class extension data model if it exists. It means that it shall reference all
its free properties.

NOTE 1 In an instance built by a class_instance_constructor, only optional properties have possibly no
values.

NOTE 2 When the content of a class does not exists, this rule does not define the properties whose values
shall be provided. Application-dependent constraints may be defined in the view exchange protocol series of
parts for the instance of classes that are only defined as a dictionary_element.

EXPRESS specification:

*)
RULE complete_identification_for_model_instance_rule FOR(

class_instance_constructor, functional_model_class_extension);
WHERE

WR1: (QUERY(inst <* class_instance_constructor |
NOT(
definition_available_implies(inst.expr_type,
(('ISO13584_LIBRARY_CONTENT_SCHEMA.'
+ 'FUNCTIONAL_MODEL_CLASS_EXTENSION'
IN TYPEOF(inst.expr_type.referenced_by[1]))
AND (collects_assigned_properties(inst.properties)
= fm_free_model_properties_list(inst.expr_type))))
)) = []);

END_RULE; -- complete_identification_for_model_instance_rule
(*

Formal propositions:

WR1: if data are available, then IP1 holds.

Informal propositions:

IP1: the list of properties whose values are specified by the
multiple_arity_class_instance_constructor shall be the whole list of the free model properties for
the referenced class.

ISO 13584-24:2003(E)

330 © ISO 2003 – All rights reserved

12.7.6 All_views_available_for_each_component_rule rule

The all_views_available_for_each_component_rule rule checks that each
functional_model_class_extension specifies all the declared views for each item of the
corresponding explicit_item_class_extension.

EXPRESS specification:

*)

RULE all_views_available_for_each_component_rule FOR (
explicit_model_class_extension,
explicit_functional_model_class_extension);

WHERE
WR1: QUERY(a_model <* explicit_functional_model_class_extension |

NOT(all_views_available_for_components(a_model\content_item
.dictionary_definition))) = [];

END_RULE; -- all_views_available_for_each_component_rule
(*

Formal propositions:

WR1: the set of dic_f_model_instance specifying an explicit_functional_model_class_extension
shall describe, for each dic_item_instance specifying an explicit_model_class_extension whose
dictionary definition is referenced from the view_of attribute of the fm_class_view_of dictionary
definition of that explicit_functional_model_class_extension, the complete set of declared views of
the functional model.

12.8 ISO13584_library_content_schema function definitions

12.8.1 Acyclic_class_extension_definition

An acyclic_class_extension_definition function checks that no property participates in its own
definition by belonging to the assumes attribute of a domain_restriction that defines recursively its
own domain or derivation function.

The function calls the acyclic_order function that computes recursively the set of properties whose
definition depends on some property and checks that this property does not belong to the set.

EXPRESS specification:

*)
FUNCTION acyclic_class_extension_definition(cl: class_BSU): LOGICAL;

LOCAL
edges: SET OF domain_restriction;
prop: LIST OF property_BSU;

END_LOCAL;

prop := provided_properties_list(cl);
edges := defined_domain(cl) + defined_derivation_function(cl);

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 331

REPEAT i := LOINDEX(prop) TO HIINDEX(prop);
IF NOT acyclic_order(prop[i], edges, [])
THEN

RETURN(FALSE);
END_IF;

END_REPEAT;

RETURN(TRUE);

END_FUNCTION; -- acyclic_class_extension_definition
(*

12.8.2 Acyclic_order

An acyclic_order function computes recursively the set of properties (nodes) whose definition
depends on some property p and checks that p does not belong to nodes.

EXPRESS specification:

*)
FUNCTION acyclic_order(p: property_BSU;

edges: SET OF domain_restriction;
nodes: SET OF property_BSU): BOOLEAN;

LOCAL
succ: SET OF property_BSU := [];
-- set of property_BSU that depends (recursively) on p
out_edges: SET OF domain_restriction;
-- set of domain_restrictions that contain one of the
-- property_BSU of the set nodes in the the_property attribute
-- of one of their assumes variable_semantics

END_LOCAL;

out_edges := QUERY(e <* edges | (QUERY(v <* e.assumes
| v\property_semantics.the_property IN nodes) <> []));

REPEAT i := LOINDEX(out_edges) TO HIINDEX(out_edges);

REPEAT j := LOINDEX(out_edges[i].defines)
TO HIINDEX(out_edges[i].defines);
succ := succ + out_edges[i].defines[j]

\property_semantics.the_property;
END_REPEAT;

END_REPEAT;

-- p depends on itself:
IF p IN succ
THEN

RETURN(FALSE);
END_IF;

ISO 13584-24:2003(E)

332 © ISO 2003 – All rights reserved

-- all the depending properties are reached
IF succ <= nodes
THEN

RETURN(TRUE);
END_IF;

RETURN(acyclic_order(p, edges, nodes + succ));

END_FUNCTION; -- acyclic_order
(*

12.8.3 Defined_domain function

The defined_domain function returns the set of domain_restriction defined as part of the
class_extension attribute of a class.

EXPRESS specification:

*)
FUNCTION defined_domain(cl: class_BSU): SET OF domain_restriction;

IF NOT EXISTS(cl)
THEN

RETURN([]); -- the class itself is indeterminate
END_IF;

IF (SIZEOF(cl.referenced_by) = 1)
THEN

RETURN(cl.referenced_by[1]\implicit_model_class_extension.
class_extension);

ELSE
RETURN([]);

END_IF;

END_FUNCTION; -- defined_domain
(*

12.8.4 Defined_derivation_function function

The defined_derivation_function function returns the set of functional_domain_restriction defined
as part of the derivation attribute of a class.

EXPRESS specification:

*)
FUNCTION defined_derivation_function(cl: class_BSU):

SET OF functional_domain_restriction;

IF NOT EXISTS(cl)
THEN

RETURN([]); -- the class itself is indeterminate

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 333

END_IF;

IF (SIZEOF(cl.referenced_by) = 1)
THEN

RETURN(cl.referenced_by[1]
\implicit_model_class_extension.derivation);

ELSE
RETURN([]);

END_IF;

END_FUNCTION; -- defined_derivation_function
(*

12.8.5 Allowed_properties function

The allowed_properties function checks that the properties corresponding to prop are allowed for the
model_class_extension identified by the cl parameter. A property is allowed for a class if its
property_BSU is referred to, either as mandatory or as optional. Moreover, the property_BSU shall
be referred in the selectable_properties attributes, in the required_properties attributes, or in the
derived_properties attributes of the content of this class.

EXPRESS specification:

*)
FUNCTION allowed_properties(cl: class_BSU;

prop: SET OF property_BSU): LOGICAL;

IF NOT EXISTS(cl)
THEN

RETURN(UNKNOWN); -- the class itself is indeterminate
END_IF;

IF (prop <= (list_to_set(provided_properties_list(cl))))
THEN

RETURN(TRUE);
ELSE

RETURN(FALSE);
END_IF;

END_FUNCTION; -- allowed_properties
(*

12.8.6 Provided_properties_list function

The provided_properties_list function retrieves the list of properties defined as
selectable_properties, as required_properties or as derived_properties by a class.

EXPRESS specification:

*)
FUNCTION provided_properties_list(cl: class_BSU):

LIST OF property_BSU;

ISO 13584-24:2003(E)

334 © ISO 2003 – All rights reserved

LOCAL
provided_prop: LIST OF opt_or_mand_property_BSU := [];
prop: LIST OF property_BSU := [];

END_LOCAL;

IF NOT EXISTS(cl)
THEN

RETURN([]); -- the class itself is indeterminate
END_IF;

IF (SIZEOF(cl.referenced_by) = 1)
THEN

provided_prop :=
cl.referenced_by[1]\implicit_model_class_extension.

derived_properties
+ cl.referenced_by[1]\implicit_model_class_extension.

required_properties
+ cl.referenced_by[1]\implicit_model_class_extension.

selectable_properties;

REPEAT i := 1 TO SIZEOF(provided_prop);
prop := prop + provided_prop[i].property;

END_REPEAT;
END_IF;

RETURN(prop);

END_FUNCTION; -- provided_properties_list
(*

12.8.7 Provided_properties_or_method_variables function

The provided_properties_or_method_variables function computes the set of properties defined as
selectable_properties, as required_properties, as derived_properties or as method_variables by
a class, by collecting the properties returned by the provided_properties_list and the method
variables returned by the method_variables functions.

EXPRESS specification:

*)
FUNCTION provided_properties_or_method_variables(cl: class_BSU):

SET OF property_BSU;

IF NOT EXISTS(cl)
THEN

RETURN([]); -- the class itself is indeterminate
END_IF;

RETURN(method_variables(cl) + provided_properties_list(cl));

END_FUNCTION; -- provided_properties_or_method_variables

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 335

(*

12.8.8 Selectable_properties_list function

The selectable_properties_list function computes the list of properties defined as selectable in a
class.

EXPRESS specification:

*)
FUNCTION selectable_properties_list(cl: class_BSU):

LIST OF property_BSU;

LOCAL
prop: LIST OF property_BSU := [];

END_LOCAL;

IF NOT EXISTS(cl)
THEN

RETURN([]); -- the class itself is indeterminate
END_IF;

IF (SIZEOF(cl.referenced_by) = 1)
THEN

REPEAT i := 1 TO SIZEOF(cl.referenced_by[1]
\implicit_model_class_extension.selectable_properties);

prop := prop + cl.referenced_by[1]\
implicit_model_class_extension.selectable_properties[i].
property;

END_REPEAT;
END_IF;

RETURN(prop);

END_FUNCTION; -- selectable_properties_list
(*

12.8.9 Required_defined_properties function

The required_defined_properties function computes the list of properties defined as required in a
class.

EXPRESS specification:

*)
FUNCTION required_defined_properties(cl: class_BSU):

LIST OF property_BSU;

LOCAL
prop: LIST OF property_BSU := [];

END_LOCAL;

ISO 13584-24:2003(E)

336 © ISO 2003 – All rights reserved

IF NOT EXISTS(cl)
THEN

RETURN([]); -- the class itself is indeterminate
END_IF;

IF (SIZEOF(cl.referenced_by) = 1)
THEN

REPEAT i := 1 TO SIZEOF(cl.referenced_by[1]
\implicit_model_class_extension.required_properties);

prop := prop + cl.referenced_by[1]\
implicit_model_class_extension.required_properties[i].
property;

END_REPEAT;
END_IF;

RETURN(prop);

END_FUNCTION; -- required_defined_properties
(*

12.8.10 Derived_properties_list function

The derived_properties_list function computes the list of properties defined as derived in a class.

EXPRESS specification:

*)
FUNCTION derived_properties_list(cl: class_BSU):

LIST OF property_BSU;

LOCAL
prop: LIST OF property_BSU := [];

END_LOCAL;

IF NOT EXISTS(cl)
THEN

RETURN([]); -- the class itself is indeterminate
END_IF;

IF (SIZEOF(cl.referenced_by) = 1)
THEN

REPEAT i := 1 TO SIZEOF(cl.referenced_by[1]
\implicit_model_class_extension.derived_properties);

prop := prop + cl.referenced_by[1]
\implicit_model_class_extension.derived_properties[i].
property;

END_REPEAT;
END_IF;

RETURN(prop);

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 337

END_FUNCTION; -- derived_properties_list
(*

12.8.11 Optional_properties_list function

The optional_properties_list function computes the list of properties defined as optional in a class.

EXPRESS specification:

*)
FUNCTION optional_properties_list(cl: class_BSU):

LIST OF property_BSU;

LOCAL
prop: LIST OF property_BSU := [];

END_LOCAL;

IF NOT EXISTS(cl)
THEN

RETURN([]); -- the class itself is indeterminate
END_IF;

IF (SIZEOF(cl.referenced_by) = 1)
THEN

REPEAT i := 1 TO SIZEOF(cl.referenced_by[1]
\implicit_model_class_extension.derived_properties);
IF (cl.referenced_by[1]\implicit_model_class_extension

.derived_properties[i].is_optional)
THEN

prop := prop + cl.referenced_by[1]
\implicit_model_class_extension.
derived_properties[i].property;

END_IF;
END_REPEAT; -- derived optional properties of this class

REPEAT i := 1 TO SIZEOF(cl.referenced_by[1]
\implicit_model_class_extension.selectable_properties);
IF (cl.referenced_by[1]\implicit_model_class_extension

.selectable_properties[i].is_optional)
THEN

prop := prop + cl.referenced_by[1]
\implicit_model_class_extension.
selectable_properties[i].property;

END_IF;
END_REPEAT; -- selectable optional properties of this class

END_IF;

RETURN(prop);

END_FUNCTION; -- optional_properties_list
(*

ISO 13584-24:2003(E)

338 © ISO 2003 – All rights reserved

12.8.12 Method_variables function

The method_variables function computes the method variables defined in a
functional_model_class. This function is intended to be called on a functional model class extension.
Therefore, if it is called on another kind of class, it returns the empty set.

EXPRESS specification:

*)
FUNCTION method_variables(cl: class_BSU): SET OF property_BSU;

LOCAL
prop: SET OF property_BSU := [];

END_LOCAL;

IF NOT EXISTS(cl)
THEN

RETURN([]); -- the class itself is indeterminate
END_IF;

IF (SIZEOF(cl.referenced_by) = 1)
THEN

IF NOT('ISO13584_LIBRARY_CONTENT_SCHEMA.'
+ 'FUNCTIONAL_MODEL_CLASS_EXTENSION'
IN TYPEOF(cl.referenced_by[1])) -- abnormal case

THEN
RETURN([]);

ELSE
REPEAT i := 1 TO SIZEOF(cl.referenced_by[1]

\functional_model_class_extension.method_variables);
prop := prop + cl.referenced_by[1]\

functional_model_class_extension.
method_variables[i].property;

END_REPEAT;
END_IF;

END_IF;

RETURN(prop);

END_FUNCTION; -- method_variables
(*

12.8.13 Gm_identification_characteristics_list function

The gm_identification_characteristics_list function computes the list of properties defined as
identification characteristics in a general model class. This function is intended to be called on a
general model class. Therefore, if it is not the case, it returns an empty LIST.

EXPRESS specification:

*)
FUNCTION gm_identification_characteristics_list(cl: class_BSU):

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 339

LIST OF property_BSU;

LOCAL
prop: LIST OF property_BSU := [];

END_LOCAL;

IF NOT EXISTS(cl)
THEN

RETURN([]); -- the class itself is indeterminate
END_IF;

IF (SIZEOF(cl.referenced_by) = 1)
THEN

IF NOT('ISO13584_LIBRARY_CONTENT_SCHEMA.ITEM_CLASS_EXTENSION'
IN TYPEOF(cl.referenced_by[1])) -- abnormal case

THEN
RETURN([]); -- abnormal case

END_IF;

REPEAT i := 1 TO SIZEOF(cl.referenced_by[1]
\item_class_extension.identification_characteristics);
prop := prop + cl.referenced_by[1]

\item_class_extension.identification_characteristics[i]
.property;

END_REPEAT;
END_IF;

RETURN(prop);

END_FUNCTION; -- gm_identification_characteristics_list
(*

12.8.14 Fm_free_model_properties_list function

The fm_free_model_properties_list function computes the list of properties defined as free model
properties in a functional model class. This function is intended to be called on a functional model
class. Therefore, if it is not the case, it returns an empty LIST.

EXPRESS specification:

*)
FUNCTION fm_free_model_properties_list(cl: class_BSU):

LIST OF property_BSU;

LOCAL
prop: LIST OF property_BSU := [];

END_LOCAL;

IF NOT EXISTS(cl)
THEN

RETURN([]); -- the class itself is indeterminate
END_IF;

ISO 13584-24:2003(E)

340 © ISO 2003 – All rights reserved

IF (SIZEOF(cl.referenced_by) = 1)
THEN

IF NOT('ISO13584_LIBRARY_CONTENT_SCHEMA'
+ '.FUNCTIONAL_MODEL_CLASS_EXTENSION'
IN TYPEOF(cl.referenced_by[1])) -- normal case

THEN
RETURN([]); -- abnormal case

END_IF;

REPEAT i := 1 TO SIZEOF(cl.referenced_by[1]
\functional_model_class_extension.free_model_properties);
prop := prop + cl.referenced_by[1]

\functional_model_class_extension
.free_model_properties[i].property;

END_REPEAT;
END_IF;

RETURN(prop);

END_FUNCTION; -- fm_free_model_properties_list
(*

12.8.15 Exists_super function

The exists_super function checks if a class identified by the cl class_BSU parameter has a
superclass. It returns:

— TRUE if cl has a superclass,

— FALSE if cl has no superclass, and

— UNKNOWN if the class dictionary_element is not available.

EXPRESS specification:

*)
FUNCTION exists_super(cl: class_BSU): LOGICAL;

IF NOT EXISTS(cl)
THEN

RETURN(UNKNOWN); -- the class itself is indeterminate
END_IF;

IF (SIZEOF(cl.definition) = 0)
THEN

RETURN(UNKNOWN);
ELSE

IF EXISTS(cl.definition[1]\class.its_superclass)
THEN

RETURN(TRUE);
ELSE

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 341

RETURN(FALSE);
END_IF;

END_IF;

END_FUNCTION; -- exists_super
(*

12.8.16 Super function

The super function computes the super class of a class identified by its class_BSU. If the class has
no superclass, or if the superclass cannot be computed, it returns an empty set.

EXPRESS specification:

*)
FUNCTION super(cl: class_BSU): SET[0:1] OF class_BSU;

IF NOT EXISTS(cl)
THEN

RETURN([]); -- the class itself is indeterminate
END_IF;

IF (SIZEOF(cl.definition) = 1)
THEN

IF EXISTS(cl.definition[1]\class.its_superclass)
THEN

RETURN([cl.definition[1]\class.its_superclass]);
END_IF;

END_IF;

RETURN([]);

END_FUNCTION; -- super
(*

12.8.17 Is_in_v_c_v_range function

The is_in_v_c_v_range function checks if a property_BSU p appears once as a parameter_type
attribute of a view_control_variable_range entity in a list l of view_control_variable_range entities.

EXPRESS specification:

*)
FUNCTION is_in_v_c_v_range(p: property_BSU;

l: SET OF view_control_variable_range): BOOLEAN;

IF (SIZEOF(QUERY(elt <* l | elt.parameter_type = p)) = 1)
THEN

RETURN(TRUE);
ELSE

RETURN(FALSE);
END_IF;

ISO 13584-24:2003(E)

342 © ISO 2003 – All rights reserved

END_FUNCTION; -- is_in_v_c_v_range
(*

12.8.18 Get_v_c_v_range function

The get_v_c_v_range function returns the view_control_variable_range for which the
parameter_type attribute is equal to a given property_BSU p in a list l of
view_control_variable_range entities. It requires that the function is_in_v_c_v_range applied to p
and l returns TRUE.

EXPRESS specification:

*)
FUNCTION get_v_c_v_range(p: property_BSU;

l: SET OF view_control_variable_range):
view_control_variable_range;

LOCAL
x: SET OF view_control_variable_range;

END_LOCAL;

x := QUERY(elt <* l | elt.parameter_type = p);

RETURN(x[1]);

END_FUNCTION; -- get_v_c_v_range
(*

12.8.19 All_v_c_v_range_available function

The function all_v_c_v_range_available takes a list l of property_BSUs and checks that for each
property_BSU in the l list, its data_type is a non_quantitative_int_type that is available. It returns
TRUE if this condition holds, otherwise it returns FALSE.

EXPRESS specification:

*)
FUNCTION all_v_c_v_range_available(l: LIST OF property_BSU):

BOOLEAN;
LOCAL

res: BOOLEAN:= TRUE;
END_LOCAL;

REPEAT i := 1 TO SIZEOF(l);
IF NOT(SIZEOF(data_type_non_quantitative_int_type(l[i])) = 1)
THEN

res := FALSE;
END_IF;

END_REPEAT;

RETURN(res);

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 343

END_FUNCTION; -- all_v_c_v_range_available
(*

12.8.20 Make_ordered_list_of_v_c_v_range function

The make_ordered_list_of_v_c_v_range function takes a list l of property_BSUs and a list l_range
of view_control_variable_range such that the all_v_c_v_range_available function applied to l
returns TRUE. It returns a list of view_control_variable_range based on the l list of property_BSUs
where each property_BSU in the l list is replaced by a view_control_variable_range of which the
given property_BSU is the parameter_type attribute. Each view_control_variable_range is either
extracted from the l_range list, if there exists in the l_range list a view_control_variable_range of
which the given property_BSU is the parameter_type attribute, otherwise the
view_control_variable_range is built from its whole domain of the given property_BSU. If the
all_v_c_v_range_available applied to l does not return TRUE, the make_ordered_list_of_v_c_v
function returns the empty list.

EXPRESS specification:

*)
FUNCTION make_ordered_list_of_v_c_v_range(

l: LIST OF property_BSU;
l_range: SET OF view_control_variable_range):
LIST OF view_control_variable_range;

LOCAL
y: view_control_variable_range;
res: LIST OF view_control_variable_range:=[];
s: SET[0:1] OF non_quantitative_int_type;
x: non_quantitative_int_type;

END_LOCAL;

IF NOT all_v_c_v_range_available(l)
THEN

RETURN([]);
END_IF;

REPEAT i := 1 TO SIZEOF(l);
IF is_in_v_c_v_range(l[i], l_range)
THEN

res := res + get_v_c_v_range(l[i], l_range);
ELSE

s := data_type_non_quantitative_int_type(l[i]);
x := s[1];
y := view_control_variable_range(l[i],

x.domain.its_values[1].value_code,
x.domain.its_values[1].value_code +
SIZEOF(x.domain.its_values) - 1);

res := res + y;
END_IF;

END_REPEAT;

RETURN(res);

ISO 13584-24:2003(E)

344 © ISO 2003 – All rights reserved

END_FUNCTION; -- make_ordered_list_of_v_c_v_range
(*

12.8.21 Cdr_list function

The function cdr_list computes the sublist of a list l of view_control_variable_range. This sublist is
the list l with its first element removed. This function requires that the list l contains at least two
elements.

EXPRESS specification:

*)
FUNCTION cdr_list(l: LIST [2:?] OF GENERIC: type_elem):

LIST OF GENERIC: type_elem;

LOCAL
cdr: LIST OF GENERIC: type_elem := [];

END_LOCAL;

REPEAT i := 2 TO SIZEOF(l);
cdr := cdr + l[i];

END_REPEAT;

RETURN(cdr);

END_FUNCTION; -- cdr_list
(*

12.8.22 Make_tuple function

The make_tuple function computes the set of integer tuples belonging to the Cartesian product of an
ordered list of integer intervals defined by some view_control_variable_ranges. The order of the
view_control_variable_ranges in the list l defines the order of the tuples values.

EXPRESS specification:

*)
FUNCTION make_tuple(l: LIST[1:?] of view_control_variable_range):

SET [1:?] OF LIST[1:?] OF INTEGER;

LOCAL
result: SET OF LIST OF INTEGER := [];
list_sub_tuple: SET OF LIST OF INTEGER;

END_LOCAL;

IF SIZEOF(l) = 1 THEN
REPEAT i := l[1]\view_control_variable_range.range_lobound TO

l[1]\view_control_variable_range.range_hibound;
result := [[i]] + result;

END_REPEAT;
ELSE

list_sub_tuple := make_tuple(cdr_list(l));

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 345

REPEAT i := 1 TO SIZEOF(list_sub_tuple); -- for each subtuple
REPEAT j := l[1]\view_control_variable_range.range_lobound

TO l[1]\view_control_variable_range.range_hibound;
-- creates one new tuple for each value of l[1]
result := result + [j + list_sub_tuple[i]];

END_REPEAT;
END_REPEAT;

END_IF;

RETURN(result);

END_FUNCTION; -- make_tuple
(*

12.8.23 Computable_set_of_created_views_from_model

The computable_set_of_created_views_from_model function checks if the set of functional views
that may be created by a functional model class identified by the cl class_BSU may be computed. It
checks whether the dictionary_element associated with the cl parameter, if available, is an
abstract_functional_model_class, whether the content_item associated with the cl parameter, if
available, is a functional_model_class_extension, and whether all the view_control_variables,
defined or inherited by the functional_view_class referenced by the
abstract_functional_model_class have, if available, a data_type. The
computable_set_of_created_views_from_model function returns TRUE if the set of functional
views that may be created by the functional model class identified by cl may be computed. Otherwise,
it returns FALSE.

EXPRESS specification:

*)
FUNCTION computable_set_of_created_views_from_model(

cl: class_BSU): BOOLEAN;

IF NOT EXISTS(cl)
THEN

RETURN(FALSE); -- the class itself is indeterminate
END_IF;

IF SIZEOF(cl.definition) = 0
THEN

RETURN(FALSE);
END_IF;

IF SIZEOF(cl.referenced_by) = 0
THEN

RETURN(FALSE);
END_IF;
IF NOT('ISO13584_EXTENDED_DICTIONARY_SCHEMA.'+

'ABSTRACT_FUNCTIONAL_MODEL_CLASS' IN TYPEOF(cl.definition[1]))
THEN

RETURN(FALSE);
END_IF;
IF NOT('ISO13584_LIBRARY_CONTENT_SCHEMA.'+

ISO 13584-24:2003(E)

346 © ISO 2003 – All rights reserved

'FUNCTIONAL_MODEL_CLASS_EXTENSION' IN TYPEOF(
cl.referenced_by[1]))
AND NOT ('ISO13584_LIBRARY_CONTENT_SCHEMA.'+
'EXPLICIT_FUNCTIONAL_MODEL_CLASS_EXTENSION' IN TYPEOF(
cl.referenced_by[1]))

THEN
RETURN(FALSE);

END_IF;

IF SIZEOF(functional_view_v_c_v(cl.definition[1]
\abstract_functional_model_class.created_view)) = 0

THEN
RETURN(FALSE);

END_IF;

RETURN(all_v_c_v_range_available(functional_view_v_c_v(cl.definition[1]
\abstract_functional_model_class.created_view)));

END_FUNCTION; -- computable_set_of_created_views_from_model
(*

12.8.24 Declared_created_views function

The declared_created_views function computes the set of functional views that are declared to be
created by the cl abstract_functional_model_class by means of its v_c_v_range attribute. Each
functional view is represented by a tuple of integers view control variable value. If the set of functional
views that are declared to be created cannot be computed, the declared_created_views function
returns the empty set.

EXPRESS specification:

*)
FUNCTION declared_created_views(cl: class_BSU):

SET OF LIST OF INTEGER;

LOCAL
res: SET OF LIST OF INTEGER:=[];
v_c_vs: LIST OF view_control_variable_range;

END_LOCAL;

IF NOT computable_set_of_created_views_from_model(cl)
THEN

RETURN([]);
END_IF;

v_c_vs := make_ordered_list_of_v_c_v_range(functional_view_v_c_v(
cl.definition[1]\abstract_functional_model_class.created_view),
cl.definition[1]\abstract_functional_model_class.v_c_v_range);

res := make_tuple(v_c_vs);

RETURN(res);

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 347

END_FUNCTION; -- declared_created_views
(*

12.8.25 Created_views_by_methods function

The created_views_by_methods function computes the set of functional views that are created by
the various methods of the cl abstract_functional_model_class. Each functional view is
represented by a tuple of integers view control variable values. If the set of functional views that are
created by the various methods cannot be computed, the created_views_by_methods function
returns the empty set.

EXPRESS specification:

*)
FUNCTION created_views_by_methods(cl: class_BSU):

SET OF LIST OF INTEGER;
LOCAL

res: SET OF LIST OF INTEGER:=[];
v_c_vs: LIST OF view_control_variable_range;

END_LOCAL;

IF NOT computable_set_of_created_views_from_model(cl)
THEN

RETURN([]);
END_IF;

REPEAT i := 1 TO SIZEOF(cl.referenced_by[1]
\functional_model_class_extension.provided_methods);
v_c_vs := make_ordered_list_of_v_c_v_range(

functional_view_v_c_v(cl.definition[1]
\abstract_functional_model_class.created_view),
cl.referenced_by[1]\functional_model_class_extension
.provided_methods[i].specification.v_c_v_range);

res := res + make_tuple(v_c_vs);
END_REPEAT;

RETURN(res);

END_FUNCTION; -- created_views_by_methods
(*

12.8.26 In_typeof function

The in_typeof function checks the data type typ of an opt_or_mand_property_BSU if and only if the
property dictionary definition exists in the same exchange context.

EXPRESS specification:

*)
FUNCTION in_typeof(typ: STRING; elt: opt_or_mand_property_BSU):

LOGICAL;

ISO 13584-24:2003(E)

348 © ISO 2003 – All rights reserved

IF SIZEOF(elt.property.definition) = 1 THEN
RETURN(typ IN TYPEOF(elt.property.definition [1]));

ELSE
RETURN(TRUE);

END_IF;

END_FUNCTION; -- in_typeof
(*

12.8.27 Referenced_veps_exist_in_supported_veps function

The referenced_veps_exist_in_supported_veps function checks that the view exchange protocols
referenced in a class extension identified by its class_bsu cl belong to the library supported_vep
set.

EXPRESS specification:

*)
FUNCTION referenced_veps_exist_in_supported_veps(

lib: library; cl: class_BSU): LOGICAL;
LOCAL

class_extension: SET [0:1] OF content_item :=
cl\basic_semantic_unit.referenced_by;

class_extension_referenced_veps: SET OF
view_exchange_protocol_identification;

dictionary_supported_veps: SET OF
view_exchange_protocol_identification;

tmp: LOGICAL;
END_LOCAL;

IF (SIZEOF(class_extension) = 1)
THEN

class_extension_referenced_veps :=
list_to_set(class_extension[1]\model_class_extension
.referenced_view_exchange_protocol);

dictionary_supported_veps := lib\dictionary.supported_vep;
tmp := (class_extension_referenced_veps <=

dictionary_supported_veps);
RETURN(('ISO13584_LIBRARY_CONTENT_SCHEMA.MODEL_CLASS_EXTENSION'

IN TYPEOF(class_extension[1]))
AND NOT(tmp));

ELSE
RETURN(FALSE);

END_IF;

END_FUNCTION; -- referenced_veps_exist_in_supported_veps
(*

12.8.28 Referenced_protocols_exist_in_supported_protocols function

The referenced_protocols_exist_in_supported_protocols function checks that the
program_references, representation_references and dialogue_ressources referenced in a class

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 349

extension identified by its class_bsu cl reference protocols belonging either to the library
base_protocols set, or to the library linked_interfaces set.

EXPRESS specification:

*)
FUNCTION referenced_protocols_exist_in_supported_protocols(

lib: library; cl: class_BSU): LOGICAL;
LOCAL

class_extension: SET [0:1] OF content_item :=
cl\basic_semantic_unit.referenced_by;

END_LOCAL;

IF SIZEOF(class_extension) = 1
THEN

RETURN(('ISO13584_LIBRARY_CONTENT_SCHEMA' +
'.MODEL_CLASS_EXTENSION' IN TYPEOF(class_extension))
AND
(SIZEOF(QUERY(pr <* class_extension[1]\model_class_extension
.referenced_external_items | NOT(
pr\external_item.used_protocol IN
lib\dictionary.base_protocols)
AND NOT(pr\external_item.used_protocol IN
lib.linked_interfaces))) <> 0));

ELSE
RETURN(FALSE);

END_IF;

END_FUNCTION; -- referenced_protocols_exist_in_supported_protocols
(*

12.8.29 Required_properties_are_non_dependent_p_det function

The required_properties_are_non_dependent_p_det function checks that when a
functional_model_class_extension has some required_item_characteristics, its
dictionary_definition is defined as a fm_class_view_of, and all the required_item_characteristics
shall be defined as non_dependent_P_DETs.

EXPRESS specification:

*)
FUNCTION required_properties_are_non_dependent_p_det(

fm_class_ext: functional_model_class_extension): LOGICAL;

LOCAL
res: LOGICAL := TRUE;
prop: property_bsu;

END_LOCAL;

IF (SIZEOF(fm_class_ext.required_item_characteristics) <> 0)
THEN

IF (SIZEOF(fm_class_ext\content_item.

ISO 13584-24:2003(E)

350 © ISO 2003 – All rights reserved

dictionary_definition.definition) = 1)
THEN

IF ('ISO13584_EXTENDED_DICTIONARY_SCHEMA' +
'.FM_CLASS_VIEW_OF') IN
TYPEOF(fm_class_ext\content_item
.dictionary_definition.definition[1])

THEN
REPEAT i := 1 TO SIZEOF(fm_class_ext.

required_item_characteristics);
prop := fm_class_ext.

required_item_characteristics[i].property;

IF (SIZEOF(prop.definition) = 1)
THEN

IF NOT('ISO13584_IEC61360_DICTIONARY_SCHEMA' +
'.NON_DEPENDENT_P_DET' IN
TYPEOF(prop.definition[1]))

THEN
res := FALSE;

END_IF;
ELSE

res := res AND UNKNOWN;
END_IF;

END_REPEAT;
ELSE

res := FALSE;
END_IF;

ELSE
res := UNKNOWN;

END_IF;
END_IF;

RETURN(res);

END_FUNCTION; -- required_properties_are_non_dependent_p_det
(*

12.8.30 Required_properties_are_imported_properties function

The required_properties_are_imported_properties function checks that when a
functional_model_class_extension has some required_item_characteristics, its
dictionary_definition is defined as a fm_class_view_of, and all the required_item_characteristics
shall belong to the imported_properties_from_item attribute of the fm_class_view_of.

EXPRESS specification:

*)
FUNCTION required_properties_are_imported_properties(

fm_class_ext: functional_model_class_extension): LOGICAL;

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 351

LOCAL
res: LOGICAL := TRUE;
prop: property_bsu;

END_LOCAL;

IF (SIZEOF(fm_class_ext.required_item_characteristics) <> 0)
THEN

IF (SIZEOF(fm_class_ext\content_item.dictionary_definition.
definition) = 1)

THEN
IF ('ISO13584_EXTENDED_DICTIONARY_SCHEMA' +

'.FM_CLASS_VIEW_OF') IN
TYPEOF(fm_class_ext\content_item
.dictionary_definition.definition[1])

THEN
REPEAT i := 1 TO SIZEOF(fm_class_ext.

required_item_characteristics);
prop := fm_class_ext.

required_item_characteristics[i].property;

IF NOT(prop IN fm_class_ext\content_item.
dictionary_definition.definition[1]\
fm_class_view_of.
imported_properties_from_item)

THEN
res := FALSE;

END_IF;

END_REPEAT;
ELSE

res := FALSE;
END_IF;

ELSE
res := UNKNOWN;

END_IF;
END_IF;

RETURN(res);

END_FUNCTION; -- required_properties_are_imported_properties
(*

12.8.31 Same_order_for_properties function

The same_order_for_properties function checks that the properties defined in the first list of
property_values are the same, and in the same order that the properties defined in the current list of
property_values. If some couple of property_values are both context_dependent_property_value,
the same_order_for_properties function checks that the properties defined in the context attribute of
both context_dependent_property_values are the same, and in the same order. The
same_order_for_properties function returns TRUE when the checking is positive. Otherwise, it
returns FALSE.

ISO 13584-24:2003(E)

352 © ISO 2003 – All rights reserved

EXPRESS specification:

*)
FUNCTION same_order_for_properties(

first, current: LIST [1:?] OF property_value): BOOLEAN;

IF SIZEOF(first) = SIZEOF(current)
THEN ;
ELSE RETURN(FALSE);
END_IF;

REPEAT i := 1 TO SIZEOF(first);
IF NOT (first[i].prop_def = current[i].prop_def)
THEN

RETURN(FALSE);
END_IF;

IF (('ISO13584_INSTANCE_RESOURCE_SCHEMA' +
'.CONTEXT_DEPENDENT_PROPERTY_VALUE')
IN TYPEOF(first[i]))

THEN
IF NOT(('ISO13584_INSTANCE_RESOURCE_SCHEMA' +

'.CONTEXT_DEPENDENT_PROPERTY_VALUE')
IN TYPEOF(current[i]))

THEN
RETURN(FALSE);

END_IF;

IF NOT same_order_for_properties(
first[i]\context_dependent_property_value.the_context,
current[i]\context_dependent_property_value.
the_context)

THEN
RETURN(FALSE);

END_IF;
END_IF;

IF (('ISO13584_INSTANCE_RESOURCE_SCHEMA' +
'.CONTEXT_DEPENDENT_PROPERTY_VALUE')
IN TYPEOF(current[i]))

THEN
IF NOT(('ISO13584_INSTANCE_RESOURCE_SCHEMA' +

'.CONTEXT_DEPENDENT_PROPERTY_VALUE')
IN TYPEOF(first[i]))

THEN
RETURN(FALSE);

END_IF;
END_IF;

IF (('ISO13584_INSTANCE_RESOURCE_SCHEMA' +
'.DIC_CLASS_INSTANCE') IN TYPEOF (first[i].its_value))

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 353

THEN
IF NOT

same_order_for_properties(first[i].its_value.properties,
current[i].its_value.properties)

THEN RETURN (FALSE);
END_IF;

END_IF;

END_REPEAT;

RETURN(TRUE);

END_FUNCTION; -- same_order_for_properties
(*

12.8.32 All_properties_are_applicable function

The all_properties_are_applicable function returns TRUE if all the properties used as
property_values to define any dic_class_instance of an explicit_model_class_extension are
applicable. Otherwise, it returns FALSE.

EXPRESS specification:

*)

FUNCTION all_properties_are_applicable(
expl: explicit_model_class_extension): LOGICAL;

LOCAL
inst: dic_class_instance;
prop_val: property_value;
res: LOGICAL := TRUE;

END_LOCAL;

REPEAT i := 1 TO SIZEOF(expl.population);
inst := expl.population[i];
REPEAT j := 1 TO SIZEOF(inst.properties);

prop_val := inst.properties[j];
res := res AND applicable_properties(expl\

content_item.dictionary_definition,
[prop_val.prop_def]);

END_REPEAT;

END_REPEAT;

RETURN(res);

END_FUNCTION; -- all_properties_are_applicable
(*

12.8.33 Required_values_are_non_dependent_p_det function

The required_values_are_non_dependent_p_det function checks that when an
explicit_functional_model_class_extension has some required_item_values, its

ISO 13584-24:2003(E)

354 © ISO 2003 – All rights reserved

dictionary_definition is defined as a fm_class_view_of and all the required_item_values shall be
defined as non_dependent_P_DETs.

EXPRESS specification:

*)
FUNCTION required_values_are_non_dependent_p_det(

fm_class_ext: explicit_functional_model_class_extension):
LOGICAL;

LOCAL
res: LOGICAL := TRUE;
prop: property_bsu;

END_LOCAL;

IF (SIZEOF(fm_class_ext.required_item_values) <> 0)
THEN

IF (SIZEOF(fm_class_ext\content_item.dictionary_definition.
definition) = 1)

THEN
IF ('ISO13584_EXTENDED_DICTIONARY_SCHEMA' +

'.FM_CLASS_VIEW_OF') IN
TYPEOF(fm_class_ext\content_item
.dictionary_definition.definition[1])

THEN
REPEAT i := 1 TO SIZEOF(

fm_class_ext.required_item_values);
prop := fm_class_ext.required_item_values[i];

IF (SIZEOF(prop.definition) = 1)
THEN

IF NOT('ISO13584_IEC61360_DICTIONARY_SCHEMA'
+ '.NON_DEPENDENT_P_DET' IN
TYPEOF(prop.definition[1]))

THEN
res := FALSE;

END_IF;
ELSE

res := res AND UNKNOWN;
END_IF;

END_REPEAT;
ELSE

res := FALSE;
END_IF;

ELSE
res := UNKNOWN;

END_IF;
END_IF;

RETURN(res);

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 355

END_FUNCTION; -- required_values_are_non_dependent_p_det

(*

12.8.34 Required_values_are_imported_properties function

The required_values_are_imported_properties function checks that when an
explicit_functional_model_class_extension has some required_item_values, its
dictionary_definition is defined as a fm_class_view_of and all the required_item_values shall
belong to the imported_properties_from_item attribute of the fm_class_view_of.

EXPRESS specification:

*)

FUNCTION required_values_are_imported_properties(
fm_class_ext: explicit_functional_model_class_extension):
LOGICAL;

LOCAL
res: LOGICAL := TRUE;
prop: property_bsu;

END_LOCAL;

IF (SIZEOF(fm_class_ext.required_item_values) <> 0)
THEN

IF (SIZEOF(fm_class_ext\content_item.dictionary_definition.
definition) = 1)

THEN
IF ('ISO13584_EXTENDED_DICTIONARY_SCHEMA' +

'.FM_CLASS_VIEW_OF') IN
TYPEOF(fm_class_ext\content_item
.dictionary_definition.definition[1])

THEN
REPEAT i := 1 TO SIZEOF(

fm_class_ext.required_item_values);
prop := fm_class_ext.required_item_values[i];

IF NOT(prop IN fm_class_ext\content_item.
dictionary_definition.definition[1]\
fm_class_view_of.
imported_properties_from_item)

THEN
res := FALSE;

END_IF;
END_REPEAT;

ELSE
res := FALSE;

END_IF;
ELSE

res := UNKNOWN;
END_IF;

END_IF;

ISO 13584-24:2003(E)

356 © ISO 2003 – All rights reserved

RETURN(res);

END_FUNCTION; -- required_values_are_imported_properties
(*

12.8.35 Data_type_of_BSU function

The data_type_of_BSU function computes the data_type that defines the final domain of a
property_BSU or a data_type_BSU.

If the data_type is associated with named_types, the function recursively traverses their
referred_types attributes, until arriving either to a simple_type or to a complex_type. Then the
function returns this simple_type or complex_type.

If a BSU definition is not available, with the result that the function cannot be resolved to a
simple_type or to a complex_type, the function returns an empty set of data_types.

EXPRESS specification:

*)
FUNCTION data_type_of_BSU(type_spec: property_or_data_type_BSU):

SET[0:1] OF data_type;
LOCAL

res: BOOLEAN := FALSE;
x: data_type;

END_LOCAL;

IF NOT EXISTS(type_spec)
THEN

RETURN([]); -- type_spec is indeterminate
END_IF;

IF ('ISO13584_IEC61360_DICTIONARY_SCHEMA.PROPERTY_BSU' IN
TYPEOF(type_spec))

THEN
IF NOT(SIZEOF(type_spec.definition) = 0)
THEN

x := type_spec.definition[1]\property_DET.domain;
res := TRUE;

END_IF;
ELSE

IF NOT(SIZEOF(type_spec.definition) = 0)
THEN

x := type_spec.definition[1]
\data_type_element.type_definition;

res := TRUE;
END_IF;

END_IF;

IF NOT(res)
THEN

RETURN([]);

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 357

END_IF;

IF ('ISO13584_IEC61360_DICTIONARY_SCHEMA.NAMED_TYPE' IN TYPEOF(x))
THEN

IF NOT(SIZEOF(x\named_type.referred_type.definition) = 0)
THEN

RETURN(data_type_of_BSU(x\named_type.referred_type));
ELSE

RETURN([]);
END_IF;

ELSE
RETURN([x]);

END_IF;

END_FUNCTION; -- data_type_of_BSU
(*

12.8.36 Presentation_unit_is_correct function

The function presentation_unit_is_correct checks if the dictionary-defined data type of a prop
property_BSU is compatible with the to_unit unit.

If the result may not be computed because some BSU definitions are not available, the function
returns UNKNOWN. If the data type of the prop property_BSU is not associated with a unit, the
function returns FALSE.

EXPRESS specification:

*)
FUNCTION presentation_unit_is_correct(prop: property_BSU;

to_unit: unit): LOGICAL;
LOCAL

prop_domain: data_type;
prop_typeof: SET OF STRING := [];

END_LOCAL;

IF (SIZEOF(prop\basic_semantic_unit.definition) = 0)
THEN

RETURN(UNKNOWN);
END_IF;

prop_typeof := data_type_typeof(prop);

IF (prop_typeof = []) -- some DET not present
THEN

RETURN(UNKNOWN);
END_IF;

prop_domain := data_type_of_BSU(prop)[1]; -- not empty

IF ('ISO13584_IEC61360_DICTIONARY_SCHEMA.INT_MEASURE_TYPE' IN
TYPEOF(prop_domain))

THEN

ISO 13584-24:2003(E)

358 © ISO 2003 – All rights reserved

RETURN(derive_dimensional_exponents(to_unit) =
derive_dimensional_exponents(prop_domain\
int_measure_type.unit.structured_representation));

END_IF;

IF ('ISO13584_IEC61360_DICTIONARY_SCHEMA.REAL_MEASURE_TYPE' IN
TYPEOF(prop_domain))

THEN
RETURN(derive_dimensional_exponents(to_unit) =

derive_dimensional_exponents(prop_domain\
real_measure_type.unit.structured_representation));

END_IF;

IF ('ISO13584_IEC61360_DICTIONARY_SCHEMA.LEVEL_TYPE' IN
TYPEOF(prop_domain))

THEN
IF ('ISO13584_IEC61360_DICTIONARY_SCHEMA.INT_MEASURE_TYPE' IN

TYPEOF(prop_domain\level_type.value_type))
THEN

RETURN(derive_dimensional_exponents(to_unit) =
derive_dimensional_exponents(
prop_domain\level_type.value_type
.unit.structured_representation));

END_IF;
IF ('ISO13584_IEC61360_DICTIONARY_SCHEMA.REAL_MEASURE_TYPE' IN

TYPEOF(prop_domain\level_type.value_type))
THEN

RETURN(derive_dimensional_exponents(to_unit) =
derive_dimensional_exponents(
prop_domain\level_type.value_type
.unit.structured_representation));

END_IF;
END_IF;

RETURN(FALSE);

END_FUNCTION; -- presentation_unit_is_correct
(*

12.8.37 Exists_representation_for_instanciable_view function

The exists_representation_for_instanciable_view function checks that when the functional view
class referenced by the ext explicit_functional_model_class_extension is not a
non_instanciable_view_class, then the referenced_representation exists and its data type is either
a representation_type, a representation_reference_type or a program_reference_type, and that,
if the functional view class referenced by the ext explicit_functional_model_class_extension is a
non_instanciable_view_class, then the referenced_representation does not exist.

The function returns UNKNOWN if the functional view class or the functional model class dictionary
definitions are not available.

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 359

EXPRESS specification:

*)
FUNCTION exists_representation_for_instanciable_view(

ext: explicit_functional_model_class_extension): LOGICAL;
LOCAL

cpt: INTEGER := 0;
prop_val: property_value;

END_LOCAL;

IF (SIZEOF(ext.dictionary_definition.definition) = 1)
THEN

IF (SIZEOF(ext.dictionary_definition.definition[1]\
abstract_functional_model_class.created_view.definition) = 1)

THEN
IF (NOT('ISO13584_EXTENDED_DICTIONARY_SCHEMA.' +

'NON_INSTANTIABLE_FUNCTIONAL_VIEW_CLASS' IN TYPEOF(
ext.dictionary_definition.definition[1]\
abstract_functional_model_class.created_view.
definition[1])))

THEN
RETURN(EXISTS(ext.referenced_representation)

AND
(('ISO13584_EXTERNAL_FILE_SCHEMA.' +
'PROGRAM_REFERENCE' IN
data_type_type_name(
ext.referenced_representation))
OR ('ISO13584_EXTERNAL_FILE_SCHEMA.' +
'REPRESENTATION_REFERENCE' IN
data_type_type_name(
ext.referenced_representation))
OR ('REPRESENTATION_SCHEMA.' +
'REPRESENTATION' IN
data_type_type_name(
ext.referenced_representation)))) ;

ELSE
RETURN(NOT EXISTS(ext.referenced_representation));

END_IF;
ELSE

RETURN(UNKNOWN);
END_IF;

ELSE
RETURN(UNKNOWN);

END_IF;

END_FUNCTION; -- exists_representation_for_instanciable_view
(*

12.8.38 Is_provided_once_property_value function

The is_provided_once_property_value function checks that the prop property_or_data_type_BSU
is a property_BSU that is associated with exactly one value in the a_model dic_class_instance. It

ISO 13584-24:2003(E)

360 © ISO 2003 – All rights reserved

returns FALSE if the prop property_or_data_type_BSU is a data_type_BSU or if this
property_BSU is not associated with exactly one value.

EXPRESS specification:

*)
FUNCTION is_provided_once_property_value(

a_model: dic_class_instance;
prop: property_or_data_type_BSU): BOOLEAN;

LOCAL
cpt: INTEGER := 0;

END_LOCAL;

IF NOT (('ISO13584_IEC61360_DICTIONARY_SCHEMA.' +
'PROPERTY_BSU') IN TYPEOF (prop))

THEN
RETURN(FALSE);

END_IF;

REPEAT i := 1 TO SIZEOF(a_model.properties);
IF ((prop = a_model.properties[i].prop_def) AND

EXISTS(a_model.properties[i].its_value))
THEN

cpt := cpt + 1;
END_IF;

END_REPEAT;
RETURN (cpt = 1);
END_FUNCTION; -- is_provided_once_property_value
(*

12.8.39 Number_of_instance_representations

The number_of_instance_representations function computes the number of property_BSUs
referenced in the a_model properties attribute of which the data type is a representation_type, a
representation_reference_type or a program_reference_type. The function returns indeterminate if
the dictionary_definition of some property_BSU is not available.

EXPRESS specification:

*)
FUNCTION number_of_instance_representations(

a_model: dic_class_instance): INTEGER;

LOCAL
cpt: INTEGER := 0;
prop_val: property_value;

END_LOCAL;

REPEAT i := 1 TO SIZEOF(a_model.properties);
prop_val := a_model.properties[i];
IF data_type_typeof(prop_val.prop_def) = []
THEN

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 361

RETURN(?);
END_IF;
IF ('ISO13584_IEC61360_DICTIONARY_SCHEMA.' +

'ENTITY_INSTANCE_TYPE' IN
data_type_typeof(prop_val.prop_def))

THEN
IF (('ISO13584_EXTERNAL_FILE_SCHEMA.' +

'PROGRAM_REFERENCE' IN
data_type_type_name(prop_val.prop_def))
OR ('ISO13584_EXTERNAL_FILE_SCHEMA.' +
'REPRESENTATION_REFERENCE' IN
data_type_type_name(prop_val.prop_def))
OR ('REPRESENTATION_SCHEMA.' +
'REPRESENTATION' IN
data_type_type_name(prop_val.prop_def)))

THEN
cpt := cpt + 1;

END_IF;
END_IF;

END_REPEAT;

RETURN(cpt);

END_FUNCTION; -- number_of_instance_representations
(*

12.8.40 Correct_parameters_for_explicit_program function

The correct_parameters_for_explicit_program function checks that the prop property_BSU, the
data type of which is program_reference_type, is associated with a program_reference of which
both the out_parameters and inout_parameters lists are empty, and of which all the values of the
in_parameters attributes are property_BSUs that are associated with one value in the a_model
instance.

EXPRESS specification:

*)
FUNCTION correct_parameters_for_explicit_program(

a_model: dic_class_instance;
prop: property_BSU): BOOLEAN;

IF NOT('ISO13584_EXTENDED_DICTIONARY_SCHEMA.' +
'PROGRAM_REFERENCE_TYPE' IN
data_type_typeof(prop))

THEN
RETURN (FALSE); --not a program

END_IF;

REPEAT i := 1 TO SIZEOF(a_model.properties);
IF (prop = a_model.properties[i].prop_def)
THEN --characteristics of the program_reference

IF EXISTS(a_model.properties[i].its_value) AND
('ISO13584_EXTERNAL_FILE_SCHEMA.' +

ISO 13584-24:2003(E)

362 © ISO 2003 – All rights reserved

'PROGRAM_REFERENCE' IN
TYPEOF(a_model.properties[i].its_value)) AND
(SIZEOF(a_model.properties[i].its_value.
out_parameters) = 0)
AND (SIZEOF(a_model.properties[i].its_value.
inout_parameters) = 0) AND
(QUERY (in_p <* a_model.properties[i].its_value.
in_parameters
| NOT('ISO13584_IEC61360_DICTIONARY_SCHEMA.' +
'PROPERTY_BSU' IN TYPEOF (in_p))
OR NOT is_provided_once_property_value(
a_model, in_p)) = [])

THEN
RETURN(TRUE); --correct program_reference

ELSE
RETURN(FALSE); --not correct program_reference

END_IF;
END_IF;

END_REPEAT;

RETURN(FALSE); -- program_reference was not found

END_FUNCTION; -- correct_parameters_for_explicit_program
(*

12.8.41 Get_dic_item_instances_from_required_item_properties function

The get_dic_item_instances_from_required_item_properties function retrieves a set of tuples of
values. Each tuple represents a subset of the property values used to specify one of the
dic_item_instance of the explicit_item_class_extension whose dictionary definition is referenced
from the cl.definition[1]\fm_class_view_of.view_of attribute. Each value of this tuple corresponds to
one property of the required_item_values attribute of the
cl.referenced_by[1]\explicit_functional_model_class_extension entity. The tuple order is
computed according to the order defined in the
cl.definition[1]\fm_class_view_of.imported_properties_from_item list attribute.

This function returns an empty set if the cl dictionary definition or content specification is not available,
or if the cl dictionary definition data type is not the fm_class_view_of data type, or if the cl content
specification data type is not the explicit_functional_model_class_extension data type. It also
returns an empty set if the library specification of the referenced item class is not available or, if
available, is not the explicit_item_class_extension data type.

EXPRESS specification:

*)
FUNCTION get_dic_item_instances_from_required_item_properties(

cl: class_bsu): SET OF LIST OF primitive_value;
LOCAL

required_props: LIST OF property_bsu := [];
definition: fm_class_view_of;
content: explicit_functional_model_class_extension;
item_bsu: class_bsu;

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 363

item_content: explicit_item_class_extension;
result: SET OF LIST OF primitive_value := [];

END_LOCAL;

IF (SIZEOF(cl.definition) = 1)
THEN

IF ('ISO13584_EXTENDED_DICTIONARY_SCHEMA.FM_CLASS_VIEW_OF'
IN TYPEOF(cl.definition[1]))

THEN
definition := cl.definition[1];
item_bsu := definition.view_of;

ELSE
RETURN([]);

END_IF;
ELSE

RETURN([]);
END_IF;

IF (SIZEOF(cl.referenced_by) = 1)
THEN

IF ('ISO13584_LIBRARY_CONTENT_SCHEMA.' +
'EXPLICIT_FUNCTIONAL_MODEL_CLASS_EXTENSION'
IN TYPEOF(cl.referenced_by[1]))

THEN
content := cl.referenced_by[1];

ELSE
RETURN([]);

END_IF;
ELSE

RETURN([]);
END_IF;

IF (SIZEOF(item_bsu.referenced_by) = 1)
THEN

IF ('ISO13584_LIBRARY_CONTENT_SCHEMA.' +
'EXPLICIT_MODEL_CLASS_EXTENSION'
IN TYPEOF(item_bsu.referenced_by[1]))

THEN
item_content := item_bsu.referenced_by[1];

ELSE
RETURN([]);

END_IF;
ELSE

RETURN([]);
END_IF;

required_props := get_list_of_required_properties(definition,
content.required_item_values);

result := properties_projection_on_population(required_props,
item_content.population);

RETURN(result);

ISO 13584-24:2003(E)

364 © ISO 2003 – All rights reserved

END_FUNCTION; -- get_dic_item_instances_from_imported_item_properties
(*

12.8.42 Get_list_of_required_properties function

The get_list_of_required_properties function computes an ordered list of property_bsu from a set
of property_bsus. If a property_bsu of the cl.imported_properties_from_item does not belong to
the required_properties set, it is not included in the output list. The output list order is defined
according to the underlying order of the cl.imported_properties_from_item list attribute.

EXPRESS specification:

*)
FUNCTION get_list_of_required_properties(cl: fm_class_view_of;

required_properties: SET OF property_bsu)
: LIST OF property_bsu;

LOCAL
result: LIST OF property_bsu := [];

END_LOCAL;

REPEAT i := 1 TO SIZEOF(cl.imported_properties_from_item);
IF (cl.imported_properties_from_item[i] IN required_properties)
THEN

result := result + cl.imported_properties_from_item[i];
END_IF;

END_REPEAT;

RETURN(result);

END_FUNCTION; -- get_list_of_required_properties
(*

12.8.43 Properties_projection_on_population function

The properties_projection_on_population function retrieves a set of tuples of primitive_values
from a list of dic_class_instances. It applies a projection of the properties list on each
dic_class_instance.properties list contained in population.

EXPRESS specification:

*)
FUNCTION properties_projection_on_population(

properties: LIST OF property_bsu;
population: LIST OF dic_class_instance)
: SET OF LIST OF primitive_value;

LOCAL
result: SET OF LIST OF INTEGER := [];
tuple: LIST OF INTEGER := [];

END_LOCAL;

REPEAT i := 1 TO SIZEOF(population);

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 365

REPEAT j := 1 TO SIZEOF(properties);
REPEAT k := 1 TO SIZEOF(population[i].properties);

IF (population[i].properties[k].prop_def =
properties[j])

THEN
tuple := tuple +

population[i].properties[k].its_value;
END_IF;

END_REPEAT;
END_REPEAT;
result := result + tuple;
tuple := [];

END_REPEAT;

RETURN(result);

END_FUNCTION; -- properties_projection_on_population
(*

12.8.44 All_views_available_for_components function

The all_views_available_for_components function checks that the set of dic_f_model_instance
specifying the given cl.referenced_by[1]\explicit_functional_model_class_extension shall
describe, for each dic_item_instance specifying an explicit_model_class_extension whose
dictionary definition is referenced from the view_of attribute of the fm_class_view_of dictionary
definition of that explicit_functional_model_class_extension, the complete set of declared views of
the functional model.

This function returns UNKNOWN if the cl dictionary definition or content specification is not available,
or if the cl dictionary definition data type is not the fm_class_view_of data type, or if the cl content
specification data type is not the explicit_functional_model_class_extension data type.

EXPRESS specification:

*)
FUNCTION all_views_available_for_components(cl: class_bsu): LOGICAL;
LOCAL

components_views: SET OF LIST OF INTEGER := [];
component_view: LIST OF INTEGER := [];
components: SET OF LIST OF INTEGER := [];
declared_views: SET OF LIST OF INTEGER := [];
definition: fm_class_view_of;
content: explicit_functional_model_class_extension;

END_LOCAL;

IF (SIZEOF(cl.definition) = 1)
THEN

IF ('ISO13584_EXTENDED_DICTIONARY_SCHEMA.FM_CLASS_VIEW_OF'
IN TYPEOF(cl.definition[1]))

THEN
definition := cl.definition[1];

ELSE
RETURN(UNKNOWN);

ISO 13584-24:2003(E)

366 © ISO 2003 – All rights reserved

END_IF;
ELSE

RETURN(UNKNOWN);
END_IF;

IF (SIZEOF(cl.referenced_by) = 1)
THEN

IF ('ISO13584_LIBRARY_CONTENT_SCHEMA.' +
'EXPLICIT_FUNCTIONAL_MODEL_CLASS_EXTENSION'
IN TYPEOF(cl.referenced_by[1]))

THEN
content := cl.referenced_by[1];

ELSE
RETURN(UNKNOWN);

END_IF;
ELSE

RETURN(UNKNOWN);
END_IF;
-- id x vcvs in model
components_views := available_components_views(cl);
-- id in item
components := get_dic_item_instances_from_required_item_properties(cl);
-- vcv tuples in declaration
declared_views := declared_created_views(cl);

IF (SIZEOF(components) <> 0)
THEN

REPEAT i := 1 TO SIZEOF(components);
REPEAT j := 1 TO SIZEOF(declared_views);

component_view := components[i] + declared_views[j];
IF NOT(component_view IN components_views)
THEN

RETURN(FALSE);
END_IF;

END_REPEAT;
END_REPEAT;

RETURN(TRUE);
ELSE

RETURN(UNKNOWN);
END_IF;

END_FUNCTION; -- all_views_available_for_components
(*

12.8.45 Available_components_views function

The available_components_views function returns a set of tuples of values corresponding to the
projection of the union of the re-ordered
cl.referenced_by[1]\explicit_functional_model_class_extension.required_item_values set and
the list of available view control variables as returned by the functional_view_v_c_v function, on the

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 367

list of dic_f_model_instances used for specifying the
cl.referenced_by[1]\explicit_functional_model_class_extension.

This function returns an empty set if the cl dictionary definition or content specification is not available,
or if the cl dictionary definition data type is not the fm_class_view_of data type, or if the cl content
specification data type is not the explicit_functional_model_class_extension data type.

EXPRESS specification:

*)
FUNCTION available_components_views(cl: class_bsu): SET OF LIST OF
INTEGER;
LOCAL

required_props: LIST OF property_bsu := [];
vcvs: LIST OF property_bsu := [];
view_properties: LIST OF property_bsu := [];
definition: fm_class_view_of;
content: explicit_functional_model_class_extension;
result: SET OF LIST OF INTEGER := [];

END_LOCAL;

IF (SIZEOF(cl.definition) = 1)
THEN

IF ('ISO13584_EXTENDED_DICTIONARY_SCHEMA.FM_CLASS_VIEW_OF'
IN TYPEOF(cl.definition[1]))

THEN
definition := cl.definition[1];

ELSE
RETURN([]);

END_IF;
ELSE

RETURN([]);
END_IF;

IF (SIZEOF(cl.referenced_by) = 1)
THEN

IF ('ISO13584_LIBRARY_CONTENT_SCHEMA.' +
'EXPLICIT_FUNCTIONAL_MODEL_CLASS_EXTENSION'
IN TYPEOF(cl.referenced_by[1]))

THEN
content := cl.referenced_by[1];

ELSE
RETURN([]);

END_IF;
ELSE

RETURN([]);
END_IF;

vcvs := functional_view_v_c_v(definition\
abstract_functional_model_class.created_view);

IF (SIZEOF(vcvs) <> 0)

ISO 13584-24:2003(E)

368 © ISO 2003 – All rights reserved

THEN
required_props := get_list_of_required_properties(definition,

content.required_item_values);
view_properties := required_props + vcvs;
result := properties_projection_on_population(view_properties,

content.population);
END_IF;

RETURN(result);

END_FUNCTION; -- available_components_views
(*

12.8.46 All_view_control_variables_belong_to_each_view function

The all_view_control_variables_belong_to_each_view function returns TRUE if all the view control
variables that are defined in the functional view class referenced by the class_ext dictionary definition
are all used for describing each dic_class_instance belonging to the
SELF\model_class_extension.population list. Otherwise, it returns FALSE.

This function returns UNKNOWN if either the class_ext dictionary definition is not available, or if the
referenced functional view class definition is not available.

EXPRESS specification:

*)

FUNCTION all_view_control_variables_belong_to_each_view(
class_ext: explicit_model_class_extension): LOGICAL;

LOCAL
created_view: class_bsu;
cl: class_bsu;
vcvs: SET OF property_bsu;
i, max: INTEGER;
result: LOGICAL := TRUE;

END_LOCAL;

cl := class_ext\content_item.dictionary_definition;

IF (SIZEOF(cl.definition) = 1)
THEN

created_view := cl.definition[1]\
abstract_functional_model_class.created_view;

vcvs := list_to_set(functional_view_v_c_v(created_view));

IF (SIZEOF(created_view.definition) = 1)
THEN

IF (SIZEOF(vcvs) > 0)
THEN

i := 1;
max := SIZEOF(class_ext.population);
REPEAT WHILE((i <= max) AND (result));

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 369

result :=
check_all_view_control_variables_belong_to_view(

vcvs, class_ext.population[i]);
i := i + 1;

END_REPEAT;

ELSE
result := TRUE;

END_IF;

ELSE
result := UNKNOWN;

END_IF;

RETURN(result);
ELSE

RETURN(UNKNOWN);
END_IF;

END_FUNCTION; -- all_view_control_variables_belong_to_each_view
(*

12.8.47 Check_all_view_control_variables_belong_to_view function

The check_all_view_control_variables_belong_to_view function checks that all the given vcvs are
used to defined the a_view dic_f_model_instance.

EXPRESS specification:

*)

FUNCTION check_all_view_control_variables_belong_to_view(
vcvs: SET OF property_bsu;
a_view: dic_f_model_instance): LOGICAL;

LOCAL
used_properties: SET OF property_bsu := [];

END_LOCAL;

REPEAT i := 1 TO SIZEOF(a_view.properties);
used_properties := used_properties +

a_view.properties[i].prop_def;
END_REPEAT;

RETURN(vcvs <= used_properties);

END_FUNCTION; -- check_all_view_control_variables_belong_to_view
(*

12.8.48 All_vcvs_belong_to_instance_identification function

The all_vcvs_belong_to_instance_identification function returns TRUE if all the view control
variables that are used to characterize the

ISO 13584-24:2003(E)

370 © ISO 2003 – All rights reserved

class_ext.definition[1]\abstract_functional_model_class.created_view functional view class are
referenced into the class_ext\explicit_model_class_extension.instance_identification set.
Otherwise it returns FALSE.

This function returns UNKNOWN if either the class_ext dictionary definition is not available, or if the
referenced functional view class definition is not available.

EXPRESS specification:

*)

FUNCTION all_vcvs_belong_to_instance_identification(
class_ext: explicit_model_class_extension): LOGICAL;

LOCAL
vcvs: SET OF property_bsu := [];
created_view: class_bsu;
cl: class_bsu;

END_LOCAL;

cl := class_ext\content_item.dictionary_definition;

IF (SIZEOF(cl.definition) = 1)
THEN

created_view := cl.definition[1]\
abstract_functional_model_class.created_view;

vcvs := list_to_set(functional_view_v_c_v(created_view));

IF (SIZEOF(created_view.definition) = 1)
THEN

RETURN(vcvs <= list_to_set(class_ext\
explicit_model_class_extension.
instance_identification));

ELSE
RETURN(UNKNOWN);

END_IF;

ELSE
RETURN(UNKNOWN);

END_IF;

END_FUNCTION; -- vcvs_and_required_properties_belong_to_identification
(*

12.8.49 Same_string_values_translations_for_class_extension function

The same_string_values_translations_for_class_extension function returns TRUE if, for each
instance that defines the explicit_model_class_extension population, any first property_value of
which value is a translated_string_value (if it exists) is defined using the same language(s).
Otherwise, it returns FALSE. It returns UNKNOWN if no translated_string_value is used for defining
all the population instances.

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 371

NOTE This function is not in charge of checking that all the translated_string_values used for defining
property_values of each instance are all given in the same language(s). This checking is performed in the
dic_class_instance entity data type specification.

EXPRESS specification:

*)
FUNCTION same_string_values_translations_for_class_extension(

class_ext: explicit_model_class_extension): LOGICAL;
LOCAL

comp: SET OF translated_string_value := [];
translated_property_values: LIST OF property_value := [];

END_LOCAL;

REPEAT i := 1 TO SIZEOF(class_ext.population);
translated_property_values := QUERY(prop_val <*

class_ext.population[i].properties |
'ISO13584_INSTANCE_RESOURCE_SCHEMA.' +
'TRANSLATED_STRING_VALUE' IN
TYPEOF(prop_val.its_value));

IF (SIZEOF(translated_property_values) <> 0)
THEN

comp := comp + translated_property_values[1].its_value;
END_IF;

END_REPEAT;

RETURN(same_translations(comp));

END_FUNCTION; -- same_string_values_translations_for_class_extension
(*

*)
END_SCHEMA; -- ISO13584_library_content_schema
(*

13 ISO13584_external_file_schema

This clause defines the requirement for the ISO13584_external_file_schema. The following
EXPRESS declaration introduces the ISO13584_external_file_schema block and identifies the
necessary external references.

EXPRESS specification:

*)
SCHEMA ISO13584_external_file_schema;

REFERENCE FROM ISO13584_IEC61360_dictionary_schema
(basic_semantic_unit,
class_BSU,
class_related_BSU,
content_item,

ISO 13584-24:2003(E)

372 © ISO 2003 – All rights reserved

definition_available_implies,
graphics,
item_names,
list_to_set,
revision_type,
supplier_BSU,
supplier_element,
supplier_related_BSU,
version_len);

REFERENCE FROM ISO13584_IEC61360_language_resource_schema
(global_language_assignment,
language_code,
present_translations);

REFERENCE FROM ISO13584_instance_resource_schema
(property_or_data_type_BSU);

REFERENCE FROM ISO13584_extended_dictionary_schema
(absolute_url_type,
document_BSU,
program_library_BSU);

REFERENCE FROM ISO13584_library_content_schema
(model_class_extension);

REFERENCE FROM support_resource_schema
(identifier,
label);

REFERENCE FROM person_organization_schema
(organization);

REFERENCE FROM measure_schema
(length_measure,
length_measure_with_unit);

(*

NOTE The schemas referenced above can be found in the following documents:
ISO13584_IEC61360_dictionary_schema IEC 61360-2

(which is duplicated for convenience in informative annex D of ISO 13584-42),
ISO13584_IEC61360_language_resource_schema IEC 61360-2

(which is duplicated for convenience in informative annex D of ISO 13584-42),
ISO13584_instance_resource_schema This part of ISO 13584,
ISO13584_extended_dictionary_schema This part of ISO 13584,
ISO13584_library_content_schema This part of ISO 13584,
support_resource_schema ISO 10303-41,
person_organization_schema ISO 10303-41,
measure_schema ISO 10303-41.

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 373

13.1 Introduction to the ISO13584_external_file_schema

A library exchange context includes a library delivery file conforming to one conformance class of a
library integrated information model and several library external files. The library delivery file specifies
both the structure and the content of the supplier library. The library external files, provide for
exchanging associated information whose EXPRESS information models are not described in
ISO 13584. They may be described by other standards, using either the EXPRESS information
modelling language or other specification techniques. Their usage, in a supplier library, shall be
allowed either by the conformance class of the library integrated information model referenced by the
library delivery file, or in one of the view exchange protocol conformance classes referenced by the
library delivery file.

The information contained in library external files is represented within the library delivery file using
external_item entities. Such entities reference the external files used to exchange this content and
the protocol that shall be used to process them. Three categories of external_items are defined:

— dictionary_external_items are associated with a BSU for which they provide the content. They
can only be referenced through their BSU, and their life cycle is independent from any class
extension. In particular, they may be associated with a class that is only described by dictionary
data;

— class_extension_external_items provide for describing aspects of the extensions of classes.
They are directly referenced from the entities that describe the model_class_extension. They
shall be provided whenever a new version of a model_class_extension is provided and their life
cycles are the same as the model_class_extension to which they belong.

— property_value_external_items provide for defining item properties the value of which are an
external item.

The planning model in Figure 8 shows the different categories of library external files defined in this
part of ISO 13584.

NOTE 1 This planning model uses the EXPRESS-G graphical notations for the EXPRESS language, but,
for clarification of the diagram, some of the relationships that are defined in the EXPRESS model are omitted,
and some inter-schema references are not represented.

A program_library_content is a set of programs that may be delivered as part of a library exchange
context, and that shall be linked with an API, defined by a program_protocol, to define a new higher
level API, modeled by a linked_interface_program_protocol entity. Then, such a new API may be
referenced from a program associated with a library class by means of a
linked_interface_program_protocol entity instance.

EXAMPLE ISO 13584-31 defines an API that may be used, together with a file exchange format, to define a
program_protocol. An upper layer may be defined on top of this API, by means of a program_library, to define
a new program_protocol that is a linked_interface_program_protocol. Such a program_protocol might be
useful to ensure the compatibility with some pre-existing APIs, for instance the API defined by the German
Standard DIN V 66304.

ISO 13584-24:2003(E)

374 © ISO 2003 – All rights reserved

Figure 8 – External_item planning model

A program_library_content is a set of programs that may be delivered as part of a library exchange
context, and that shall be linked with an API, defined by a program_protocol, to define a new higher
level API, modeled by a linked_interface_program_protocol entity. Then, such a new API may be
referenced from a program associated with a library class by means of a
linked_interface_program_protocol entity instance.

EXAMPLE ISO 13584-31 defines an API that may be used, together with a file exchange format, to define a
program_protocol. An upper layer may be defined on top of this API, by means of a program_library, to define
a new program_protocol that is a linked_interface_program_protocol. Such a program_protocol might be
useful to ensure the compatibility with some pre-existing APIs, for instance the API defined by the German
Standard DIN V 66304.

A program_library_content:

— corresponds to a program_library_BSU that identifies it and enables to reference it;

— refers to a program_protocol that defines the API to which it is intended to be linked;

— is associated with library external file(s) that constitutes its content.

A document_content is the content of a document identified by a document_BSU and described by
a document entity. It contains information defined at the discretion of the supplier and accessible to
the user through a set of names. In particular, within the context of a class, the user shall be informed
about the documents applicable to the class and shall be able to request display of them.

A document_content:

— is associated with a document_BSU that identifies it and enables to reference it;

— refers to an external_file_protocol that specifies how it shall be processed;

(ABS)
supplier_BSU_

related_content

(ABS)
class_BSU_

related_content

(ABS)
dictionary_

external_item

(ABS)
class_extension_
external_item

1

document_content

1

pprogram_library
_content

pprogram_library
_BSU

(RT)
dictionary_definition

document_BSU

(RT)
dictionary_definition

ISO13584_IEC61360_dictionary
_schema.content_item

(INV)
belongs_to

(ABS)
external_item content

used_protocol

ISO13584_library_extension_
schema.model_class_extension

property_value
external_item

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 375

— may be provided in more than one language;

— refers to the library external file(s) that constitutes its content.

A class_extension_external_item provides some information about the extension of a class by
means of external file(s). It is not associated with a BSU, and it shall only be referred to from the
entities that describe the extension of a class.

Each class_extension_external_item:

— is associated with a model_class_extension that defines its scope and its life cycle;

— is associated with an external_file_protocol that specifies how it shall be processed;

— is described by an entity (a message or an illustration) that specifies its nature and, therefore,
the transformation, if any, it must undergo in the compilation phase;

— refers to the library external file(s) that constitutes its content.

A property_value_external_item:

— is a PLIB_entity_instance_value and thus a primitive_value.

— it may constitute the value of any property the data type of which is defined as an
entity_instance_type, the type_name attribute of which contains
'ISO13584_EXTERNAL_FILE_SCHEMA.PROPERTY_VALUE_EXTERNAL_ITEM'.

NOTE 2 PLIB_entity_instance_value and primitive_value are defined in the
ISO13584_instance_resource_schema documented in clause 6.

NOTE 3 entity_instance_type is defined in the ISO13584_IEC61360_dictionary_schema documented in
ISO 13584-42:1998.

These files shall be processed by the LMS of the library end-user, depending on the
external_file_protocols supported on this LMS.

The ISO13584_external_file_schema models:

— the mechanisms that provide reference to library external files,

— the specification of the way a library external file shall be processed,

— the resource constructs that specify the role of each library external file,

— the mechanisms that enable a library end-user to navigate between documents,

— the mechanisms that enable a library end-user to navigate from documents to library classes.

The ISO13584_external_file_schema does not model:

— the information models of the library external files.

13.2 Fundamental concepts and assumptions for the
ISO13584_external_file_schema

13.2.1 Representations of items

The goal of this International Standard is to provide for the exchange of any category of representation
of library items. Taking into consideration that several international, national or de facto standards
already enable the description of various categories of representations of various items, a library

ISO 13584-24:2003(E)

376 © ISO 2003 – All rights reserved

delivery file shall be able to refer to external files, conforming to other standards, to describe the
different representation categories, for the items belonging to this library.

NOTE VHDL and ISO 10303-203, are examples of International Standards that provide for the
description of two different categories of representation for parts.

13.2.2 Explicit and implicit description of item representations

For one category of representation, the set of the representations of all the instances of an item class
may be modelled either explicitly or implicitly. If it is modelled explicitly, each item representation is
described as a set of data. If it is modelled implicitly, there is an algorithm that shall be triggered and
provided with parameter values to generate each item representation.

In the ISO13584_external_file_schema, explicit representations are referenced by
representation_reference entities, implicit representations are referenced by program_reference
entities.

A program_reference is associated with a program_protocol and with parameters. When a supplier
library is processed on the library end-user site, processing of a program_reference shall consist of
verifying the availability of the program_protocol and then, according to the program_status of the
program, compiling the content of the library external file referenced by the program_reference
and/or linking this content. In a latter stage, running will require evaluation of its parameters and a call
to run it. This call shall be issued by the LMS, on request from the user.

NOTE A program_status is defined in 13.4.10. It is used in 13.5.6 to specify whether a program is in
source code or compiled.

A representation_reference is associated with a data_protocol. When a supplier library is
processed on the library end-user site, processing of a representation_reference shall consist of
verifying the availability of the data_protocol and then, if appropriate, converting the content to
another format, for instance the native format of the library end-user LMS.

13.2.3 Support of user dialogue

A LMS shall be able to display various informative items that may be either graphic or textual. To
enable an automatic integration of a supplier library in a user library, these informative items shall
come from the library data supplier. These informative items are modelled as dialogue_resources.

dialogue_resource is a subtype of a class_extension_external_item. It represents a piece of
information that shall be automatically displayed by the LMS in some particular work contexts. It can
be either graphic, an illustration, or textual, a message. A dialogue_resource may be provided in
more than one language and it may consist of several library external files.

13.2.4 Http files storage

One particular data_protocol that may be supported by a library integrated information model or a
view exchange protocol is the http protocol. This external_file_protocol is modelled by the
http_protocol entity. Library external files that are associated with the http_protocol are modelled as
http_files. A http_file is associated, in particular, with a http_file_name_type, that specifies the
name that shall be associated to this file on the user local Internet server (see clause 5.6.2), and with
an oprtional http_class_directory that specifies the name of the directory where this file shall be
stored on the user local Internet server. Each http_class_directory refers to one class and each
class that is associated with http_files is referenced by exactly one http_class_directory.

The rule in the following subclause shall be satisfied by any LMS implementation that claims
conformance to ISO 13584.

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 377

13.2.4.1 Http_file storage rule

All the class_extension_external_items delivered by one particular library data supplier as http_files
shall be stored in a directory hierarchy that contains only two levels:

— the root of this hierarchy is a directory whose name is the supplier_code of this library data
supplier. An implementation is allowed to abbreviate the directory names if the software does not
support the length specified in ISO 13584:42 for supplier_code for naming directories;

NOTE 1 The length specified in ISO 13584-42 for supplier_code is 70 characters.

NOTE 2 The methods of abbreviating names for the root directories associated with the various library data
suppliers are not specified in this International Standard and may be implementation dependent.

— each leaf of this hierarchy is a directory whose name is defined by the name attribute of the
http_class_directory entity that represents the directory to be created in the user file
management system in the library delivery file; the class associated with the directory is defined by
the class attribute of the http_class_directory entity that represents it.

This rule ensures that when several http_files associated with the same supplier library are delivered
by a library data supplier, the library data supplier knows the file names and the directory structure on
the user local Internet server. Therefore the library data supplier may define hyperlinks between these
http_files.

This rule does not apply to http_files representing property_value_external_item the storage of which
shall be implementation dependant.

13.2.5 Hyper-text link usage

The following requirements shall be fulfilled by any library data supplier who wants to define hypertext
links between several http_files provided as library external files in a library exchange context.

All the hypertext links between http_files provided as library external files in a library exchange
context shall be identified by relative URL. These relative URLs shall be based on the assumption that
the http_files are stored on the user local Internet server according to the http-file storage rule defined
in the previous subclause.

NOTE The concept of user local Internet server is discussed in 5.6.2.

13.2.6 Escape mechanism from document navigation to data retrieval and selection

A Library Management System that supports a library integrated information model or a view
exchange protocol that enables the use of the http_protocol for library external files may provide two
different ways for consulting a library content, for choosing a part family and for selecting a part within
its family:

— a document oriented navigation, where the user follows the hypertext links to navigate from class-
associated documents to class-associated documents, and selects the target classes or selects
one part that is one instance of some class, and

— a database oriented navigation, where the user queries the data repository to retrieve a class
and/or to select a part that fulfils some particular requirements.

An escape mechanism proves a useful means for a library end-user to express that he/she wants to
switch from a document-oriented navigation to a database oriented navigation.

The Common Gateway Interface access rules specified in the next subclause enables the library data
supplier to provide a capability for a library end-user to specify that he/she wants to switch from a
document-oriented navigation to a database oriented navigation.

ISO 13584-24:2003(E)

378 © ISO 2003 – All rights reserved

The Common Gateway Interface implementation rule (see clause 13.2.8) specifies how an
ISO 13584-conformant implementation shall support these capabilities.

13.2.7 Common Gateway Interface access

When the library data supplier wants to enable the library end-user to switch from a document
accessed through document navigation to data retrieval and selection by selecting an hypertext link
contained in the document, the rules in the following subclauses shall be satisfied.

13.2.7.1 Common Gateway Interface access rule 1

To indicate that the library end-user should be set in database oriented navigation, and that the
context of this database oriented navigation should be the current context of the database oriented
navigation before the user starts document oriented navigation, the library data supplier shall define
the http_file in such a way that the two strings: HTTP-Version and lms-URI are issued by the local
Internet client of the library end-user. These two strings are expressed formally, in EBNF, as:

HTTP-Version = "HTTP/1.1"

lms-URI = "/cgi-bin/lms"

These two strings shall be separated by a linear white space lws:

lws = [<US-ASCII CR, carriage return (octet13)>
<US-ASCII LF, linefeed (octet10)>]
1*(<US-ASCII SP, space (octet32)>
| <US-ASCII HT, horizontal-tab (octet9)>)

NOTE 1 The notational conventions used in ABNF are defined in clause 2 of IAB RFC 1808. They
are summarised for convenience in the informative annex T.

NOTE 2 When this hyperlink is selected and the user did not initiate any database oriented
navigation, the context of the database oriented navigation is the initial context of such a navigation.

13.2.7.2 Common Gateway Interface access rule 2

To indicate that the library end-user should be set in a database oriented navigation, and that the
context of this database oriented navigation should be the context of selecting an instance in one
particular class of which the selection results from the previous document-oriented navigation, the
library data supplier shall define the http_file in such a way that the relative URL class-URI is issued
by the local Internet client of the library end-user. This string is expressed formally, in EBNF, as:

class-URI = HTTP-Version lws "GET" lws "/cgi-bin/cl-sel?" class_id

NOTE The syntax of relative URL is defined in clause 2 of of IAB RFC 1808. The notational conventions
used in ABNF are defined in clause 2 of IAB RFC 1808. Both are summarised for convenience in the informative
annex T.

class_id shall be an URL-encoded string expressed formally, in EBNF, as:

class_id = "SUPPLIER" "=" supplier_code "&" "CLASS" "="
class_dic_identifier

The following rules and restrictions shall apply:

— The supplier_code shall be the code of the library data supplier referenced by the defined_by
attribute of the class_BSU that corresponds to the class_dic_identifier class.

— The class_dic_identifier shall be the value of the dic_identifier attribute of the class in which
context the user shall be set, and this class shall be defined as an item_class
dictionary_definition.

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 379

13.2.7.3 Common Gateway Interface access rule 3

To indicate that the library end-user should be set in a database-oriented navigation, and that some
particular instance of some particular class shall be created by the LMS, the library data supplier shall
define the http-file in such a way that the relative URL instance-URI is issued by the local Internet
client of the library end-user. This string is expressed formally, in EBNF, as:

instances-URI = HTTP-Version lws "GET" lws
"/cgi-bin/ins-sel?" instance_id

NOTE 1 The syntax of relative URL is defined in clause 2 of IAB RFC 1808. The notational conventions
used in ABNF are defined in clause 2 of IAB RFC 1808. Both are summarised for convenience in the informative
annex T.

instance_id shall be a URL-encoded string expressed formally, in EBNF, as:

instance_id = "SUPPLIER" "=" supplier_code "&" "CLASS" "="
class_dic_identifier *("&" property_value)

property_value = property_dic_identifier "=" value

value = simple_value | class_instance_value | "$"

class_instance_value = "(" instance_id ")"

simple_value = string_value |translated_string_value | integer_value |
real_value | Boolean_value

The following rules and restrictions shall apply:

— The supplier_code shall be the code of the library data supplier referenced by the defined_by
attribute of the class_BSU that corresponds to the class_dic_identifier class.

— Each class_dic_identifier shall be the value of the dic_identifier attribute of a class defined by the
preceding supplier.

— Each class_dic_identifier class shall be associated with an item_class_extension or an
explicit_item_class_extension in the integrated user library.

— The property_dic_identifier shall be the value of the dic_identifier attribute of a property that
corresponds to one of the property_BSUs returned by the
gm_identification_characteristics_list function applied to the class_BSU that corresponds to
the preceding class_dic_identifier class.

— Every property_BSU returned by the gm_identification_characteristics_list function applied to
the class_BSU that corresponds to the preceding class_dic_identifier class shall correspond to
exactly one property_dic_identifier in the list of property_value that immediately follows
class_dic_identifier.

— Only property_dic_identifiers that correspond to property_BSUs belonging to the LIST of
property_BSUs returned by the optional_properties_list function applied to the class_BSU that
corresponds to the preceding class_dic_identifier class may have a value that is the "$" character.

— Each value that is a translated_string_value shall be the URL-encoded string of the value
representation defined in ISO 10303-21 for the string that is the first one of the string_values
attribute of the corresponding translated_string_value.

— Each value that is another type of simple_value shall be the URL-encoded string of the value
representation defined for string, integer, real and Boolean in ISO 10303-21.

ISO 13584-24:2003(E)

380 © ISO 2003 – All rights reserved

— The data type of the value of a property_value that is a simple_value shall be compatible with the
data_type of the property_BSU that corresponds to the property_dic_identifier of this
property_value.

NOTE 2 The data_type of a property_BSU is defined by the domain attribute of the property_DET
associated with this property_BSU. These resource constructs are defined in the
ISO13584_IEC61360_dictionary_schema documented in IEC61360-2 and quoted in an informative annex of
ISO 13584-42.

NOTE 3 Compatibility between simple_value and the data_type of a property_BSU is defined by the
compatible_type_and_value function of the ISO13584_instance_resource_schema, documented in clause 6
of this part of ISO 13584;

— The "CLASS" class referenced in the class_instance_value of a property_value shall correspond
to a class_BSU that is compatible with the class_BSU that defines the data_type of the
property_BSU that corresponds to the property_dic_identifier of this property_value.

NOTE 4 Compatibility between two class_BSU is defined by the compatible_class_and_class function
documented in clause 6 of this part of ISO 13584.

13.2.8 Common Gateway Interface implementation rule

An ISO 13584 implementation that claims conformance to some library integrated information model
or view exchange protocol that supports the http_protocol as an external_file_protocol shall
recognise the three following relative URLs on the user local Internet server:

— /cgi-bin/lms

— /cgi-bin/cl-sel

— /cgi-bin/ins-sel

The interpretation of these relative URLs by the local Internet server shall have the effect to set the
library end-user in database oriented navigation. The interpretation of the possible string that might
follow a question mark ("?") after the two last relative URLs specified above is not mandatory. If this
string is interpreted, the effect shall be to set the library end-user in the selection context specified in
the previous subclause.

13.3 ISO13584_external_file_schema constant definitions

13.3.1 Compiler_version_length

The compiler_version_length is the maximum length of a compiler_version_type.

EXPRESS specification:

*)
CONSTANT

compiler_version_length: INTEGER := 9;
(*

13.3.2 External_file_address_length

The external_file_address_length is the maximum length of an external_file_address.

NOTE 1 This length conforms to ISO 9075. This restriction intends to facilitate development of ISO 13584
LMSs that use existing relational database technology.

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 381

NOTE 2 This part of ISO 13584 does not specify the technology to be used for developing
ISO 13584-conforming implementations.

EXPRESS specification:

*)
external_file_address_length: INTEGER := 18;

(*

13.3.3 External_item_code_length

The external_item_code_length is the maximum length of an external_item_code_type.

EXPRESS specification:

*)
external_item_code_length: INTEGER := 128;

(*

13.3.4 Http_file_name_length

The http_file_name_length is the maximum length of an http_file_name_type.

NOTE Validity of supplier-defined multifiles hypertext links requires that supplier-defined file names and
supplier-defined directory names keep their values on the user file management system.

EXPRESS specification:

*)
http_file_name_length: INTEGER := 128;

(*

13.3.5 Http_directory_name_length

The http_directory_name_length is the maximum length of an http_directory_name_type.

NOTE Validity of supplier-defined multifiles hypertext links requires that supplier-defined file names and
supplier-defined directory names keep their values on the user file management system.

EXPRESS specification:

*)
http_directory_name_length: INTEGER := 128;

END_CONSTANT;
(*

13.4 ISO13584_external_file_schema type definitions

13.4.1 External_file_address

An external_file_address is the physical address of an external file.

ISO 13584-24:2003(E)

382 © ISO 2003 – All rights reserved

EXPRESS specification:

*)
TYPE external_file_address = identifier;
WHERE

WR1: LENGTH(SELF) <= external_file_address_length;
WR2: NOT(SELF LIKE '* *');

END_TYPE; -- external_file_address
(*

Formal propositions:

WR1: the length of file name shall be less or equal to external_file_address_length.

WR2: the name shall not contain any space.

13.4.2 External_item_code_type

The external_item_code_type is the code that identifies a class_extension_external_item.

EXPRESS specification:

*)
TYPE external_item_code_type = identifier;
WHERE

WR1: LENGTH(SELF) <= external_item_code_length;
WR2: NOT(SELF LIKE '* *');

END_TYPE; -- external_item_code_type
(*

Formal propositions:

WR1: the length of file name shall be less or equal to external_item_code_length.

WR2: the name shall not contain any space.

13.4.3 Http_file_name_type

The http_file_name_type is the type of the name of an http_file. This name is intended to be
preserved in the user integrated library.

EXPRESS specification:

*)
TYPE http_file_name_type = identifier;
WHERE

WR1: LENGTH(SELF) <= http_file_name_length;
WR2: NOT(SELF LIKE '* *');
WR3: NOT(SELF LIKE '*.*.*');
WR4: ((NOT(SELF LIKE '*.*'))

AND (LENGTH(SELF) <= http_file_name_length - 4))

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 383

OR ((SELF LIKE '*.?')
AND (LENGTH(SELF) <= http_file_name_length - 2))
OR ((SELF LIKE '*.??')
AND (LENGTH(SELF) <= http_file_name_length - 1))
OR (SELF LIKE '*.???');

END_TYPE; -- http_file_name_type
(*

Formal propositions:

WR1: the length of file name shall not be greater than http_file_name_length.

WR2: the name shall not contain any space.

WR3: the name shall not contain more than one dot (".").

WR4: the name may contain a file extension that consists of one, two or three characters and a name
that contains no more than eight characters.

13.4.4 Http_directory_name_type

The http_directory_name_type is the type of the name of an http_class_directory. This name is
intended to be preserved in the user integrated library.

EXPRESS specification:

*)
TYPE http_directory_name_type = identifier;
WHERE

WR1: LENGTH(SELF) <= http_directory_name_length;
WR2: NOT(SELF LIKE '* *');

END_TYPE; -- http_directory_name_type
(*

Formal propositions:

WR1: the length of the directory name shall not be greater than http_directory_name_length.

WR2: the name shall not contain any space.

13.4.5 MIME_type

The MIME_type is an identifier registered as MIME type by IANA.

EXPRESS specification:

*)
TYPE MIME_type = identifier;
WHERE

WR1: NOT(SELF LIKE '* *');
END_TYPE; -- MIME_type
(*

ISO 13584-24:2003(E)

384 © ISO 2003 – All rights reserved

Formal propositions:

WR1: the name shall not contain any space.

Informal propositions:

IP1: the MIME_type value shall be an identifier registered as MIME type by IANA and its content shall
be identical to the string contained in ftp://ftp.isi.edu/in-notes/iana/assignments/, after removing the
space characters if there are some.

13.4.6 MIME_subtype

The MIME_subtype is an identifier registered as MIME subtype by IANA.

EXPRESS specification:

*)
TYPE MIME_subtype = identifier;
WHERE

WR1: NOT(SELF LIKE '* *');
END_TYPE; -- MIME_subtype
(*

Formal propositions:

WR1: the name shall not contain any space.

Informal propositions:

IP1: the MIME_subtype value shall be an identifier registered as MIME subtype by IANA and it
content shall be identical to the string contained in ftp://ftp.isi.edu/in-notes/iana/assignments/, after
removing the space characters if there are some.

13.4.7 IAB_RFC

An IAB_RFC is an integer that identifies an RFC from the IAB.

EXPRESS specification:

*)
TYPE IAB_RFC = INTEGER;
WHERE

WR1: SELF > 0;
END_TYPE; -- IAB_RFC
(*

Formal propositions:

WR1: the IAB_RFC value shall be positive.

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 385

Informal propositions:

IP1: the IAB_RFC value shall be the identifier of a RFC belonging to the Standard Track of the IAB.

13.4.8 Character_set_type

The character_set_type is the type of the character set encoding of a library external file that contains
characters.

EXPRESS specification:

*)
TYPE character_set_type = identifier;
END_TYPE; -- character_set_type
(*

Informal propositions:

IP1: the character_set_type shall be the identifier of a character-set encoding registered in
IAB RFC 1700 or, possibly, in an IAB RFC that updates IAB RFC 1700.

13.4.9 Content_encoding_type

The content_encoding_type is the type that specifies what sort of encoding transformation the
content of a library external file was subjected to and hence what decoding operation must be used to
restore it to its original form, and it specifies what the domain of the result is. The allowed encodings
are those defined by IAB RFC 2045. They are referenced by the same name as the ones defined in
IAB RFC 2045.

NOTE File encoding might prove necessary during the exchange of a supplier library, whether this
exchange is done by means of some network or not. These files might be decoded during the integration of a
supplier library into the user library. Thus, their content_encoding_type value might be modified during this
integration.

EXPRESS specification:

*)
TYPE content_encoding_type = identifier;
WHERE

WR1: (SELF = '7bit') OR (SELF = '8bit') OR (SELF = 'binary')
OR (SELF = 'quoted-printable') OR (SELF = 'base64');

END_TYPE; -- content_encoding_type
(*

Formal propositions:

WR1: the encoding shall be one of the encodings defined in IAB RFC 2045.

13.4.10 Program_status

A program_status is the type that defines the status of a program provided as a library external file.
Programs provided through external files can be either compiled or represented in a source code
language intended to be either interpreted or compiled.

EXAMPLE 1 FORTRAN programs delivered as object code are examples of compiled programs.

ISO 13584-24:2003(E)

386 © ISO 2003 – All rights reserved

EXAMPLE 2 Parametric models delivered as data model entities are examples of source code programs.

EXPRESS specification:

*)
TYPE program_status = ENUMERATION OF(source, compiled);
END_TYPE; -- program_status
(*

13.4.11 Program_reference_name_type

The program_reference_name_type is the type of a syntactical name of a program.

NOTE View exchange protocols that enable the use of program_references precise the role associated
with the identifiers that define the syntactical names of programs.

EXPRESS specification:

*)
TYPE program_reference_name_type = identifier;
END_TYPE; -- program_reference_name_type
(*

13.4.12 Compiler_version_type

The compiler_version_type is the version associated with a compiler.

NOTE Only restricted patterns of identifiers are allowed.

EXPRESS specification:

*)
TYPE compiler_version_type = identifier;
WHERE

WR1: LENGTH(SELF) <= compiler_version_length;
WR2: control_compiler_version_format(SELF);

END_TYPE; -- compiler_version_type
(*

Formal propositions:

WR1: the length of the identifier representing the version shall be less than or equal to version_len
that specifies the length of a version in the ISO13584_IEC61360_dictionary_schema.

NOTE The ISO13584_IEC61360_dictionary_schema is defined in IEC 61360-2. It is duplicated for
convenience in informative annex D of Part ISO 13584-42.

WR2: the compiler version shall contain only digits, dots, or underscores.

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 387

13.4.13 Illustration_type

An illustration_type is the type that categorises the content of an illustration. It may be a schematic
drawing, a realistic picture, or any other informative element that is not a static picture and whose
format may be defined by a data_protocol.

EXAMPLE 1 A movie is an illustration content that is not a static picture.

EXAMPLE 2 A sound is an illustration content that is not a static picture.

NOTE The categorisation of the contents of the illustrations provided in a supplier library may be used,
for instance, when creating "on the fly" an HTML view of the supplier library.

EXPRESS specification:

*)
TYPE illustration_type = ENUMERATION OF(

schematic_drawing, realistic_picture, not_static_picture);
END_TYPE; -- illustration_type
(*

13.5 ISO13584_external_file_schema entity definitions: external_file_protocols

This clause defines the requirements for the external_file_protocols. An external_file_protocol
entity allows to specify how information provided as external files shall be processed. An
external_file_protocol may be either a program_protocol or a data_protocol, and it may be either
a standard_protocol or a non_standard_protocol.

NOTE 1 Several different external_file_protocols can be used for the different types of files. Libraries
modeled as library_in_standard_formats only use predefined external_file_protocols specified by the library
integrated information model and the set of standard view exchange protocols they reference. For general
libraries, modeled as library's, it is up to the library data supplier to decide to select any
external_file_protocols from international or national Standards (for instance STEP, SGML, SET, IGES or
VDA-FS), from proprietary formats (for instance Postscript or EDIF) or from system-specific exchange formats
(for instance DXF or CATIA® parametric programs).

NOTE 2 library_in_standard_format and library are defined in the
ISO13584_extended_dictionary_schema documented in clause 10.

13.5.1 External_file_protocol

An external_file_protocol is a protocol that shall be used to process a library external file to process
information provided as external files.

EXPRESS specification:

*)
ENTITY external_file_protocol
ABSTRACT SUPERTYPE OF(

(ONEOF(standard_protocol, non_standard_protocol))
ANDOR (ONEOF(program_protocol, data_protocol)));
organisation: organization;
country: OPTIONAL identifier;
protocol_name: identifier;
protocol_version: identifier;
level: OPTIONAL identifier;
designation: item_names;

ISO 13584-24:2003(E)

388 © ISO 2003 – All rights reserved

base_protocol: OPTIONAL program_protocol;
WHERE

WR1: (NOT(SELF.protocol_name LIKE '* *'))
AND (NOT(SELF.protocol_name LIKE '*.*'))
AND (NOT(SELF.protocol_name LIKE '*-*'));

WR2: NOT(SELF.protocol_version LIKE '* *');
END_ENTITY; -- external_file_protocol
(*

Attribute definitions:

organisation: the organisation that specified the protocol.

country: the country where the organisation that specifies the external_file_protocol has its
headquarters.

protocol_name: the identifier specified for the external_file_protocol by the organisation that
specified it, without any space, dot or hyphen character. Underscores are to be used as separators.

protocol_version: an identification of the version of the specified external_file_protocol.

level: the possible level associated with the specified external_file_protocol by the organisation that
specified it.

designation: the item_names of the external_file_protocol.

NOTE 1 Each view exchange protocol shall specify the external_file_protocols that are recognised by an
implementation that claims conformance to this view exchange protocol.

NOTE 2 If more than one level is defined and used in a library, each level is specified by a different
external_file_protocol entity.

base_protocol: the program_protocol to which the program libraries referred to are to be linked.

Formal propositions:

WR1: the protocol_name shall not contain neither space, nor dot nor hyphen.

WR2: the protocol_version shall not contain a space.

Informal propositions:

IP1: the label describing a country shall conform to the codes for representation of names of countries
defined in ISO 3166.

IP2: the country attribute value shall not exist for the external_file_protocols specified by
International Standards.

IP3: the country attribute value shall exist for the external_file_protocols that are not specified by
International Standards. It shall conform to ISO 3166.

13.5.2 Standard_protocol

A standard_protocol is an external_file_protocol specified in a National, or International Standard.

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 389

EXPRESS specification:

*)
ENTITY standard_protocol
ABSTRACT SUPERTYPE OF(ONEOF(standard_simple_program_protocol,

standard_data_protocol))
SUBTYPE OF(external_file_protocol);
END_ENTITY; -- standard_protocol
(*

Informal propositions:

IP1: the protocol_name identifier shall consist of the acronym of the standardisation organisation
followed by the underscore ('_') character, followed by the number of the Standard that specified the
external_file_protocol without any space, dot or hyphen character. Underscores shall be used as
separators.

IP2: when the standard document that specifies the standard protocol does not explicitly specify a
version number for this protocol, the protocol_version shall consist of the version number of the
standard document without any leading space or leading zero; the version number of the first release
of a standard being '1'.

NOTE The content of the strings defining the standard external_file_protocols that are allowed for use
by each library integrated information model or view exchange protocol are defined within the part of ISO 13584
that specifies the corresponding library integrated information model or view exchange protocol.

13.5.3 Non_standard_protocol

A non_standard_protocol is an external_file_protocol specified by an organisation that is neither a
national nor an international standardisation organisation.

EXPRESS specification:

*)
ENTITY non_standard_protocol
ABSTRACT SUPERTYPE OF(ONEOF(non_standard_simple_program_protocol,

non_standard_data_protocol))
SUBTYPE OF(external_file_protocol);
END_ENTITY; -- non_standard_protocol
(*

NOTE The content of the string defining a non_standard_protocol shall be defined by the company that
specified this external_file_protocol.

13.5.4 Data_protocol

A data_protocol is an external_file_protocol that processes data. It can be either a
standard_data_protocol or a non_standard_data_protocol.

EXPRESS specification:

*)
ENTITY data_protocol
ABSTRACT SUPERTYPE OF(ONEOF(standard_data_protocol,

non_standard_data_protocol))

ISO 13584-24:2003(E)

390 © ISO 2003 – All rights reserved

SUBTYPE OF(external_file_protocol);
END_ENTITY; -- data_protocol
(*

13.5.5 Program_protocol

A program_protocol is an external_file_protocol that processes programs, i.e., algorithms that shall
be triggered to generate data. It can be either a linked_interface_program_protocol or a
simple_program_protocol.

EXPRESS specification:

*)
ENTITY program_protocol
ABSTRACT SUPERTYPE OF(ONEOF(

linked_interface_program_protocol,
simple_program_protocol))

SUBTYPE OF(external_file_protocol);
END_ENTITY; -- program_protocol
(*

13.5.6 Simple_program_protocol

A simple_program_protocol is an external_file_protocol that processes programs.

NOTE 1 If it is required to deliver compiled programs, it is up to the library data supplier to define the
compiler_name identifier and the value of compiler_version that enables portability of the object code.

NOTE 2 Exchange of compiled programs are subject to prior agreement between the library data supplier
and the library user.

EXPRESS specification:

*)
ENTITY simple_program_protocol
ABSTRACT SUPERTYPE OF(ONEOF(standard_simple_program_protocol,

non_standard_simple_program_protocol))
SUBTYPE OF(program_protocol);

language: identifier;
status: program_status;
compiler_supplier: OPTIONAL organization;
compiler_name: OPTIONAL identifier;
compiler_version: OPTIONAL compiler_version_type;

WHERE
WR1: ((SELF.status = source)

AND (NOT(EXISTS(SELF.compiler_supplier)))
AND (NOT(EXISTS(SELF.compiler_name)))
AND (NOT(EXISTS(SELF.compiler_version))))
OR ((SELF.status = compiled)
AND (EXISTS(SELF.compiler_supplier))
AND (EXISTS(SELF.compiler_name))
AND (EXISTS(SELF.compiler_version)));

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 391

END_ENTITY; -- simple_program_protocol
(*

Attribute definitions:

language: an identifier that specifies the associated programming language.

status: the status of the program, if it is compiled or in source language.

compiler_supplier: the organisation who provides the compiler used.

compiler_name: the identifier of the compiler, as specified by the library data supplier.

compiler_version: the version of the compiler used, as specified by the library data supplier.

Formal propositions:

WR1: if the status of the program is source, there shall not exist a compiler_name, nor a
compiler_version nor a compiler_supplier. If the status of the program is compiled, there shall
exist a compiler_name, a compiler_supplier and a compiler_version.

13.5.7 Standard_simple_program_protocol

A standard_simple_program_protocol is a program protocol specified by a standardisation
organisation.

EXPRESS specification:

*)
ENTITY standard_simple_program_protocol
SUBTYPE OF(standard_protocol, simple_program_protocol);
WHERE

WR1: NOT EXISTS(SELF\external_file_protocol.base_protocol);
END_ENTITY; -- standard_simple_program_protocol
(*

Formal propositions:

WR1: the base_protocol shall not be defined.

13.5.8 Non_standard_simple_program_protocol

A non_standard_simple_program_protocol is a program protocol that is not specified by a
standardisation organisation.

EXPRESS specification:

*)
ENTITY non_standard_simple_program_protocol
SUBTYPE OF(non_standard_protocol, simple_program_protocol);
WHERE

WR1: NOT EXISTS(SELF\external_file_protocol.base_protocol);

ISO 13584-24:2003(E)

392 © ISO 2003 – All rights reserved

END_ENTITY; -- non_standard_simple_program_protocol
(*

Formal propositions:

WR1: the base_protocol shall not be defined.

13.5.9 Linked_interface_program_protocol

A linked_interface_program_protocol entity is a program_protocol that consists of a base
program_protocol that shall be linked with libraries of programs. This entity provides for defining a
new program_protocol where the supplier programs may reference not only the functions of the base
program_protocol but also the functions defined in these libraries of programs. These libraries are
either delivered in the library exchange context, or referenced.

NOTE The status of the programs associated with a linked_interface_program_protocol is defined by
the simple_program_protocol on which it is based.

EXPRESS specification:

*)
ENTITY linked_interface_program_protocol
SUBTYPE OF(program_protocol);

link_libraries: SET [1:?] OF program_library_BSU;
WHERE

WR1: QUERY(pl <* SELF.link_libraries
| (SIZEOF(pl\basic_semantic_unit.referenced_by) > 0)
AND (pl\basic_semantic_unit.referenced_by[1]
\external_item.used_protocol <> SELF.base_protocol)) = [];

WR2: NOT('ISO13584_EXTERNAL_FILE_SCHEMA.STANDARD_PROTOCOL'
IN TYPEOF(SELF)) AND
NOT('ISO13584_EXTERNAL_FILE_SCHEMA.NON_STANDARD_PROTOCOL'
IN TYPEOF(SELF));

WR3: EXISTS(base_protocol)
AND ('ISO13584_EXTERNAL_FILE_SCHEMA.PROGRAM_PROTOCOL'
IN TYPEOF(base_protocol));

END_ENTITY; -- linked_interface_program_protocol
(*

Attribute definitions:

link_libraries: the set of program libraries that need to be linked with the base_protocol to build up
the referred linked_interface_program_protocol.

Formal propositions:

WR1: the base_protocol shall be the program_protocol to which each program library is associated
in its program_library_content definition.

WR2: the linked_interface_program_protocol shall not be a standard_protocol nor a
non_standard_protocol.

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 393

WR3: the base_protocol attribute shall be defined, and it shall be a program_protocol.

13.5.10 Standard_data_protocol

A standard_data_protocol entity is a data protocol specified by a standardisation organisation.

EXPRESS specification:

*)
ENTITY standard_data_protocol
SUBTYPE OF(data_protocol, standard_protocol);
WHERE

WR1: NOT EXISTS(SELF\external_file_protocol.base_protocol);
END_ENTITY; -- standard_data_protocol
(*

Formal propositions:

WR1: the base_protocol shall not be defined.

13.5.11 Non_standard_data_protocol

A non_standard_data_protocol is a data_protocol specified by a private company.

EXPRESS specification:

*)
ENTITY non_standard_data_protocol
SUBTYPE OF(data_protocol, non_standard_protocol);
WHERE

WR1: NOT EXISTS(SELF\external_file_protocol.base_protocol);
END_ENTITY; -- non_standard_data_protocol
(*

Formal propositions:

WR1: the base_protocol shall not be defined.

13.5.12 Http_protocol

An http_protocol is a data_protocol specified by a RFC registered as standard by the IAB.

EXPRESS specification:

*)
ENTITY http_protocol
SUBTYPE OF(standard_data_protocol);

http_RFC: IAB_RFC;
END_ENTITY; -- http_protocol
(*

ISO 13584-24:2003(E)

394 © ISO 2003 – All rights reserved

Attribute definitions:

http_RFC: the number of the RFC registered as standard by the IAB that specifies the used version of
the http protocol.

Informal propositions:

IP1: the name of the protocol shall be the http protocol or one of its specialisation or updating as
defined by the authorisation in charge the Internet protocols.

EXAMPLE The https protocol is a specialization of the http protocol.

NOTE The current authority in charge of the http protocol is the Internet Engineering Task Force.

13.6 ISO13584_external_file_schema entity definitions: dictionary external items

This subclause specifies the different items supplied by means of library external files and identified by
a basic_semantic_unit. They can be either program libraries, or documents.

NOTE Basic_semantic_unit is defined in the common ISO/IEC dictionary schema documented in
IEC 61360-2 and quoted in ISO 13584-42.

These external_items are dictionary_external_items: they are associated with a
dictionary_element and are referred to by the BSU mechanism defined in the ISO/IEC common
dictionary schema.

13.6.1 External_item

An external_item entity is any item whose content may be provided as library external file(s). It refers
to an external_file_protocol that specifies how the library external file(s) shall be processed, and to
an external_content that specifies the library external file(s) that represents its content. This abstract
resource shall be subtyped when an external_item is used in order to specify the meaning of this
external_item.

EXPRESS specification:

*)
ENTITY external_item
ABSTRACT SUPERTYPE OF(ONEOF(dictionary_external_item,

class_extension_external_item,
property_value_external_item));
used_protocol: external_file_protocol;
content: external_content;

END_ENTITY; -- external_item
(*

Attribute definitions:

used_protocol: the external_file_protocol that specifies how the library external file(s) shall be
processed.

content: the library external file(s) that represent the external_item content.

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 395

13.6.2 Dictionary_external_item

A dictionary_external_item entity is any external_item that is identified by a basic_semantic_unit
and that may be referred to by the BSU mechanism defined in the ISO/IEC common dictionary
schema. A dictionary_external_item may be updated alone. It has a revision that characterises the
updating.

NOTE 1 A basic_semantic_unit also has a version number that is part of its identification.

EXPRESS specification:

*)
ENTITY dictionary_external_item
ABSTRACT SUPERTYPE OF(ONEOF(supplier_BSU_related_content,

class_BSU_related_content))
SUBTYPE OF(content_item, external_item);

revision: revision_type;
END_ENTITY; -- dictionary_external_item
(*

Attribute definitions:

revision: the revision_type that characterises the updating of the dictionary_external_item.

Informal propositions:

IP1: revision numbers shall be issued in ascending order for each value of the version of a
basic_semantic_unit.

IP2: a new revision number of a dictionary_external_item shall be defined when a change in the
external_content that describes this dictionary_external_item influences neither its meaning nor its
use.

NOTE 2 This informal proposition states that when updating a library an old revision may be replaced by a
new one without any consequence on the functional behaviour of the integrated library.

13.6.3 Supplier_BSU_related_content

A supplier_BSU_related_content entity is a dictionary_external_item whose basic_semantic_unit
is a supplier_related_BSU.

EXPRESS specification:

*)
ENTITY supplier_BSU_related_content
ABSTRACT SUPERTYPE OF(program_library_content)
SUBTYPE OF(dictionary_external_item);

SELF\content_item.dictionary_definition: supplier_related_BSU;
END_ENTITY; -- supplier_BSU_related_content
(*

ISO 13584-24:2003(E)

396 © ISO 2003 – All rights reserved

Attribute definitions:

SELF\content_item.dictionary_definition: the supplier_related_BSU that identifies the
dictionary_external_content.

13.6.4 Program_library_content

A program_library_content is the content of a program library. It refers to a program_protocol that
specifies how it shall be processed. It is identified by a program_library_BSU.

EXPRESS specification:

*)
ENTITY program_library_content
SUBTYPE OF(supplier_BSU_related_content);

SELF\content_item.dictionary_definition: program_library_BSU;
SELF\external_item.used_protocol: program_protocol;

END_ENTITY; -- program_library_content
(*

Attribute definitions:

SELF\content_item.dictionary_definition: the program_library_BSU that identifies the
program_library_content.

SELF\external_item.used_protocol: the program_protocol that specifies how the
program_library_content shall be processed.

Informal propositions:

IP1: all the revisions that correspond to the same program_library_BSU version shall use the same
program_protocol and shall contain a set of programs that provide the same referencable
specifications. The only permitted changes are those that affect the bodies of these programs, or the
programs that are used internally in the bodies of the referencable programs.

NOTE This informal proposition states that when updating a library, an old revision may be replaced by a
new one without any consequence on the functional behaviour of the integrated library.

13.6.5 Class_BSU_related_content

A class_BSU_related_content entity is a dictionary_external_item whose basic_semantic_unit is
a class_related_BSU.

EXPRESS specification:

*)
ENTITY class_BSU_related_content
ABSTRACT SUPERTYPE OF(document_content)
SUBTYPE OF(dictionary_external_item);

SELF\content_item.dictionary_definition: class_related_BSU;
END_ENTITY; -- class_BSU_related_content
(*

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 397

Attribute definitions:

SELF\content_item.dictionary_definition: the class_related_BSU that identifies the
dictionary_external_content.

13.6.6 Document_content

A document_content is the content of a document. It refers to a data_protocol that specifies how it
shall be processed. It is identified by a document_BSU.

EXPRESS specification:

*)
ENTITY document_content
SUBTYPE OF(class_BSU_related_content);

SELF\content_item.dictionary_definition: document_BSU;
SELF\external_item.used_protocol: data_protocol;

END_ENTITY; -- document_content
(*

Attribute definitions:

SELF\content_item.dictionary_definition: the document_BSU that identifies the
document_content.

SELF\external_item.used_protocol: the data_protocol that specifies how the document_content
shall be processed.

Informal propositions:

IP1: all the revisions that correspond to the same document_BSU version shall have a content that
corresponds to the same document_element dictionary_definition. The changes identified by
different revisions can be typo corrections, addition of new translations or change of the protocol to be
used to process the document_content.

13.7 ISO13584_external_file_schema entity definition: class extension external
items

This subclause specifies the different items that are supplied by means of library external files and that
are part of the extension of a class. They can be representations, programs or dialogue resources.

Programs, representations and dialogue resources are class_extension_external_items. They are
referred to directly by the model_class_extensions they belong to through their entity name. They
shall be updated as a whole when a new release of the model_class_extension is delivered.

The following planning model outlines the structure of the different categories of
class_extension_external_items.

NOTE This planning model uses the EXPRESS-G graphical notation for the EXPRESS language, but, for
clarification of the diagram, some of the relationships that are defined in the EXPRESS model are omitted, and
some inter-schema references are not represented.

ISO 13584-24:2003(E)

398 © ISO 2003 – All rights reserved

1

representation
_reference

program
_reference

dialogue
_resource

1

content

used_protocol

INV
belongs_to

illustration message

1

A6_illustration A9_illustration

external_item

class_extension_external_item ISO13584_library_extension_
schema.model_class_extension

Figure 9 — Class_extension_external_items planning model

13.7.1 Class_extension_external_item

A class_extension_external_item entity is any external_item that is part of the content of a
model_class_extension. A class_extension_external_item is not associated with a BSU. It has
neither version nor revision. It belongs to only one model_class_extension and it is intended to be
updated as a whole when a new release of the model_class_extension is delivered. It is associated
with an external_item_code_type that shall be unique for the model_class_extension to which it
belongs.

EXPRESS specification:

*)
ENTITY class_extension_external_item
ABSTRACT SUPERTYPE OF(ONEOF(dialogue_resource,

representation_reference, program_reference))
SUBTYPE OF(external_item);

code: external_item_code_type;
INVERSE

belongs_to: model_class_extension FOR referenced_external_items;
UNIQUE

UR1: code, belongs_to;
END_ENTITY; -- class_extension_external_item
(*

Attribute definitions:

code: the external_item_code_type that identifies the class_extension_external_item in its class.

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 399

belongs_to: the model_class_extension to which the class_extension_external_item belongs.

Formal propositions:

UR1: the code shall be unique for the model_class_extension to which the
class_extension_external_item belongs.

13.7.2 Representation_reference

A representation_reference is a reference to a representation of a library item whose content is
provided as part of library external file(s). In the library delivery file, the representation_reference
enables to refer to this representation.

The representation_reference contains an optional attribute, called representation_id, that enables
to specify one particular element of the external_content associated with representation_reference.
The nature of the external description and the role of the representation_id shall be specified by the
data_protocol referenced by the representation_reference.

EXAMPLE The target of a representation_reference may be a product representation defined in a file
conformant with some ISO 10303 Application Protocol. In this case, the representation_id might be defined by
the data_protocol that enables to reference such a file, as the label assigned to an EXPRESS entity instance of
this file by an external_referent_assignment entity.

NOTE The information model of a representation is defined in ISO 10303-43. The information model of
an external_referent_assignment and label are defined in ISO 10303-41.

EXPRESS specification:

*)
ENTITY representation_reference
SUBTYPE OF(class_extension_external_item);

SELF\external_item.used_protocol: data_protocol;
representation_id: OPTIONAL label;

END_ENTITY; -- representation_reference
(*

Attribute definitions:

SELF\external_item.used_protocol: the data_protocol that needs to be used to process the
external file(s) that contains the referenced representation.

representation_id: the possible label that corresponds to the referenced representation in the
external_content that corresponds to the representation_reference program_reference.

13.7.3 Program_reference

A program_reference entity is a reference to an algorithm whose contents is provided as library
external file(s). This algorithm shall be triggered to generate one representation of an item of an
item_class. A program_reference provides the information about the program name and
parameters.

NOTE The allowed types for parameters and the allowed syntactical names for programs shall be
specified in the view exchange protocols that use this resource construct.

ISO 13584-24:2003(E)

400 © ISO 2003 – All rights reserved

EXPRESS specification:

*)
ENTITY program_reference
SUBTYPE OF(class_extension_external_item);

SELF\external_item.used_protocol: program_protocol;
syntactical_name: program_reference_name_type;
in_parameters: LIST [0:?] OF property_or_data_type_BSU;
out_parameters: LIST [0:?] OF property_or_data_type_BSU;
inout_parameters: LIST [0:?] OF property_or_data_type_BSU;

END_ENTITY; -- program_reference
(*

Attribute definitions:

SELF\class_extension_external_item.used_protocol: the program_protocol that needs to be
used to process the external file(s).

syntactical_name: the name by which the program shall be triggered.

in_parameters: the list of property_or_data_type_BSUs that specifies the types of the input
parameters of the referenced program.

out_parameters: the list of property_or_data_type_BSUs that specifies the types of the output
parameters of the referenced program.

inout_parameters: the list of property_or_data_type_BSUs that specifies the types of the inout
parameters of the referenced program.

13.7.4 Dialogue_resource

A dialogue_resource is an informative item intended to be automatically displayed by the LMS in
some given work contexts.

EXPRESS specification:

*)
ENTITY dialogue_resource
ABSTRACT SUPERTYPE OF(ONEOF(message, illustration))
SUBTYPE OF(class_extension_external_item);

SELF\external_item.used_protocol: data_protocol;
END_ENTITY; -- dialogue_resource
(*

Attribute definitions:

SELF\class_extension_external_item.used_protocol: the data_protocol that needs to be used to
process the external file.

13.7.5 Message

A message is a text that shall be short, typically up to 256 characters, and that shall be automatically
displayed on the screen by the user library management system within a clearly defined work context.

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 401

A message is not associated with any particular window dimension. It may be provided in different
languages and shall be processed through a certain data_protocol.

EXPRESS specification:

*)
ENTITY message
SUBTYPE OF(dialogue_resource);
END_ENTITY; -- message
(*

13.7.6 Illustration

An illustration is an informative item that is not a simple textual message. It may be a schematic
drawing, a realistic picture, or any other informative element that is not a static picture and whose
format may be defined by a data_protocol. It may be associated with an idea of window dimension
that is intended to be filled when the illustration is displayed in a certain context. Two subtypes of
illustration, the dimension of which are specified, exist.

NOTE 1 The role of an illustration in a supplier library is defined by the entity that references it. For
example, it may be automatically displayed on the screen by the LMS within a clearly defined work context.

NOTE 2 An illustration is a specialisation of a graphics entity defined in ISO 13584-42. Another
specialisation of a graphics entity is a referenced_graphics defined in the
ISO13584_extended_dictionary_schema. The illustration_is_not_a_referenced_graphics_rule ensures that
both subtypes are incompatible.

EXPRESS specification:

*)
ENTITY illustration
SUPERTYPE OF(ONEOF(A6_illustration, A9_illustration))
SUBTYPE OF(dialogue_resource, graphics);

kind_of_content: illustration_type;
width: OPTIONAL length_measure_with_unit;
height: OPTIONAL length_measure_with_unit;

WHERE
WR1: (NOT EXISTS(SELF.width) AND NOT EXISTS(SELF.height))

OR (EXISTS(SELF.width) AND EXISTS(SELF.height));
END_ENTITY; -- illustration
(*

Attribute definitions:

kind_of_content: categorisation of the illustration content according to the taxonomy defined by the
illustration_type data type.

width: the width of the window recommended by the library data supplier for viewing the illustration.

height: the height of the window recommended by the library data supplier for viewing the illustration.

Formal propositions:

WR1: either both width and height shall exist, or none of these attributes shall exist.

ISO 13584-24:2003(E)

402 © ISO 2003 – All rights reserved

13.7.7 A6_illustration

An A6_illustration is an illustration of which the library data supplier ensures that it may be displayed
in a window of size A6.

NOTE 1 This part of ISO 13584 requests some illustrations provided by a library data supplier to be
A6_illustration

NOTE 2 The intended roles of illustrations of A6 size include the following:

— to display the meaning of properties of a general model class,

— to display the meaning of free model properties of a functional model class,

— to display the views defined by a functional models class.

NOTE 3 The width and height recommended by the library data supplier, as defined by the width and
height attributes, for viewing the illustration may be different from size A6. The optimal size for viewing the
illustration is defined by the width and height attributes. A window of size A6 is also acceptable for displaying it.

EXPRESS specification:

*)
ENTITY A6_illustration
SUBTYPE OF(illustration);
END_ENTITY; -- A6_illustration
(*

13.7.8 A9_illustration

An A9_illustration is an illustration of which the library data supplier ensures that it may be displayed
in a window of size A9.

NOTE 1 This part of ISO 13584 requests some illustrations provided by a library data supplier to be
A9_illustration

NOTE 2 One intended role of an illustration of A9 size is to represent the class in a menu driven
hierarchical access.

NOTE 3 The width and height recommended by the library data supplier, as defined by the width and
height attributes, for viewing the illustration may be different from size A9. The optimal size for viewing the
illustration is defined by the width and height attributes. A window of size A9 is also acceptable for displaying it.

EXPRESS specification:

*)
ENTITY A9_illustration
SUBTYPE OF(illustration);
END_ENTITY; -- A9_illustration
(*

13.8 ISO13584_external_file_schema entity definition:
property_value_external_item

This subclause specifies how to define a property value by means of library external files.

EXAMPLE the content of such external files might be icons that show the value of a property named
"simplified picture of a jack" defined in some jack class

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 403

A property_value_external_item is an external_item that may constitute the value of any property
the data type of which is defined as an entity_instance_type, the type_name attribute of which
contains 'ISO13584_EXTERNAL_FILE_SCHEMA.PROPERTY_VALUE_EXTERNAL_ITEM'.

NOTE 1 property_value_external_item is defined as a PLIB_entity_instance_value and thus as a
primitive_valuein the ISO13584_instance_resource_schema documented in clause 6.

NOTE 2 Type checking for property values is ensured by WR1 of the property_value entity documented in
clause 6..

NOTE 3 entity_instance_type is defined in the ISO13584_IEC61360_dictionary_schema documented in
ISO 13584-42:1998.

EXPRESS specification:

*)
ENTITY property_value_external_item
SUBTYPE OF(external_item);
END_ENTITY; -- property_value_external_item
(*

13.9 ISO13584_external_file_schema rule definition

13.9.1 Unique_http_file_name_per_supplier_element_rule rule

The unique_http_file_name_per_supplier_element_rule rule checks that all the http_files
associated with the different supplier_related_BSUs that correspond to the same supplier_BSU
have different file names. If the supplier_element is not available, the rule is not violated.

NOTE All the http_files associated with the different supplier_related_BSUs that correspond to the
same supplier_BSU are intended to be stored in the same directory on the user local Internet server.

EXPRESS specification:

*)
RULE unique_http_file_name_per_supplier_element_rule FOR(

supplier_BSU);
WHERE

WR1: QUERY(sup_BSU <* supplier_BSU | (SIZEOF
(sup_BSU.definition) = 1) AND
(QUERY(fil_1 <* supplier_associated_http_files(sup_BSU)
| QUERY(fil_2 <* supplier_associated_http_files(sup_BSU)
| fil_1.http_file_name = fil_2.http_file_name)
<> [fil_1]) <> []))
= [];

END_RULE; -- unique_http_file_name_per_supplier_element_rule
(*

Formal propositions:

WR1: all the http_files associated with the different supplier_related_BSUs that correspond to the
same supplier_BSU shall have different file names.

ISO 13584-24:2003(E)

404 © ISO 2003 – All rights reserved

13.9.2 Unique_http_directory_name_per_supplier_rule rule

The unique_http_directory_name_per_supplier_rule rule checks that all the
http_class_directory's associated with the same supplier_BSU have different names.

NOTE All the http_class_directoryies associated with the same supplier_BSU are intended to be
subdirectories of the same directory on the user local Internet server.

EXPRESS specification:

*)
RULE unique_http_directory_name_per_supplier_rule FOR(

http_class_directory);
WHERE

WR1: QUERY(dir_1 <* http_class_directory
| QUERY(dir_2 <* http_class_directory
| (dir_1.name = dir_2.name) AND
(dir_1.class.defined_by = dir_2.class.defined_by))
<> [dir_1])
= [];

END_RULE; -- unique_http_directory_name_per_supplier_rule
(*

Formal propositions:

WR1: all the http_class_directory’s associated with the same supplier_BSU shall have different
names.

13.9.3 No_http_directory_for_supplier_related_file_rule rule

The no_http_directory_for_supplier_related_file_rule rule checks that all the http_files belonging
to a supplier_BSU_related_content are not associated with an http_class_directory.

NOTE The name of the directory intended to contain http_files belonging to
supplier_BSU_related_content should be implementation dependent.

EXAMPLE One particular implementation may use the supplier code of a supplier as the name of the
directory intended to contain the http_files belonging to supplier_BSU_related_content relating to this
supplier. If the length of this name can not be supported on the user LMS, an implementation dependent
abbreviation might be used.

EXPRESS specification:

*)
RULE no_http_directory_for_supplier_related_file_rule FOR(

http_file, supplier_bsu_related_content);
WHERE

WR1: QUERY(http_f <* http_file |
(('ISO13584_EXTERNAL_FILE_SCHEMA' +
'.SUPPLIER_BSU_RELATED_CONTENT'
IN TYPEOF(http_f\external_file_unit.unit_of
.content_of.content_of))
AND EXISTS(http_f.http_directory))) = [];

END_RULE; -- no_http_directory_for_supplier_related_file_rule

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 405

(*

Formal propositions:

WR1: all the http_files belonging to a supplier_BSU_related_content shall not be associated with an
http_class_directory.

13.9.4 Http_directory_refers_to_bsu_related_class_rule rule

The http_directory_refers_to_bsu_related_class_rule rule checks that all the http_files belonging
to a class_BSU_related_content are associated with an http_class_directory.

NOTE The name of the http_class_directory where the LMS shall store the http_files corresponding to
each library class is defined by the library data supplier. This mechanism enable the library data supplier to
define hypertext links between documents that remain valid once the documents are stored on the user site.

EXPRESS specification:

*)
RULE http_directory_refers_to_bsu_related_class_rule FOR(

http_file, class_bsu_related_content);
WHERE

WR1: QUERY(http_f <* http_file |
(('ISO13584_EXTERNAL_FILE_SCHEMA' +
'.CLASS_BSU_RELATED_CONTENT'
IN TYPEOF(http_f\external_file_unit.unit_of
.content_of.content_of))
AND (http_f.http_directory.class <> http_f\
external_file_unit.unit_of.content_of.content_of
\content_item.dictionary_definition.name_scope))) = [];

END_RULE; -- http_directory_refers_to_bsu_related_class_rule
(*

Formal propositions:

WR1: all the http_files belonging to a class_BSU_related_content shall be associated with an
http_class_directory.

13.9.5 Http_directory_refers_to_class_extension_rule rule

The http_directory_refers_to_class_extension_rule rule checks that for each http_file belonging to
a class_extension_external_item, the class_BSU referenced by this
class_extension_external_item is the same as the class_BSU referenced by the
http_class_directory intended to contain this http_file.

EXPRESS specification:

*)
RULE http_directory_refers_to_class_extension_rule FOR(

http_file, class_extension_external_item);
WHERE

WR1: QUERY(http_f <* http_file |
('ISO13584_EXTERNAL_FILE_SCHEMA' +

ISO 13584-24:2003(E)

406 © ISO 2003 – All rights reserved

'.CLASS_EXTENSION_EXTERNAL_ITEM'
IN TYPEOF(http_f\external_file_unit.unit_of
.content_of.content_of))
AND (http_f.http_directory.class <> http_f\
external_file_unit.unit_of.content_of.content_of
\class_extension_external_item.belongs_to
\content_item.dictionary_definition)) = [];

END_RULE; -- http_directory_refers_to_class_extension_rule
(*

Formal propositions:

WR1: for each http_file belonging to a class_extension_external_item, the class_BSU referenced
by this class_extension_external_item shall be the same as the class_BSU referenced by the
http_class_directory intended to contain this http_file.

13.9.6 Illustration_is_not_a_referenced_graphics_rule rule

The illustration_is_not_a_referenced_graphics_rule rule ensures that a graphics entity cannot be
both a referenced_graphics and an illustration.

NOTE graphics is defined in the ISO13584_IEC61360_dictionary_schema and documented in
ISO 13584-42. referenced_graphics is defined in the ISO13584_extended_dictionary_schema, documented
in this part of ISO 13584. illustration is defined in the ISO13584_exterenal_file_schema, documented in this
part of ISO 13584.

EXPRESS specification:

*)
RULE illustration_is_not_a_referenced_graphics_rule FOR(

graphics);
WHERE

WR1: QUERY(icon <* graphics |
('ISO13584_EXTENDED_DICTIONARY_SCHEMA.REFERENCED_GRAPHICS'
IN TYPEOF(icon))
AND ('ISO13584_EXTERNAL_FILE_SCHEMA.ILLUSTRATION'
IN TYPEOF(icon))) = [];

END_RULE; -- illustration_is_not_a_referenced_graphics_rule
(*

Formal propositions:

WR1: a graphics entity cannot be both a referenced_graphics and an illustration.

13.10 ISO13584_external_file_schema entity definitions: external content

This subclause introduces the resource constructs for associating an external_item with the library
external file(s) that defines its content. This content may be provided in different languages.

An external_content is the information model of the above content. It may or may not be translated
and consists of language_specific_content.

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 407

Each language_specific_content describes the content in one specific language. This information
may be provided by several external_file_units.

Each external_file_unit corresponds to one library external file. It is an http_file when the referenced
external_file_protocol is the http_protocol.

The following planning model outlines the relationships between an external_item and the library
external file(s) that define(s) its content.

(ABS)
external_file

_protocol

translated_
_external_content

not_translated_
_external_content

(ABS)
external_item

(ABS)
external_content

external_file
_unit

language_
_specific_content

1

http_file

content
consists_of

L[1:?]
content_files

S[1:?]

used_protocol

(INV)
content_of

(INV)
content_of

(INV)
unit_of

not_translatable_
_external_content

Figure 10 — External_content planning model

NOTE This planning model uses the EXPRESS-G graphical notation for the EXPRESS language, but, for
clarification of the diagram, some of the relationships that are defined in the EXPRESS model are omitted, and
inter-schema references are not represented.

13.10.1 External_content

An external_content entity is the content of an external_item.

EXPRESS specification:

*)
ENTITY external_content
ABSTRACT SUPERTYPE OF(ONEOF(

translated_external_content,
not_translated_external_content,
not_translatable_external_content));
consists_of: LIST[1:?] OF language_specific_content;

INVERSE
content_of: external_item FOR content;

END_ENTITY; -- external_content
(*

Attribute definitions:

consists_of: the list of language_specific_contents that represent the content of the external_item.

NOTE The list order defined for the external_content consists_of attribute is only meaningful in the
translated_external_content entity.

ISO 13584-24:2003(E)

408 © ISO 2003 – All rights reserved

content_of: the external_item whose content is represented by the external_content.

13.10.2 Translated_external_content

A translated_external_content is the content of an external_item, provided in different languages.

EXPRESS specification:

*)
ENTITY translated_external_content
SUBTYPE OF(external_content);

languages: present_translations;
WHERE

WR1: SIZEOF(SELF\external_content.consists_of)
= SIZEOF(SELF.languages.language_codes);

END_ENTITY; -- translated_external_content
(*

Attribute definitions:

languages: the different languages in which the external_item content is provided.

Formal propositions:

WR1: the number of existing language_specific_contents shall be equal to the number of translation
languages.

Informal propositions:

IP1: the i-th language_specific_content specified by the external_content consists_of attribute
provides the external_item in the i-th language specified by the languages attribute.

13.10.3 Not_translated_external_content

A not_translated_external_content is the content of an external_item that is provided in one
particular language defined by a global_language_assignment.

NOTE The global_language_assignment entity is defined in the language_resource_schema
documented in IEC 61360-2.

EXPRESS specification:

*)
ENTITY not_translated_external_content
SUBTYPE OF(external_content);
WHERE

WR1: SIZEOF(SELF\external_content.consists_of) = 1;
END_ENTITY; -- not_translated_external_content
(*

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 409

Informal propositions:

IP1: the language_specific_content specified by the external_content consists_of attribute
provides the external_item in the language specified by a global_language_assignment entity.

13.10.4 Not_translatable_external_content

A not_translatable_external_content is the content of an external_item that may be used in any
particular language.

EXAMPLE A geometric representation without any textual information is a
not_translatable_external_content that may be associated with a representation_reference

EXPRESS specification:

*)
ENTITY not_translatable_external_content
SUBTYPE OF(external_content);
WHERE

WR1: SIZEOF(SELF\external_content.consists_of) = 1;
END_ENTITY; -- not_translatable_external_content
(*

Informal propositions:

IP1: the language_specific_content shall be meaningful in any particular language.

13.10.5 Language_specific_content

A language_specific_content is the content of an external_item, in a particular language. It may
consist of several external_file_units with internal references, one of them being possibly the
main_file file. When there exists a main_file file, all the references to the external_item stand for
references to this file. All other external_file_units may only be accessed from the main_file file by
the internal referencing mechanism specific to the external_file_protocol used.

EXAMPLE The http_protocol defines an internal referencing mechanism by means of hyper-text links. When
this external_file_protocol is used for some external_item, wherever this external_item is referenced, the
main_file file shall be displayed by the user LMS. Other external_file_units may only be accessed by the user
and displayed by the user LMS through hyper-text links from the main_file file.

EXPRESS specification:

*)
ENTITY language_specific_content;

content_files: SET [1:?] OF external_file_unit;
main_file: OPTIONAL external_file_unit;
character_encoding: OPTIONAL character_set_type;

INVERSE
content_of: external_content FOR consists_of;

WHERE
WR1: NOT EXISTS(main_file) OR (main_file IN content_files);
WR2: EXISTS(main_file) XOR

('ISO13584_EXTERNAL_FILE_SCHEMA.PROGRAM_LIBRARY_CONTENT'
IN TYPEOF(SELF.content_of.content_of));

ISO 13584-24:2003(E)

410 © ISO 2003 – All rights reserved

WR3: EXISTS(character_encoding) OR NOT
('ISO13584_EXTERNAL_FILE_SCHEMA.HTTP_PROTOCOL'
IN TYPEOF(SELF.content_of.content_of.used_protocol));

END_ENTITY; -- language_specific_content
(*

Attribute definitions:

content_files: the external_file_units that define the content of the external_item in a particular
language.

main_file: the external_file_unit that is to be processed (for instance, displayed) wherever the
external_item is referenced to be processed during library usage.

character_encoding: the particular character encoding used in all the external_file_units of the
language_specific_content that contain characters.

content_of: the external_content that is defined in one particular language by the
language_specific_content.

Formal propositions:

WR1: the main_file shall be one of the content_files.

WR2: there shall exist a main_file but if the external_item is a program_library_content.

WR3: the character_encoding shall exist when the http_protocol is used.

Informal propositions:

IP1: the character_encoding shall exist when ever the language_specific_content contains
characters and the data_protocol used enables several character_encodings.

13.10.6 External_file_unit

An external_file_unit is a library external file.

EXPRESS specification:

*)
ENTITY external_file_unit
SUPERTYPE OF(http_file);

file: external_file_address;
content_encoding: OPTIONAL content_encoding_type;

INVERSE
unit_of: language_specific_content FOR content_files;

WHERE
WR1: (('ISO13584_EXTERNAL_FILE_SCHEMA.HTTP_PROTOCOL'

IN TYPEOF(SELF.unit_of.content_of.content_of.used_protocol))
AND ('ISO13584_EXTERNAL_FILE_SCHEMA.HTTP_FILE'
IN TYPEOF(SELF)))
XOR NOT

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 411

(('ISO13584_EXTERNAL_FILE_SCHEMA.HTTP_PROTOCOL'
IN TYPEOF(SELF.unit_of.content_of.content_of.used_protocol))
OR ('ISO13584_EXTERNAL_FILE_SCHEMA.HTTP_FILE'
IN TYPEOF(SELF)));

END_ENTITY; -- external_file_unit
(*

Attribute definitions:

file: the library external file represented by the external_file_unit.

content_encoding: if present, the encoding transformation performed on the content of the library
external file represented by the external_file_unit.

NOTE The allowed encoding transformation are those defined by IAB RFC 2045.

unit_of: the language_specific_content to which the external_file_unit belongs.

Formal propositions:

WR1: the external_file_unit shall not correspond to an external_item associated with the
http_protocol, otherwise it shall be an http_file subtype.

13.10.7 Http_file

An http_file is a library external file that is a MIME-like file and that may contain references to other
Internet resources by means of http URLs. An http_file is associated with the http_protocol. It
references in particular, an http_file_name_type, that specifies the name that shall be associated to
this file on the user local Internet server, and when this file relates to a class, an http_class_directory
that specifies the name of the directory where this file shall be stored on the user local Internet server.

NOTE 1 When an http_file relates to a supplier_BSU_related_document, the name of its directory on
the user local Internet server is not specified; therefore it cannot be accessed by library data supplier-defined
hyper-text links.

EXPRESS specification:

*)
ENTITY http_file
SUBTYPE OF(external_file_unit);

mime: MIME_type;
exchange_format: MIME_subtype;
format_RFC: OPTIONAL IAB_RFC;
http_file_name: http_file_name_type;
http_directory: OPTIONAL http_class_directory;
remote_access: OPTIONAL absolute_URL_type;

UNIQUE
UR1: http_file_name, http_directory;

WHERE
WR1: EXISTS(http_directory) XOR

('ISO13584_EXTERNAL_FILE_SCHEMA.SUPPLIER_BSU_RELATED_CONTENT'
IN TYPEOF(SELF.unit_of.content_of.content_of));

WR1: NOT EXISTS(http_directory) XOR
('ISO13584_EXTERNAL_FILE_SCHEMA.CLASS_EXTENSION_EXTERNAL_ITEM'

ISO 13584-24:2003(E)

412 © ISO 2003 – All rights reserved

IN TYPEOF(SELF.unit_of.content_of.content_of));
END_ENTITY; -- http_file
(*

Attribute definitions:

mime: the MIME type of the http file.

exchange_format: the MIME subtype of the http file.

format_RFC: the possible IAB RFC that defines the MIME subtype.

EXAMPLE 1 IAB RFC 1866 defines the HTML MIME text subtype.

EXAMPLE 2 IAB RFC 2376 [6] is an informational protocol that defines the XML MIME text subtype and the
XML MIME application subtype.

http_file_name: the file name to be assigned to the http file on the local Internet server.

http_directory: the optional directory to be assigned to the http file on the local Internet server.

remote_access: the possible absolute URL where the http file may be found on an Internet site.

Formal propositions:

UR1: the http_file_name shall be unique within an http_class_directory.

WR1: the http_class_directory shall exist but if the http_file relates to a
supplier_BSU_related_content.

WR1: the http_class_directory shall not exist but if the http_file relates to a
class_extension_external_item.

Formal propositions:

IP1: only mime MIME type and exchange_format MIME subtype values that are registered by IANA
are allowed for use by this part of ISO 13584.

NOTE 2 Apart private agreement between the sender and the receiver, this part of ISO 13584 strongly
recommends to restrict to a small number of formats that are:

— mature;

— stable;

— unambiguously characterised by MIME Content-Type, i.e., type and subtype;

— publicly available or associated with public domain Internet-available readers.

NOTE 3 Format of MIME-like files whose Content-Type corresponds to specifications that are not publicly
available, and that are not associated with public domain Internet-available readers are forbidden for any non
extended conformance class of any of the three library integrated information models defined in this part of
ISO 13584. This constraint is stated in annex E, I and M.

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 413

13.10.8 Http_class_directory

An http_class_directory entity specifies the name of the directory where an http_file shall be stored
on the user local Internet server. Each http_class_directory refers to one class and each class that
is associated with http_files is referenced by exactly one http_class_directory.

EXPRESS specification:

*)
ENTITY http_class_directory;

name: http_directory_name_type;
class: class_BSU;

UNIQUE
UR1: class;

END_ENTITY; -- http_class_directory
(*

Attribute definitions:

name: the name of the directory where an http_file shall be stored on the user local Internet server.

class: the referred class of the http_class_directory.

Formal propositions:

UR1: there shall be at most one http_class_directory per class.

13.11 ISO13584_external_file_schema function definitions

13.11.1 Supplier_associated_http_files

The supplier_associated_http_files function computes all the http_files associated with the
different supplier_related_BSUs that correspond to the same supplier_BSU. If the
supplier_element is not available, the function returns the empty set.

NOTE All the http_files associated with the different supplier_related_BSUs that correspond to the
same supplier_BSU are intended to be stored in the same directory on the user local Internet server.

EXPRESS specification:

*)
FUNCTION supplier_associated_http_files(sup_BSU: supplier_BSU):

SET OF http_file;

LOCAL
sup: supplier_element;
files: SET OF http_file := [];

END_LOCAL;

IF SIZEOF(sup_BSU.definition) > 0
THEN sup := sup_BSU.definition[1];

ELSE
RETURN(files);

ISO 13584-24:2003(E)

414 © ISO 2003 – All rights reserved

END_IF;

REPEAT i := 1 TO SIZEOF(sup.associated_items);
-- supplier_BSU_relationship

REPEAT j := 1 TO SIZEOF(sup.associated_items[i].related_tokens);
--supplier_related_BSU

REPEAT k := 1 TO SIZEOF(sup.associated_items[i]
.related_tokens[j].referenced_by); --content_item

IF ('ISO13584_EXTERNAL_FILE_SCHEMA.EXTERNAL_ITEM'IN
TYPEOF(sup.associated_items[i]
.related_tokens[j].referenced_by[k]))

THEN
REPEAT l := 1 TO SIZEOF(sup.associated_items[i]

.related_tokens[j].referenced_by[k]
\external_item.content.consists_of);
--language_specific_content

REPEAT m := 1 TO SIZEOF(
sup.associated_items[i]
.related_tokens[j].referenced_by[k]
\external_item.content
.consists_of[l].content_files);
-- external_file_unit
IF
('ISO13584_EXTERNAL_FILE_SCHEMA.HTTP_FILE'

IN TYPEOF(sup.associated_items[i]
.related_tokens[j].referenced_by[k]
\external_item.content
.consists_of[l].content_files[m]))

THEN
files := files +
sup.associated_items[i]
.related_tokens[j].referenced_by[k]
\external_item.content
.consists_of[l].content_files[m];

END_IF; -- http_file
END_REPEAT; -- m

END_REPEAT; -- l
END_IF; -- external_item

END_REPEAT; -- k
END_REPEAT; -- j

END_REPEAT; -- i

RETURN(files);

END_FUNCTION; -- supplier_associated_http_files
(*

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 415

13.11.2 Control_compiler_version_format

The control_compiler_version_format returns TRUE if the the_compiler_version string contains
only digits, dots, or underscores. Otherwise, it returns FALSE.

EXPRESS specification:

*)
FUNCTION control_compiler_version_format(the_compiler_version: STRING):

BOOLEAN;
LOCAL

result: BOOLEAN := TRUE;
END_LOCAL;

REPEAT i := 1 TO LENGTH(the_compiler_version);
IF (NOT((the_compiler_version[i] LIKE '#')

OR (the_compiler_version[i] LIKE '.')
OR (the_compiler_version[i] LIKE '_')))

THEN
result := FALSE;

END_IF;
END_REPEAT;

RETURN(result);
END_FUNCTION; -- control_compiler_version_format
(*

*)
END_SCHEMA; -- ISO13584_external_file_schema
(*

14 ISO13584_method_schema

This clause defines the requirements for the ISO13584_method_schema. The following EXPRESS
declaration introduces the ISO13584_method_schema block and identifies the necessary external
references.

EXPRESS specification:

*)
SCHEMA ISO13584_method_schema;

REFERENCE FROM ISO13584_IEC61360_dictionary_schema
(all_class_descriptions_reachable,
class_BSU,
content_item,
definition_available_implies,
list_to_set,
property_BSU);

REFERENCE FROM ISO13584_library_expressions_schema
(class_instance_constructor,
class_instance_expression,

ISO 13584-24:2003(E)

416 © ISO 2003 – All rights reserved

collects_assigned_properties,
collects_referenced_library_expressions,
compatible_variable_and_library_expression,
library_expression,
library_variable,
property_assignment);

REFERENCE FROM ISO13584_variable_semantics_schema
(property_semantics,
property_semantics_or_path,
self_property_value_semantics);

REFERENCE FROM ISO13584_domain_resource_schema
(collects_variables,
functional_domain_restriction,
used_variables_in_domain);

REFERENCE FROM ISO13584_extended_dictionary_schema
(abstract_functional_model_class,
applicable_properties,
applicable_tables,
data_type_class_of,
data_type_typeof,
data_type_type_name,
functional_model_class,
functional_view_class,
functional_view_v_c_v,
view_control_variable_range);

REFERENCE FROM ISO13584_generic_expressions_schema
(generic_variable,
used_variables);

REFERENCE FROM ISO13584_expressions_schema
(boolean_expression,
numeric_expression,
string_expression);

REFERENCE FROM ISO13584_library_content_schema
(exists_super,
functional_model_class_extension,
method_variables,
model_class_extension,
provided_properties_list,
provided_properties_or_method_variables,
super);

REFERENCE FROM ISO13584_external_file_schema
(external_file_protocol);

(*

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 417

NOTE The schemas referenced above can be found in the following documents:
ISO13584_IEC61360_dictionary_schema IEC 61360-2

(which is duplicated for convenience in informative annex D of ISO 13584-42),
ISO13584_expressions_schema ISO 13584-20,
ISO13584_generic_expressions_schema ISO 13584-20,
ISO13584_library_expressions_schema This part of ISO 13584,
ISO13584_variable_semantics_schema This part of ISO 13584,
ISO13584_domain_resource_schema This part of ISO 13584,
ISO13584_extended_dictionary_schema This part of ISO 13584,
ISO13584_library_content_schema This part of ISO 13584,
ISO13584_external_file_schema This part of ISO 13584.

14.1 Introduction to the ISO13584_method_schema

In the ISO 13584 standard series, part views are generated by functional model classes. Functional
model classes described by explicit_functional_model_class_extension explicitly describe the
various item views. Functional model classes described by functional_model_class_extension
implicitly describe item views by means of methods. Such methods are triggered by LMS for creating
views. The scope of the ISO13584_method_schema is to allow the description of library methods that
enable the generation of item views, both for atomic items and for assembled items. In the latter case,
methods may create representations of assembled items from the representations of its constituent
components. The "bolt + nut + optional washer" assembly is an example of an assembled items. The
resources provided in this schema enable the specification of a method that creates a "bolt + nut +
optional washer" representation by triggering relevant methods on the bolt, the nut and, possibly, the
washer.

The ISO13584_method_schema models:

— the methods that enable the creation of views of atomic items,

— the methods that enable the creation of views of assembled items by triggering methods on the
constituent parts.

The ISO13584_method_schema does not model:

— the methods that enable the creation of views of parts that contains list-structured properties,

— the methods that contain repetitive or recursive control structures.

14.2 Fundamental concepts and assumptions for the ISO13584_method_schema

The following assumptions apply to the portions of this schema that deal with methods:

— supplier defined methods are only intended to produce functional views.

— functional views are representations defined in their own representation context called the Object
View Coordinate (OVC).

NOTE 1 The OVC is not necessarily a geometric_representation_context.

— the role of a method is to generate representations that constitutes its created functional view,
either from library-stored ISO 10303-conformant representations, or from parametric programs.
The view generation process is modelled in a procedural approach as an ordered list of
statements to ensure that view generation is fully deterministic.

— when a method is triggered by the user, through the LMS, an unspecified positioning process is
run by the system to allow the user to specify the transformation from the OVC representation
context of the view onto the representation context of the modelling system. At the end of a user-
triggered method, the functional view is created in the user modelling system and the LMS returns
to an empty state.

ISO 13584-24:2003(E)

418 © ISO 2003 – All rights reserved

NOTE 2 The positioning process is not necessarily geometric. It may consist for instance in relating the
created view to an overall structure already existing in the user modelling system.

— a method consists of two entities: a method_specif entity, that specifies the different functional
views a method is able to generate and the information requirements of the method; a
method_body entity, that specifies, as an ordered list of statements, the method algorithm. Each
statement of the list may be guarded or not. The guarded statement allows the introduction of an if
then else construct.

— the statements that may comprise a method are:

a) null statements;

b) modelling statements that specify transformations of the OVC: these transformations are
applied to all the representation_items created in the view after such a transformation
has been specified;

NOTE 3 Such modelling statements are only meaningful when the OVC is a
geometric_representation_context.

c) predefined representation call statements that specify a call to a pre-existing implicit or
explicit representation;

d) assignment statement that assigns values to variables;

e) subobject view statements that allow a method to trigger other methods on a subobject to
compose an assembled item. The view created by the subobject method is mapped onto
the representation context of the embedding view by applying the current transformation
of the OVC to the representation_items created by the subobject method.

— a method may only generate functional views belonging to the same representation category,
identified by a class_BSU entity.

— a method may generate several functional views belonging to the same representation category.

— a functional view may possibly contain a set of properties defined in its functional_view_class
dictionary_element, and, as a subtype of a representation, it inherits an items attribute. The
(possible defined) properties may be assigned a value. The inherited items attribute may only be
filled by externally defined representation, by externally defined program associated with an
external_file_protocol, or by internally defined representation.

— when the items attribute of a functional view is filled by an externally-defined or internally-defined
representation,

a) the OVC of the view is the representation_context of the representation,

b) the items of the view is the content of the items attribute of the representation.

— methods are triggered through message passing. A message contains the following information:

a) the required functional view, represented by the corresponding class_BSU;

b) a list of view control variable values that specify precisely the required functional view.

— when triggered, a method is associated with one functional view: the functional view specified by
the triggering message. This view is called the open_view of the running method.

— when it is performed, a method is always associated with one instance of a functional model class
that may contain, amongst its properties, copies of properties of one instance of the item_class

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 419

the instance of the functional model class is a view of. If the instance of the item_class models an
assembled part, the method may send messages to the subobjects of this assembled part or may
instantiate functional models of these subobjects.

NOTE 4 The properties of an item_class instance whose values shall be copied into properties of a
functional model class instance are modelled by the required_item_characteristics attribute of a
functional_model_class_extension entity.

— when a method is triggered from within another method, a new open_view is associated with this
method. The current transformation of the OVC of the open_view associated with the embedding
method specifies the transformation that shall be performed on the representation context of the
open_view associated with the embedded method to ensure adequate mapping of the created
view within the representation context of the embedding view. This view is closed when the
method returns.

— a message may be sent either to a general model, instance of an item_class, or to a functional
model, instance of a functional_model_class.

— when an instance of an item_class that composes an assembled part is sent a message from a
method that creates a view of its embedding part, the LMS searches, within the functional model
classes that are is-view-of this item_class, a functional model class whose instances support this
message. This class is instantiated and the created instance is sent the message. Hence a new
functional view is generated.

— when an instance of a functional_model_class is sent a message, this instance shall support the
method specified by the message. The functional_model_class instance is specified by a
class_instance_constructor that completely characterises the instance. The
class_instance_constructor is evaluated and the created instance is sent the message. The
method is then triggered and a new functional view is generated.

14.3 ISO13584_method_schema type definitions

The following sections introduce the type definitions used in the ISO13584_method_schema.

14.3.1 Accessible_variable_for_method

An accessible_variable_for_method is a library_variable that may be referenced from a method. It
can be a library_variable that represents self_variable_semantics of the instance that supports the
method, a library_variable that represents open_view_variable_semantics of the open_view
created by the method, or a library_variable that represents an iterator intended to be used in a table
query. The latter case of library_variable is associated with a
column_traversal_variable_semantics.

NOTE 1 In ISO 13584, each library_variable is associated, through an environment to a
variable_semantics; conversely, each variable semantics is represented by no more than one variable. This is
documented in the two_fold_representation_rule rule of the ISO13584_library_expressions_schema.

NOTE 2 All the properties whose values are represented in a functional_model_class_extension (as
returned by the provided_properties_or_method_variables function) may be associated with a
library_variable to be accessed by a method. But only the variables that are first declared in the declaration
attribute of the method may be referred to in the method statements.

NOTE 3 The properties whose values are represented in a functional_model_class_extension (as
returned by the provided_properties_or_method_variables function) may contain properties that are
imported_properties_from_view (for instance, when view control variable values are stored within a table), or,
in the case of a fm_class_view_of, properties that are imported_properties_from_item. Nevertheless, these
properties belong to the SELF instance, i.e., the functional model instance that supports the method, and they
are referenced by self_property_value_semantics.

ISO 13584-24:2003(E)

420 © ISO 2003 – All rights reserved

NOTE 4 All the properties of the view created by the method may be associated with a variable to be
accessed by this method. But only the variables that are declared in the declaration attribute of the method may
be referred to in the method statements.

NOTE 5 All the view control variable values that were part of the triggering message of a method shall be
assigned to the corresponding open view. Therefore these values are already bounded with the variables
associated to the corresponding open_view_property_value_semantics when the method is triggered.

NOTE 6 When a property of a functional_model_class_extension is an
imported_properties_from_view, during the running of the method, two variable_semantics are identified by
the same property_BSU. The first is a self_variable_semantics that represents the corresponding property of
the SELF instance. The second is an open_view_property_semantics that represents the corresponding
property of the current open view. They shall be associated with two different variables. Their values may be
different.

EXPRESS specification:

*)
TYPE accessible_variable_for_method = library_variable;
WHERE

WR1:(('ISO13584_VARIABLE_SEMANTICS_SCHEMA.'
+'SELF_VARIABLE_SEMANTICS')
IN TYPEOF(SELF\generic_variable.interpretation
.semantics))
OR (('ISO13584_VARIABLE_SEMANTICS_SCHEMA.'
+'OPEN_VIEW_VARIABLE_SEMANTICS')
IN TYPEOF(SELF\generic_variable.interpretation
.semantics))
OR (('ISO13584_TABLE_RESOURCE_SCHEMA.'
+'COLUMN_TRAVERSAL_VARIABLE_SEMANTICS')
IN TYPEOF(SELF\generic_variable.interpretation
.semantics));

END_TYPE; -- accessible_variable_for_method
(*

Formal propositions:

WR1: an accessible_variable_for_method shall be associated with a self_variable_semantics,
with an open_view_variable_semantics, or with a column_traversal_variable_semantics intended
to be used as an iterator for querying tables.

14.3.2 Assignment_allowed_variable

An assignment_allowed_variable is a variable that represents either the value of a property of the
SELF instance, or a property of the current open view. Such a variable may be assigned a value in a
method body.

EXPRESS specification:

*)
TYPE assignment_allowed_variable = library_variable;
WHERE

WR1:(('ISO13584_VARIABLE_SEMANTICS_SCHEMA.'
+'SELF_PROPERTY_VALUE_SEMANTICS')

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 421

IN TYPEOF(SELF\generic_variable.interpretation
.semantics))
OR (('ISO13584_VARIABLE_SEMANTICS_SCHEMA.'
+'OPEN_VIEW_PROPERTY_VALUE_SEMANTICS')
IN TYPEOF(SELF\generic_variable.interpretation
.semantics));

END_TYPE; -- assignment_allowed_variable
(*

Formal propositions:

WR1: an assignment_allowed_variable shall be associated either with a
self_property_value_semantics or with an open_view_property_value_semantics.

14.3.3 Control_allowed_variable

A control_allowed_variable is a variable that may be used in a method for control purpose. For that
purpose, translatable values are not allowed.

EXAMPLE If a variable is associated with a self_property_short_name_semantics the value of this variable
depends on the language selected by the interpretation function to return this name (see clause 10.7.4.2).

EXPRESS specification:

*)
TYPE control_allowed_variable = library_variable;
WHERE

WR1: (('ISO13584_VARIABLE_SEMANTICS_SCHEMA.'
+'SELF_PROPERTY_VALUE_SEMANTICS')
IN TYPEOF(SELF\generic_variable.interpretation
.semantics))
OR (('ISO13584_VARIABLE_SEMANTICS_SCHEMA.'
+'OPEN_VIEW_PROPERTY_VALUE_SEMANTICS')
IN TYPEOF(SELF\generic_variable.interpretation
.semantics))
OR (('ISO13584_VARIABLE_SEMANTICS_SCHEMA.'
+'SELF_PROPERTY_CODE_SEMANTICS')
IN TYPEOF(SELF\generic_variable.interpretation
.semantics))
OR (('ISO13584_VARIABLE_SEMANTICS_SCHEMA.'
+'SELF_PROPERTY_VERSION_SEMANTICS')
IN TYPEOF(SELF\generic_variable.interpretation
.semantics))
OR (('ISO13584_VARIABLE_SEMANTICS_SCHEMA.'
+'SELF_PROPERTY_CLASS_CODE_SEMANTICS')
IN TYPEOF(SELF\generic_variable.interpretation
.semantics))
OR (('ISO13584_VARIABLE_SEMANTICS_SCHEMA.'
+'SELF_PROPERTY_CLASS_VERSION_SEMANTICS')
IN TYPEOF(SELF\generic_variable.interpretation
.semantics))
OR (('ISO13584_VARIABLE_SEMANTICS_SCHEMA.'
+'SELF_PROPERTY_CLASS_SUPPLIER_CODE_SEMANTICS')

ISO 13584-24:2003(E)

422 © ISO 2003 – All rights reserved

IN TYPEOF(SELF\generic_variable.interpretation
.semantics))
OR (('ISO13584_VARIABLE_SEMANTICS_SCHEMA.'
+'SELF_CLASS_CODE_SEMANTICS')
IN TYPEOF(SELF\generic_variable.interpretation
.semantics))
OR (('ISO13584_VARIABLE_SEMANTICS_SCHEMA.'
+'SELF_CLASS_VERSION_SEMANTICS')
IN TYPEOF(SELF\generic_variable.interpretation
.semantics))
OR (('ISO13584_VARIABLE_SEMANTICS_SCHEMA.'
+'SELF_CLASS_SUPPLIER_CODE_SEMANTICS')
IN TYPEOF(SELF\generic_variable.interpretation
.semantics));

END_TYPE; -- control_allowed_variable
(*

Formal propositions:

WR1: a control_allowed_variable shall not be associated with a variable_semantics that
represents a translated string.

14.4 ISO13584_method_schema entity definitions

The following clause describes the ISO13584_method_schema entities.

14.4.1 Method

A method is an operation that is defined in a functional_model_class_extension to be associated
with instances of this class. Its role is to create a view.

EXPRESS specification:

*)
ENTITY method;

specification: method_specif;
body: method_body;
representation_interface: OPTIONAL external_file_protocol;

INVERSE
its_class: functional_model_class_extension

FOR provided_methods;
WHERE

WR1: (EXISTS(SELF.representation_interface))
AND (SELF.representation_interface
IN SELF.its_class\model_class_extension.used_protocols)
OR (NOT(EXISTS(SELF.representation_interface)));

END_ENTITY; -- method
(*

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 423

Attribute definitions:

specification: the specification of the method.

body: the body of the method.

representation_interface: the protocol that may be required to run the method.

EXAMPLE If the method only sends to the user modelling system a library-stored ISO 10303-203-conformant
representations, the representation_interface shall contain a standard_data_protocol that references some
conformance class of ISO 10303-203.

NOTE The content of a standard_data_protocol that enables reference to a conformance class of an
Application Protocol of ISO 10303 is specified in ISO 13584-1021.

its_class: the class to which the method belongs.

Formal propositions:

WR1: if an external_file_protocol is used by the method, it shall belong to the used_protocols set
of the model_class_extension that contains the method.

14.4.2 Method_specif

A method_specif entity encapsulates the content of the method. It describes the views created by the
method, the properties of the functional model that shall have values when the method is run, and, in
the case of assemblies, the subobject classes that may be referred to by the method.

EXPRESS specification:

*)
ENTITY method_specif;

created_view: class_BSU;
v_c_v_range: SET [0:?] OF view_control_variable_range;
model_needed_properties: SET [0:?] OF property_BSU;
referred_subobject_models: SET [0:?] OF class_BSU;

INVERSE
specifies: method FOR specification;

WHERE
WR1: NOT all_class_descriptions_reachable(

SELF.specifies.its_class.dictionary_definition)
OR (SELF.model_needed_properties
<= list_to_set(provided_properties_list(
SELF.specifies.its_class.dictionary_definition)));

WR2: same_view_model_method(SELF);
WR3: SIZEOF(QUERY(models <* SELF.referred_subobject_models |

definition_available_implies(models,
('ISO13584_IEC61360_DICTIONARY_SCHEMA.ITEM_CLASS'
IN TYPEOF(models.definition[1])) OR (
('ISO13584_EXTENDED_DICTIONARY_SCHEMA'
+ '.FUNCTIONAL_MODEL_CLASS' IN TYPEOF(models.definition[1])))
))) = SIZEOF(SELF.referred_subobject_models);

1 To be published

ISO 13584-24:2003(E)

424 © ISO 2003 – All rights reserved

END_ENTITY; -- method_specif
(*

Attribute definitions:

created_view: the view created by the method.

v_c_v_range: the set of values of the view_control_variable for which the model is able to create a
view.

model_needed_properties: the properties of the instance that supports the method that need to have
a value to run the method.

NOTE 1 The model_needed_properties may have a value that is the EXPRESS indeterminable value
("?") if the property was defined as optional in the functional_model_class_extension.

NOTE 2 The role of the model_needed_properties is to specify:

— which selectable_properties shall be provided by the user in order, for the method, to be run, and

— in the case of a partially defined item, which required_properties (from the general model) shall have
values in order, for the method, to be run.

NOTE 3 The model_needed_properties and the open_view view control variables are the only values that
shall be initialized by the LMS when triggering a method.

referred_subobject_models: the possible classes referred to in the method_body.

specifies: the method whose specification is defined.

Formal propositions:

WR1: the model_needed_properties properties shall belong to the result of the
provided_properties_list for the functional_model_class_extension to which the method belongs.

NOTE 4 As documented in this where rule, method variables shall not be represented in the
model_needed_properties attribute.

WR2: the created_view shall be the view created by the functional_model_class.

WR3: if data are available, then IP1 holds.

Informal propositions:

IP1: the referred_subobject_models shall be defined either as an item_class or as a
functional_model_class.

14.4.3 Method_body

A method_body is a set of variables, that specifies the accessible_variable_for_methods that are
accessed from the method, and a list of statements, that specifies the deterministic process the
method shall perform.

NOTE Only those view properties intended to be accessed by the method body need to be represented
by variables in the declaration set.

Performing a method is a two phase process:

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 425

a) In the elaboration phase:

1) the current view, as specified by the method triggering message, is created, and

2) the required values of the current views' view control variables are assigned, as values, to
the corresponding view properties whether they are referred to by means of
open_view_property_value_semantics, and

3) the context of the method, that consists of the declaration set of
accessible_variable_for_methods, is created by the LMS, and

4) values are elaborated, possibly by triggering some derivation functions, for the variables
in the declaration set that correspond to model_needed_properties,

b) In the running phase, the method statements are performed. Only the
accessible_variable_for_methods belonging to the context of the method may be referred to
as variables from the method statements.

EXPRESS specification:

*)
ENTITY method_body;

declaration: SET [1:?] OF accessible_variable_for_method;
view_generation: LIST [1:?] OF method_statement;

INVERSE
describes: method FOR body;

WHERE
WR1: QUERY(prop <*

SELF.describes.specification.model_needed_properties |
SIZEOF(QUERY(v <* SELF.declaration |
('ISO13584_VARIABLE_SEMANTICS_SCHEMA.PROPERTY_SEMANTICS'
IN TYPEOF(v\generic_variable.interpretation.semantics))
AND (v\generic_variable.interpretation.semantics\
property_semantics.the_property :=: prop))) <> 1) = [];

WR2: QUERY(v <* SELF.declaration |
('ISO13584_VARIABLE_SEMANTICS_SCHEMA.'
+ 'SELF_PROPERTY_SEMANTICS' IN TYPEOF (
v\generic_variable.interpretation.semantics)) AND
NOT(v\generic_variable.interpretation
.semantics\property_semantics.the_property
IN provided_properties_or_method_variables (
SELF.describes.its_class.dictionary_definition)))
= [];

WR3: QUERY(v <* SELF.declaration |
('ISO13584_VARIABLE_SEMANTICS_SCHEMA.'
+ 'OPEN_VIEW_PROPERTY_SEMANTICS' IN TYPEOF(
v\generic_variable.interpretation.semantics))
AND NOT applicable_properties(
SELF.describes.specification.created_view,
[v\generic_variable.interpretation.semantics\
property_semantics.the_property])) = [];

WR4: QUERY(v <* SELF.declaration |
('ISO13584_VARIABLE_SEMANTICS_SCHEMA.'
+ 'SELF_PROPERTY_SEMANTICS' IN TYPEOF

ISO 13584-24:2003(E)

426 © ISO 2003 – All rights reserved

(v\generic_variable.interpretation.semantics))
AND NOT checks_applicable_properties_in_path(
v\generic_variable.interpretation.semantics)) = [];

WR5: QUERY(v <* SELF.declaration |
('ISO13584_VARIABLE_SEMANTICS_SCHEMA.'
+ 'SELF_PROPERTY_SEMANTICS' IN TYPEOF
(v\generic_variable.interpretation.semantics))
AND NOT checks_classes_in_path(v\generic_variable
.interpretation.semantics,
SELF.describes.specification.referred_subobject_models))
= [];

END_ENTITY; -- method_body
(*

Attribute definitions:

declaration: the SET of accessible_variable_for_methods that are to be created in the method
context before performing the statements of the method.

view_generation: the sequence of statements the method shall perform.

describes: the method whose content is defined by the method_body.

Formal propositions:

WR1: all the model_needed_properties properties specified in the method_specif shall be
referenced by a accessible_variable_for_method in the declaration set of the method_body.

WR2: the properties of the SELF instance referred in by a variable in the declaration attribute shall
belong to the properties represented in the functional_model_class_extension instance as returned
by the provided_properties_or_method_variables function.

WR3: the properties of the current open view referred to by an accessible_variable_for_method
shall be applicable_properties for the functional view class to which the current open view belongs.

WR4: all the properties referred to in a sub_property_path of a self_property_semantics shall be
applicable_properties for the class to which they belong.

WR5: all the properties referred to in a sub_property_path of a self_property_semantics that are of
class_instance_type shall belong to the referred_subobject_models of the method_specif.

14.4.4 Method_statement

A method_statement corresponds to each operation a method shall perform. It contains a list of
guarded_statements.

Performing a method_statement consists of evaluating each guard that guards each
simple_statement. If some of them evaluate to TRUE, any simple_statement whose guard
evaluates to TRUE is performed. If all the guards evaluate to FALSE, no simple_statement shall be
performed.

NOTE If only one simple_statement is always performed, only one guarded_statement shall be
specified. Its guard is the boolean_literal TRUE, as defined by ISO 13584-20.

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 427

EXPRESS specification:

*)
ENTITY method_statement;

statements: LIST [1:?] OF guarded_statement;
INVERSE

defines: method_body FOR view_generation;
END_ENTITY; -- method_statement
(*

Attribute definitions:

statements: the list of statements of which one (or more) is to be performed if its corresponding
guard evaluates to TRUE.

defines: the method_body to which the method_statement belongs.

14.4.5 Guarded_statement

A guarded_statement is a statement that is associated with a boolean_expression defining the
guard.

NOTE The guard may be a boolean_literal whose the_value attribute is TRUE. Such a guard always
evaluates to TRUE.

EXPRESS specification:

*)
ENTITY guarded_statement;

guard: boolean_expression;
statement: simple_statement;

INVERSE
item_of: method_statement FOR statements;

WHERE
WR1: QUERY(elt <* used_variables(SELF.guard) |

NOT('ISO13584_METHOD_SCHEMA.CONTROL_ALLOWED_VARIABLE' IN
TYPEOF(elt))) = [];

WR2: QUERY(elt <* used_variables(SELF.guard) |
NOT(elt IN SELF.item_of.defines.declaration)) = [];

END_ENTITY; -- guarded_statement
(*

Attribute definitions:

guard: the boolean_expression that specifies whether the statement may be performed.

statement: the statement that is performed when the guard evaluates to TRUE. In case of several
guards evaluating to TRUE, the statement is selected by the system.

item_of: the method_statement that contains the guarded_statement.

ISO 13584-24:2003(E)

428 © ISO 2003 – All rights reserved

Formal propositions:

WR1: all the variables involved in the boolean_expression that constitutes the guard shall be
control_allowed_variables.

WR2: all the control_allowed_variables involved in the boolean_expression that constitutes the
guard shall belong to the context of the method (i.e., the declaration set of the method_body).

14.4.6 Simple_statement

A simple_statement is the basic statement that composes a method_body. It can either be a null
statement, a modelling statement, a call to a representation, an assignment, or a subobject view
statement.

EXPRESS specification:

*)
ENTITY simple_statement
ABSTRACT SUPERTYPE OF(ONEOF(

null_statement,
modelling_statement,
predefined_representation_call_statement,
assignment_statement,
sub_object_view_statement));

INVERSE
referenced_by: guarded_statement FOR statement;

END_ENTITY; -- simple_statement
(*

Attribute definitions:

referenced_by: the guarded_statement that references the simple_statement.

14.4.7 Null_statement

A null_statement specifies that no action shall be performed.

EXPRESS specification:

*)
ENTITY null_statement
SUBTYPE OF(simple_statement);
END_ENTITY; -- null_statement
(*

14.4.8 Modelling statement

A modelling_statement allows to modify the OVC of the current open view. Modelling_statements
enable the definition of a set structure for the representation_items that constitute the items of the
view, and, for views whose representation context is a geometric_representation_context, to define
the geometric positioning of the geometric_representation_items.

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 429

EXPRESS specification:

*)
ENTITY modelling_statement
ABSTRACT SUPERTYPE OF(ONEOF(

set_reference_lcs,
begin_set,
close_set,
set_2d_relative_view_level))

SUBTYPE OF(simple_statement);
END_ENTITY; -- modelling_statement
(*

14.4.9 Set_reference_lcs

For OVCs that are in a geometric_representation_context, the set_reference_lcs entity specifies
that the reference local coordinate system (LCS) that defines the positioning of the next entities
created shall be moved relative to the current reference coordinate system of the OVC. The new
position of the reference coordinate system defines the mapping target on which the space
coordinates of the next entities created are to be mapped.

The order of the attributes of a set_reference_lcs defines the order of the transformations that shall
be performed to define the new reference coordinate system, with first a rotation around the x axis and
last a translation along the z axis.

The length_unit and planar_angle_unit are those defined in the global_unit_assigned_context
that defines the measure units for all the functional views created by the
functional_model_class_extension to which the method belongs. If no
global_unit_assigned_context is provided in the functional_model_class_extension the method
belongs to, the default value for length_measure is millimetre and for planar_angle_measure it is
degree.

EXAMPLE When a method that provides a functional view of a nut is triggered from within a method
associated with a functional model that is is-view-of a "bolt + nut" assembly, the OVC reference coordinate
system shall be changed in order, for the nut representation, to be well positioned in the "bolt + nut" OVC.
Subsequently, the triggering method shall move the reference coordinate system of the "bolt + nut" view. Then,
the OVC of the nut is implicitly mapped onto the current reference coordinate system of the embedding view.

NOTE Changes in reference coordinate system are local to a method. When a method returns, the
reference coordinate system of the view of the embedding method is reset by the system at the value it had in
the possible embedding view.

EXPRESS specification:

*)
ENTITY set_reference_lcs
SUBTYPE OF(modelling_statement);

x_rotation: numeric_expression;
y_rotation: numeric_expression;
z_rotation: numeric_expression;
x_translation: numeric_expression;
y_translation: numeric_expression;
z_translation: numeric_expression;

WHERE
WR1: QUERY(elt <* used_variables(SELF.y_rotation) |

NOT('ISO13584_METHOD_SCHEMA.CONTROL_ALLOWED_VARIABLE'

ISO 13584-24:2003(E)

430 © ISO 2003 – All rights reserved

IN TYPEOF(elt))) +
QUERY(elt <* used_variables(SELF.z_rotation) |
NOT('ISO13584_METHOD_SCHEMA.CONTROL_ALLOWED_VARIABLE'
IN TYPEOF(elt))) +
QUERY(elt <* used_variables(SELF.x_translation) |
NOT('ISO13584_METHOD_SCHEMA.CONTROL_ALLOWED_VARIABLE'
IN TYPEOF(elt))) +
QUERY(elt <* used_variables(SELF.y_translation) |
NOT('ISO13584_METHOD_SCHEMA.CONTROL_ALLOWED_VARIABLE'
IN TYPEOF(elt))) +
QUERY(elt <* used_variables(SELF.z_translation) |
NOT('ISO13584_METHOD_SCHEMA.CONTROL_ALLOWED_VARIABLE'
IN TYPEOF(elt))) +
QUERY(elt <* used_variables(SELF.x_rotation) |
NOT('ISO13584_METHOD_SCHEMA.CONTROL_ALLOWED_VARIABLE'
IN TYPEOF(elt)))
= [];

WR2: QUERY(elt <* used_variables(SELF.x_rotation) |
NOT(elt IN SELF\simple_statement.referenced_by
.item_of.defines.declaration)) +
QUERY(elt <* used_variables(SELF.y_rotation) |
NOT(elt IN SELF\simple_statement.referenced_by
.item_of.defines.declaration)) +
QUERY(elt <* used_variables(SELF.z_rotation) |
NOT(elt IN SELF\simple_statement.referenced_by
.item_of.defines.declaration)) +
QUERY(elt <* used_variables(SELF.x_translation) |
NOT(elt IN SELF\simple_statement.referenced_by
.item_of.defines.declaration)) +
QUERY(elt <* used_variables(SELF.y_translation) |
NOT(elt IN SELF\simple_statement.referenced_by
.item_of.defines.declaration)) +
QUERY(elt <* used_variables(SELF.z_translation) |
NOT(elt IN SELF\simple_statement.referenced_by
.item_of.defines.declaration))
= [];

END_ENTITY; -- set_reference_lcs
(*

Attribute definitions:

x_rotation: rotation, in planar_angle_measure, of the new LCS relative to the x axis of the current
LCS.

y_rotation: rotation, in planar_angle_measure, of the new LCS relative to the y axis of the current
LCS.

z_rotation: rotation, in planar_angle_measure, of the new LCS relative to the z axis of the current
LCS.

x_translation: translation, in length_measure, of the new LCS relative to the x axis of the current
LCS.

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 431

y_translation: translation, in length_measure, of the new LCS relative to the y axis of the current
LCS.

z_translation: translation, in length_measure, of the new LCS relative to the z axis of the current
LCS.

Formal propositions:

WR1: all the variables involved in the numeric_expressions shall be control_allowed_variables.

WR2: all the control_allowed_variables involved in the numeric_expressions shall belong to the
context of the method (i.e., the declaration set of the method_body).

14.4.10 Begin_set

The begin_set entity declares that a new set shall be open inside the modelling system, or inside the
current open set inside the modelling system. After this entity is performed, all the representation
elements created inside the open_view belong to this set.

EXAMPLE In a method that produces a "bolt + nut" solid geometry functional view through two different
programs referring, respectively to bolt and nut, this entity enables to structure the set of geometric entities of
the assembly into two sets. One contains the nut geometry. The other contains the bolt geometry. The modelling
system may then allow the user to access this set structure.

NOTE 1 All the sets opened by a method are local to the view created by the method. When a method
returns upon completion, all the sets opened by the method are closed and the set structure is reset by the
system at the state it had in the possible embedding view.

NOTE 2 View exchange protocol shall specify the required set structure of the view they define.

EXPRESS specification:

*)
ENTITY begin_set
SUBTYPE OF(modelling_statement);

set_name: string_expression;
WHERE

WR1: QUERY(elt <* used_variables(SELF.set_name)
| NOT(elt IN SELF\simple_statement.referenced_by.item_of
.defines.declaration)) = [];

END_ENTITY; -- begin_set
(*

Attribute definitions:

set_name: the label of the new open set in the current open set.

Formal propositions:

WR1: all the variables involved in the string_expression shall belong to the context of the method
(i.e., the declaration set of the method_body).

Informal propositions:

IP1: No other set with the set_name name shall exist within the current open set.

ISO 13584-24:2003(E)

432 © ISO 2003 – All rights reserved

14.4.11 Close_set

The close_set entity declares that one current open set shall be closed. It declares the name of the
set that shall be closed, and this name shall correspond to a set that was open by the current method.
If this set contains some other open sets, they are closed recursively.

EXPRESS specification:

*)
ENTITY close_set
SUBTYPE OF(modelling_statement);

set_name: string_expression;
WHERE

WR1: QUERY(elt <* used_variables(SELF.set_name) |
NOT(elt IN SELF\simple_statement.referenced_by
.item_of.defines.declaration)) = [];

END_ENTITY; -- close_set
(*

Attribute definitions:

set_name: the name of the last open set to be closed.

Formal propositions:

WR1: all the variables involved in the string_expression shall be accessible_variable_for_method
belonging to the context of the method (i.e., the declaration set of the method_body).

Informal propositions:

IP1: the set_name shall be one of the sets opened by the current method and still not closed.

14.4.12 Set_2d_relative_view_level

The set_2d_relative_view_level entity declares that the virtual altitude where the next entities are to
be created inside the OVC shall be changed relatively to the current virtual altitude. This entity is only
allowed when the current open view is founded in a geometric representation context and when it is
two-dimensional. If this function is supported by the representation transmission interface this allows
virtually hidden lines to be removed.

EXAMPLE In a method that produces a "bolt + nut" geometric 2D view by triggering method on bolt and nut, if
each subobject view consists of opaque fill_area and if the virtual altitude of the nut view is greater than the
virtual altitude of the bolt view, the hidden lines of the bolt may be automatically removed.

NOTE 1 Change in relative view level are local to the view created by a method. When a method returns
upon completion, the initial value of this relative view level shall be reset by the system.

NOTE 2 View exchange protocols shall specify whether the hidden line elimination process is allowed.

EXPRESS specification:

*)
ENTITY set_2d_relative_view_level

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 433

SUBTYPE OF(modelling_statement);
offset: numeric_expression;

WHERE
WR1: QUERY(elt <* used_variables(SELF.offset) |

NOT('ISO13584_METHOD_SCHEMA.CONTROL_ALLOWED_VARIABLE'
IN TYPEOF(elt))) = [];

WR2: QUERY(elt <* used_variables(SELF.offset) |
NOT(elt IN SELF\simple_statement.referenced_by
.item_of.defines.declaration)) = [];

END_ENTITY; -- set_2d_relative_view_level
(*

Attribute definitions:

offset: the real algebraic value to be added to the current virtual altitude.

Formal propositions:

WR1: all the variables involved in the real_numeric_expression shall be
control_allowed_variables.

WR2: all the control_allowed_variables involved in the real_numeric_expression shall belong to
the context of the method (i.e., the declaration set of the method_body).

14.4.13 Predefined_representation_call_statement

A functional view is a subtype of an ISO 10303-43 representation. Therefore, it inherits an items
attribute that is a set of representation_items.

The items attribute of a functional view may not be referenced explicitly (it has no property_BSU). It
may only be filled from a method by referencing some predefined descriptions that describe the
representation_items that constitute its set of representation elements. This predefined description
may be either provided as an external file, in which case the description shall conform to the
specification of the representation_interface of the method, or it may be provided as an
ISO 10303-43 representation that is included in the ISO 13584 library file exchange context. In the
latter, the referenced view exchange protocol shall specify the used ISO 10303 Application Protocol.

NOTE The view exchange protocol associated with a functional model class is specified in the
referenced_view_exchange_protocol attribute of a model_class_extension.

When a view is created by a method that was triggered by another method, this view is mapped within
the representation_context of the embedding view when the embedded method returns.

The predefined_representation_call_statement entity enables the specification of the predefined
description that shall be processed to fill the items attribute of the current open view. An external
description may be either a program_reference, that has some formal parameters, or a
representation_reference, that has no formal parameter.

EXAMPLE 1 The geometry of a bolt may be described through an external ISO 10303-203 explicit data model.
It is a representation_reference predefined description. It shall be processed through an ISO 10303-203 post
processor. In the functional model class that provides the geometric representation of the bolt family, each
referenced representation_reference describes a geometric representation of one bolt of the family.

EXAMPLE 2 The geometry of all the bolts of a bolt component_class may be described by a parametric
program according to the specifications of the ISO 13584-31 Geometric Programming Interface. It is a
program_reference predefined description. It contains some formal parameters that may be the length and the
diameter of the bolt. It shall be processed through the ISO 13584 Part 31 Geometric Programming Interface.

ISO 13584-24:2003(E)

434 © ISO 2003 – All rights reserved

EXPRESS specification:

*)
ENTITY predefined_representation_call_statement
ABSTRACT SUPERTYPE OF(ONEOF(

send_representation_statement,
send_representation_reference_statement,
call_program_statement))

SUBTYPE OF(simple_statement);
END_ENTITY; -- predefined_representation_call_statement
(*

14.4.14 Send_representation_statement

A send_representation_statement entity specifies the ISO 10303-43 representation whose items
attribute describes the representation_items that shall be mapped within the
representation_context of the current open view. These representation_items are mapped onto the
current OVC using the current transformation, as defined by previous modelling_statements, within
the current open set and, if appropriate, at the current virtual altitude.

NOTE 1 ISO 13584-24 does not specify whether the result of this mapping is an ISO 10303-43
mapped_item, or it is a set of representation_items defined by applying the transformation to each item.

NOTE 2 Reference to the representation to be mapped is defined as a functional_domain_restriction
that may evaluates to various representations according to the values of library_variables belonging to the
context of the method.

NOTE 3 When the view is created by an explicit representation, different representations are, in general,
associated with the different values of the required_properties.

EXPRESS specification:

*)
ENTITY send_representation_statement
SUBTYPE OF(predefined_representation_call_statement);

corresponding_method_variable: assignment_allowed_variable;
representation_to_be_processed: functional_domain_restriction;

WHERE
WR1: SELF.representation_to_be_processed.defines

= [SELF.corresponding_method_variable\generic_variable.
interpretation.semantics];

WR2: SELF.corresponding_method_variable
IN SELF.referenced_by.item_of.defines.declaration;

WR3: collects_variables(SELF.representation_to_be_processed
.assumes) <= SELF.referenced_by.item_of.defines.declaration;

WR4: definition_available_implies(
SELF.corresponding_method_variable\generic_variable
.interpretation.semantics\property_semantics.the_property,
(('ISO13584_IEC61360_DICTIONARY_SCHEMA.ENTITY_INSTANCE_TYPE'
IN data_type_typeof(SELF.corresponding_method_variable
\generic_variable.interpretation.semantics
\property_semantics.the_property))
AND ('REPRESENTATION_SCHEMA.REPRESENTATION' IN
data_type_type_name(

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 435

SELF.corresponding_method_variable\generic_variable
.interpretation.semantics\property_semantics.the_property)))
OR (data_type_typeof(SELF.corresponding_method_variable
\generic_variable.interpretation.semantics\property_semantics
.the_property) = []));

WR5: NOT all_class_descriptions_reachable
(SELF.referenced_by.item_of.defines.describes.its_class
.dictionary_definition) OR
((SELF.corresponding_method_variable\generic_variable
.interpretation.semantics\property_semantics.the_property) IN
method_variables(SELF.referenced_by.item_of.defines
.describes.its_class.dictionary_definition));

WR6: applicable_tables(SELF.referenced_by.item_of
.defines.describes.its_class.dictionary_definition,
SELF.representation_to_be_processed.base_tables);

WR7: used_variables_in_domain(
SELF.representation_to_be_processed) <=
SELF.referenced_by.item_of.defines.declaration;

END_ENTITY; -- send_representation_statement
(*

Attribute definitions:

corresponding_method_variable: the property variable declared in the context of the method that is
assigned the entity name of the representation to be processed.

representation_to_be_processed: the functional_domain_restriction that specifies the entity
name of the representation to be processed.

NOTE 4 When the simple_domain is a null_defined_value, no value shall be assigned to the
corresponding_method_variable and no representation shall be processed.

Formal propositions:

WR1: the functional_domain_restriction shall define the corresponding_method_variable.

WR2: the corresponding_method_variable shall be part of the context of the method.

WR3: the variables associated with the assumes attribute of the functional_domain_restriction
shall be part of the context of the method.

WR4: if data are available, then IP1 holds.

WR5: the corresponding_method_variable shall be defined in the model_class_extension as
method_variables.

WR6: all the tables possibly involved in the functional_domain_restriction shall be applicable tables
for the class to which the method belongs.

WR7: the variables used in the functional_domain_restriction shall be part of the context of the
method.

ISO 13584-24:2003(E)

436 © ISO 2003 – All rights reserved

Informal propositions:

IP1: the data type of the property_semantics associated with the corresponding_method_variable
shall be an entity_instance_type that shall contain a representation.

14.4.15 Send_representation_reference_statement

The send_representation_reference_statement entity specifies the
class_extension_external_item that contains an ISO 10303-43 representation whose items
attribute describes the representation_items that shall be processed through the
representation_interface of the method and that shall be mapped within the
representation_context of the open view. These representation_items are mapped onto the current
OVC using the current transformation, as defined by previous modelling_statements, within the
current open set and, if appropriate, at the current virtual altitude. The representation_reference to
be processed is specified like a representation in the send_representation_statement.

NOTE 1 The only difference between representations and representation_references is that the former
is represented within the library delivery file, when the latter is represented in a separate file that is a library
external file. The view exchange protocols that use ISO 10303 conformant representations to define the items
representations within library functional model classes shall specify whether these representations shall be
internal or external to the library delivery file.

EXPRESS specification:

*)
ENTITY send_representation_reference_statement
SUBTYPE OF(predefined_representation_call_statement);

corresponding_method_variable: assignment_allowed_variable;
representation_reference_to_be_processed:

functional_domain_restriction;
WHERE

WR1: SELF.representation_reference_to_be_processed.defines
= [SELF.corresponding_method_variable\generic_variable
.interpretation.semantics];

WR2: SELF.corresponding_method_variable
IN SELF.referenced_by.item_of.defines.declaration;

WR3: collects_variables(
SELF.representation_reference_to_be_processed.assumes)
<= SELF.referenced_by.item_of.defines.declaration;

WR4: definition_available_implies(
SELF.corresponding_method_variable\generic_variable
.interpretation.semantics\property_semantics.the_property,
(('ISO13584_IEC61360_DICTIONARY_SCHEMA.ENTITY_INSTANCE_TYPE'
IN data_type_typeof(SELF.corresponding_method_variable
\generic_variable.interpretation.semantics
\property_semantics.the_property))
AND ('ISO13584_EXTERNAL_FILE_SCHEMA.REPRESENTATION_REFERENCE'
IN data_type_type_name(SELF.corresponding_method_variable
\generic_variable.interpretation.semantics
\property_semantics.the_property))) OR
(data_type_typeof(SELF.corresponding_method_variable
\generic_variable.interpretation.semantics
\property_semantics.the_property) = []));

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 437

WR5: NOT all_class_descriptions_reachable
(SELF.referenced_by.item_of.defines.describes.its_class
.dictionary_definition) OR
((SELF.corresponding_method_variable\generic_variable
.interpretation.semantics\property_semantics.the_property) IN
method_variables(SELF.referenced_by.item_of.defines
.describes.its_class.dictionary_definition));

WR6: applicable_tables(SELF.referenced_by.item_of
.defines.describes.its_class.dictionary_definition,
SELF.representation_reference_to_be_processed.base_tables);

WR7: used_variables_in_domain(
SELF.representation_reference_to_be_processed) <=
SELF.referenced_by.item_of.defines.declaration;

END_ENTITY; -- send_representation_reference_statement
(*

Attribute definitions:

corresponding_method_variable: the property declared in the context of the method that is
assigned the entity name of the representation_reference to be processed.

representation_reference_to_be_processed: the functional_domain_restriction that specifies the
entity name of the representation_reference to be processed.

NOTE 2 When the simple_domain is a null_defined_value no value shall be assigned to the
corresponding_method_variable and no representation_reference shall be processed.

Formal propositions:

WR1: the functional_domain_restriction shall define the corresponding_method_variable.

WR2: the corresponding_method_variable shall be part of the context of the method.

WR3: the variables associated with the assumes attribute of the functional_domain_restriction
shall be part of the context of the method.

WR4: if data are available, then IP1 holds.

WR5: the corresponding_method_variable shall be defined in the model_class_extension as
method_variables.

WR6: all the tables possibly involved in the functional_domain_restriction shall be applicable tables
for the class to which the method belongs.

WR7: the variables used in the functional_domain_restriction shall be part of the context of the
method.

Informal propositions:

IP1: the data type of the property_semantics associated with the corresponding_method_variable
shall be an entity_instance_type that shall contain a representation_reference.

IP2: the representation_reference to which the functional_domain_restriction evaluates shall
reference, in its used_protocol attribute, the representation_interface of the method to which the
statement belongs.

ISO 13584-24:2003(E)

438 © ISO 2003 – All rights reserved

14.4.16 Call_program_statement

A call_program_statement specifies the class_extension_external_item that contains the external
program that shall be processed through the representation_interface of the method to generate the
representation_items that shall be mapped within the representation_context of the current open
view.

NOTE 1 In this context, program means any entity associated with input parameters and that shall be
triggered by some means.

EXAMPLE 1 Such a program may be a parametric data model, a VHDL specification or a FORTRAN program
that references the ISO 13584-31 interface.

These representation_items are mapped onto the current open_view using the current
transformation, as defined by previous modelling_statements, within the current open set and, if
appropriate, at the current virtual altitude.

NOTE 2 This International Standard does not specify whether the result of this mapping is an
ISO 10303-43 mapped_item, or a set of representation_items defined by applying the transformation to each
item.

The reference to the file to be processed is specified as a representation_reference in a
send_representation_reference_statement.

The referenced program has input parameters whose actual values are specified through
library_expressions. It may have output and/or inout parameters whose corresponding actual
parameters are specified as assignment_allowed_variables. Output or inout parameters shall be
associated, through an environment, either to self_property_semantics that are method variables or
to open_view_property_semantics.

When a view exchange protocol enables the use of program_references, it shall specify the types of
the allowed input, output and inout parameters, and the mapping between the parameter
representation in the host language of the program and the library value representation as specified by
the ISO13584_instance_resource_schema.

EXAMPLE 2 If a view exchange protocol enables the use of JAVA programs in a functional model, and if this
view exchange protocol enables a position as output parameter, a mapping shall be specified between a
position entity instance and a structured data type in JAVA.

NOTE 3 position is defined in ISO 10303-42: 1994.

EXPRESS specification:

*)
ENTITY call_program_statement
SUBTYPE OF(predefined_representation_call_statement);

corresponding_method_variable: assignment_allowed_variable;
program_reference_to_be_processed:

functional_domain_restriction;
input_parameters: LIST [0:?] OF library_expression;
output_parameters: LIST [0:?] OF assignment_allowed_variable;
inout_parameters: LIST [0:?] OF assignment_allowed_variable;

WHERE
WR1: SELF.program_reference_to_be_processed.defines

= [SELF.corresponding_method_variable\generic_variable
.interpretation.semantics];

WR2: SELF.corresponding_method_variable

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 439

IN SELF.referenced_by.item_of.defines.declaration;
WR3: collects_variables(

SELF.program_reference_to_be_processed.assumes)
<= SELF.referenced_by.item_of.defines.declaration;

WR4: definition_available_implies(
SELF.corresponding_method_variable\generic_variable
.interpretation.semantics\property_semantics.the_property,
(('ISO13584_IEC61360_DICTIONARY_SCHEMA.ENTITY_INSTANCE_TYPE'
IN data_type_typeof(SELF.corresponding_method_variable
\generic_variable.interpretation.semantics
\property_semantics.the_property))
AND ('ISO13584_EXTERNAL_FILE_SCHEMA.PROGRAM_REFERENCE' IN
data_type_type_name(SELF.corresponding_method_variable
\generic_variable.interpretation.semantics
\property_semantics.the_property)))
OR (data_type_typeof(SELF.corresponding_method_variable
\generic_variable.interpretation.semantics
\property_semantics.the_property) = []));

WR5: NOT all_class_descriptions_reachable
(SELF.referenced_by.item_of.defines.describes.its_class
.dictionary_definition) OR
((SELF.corresponding_method_variable\generic_variable
.interpretation.semantics\property_semantics.the_property) IN
method_variables(SELF.referenced_by.item_of.defines
.describes.its_class.dictionary_definition));

WR6: applicable_tables(SELF.referenced_by.item_of
.defines.describes.its_class.dictionary_definition,
SELF.program_reference_to_be_processed.base_tables);

WR7: QUERY(expr <* SELF.input_parameters
| QUERY(v <* used_variables(expr)
| NOT(v IN SELF\simple_statement.referenced_by
.item_of.defines.declaration)) <> []) = [];

WR8: QUERY(v <* SELF.output_parameters
| NOT(v IN SELF\simple_statement.referenced_by
.item_of.defines.declaration)) = [];

WR9: QUERY(v <* SELF.inout_parameters
| NOT(v IN SELF\simple_statement.referenced_by
.item_of.defines.declaration)) = [];

WR10: used_variables_in_domain(
SELF.program_reference_to_be_processed)
<= SELF.referenced_by.item_of.defines.declaration;

END_ENTITY; -- call_program_statement
(*

Attribute definitions:

corresponding_method_variable: the property declared in the context of the method that is
assigned the entity name of the program_reference to be processed.

program_reference_to_be_processed: the functional_domain_restriction that specifies the entity
name of the program_reference to be processed.

ISO 13584-24:2003(E)

440 © ISO 2003 – All rights reserved

NOTE When the simple_domain is a null_defined_value no value shall be assigned to the
corresponding_method_variable and no program_reference shall be processed.

input_parameters: list of the expressions to be provided to the program as input parameters.

output_parameters: list of the assignment_allowed_variables that are identified to the output
parameters of the program.

inout_parameters: list of the assignment_allowed_variables that are identified to the inout
parameters of the program.

Formal propositions:

WR1: the functional_domain_restriction shall define the corresponding_method_variable.

WR2: the corresponding_method_variable shall be part of the context of the method.

WR3: the variables associated with the assumes attribute of the functional_domain_restriction
shall be part of the context of the method.

WR4: if data are available, then IP1 holds.

WR5: the corresponding_method_variable shall be defined in the
functional_model_class_extension as method_variables.

WR6: all the tables possibly involved in the functional_domain_restriction shall be applicable tables
for the class to which the method belongs.

WR7: the variables used in the input_parameters LIST of expressions shall belong to the context of
the method.

WR8: the output_parameters variables shall belong to the context of the method.

WR9: the inout_parameters variables shall belong to the context of the method.

WR10: the variables used in the functional_domain_restriction shall be part of the context of the
method.

Informal propositions:

IP1: the data type of the property_semantics associated with the corresponding_method_variable
shall be an entity_instance_type that shall contain a program_reference.

IP2: the representation_reference to which the functional_domain_restriction evaluates shall
reference, in its used_protocol attribute, the representation_interface of the method to which the
statement belongs.

IP3: the number and types of the input_parameters, output_parameters and inout_parameters
shall be compatible with the number and types defined by the in_parameters, out_parameters and
inout_parameters of the program_reference to which the functional_domain_restriction
evaluates.

14.4.17 Assignment_statement

The assignment_statement entity enables the specification of what value shall be assigned to an
assignment_allowed_variable.

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 441

NOTE 1 This entity allows the specification of what value shall be assigned either to a
self_property_value_semantics or to an open_view_property_value_semantics.

NOTE 2 Only the view properties that are identified by a property_BSUs may be represented as
open_view_property_value_semantics and, therefore, may be assigned a value using an
assignment_statement.

NOTE 3 The items attribute is a view properties inherited from the ISO 10303 representation of which the
view is subtype. This view properties is not identified by any property_BSU. It may only be assigned a value
implicitly using a predefined_representation_call_statement.

NOTE 4 When a method is run, the view control variables of the current open view shall be set by the LMS
to the values they have in the message that triggered the method. These variables shall not be assigned
different values by the method body.

EXPRESS specification:

*)
ENTITY assignment_statement
SUBTYPE OF(simple_statement);

assigned_variable: assignment_allowed_variable;
assigned_value: library_expression;

WHERE
WR1: SELF.assigned_variable IN

SELF\simple_statement.referenced_by.item_of.defines
.declaration;

WR2: compatible_variable_and_library_expression(
SELF.assigned_variable, SELF.assigned_value);

WR3: QUERY(v <* used_variables(
SELF\assignment_statement.assigned_value)
| NOT(v IN SELF\simple_statement.referenced_by
.item_of.defines.declaration)) = [];

WR4: NOT(SELF.assigned_variable\generic_variable
.interpretation.semantics\property_semantics.the_property
IN provided_properties_list(
SELF\simple_statement.referenced_by.item_of.defines
.describes.its_class.dictionary_definition));

END_ENTITY; -- assignment_statement
(*

Attribute definitions:

assigned_variable: the assignment_allowed_variable to which a value is assigned.

assigned_value: the library_expression the value of which is assigned to the library_variable.

Formal propositions:

WR1: the assigned_variable shall belong to the context of the method.

WR2: the data types of the assigned_value library_expressions shall be compatible with the
library_variables to which they are assigned.

WR3: all the variables involved in the assigned_value expression shall belong to the context of the
method.

ISO 13584-24:2003(E)

442 © ISO 2003 – All rights reserved

WR4: the assigned_variable shall not be a selectable, required or derived property of the functional
model class.

14.4.18 Sub_object_view_statement

The sub_object_view_statement allows the triggering of a method that refers, directly or indirectly,
to another class instance, the subobject. This instance may be either an already existing item_class
instance, that is a component of an assembled item of which the current functional model class
instance is able to create a view, or a created functional_model_class instance that is specified by a
class_instance_constructor.

In the first case, the already existing instance is referenced by a self_property_value_semantics of
the functional model class instance that is imported from the assembled item the functional model is-
view-of. It shall be an instance of an item_class, with or without item_class_extension. In this case,
the LMS shall search, following the is-view-of lattice represented in the user library, a functional model
class able to provide the view specified by the created_view attribute for the subobject instance.

In the second case, the created instance shall be an instance of a
functional_model_class_extension that is able to create some part of the view created by its
triggering instance. Due to the complete_identification_for_instance_rule rule, the functional model
class instance is completely and correctly identified by the class_instance_constructor. In this case
the functional_model_class_extension instance shall be able to provide the view specified by the
created_view with the view control variables specified by the v_c_v_values attributes.

NOTE The class_instance_constructor is defined in the ISO13584_library_expression_schema and
the complete_identification_for_instance_rule is defined in the ISO13584_library_content_schema. They
are both referenced from the ISO13584_library_content_schema to ensure that the
complete_identification_for_instance_rule holds for all the instances created by a method.

EXPRESS specification:

*)
ENTITY sub_object_view_statement
ABSTRACT SUPERTYPE OF(ONEOF(referenced_sub_item_view_statement,

constructed_sub_model_view_statement))
SUBTYPE OF(simple_statement);

created_view: class_BSU;
v_c_v_values: SET [0:?] OF property_assignment;

WHERE
WR1: definition_available_implies(SELF.created_view,

'ISO13584_EXTENDED_DICTIONARY_SCHEMA.FUNCTIONAL_VIEW_CLASS'
IN TYPEOF(SELF.created_view.definition[1]));

WR2: QUERY(e <* collects_referenced_library_expressions(
SELF.v_c_v_values) | QUERY(v <* used_variables(e)
| NOT(v IN SELF\simple_statement.referenced_by
.item_of.defines.declaration)) <> []) = [];

END_ENTITY; -- sub_object_view_statement
(*

Attribute definitions:

created_view: the class_BSU that defines the view to be created by the triggered method.

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 443

v_c_v_values: the property_assignments that define the values of the view control variables that
specify the view.

Formal propositions:

WR1: if data are available, then IP1 holds.

WR2: all the variables used in v_c_v_values shall belong to the context of the method.

Informal propositions:

IP1: the created_view shall correspond to a functional view.

IP2: all the library_expressions in v_c_v_values shall evaluate to values belonging to the range of
the view control variables.

14.4.19 Referenced_sub_item_view_statement

The referenced_sub_item_view_statement allows the triggering of a method that creates a
specified functional view of a component, the referenced subitem, of an assembled item. A functional
model class, that depends on the content of the user library, is first instantiated, and then, a method of
that instance is triggered that creates the specified functional view.

The functional model class to be instantiated is defined by:

— the sub_object variable_semantics attribute whose value is a dic_class_instance that
identifies a pre-existing instance of an item_class (the component of the assembled item), of
which a functional view is required, and

— the required functional view, specified by the created_view and v_c_v_values inherited
attributes.

NOTE The identity of the component of the assembled item may be for instance imported from the
assembled item by the required_item_characteristics attributes of the functional model class instance that
contains the triggering method.

The LMS shall search, following the is-view-of lattice represented in the user library, a
functional_model_class_extension able to provide the required view for the sub_object instance.
Then this class is instantiated, its possible required_item_characteristics are initiated from the
sub_object properties and the method is triggered. The selected
functional_model_class_extension shall not contain any free_model_properties.

EXPRESS specification:

*)
ENTITY referenced_sub_item_view_statement
SUBTYPE OF(sub_object_view_statement);

sub_object: self_property_value_semantics;
WHERE

WR1: definition_available_implies(SELF.sub_object
\property_semantics.the_property,
(data_type_typeof(SELF.sub_object
\property_semantics.the_property) = [])
OR ('ISO13584_IEC61360_DICTIONARY_SCHEMA.CLASS_INSTANCE_TYPE'
IN data_type_typeof(SELF.sub_object

ISO 13584-24:2003(E)

444 © ISO 2003 – All rights reserved

\property_semantics.the_property)));
WR2: self_property_value_semantics_is_item_class(SELF);
WR3: definition_available_implies(SELF.sub_object

\property_semantics.the_property,
(data_type_class_of(SELF.sub_object
\property_semantics.the_property) = []))
OR definition_available_implies(data_type_class_of(
SELF.sub_object\property_semantics.the_property)[1],
data_type_class_of(
SELF.sub_object\property_semantics.the_property)[1] IN
SELF\simple_statement.referenced_by.item_of.defines
.describes.specification.referred_subobject_models);

END_ENTITY; -- referenced_sub_item_view_statement
(*

Attribute definitions:

sub_object: the property of the SELF instance that references the subitem.

Formal propositions:

WR1: if data are available, then IP1 holds.

WR2: the class of the value of the self_property_value_semantics shall be an item_class.

WR3: if data are available, then IP2 holds.

Informal propositions:

IP1: the value of the self_property_value_semantics shall correspond to a class instance.

IP2: the SELF.sub_item.the_property\dic_class_instance.class_def class shall belong to the
referred_subobject_models of the method.

IP3: there shall exist, on the receiving system, a functional_model_class_extension able to create
the required view for the sub_object instance.

14.4.20 Constructed_sub_model_view_statement

The constructed_sub_model_view_statement allows the triggering of a method belonging to a
created instance of a functional_model_class_extension that is specified by a
class_instance_constructor. Due to the complete_identification_for_instance_rule rule, the
instance is completely and correctly identified by the class_instance_constructor.

The functional_model_class_extension shall be able to provide the view specified by the inherited
created_view and v_c_v_values attributes.

EXPRESS specification:

*)
ENTITY constructed_sub_model_view_statement
SUBTYPE OF(sub_object_view_statement);

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 445

sub_model: class_instance_constructor;
WHERE

WR1: SELF.sub_model\class_instance_expression.expr_type IN
SELF\simple_statement.referenced_by.item_of.defines
.describes.specification.referred_subobject_models;

WR2: definition_available_implies(
SELF.sub_model\class_instance_expression.expr_type,
'ISO13584_EXTENDED_DICTIONARY_SCHEMA'
+'.FUNCTIONAL_MODEL_CLASS' IN
TYPEOF(SELF.sub_model\class_instance_expression.expr_type
.definition[1]));

WR3: definition_available_implies(
SELF.sub_model\class_instance_expression.expr_type,
SIZEOF(SELF.sub_model\class_instance_expression.expr_type
.referenced_by) = 1);

WR4: definition_available_implies(
SELF.sub_model\class_instance_expression.expr_type,
SELF.sub_model\class_instance_expression.expr_type
= SELF\sub_object_view_statement.created_view);

WR5: QUERY(v <* used_variables(SELF.sub_model)
| NOT(v IN SELF\simple_statement.referenced_by
.item_of.defines.declaration)) = [];

END_ENTITY; -- constructed_sub_model_view_statement
(*

Attribute definitions:

sub_model: the class_instance_constructor that evaluates to the functional model instance
subobject.

Formal propositions:

WR1: the SELF.sub_model\class_expression.expression_type class shall belong to the
referred_subobject_models of the method.

WR2: if data are available, then IP1 holds.

WR3: if data are available, then IP2 holds.

WR4: if data are available, then IP3 holds.

WR5: all the variables used in SELF.sub_model class_instance_constructor shall belong to the
context of the method.

Informal propositions:

IP1: the SELF.sub_model\class_expression.expression_type class shall be a
functional_model_class.

IP2: the SELF.sub_model\class_expression.expression_type functional_model_class shall be
associated with a content (i.e., a functional_model_class_extension).

IP3: the SELF.sub_model shall be able to create the SELF.created_view.

ISO 13584-24:2003(E)

446 © ISO 2003 – All rights reserved

IP4: the SELF.sub_model shall be able to create the functional view that corresponds to the
evaluated values of the view control variables.

14.5 ISO13584_method_schema rules definitions

14.5.1 Created_view_v_c_v_rule rule

The created_view_v_c_v_rule rule checks that for each method_specif, all the properties
referenced by its v_c_v_range attribute are view control variables of the functional view class
referenced by its created_view attribute.

NOTE This constraint may only be checked when functional view classes are defined in the same
exchange context.

EXPRESS specification:

*)
RULE created_view_v_c_v_rule FOR(method_specif,

functional_view_class);
WHERE

WR1: QUERY(meth <* method_specif |
all_class_descriptions_reachable(meth.created_view)
AND (QUERY(temp <* meth.v_c_v_range | NOT(
temp.parameter_type IN functional_view_v_c_v(
meth.created_view))) <> [])) = [];

END_RULE; -- created_view_v_c_v_rule
(*

Formal propositions:

WR1: all the properties referenced by the v_c_v_range attribute of a method_specif shall be view
control variables of the functional view class referenced by the created_view attribute of this
method_specif.

14.5.2 V_c_v_values_set_and_created_view_v_c_v_set_equality_rule rule

The v_c_v_values_set_and_created_view_v_c_v_set_equality_rule rule checks that for each
sub_object_view_statement, all the properties referenced by its v_c_v_values attribute are view
control variables of the functional view class referenced by its created_view attribute.

NOTE 1 This constraint may only be checked when functional view classes are defined in the same
exchange context.

NOTE 2 If some view control variables of the created_view functional view are not needed to specify the
view, they shall be associated with an indeterminate (?) library_expression.

EXPRESS specification:

*)
RULE v_c_v_values_set_and_created_view_v_c_v_set_equality_rule FOR(

sub_object_view_statement, functional_view_class);
WHERE

WR1: QUERY(sub <* sub_object_view_statement |
all_class_descriptions_reachable(sub.created_view)

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 447

AND
(collects_assigned_properties(sub.v_c_v_values) <>
functional_view_v_c_v(sub.created_view))) = [];

END_RULE; -- v_c_v_values_set_and_created_view_v_c_v_set_equality_rule
(*

Formal propositions:

WR1: for each sub_object_view_statement, all the properties referenced by its v_c_v_values
attribute shall be view control variables of the functional view class referenced by its created_view
attribute.

14.5.3 No_v_c_v_in_assigned_variables_set_rule rule

The no_v_c_v_in_assigned_variables_set_rule rule checks that for each assignment_statement,
the assigned_variable is not a view control variable of the current open view.

NOTE This constraint may only be checked when functional view classes are defined in the same
exchange context.

EXPRESS specification:

*)
RULE no_v_c_v_in_assigned_variables_set_rule FOR(

assignment_statement, functional_view_class);
WHERE

WR1: QUERY(ass <* assignment_statement |
all_class_descriptions_reachable(ass\simple_statement.
referenced_by.item_of.defines.describes
.specification.created_view)
AND
(ass.assigned_variable\generic_variable
.interpretation.semantics\property_semantics.the_property IN
functional_view_v_c_v(ass\simple_statement.referenced_by
.item_of.defines.describes.specification.created_view)))
= [];

END_RULE; -- no_v_c_v_in_assigned_variables_set_rule
(*

Formal propositions:

WR1: for each assignment_statement, the assigned_variable shall not be a view control variable of
the current open view.

14.6 ISO13584_method_schema function definitions

This section describes the functions in the ISO13584_method_schema.

14.6.1 Checks_classes_in_path function

The checks_classes_in_path function checks that all the class_BSUs that define the final domain of
the properties referred to in a property_semantics path belong to an AGGREGATE of class_BSUs
defined by the cl parameter.

ISO 13584-24:2003(E)

448 © ISO 2003 – All rights reserved

The function returns a LOGICAL that is TRUE when all the properties of the path whose domain is a
class have their domain defined by class_BSUs belonging to cl, and FALSE when they have not. It
returns UNKNOWN when at least one dictionary_element is not available.

EXPRESS specification:

*)
FUNCTION checks_classes_in_path(v: property_semantics_or_path;

cl: SET OF class_BSU): LOGICAL;

LOCAL
prop: property_BSU;
temp: SET [0:1] OF class_BSU;

END_LOCAL;

prop := v.the_property;

IF data_type_typeof(prop) = []
THEN -- domain is unknown

RETURN(UNKNOWN);
ELSE -- domain is known

IF('ISO13584_IEC61360_DICTIONARY_SCHEMA.CLASS_INSTANCE_TYPE' IN
data_type_typeof(prop))

THEN
temp := data_type_class_of(prop);

IF NOT(temp[1] IN cl)
THEN

RETURN(FALSE);
ELSE -- domain in cl, check forward

IF EXISTS(v.its_own_property)
THEN

RETURN(checks_classes_in_path(
v.its_own_property, cl));

ELSE
RETURN(TRUE); -- all path checked

END_IF;
END_IF;

ELSE
RETURN(TRUE); -- domain is not a class

END_IF;
END_IF;

END_FUNCTION; -- checks_classes_in_path
(*

14.6.2 Checks_applicable_properties_in_path function

The checks_applicable_properties_in_path function checks that all the its_own_property
properties used in the path of a property_semantics_or_path are applicable_properties for the
class to which they belong.

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 449

The function returns a LOGICAL that is TRUE when all the properties of the path are
applicable_properties and FALSE when they are not. It returns UNKNOWN when at least one
dictionary_element is not available.

EXPRESS specification:

*)
FUNCTION checks_applicable_properties_in_path(

v: property_semantics_or_path): LOGICAL;

LOCAL
prop: property_BSU;
temp: SET[0:1] OF class_BSU;

END_LOCAL;

prop := v.the_property;

IF data_type_typeof(prop) = []
THEN --domain is unknown

RETURN(UNKNOWN);
ELSE --domain is known

IF ('ISO13584_IEC61360_DICTIONARY_SCHEMA.CLASS_INSTANCE_TYPE' IN
data_type_typeof(prop))

THEN
IF EXISTS(v.its_own_property)
THEN

temp := data_type_class_of(prop);
RETURN(applicable_properties(

temp[1], [v.its_own_property
.the_property]) AND
checks_applicable_properties_in_path(
v.its_own_property));

ELSE
RETURN(TRUE); --all paths checked

END_IF;
ELSE

RETURN(TRUE); -- no sub_property
END_IF;

END_IF;

END_FUNCTION; --checks_applicable_properties_in_path
(*

14.6.3 same_view_model_method

The same_view_model_method function checks that the cl class defined by its class_extension
does not refers to a class associated with a class_extension as its superclass.

If the class associated with cl cannot be computed, the function returns UNKNOWN.

ISO 13584-24:2003(E)

450 © ISO 2003 – All rights reserved

EXPRESS specification:

*)
FUNCTION same_view_model_method(meth: method_specif): LOGICAL;

IF SIZEOF(meth.specifies.its_class
\content_item.dictionary_definition.definition) = 0

THEN
RETURN(UNKNOWN);

END_IF;

RETURN(
meth.specifies.its_class
\content_item.dictionary_definition.definition[1]
\abstract_functional_model_class.created_view :=:
meth.created_view);

END_FUNCTION; -- same_view_model_method
(*

14.6.4 self_property_value_semantics_is_item_class

The self_property_value_semantics_is_item_class function checks that the class of the value of
the sub_object self_property_value_semantics of an it referenced_sub_item_view_statement is
an item_class.

If the class associated with the sub_object self_property_value_semantics of the it
referenced_sub_item_view_statement cannot be computed, the function returns UNKNOWN.

EXPRESS specification:

*)
FUNCTION self_property_value_semantics_is_item_class(

it: referenced_sub_item_view_statement): LOGICAL;

IF SIZEOF(it.sub_object
\property_semantics.the_property.definition) = 0

THEN
RETURN(UNKNOWN);

END_IF;

IF (data_type_class_of(it.sub_object
\property_semantics.the_property) = [])

THEN
RETURN(UNKNOWN);

END_IF;

IF SIZEOF(data_type_class_of(it.sub_object
\property_semantics.the_property)[1].definition) = 0

THEN
RETURN(UNKNOWN);

END_IF;

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 451

RETURN(('ISO13584_IEC61360_DICTIONARY_SCHEMA.ITEM_CLASS' IN
TYPEOF(data_type_class_of(it.sub_object
\property_semantics.the_property)[1].definition[1])));

END_FUNCTION; -- self_property_value_semantics_is_item_class
(*
*)
END_SCHEMA; -- ISO13584_method_schema
(*

15 Conformance requirements

An integrated library may consist of general model classes, functional model classes and functional
view classes.

This part of ISO 13584 does not provide for the simultaneous exchange of these three kinds of
classes.

NOTE 1 Such an exchange is allowed by library integrated information model 25 specified in ISO 13584-
25:—1.

Three library integrated information models are defined in this part of ISO 13584. They provide
respectively for the:

— exchange of general model classes, defining the first library integrated information model
(LIIM 24-1) and whose EXPRESS schema is the ISO13584_g_m_iim_schema;

— exchange of functional model classes, defining the second library integrated information model
(LIIM 24-2) and whose EXPRESS schema is the ISO13584_f_m_iim_schema;

— exchange of functional view classes, defining the third library integrated information model
(LIIM 24-3) and whose EXPRESS schema is the ISO13584_f_v_iim_schema.

Each schema provides for a number of options that may be supported by an implementation. These
options have been grouped into conformance classes. Conformance to a particular conformance class
requires to support all entities, types, and associated constraints defined as part of that class. Support
for a particular conformance class requires support of all the options specified in this class.

A conformance class may also define standard data that are instances of some entity data types
defined in one schema of this part of ISO 13584. Claiming conformance to this class requires that
such instances are recognised in an exchange context.

NOTE 2 Two kinds of standard data are intended to be specified as part of the conformance classes of the
library integrated information models and of the view exchange protocols defined in ISO 13584:
external_file_protocols, and data_exchange_specification_identifications.

A conformance class may finally define some dictionary entries, and the standard
basic_semantic_units that shall be used to refer to these entries. Claiming conformance to this class
requires that these dictionary entries are stored in the dictionary of the system and may be referenced
by the standard basic_semantic_units.

EXAMPLE 1 ISO 13584-101 defines the basic_geometry functional view class, and the content of the
class_BSU that shall be used to reference it.

To conform to ISO 13584, a system shall state the following:

1 To be published.

ISO 13584-24:2003(E)

452 © ISO 2003 – All rights reserved

— the conformance classes it supports for the library integrated information model LIIM 24-1,

— if any, the conformance classes it supports for the library integrated information model LIIM 24-2,

— if any, the conformance classes it supports for the library integrated information model LIIM 24-3,

— if any, the view exchange protocols from the view exchange protocol series of parts of ISO 13584
it supports, together with their supported conformance class,

— if any, the external_file_protocols it supports that are not already specified as standard data in
any of the supported conformance classes of the supported library integrated information models
and view exchange protocols.

Claiming conformance to some conformance classes of the first three library integrated information
models includes satisfying the requirements stated in the corresponding integrated schema, support of
all the entities and associated constructs defined as part of these conformance classes, and
recognition of all the standard data and dictionary entries possibly associated with these conformance
classes.

Claming conformance to some conformance classes of a view exchange protocol means satisfying
the requirements stated in the corresponding constraint schema(s), if any, recognition of all the
standard data and dictionary entries possibly associated with these conformance classes, and, when
such a standard data is an external_file_protocol entity instance, capability to process the library
external files whose structure is defined by this external_file_protocol entity instance.

NOTE 3 A view echange protocol may specify how it should be referenced from a library delivery file by
means of an EXPRESS schema that consists only of constraints. These constraints are fulfilled by any library
delivery file that references this view echange protocol in any of its conformance class.

EXAMPLE 2 Annex C specifies how to build the complete information model of a library delivery file that
reference ISO13584_g_m_iim_schema and a view exchange protocol "V1".

Conformance to different view exchange protocols are orthogonal. An implementation shall be able to compile a
library exchange context that refers to a supported conformance class of a library integrated information model,
and to several view exchange protocols, all of them in supported conformance classes.

EXAMPLE 3 ISO 13584-101 defines the dictionary entries that corresponds to the basic_geometry functional
view class and defines the ISO 13584-31 program_protocol. A library exchange context may reference both
the library integrated information model LIIM 24-2 and the view exchange protocols defined by ISO 13584-101.
The first reference defines the structure of the library delivery file, and of the library external files that contain
documents or dialogue resources. The second reference defines the structure of the library external files that
contain FORTRAN programs intended to generate the basic_geometry representation of library parts.

Finally, claiming support of some external_file_protocol(s) not already specified as standard data in
one of the supported view exchange protocol conformance classes means capability to process the
library external files whose structure is defined by these external_file_protocol(s), if these library
external files are referenced from supported entities.

EXAMPLE 4 An ISO 13584-conformant implementation may claim to support the program_protocol that
corresponds to CATIA® FORTRAN programs, and conformance to some conformance class of View Exchange
Protocol ISO 13584-101. This implementation shall be able to support functional model classes conformant with
this conformance class even if some program_references reference external_file_protocols that
characterizes CATIA® FORTRAN programs.

NOTE 4 When an external_file_protocol not defined as standard data in some View Exchange Protocol is
used in a library exchange context, it is assumed that there exists an agreement between the library data
supplier and the library user about the description of this protocol through an external_file_protocol entity.

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 453

16 Exchange of general model classes: library integrated information
model 24-1

Conformance to the library integrated information model 24-1 includes satisfying the requirements
stated in the ISO13584_g_m_iim_schema presented in annex C, the requirements of the
implementation method(s) supported, the relevant requirements of the normative references and the
support of the standard data defined in annex E.

An implementation shall support at least the following implementation method: ISO10303-21.
Requirements with respect to implementation methods are specified in annex F.

The ISO13584_g_m_iim_schema provides for a number of options that may be supported by an
implementation. These options have been grouped into conformance classes. Thirteen conformance
classes are defined. Conformance to the library integrated information model 24-1 requires, at a
minimum, conformance to class 0. Options are defined by each class and may be selected by an
implementation. Conformance to a particular conformance class requires that all the
ISO13584_g_m_iim_schema entities, types and associated constraints defined as part of the class,
be supported, together with the standard data associated with the class.

The numbering schema of the conformance classes is as follows:

— the digit specifies the dictionary data and possibly library data that shall be supported. The
conformance classes identified by digit 0, 1 and 2 correspond to implementations that support only
dictionary_elements.

— the conformance class identifier may contain the letter E. The corresponding conformance classes
are called extended conformance classes. These conformance classes support descriptions that
use supplier-defined protocols. Implementations conformant with an extended conformance class
shall be able to process any entity belonging to the set of supported entities, even when they
reference a protocol that is not part of the standard data but that is value-equal to an
external_file_protocol they claim to support.

NOTE 1 The attribute values for the external_file_protocol entities that do not belong to the standard data
defined in this part of ISO 13584 (annexes E, I and M) or to the standard data defined in one part of the view
exchange protocol series of part of ISO 13584 are subject to prior agreement between the sender and the
receiver. They are outside the scope of this International Standard.

NOTE 2 The only files that may be referenced as http_files in conformance classes '1' to '6' of library
integrated information model 24-1 are files whose MIME type and subtype:

— either corresponding to specifications that are publicly available, or

— that are associated with public domain Internet-available readers.

Reference to http_files corresponding to other MIME types and subtypes may only be done in extended
conformance classes. This is documented as an informal proposition in the annex E.

Conformance class are characterised as follows:

— class 0: minimal dictionary_elements for atomic items;

— class 1: dictionary_elements for atomic items;

— class 1E: dictionary_elements for atomic items with supplier-defined external file protocols;

— class 2: dictionary_elements for assembled items;

— class 2E: dictionary_elements for assembled items with supplier-defined external file protocols;

— class 3: dictionary_elements and simple library specifications for atomic items;

ISO 13584-24:2003(E)

454 © ISO 2003 – All rights reserved

— class 3E: dictionary_elements and simple library specifications for atomic items with supplier-
defined external file protocols;

— class 4: dictionary_elements and relational-algebra-based library specifications for atomic items;

— class 4E: dictionary_elements and relational algebra-based library specifications for atomic
items with supplier-defined external file protocols;

— class 5: dictionary_element and simple library specifications for assembled items;

— class 5E: dictionary_element and simple library specifications for assembled items with supplier-
defined external file protocols;

— class 6: dictionary_element and relational algebra-based library specifications for assembled
items;

— class 6E: dictionary_element and relational algebra-based library specifications for assembled
items with supplier-defined external file protocols.

Table 1 — Conformance options of library integrated information model 24-1

Capabilities Dictionary_elements Library specification
(class extension)

Supplier
defined
protocol

Conformance
class

atomic items:
common
dictionary
schema

atomic
items with
graphics

and
referenced
document

assembled
items

atomic
items
with

tables,
(no

relational
algebra)

assemble
d items

with
tables,

(no
relational
algebra)

relational
algebra

0
1

1-e
2

2-e
3

3-e
4

4-e
5

5-e
6

6-e

x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x

x
x

x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x

x
x

x
x

x

x

x

x

x

x

Table 1 shows the supported capabilities of the different conformance classes of library integrated
information model 24-1.

16.1 ISO13584_g_m_iim_schema short listing

This clause specifies the EXPRESS schema that uses elements either from the integrated resource
series of ISO 10303 or from the logical resource or description methodology series of parts of
ISO 13584 to define the requirements of library integrated information model LIIM24-1.

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 455

NOTE 1 The integrated resource series of ISO 10303 are part 10303-4x and 10303-1xx. The logical
resource series of parts of ISO 13584 are ISO 13584-2x and the description methodology series of parts of
ISO 13584 are ISO 13584-4x.

Requirements stated in the referenced schemas apply exclusively to those items that are used from
these schemas.

The expanded EXPRESS listing is presented in annex C.

NOTE 2 Some of the entities and related constructs USEd in this schema do not belong to any of the
conformance classes defined in this part of ISO 13584. They are intended to be used by view exchange
protocols.

NOTE 3 This schema is the information model of supplier libraries. The information model of integrated
libraries is outside the scope of this International Standard.

EXPRESS specification:

*)
SCHEMA ISO13584_g_m_iim_schema;

USE FROM ISO13584_generic_expressions_schema
(environment);

USE FROM ISO13584_expressions_schema
(abs_function,
acos_function,
and_expression,
asin_function,
atan_function,
boolean_literal,
boolean_variable,
comparison_equal,
comparison_greater,
comparison_greater_equal,
comparison_less,
comparison_less_equal,
comparison_not_equal,
concat_expression,
cos_function,
div_expression,
equals_expression,
exp_function,
format_function,
index_expression,
interval_expression,
int_literal,
int_numeric_variable,
int_value_function,
length_function,
like_expression,
log_function,
log2_function,
log10_function,
maximum_function,

ISO 13584-24:2003(E)

456 © ISO 2003 – All rights reserved

minimum_function,
minus_expression,
minus_function,
mod_expression,
mult_expression,
not_expression,
odd_function,
or_expression,
plus_expression,
power_expression,
real_literal,
real_numeric_variable,
sin_function,
slash_expression,
square_root_function,
string_literal,
string_variable,
substring_expression,
tan_function,
value_function,
xor_expression);

USE FROM ISO13584_IEC61360_dictionary_schema
(axis1_placement_type,
axis2_placement_2d_type,
axis2_placement_3d_type,
basic_semantic_unit,
boolean_type,
class_BSU,
class_instance_type,
class_value_assignment,
component_class,
condition_DET,
data_type_BSU,
data_type_element,
dates,
dependent_P_DET,
dic_unit,
dic_value,
entity_instance_type,
identified_document,
integer_type,
int_currency_type,
int_measure_type,
int_type,
item_class,
item_names,
label_with_language,
level_type,
material_class,
mathematical_string,

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 457

named_type,
non_dependent_P_DET,
non_quantitative_code_type,
non_quantitative_int_type,
non_si_unit,
number_type,
placement_type,
property_BSU,
real_currency_type,
real_measure_type,
real_type,
string_type,
supplier_BSU,
supplier_element,
value_code_type,
value_domain);

USE FROM ISO13584_IEC61360_language_resource_schema
(global_language_assignment,
present_translations,
translated_label,
translated_text);

USE FROM ISO13584_instance_resource_schema
(Null_value,
Primitive_value,
Null_or_primitive_value,
Simple_value,
Null_or_simple_value,
Number_value,
Null_or_number_value,
Integer_value,
Null_or_integer_value,
Real_value,
Null_or_real_value,
Boolean_value,
Null_or_boolean_value,
Translatable_string_value,
Translated_string_value,
String_value,
Null_or_translatable_string_value,
Complex_value,
Null_or_complex_value,
Entity_instance_value,
Null_or_entity_instance_value,
Defined_entity_instance_value,
Controlled_entity_instance_value,
STEP_entity_instance_value,
PLIB_entity_instance_value,
Property_or_data_type_BSU,
Level_spec_value,
Null_or_level_spec_value,

ISO 13584-24:2003(E)

458 © ISO 2003 – All rights reserved

Int_level_spec_value,
Null_or_int_level_spec_value,
Real_level_spec_value,
Null_or_real_level_spec_value,
Property_value,
Context_dependent_property_value,
dic_class_instance,
null_or_dic_class_instance,
dic_component_instance,
dic_feature_instance,
dic_material_instance,
lib_component_instance,
lib_feature_instance,
lib_material_instance);

USE FROM ISO13584_library_expressions_schema
(binary_class_instance_constructor,
class_instance_literal,
class_instance_variable,
entity_instance_literal,
entity_instance_variable,
exists_value,
instance_comparison_equal,
int_level_spec_literal,
int_level_spec_variable,
multiple_arity_class_instance_constructor,
property_assignment,
real_level_spec_literal,
real_level_spec_variable,
unary_class_instance_constructor);

USE FROM ISO13584_table_resource_schema
(boolean_column,
class_instance_column,
column_traversal_variable_semantics,
difference_table_expression,
entity_instance_column,
integer_column,
intersect_table_expression,
int_level_spec_column,
in_RDB_table_boolean_expression,
multiple_arity_cartesian_product,
natural_join_expression,
projection_expression,
RDB_table_extension,
RDB_table_specification,
RDB_table_variable,
real_column,
real_level_spec_column,
select_expression,
string_column,

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 459

table_extension,
table_literal,
table_specification,
table_variable,
union_table_expression);

USE FROM ISO13584_variable_semantics_schema
(property_semantics_or_path,
self_class_code_semantics,
self_class_preferred_name_semantics,
self_class_short_name_semantics,
self_class_supplier_code_semantics,
self_class_version_semantics,
self_property_class_code_semantics,
self_property_class_version_semantics,
self_property_code_semantics,
self_property_preferred_name_semantics,
self_property_short_name_semantics,
self_property_value_semantics,
self_property_version_semantics,
sub_property_path);

USE FROM ISO13584_domain_resource_schema
(constant_range_defined_domain,
domain_restriction,
functional_domain_restriction,
guarded_functional_domain,
guarded_simple_domain,
library_expression_defined_value,
null_defined_value,
others,
predicate_defined_domain,
subclass_defined_domain,
table_defined_domain,
table_defined_value,
type_defined_domain,
variable_range_defined_domain);

USE FROM ISO13584_extended_dictionary_schema
(a_posteriori_case_of,
class_document_relationship,
class_table_relationship,
component_class_case_of,
dictionary_identification,
dictionary,
dictionary_in_standard_format,
document_BSU,
document_element,
feature_class,
feature_class_case_of,
geometric_representation_context_type,
item_class_case_of,

ISO 13584-24:2003(E)

460 © ISO 2003 – All rights reserved

library_iim_identification,
material_class_case_of,
RDB_table_content,
RDB_table_element,
representation_type,
table_BSU,
table_content,
table_element,
view_exchange_protocol_identification);

USE FROM ISO13584_library_content_schema
(explicit_item_class_extension,
item_class_extension,
library,
library_in_standard_format,
opt_or_mand_property_BSU);

USE FROM ISO13584_external_file_schema
(A6_illustration,
A9_illustration,
document_content,
external_file_unit,
http_class_directory,
http_directory_name_type,
http_file,
http_protocol,
illustration,
language_specific_content,
message,
non_standard_data_protocol,
not_translatable_external_content,
not_translated_external_content,
standard_data_protocol,
translated_external_content,
property_value_external_item);

USE FROM measure_schema
(amount_of_substance_measure,
amount_of_substance_unit,
area_measure,
area_unit,
context_dependent_measure,
context_dependent_unit,
conversion_based_unit,
count_measure,
derived_unit,
derived_unit_element,
descriptive_measure,
dimensional_exponents,
electric_current_measure,
electric_current_unit,

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 461

global_unit_assigned_context,
length_measure,
length_measure_with_unit,
length_unit,
luminous_intensity_measure,
luminous_intensity_unit,
mass_measure,
mass_unit,
measure_value,
measure_with_unit,
named_unit,
numeric_measure,
parameter_value,
plane_angle_measure,
plane_angle_unit,
positive_length_measure,
positive_plane_angle_measure,
positive_ratio_measure,
ratio_measure,
ratio_unit,
si_unit,
solid_angle_measure,
solid_angle_unit,
thermodynamic_temperature_measure,
thermodynamic_temperature_unit,
time_measure,
time_unit,
volume_measure,
volume_unit);

USE FROM person_organization_schema
(address,
organization,
person,
person_and_organization,
personal_address,
organizational_address);

USE FROM date_time_schema
(date,
date_and_time,
local_time,
calendar_date,
ordinal_date,
week_of_year_and_day_date);

USE FROM application_context_schema
(application_context,
application_context_element,
application_protocol_definition);

(*

ISO 13584-24:2003(E)

462 © ISO 2003 – All rights reserved

16.2 ISO13584_g_m_iim_schema global rule definitions

The following rules define the requirements for the ISO13584_g_m_iim_schema schema.

16.2.1 At_most_one_dictionary_rule rule

The at_most_one_dictionary_rule rule states that a library exchange context is associated to no
more than one dictionary.

EXPRESS specification:

*)
RULE at_most_one_dictionary_rule FOR(dictionary);
WHERE

WR1: SIZEOF(dictionary) <= 1;
END_RULE; -- at_most_one_library_rule
(*

Formal propositions:

WR1: there is no more than one dictionary defined in a library exchange context.

16.2.2 Class_associated_items_rule rule

The class_associated_items_rule rule states that each class has no more than two
associated_items that are class_table_relationship and/or class_document_relationship.

EXPRESS specification:

*)
RULE class_associated_items_rule FOR(class);
WHERE

WR1: QUERY(temp <* class | (SIZEOF(temp.associated_items) > 2)
OR ((SIZEOF(temp.associated_items) = 1)
AND NOT(('ISO13584_G_M_IIM_SCHEMA'
+'.CLASS_TABLE_RELATIONSHIP' IN
TYPEOF(temp.associated_items[1]))
OR ('ISO13584_G_M_IIM_SCHEMA'
+'.CLASS_DOCUMENT_RELATIONSHIP'
IN TYPEOF(temp.associated_items[1]))))
OR ((SIZEOF(temp.associated_items) = 2)
AND NOT((('ISO13584_G_M_IIM_SCHEMA'
+ '.CLASS_TABLE_RELATIONSHIP'
IN TYPEOF(temp.associated_items[1]))
AND ('ISO13584_G_M_IIM_SCHEMA'
+'.CLASS_DOCUMENT_RELATIONSHIP'
IN TYPEOF(temp.associated_items[2])))
OR (('ISO13584_G_M_IIM_SCHEMA'
+'.CLASS_TABLE_RELATIONSHIP'
IN TYPEOF(temp.associated_items[2]))
AND ('ISO13584_G_M_IIM_SCHEMA'

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 463

+ '.CLASS_DOCUMENT_RELATIONSHIP'
IN TYPEOF(temp.associated_items[1]))))))
= [];

END_RULE; -- class_associated_items_rule
(*

Formal propositions:

WR1: each class has no more than two associated_items that are class_table_relationship and/or
class_document_relationship.

*)
END_SCHEMA; -- ISO13584_g_m_iim_schema
(*

16.3 Conformance class requirements

16.3.1 Conformance class 0

Conformance class 0 addresses those implementations that are intended to support the common
requirements stated in the ISO/IEC dictionary schema. An implementation of conformance class 0 of
library integrated information model 24-1 shall support the following entities and related constructs.

FROM ISO13584_IEC61360_dictionary_schema
(boolean_type,
class_BSU,
class_value_assignment,
component_class,
condition_DET,
data_type_element,
dependent_P_DET,
dic_unit,
dic_value,
identified_document,
int_currency_type,
int_measure_type,
int_type,
item_class,
item_names,
label_with_language,
level_type,
material_class,
mathematical_string,
named_type,
non_dependent_P_DET,
non_quantitative_code_type,
non_quantitative_int_type,
non_si_unit,
number_type,
property_BSU,
real_currency_type,
real_measure_type,
real_type,

ISO 13584-24:2003(E)

464 © ISO 2003 – All rights reserved

string_type,
supplier_BSU,
supplier_element,
syn_name_type,
value_domain);

FROM ISO13584_IEC61360_language_resource_schema
(global_language_assignment,
present_translations,
translated_label,
translated_text);

FROM measure_schema
(amount_of_substance_unit,
area_unit,
context_dependent_unit,
conversion_based_unit,
derived_unit,
derived_unit_element,
dimensional_exponents,
electric_current_unit,
length_measure_with_unit,
length_unit,
luminous_intensity_unit,
mass_unit,
measure_value,
measure_with_unit,
named_unit,
plane_angle_unit,
ratio_unit,
si_unit,
solid_angle_unit,
thermodynamic_temperature_unit,
time_unit,
volume_unit);

FROM person_organization_schema
(address,
organization,
person,
person_and_organization,
personal_address,
organizational_address);

FROM date_time_schema
(date,
date_and_time,
local_time,
calendar_date,
ordinal_date,
week_of_year_and_day_date);

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 465

16.3.2 Conformance class 1

Conformance class 1 addresses those implementations that support dictionary_elements of atomic
items that may involve the use of the is-case-of relationship and that may be associated with
documents and graphics. An implementation of conformance class 1 of the library integrated
information model 24-1 shall support the standard data defined in annex E. It shall also support the
following entities and related constructs.

FROM ISO13584_IEC61360_dictionary_schema
(boolean_type,
class_BSU,
class_value_assignment,
component_class,
condition_DET,
data_type_BSU,
dates,
dic_unit,
dic_value,
identified_document,
int_currency_type,
int_measure_type,
int_type,
item_class,
item_names,
label_with_language,
level,
level_type,
material_class,
mathematical_string,
named_type,
non_dependent_P_DET,
non_quantitative_code_type,
non_quantitative_int_type,
non_si_unit,
number_type,
property_BSU,
real_currency_type,
real_measure_type,
real_type,
string_type,
supplier_BSU,
supplier_element,
syn_name_type,
value_code_type,
value_domain,
value_format_type);

FROM ISO13584_IEC61360_language_resource_schema
(global_language_assignment,
language_code,
present_translations,

ISO 13584-24:2003(E)

466 © ISO 2003 – All rights reserved

translated_label,
translated_text);

FROM ISO13584_extended_dictionary_schema
(a_posteriori_case_of,
class_document_relationship,
component_class_case_of,
dictionary_identification,
dictionary_in_standard_format,
document_BSU,
document_element,
document_element_with_http_access,
document_element_with_translated_http_access,
feature_class,
feature_class_case_of,
geometric_representation_context_type,
item_class_case_of,
library_iim_identification,
material_class_case_of,
referenced_document,
referenced_graphics);

FROM ISO13584_external_file_schema
(A6_illustration,
A9_illustration,
document_content,
external_file_unit,
http_class_directory,
http_file,
http_protocol,
illustration,
language_specific_content,
not_translatable_external_content,
not_translated_external_content,
standard_data_protocol,
translated_external_content,
property_value_external_item);

FROM measure_schema
(amount_of_substance_unit,
area_unit,
context_dependent_unit,
conversion_based_unit,
derived_unit,
derived_unit_element,
dimensional_exponents,
electric_current_unit,
length_measure_with_unit,
length_unit,
luminous_intensity_unit,
mass_unit,

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 467

measure_value,
measure_with_unit,
named_unit,
plane_angle_unit,
ratio_unit,
si_unit,
solid_angle_unit,
thermodynamic_temperature_unit,
time_unit,
volume_unit);

FROM person_organization_schema
(address,
organization,
person,
person_and_organization,
personal_address,
organizational_address);

FROM date_time_schema
(date,
date_and_time,
local_time,
calendar_date,
ordinal_date,
week_of_year_and_day_date);

FROM application_context_schema
(application_context,
application_context_element,
application_protocol_definition);

16.3.3 Conformance class 1E

Conformance class 1E addresses those implementations that support conformance class 1 and may
support some supplier-defined external file protocols.

NOTE 1 The target of all the conformance classes that include 'E' in their identifiers are the consortiums
that consist of one or several library data suppliers, and one or several library data users, who agree on some
specific exchange format for some of the external files referenced from a library delivery file.

NOTE 2 Besides the entities and related constructs defined for conformance class 1, they shall also
support the following entities and related constructs.

FROM ISO13584_extended_dictionary_schema
(dictionary);

FROM ISO13584_external_file_schema
(non_standard_data_protocol);

16.3.4 Conformance class 2

Conformance class 2 addresses those implementations that support dictionary_elements of
assembled items that may involve the use of the is-case-of relationship and that may be associated
with documents and graphics. An implementation of conformance class 2 of the library integrated

ISO 13584-24:2003(E)

468 © ISO 2003 – All rights reserved

information model 24-1 shall support the standard data defined in annex I. It shall also support the
entities and related constructs defined for conformance class 1 more the following entities and related
constructs.

FROM ISO13584_IEC61360_dictionary_schema
(class_instance_type);

16.3.5 Conformance class 2E

Conformance class 2E addresses those implementations that support conformance class 2 and may
support some supplier-defined external file protocols.

Besides the entities and related constructs defined for conformance class 2, they shall also support
the following entities and related constructs.

FROM ISO13584_extended_dictionary_schema
(dictionary);

FROM ISO13584_external_file_schema
(non_standard_data_protocol);

16.3.6 Conformance class 3

Conformance class 3 addresses those implementations that support dictionary_elements and simple
library specifications of atomic items. Conformance class 3 implementations are only required to
support a subset of the numeric, Boolean and string operators defined by the
ISO13584_expressions_schema, and to support tables. They are not required to support any
relational-algebra operator, nor properties whose data type is a level_type, nor access to the various
names of the classes and properties.

NOTE It is considered that conformance class 3 should cover the requirements of most of the existing
nonstandardised part libraries systems. A system supporting conformance class 3 might be for instance
implemented on a file management system with some basic object oriented engine.

Besides the requirements already stated for conformance class 1, an implementation of conformance
class 3 shall also support the following entities and associated constructs.

FROM ISO13584_generic_expressions_schema
(environment);

FROM ISO13584_expressions_schema
(and_expression,
boolean_literal,
boolean_variable,
comparison_equal,
comparison_greater,
comparison_greater_equal,
comparison_less,
comparison_less_equal,
comparison_not_equal,
concat_expression,
div_expression,
equals_expression,
format_function,
int_literal,

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 469

int_numeric_variable,
maximum_function,
minimum_function,
minus_expression,
minus_function,
mult_expression,
not_expression,
or_expression,
plus_expression,
real_literal,
real_numeric_variable,
slash_expression,
string_literal,
string_variable,
substring_expression,
xor_expression);

FROM ISO13584_instance_resource_schema
(Null_value,
Primitive_value,
Null_or_primitive_value,
Simple_value,
Null_or_simple_value,
Number_value,
Null_or_number_value,
Integer_value,
Null_or_integer_value,
Real_value,
Null_or_real_value,
Boolean_value,
Null_or_boolean_value,
Translatable_string_value,
Translated_string_value,
String_value,
Null_or_translatable_string_value);

FROM ISO13584_table_resource_schema
(boolean_column,
column_traversal_variable_semantics,
integer_column,
real_column,
string_column,
table_literal);

FROM ISO13584_variable_semantics_schema
(self_property_value_semantics);

FROM ISO13584_domain_resource_schema
(constant_range_defined_domain,
domain_restriction,
functional_domain_restriction,
library_expression_defined_value,

ISO 13584-24:2003(E)

470 © ISO 2003 – All rights reserved

guarded_functional_domain,
guarded_simple_domain,
others,
predicate_defined_domain,
simple_domain,
simple_functional_domain,
table_defined_domain,
table_defined_value,
type_defined_domain,
variable_range_defined_domain);

FROM ISO13584_extended_dictionary_schema
(class_table_relationship,
RDB_table_element,
RDB_table_content,
table_BSU);

FROM ISO13584_library_content_schema
(explicit_item_class_extension,
item_class_extension,
library_in_standard_format,
opt_or_mand_property_BSU);

FROM ISO13584_external_file_schema
(message);

16.3.7 Conformance class 3E

Conformance class 3E addresses those implementations that support conformance class 3 and may
support some supplier-defined external file protocols.

Besides the entities and related constructs defined for conformance class 3, they shall also support
the following entities and related constructs.

FROM ISO13584_extended_dictionary_schema
(dictionary);

FROM ISO13584_library_content_schema
(library);

FROM ISO13584_external_file_schema
(non_standard_data_protocol);

16.3.8 Conformance class 4

Conformance class 4 addresses those implementations that support dictionary_elements and library
specifications of atomic items that involve all the operators defined in the
ISO13584_expressions_schema and that support relational algebra for table definition, properties
whose data type is a level_type, and access to the various names of the classes and properties.

NOTE The target systems for conformance class 4 are DBMS-based systems, where the database is
either relational (with an object oriented engine) or object oriented.

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 471

Besides the requirements already stated for conformance class 3, an implementation of conformance
class 4 shall also support the following entities and associated constructs.

FROM ISO13584_expressions_schema
(abs_function,
acos_function,
asin_function,
atan_function,
cos_function,
exp_function,
index_expression,
interval_expression,
int_value_function,
length_function,
like_expression,
log_function,
log2_function,
log10_function,
mod_expression,
odd_function,
power_expression,
sin_function,
SQL_mappable_defined_function,
square_root_function,
tan_function,
value_function);

FROM ISO13584_instance_resource_schema
(int_level_spec_value,
real_level_spec_value);

FROM ISO13584_library_expressions_schema
(int_level_spec_literal,
int_level_spec_variable,
real_level_spec_literal,
real_level_spec_variable);

FROM ISO13584_table_resource_schema
(difference_table_expression,
entity_instance_column,
intersect_table_expression,
int_level_spec_column,
in_RDB_table_boolean_expression,
multiple_arity_cartesian_product,
natural_join_expression,
projection_expression,
real_level_spec_column,
select_expression,
union_table_expression);

FROM ISO13584_variable_semantics_schema
(self_class_code_semantics,

ISO 13584-24:2003(E)

472 © ISO 2003 – All rights reserved

self_class_preferred_name_semantics,
self_class_short_name_semantics,
self_class_supplier_code_semantics,
self_class_version_semantics,
self_property_class_code_semantics,
self_property_class_supplier_code_semantics,
self_property_class_version_semantics,
self_property_code_semantics,
self_property_preferred_name_semantics,
self_property_short_name_semantics,
self_property_version_semantics);

FROM ISO13584_extended_dictionary_schema
(table_content,
table_element);

16.3.9 Conformance class 4E

Conformance class 4E addresses those implementations that support conformance class 4 and may
support some supplier-defined external file protocol.

Besides the entities and related constructs defined for conformance class 4, they shall also support
the following entities and related constructs;

FROM ISO13584_extended_dictionary_schema
(dictionary);

FROM ISO13584_library_content_schema
(library);

FROM ISO13584_external_file_schema
(non_standard_data_protocol);

16.3.10 Conformance class 5

Conformance class 5 addresses those implementations that support dictionary_elements and simple
library specifications of assembled items. Conformance class 5 implementations are only required to
support a subset of the numeric, Boolean and string operators defined by the
ISO13584_expressions_schema, and to support tables. They are not required to support any
relational-algebra operator, nor properties whose data type is a level_type, nor access to the various
names of the classes and properties.

NOTE The target systems for conformance class 5 are relational DBMS-based system.

Besides the entities and related constructs defined for conformance class 3 and for conformance
class 2, they shall also support the following entities and related constructs.

FROM ISO13584_instance_resource_schema
(Complex_value,
Null_or_complex_value,
Entity_instance_value,
Null_or_entity_instance_value,
Controlled_entity_instance_value,

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 473

STEP_entity_instance_value,
PLIB_entity_instance_value,
Property_or_data_type_BSU,
Level_spec_value,
Null_or_level_spec_value,
Int_level_spec_value,
Null_or_int_level_spec_value,
Real_level_spec_value,
Null_or_real_level_spec_value,
Property_value,
Context_dependent_property_value,
dic_class_instance,
null_or_dic_class_instance,
dic_component_instance,
dic_feature_instance,
dic_material_instance,
lib_component_instance,
lib_feature_instance,
lib_material_instance);

FROM ISO13584_library_expressions_schema
(binary_class_instance_constructor,
class_instance_literal,
class_instance_variable,
entity_instance_literal,
entity_instance_variable,
exists_value,
instance_comparison_equal,
multiple_arity_class_instance_constructor,
property_assignment,
unary_class_instance_constructor);

FROM ISO13584_table_resource_schema
(class_instance_column,
RDB_table_variable);

FROM ISO13584_variable_semantics_schema
(sub_property_path);

FROM ISO13584_domain_resource_schema
(null_defined_value,
subclass_defined_domain);

16.3.11 Conformance class 5E

Conformance class 5E addresses those implementations that support conformance class 5 and may
support some supplier-defined external file protocols.

Besides the entities and related constructs defined for conformance class 5, they shall also support
the following entities and related constructs;

FROM ISO13584_extended_dictionary_schema
(dictionary);

ISO 13584-24:2003(E)

474 © ISO 2003 – All rights reserved

FROM ISO13584_library_content_schema
(library);

FROM ISO13584_external_file_schema
(non_standard_data_protocol);

16.3.12 Conformance class 6

Conformance class 6 addresses those implementations that support dictionary_elements and library
specifications of assembled items that involve all the operators defined in the
ISO13584_expressions_schema and relational algebra for table definition.

NOTE The target systems for conformance class 6 are Object-Oriented DBMS-based system with full
object-oriented capabilities.

Besides the entities and related constructs defined for conformance class 5, they shall also support
the following entities and related constructs.

FROM ISO13584_expressions_schema
(abs_function,
acos_function,
asin_function,
atan_function,
cos_function,
exp_function,
index_expression,
interval_expression,
int_value_function,
length_function,
like_expression,
log_function,
log2_function,
log10_function,
mod_expression,
odd_function,
power_expression,
sin_function,
SQL_mappable_defined_function,
square_root_function,
tan_function,
value_function);

FROM ISO13584_instance_resource_schema
(int_level_spec_value,
real_level_spec_value);

FROM ISO13584_library_expressions_schema
(int_level_spec_literal,
int_level_spec_variable,
real_level_spec_literal,
real_level_spec_variable);

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 475

FROM ISO13584_table_resource_schema
(difference_table_expression,
intersect_table_expression,
int_level_spec_column,
in_RDB_table_boolean_expression,
multiple_arity_cartesian_product,
natural_join_expression,
projection_expression,
real_level_spec_column,
select_expression,
union_table_expression,
table_variable);

FROM ISO13584_variable_semantics_schema
(self_class_code_semantics,
self_class_preferred_name_semantics,
self_class_short_name_semantics,
self_class_supplier_code_semantics,
self_class_version_semantics,
self_property_class_code_semantics,
self_property_class_version_semantics,
self_property_code_semantics,
self_property_preferred_name_semantics,
self_property_short_name_semantics,
self_property_version_semantics);

FROM ISO13584_extended_dictionary_schema
(table_content,
table_element);

16.3.13 Conformance class 6E

Conformance class 6E addresses those implementations that support conformance class 6 and may
support some supplier-defined external file protocols.

Besides the entities and related constructs defined for conformance class 6, they shall also support
the following entities and related constructs;

FROM ISO13584_extended_dictionary_schema
(dictionary);

FROM ISO13584_library_content_schema
(library);

FROM ISO13584_external_file_schema
(non_standard_data_protocol);

17 Exchange of functional model classes: library integrated information
model 24-2

Conformance to the LIIM 24-2 includes satisfying the requirements stated in the
ISO13584_f_m_iim_schema presented in annex G, the requirements of the implementation

ISO 13584-24:2003(E)

476 © ISO 2003 – All rights reserved

method(s) supported, the relevant requirements of the normative references and the support of the
standard data defined in annex I.

An implementation shall support at least the following implementation method: ISO10303-21.
Requirement with respect to implementation methods are specified in annex J.

The ISO13584_f_m_iim_schema provides for a number of options that may be supported by an
implementation. These options have been grouped into conformance classes. Ten conformance
classes are defined. Conformance to the LIIM 24-2 requires, at a minimum, conformance to class 1.
Options are defined by each class and may be selected by an implementation. Conformance to a
particular conformance class requires that all the ISO13584_f_m_iim_schema entities, types and
associated constraints defined as part of the class, be supported, together with the standard data
associated with the class.

The numbering schema of the conformance classes is as follows:

— the digit specifies the dictionary elements and the library specifications (i.e., class extension
description) that shall be supported. The conformance classes identified by digit 1 and 2
correspond to implementations that support only dictionaries elements.

— the conformance class identifier may contain the letter E. The corresponding conformance classes
are called extended conformance classes. These conformance classes support descriptions that
use supplier-defined external file protocols. Implementation conformant with an extended
conformance class shall be able to process any entity belonging to the set of supported entities,
even when they reference an external file protocol that is not part of the standard data but that is
value-equal to an external_file_protocol they claim to support.

NOTE The attribute values for the external_file_protocol entities that do not belong to the standard data
defined in this part of ISO 13584 (annexes E, I and M) or to the standard data defined in one part of the view
exchange protocol series of part of ISO 13584 are subject to prior agreement between the sender and the
receiver. They are outside the scope of ISO 13584.

Conformance class are characterised as follows:

— class 1: dictionary_elements for atomic functional models;

— class 1E: dictionary_elements for atomic functional models with supplier-defined external file
protocols;

— class 2: dictionary_elements for functional models that reference subobjects;

— class 2E: dictionary_elements for functional models that reference subobjects with supplier-
defined external file protocols;

— class 3: dictionary_elements and simple library specifications for atomic functional models;

— class 3E: dictionary_elements and simple library specifications for atomic functional models with
supplier-defined external file protocols;

— class 4: dictionary_elements and relational-algebra-based library specifications for atomic
functional models;

— class 4E: dictionary_elements and relational algebra-based library specifications for atomic
functional models with supplier-defined external file protocols;

— class 5: dictionary_elements and simple library specifications for functional models that
reference subobjects;

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 477

— class 5E: dictionary_elements and simple library specifications for functional models that
reference subobjects with supplier-defined external file protocols;

— class 6: dictionary_elements and relational algebra-based library specifications for functional
models that reference subobjects;

— class 6E: dictionary_elements and relational algebra-based library specifications for functional
models that reference subobjects with supplier-defined external file protocols.

Table 2, below, shows the inclusion structure of the supported capabilities of the different
conformance classes of LIIM 24-2.

Table 2 — Conformance options of library integrated information model 24-2

Capabilities Dictionary elements Library specification
(class extension)

Supplier
defined
protocol

Conformance
class

atomic
items with
graphics

and
referenced
document

assembled
items

atomic
items

with tables,
(no

relational
algebra)

assembled
items

with tables,
(no

relational
algebra)

relational
algebra

1
1-e
2

2-e
3

3-e
4

4-e
5

5-e
6

6-e

x
x
x
x
x
x
x
x
x
x
x
x

x
x

x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x

x
x

x
x

x

x

x

x

x

x

17.1 ISO13584_f_m_iim_schema short listing

This clause specifies the EXPRESS schema that uses elements either from the integrated resources
of ISO 10303 (ISO 10303-4x) or from the logical resource or description methodology series of parts
of ISO 13584 (ISO 13584-2x and ISO 13584-4x) to define the requirements of LIIM 24-2.

Requirements stated in the referenced schemas apply exclusively to those items that are used from
these schemas.

The expanded EXPRESS listing of this schema, is presented in annex G.

NOTE 1 Some of the entities and related constructs USEd in this schema do not belong to any of the
conformance classes defined in this part of ISO 13584. They are intended to be possibly allowed by some part
of the view exchange protocol series of part of ISO 13584.

NOTE 2 This schema is the information model of supplier libraries. The information model of integrated
libraries is outside the scope of ISO 13584.

ISO 13584-24:2003(E)

478 © ISO 2003 – All rights reserved

EXPRESS Specification:

*)
SCHEMA ISO13584_f_m_iim_schema;

USE FROM ISO13584_generic_expressions_schema
(environment);

USE FROM ISO13584_expressions_schema
(abs_function,
acos_function,
and_expression,
asin_function,
atan_function,
boolean_literal,
boolean_variable,
comparison_equal,
comparison_greater,
comparison_greater_equal,
comparison_less,
comparison_less_equal,
comparison_not_equal,
concat_expression,
cos_function,
div_expression,
equals_expression,
exp_function,
format_function,
index_expression,
interval_expression,
int_literal,
int_numeric_variable,
int_value_function,
length_function,
like_expression,
log_function,
log2_function,
log10_function,
maximum_function,
minimum_function,
minus_expression,
minus_function,
mod_expression,
mult_expression,
not_expression,
odd_function,
or_expression,
plus_expression,
power_expression,
real_literal,
real_numeric_variable,

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 479

sin_function,
slash_expression,
square_root_function,
string_literal,
string_variable,
substring_expression,
tan_function,
value_function,
xor_expression);

USE FROM ISO13584_IEC61360_dictionary_schema
(axis1_placement_type,
axis2_placement_2d_type,
axis2_placement_3d_type,
basic_semantic_unit,
boolean_type,
class_BSU,
class_instance_type,
data_type_BSU,
data_type_element,
dates,
dic_unit,
dic_value,
entity_instance_type,
identified_document,
integer_type,
int_currency_type,
int_measure_type,
int_type,
item_names,
label_with_language,
level_type,
mathematical_string,
named_type,
non_quantitative_code_type,
non_quantitative_int_type,
non_si_unit,
number_type,
placement_type,
property_BSU,
real_currency_type,
real_measure_type,
real_type,
string_type,
supplier_BSU,
supplier_element,
value_code_type,
value_domain);

USE FROM ISO13584_IEC61360_language_resource_schema
(global_language_assignment,
present_translations,

ISO 13584-24:2003(E)

480 © ISO 2003 – All rights reserved

translated_label,
translated_text);

USE FROM ISO13584_instance_resource_schema
(Null_value,
Primitive_value,
Null_or_primitive_value,
Simple_value,
Null_or_simple_value,
Number_value,
Null_or_number_value,
Integer_value,
Null_or_integer_value,
Real_value,
Null_or_real_value,
Boolean_value,
Null_or_boolean_value,
Translatable_string_value,
Translated_string_value,
String_value,
Null_or_translatable_string_value,
Complex_value,
Null_or_complex_value,
Entity_instance_value,
Null_or_entity_instance_value,
Defined_entity_instance_value,
Controlled_entity_instance_value,
STEP_entity_instance_value,
PLIB_entity_instance_value,
Property_or_data_type_BSU,
Level_spec_value,
Null_or_level_spec_value,
Int_level_spec_value,
Null_or_int_level_spec_value,
Real_level_spec_value,
Null_or_real_level_spec_value,
Property_value,
Context_dependent_property_value,
dic_class_instance,
null_or_dic_class_instance,
dic_f_model_instance,
lib_f_model_instance);

USE FROM ISO13584_library_expressions_schema
(binary_class_instance_constructor,
class_instance_literal,
class_instance_variable,
entity_instance_literal,
entity_instance_variable,
exists_value,
instance_comparison_equal,

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 481

int_level_spec_literal,
int_level_spec_variable,
multiple_arity_class_instance_constructor,
property_assignment,
real_level_spec_literal,
real_level_spec_variable,
unary_class_instance_constructor);

USE FROM ISO13584_table_resource_schema
(boolean_column,
class_instance_column,
column_traversal_variable_semantics,
difference_table_expression,
entity_instance_column,
integer_column,
intersect_table_expression,
int_level_spec_column,
in_RDB_table_boolean_expression,
multiple_arity_cartesian_product,
natural_join_expression,
projection_expression,
RDB_table_extension,
RDB_table_specification,
RDB_table_variable,
real_column,
real_level_spec_column,
select_expression,
string_column,
table_extension,
table_literal,
table_specification,
table_variable,
union_table_expression);

USE FROM ISO13584_variable_semantics_schema
(open_view_property_value_semantics,
self_class_code_semantics,
self_class_preferred_name_semantics,
self_class_short_name_semantics,
self_class_supplier_code_semantics,
self_class_version_semantics,
self_property_class_code_semantics,
self_property_class_version_semantics,
self_property_code_semantics,
self_property_preferred_name_semantics,
self_property_short_name_semantics,
self_property_value_semantics,
self_property_version_semantics,
sub_property_path);

USE FROM ISO13584_domain_resource_schema
(constant_range_defined_domain,

ISO 13584-24:2003(E)

482 © ISO 2003 – All rights reserved

domain_restriction,
functional_domain_restriction,
library_expression_defined_value,
guarded_functional_domain,
guarded_simple_domain,
null_defined_value,
others,
predicate_defined_domain,
subclass_defined_domain,
table_defined_domain,
table_defined_value,
type_defined_domain,
variable_range_defined_domain);

USE FROM ISO13584_extended_dictionary_schema
(a_posteriori_view_of,
class_document_relationship,
class_table_relationship,
dictionary_identification,
dictionary,
dictionary_in_standard_format,
document_BSU,
document_element,
fm_class_view_of,
functional_model_class,
geometric_representation_context_type,
library_iim_identification,
program_library_BSU,
program_library_element,
program_reference_type,
RDB_table_content,
RDB_table_element,
representation_P_DET,
representation_type,
representation_reference_type,
supplier_program_library_relationship,
table_BSU,
table_content,
table_element,
view_control_variable_range,
view_exchange_protocol_identification);

USE FROM ISO13584_library_content_schema
(explicit_functional_model_class_extension,
functional_model_class_extension,
library,
library_in_standard_format,
opt_or_mand_property_BSU);

USE FROM ISO13584_external_file_schema
(A6_illustration,

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 483

A9_illustration,
document_content,
external_file_unit,
http_class_directory,
http_file,
http_protocol,
IAB_RFC,
illustration,
language_specific_content,
linked_interface_program_protocol,
message,
non_standard_data_protocol,
non_standard_simple_program_protocol,
not_translatable_external_content,
not_translated_external_content,
program_library_content,
program_reference,
representation_reference,
standard_data_protocol,
standard_simple_program_protocol,
translated_external_content,
property_value_external_item);

USE FROM ISO13584_method_schema
(assignment_statement,
begin_set,
call_program_statement,
close_set,
constructed_sub_model_view_statement,
guarded_statement,
method,
method_body,
method_specif,
method_statement,
null_statement,
referenced_sub_item_view_statement,
send_representation_statement,
send_representation_reference_statement,
set_2d_relative_view_level,
set_reference_lcs);

USE FROM measure_schema
(amount_of_substance_measure,
amount_of_substance_unit,
area_measure,
area_unit,
context_dependent_measure,
context_dependent_unit,
conversion_based_unit,
count_measure,
derived_unit,
derived_unit_element,

ISO 13584-24:2003(E)

484 © ISO 2003 – All rights reserved

descriptive_measure,
dimensional_exponents,
electric_current_measure,
electric_current_unit,
global_unit_assigned_context,
length_measure,
length_measure_with_unit,
length_unit,
luminous_intensity_measure,
luminous_intensity_unit,
mass_measure,
mass_unit,
measure_value,
measure_with_unit,
named_unit,
numeric_measure,
parameter_value,
plane_angle_measure,
plane_angle_unit,
positive_length_measure,
positive_plane_angle_measure,
positive_ratio_measure,
ratio_measure,
ratio_unit,
si_unit,
solid_angle_measure,
solid_angle_unit,
thermodynamic_temperature_measure,
thermodynamic_temperature_unit,
time_measure,
time_unit,
volume_measure,
volume_unit);

USE FROM person_organization_schema
(address,
organization,
person,
person_and_organization,
personal_address,
organizational_address);

USE FROM date_time_schema
(date,
date_and_time,
local_time,
calendar_date,
ordinal_date,
week_of_year_and_day_date);

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 485

USE FROM geometry_schema
(axis1_placement,
axis2_placement_2D,
axis2_placement_3D,
geometric_representation_context,
placement);

USE FROM representation_schema
(representation,
representation_item,
representation_context);

USE FROM application_context_schema
(application_context,
application_context_element,
application_protocol_definition);

(*

17.2 ISO13584_f_m_iim_schema global rule definitions

The following rules define the requirements for the ISO13584_f_m_iim_schema schema.

17.2.1 Exactly_one_dictionary_rule rule

The exactly_one_dictionary_rule rule states that a library exchange context is associated to exactly
one dictionary.

EXPRESS specification:

*)
RULE exactly_one_dictionary_rule FOR(dictionary);
WHERE

WR1: SIZEOF(dictionary) = 1;
END_RULE; -- exactly_one_library_rule
(*

Formal propositions:

WR1: there is exactly one dictionary defined in a library exchange context.

17.2.2 Class_associated_items_rule rule

The class_associated_items_rule rule states that each class has no more than two
associated_items that are class_table_relationship and/or class_document_relationship.

EXPRESS specification:

*)
RULE class_associated_items_rule FOR(class);
WHERE

ISO 13584-24:2003(E)

486 © ISO 2003 – All rights reserved

WR1: QUERY(temp <* class | (SIZEOF(temp.associated_items) > 2)
OR ((SIZEOF(temp.associated_items) = 1)
AND NOT(('ISO13584_F_M_IIM_SCHEMA'
+'.CLASS_TABLE_RELATIONSHIP' IN
TYPEOF(temp.associated_items[1]))
OR ('ISO13584_F_M_IIM_SCHEMA'
+'.CLASS_DOCUMENT_RELATIONSHIP'
IN TYPEOF(temp.associated_items[1]))))
OR ((SIZEOF(temp.associated_items) = 2)
AND NOT((('ISO13584_F_M_IIM_SCHEMA'
+ '.CLASS_TABLE_RELATIONSHIP'
IN TYPEOF(temp.associated_items[1]))
AND ('ISO13584_F_M_IIM_SCHEMA'
+'.CLASS_DOCUMENT_RELATIONSHIP'
IN TYPEOF(temp.associated_items[2])))
OR (('ISO13584_F_M_IIM_SCHEMA'
+'.CLASS_TABLE_RELATIONSHIP'
IN TYPEOF(temp.associated_items[2]))
AND ('ISO13584_F_M_IIM_SCHEMA'
+ '.CLASS_DOCUMENT_RELATIONSHIP'
IN TYPEOF(temp.associated_items[1]))))))
= [];

END_RULE; -- class_associated_items_rule
(*

Formal propositions:

WR1: each class has no more than two associated_items that are class_table_relationship and/or
class_document_relationship.

17.2.3 Supplier_associated_items_rule rule

The supplier_associated_items_rule rule states that each supplier has no more than one
associated_items that is a supplier_program_library_relationship.

EXPRESS specification:

*)
RULE supplier_associated_items_rule FOR(supplier_element);
WHERE

WR1: QUERY(temp <* supplier_element
| (SIZEOF(temp.associated_items) > 1)
OR ((SIZEOF(temp.associated_items) = 1)
AND NOT('ISO13584_F_M_IIM_SCHEMA'
+ '.SUPPLIER_PROGRAM_LIBRARY_RELATIONSHIP'
IN TYPEOF(temp.associated_items)))) = [];

END_RULE; -- supplier_associated_items_rule
(*

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 487

Formal propositions:

WR1: each supplier has no more than one associated_items that is a
supplier_program_library_relationship.

NOTE A supplier_program_library_relationship may refer to zero program.

*)

END_SCHEMA; -- ISO13584_f_m_iim_schema

(*

17.3 Conformance class requirements

17.3.1 Conformance class 1

Conformance class 1 addresses those implementations that support dictionary elements of atomic
functional models that may involve the use of the is-view-of relationship and that may be associated
with documents and graphics. An implementation of conformance class 1 of the LIIM 24-2 shall
support the standard data defined in annex I. It shall also support the following entities and related
constructs.

FROM ISO13584_IEC61360_dictionary_schema
(boolean_type,
class_BSU,
data_type_BSU,
data_type_element,
dates,
dic_unit,
dic_value,
identified_document,
int_currency_type,
int_measure_type,
int_type,
item_names,
label_with_language,
mathematical_string,
named_type,
non_quantitative_code_type,
non_quantitative_int_type,
non_si_unit,
number_type,
property_BSU,
real_currency_type,
real_measure_type,
real_type,
string_type,
supplier_BSU,
supplier_element,
syn_name_type,
value_domain);

FROM ISO13584_IEC61360_language_resource_schema

ISO 13584-24:2003(E)

488 © ISO 2003 – All rights reserved

(global_language_assignment,
present_translations,
translated_label,
translated_text);

FROM ISO13584_extended_dictionary_schema
(a_posteriori_view_of,
class_document_relationship,
dictionary_identification,
dictionary_in_standard_format,
library_iim_identification,
document_BSU,
document_element,
document_element_with_http_access,
document_element_with_translated_http_access,
fm_class_view_of,
functional_model_class,
geometric_representation_context_type,
RDB_table_content,
referenced_document,
referenced_graphics,
representation_P_DET,
representation_reference_type,
view_control_variable_range,
view_exchange_protocol_identification);

FROM ISO13584_external_file_schema
(A6_illustration,
A9_illustration,
document_content,
external_file_unit,
http_class_directory,
http_file,
http_protocol,
illustration,
language_specific_content,
not_translatable_external_content,
not_translated_external_content,
standard_data_protocol,
translated_external_content,
property_value_external_item);

FROM measure_schema
(amount_of_substance_unit,
area_unit,
context_dependent_unit,
conversion_based_unit,
derived_unit,
derived_unit_element,
dimensional_exponents,
electric_current_unit,

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 489

global_unit_assigned_context,
length_measure_with_unit,
length_unit,
luminous_intensity_unit,
mass_unit,
measure_value,
measure_with_unit,
named_unit,
plane_angle_unit,
ratio_unit,
si_unit,
solid_angle_unit,
thermodynamic_temperature_unit,
time_unit,
volume_unit);

FROM person_organization_schema
(address,
organization,
person,
person_and_organization,
personal_address,
organizational_address);

FROM date_time_schema
(date,
date_and_time,
local_time,
calendar_date,
ordinal_date,
week_of_year_and_day_date);

FROM application_context_schema
(application_context,
application_context_element,
application_protocol_definition);

17.3.2 Conformance class 1E

Conformance class 1E addresses those implementations that support conformance class 1 and may
support some supplier-defined external file protocols.

NOTE The target of all the conformance classes that include 'E' in their identifiers are the functional
models suppliers who want to use a specific exchange format (for instance, the specific format of some CAD
system) for the programs or representations referenced from a library delivery file.

Besides the entities and related constructs defined for conformance class 1, they shall also support
the following entities and related constructs.

FROM ISO13584_extended_dictionary_schema
(dictionary);

FROM ISO13584_external_file_schema

ISO 13584-24:2003(E)

490 © ISO 2003 – All rights reserved

(non_standard_data_protocol);

17.3.3 Conformance class 2

Conformance class 2 addresses those implementations that support dictionary elements of both
atomic functional models and of assembled functional models that reference subobjects. An
implementation of conformance class 2 of the LIIM 24-2 shall support the standard data defined in
annex I. It shall also support the entities and related constructs defined for conformance class 1, more
the following entities and related constructs:

FROM ISO13584_IEC61360_dictionary_schema
(axis1_placement_type,
axis2_placement_2d_type,
axis2_placement_3d_type,
class_instance_type,
placement_type);

FROM ISO13584_extended_dictionary_schema
(representation_type);

17.3.4 Conformance class 2E

Conformance class 2E addresses those implementations that support conformance class 2 and may
support some supplier-defined external file protocols.

Besides the entities and related constructs defined for conformance class 2, they shall also support
the following entities and related constructs.

FROM ISO13584_extended_dictionary_schema(
dictionary);

FROM ISO13584_external_file_schema(
non_standard_data_protocol);

17.3.5 Conformance class 3

Conformance class 3 addresses those implementations that support dictionary elements and simple
library specifications for atomic functional models. Conformance class 3 implementations are only
required to support a subset of the numeric, Boolean and string operators defined by the
ISO13584_expressions_schema, and to support tables. They are not required to support any
relational-algebra operator, nor properties whose data type is a level_type, nor access to the various
names of the classes and properties.

NOTE It is considered that conformance class 3 should cover the requirements of most of the existing
nonstandardised part libraries systems. A system supporting conformance class 3 might be for instance
implemented on a file management system with some basic object oriented engine.

Besides the requirements already stated for conformance class 1, an implementation of conformance
class 3 shall also support the following entities and associated constructs.

FROM ISO13584_generic_expressions_schema
(environment);

FROM ISO13584_expressions_schema
(and_expression,
boolean_literal,

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 491

boolean_variable,
comparison_equal,
comparison_greater,
comparison_greater_equal,
comparison_less,
comparison_less_equal,
comparison_not_equal,
concat_expression,
div_expression,
equals_expression,
format_function,
int_literal,
int_numeric_variable,
maximum_function,
minimum_function,
minus_expression,
minus_function,
mult_expression,
not_expression,
or_expression,
plus_expression,
real_literal,
real_numeric_variable,
slash_expression,
string_literal,
string_variable,
substring_expression,
xor_expression);

FROM ISO13584_instance_resource_schema
(Null_value,
Primitive_value,
Null_or_primitive_value,
Simple_value,
Null_or_simple_value,
Number_value,
Null_or_number_value,
Integer_value,
Null_or_integer_value,
Real_value,
Null_or_real_value,
Boolean_value,
Null_or_boolean_value,
Translatable_string_value,
Translated_string_value,
String_value,

Null_or_translatable_string_value);

FROM ISO13584_library_expressions_schema
(entity_instance_literal,
entity_instance_variable);

ISO 13584-24:2003(E)

492 © ISO 2003 – All rights reserved

FROM ISO13584_table_resource_schema
(boolean_column,
column_traversal_variable_semantics,
entity_instance_column,
integer_column,
real_column,
string_column,
table_literal);

FROM ISO13584_variable_semantics_schema
(open_view_property_value_semantics,
self_property_value_semantics);

FROM ISO13584_domain_resource_schema
(constant_range_defined_domain,
domain_restriction,
functional_domain_restriction,
library_expression_defined_value,
guarded_functional_domain,
guarded_simple_domain,
others,
predicate_defined_domain,
simple_domain,
simple_functional_domain,
table_defined_domain,
table_defined_value,
type_defined_domain,
variable_range_defined_domain);

FROM ISO13584_extended_dictionary_schema
(class_table_relationship,
program_library_BSU,
program_library_element,
program_reference_type,
RDB_table_element,
supplier_program_library_relationship,
table_BSU,
table_content,
table_element);

FROM ISO13584_library_content_schema
(explicit_functional_model_class_extension,
functional_model_class_extension,
library_in_standard_format,
opt_or_mand_property_BSU);

FROM ISO13584_external_file_schema
(linked_interface_program_protocol,
message,
program_library_content,
program_reference,

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 493

representation_reference,
standard_simple_program_protocol,
supplier_BSU_related_content);

FROM ISO13584_method_schema
(assignment_statement,
begin_set,
call_program_statement,
close_set,
guarded_statement,
method,
method_body,
method_specif,
method_statement,
null_statement,
send_representation_reference_statement,
send_representation_statement,
set_reference_lcs);

17.3.6 Conformance class 3E

Conformance class 3E addresses those implementations that support conformance class 3 and may
support some supplier-defined external file protocols.

Besides the entities and related constructs defined for conformance class 3, they shall also support
the following entities and related constructs.

FROM ISO13584_extended_dictionary_schema
(dictionary);

FROM ISO13584_library_content_schema
(library);

FROM ISO13584_external_file_schema
(non_standard_data_protocol,
non_standard_simple_program_protocol);

17.3.7 Conformance class 4

Conformance class 4 addresses those implementations that support dictionary elements and library
specifications of atomic functional models that involve all the operators defined in the
ISO13584_expressions_schema, that support relational algebra for table definition, and access to
the various names of the classes and properties.

NOTE The target systems for conformance class 4 are DBMS-based systems, where the databases are
either relational (with an object oriented engine) or object oriented.

Besides the requirements already stated for conformance class 3, an implementation of conformance
class 4 shall also support the following entities and associated constructs.

FROM ISO13584_expressions_schema
(abs_function,
acos_function,
asin_function,
atan_function,

ISO 13584-24:2003(E)

494 © ISO 2003 – All rights reserved

cos_function,
exp_function,
index_expression,
interval_expression,
int_value_function,
length_function,
like_expression,
log_function,
log2_function,
log10_function,
mod_expression,
odd_function,
power_expression,
sin_function,
SQL_mappable_defined_function,
square_root_function,
tan_function,
value_function);

FROM ISO13584_table_resource_schema
(difference_table_expression,
intersect_table_expression,
in_RDB_table_boolean_expression,
multiple_arity_cartesian_product,
natural_join_expression,
projection_expression,
select_expression,
union_table_expression);

FROM ISO13584_variable_semantics_schema
(self_class_code_semantics,
self_class_preferred_name_semantics,
self_class_short_name_semantics,
self_class_supplier_code_semantics,
self_class_version_semantics,
self_property_class_code_semantics,
self_property_class_supplier_code_semantics,
self_property_class_version_semantics,
self_property_code_semantics,
self_property_preferred_name_semantics,
self_property_short_name_semantics,
self_property_version_semantics);

FROM ISO13584_method_schema
(set_2d_relative_view_level);

FROM geometry_schema
(axis1_placement,
axis2_placement_2D,
axis2_placement_3D,
direction,

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 495

geometric_representation_context,
placement,
point);

FROM representation_schema
(representation,
representation_context,
representation_item);

17.3.8 Conformance class 4E

Conformance class 4E addresses those implementations that support conformance class 4 and may
support some supplier-defined external file protocol.

Besides the entities and related constructs defined for conformance class 4, they shall also support
the following entities and related constructs;

FROM ISO13584_extended_dictionary_schema
(dictionary);

FROM ISO13584_library_content_schema
(library);

FROM ISO13584_external_file_schema
(non_standard_data_protocol,
non_standard_simple_program_protocol);

17.3.9 Conformance class 5

Conformance class 5 addresses those implementations that support dictionary elements and simple
library specifications of functional models that reference subobjects to create view of assembled
items. Conformance class 5 implementations are only required to support a subset of the numeric,
Boolean and string operators defined by the ISO13584_expressions_schema, and to support tables.
They are not required to support any relational-algebra operator, nor properties whose data type is a
level_type, nor access to the various names of the classes and properties.

Besides the entities and related constructs defined for conformance class 3 and for conformance
class 2, they shall also support the following entities and related constructs;

FROM ISO13584_instance_resource_schema
(Complex_value,
Null_or_complex_value,
Entity_instance_value,
Null_or_entity_instance_value,
Defined_entity_instance_value,
Controlled_entity_instance_value,
STEP_entity_instance_value,
PLIB_entity_instance_value,
Property_or_data_type_BSU,
Level_spec_value,
Null_or_level_spec_value,
Int_level_spec_value,
Null_or_int_level_spec_value,
Real_level_spec_value,
Null_or_real_level_spec_value,

ISO 13584-24:2003(E)

496 © ISO 2003 – All rights reserved

Property_value,
Context_dependent_property_value,
dic_class_instance,
null_or_dic_class_instance,
dic_f_model_instance,
lib_f_model_instance);

FROM ISO13584_library_expressions_schema
(binary_class_instance_constructor,
class_instance_literal,
class_instance_variable,
exists_value,
instance_comparison_equal,
multiple_arity_class_instance_constructor,
property_assignment,
unary_class_instance_constructor);

FROM ISO13584_table_resource_schema
(class_instance_column,
RDB_table_variable);

FROM ISO13584_variable_semantics_schema
(sub_property_path);

FROM ISO13584_domain_resource_schema
(null_defined_value,
subclass_defined_domain);

FROM ISO13584_method_schema
(constructed_sub_model_view_statement);

17.3.10 Conformance class 5E

Conformance class 5E addresses those implementations that support conformance class 5 and may
support some supplier-defined external file protocol.

Besides the entities and related constructs defined for conformance class 5, they shall also support
the following entities and related constructs;

FROM ISO13584_extended_dictionary_schema
(dictionary);

FROM ISO13584_library_content_schema
(library);

FROM ISO13584_external_file_schema
(compiler_version_type,
non_standard_data_protocol,
non_standard_simple_program_protocol);

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 497

17.3.11 Conformance class 6

Conformance class 6 addresses those implementations that support dictionary elements and library
specifications of functional models that reference subobjects to create view of assembled items.

NOTE The target systems for conformance class 6 are 0bject-Oriented DBMS-based system with full
object-oriented capabilities.

Besides the entities and related constructs defined for conformance class 5, they shall also support
the following entities and related constructs;

FROM ISO13584_expressions_schema
(abs_function,
acos_function,
asin_function,
atan_function,
cos_function,
exp_function,
index_expression,
interval_expression,
int_value_function,
length_function,
like_expression,
log_function,
log2_function,
log10_function,
mod_expression,
odd_function,
power_expression,
sin_function,
SQL_mappable_defined_function,
square_root_function,
tan_function,
value_function);

FROM ISO13584_table_resource_schema
(difference_table_expression,
intersect_table_expression,
in_RDB_table_boolean_expression,
multiple_arity_cartesian_product,
natural_join_expression,
projection_expression,
select_expression,
union_table_expression,
table_variable);

FROM ISO13584_variable_semantics_schema
(self_class_code_semantics,
self_class_preferred_name_semantics,
self_class_short_name_semantics,
self_class_supplier_code_semantics,
self_class_version_semantics,
self_property_class_code_semantics,

ISO 13584-24:2003(E)

498 © ISO 2003 – All rights reserved

self_property_class_version_semantics,
self_property_code_semantics,
self_property_preferred_name_semantics,
self_property_short_name_semantics,
self_property_version_semantics);

FROM ISO13584_method_schema
(set_2d_relative_view_level,
referenced_sub_item_view_statement);

FROM representation_schema
(representation,
representation_context,
representation_item);

FROM geometry_schema
(axis1_placement,
axis2_placement_2D,
axis2_placement_3D,
direction,
geometric_representation_context,
placement,
point);

17.3.12 Conformance class 6E

Conformance class 6E addresses those implementations that support conformance class 6 and may
support some supplier-defined external file protocol.

Besides the entities and related constructs defined for conformance class 6, they shall also support
the following entities and related constructs;

FROM ISO13584_extended_dictionary_schema
(dictionary);

FROM ISO13584_library_content_schema
(library);

FROM ISO13584_external_file_schema
(compiler_version_type,
non_standard_data_protocol,
non_standard_simple_program_protocol);

18 Exchange of functional view classes: library integrated information
model 24-3

Library integrated information model 24-3 enables the exchange of the dictionary elements that
describe functional view classes. Note that the standard functional view classes are intended to be
defined as standard data by the view exchange protocol series of parts of ISO 13584 and to be
recognised by the implementations that support the view exchange protocol where the functional view
class is defined. The exchange of functional view classes is therefore only needed for those
implementations that want to support new supplier-defined functional view classes.

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 499

Conformance to the library integrated information model 24-3 includes satisfying the requirements
stated in the ISO13584_f_v_iim_schema presented in annex K, the requirements of the
implementation method(s) supported, the relevant requirements of the normative references and the
support of the standard data defined in annex M.

An implementation shall support the ISO10303-21 implementation methods. Requirement with respect
to these implementation methods are specified in annex N.

The ISO13584_f_v_iim_schema provides for a number of options that may be supported by an
implementation. These options have been grouped into conformance classes. Four conformance
classes are defined. Conformance to the library integrated information model 24-3 requires, at a
minimum, conformance to class 1. Options are defined by each class and may be selected by an
implementation. Conformance to a particular conformance class requires that all the
ISO13584_f_v_iim_schema entities, types and associated constraints defined as part of the class, be
supported, together with the standard data associated with the class.

The numbering schema of the conformance classes is as follows:

— the digit specifies the dictionary elements that shall be supported;

NOTE 1 An ISO 13584-conformant library shall not contain any content_item for functional view classes.

— the conformance class identifier may contain the letter E. The corresponding conformance classes
are called extended conformance classes. These conformance classes supports descriptions that
use supplier-defined external file protocols. Implementation conformant with an extended
conformance class shall be able to process any entity belonging to the set of supported entities,
even when they reference a external file protocol that is not part of the standard data but that is
value-equal to a external file protocol they claim to support.

NOTE 2 The attribute values for the external_file_protocol entities that do not belong to the standard data
defined in this part of ISO 13584 (annexes E, I and M) or to the standard data defined in one part of the view
exchange protocol series of part of ISO 13584 are subject to prior agreement between the sender and the
receiver. They are outside the scope of ISO 13584.

Conformance class are characterised as follows:

— class 1: dictionary elements for non instanciable functional views,

— class 1E: dictionary elements for non instanciable functional views with supplier-defined external
file protocols,

— class 2: dictionary elements for functional views with view attributes,

— class 2E: dictionary elements for functional views with view attributes and supplier-defined
external file protocols.

18.1 ISO13584_f_v_iim_schema short listing

This clause specifies the EXPRESS schema that uses elements either from the integrated resources
of ISO 10303 (ISO 10303-4x) or from the logical resource or description methodology series of parts
of ISO 13584 (ISO 13584-2x and ISO 13584-4x) to define the requirements of library integrated
information model LIIM24-1.

Requirements stated in the referenced schemas apply exclusively to those items that are used from
these schemas.

The expanded EXPRESS listing of this schema is presented in annex K.

NOTE 1 Some of the entities and related constructs USEd in this schema do not belong to any of the
conformance classes defined in this part of ISO 13584. They are intended to be possibly allowed by some part
of the view exchange protocol series of part of ISO 13584.

ISO 13584-24:2003(E)

500 © ISO 2003 – All rights reserved

NOTE 2 This schema is the information model of supplier libraries. The information model of integrated
libraries is outside the scope of ISO 13584.

EXPRESS specification:

*)

SCHEMA ISO13584_f_v_iim_schema;

USE FROM ISO13584_IEC61360_dictionary_schema
(axis1_placement_type,
axis2_placement_2d_type,
axis2_placement_3d_type,
boolean_type,
class_BSU,
class_instance_type,
data_type_BSU,
data_type_element,
dates,
dic_unit,
dic_value,
entity_instance_type,
identified_document,
integer_type,
int_currency_type,
int_measure_type,
int_type,
item_names,
level_type,
label_with_language,
mathematical_string,
named_type,
non_quantitative_code_type,
non_quantitative_int_type,
non_si_unit,
number_type,
placement_type,
property_BSU,
real_currency_type,
real_measure_type,
real_type,
string_type,
supplier_BSU,
supplier_element,
value_code_type,
value_domain);

USE FROM ISO13584_IEC61360_language_resource_schema
(global_language_assignment,
present_translations,
translated_label,
translated_text);

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 501

USE FROM ISO13584_extended_dictionary_schema
(table_BSU,
class_document_relationship,
dictionary_identification,
dictionary,
dictionary_in_standard_format,
document_BSU,
document_element,
functional_view_class,
geometric_representation_context_type,
library_iim_identification,
non_instantiable_functional_view_class,
representation_P_DET,
representation_type,
view_exchange_protocol_identification);

USE FROM ISO13584_external_file_schema
(document_content,
external_file_unit,
http_protocol,
http_file,
http_class_directory,
language_specific_content,
non_standard_protocol,
not_translatable_external_content,
not_translated_external_content,
standard_data_protocol,
translated_external_content);

USE FROM measure_schema
(amount_of_substance_measure,
amount_of_substance_unit,
area_measure,
area_unit,
context_dependent_measure,
context_dependent_unit,
conversion_based_unit,
count_measure,
derived_unit,
derived_unit_element,
descriptive_measure,
dimensional_exponents,
electric_current_measure,
electric_current_unit,
length_measure,
length_measure_with_unit,
length_unit,
luminous_intensity_measure,
luminous_intensity_unit,
mass_measure,
mass_unit,

ISO 13584-24:2003(E)

502 © ISO 2003 – All rights reserved

measure_value,
measure_with_unit,
named_unit,
numeric_measure,
parameter_value,
plane_angle_measure,
plane_angle_unit,
positive_length_measure,
positive_plane_angle_measure,
positive_ratio_measure,
ratio_measure,
ratio_unit,
si_unit,
solid_angle_measure,
solid_angle_unit,
thermodynamic_temperature_measure,
thermodynamic_temperature_unit,
time_measure,
time_unit,
volume_measure,
volume_unit);

USE FROM person_organization_schema
(address,
organization,
person,
person_and_organization,
personal_address,
organizational_address);

USE FROM date_time_schema
(date,
date_and_time,
local_time,
calendar_date,
ordinal_date,
week_of_year_and_day_date);

USE FROM application_context_schema
(application_context,
application_context_element,
application_protocol_definition);

USE FROM representation_schema
(representation,
representation_context,
representation_item);

(*

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 503

18.2 ISO13584_f_v_iim_schema global rule definitions

The following rules define the requirements for the ISO13584_f_v_iim_schema schema.

18.2.1 Exactly_one_dictionary_rule rule

The exactly_one_dictionary_rule rule states that a library exchange context is associated to exactly
one dictionary.

EXPRESS specification:

*)
RULE exactly_one_dictionary_rule FOR(dictionary);
WHERE

WR1: SIZEOF(dictionary) = 1;
END_RULE; -- exactly_one_library_rule
(*

Formal propositions:

WR1: there is exactly one dictionary defined in a library exchange context.

18.2.2 Class_associated_items_rule rule

The class_associated_items_rule rule states that each class has no more than two
associated_items that are class_table_relationship and/or class_document_relationship.

EXPRESS specification:

*)
RULE class_associated_items_rule FOR(class);
WHERE

WR1: QUERY(temp <* class | (SIZEOF(temp.associated_items) > 2)
OR ((SIZEOF(temp.associated_items) = 1)
AND NOT(('ISO13584_F_V_IIM_SCHEMA'
+'.CLASS_TABLE_RELATIONSHIP' IN
TYPEOF(temp.associated_items[1]))
OR ('ISO13584_F_V_IIM_SCHEMA'
+'.CLASS_DOCUMENT_RELATIONSHIP'
IN TYPEOF(temp.associated_items[1]))))
OR ((SIZEOF(temp.associated_items) = 2)
AND NOT((('ISO13584_F_V_IIM_SCHEMA'
+ '.CLASS_TABLE_RELATIONSHIP'
IN TYPEOF(temp.associated_items[1]))
AND ('ISO13584_F_V_IIM_SCHEMA'
+'.CLASS_DOCUMENT_RELATIONSHIP'
IN TYPEOF(temp.associated_items[2])))
OR (('ISO13584_F_V_IIM_SCHEMA'
+'.CLASS_TABLE_RELATIONSHIP'
IN TYPEOF(temp.associated_items[2]))
AND ('ISO13584_F_V_IIM_SCHEMA'
+ '.CLASS_DOCUMENT_RELATIONSHIP'
IN TYPEOF(temp.associated_items[1]))))))

ISO 13584-24:2003(E)

504 © ISO 2003 – All rights reserved

= [];
END_RULE; -- class_associated_items_rule
(*

Formal propositions:

WR1: each class has no more than two associated_items that are class_table_relationship and/or
class_document_relationship.

*)

END_SCHEMA; -- ISO13584_f_v_iim_schema
(*

18.3 Conformance class requirements

18.3.1 Conformance class 1

Conformance class 1 addresses those implementations that support dictionary elements of supplier-
defined non_instantiable_functional_view_class. An implementation of conformance class 1 of the
library integrated information model 24-3 shall support the standard data defined in annex M. It shall
also support the following entities and related constructs.

FROM ISO13584_IEC61360_dictionary_schema
(class_BSU,
dates,
dic_value,
identified_document,
item_names,
label_with_language,
mathematical_string,
non_quantitative_int_type,
property_BSU,
supplier_BSU,
supplier_element,
syn_name_type,
value_domain);

FROM ISO13584_IEC61360_language_resource_schema
(global_language_assignment,
present_translations,
translated_label,
translated_text);

FROM ISO13584_extended_dictionary_schema
(class_document_relationship,
dictionary_identification,
dictionary_in_standard_format,
document_BSU,
document_element,
document_element_with_http_access,
document_element_with_translated_http_access,

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 505

library_iim_identification,
non_instantiable_functional_view_class,
referenced_document,
referenced_graphics,
representation_P_DET);

FROM ISO13584_external_file_schema
(document_content,
external_file_unit,
http_class_directory,
http_file,
http_protocol,
language_specific_content,
not_translatable_external_content,
not_translated_external_content,
standard_data_protocol,
translated_external_content,
property_value_external_item);

FROM measure_schema
(amount_of_substance_unit,
area_unit,
context_dependent_unit,
conversion_based_unit,
derived_unit,
derived_unit_element,
dimensional_exponents,
electric_current_unit,
length_measure_with_unit,
length_unit,
luminous_intensity_unit,
mass_unit,
measure_value,
named_unit,
plane_angle_unit,
ratio_unit,
si_unit,
solid_angle_unit,
thermodynamic_temperature_unit,
time_unit,
volume_unit);

FROM person_organization_schema
(address,
organization,
person,
person_and_organization,
personal_address,
organizational_address);

FROM date_time_schema
(date,

ISO 13584-24:2003(E)

506 © ISO 2003 – All rights reserved

date_and_time,
local_time,
calendar_date,
ordinal_date,
week_of_year_and_day_date);

FROM application_context_schema
(application_context,
application_context_element,
application_protocol_definition);

18.3.2 Conformance class 1E

Conformance class 1E addresses those implementations that support conformance class 1 and may
support some supplier-defined external file protocols.

Besides the entities and related constructs defined for conformance class 1, they shall also support
the following entities and related constructs.

FROM ISO13584_extended_dictionary_schema
(dictionary);

FROM ISO13584_external_file_schema
(non_standard_data_protocol);

18.3.3 Conformance class 2

Conformance class 2 addresses those implementations that support dictionary elements of supplier-
defined functional view classes that may contain view attributes. An implementation of conformance
class 2 of the library integrated information model 24-3 shall support the standard data defined in
annex M. It shall also support the entities and related constructs defined for conformance class 1 plus
the following entities and related constructs.

FROM ISO13584_IEC61360_dictionary_schema
(axis1_placement_type,
axis2_placement_2d_type,
axis2_placement_3d_type,
boolean_type,
currency_code,
data_type_BSU,
data_type_element,
dic_unit,
int_currency_type,
int_measure_type,
int_type,
named_type,
non_quantitative_code_type,
non_si_unit,
number_type,
placement_type,
real_currency_type,
real_measure_type,
real_type,

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 507

string_type);

FROM ISO13584_extended_dictionary_schema
(functional_view_class,
representation_type);

18.3.4 Conformance class 2E

Conformance class 2E addresses those implementations that support conformance class 2 and may
support some supplier-defined external file protocols.

Besides the entities and related constructs defined for conformance class 2, they shall also support
the following entities and related constructs.

FROM ISO13584_extended_dictionary_schema
(dictionary);

FROM ISO13584_external_file_schema
(non_standard_data_protocol);

ISO 13584-24:2003(E)

508 © ISO 2003 – All rights reserved

Table A.1 provides the short names of entities specified in this part of ISO 13584. Requirements on
the use of short names are found in the implementation methods included in ISO 10303.

Table A.1 - Short names of entities

Long Name Short Name

A_POSTERIORI_SEMANTIC_RELATIONSHIP APS0
A_POSTERIORI_VIEW_OF APVO
A_PRIORI_SEMANTIC_RELATIONSHIP APS1
A6_ILLUSTRATION A6ILL
A9_ILLUSTRATION A9ILL
ABSTRACT_FUNCTIONAL_MODEL_CLASS AFMC
ASSIGNMENT_STATEMENT ASSSTT
BEGIN_SET BGNST
BINARY_CLASS_INSTANCE_CONSTRUCTOR BCIC
BINARY_CLASS_INSTANCE_EXPRESSION BCIE
BINARY_TABLE_EXPRESSION BNTBEX
BOOLEAN_COLUMN BLNCLM
CALL_PROGRAM_STATEMENT CLPRST
CLASS_BSU_RELATED_CONTENT CBRC
CLASS_DOCUMENT_RELATIONSHIP CLDCRL
CLASS_EXTENSION CLSEXT
CLASS_EXTENSION_EXTERNAL_ITEM CEEI
CLASS_INSTANCE_COLUMN CLINCL
CLASS_INSTANCE_CONSTRUCTOR CLINCN
CLASS_INSTANCE_EXPRESSION CLINEX
CLASS_INSTANCE_LITERAL CLINLT
CLASS_INSTANCE_VARIABLE CLINVR
CLASS_RELATED_DICTIONARY_ELEMENT CRDE
CLASS_TABLE_RELATIONSHIP CLTBRL
CLOSE_SET CLSST
COLUMN COLUMN
COLUMN_TRAVERSAL_VARIABLE_SEMANTICS CTVS
COMPLEX_COLUMN CMPCLM
COMPONENT_CLASS_CASE_OF CCCO
CONSTANT_RANGE_DEFINED_DOMAIN CRDD
CONSTRUCTED_SUB_MODEL_VIEW_STATEMENT CSMVS

Annex A
(normative)

Short names of entities defined in this part

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 509

Table A.1 (continued)

Long Name Short Name

CONTEXT_DEPENDENT_PROPERTY_VALUE CDPV
DATA_EXCHANGE_SPECIFICATION_IDENTIFICATION DES0
DATA_PROTOCOL DTPRT
DIALOGUE_RESOURCE DLGRSR
DIC_CLASS_INSTANCE DCCLIN
DIC_COMPONENT_INSTANCE DCCMIN
DIC_F_MODEL_INSTANCE DFMI
DIC_F_VIEW_INSTANCE DFVI
DIC_FEATURE_INSTANCE DCFTIN
DIC_ITEM_INSTANCE DCITIN
DIC_MATERIAL_INSTANCE DCMTIN
DICTIONARY DCTNRY
DICTIONARY_EXTERNAL_ITEM DCEXIT
DICTIONARY_IDENTIFICATION DCTIDN
DICTIONARY_IN_STANDARD_FORMAT DISF
DIFFERENCE_TABLE_EXPRESSION DFTBEX
DOCUMENT_BSU DCMBS
DOCUMENT_CONTENT DCMCNT
DOCUMENT_ELEMENT DCMELM
DOCUMENT_ELEMENT_WITH_HTTP_ACCESS DEWHA
DOCUMENT_ELEMENT_WITH_TRANSLATED_HTTP_ACCESS DEW0
DOMAIN_RESTRICTION DMNRST
ENTITY_INSTANCE_COLUMN ENINCL
ENTITY_INSTANCE_EXPRESSION ENINEX
ENTITY_INSTANCE_LITERAL ENINLT
ENTITY_INSTANCE_VARIABLE ENINVR
EXISTS_VALUE EXSVL
EXPLICIT_FUNCTIONAL_MODEL_CLASS_EXTENSION EFMCE
EXPLICIT_ITEM_CLASS_EXTENSION EICE
EXPLICIT_MODEL_CLASS_EXTENSION EMCE
EXTERNAL_CONTENT EXTCNT
EXTERNAL_FILE_PROTOCOL EXFLPR
EXTERNAL_FILE_UNIT EXFLUN
EXTERNAL_ITEM EXTITM
FEATURE_CLASS FTRCLS
FEATURE_CLASS_CASE_OF FCCO
FM_CLASS_VIEW_OF FCVO
FORMATTED_COLUMN FRMCLM

ISO 13584-24:2003(E)

510 © ISO 2003 – All rights reserved

Table A.1 (continued)

Long Name Short Name

FUNCTIONAL_DOMAIN_RESTRICTION FNDMRS
FUNCTIONAL_MODEL_CLASS FNMDCL
FUNCTIONAL_MODEL_CLASS_EXTENSION FMCE
FUNCTIONAL_VIEW_CLASS FNVWCL
GEOMETRIC_REPRESENTATION_CONTEXT_TYPE GRCT
GUARDED_FUNCTIONAL_DOMAIN GRFNDM
GUARDED_SIMPLE_DOMAIN GRSMDM
GUARDED_STATEMENT GRDSTT
HTTP_CLASS_DIRECTORY HTCLDR
HTTP_FILE HTTFL
HTTP_PROTOCOL HTTPRT
ILLUSTRATION ILLSTR
IMPLICIT_MODEL_CLASS_EXTENSION IMCE
IN_RDB_TABLE_BOOLEAN_EXPRESSION IRTBE
INSTANCE_COMPARISON_EQUAL INCMEQ
INT_LEVEL_SPEC_COLUMN ILSC
INT_LEVEL_SPEC_LITERAL ILSL
INT_LEVEL_SPEC_VALUE ILS0
INT_LEVEL_SPEC_VARIABLE ILSV
INTEGER_COLUMN INTCLM
INTERSECT_TABLE_EXPRESSION INTBEX
ITEM_CLASS_CASE_OF ICCO
ITEM_CLASS_EXTENSION ITCLEX
LANGUAGE_SPECIFIC_CONTENT LNSPCN
LEVEL_SPEC_COLUMN LVSPCL
LEVEL_SPEC_EXPRESSION LVSPEX
LEVEL_SPEC_LITERAL LVSPLT
LEVEL_SPEC_VALUE LVSPVL
LEVEL_SPEC_VARIABLE LVSPVR
LIB_COMPONENT_INSTANCE LBCMIN
LIB_F_MODEL_INSTANCE LFMI
LIB_FEATURE_INSTANCE LBFTIN
LIB_ITEM_INSTANCE LBITIN
LIB_MATERIAL_INSTANCE LBMTIN
LIBRARY LBRRY
LIBRARY_EXPRESSION_DEFINED_VALUE LEDV
LIBRARY_IIM_IDENTIFICATION LBI0

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 511

Table A.1 (continued)

Long Name Short Name

LIBRARY_IN_STANDARD_FORMAT LISF
LINKED_INTERFACE_PROGRAM_PROTOCOL LIPP
MATERIAL_CLASS_CASE_OF MCCO
MESSAGE MSSG
METHOD METHOD
METHOD_BODY MTHBDY
METHOD_SPECIF MTHSPC
METHOD_STATEMENT MTHSTT
MODEL_CLASS_EXTENSION MDCLEX
MODELLING_STATEMENT MDLSTT
MULTIPLE_ARITY_CARTESIAN_PRODUCT MACP
MULTIPLE_ARITY_CLASS_INSTANCE_CONSTRUCTOR MACIC
MULTIPLE_ARITY_CLASS_INSTANCE_EXPRESSION MACIE
MULTIPLE_ARITY_TABLE_EXPRESSION MATE
NATURAL_JOIN_EXPRESSION NTJNEX
NON_INSTANTIABLE_FUNCTIONAL_VIEW_CLASS NIFVC
NON_STANDARD_DATA_PROTOCOL NSDP
NON_STANDARD_PROTOCOL NNSTPR
NON_STANDARD_SIMPLE_PROGRAM_PROTOCOL NSSPP
NOT_TRANSLATABLE_EXTERNAL_CONTENT NTEC
NOT_TRANSLATED_EXTERNAL_CONTENT NTE0
NULL_DEFINED_VALUE NLDFVL
NULL_STATEMENT NLLSTT
NULL_VALUE NLLVL
NUMBER_COLUMN NMBCLM
OPEN_VIEW_PROPERTY_SEMANTICS OVPS
OPEN_VIEW_PROPERTY_VALUE_SEMANTICS OVPVS
OPEN_VIEW_VARIABLE_SEMANTICS OVVS
OPT_OR_MAND_PROPERTY_BSU OOMPB
OTHERS OTHERS
PREDEFINED_REPRESENTATION_CALL_STATEMENT PRCS
PREDICATE_DEFINED_DOMAIN PRDFDM
PROGRAM_LIBRARY_BSU PRLBBS
PROGRAM_LIBRARY_CONTENT PRLBCN
PROGRAM_LIBRARY_ELEMENT PRLBEL
PROGRAM_PROTOCOL PRGPRT
PROGRAM_REFERENCE PRGRFR

ISO 13584-24:2003(E)

512 © ISO 2003 – All rights reserved

Table A.1 (continued)

Long Name Short Name

PROGRAM_REFERENCE_TYPE PRRFTY
PROJECTION_EXPRESSION PRJEXP
PROPERTY_ASSIGNMENT PRPASS
PROPERTY_CLASSIFICATION PRPCLS
PROPERTY_SEMANTICS PRPSMN
PROPERTY_VALUE PRPVL
PROPERTY_VALUE_EXTERNAL_ITEM PVEI
PROPERTY_VALUE_RECOMMENDED_PRESENTATION PVRP
RDB_TABLE_CONTENT RDTBCN
RDB_TABLE_ELEMENT RDTBEL
RDB_TABLE_EXTENSION RDTBEX
RDB_TABLE_SPECIFICATION RDTBSP
RDB_TABLE_VARIABLE RDTBVR
REAL_COLUMN RLCLM
REAL_LEVEL_SPEC_COLUMN RLSC
REAL_LEVEL_SPEC_LITERAL RLSL
REAL_LEVEL_SPEC_VALUE RLS0
REAL_LEVEL_SPEC_VARIABLE RLSV
REFERENCED_DOCUMENT RFRDCM
REFERENCED_GRAPHICS RFRGRP
REFERENCED_SUB_ITEM_VIEW_STATEMENT RSIVS
REPRESENTATION_P_DET RPPDT
REPRESENTATION_REFERENCE RPRRFR
REPRESENTATION_REFERENCE_TYPE RPRFTY
REPRESENTATION_TYPE RPRTYP
SELECT_EXPRESSION SLCEXP
SELF_CLASS_CODE_SEMANTICS SCCS
SELF_CLASS_NAME_SEMANTICS SCNS
SELF_CLASS_PREFERRED_NAME_SEMANTICS SCPNS
SELF_CLASS_SHORT_NAME_SEMANTICS SCSNS
SELF_CLASS_SUPPLIER_CODE_SEMANTICS SCSCS
SELF_CLASS_VARIABLE_SEMANTICS SCV0
SELF_CLASS_VERSION_SEMANTICS SCVS
SELF_PROPERTY_CLASS_CODE_SEMANTICS SPCCS
SELF_PROPERTY_CLASS_SUPPLIER_CODE_SEMANTICS SPCSCS
SELF_PROPERTY_CLASS_VERSION_SEMANTICS SPCVS
SELF_PROPERTY_CODE_SEMANTICS SPCS

SELF_PROPERTY_NAME_SEMANTICS SPNS

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 513

Table A.1 (continued)

Long Name Short Name

SELF_PROPERTY_PREFERRED_NAME_SEMANTICS SPPNS
SELF_PROPERTY_SEMANTICS SLPRSM
SELF_PROPERTY_SHORT_NAME_SEMANTICS SPSNS
SELF_PROPERTY_VALUE_SEMANTICS SPV0
SELF_PROPERTY_VERSION_SEMANTICS SPVS
SELF_VARIABLE_SEMANTICS SLVRSM
SEND_REPRESENTATION_REFERENCE_STATEMENT SRRS
SEND_REPRESENTATION_STATEMENT SNRPST
SET_2D_RELATIVE_VIEW_LEVEL S2RVL
SET_REFERENCE_LCS STRFLC
SET_TABLE_EXPRESSION STTBEX
SIMPLE_CLASS_INSTANCE_EXPRESSION SCIE
SIMPLE_COLUMN SMPCLM
SIMPLE_DOMAIN SMPDMN
SIMPLE_ENTITY_INSTANCE_EXPRESSION SEIE
SIMPLE_FUNCTIONAL_DOMAIN SMFNDM
SIMPLE_LEVEL_SPEC_EXPRESSION SLSE
SIMPLE_PROGRAM_PROTOCOL SMPRPR
SIMPLE_STATEMENT SMPSTT
SIMPLE_TABLE_EXPRESSION SMTBEX
STANDARD_DATA_PROTOCOL STDTPR
STANDARD_PROTOCOL STNPRT
STANDARD_SIMPLE_PROGRAM_PROTOCOL SSPP
STRING_COLUMN STRCLM
SUB_OBJECT_VIEW_STATEMENT SOVS
SUB_PROPERTY_PATH SBPRPT
SUBCLASS_DEFINED_DOMAIN SBDFDM
SUPPLIER_BSU_RELATED_CONTENT SBRC
SUPPLIER_PROGRAM_LIBRARY_RELATIONSHIP SPLR
SUPPLIER_RELATED_DICTIONARY_ELEMENT SRDE
TABLE_BSU TBLBS
TABLE_CONTENT TBLCNT
TABLE_DEFINED_DOMAIN TBDFDM
TABLE_DEFINED_VALUE TBDFVL
TABLE_ELEMENT TBLELM
TABLE_EXPRESSION TBLEXP

ISO 13584-24:2003(E)

514 © ISO 2003 – All rights reserved

Table A.1 (continued)

Long Name Short Name

TABLE_EXTENSION TBLEXT
TABLE_IDENTIFICATION TBLIDN
TABLE_LITERAL TBLLTR
TABLE_SPECIFICATION TBLSPC
TABLE_VARIABLE TBLVRB
TRANSLATED_EXTERNAL_CONTENT TREXCN
TRANSLATED_STRING_VALUE TRSTVL
TYPE_DEFINED_DOMAIN TYDFDM
UNARY_CLASS_INSTANCE_CONSTRUCTOR UCIC
UNARY_CLASS_INSTANCE_EXPRESSION UCIE
UNARY_TABLE_EXPRESSION UNTBEX
UNCONTROLLED_ENTITY_INSTANCE_VALUE UEIV
UNION_TABLE_EXPRESSION UNT0
VARIABLE_RANGE_DEFINED_DOMAIN VRDD
VIEW_CONTROL_VARIABLE_RANGE VCVR
VIEW_EXCHANGE_PROTOCOL_IDENTIFICATION VEP0

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 515

B.1 Document identification

In order to provide for unambiguous identification of an information object in an open system, the
object identifier:

{ iso standard 13584 part (24) version(1) }

is assigned to this part of ISO 13584. The meaning of this value is defined in ISO/IEC 8824-1, and is
described in ISO 13584-1.

B.2 Schema identification

B.2.1 ISO13584_instance_resource_schema

The ISO13584_instance_resource_schema (see clause 7) is assigned the object identifier:

{ iso standard 13584 part (24) version(1) object(1) ISO13584-instance-resource-schema(1) }

B.2.2 ISO13584_library_expressions_schema

The ISO13584_library_expressions_schema (see clause 8) is assigned the object identifier:

{ iso standard 13584 part (24) version(1) object(1) ISO13584-library-expressions-schema(2) }

B.2.3 ISO13584_table_resource_schema

The ISO13584_table_resource_schema (see clause 9) is assigned the object identifier:

{ iso standard 13584 part (24) version(1) object(1) ISO13584-table-resource-schema(3) }

B.2.4 ISO13584_variable_semantics_schema

The ISO13584_variable_semantics_schema (see clause 10) is assigned the object identifier:

{ iso standard 13584 part (24) version(1) object(1) ISO13584-variable-semantics-schema(4) }

B.2.5 ISO13584_domain_resource_schema

The ISO13584_domain_resource_schema (see clause 11) is assigned the object identifier:

{ iso standard 13584 part (24) version(1) object(1) ISO13584-domain-resource-schema(5) }

B.2.6 ISO13584_extended_dictionary_schema

The ISO13584_extended_dictionary_schema (see clause 12) is assigned the object identifier:

{ iso standard 13584 part (24) version(1) object(1) ISO13584-extended-dictionary-schema(6) }

B.2.7 ISO13584_library_content_schema

The ISO13584_library_content_schema (see clause 13) is assigned the object identifier:

Annex B
(normative)

Information object registration

ISO 13584-24:2003(E)

516 © ISO 2003 – All rights reserved

{ iso standard 13584 part (24) version(1) object(1) ISO13584-library-content-schema(7) }

B.2.8 ISO13584_external_file_schema

The ISO13584_external_file_schema (see clause 14) is assigned the object identifier:

{ iso standard 13584 part (24) version(1) object(1) ISO13584-external-file-schema(8) }

B.2.9 ISO13584_method_schema

The ISO13584_method_schema (see clause 15) is assigned the object identifier:

{ iso standard 13584 part (24) version(1) object(1) ISO13584-method-schema(9) }

B.2.10 ISO13584_g_m_iim_schema

The ISO13584_g_m_iim_schema (see clause 18) is assigned the object identifier:

{ iso standard 13584 part (24) version(1) object(1) ISO13584_g_m_iim_schema (10) }

B.2.11 ISO13584_f_m_iim_schema

The ISO13584_f_m_iim_schema (see clause 19) is assigned the object identifier:

{ iso standard 13584 part (24) version(1) object(1) ISO13584_f_m_iim_schema (11) }

B.2.12 ISO13584_f_v_iim_schema

The ISO13584_f_v_iim_schema (see clause 20) is assigned the object identifier:

{ iso standard 13584 part (24) version(1) object(1) ISO13584_f_v_iim_schema (12) }

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 517

ISO13584_g_m_iim_library_implicit_schema expanded listing

This annex references a listing of the complete EXPRESS schema specified in clause 16 of this part
of ISO 13584 without comments or other explanatory text but with the constraints defined in the
ISO13584_g_m_iim_conformance_schema. The name of this schema is
ISO13584_g_m_iim_library_implicit_schema. In this listing, all the elements used either from the
integrated resources of ISO 10303 (ISO 10303-4x) or from the logical resource or description
methodology series of parts of ISO 13584 (ISO 13584-2x and ISO 13584-4x) by the
ISO13584_g_m_iim_schema and the constraints defined in the
ISO13584_g_m_iim_conformance_schema are gathered in an unique schema without any external
reference.

This schema may be used:

— to exchange libraries that reference the ISO13584_g_m_iim_schema and its associated
ISO13584_g_m_iim_conformance_schema, but that does not reference any view exchange
protocol, and

— to exchange libraries that reference the ISO13584_g_m_iim_schema and its associated
ISO13584_g_m_iim_conformance_schema, and that do reference to some view exchange
protocols; in this case, the constraints defined in these view exchange protocols are not checked.

This schema may also be completed to check the constraints defined in all the referenced view
exchange protocols using the following process for each referenced view exchange protocol.

Assume that V1 is a referenced view exchange protocols and that it specifies two constraint schemas,
the schema names of which are S1_V1 and S2_V1.

a) Build the long form of the S1_V1 schema and give to the resulting schema the same name:
"S1_V1";

b) Build the long form of the S2_V1 schema and give to the resulting schema the same name:
"S2_V1";

c) Replace everywhere in the long form of the S1_V1 schema, the string "S1_V1" by
"ISO13584_g_m_iim_library_implicit_schema" with the same case;

d) Replace everywhere in the long form of the S2_V1 schema, the string "S2_V1" by
"ISO13584_g_m_iim_library_implicit_schema" with the same case;

e) Check that all the entities referenced in the S1_V1 schema and in the S2_V1 schema are
already existing in the ISO13584_g_m_iim_library_implicit_schema, else reference to the
library integrated information model 24-1 and to the view exchange protocol S1 by a same
library delivery file is not allowed.

NOTE 1 The information model of a library delivery file and the entities it may contain are specified by a
library integrated information model. A view exchange protocol may only add constraints.

EXAMPLE The view exchange protocol defined in ISO 13584-102 references the
abstract_functional_model_class entity. Therefore, this view exchange protocol cannot be used with the
ISO13584_g_m_iim_library_implicit_schema that specifies the requirement of LIIM 24-1. This library
integrated information model does not reference any EXPRESS resource constructs for modelling functional
models.

f) Add the content of the long form of the S1_V1 schema to the content of the
ISO13584_g_m_iim_library_implicit_schema, removing possible duplicates;

Annex C
(normative)

ISO 13584-24:2003(E)

518 © ISO 2003 – All rights reserved

g) Add the content of the long form of the S2_V1 schema to the content of the
ISO13584_g_m_iim_library_implicit_schema, removing possible duplicates.

When the above process is performed for view exchange protocols V1, V2,...Vn, the resulting
ISO13584_g_m_iim_library_implicit_schema may be used for exchanging any library that
references the ISO13584_g_m_iim_schema and its associated
ISO13584_g_m_iim_conformance_schema as its library integrated information model, and that
references whole or part of the V1, V2,...Vn view exchange protocol set. This schema also includes
the constraints of all the referenced view exchange protocols.

The listing of the ISO13584_g_m_iim_library_implicit_schema schema is available in computer-
interpretable form and can be found at the following URL:

 http://www.tc184-sc4.org/EXPRESS/

If there is difficulty accessing these sites contact ISO Central Secretariat or contact the ISO TC
184/SC4 Secretariat directly at: sc4sec@tc184-sc4.org

NOTE 2 The information provided in computer-interpretable form at the above URLs is normative.

NOTE 3 In some errors are identified in the EXPRESS code during implementation and before publication
of Technical Corrigendum, the description of these errors, together with the corrections recommended for PLIB
implementations by the part editors can be found at the following URL:

http://www.lisi.ensma.fr/ftp/pub/PLIB_release_notes/Part24/Part24-IS/

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 519

ISO13584_g_m_iim_schema short names of entities

This annex references a listing of the EXPRESS entity names and corresponding short names for the
EXPRESS schema specified in annex C of this part of ISO 13584. This listing is available in computer-
interpretable form and can be found at the following URL:

 http://www.tc184-sc4.org/Short_Names/

NOTE The information provided in computer-interpretable form at the above URLs is informative. The
information that is contained in the body of this part of ISO 10303 is normative.

Annex D
(normative)

ISO 13584-24:2003(E)

520 © ISO 2003 – All rights reserved

Standard data requirements for the library integrated information
model 24-1

Standard data are the entity instances that shall be recognised by any implementation conformant with
ISO 13584 that claims conformance to some conformance class of some library integrated information
model or view exchange protocol.

Standard data shall be specified by each library integrated information model and by each view
exchange protocol, and for each of them, for each conformance class.

Standard data may include:

— instances of basic_semantic_units, associated with the corresponding dictionary_element and
possibly content_item,

— instances of external_file_protocols, and

— instance of other entities required to define the previous entities instances.

Recognition of a basic_semantic_unit means that a value-equal basic_semantic_unit is already
stored in the user system, together with a corresponding dictionary_element and possibly a
content_item as specified in the view exchange protocol or library integrated information model
standard data. This implies that a reference to a value-equal basic_semantic_unit in a supplier
library is interpreted as a reference to the pre-existing basic_semantic_unit.

NOTE Value equality of two entity instances means that all their corresponding attributes have the same
values. Value-equality between two basic semantic units implies that they both identify the same concept.

EXAMPLE 1 Examples of basic_semantic_units that may be defined as standard data in a view exchange
protocol include the class_BSU that identifies the functional view class possibly defined by the view exchange
protocol and the property_BSU that identifies the view control variable of this functional view class.

Recognition of an external file protocol means that external files that reference a value equal
external_file_protocol shall be processed by an implementation that recognises this
external_file_protocol.

EXAMPLE 2 Example of an external file protocol that may be defined as standard data by a view exchange
protocol or a library integrated information model is the ISO standard ISO 8859-1 that specifies a 8-bit, single-
byte-coded graphics character set for Latin alphabet N°1.

Standard data are specified by means of a set of constraints that shall be fulfilled by any library that
claims conformance to some conformance class of LIIM 24-1. The following standard data are
specified by library integrated information model 24-1.

E.1 Constraints on a library delivery file for referencing library integrated
information model 24-1

This subclause defines library_iim_identification instance values that are allowed for use in a library
delivery file to reference library integrated information model 24-1 defined in this part of ISO 13584.

The set of allowed values is defined by means of Table E.1 that specifies for each conformance class
the allowed values of library_iim_identification.name and library_iim_identification.application,
and by means of one EXPRESS schema that contains a global rule. This rule shall be fulfilled by any
library delivery file that references library integrated information model 24-1, defined in this part of
ISO 13584 in any of its conformance class. The goal of this rule is to specify the allowed values for the

Annex E
(normative)

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 521

other attributes of library_iim_identification that shall be used to reference library integrated
information model 24-1, by means of relationships with library_iim_identification.name and
library_iim_identification.application.

This rule is included in the ISO13584_g_m_iim_library_implicit_schema specified in annex C.

E.2 Conformance class specification table

Table E.1 specifies the values of library_iim_id.name and library_iim_id.application that are
allowed for use in a library_iim_id to reference library integrated information model 24-1 in either of
its conformance classes.

Table E.1 — ISO 13584 LIIM 24-1 conformance class specification

Conformance
Class

library_iim_identification.name
mandatory value

library_iim_identification.application
mandatory value

0 'ISO_13584_24_1' '0'

1 'ISO_13584_24_1' '1'

2 'ISO_13584_24_1' '2'

3 'ISO_13584_24_1' '3'

4 'ISO_13584_24_1' '4'

5 'ISO_13584_24_1' '5'

6 'ISO_13584_24_1' '6'

1E 'ISO_13584_24_1' '1E'

2E 'ISO_13584_24_1' '2E'

3E 'ISO_13584_24_1' '3E'

4E 'ISO_13584_24_1' '4E'

5E 'ISO_13584_24_1' '5E'

6E 'ISO_13584_24_1' '6E'

E.3 Standard data for conformance class 0

None.

ISO 13584-24:2003(E)

522 © ISO 2003 – All rights reserved

E.4 Standard data for conformance class 1 to 6E (all the conformance classes
but conformance class 0)

E.4.1 Constraints on a library delivery file conform to the library integrated model
LIIM 24-1

The library_iim_identification instance values allowed for use in a library delivery file conform to the
library integrated model LIIM 24-1 defined in this part of ISO 13584 shall obey the constraints defined
in the following EXPRESS schema.

EXPRESS specification:

*)
SCHEMA ISO13584_g_m_iim_conformance_schema;

USE FROM ISO13584_IEC61360_dictionary_schema(
item_names);

USE FROM ISO13584_IEC61360_language_resource_schema(
translated_label);

USE FROM person_organization_schema(
organization);

USE FROM support_resource_schema(
label);

USE FROM ISO13584_extended_dictionary_schema(
data_exchange_specification_identification,
library_iim_identification);

USE FROM ISO13584_external_file_schema(
http_protocol,
standard_data_protocol,
external_file_protocol);

(*

NOTE The schemas used above can be found in the following document:
ISO13584_IEC61360_dictionary_schema IEC 61360-2

(which is duplicated for convenience in informative annex D of ISO 13584-42),
person_organization_schema ISO 10303-41,
ISO13584_extended_dictionary_schema This part of ISO 13584,
ISO13584_external_file_schema This part of ISO 13584.

E.4.2 Allowed_reference_to_LIIM_24_1_rule rule

The allowed_reference_to_LIIM_24_1_rule rule defines a formal constraint and an informal
constraint on library_iim_identifications to be allowed for use to reference conformance class 1 to
6E of library integrated model LIIM 24-1 defined in this part of ISO 13584. A library_iim
_identification is allowed for use to reference conformance class 1 to 6E of library integrated model
LIIM 24-1 if the following conditions hold:

— the name attribute of the library_iim_identification that reference library integrated model
LIIM 24-1 shall be equal to 'ISO_13584_24_1', and

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 523

— the status attribute of the library_iim_identification shall be equal to 'WD', 'CD' or 'DIS', 'FDIS',
'IS', 'TS', 'PAS' or 'ITA' and

— the application attribute of the library_iim_identification shall have ‘1', '2', '3', '4', '5' or '6'
possibly followed by 'E' as its value, and

— if the conformance class of library integrated model LIIM 24-1referenced is not an extended
conformance class, the external_file_protocols referenced by the external_file_protocols
attribute of the library_iim_identification shall fulfil the constraints required by the
conformant_external_file_protocol_24_1 function.

Moreover, a library_iim_identification is allowed for use to reference conformance class 1 to 6 of
library integrated model LIIM 24-1 if one of the two following conditions hold concerning the http_files
that may be referenced directly or indirectly from the library_iim_identification,

— either each referenced http_file it is associated with a mime attribute and an exchange_format
attribute corresponding to MIME type and subtype that correspond to a specification that is
publicly available, or

— it is associated with a mime attribute and an exchange_format attribute corresponding to MIME
type and subtype that correspond to a specification that is associated with public domain Internet-
available readers.

Reference to http_files corresponding to other MIME types and subtypes may only be done in
extended conformance classes. This is documented as an informal proposition IP1 in
allowed_reference_to_LIIM_24_1_rule.

EXPRESS specification:

*)
RULE allowed_reference_to_LIIM_24_1_rule FOR(

library_iim_identification);
WHERE

WR1: QUERY(liim_id <* library_iim_identification |
((liim_id\data_exchange_specification_identification

.status = 'WD')
OR

(liim_id\data_exchange_specification_identification
.status = 'CD')

OR
(liim_id\data_exchange_specification_identification

.status = 'DIS')
OR

(liim_id\data_exchange_specification_identification
.status = 'FDIS')

OR
(liim_id\data_exchange_specification_identification

.status = 'IS')
OR

(liim_id\data_exchange_specification_identification
.status = 'TS')

OR
(liim_id\data_exchange_specification_identification

.status = 'PAS')
OR

ISO 13584-24:2003(E)

524 © ISO 2003 – All rights reserved

(liim_id\data_exchange_specification_identification
.status = 'ITA')

)
AND
(liim_id\data_exchange_specification_identification.name
= 'ISO_13584_24_1')
AND
is_correct_liim_24_1_application_value(liim_id)
AND
(QUERY(efp <*
liim_id\data_exchange_specification_identification
.external_file_protocols
| NOT(is_extended_liim_24_1_application_value(liim_id))
AND
NOT(conformant_external_file_protocol_24_1([efp]))
) = []))
= QUERY(liim_id <* library_iim_identification |
(liim_id\data_exchange_specification_identification
.name = 'ISO_13584_24_1'));

END_RULE; -- allowed_reference_to_LIIM_24_1_rule
(*

Formal propositions:

WR1: when referencing library integrated model LIIM 24-1 defined in this part of ISO 13584, the
library_iim_identification.name shall have ‘ISO_13584_24_1’ as its value,
library_iim_identification.status shall be equal to 'WD', 'CD', 'DIS', 'FDIS', 'IS', 'TS', 'PAS' or 'ITA',
the library_iim_identification.application shall have ‘1', '2', '3', '4', '5' or '6' as its value, possibly
followed by 'E', and, if the conformance class of library integrated model LIIM 24-1referenced is not an
extended conformance class, the library_iim_identification.external_file_protocols shall fulfil the
constraints specifications required by the conformant_external_file_protocol_24_1 function defined
below.

Informal propositions:

IP1: when it references library integrated model LIIM 24-1 defined in this part of ISO 13584 in one of
the conformance class 1, 2, 3, 4, 5 or 6, a library_iim_identification may only reference, directly or
indirectly, http_files characterised by MIME types and subtypes that either correspond to
specifications that are publicly available, or to specifications that are associated with public domain
Internet-available readers.

E.4.3 conformant_http_protocol_24_1 function

The conformant_http_protocol_24_1 function checks whether an external_file_protocol may be
referenced as the HTTP protocol by a library_iim_identification that references library integrated
model LIIM 24-1 in any of its conformance classes, or not. It returns TRUE if the given
external_file_protocol is allowed for reference, otherwise, it returns FALSE. An
external_file_protocol may be referenced as the HTTP protocol by a library_iim_identification that
reference library integrated model LIIM 24-1 in any of its conformance classes if the following
conditions hold:

— the external_file_protocol shall be a http_protocol, and

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 525

— the organisation attribute of the external_file_protocol shall reference an organization of which
the id attribute equals to 'IAB' and the name attribute equals to 'Internet Architecture Board', and

— the protocol_name attribute of the external_file_protocol shall equal to 'HTTP' or to ‘HTTPS’,
and

— the designation attribute of the external_file_protocol shall reference an item_names for which
the preferred_name attribute equals to 'Hypertext Transfer Protocol' and the short_name
attribute equals to 'RFC' followed by four digits and possibly some other characters.

EXPRESS specification:

*)
FUNCTION conformant_http_protocol_24_1(

ef: external_file_protocol): BOOLEAN;

LOCAL
ok: BOOLEAN := TRUE;

END_LOCAL;

IF (('ISO13584_EXTERNAL_FILE_SCHEMA'
+ '.HTTP_PROTOCOL' IN TYPEOF(ef)) AND
(ef.organisation.id = 'IAB') AND
(ef.organisation.name = 'Internet Architecture Board') AND
((ef.protocol_name = 'HTTP')

OR (ef.protocol_name = 'HTTPS'))AND
(ef.designation.preferred_name = 'Hypertext Transfer Protocol'))

THEN
IF ('ISO13584_IEC61360_DICTIONARY_SCHEMA.TRANSLATED_LABEL'

IN TYPEOF(ef.designation.short_name))
THEN

REPEAT i := 1 TO SIZEOF(ef.designation.short_name.labels);
IF (ef.designation.short_name.labels[i]

LIKE 'RFC####&')
THEN

ok := ok AND TRUE;
ELSE

ok := ok AND FALSE;
END_IF;

END_REPEAT;
RETURN(OK);

ELSE
IF ef.designation.short_name

LIKE 'RFC####&'
THEN

RETURN(TRUE);
ELSE

RETURN(FALSE);
END_IF;

END_IF;
ELSE

RETURN(FALSE);
END_IF;

ISO 13584-24:2003(E)

526 © ISO 2003 – All rights reserved

END_FUNCTION; -- conformant_http_protocol_24_1
(*

E.4.4 conformant_8859_1_protocol_24_1 function

The conformant_8859_1_protocol_24_1 function checks whether an external_file_protocol may
be referenced as the ISO 8859-1 protocol by a library_iim_identification that references library
integrated model LIIM 24-1 in any of its conformance classes, or not. It returns TRUE if the given
external_file_protocol is allowed for reference, otherwise, it returns FALSE. An
external_file_protocol may be referenced as the ISO 8859-1 protocol by a
library_iim_identification that represents reference library integrated model LIIM 24-1 in any of its
conformance classes, if the following conditions hold:

— the external_file_protocol shall be a standard_data_protocol, and

— the organisation attribute of the external_file_protocol shall reference an organization of which
the id attribute equals to 'ISO' and the name attribute equals to 'International Organisation for
Standardisation', and

— the protocol_name attribute of the external_file_protocol shall equal to 'ISO_8859_1', and

— the designation attribute of the external_file_protocol shall reference an item_names for which
the preferred_name attribute equals to 'Latin alphabet No 1' and the short_name attribute equals
to 'ISO 8859-1'.

EXPRESS specification:

*)
FUNCTION conformant_8859_1_protocol_24_1(

ef: external_file_protocol): BOOLEAN;

IF (('ISO13584_EXTERNAL_FILE_SCHEMA'
+ '.STANDARD_DATA_PROTOCOL' IN TYPEOF(ef)) AND
(ef.organisation.id = 'ISO') AND
(ef.organisation.name

= 'International Organisation for Standardisation') AND
(ef.protocol_name = 'ISO_8859_1') AND
(ef.designation.preferred_name = 'Latin alphabet No 1') AND
(ef.designation.short_name = 'ISO 8859-1'))

THEN
RETURN(TRUE);

ELSE
RETURN(FALSE);

END_IF;

END_FUNCTION; -- conformant_8859_1_protocol_24_1
(*

E.4.5 conformant_external_file_protocol_24_1 function

The conformant_external_file_protocol_24_1 function checks whether all the
external_file_protocols of a set of external_file_protocols may be referenced as an library

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 527

integrated model LIIM 24-1 by a library_iim_identification that references library integrated model
LIIM 24-1 in one of its conformance class 1 to 6, or not. It returns TRUE if all the
external_file_protocols of a set of external_file_protocols are allowed for reference, otherwise, it
returns FALSE.

An external_file_protocol may be referenced by a library_iim_identification that represents
conformance class 1 to 6 of library integrated model LIIM 24-1 if it may be referenced:

— either as the HTTP protocol, or

— as the ISO 8859-1 protocol.

NOTE In extended conformance classes of library integrated model LIIM 24-1, any other
external_file_protocol may be referenced, subject to private agreement between the sender and the receiver.

EXPRESS specification:

*)
FUNCTION conformant_external_file_protocol_24_1(

s: SET [0:?] OF external_file_protocol): BOOLEAN;

REPEAT i := 1 TO SIZEOF(s);
IF NOT(conformant_8859_1_protocol_24_1(s[i])

OR conformant_http_protocol_24_1(s[i]))
THEN

RETURN(FALSE);
END_IF;

END_REPEAT;

RETURN(TRUE);

END_FUNCTION; -- conformant_external_file_protocol_24_1
(*

E.4.6 is_correct_liim_24_1_application_value function

The is_correct_liim_24_1_application_value function checks that the liim_id
library_iim_identification is compatible with the conformance classes associated to the LIMM 24-1.

EXPRESS specification:

*)
FUNCTION is_correct_liim_24_1_application_value(

liim_id: library_iim_identification): BOOLEAN;

IF EXISTS(liim_id\data_exchange_specification_identification.
application)
AND
((liim_id\data_exchange_specification_identification.

application[1] = '1')
OR
(liim_id\data_exchange_specification_identification.

application[1] = '2')
OR

ISO 13584-24:2003(E)

528 © ISO 2003 – All rights reserved

(liim_id\data_exchange_specification_identification.
application[1] = '3')

OR
(liim_id\data_exchange_specification_identification.

application[1] = '4')
OR
(liim_id\data_exchange_specification_identification.

application[1] = '5')
OR
(liim_id\data_exchange_specification_identification.

application[1] = '6'))
AND
((liim_id\data_exchange_specification_identification.

application LIKE '#')
OR
(liim_id\data_exchange_specification_identification.

Application LIKE '#E'))
THEN

RETURN(TRUE);
ELSE

RETURN(FALSE);
END_IF;

END_FUNCTION; -- is_correct_liim_24_1_application_value
(*

E.4.7 is_extended_liim_24_1_application_value function

The is_extended_liim_24_1_application_value function checks whether the liim_id
library_iim_identification is associated to an extended conformance class.

EXPRESS specification:

*)
FUNCTION is_extended_liim_24_1_application_value(

liim_id: library_iim_identification): BOOLEAN;

IF EXISTS(liim_id\data_exchange_specification_identification.
application) AND

(liim_id\data_exchange_specification_identification.
application LIKE '#E')

THEN
RETURN(TRUE);

ELSE
RETURN(FALSE);

END_IF;

END_FUNCTION; -- is_extended_liim_24_1_application_value
(*
*)
END_SCHEMA; -- ISO13584_g_m_iim_conformance_schema

(*

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 529

Implementation method specific requirements for the library
integrated information model 24-1

Conformance to the library integrated information model 24-1 shall be realised in one or more
implementation methods. The implementation methods defines what types of exchange behaviour is
required with respect to exchange protocols.

One implementation method is defined for the library delivery file: ISO 10303-21. The implementation
methods for the possible external files referenced from the library delivery file and whose
external_file_protocol belong to the standard data of the library integrated information model 24-1
are defined by the standard referenced in this external_file_protocol, possibly further specified as
part of the description of the library integrated information model standard data (see annex E).

The implementation methods for the possible external files referenced from the library delivery files
and whose external file protocols are supplier-defined (xxE conformance classes) shall be based on
the provisions, if any, contained in the referenced standard in the case of a standard_protocol. They
shall be based on previous agreement between the library data suppliers and the library users in the
case of a non_standard_protocol.

For the exchange structure, the file format of the library delivery file shall be encoded according to the
syntax and EXPRESS language mapping defined in ISO 10303-21 for the schema defined in annex C
of this part of ISO 13584. The header of the exchange structure shall identify use of this part of
ISO 13584 by the schema name 'ISO13584_g_m_iim_library_implicit_schema'.

NOTE Identification of the library delivery file is done by separate agreement between the sender and the
receiver and is outside the scope of this part of ISO 13584.

Annex F
(normative)

ISO 13584-24:2003(E)

530 © ISO 2003 – All rights reserved

ISO13584_f_m_iim_library_implicit_schema expanded listing
This annex references a listing of the complete EXPRESS schema specified in clause 16 of this part
of ISO 13584 without comments or other explanatory text but with the constraints defined in the
ISO13584_f_m_iim_conformance_schema. The name of this schema is
ISO13584_f_m_iim_library_implicit_schema. In this listing, all the elements used either from the
integrated resources of ISO 10303 (ISO 10303-4x) or from the logical resource or description
methodology series of parts of ISO 13584 (ISO 13584-2x and ISO 13584-4x) by the
ISO13584_f_m_iim_schema and the constraints defined in the
ISO13584_f_m_iim_conformance_schema are gathered in an unique schema without any external
reference.

This schema may be used:

— to exchange libraries that reference the ISO13584_f_m_iim_schema and its associated
ISO13584_f_m_iim_conformance_schema, but that does not reference any view exchange
protocol, and

— to exchange libraries that reference the ISO13584_f_m_iim_schema and its associated
ISO13584_f_m_iim_conformance_schema, and that do reference some view exchange
protocols; in this case, the constraints defined in these view exchange protocols are not checked.

This schema may also be completed to check the constraints defined in all the referenced view
exchange protocols using the following process for each referenced view exchange protocol.

Assume that V1 is a referenced view exchange protocols and that it specifies two constraint schemas,
the schema names of which are S1_V1 and S2_V1.

a) Build the long form of the S1_V1 schema and give to the resulting schema the same name:
"S1_V1";

b) Build the long form of the S2_V1 schema and give to the resulting schema the same name:
"S1_V1";

c) Replace everywhere in the long form of the S1_V1 schema, the string "S1_V1" by
"ISO13584_f_m_iim_library_implicit_schema" with the same case;

d) Replace everywhere in the long form of the S2_V1 schema, the string "S2_V1" by
"ISO13584_f_m_iim_library_implicit_schema" with the same case;

e) Check that all the entities referenced in the S1_V1 schema and in the S2_V1 schema are
already existing in the ISO13584_f_m_iim_library_implicit_schema, else reference to the
library integrated information model 24-2 and to the view exchange protocol S1 by a same
library delivery file is not allowed.

NOTE 1 The information model of a library delivery file and the entities it may contain are specified by a
library integrated information model. A view exchange protocol may only add constraints.

f) Add the content of the long form of the S1_V1 schema to the content of the
ISO13584_f_m_iim_library_implicit_schema, removing possible duplicates;

g) Add the content of the long form of the S2_V1 schema to the content of the
ISO13584_f_m_iim_library_implicit_schema, removing possible duplicates.

When the above process is performed for view exchange protocols V1, V2,...Vn, the resulting
ISO13584_f_m_iim_library_implicit_schema may be used for exchanging any library that
references the ISO13584_f_m_iim_schema and its associated

Annex G
(normative)

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 531

ISO13584_f_m_iim_conformance_schema as its library integrated information model, and that
references whole or part of the V1, V2,...Vn view exchange protocol set. This schema also includes
the constraints of all the referenced view exchange protocols.

The listing of the ISO13584_f_m_iim_library_implicit_schema schema is available in computer-
interpretable form and can be found at the following URL:

 http://www.tc184-sc4.org/EXPRESS/

If there is difficulty accessing these sites contact ISO Central Secretariat or contact the ISO TC
184/SC4 Secretariat directly at: sc4sec@tc184-sc4.org

NOTE 2 The information provided in computer-interpretable form at the above URLs is normative.

NOTE 3 If some errors are identified in the EXPRESS code during implementation and before publication
of Technical Corrigendum, the description of these errors, together with the corrections recommended for PLIB
implementations by the part editors can be found at the following URL:

http://www.lisi.ensma.fr/ftp/pub/PLIB_release_notes/Part24/Part24-IS/

ISO 13584-24:2003(E)

532 © ISO 2003 – All rights reserved

ISO13584_f_m_iim_schema short names of entities
This annex references a listing of the EXPRESS entity names and corresponding short names for the
EXPRESS schema specified in annex G of this part of ISO 13584. This listing is available in computer-
interpretable form and can be found at the following URL:

 http://www.tc184-sc4.org/Short_Names/

NOTE The information provided in computer-interpretable form at the above URLs is informative. The
information that is contained in the body of this part of ISO 10303 is normative.

Annex H
(informative)

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 533

Annex I
(normative)

Standard data requirements for the library integrated information
model 24-2

Standard data are the entity instances that shall be recognised by any implementation conformant with
ISO 13584 that claims conformance to some conformance class of some library integrated information
model or view exchange protocol.

Standard data shall be specified by each library integrated information model and by each view
exchange protocol, and for each of them, for each conformance class.

Standard data may include:

— instances of basic_semantic_units, associated with the corresponding dictionary_element and
possibly content_item,

— instances of external_file_protocols, and

— instance of other entities required to define the previous entities instances.

Recognition of a basic_semantic_unit means that a value-equal basic_semantic_unit is already
stored in the user system, together with a corresponding dictionary_element and possibly a
content_item as specified in the view exchange protocol or library integrated information model
standard data. This implies that a reference to a value-equal basic_semantic_unit in a supplier
library is interpreted as a reference to the pre-existing basic_semantic_unit.

NOTE Value equality of two entity instances means that all their corresponding attributes have the same
values. Value-equality between two basic semantic units implies that they both identify the same concept.

EXAMPLE 1 Examples of basic_semantic_units that may be defined as standard data in a view exchange
protocol include the class_BSU that identifies the functional view class possibly defined by the view exchange
protocol and the property_BSU that identifies the view control variable of this functional view class.

Recognition of an external file protocol means that external files that reference a value equal
external_file_protocol shall be processed by an implementation that recognises this
external_file_protocol.

EXAMPLE 2 Example of an external file protocol that may be defined as standard data by a view exchange
protocol or a library integrated information model is the ISO standard ISO 8859-1 that specifies a 8-bit, single-
byte-coded graphics character set for Latin alphabet N°1.

Standard data are specified by means of a set of constraints that shall be fulfilled by any library that
claims conformance to some conformance class of LIIM 24-2. The following standard data are
specified by library integrated information model 24-2.

I.1 Constraints on a library delivery file for referencing library integrated
information model 24-2

This subclause defines library_iim_identification instance values that are allowed for use in a library
delivery file to reference library integrated information model 24-2 defined in this part of ISO 13584.

The set of allowed values is defined by means of Table I.1 that specifies for each conformance class
the allowed values of library_iim_identification.name and library_iim_identification.application,
and by means of one EXPRESS schema that contains a global rule. This rule shall be fulfilled by any
library delivery file that references library integrated information model 24-2, defined in this part of
ISO 13584 in any of its conformance class. The goal of this rule is to specify the allowed values for the

ISO 13584-24:2003(E)

534 © ISO 2003 – All rights reserved

other attributes of library_iim_identification that shall be used to reference library integrated
information model 24-2, by means of relationships with library_iim_identification.name and
library_iim_identification.name.application.

This rule is included in the ISO13584_f_m_iim_library_implicit_schema specified in annex G.

I.2 Conformance class specification table

Table I.1 specifies the values of library_iim_identification.name and
library_iim_identification.application that are allowed for use in a library_iim_identification to
reference library integrated information model 24-2 in either of its conformance classes.

Table I.1 — ISO 13584 LIIM 24-2 conformance class specification

Conformance
Class

library_iim_identification.name
mandatory value

library_iim_identification.application
mandatory value

1 'ISO_13584_24_2' '1'

2 'ISO_13584_24_2' '2'

3 'ISO_13584_24_2' '3'

4 'ISO_13584_24_2' '4'

5 'ISO_13584_24_2' '5'

6 'ISO_13584_24_2' '6'

1E 'ISO_13584_24_2' '1E'

2E 'ISO_13584_24_2' '2E'

3E 'ISO_13584_24_2' '3E'

4E 'ISO_13584_24_2' '4E'

5E 'ISO_13584_24_2' '5E'

6E 'ISO_13584_24_2' '6E'

I.3 Standard data for conformance class 1 to 6E (all the conformance classes)

I.3.1 Constraints on a library delivery file conform to the library integrated model
LIIM 24-2

The library_iim_identification instance values allowed for use in a library delivery file conform to the
library integrated model LIIM 24-2 defined in this part of ISO 13584 shall obey the constraints defined
in the following EXPRESS schema.

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 535

EXPRESS specification:

*)
SCHEMA ISO13584_f_m_iim_conformance_schema;

USE FROM ISO13584_IEC61360_dictionary_schema(
item_names);

USE FROM ISO13584_IEC61360_language_resource_schema(
translated_label);

USE FROM support_resource_schema(
label);

USE FROM person_organization_schema(
organization);

USE FROM ISO13584_extended_dictionary_schema(
data_exchange_specification_identification,
library_iim_identification);

USE FROM ISO13584_external_file_schema(
http_protocol,
standard_data_protocol,
external_file_protocol);

(*

NOTE The schemas used above can be found in the following document:
ISO13584_IEC61360_dictionary_schema IEC 61360-2

(which is duplicated for convenience in informative annex D of ISO 13584-42),
person_organization_schema ISO 10303-41,
ISO13584_extended_dictionary_schema This part of ISO 13584,
ISO13584_external_file_schema This part of ISO 13584.

I.3.2 Allowed_reference_to_LIIM_24_2_rule rule

The allowed_reference_to_LIIM_24_2_rule rule defines a formal constraint and an informal
constraint on library_iim_identifications to be allowed for use to reference conformance class 1 to
6E of library integrated model LIIM 24-2 defined in this part of ISO 13584. A
library_iim_identification is allowed for use to reference conformance class 1 to 6E of library
integrated model LIIM 24-2 if the following conditions hold:

— the name attribute of the library_iim_identification that reference library integrated model
LIIM 24-2 shall be equal to 'ISO_13584_24_2', and

— the status attribute of the library_iim_identification shall be equal to 'WD', 'CD', 'DIS', 'FDIS',
'IS', 'TS', 'PAS' or 'ITA' and

— the application attribute of the library_iim_identification shall have ‘1', '2', '3', '4', '5' or '6'
possibly followed by 'E' as its value, and

— if the conformance class of library integrated model LIIM 24-2 referenced is not an extended
conformance class, the external_file_protocols referenced by the external_file_protocols
attribute of the library_iim_identification shall fulfil the constraints required by the
conformant_external_file_protocol_24_2 function.

ISO 13584-24:2003(E)

536 © ISO 2003 – All rights reserved

Moreover, a library_iim_identification is allowed for use to reference conformance class 1 to 6 of
library integrated model LIIM 24-2 if one of the two following conditions hold concerning the http_files
that may be referenced directly or indirectly from the library_iim_identification,

— either each referenced http_file it is associated with a mime attribute and an exchange_format
attribute corresponding to MIME type and subtype that correspond to a specification that is
publicly available, or

— it is associated with a mime attribute and an exchange_format attribute corresponding to MIME
type and subtype that correspond to a specification that is associated with public domain Internet-
available readers.

Reference to http_files corresponding to other MIME types and subtypes may only be done in
extended conformance classes. This is documented as an informal proposition IP1 in
allowed_reference_to_LIIM_24_2_rule.

EXPRESS specification:

*)
RULE allowed_reference_to_LIIM_24_2_rule FOR(

library_iim_identification);
WHERE

WR1: QUERY(liim_id <* library_iim_identification |
((liim_id\data_exchange_specification_identification

.status = 'WD')
OR

(liim_id\data_exchange_specification_identification
.status = 'CD')
OR

(liim_id\data_exchange_specification_identification
.status = 'DIS')
OR

(liim_id\data_exchange_specification_identification
.status = 'FDIS')
OR

(liim_id\data_exchange_specification_identification
.status = 'IS')
OR

(liim_id\data_exchange_specification_identification
.status = 'TS')
OR

(liim_id\data_exchange_specification_identification
.status = 'PAS')
OR

(liim_id\data_exchange_specification_identification
.status = 'ITA'))

AND
(liim_id\data_exchange_specification_identification.

Name = 'ISO_13584_24_2')
AND
is_correct_liim_24_2_application_value(liim_id)
AND
(QUERY(efp <*

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 537

liim_id\data_exchange_specification_identification
.external_file_protocols
| NOT(is_extended_liim_24_2_application_value(liim_id))
AND
NOT(conformant_external_file_protocol_24_2([efp]))
) = []))

= QUERY(liim_id <* library_iim_identification |
(liim_id\data_exchange_specification_identification
.name = 'ISO_13584_24_2'));

END_RULE; -- allowed_reference_to_LIIM_24_2_rule
(*

Formal propositions:

WR1: when referencing library integrated model LIIM 24-2 defined in this part of ISO 13584, the
library_iim_identification.name shall have ‘ISO_13584_24_2’ as its value,
library_iim_identification.status shall be equal to 'WD', 'CD', 'DIS', 'FDIS', 'IS', 'TS', 'PAS' or 'ITA',
the library_iim_identification.application shall have ‘1', '2', '3', '4', '5' or '6' as its value, possibly
followed by 'E', and, if the conformance class of library integrated model LIIM 24-2referenced is not an
extended conformance class, the library_iim_identification.external_file_protocols shall fulfil the
constraints specifications required by the conformant_external_file_protocol_24_2 function defined
below.

Informal propositions:

IP1: when it references library integrated model LIIM 24-2 defined in this part of ISO 13584 in one of
the conformance class 1, 2, 3, 4, 5 or 6, a library_iim_identification may only reference, directly or
indirectly, http_files characterised by MIME types and subtypes that either correspond to
specifications that are publicly available, or to specifications that are associated with public domain
Internet-available readers.

I.3.3 conformant_http_protocol_24_2 function

The conformant_http_protocol_24_2 function checks whether an external_file_protocol may be
referenced as the HTTP protocol by a library_iim_identification that references library integrated
model LIIM 24-2 in any of its conformance classes, or not. It returns TRUE if the given
external_file_protocol is allowed for reference, otherwise, it returns FALSE. An
external_file_protocol may be referenced as the HTTP protocol by a library_iim_identification that
reference library integrated model LIIM 24-2 in any of its conformance classes if the following
conditions hold:

— the external_file_protocol shall be a http_protocol, and

— the organisation attribute of the external_file_protocol shall reference an organization of which
the id attribute equals to 'IAB' and the name attribute equals to 'Internet Architecture Board', and

— the protocol_name attribute of the external_file_protocol shall equal to 'HTTP' or to ‘HTTPS’,
and

— the designation attribute of the external_file_protocol shall reference an item_names for which
the preferred_name attribute equals to 'Hypertext Transfer Protocol' and the short_name
attribute equals to 'RFC' followed by four digits and possibly some other characters.

ISO 13584-24:2003(E)

538 © ISO 2003 – All rights reserved

EXPRESS specification:

*)
FUNCTION conformant_http_protocol_24_2(

ef: external_file_protocol): BOOLEAN;

LOCAL
ok: BOOLEAN := TRUE;

END_LOCAL;

IF (('ISO13584_EXTERNAL_FILE_SCHEMA.HTTP_PROTOCOL' IN TYPEOF(ef)) AND
(ef.organisation.id = 'IAB') AND
(ef.organisation.name = 'Internet Architecture Board') AND
((ef.protocol_name = 'HTTP')

OR (ef.protocol_name = 'HTTPS'))AND
(ef.designation.preferred_name = 'Hypertext Transfer Protocol'))

THEN
IF 'ISO13584_IEC61360_DICTIONARY_SCHEMA.TRANSLATED_LABEL'

IN TYPEOF(ef.designation.short_name)
THEN

REPEAT i := 1 TO SIZEOF(ef.designation.short_name.labels);
IF ef.designation.short_name.labels[i] LIKE 'RFC####&'
THEN

ok := ok AND TRUE;
ELSE

ok := ok AND FALSE;
END_IF;

END_REPEAT;
RETURN(OK);

ELSE
IF ef.designation.short_name

LIKE 'RFC####&'
THEN

RETURN(TRUE);
ELSE

RETURN(FALSE);
END_IF;

END_IF;
ELSE

RETURN(FALSE);
END_IF;

END_FUNCTION; -- conformant_http_protocol_24_2
(*

I.3.4 conformant_8859_1_protocol_24_2 function

The conformant_8859_1_protocol_24_2 function checks whether an external_file_protocol may
be referenced as the ISO 8859-1 protocol by a library_iim_identification that references library
integrated model LIIM 24-2 in any of its conformance classes, or not. It returns TRUE if the given
external_file_protocol is allowed for reference, otherwise, it returns FALSE. An
external_file_protocol may be referenced as the ISO 8859-1 protocol by a

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 539

library_iim_identification that represents reference library integrated model LIIM 24-2 in any of its
conformance classes, if the following conditions hold:

— the external_file_protocol shall be a standard_data_protocol, and

— the organisation attribute of the external_file_protocol shall reference an organization of which
the id attribute equals to 'ISO' and the name attribute equals to 'International Organisation for
Standardisation', and

— the protocol_name attribute of the external_file_protocol shall equal to 'ISO_8859_1', and

— the designation attribute of the external_file_protocol shall reference an item_names for which
the preferred_name attribute equals to 'Latin alphabet No 1' and the short_name attribute equals
to 'ISO 8859-1'.

EXPRESS specification:

*)
FUNCTION conformant_8859_1_protocol_24_2(

ef: external_file_protocol): BOOLEAN;

IF (('ISO13584_EXTERNAL_FILE_SCHEMA'
+ '.STANDARD_DATA_PROTOCOL' IN TYPEOF(ef)) AND
(ef.organisation.id = 'ISO') AND
(ef.organisation.name
= 'International Organisation for Standardisation') AND
(ef.protocol_name = 'ISO_8859_1') AND
(ef.designation.preferred_name
= 'Latin alphabet No 1') AND
(ef.designation.short_name = 'ISO 8859-1')
)

THEN
RETURN(TRUE);

ELSE
RETURN(FALSE);

END_IF;
END_FUNCTION; -- conformant_8859_1_protocol_24_2
(*

I.3.5 conformant_external_file_protocol_24_2 function

The conformant_external_file_protocol_24_2 function checks whether all the
external_file_protocols of a set of external_file_protocols may be referenced as an library
integrated model LIIM 24-2 by a library_iim_identification that references library integrated model
LIIM 24-2 in one of its conformance class 1 to 6, or not. It returns TRUE if all the
external_file_protocols of a set of external_file_protocols are allowed for reference, otherwise, it
returns FALSE.

An external_file_protocol may be referenced by a library_iim_identification that represents
conformance class 1 to 6 of library integrated model LIIM 24-2 if it may be referenced:

— either as the HTTP protocol, or

— as the ISO 8859-1 protocol.

ISO 13584-24:2003(E)

540 © ISO 2003 – All rights reserved

NOTE In extended conformance classes of library integrated model LIIM 24-2, any other
external_file_protocol may be referenced, subject to private agreement between the sender and the receiver.

EXPRESS specification:

*)
FUNCTION conformant_external_file_protocol_24_2(

s: SET [0:?] OF external_file_protocol): BOOLEAN;

REPEAT i := 1 TO SIZEOF(s);
IF NOT(conformant_8859_1_protocol_24_2(s[i])

OR conformant_http_protocol_24_2(s[i]))
THEN

RETURN(FALSE);
END_IF;

END_REPEAT;

RETURN(TRUE);

END_FUNCTION; -- conformant_external_file_protocol_24_2
(*

I.3.6 is_correct_liim_24_2_application_value function

The is_correct_liim_24_2_application_value function checks that the liim_id
library_iim_identification is compatible with the conformance classes associated to the LIMM 24-

2.
EXPRESS specification:

*)
FUNCTION is_correct_liim_24_2_application_value(

liim_id: library_iim_identification): BOOLEAN;

IF EXISTS(liim_id\data_exchange_specification_identification
.application)
AND
((liim_id\data_exchange_specification_identification

.application[1] = '1')
OR

(liim_id\data_exchange_specification_identification
.application[1] = '2')
OR

(liim_id\data_exchange_specification_identification
.application[1] = '3')
OR

(liim_id\data_exchange_specification_identification
.application[1] = '4')
OR

(liim_id\data_exchange_specification_identification
.application[1] = '5')
OR

(liim_id\data_exchange_specification_identification

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 541

.application[1] = '6'))
AND
((liim_id\data_exchange_specification_identification

.application LIKE '#')
OR

(liim_id\data_exchange_specification_identification
.application LIKE '#E'))

THEN
RETURN(TRUE);

ELSE
RETURN(FALSE);

END_IF;
END_FUNCTION; -- is_correct_liim_24_2_application_value
(*

I.3.7 is_extended_liim_24_2_application_value function

The is_extended_liim_24_2_application_value function checks whether, the liim_id
library_iim_identification is associated to an extended conformance class.

EXPRESS specification:

*)
FUNCTION is_extended_liim_24_2_application_value(

liim_id: library_iim_identification): BOOLEAN;
IF EXISTS(liim_id\data_exchange_specification_identification

.application)
AND
(liim_id\data_exchange_specification_identification

.application LIKE '#E')
THEN

RETURN(TRUE);
ELSE

RETURN(FALSE);
END_IF;
END_FUNCTION; -- is_extended_liim_24_2_application_value
(*

*)

END_SCHEMA; -- ISO13584_f_m_iim_conformance_schema

(*

ISO 13584-24:2003(E)

542 © ISO 2003 – All rights reserved

Implementation method specific requirements for the library
integrated information model 24-2

Conformance to the library integrated information model 24-2 shall be effected by one or more
implementation methods. The implementation methods defines what types of exchange behaviour is
required with respect to exchange protocols.

One implementation method is defined for the library delivery file: ISO 10303-21. The implementation
methods for the possible external files referenced from the library delivery file and whose
external_file_protocols belongs to the standard data of the library integrated information model 24-2
are defined by the standard referenced in this protocol, possibly further specified as part of the
description of the integrated information model standard data (see annex I).

The implementation methods for the possible external files referenced from the library delivery files
and whose external file protocols are supplier-defined (xxE conformance classes) shall be based on
the provisions, if any, contained in the referenced standard in the case of a standard_protocol. They
shall be based on previous agreement between the library data suppliers and the library users in the
case of a non_standard_protocol.

For the exchange structure, the file format of the library delivery file shall be encoded according to the
syntax and EXPRESS language mapping defined in ISO 10303-21 for the schema defined in annex G
of this part of ISO 13584. The header of the exchange structure shall identify use of this part of
ISO 13584 by the schema name 'ISO13584_f_m_iim_library_implicit_schema'.

NOTE Identification of the library delivery file is done by separate agreement between the sender and the
receiver and is outside the scope of this part of ISO 13584.

Annex J
(normative)

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 543

ISO13584_f_v_iim_library_implicit_schema expanded listing
This annex references a listing of the complete EXPRESS schema specified in clause 18 of this part
of ISO 13584 without comments or other explanatory text but with the constraints defined in the
ISO13584_f_v_iim_conformance_schema. The name of this schema is
ISO13584_f_v_iim_library_implicit_schema. In this listing, all the elements used either from the
integrated resources of ISO 10303 (ISO 10303-4x) or from the logical resource or description
methodology series of parts of ISO 13584 (ISO 13584-2x and ISO 13584-4x) by the
ISO13584_f_v_iim_schema and the constraints defined in the
ISO13584_f_v_iim_conformance_schema are gathered in an unique schema without any external
reference.

This schema may be used:

— to exchange libraries that reference the ISO13584_f_v_iim_schema and its associated
ISO13584_f_v_iim_conformance_schema, but that does not reference any view exchange
protocol, and

— to exchange libraries that reference the ISO13584_f_v_iim_schema and its associated
ISO13584_f_v_iim_conformance_schema, and that do reference some view exchange
protocols; in this case, the constraints defined in these view exchange protocols are not checked.

This schema may also be completed to check the constraints defined in all the referenced view
exchange protocols using the following process for each referenced view exchange protocol.

Assume that V1 is a referenced view exchange protocols and that it specifies two constraint schemas,
the schema names of which are S1_V1, S2_V1.

a) Build the long form of the S1_V1 schema and give to the resulting schema the same name:
"S1_V1";

b) Build the long form of the S2_V1 schema and give to the resulting schema the same name:
"S2_V1";

c) Replace everywhere in the long form of the S1_V1 schema, the string "S1_V1" by
"ISO13584_f_v_iim_library_implicit_schema" with the same case;

d) Replace everywhere in the long form of the S2_V1 schema, the string "S2_V1" by
"ISO13584_f_v_iim_library_implicit_schema" with the same case;

e) Check that all the entities referenced in the S1_V1 schema and in the S2_V1 schema are
already existing in the ISO13584_f_v_iim_library_implicit_schema, else reference to the
library integrated information model 24-3 and to the view exchange protocol S1 by a same
library delivery file is not allowed.

NOTE 1 The information model of a library delivery file and the entities it may contain are specified by a
library integrated information model. A view exchange protocol may only add constraints.

f) Add the content of the long form of the S1_V1 schema to the content of the
ISO13584_f_v_iim_library_implicit_schema, removing possible duplicates;

g) Add the content of the long form of the S2_V1 schema to the content of the
ISO13584_f_v_iim_library_implicit_schema, removing possible duplicates.

When the above process is performed for view exchange protocols V1, V2,...Vn, the resulting
ISO13584_f_v_iim_library_implicit_schema may be used for exchanging any library that references

Annex K
(normative)

ISO 13584-24:2003(E)

544 © ISO 2003 – All rights reserved

the ISO13584_f_v_iim_schema and its associated ISO13584_f_v_iim_conformance_schema as its
library integrated information model, and that references whole or part of the V1, V2,...Vn view
exchange protocol set. This schema also includes the constraints of all the referenced view exchange
protocols.

The listing of the ISO13584_f_v_iim_library_implicit_schema schema is available in computer-
interpretable form and can be found at the following URL:

 http://www.tc184-sc4.org/EXPRESS/

If there is difficulty accessing these sites contact ISO Central Secretariat or contact the ISO TC
184/SC4 Secretariat directly at: sc4sec@tc184-sc4.org

NOTE 2 The information provided in computer-interpretable form at the above URLs is normative.

NOTE 3 In some errors are identified in the EXPRESS code during implementation and before publication
of Technical Corrigendum, the description of these errors, together with the corrections recommended for PLIB
implementations by the part editors can be found at the following URL:

http://www.lisi.ensma.fr/ftp/pub/PLIB_release_notes/Part24/Part24-IS/

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 545

ISO13584_f_v_iim_schema short names of entities
This annex references a listing of the EXPRESS entity names and corresponding short names of the
EXPRESS schema specified in annex K of this part of ISO 13584. This listing is available in computer-
interpretable form and can be found at the following URL:

 http://www.tc184-sc4.org/Short_Names/

NOTE The information provided in computer-interpretable form at the above URLs is informative. The
information that is contained in the body of this part of ISO 10303 is normative.

Annex L
(informative)

ISO 13584-24:2003(E)

546 © ISO 2003 – All rights reserved

Annex M
(normative)

Standard data requirements for the
library integrated information model 24-3

Standard data are the entity instances that shall be recognised by any implementation conformant with
ISO 13584 that claims conformance to some conformance class of some library integrated information
model or view exchange protocol.

Standard data shall be specified by each library integrated information model and by each view
exchange protocol, and for each of them, for each conformance class.

Standard data may include:

— instances of basic_semantic_units, associated with the corresponding dictionary_element and
possibly content_item,

— instances of external_file_protocols, and

— instance of other entities required to define the previous entities instances.

Recognition of a basic_semantic_unit means that a value-equal basic_semantic_unit is already
stored in the user system, together with a corresponding dictionary_element and possibly a
content_item as specified in the view exchange protocol or library integrated information model
standard data. This implies that a reference to a value-equal basic_semantic_unit in a supplier
library is interpreted as a reference to the pre-existing basic_semantic_unit.

NOTE Value equality of two entity instances means that all their corresponding attributes have the same
values. Value-equality between two basic semantic units implies that they both identify the same concept.

EXAMPLE 1 Examples of basic_semantic_units that may be defined as standard data in a view exchange
protocol include the class_BSU that identifies the functional view class possibly defined by the view exchange
protocol and the property_BSU that identifies the view control variable of this functional view class.

Recognition of an external file protocol means that external files that reference a value equal
external_file_protocol shall be processed by an implementation that recognises this
external_file_protocol.

EXAMPLE 2 Example of an external file protocol that may be defined as standard data by a view exchange
protocol or a library integrated information model is the ISO standard ISO 8859-1 that specifies a 8-bit, single-
byte-coded graphics character set for Latin alphabet N°1.

Standard data are specified by means of a set of constraints that shall be fulfilled by any library that
claims conformance to some conformance class of LIIM 24-3. The following standard data are
specified by library integrated information model 24-3.

M.1 Constraints on a library delivery file for referencing library integrated
information model 24-3

This subclause defines library_iim_identification instance values that are allowed for use in a library
delivery file to reference library integrated information model 24-3 defined in this part of ISO 13584.

The set of allowed values is defined by means of Table M.1 that specifies for each conformance class
the allowed values of library_iim_identification.name and library_iim_identification.application,
and by means of one EXPRESS schema that contains a global rule. This rules shall be fulfilled by any
library delivery file that references library integrated information model 24-3, defined in this part of
ISO 13584 in any of its conformance class. The goal of this rule is to specify the allowed values for the
other attributes of library_iim_identification that shall be used to reference library integrated

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 547

information model 24-3, by means of relationships with library_iim_identification.name and
library_iim_identification.application.

This rule is included in the ISO13584_f_v_iim_library_implicit_schema specified in annex K.

M.2 Conformance class specification table

Table M.1 specifies the values of library_iim_identification.name and
library_iim_identification.application that are allowed for use in a library_iim_identification to
reference library integrated information model 24-3 in either of its conformance classes.

Table M.1 — ISO 13584 LIIM 24-3 conformance class specification

Conformance
Class

library_iim_identification.name
mandatory value

library_iim_identification.application
mandatory value

1 'ISO_13584_24_3' '1'

2 'ISO_13584_24_3' '2'

1E 'ISO_13584_24_3' '1E'

2E 'ISO_13584_24_3' '2E'

M.3 Standard data for conformance class 1 to 2E (all the conformance classes)

M.3.1 Constraints on a library delivery file conform to the library integrated model
LIIM 24-3

The library_iim_identification instance values allowed for use in a library delivery file conform to the
library integrated model LIIM 24-3 defined in this part of ISO 13584 shall obey the constraints defined
in the following EXPRESS schema.

EXPRESS specification:

*)
SCHEMA ISO13584_f_v_iim_conformance_schema;

USE FROM ISO13584_IEC61360_dictionary_schema(
item_names);

USE FROM ISO13584_IEC61360_language_resource_schema(
translated_label);

USE FROM person_organization_schema(
organization);

USE FROM support_resource_schema(
label);

ISO 13584-24:2003(E)

548 © ISO 2003 – All rights reserved

USE FROM ISO13584_extended_dictionary_schema(
data_exchange_specification_identification,
library_iim_identification);

USE FROM ISO13584_external_file_schema(
http_protocol,
standard_data_protocol,
external_file_protocol);

(*

NOTE The schemas used above can be found in the following document:
ISO13584_IEC61360_dictionary_schema IEC 61360-2

(which is duplicated for convenience in informative annex D of ISO 13584-42),
person_organization_schema ISO 10303-41,
ISO13584_extended_dictionary_schema This part of ISO 13584,
ISO13584_external_file_schema This part of ISO 13584.

M.3.2 Allowed_reference_to_LIIM_24_3_rule rule

The allowed_reference_to_LIIM_24_3_rule rule defines a formal constraint and an informal
constraint on library_iim_identifications to be allowed for use to reference conformance class 1 to
2E of library integrated model LIIM 24-3 defined in this part of ISO 13584. A
library_iim_identification is allowed for use to reference conformance class 1 to 2E of library
integrated model LIIM 24-3 if the following conditions hold:

— the name attribute of the library_iim_identification that reference library integrated model
LIIM 24-3 shall be equal to 'ISO_13584_24_3', and

— the status attribute of the library_iim_identification shall be equal to 'WD', 'CD', 'DIS', 'FDIS',
'IS', 'TS', 'PAS' or 'ITA' and

— the application attribute of the library_iim_identification shall have ‘1' or '2' possibly followed by
'E' as its value, and

— if the conformance class of library integrated model LIIM 24-3 referenced is not an extended
conformance class, the external_file_protocols referenced by the external_file_protocols
attribute of the library_iim_identification shall fulfil the constraints required by the
conformant_external_file_protocol_24_3 function.

Moreover, a library_iim_identification is allowed for use to reference conformance class 1 to 2 of
library integrated model LIIM 24-3 if one of the two following conditions hold concerning the http_files
that may be referenced directly or indirectly from the library_iim_identification,

— either each referenced http_file it is associated with a mime attribute and an exchange_format
attribute corresponding to MIME type and subtype that correspond to a specification that is
publicly available, or

— it is associated with a mime attribute and an exchange_format attribute corresponding to MIME
type and subtype that correspond to a specification that is associated with public domain Internet-
available readers.

Reference to http_files corresponding to other MIME types and subtypes may only be done in
extended conformance classes. This is documented as an informal proposition IP1 in
allowed_reference_to_LIIM_24_3_rule.

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 549

EXPRESS specification:

*)
RULE allowed_reference_to_LIIM_24_3_rule FOR(

library_iim_identification);
WHERE

WR1: QUERY(liim_id <* library_iim_identification |
((liim_id\data_exchange_specification_identification

.status = 'WD')
OR

(liim_id\data_exchange_specification_identification
.status = 'CD')
OR

(liim_id\data_exchange_specification_identification
.status = 'DIS')
OR

(liim_id\data_exchange_specification_identification
.status = 'FDIS')
OR

(liim_id\data_exchange_specification_identification
.status = 'IS')
OR

(liim_id\data_exchange_specification_identification
.status = 'TS')
OR

(liim_id\data_exchange_specification_identification
.status = 'PAS')
OR

(liim_id\data_exchange_specification_identification
.status = 'ITA'))

AND
(liim_id\data_exchange_specification_identification.name
= 'ISO_13584_24_3')
AND
is_correct_liim_24_3_application_value(liim_id)
AND
(QUERY(efp <*
liim_id\data_exchange_specification_identification
.external_file_protocols
| NOT(is_extended_liim_24_3_application_value(liim_id))
AND
NOT(conformant_external_file_protocol_24_3([efp]))
) = []))

= QUERY(liim_id <* library_iim_identification |
(liim_id\data_exchange_specification_identification
.name = 'ISO_13584_24_3'));

END_RULE; -- allowed_reference_to_LIIM_24_3_rule
(*

ISO 13584-24:2003(E)

550 © ISO 2003 – All rights reserved

Formal propositions:

WR1: when referencing library integrated model LIIM 24-3 defined in this part of ISO 13584, the
library_iim_identification.name shall have ‘ISO_13584_24_3’ as its value,
library_iim_identification.status shall be equal to 'WD', 'CD', 'DIS', 'FDIS', 'IS', 'TS', 'PAS' or 'ITA',
the library_iim_identification.application shall have ‘1' or '2' as its value, possibly followed by 'E',
and, if the conformance class of library integrated model LIIM 24-3 referenced is not an extended
conformance class, the library_iim_identification.external_file_protocols shall fulfil the constraints
specifications required by the conformant_external_file_protocol_24_3 function defined below.

Informal propositions:

IP1: when it references library integrated model LIIM 24-3 defined in this part of ISO 13584 in one of
the conformance class 1 or 2 a library_iim_identification may only reference, directly or indirectly,
http_files characterised by MIME types and subtypes that either correspond to specifications that are
publicly available, or to specifications that are associated with public domain Internet-available
readers.

M.3.3 conformant_http_protocol_24_3 function

The conformant_http_protocol_24_3 function checks whether an external_file_protocol may be
referenced as the HTTP protocol by a library_iim_identification that references library integrated
model LIIM 24-3 in any of its conformance classes. It returns TRUE if the given
external_file_protocol is allowed for reference, otherwise, it returns FALSE. An
external_file_protocol may be referenced as the HTTP protocol by a library_iim_identification that
reference library integrated model LIIM 24-3 in any of its conformance classes if the following
conditions hold:

— the external_file_protocol shall be a http_protocol, and

— the organisation attribute of the external_file_protocol shall reference an organization of which
the id attribute equals to 'IAB' and the name attribute equals to 'Internet Architecture Board', and

— the protocol_name attribute of the external_file_protocol shall equal to 'HTTP' or to ‘HTTPS’,
and

— the designation attribute of the external_file_protocol shall reference an item_names for which
the preferred_name attribute equals to 'Hypertext Transfer Protocol' and the short_name
attribute equals to 'RFC' followed by four digits and possibly some other characters.

EXPRESS specification:

*)
FUNCTION conformant_http_protocol_24_3(

ef: external_file_protocol): BOOLEAN;

LOCAL
OK: BOOLEAN := TRUE;

END_LOCAL;

IF (('ISO13584_EXTERNAL_FILE_SCHEMA'
+ '.HTTP_PROTOCOL' IN TYPEOF(ef)) AND
(ef.organisation.id = 'IAB') AND
(ef.organisation.name = 'Internet Architecture Board') AND
((ef.protocol_name = 'HTTP')

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 551

OR (ef.protocol_name = 'HTTPS')) AND
(ef.designation.preferred_name = 'Hypertext Transfer Protocol'))

THEN
IF 'ISO13584_IEC61360_DICTIONARY_SCHEMA.TRANSLATED_LABEL'

IN TYPEOF(ef.designation.short_name)
THEN

REPEAT i := 1 TO SIZEOF(ef.designation.short_name.labels);

IF ef.designation.short_name.labels[i]
LIKE 'RFC####&'

THEN
ok := ok AND TRUE;

ELSE
ok := ok AND FALSE;

END_IF;
END_REPEAT;
RETURN(OK);

ELSE
IF ef.designation.short_name

LIKE 'RFC####&'
THEN

RETURN(TRUE);
ELSE

RETURN(FALSE);
END_IF;

END_IF;
ELSE

RETURN(FALSE);
END_IF;

END_FUNCTION; -- conformant_http_protocol_24_3
(*

M.3.4 conformant_8859_1_protocol_24_3 function

The conformant_8859_1_protocol_24_3 function checks whether an external_file_protocol may
be referenced as the ISO 8859-1 protocol by a library_iim_identification that references library
integrated model LIIM 24-3 in any of its conformance classes. It returns TRUE if the given
external_file_protocol is allowed for reference, otherwise, it returns FALSE. An
external_file_protocol may be referenced as the ISO 8859-1 protocol by a
library_iim_identification that represents reference library integrated model LIIM 24-3 in any of its
conformance classes, if the following conditions hold:

— the external_file_protocol shall be a standard_data_protocol, and

— the organisation attribute of the external_file_protocol shall reference an organization of which
the id attribute equals to 'ISO' and the name attribute equals to 'International Organisation for
Standardisation', and

— the protocol_name attribute of the external_file_protocol shall equal to 'ISO_8859_1', and

ISO 13584-24:2003(E)

552 © ISO 2003 – All rights reserved

— the designation attribute of the external_file_protocol shall reference an item_names for which
the preferred_name attribute equals to 'Latin alphabet No 1' and the short_name attribute equals
to 'ISO 8859-1'.

EXPRESS specification:

*)
FUNCTION conformant_8859_1_protocol_24_3(

ef: external_file_protocol): BOOLEAN;

IF (('ISO13584_EXTERNAL_FILE_SCHEMA'
+ '.STANDARD_DATA_PROTOCOL' IN TYPEOF(ef)) AND
(ef.organisation.id = 'ISO') AND
(ef.organisation.name

= 'International Organisation for Standardisation') AND
(ef.protocol_name = 'ISO_8859_1') AND
(ef.designation.preferred_name

= 'Latin alphabet No 1') AND
(ef.designation.short_name = 'ISO 8859-1'))

THEN
RETURN(TRUE);

ELSE
RETURN(FALSE);

END_IF;
END_FUNCTION; -- conformant_8859_1_protocol_24_3
(*

M.3.5 conformant_external_file_protocol_24_3 function

The conformant_external_file_protocol_24_3 function checks whether all the
external_file_protocols of a set of external_file_protocols may be referenced as an library
integrated model LIIM 24-3 by a library_iim_identification that references library integrated model
LIIM 24-3 in one of its conformance class 1 to 6, or not. It returns TRUE if all the
external_file_protocols of a set of external_file_protocols are allowed for reference, otherwise, it
returns FALSE.

An external_file_protocol may be referenced by a library_iim_identification that represents
conformance class 1 to 6 of library integrated model LIIM 24-3 if it may be referenced:

— either as the HTTP protocol, or

— as the ISO 8859-1 protocol.

NOTE In extended conformance classes of library integrated model LIIM 24-3, any other
external_file_protocol may be referenced, subject to private agreement between the sender and the receiver.

EXPRESS specification:

*)
FUNCTION conformant_external_file_protocol_24_3(

s: SET [0:?] OF external_file_protocol): BOOLEAN;

REPEAT i := 1 TO SIZEOF(s);
IF NOT(conformant_8859_1_protocol_24_3(s[i])

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 553

OR conformant_http_protocol_24_3(s[i]))
THEN

RETURN(FALSE);
END_IF;

END_REPEAT;

RETURN(TRUE);

END_FUNCTION; -- conformant_external_file_protocol_24_3
(*

M.3.6 is_correct_liim_24_3_application_value function

The is_correct_liim_24_3_application_value function checks that the liim_id
library_iim_identification is compatible with the conformance classes associated to the LIMM 24-3.

EXPRESS specification:

*)
FUNCTION is_correct_liim_24_3_application_value(

liim_id: library_iim_identification): BOOLEAN;

IF EXISTS(liim_id\data_exchange_specification_identification.
application)
AND
((liim_id\data_exchange_specification_identification.

application[1] = '1')
OR

(liim_id\data_exchange_specification_identification.
application[1] = '2'))

AND
((liim_id\data_exchange_specification_identification.application

LIKE '#')
OR

(liim_id\data_exchange_specification_identification.application
LIKE '#E'))

THEN
RETURN(TRUE);

ELSE
RETURN(FALSE);

END_IF;

END_FUNCTION; -- is_correct_liim_24_3_application_value
(*

M.3.7 is_extended_liim_24_3_application_value function

The is_extended_liim_24_3_application_value function checks whether the liim_id
library_iim_identification is associated to an extended conformance class.

ISO 13584-24:2003(E)

554 © ISO 2003 – All rights reserved

EXPRESS specification:

*)
FUNCTION is_extended_liim_24_3_application_value(

liim_id: library_iim_identification): BOOLEAN;

IF EXISTS(liim_id\data_exchange_specification_identification.
application)
AND
(liim_id\data_exchange_specification_identification.

application LIKE '#E')
THEN

RETURN(TRUE);
ELSE

RETURN(FALSE);
END_IF;
END_FUNCTION; -- is_extended_liim_24_3_application_value
(*

*)

END_SCHEMA; -- ISO13584_f_v_iim_conformance_schema

(*

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 555

Implementation method specific requirements for the library
integrated information model 24-3

Conformance to the library integrated information model 24-3 shall be effected by one or more
implementation methods. The implementation methods defines what types of exchange behaviour is
required with respect to exchange protocols.

One implementation method is defined for the library delivery file: ISO 10303-21. The implementation
methods for the possible external files referenced from the library delivery file and whose
external_file_protocol belong to the standard data of the library integrated information model 24-3
are defined by the standard referenced in this external file protocol, possibly further specified as part of
the description of the library integrated information model 24-3 standard data (see annex K).

The implementation methods for the possible external files referenced from the library delivery files
and whose external file protocols are supplier-defined (xxE conformance classes) shall be based on
the provisions, if any, contained in the referenced standard in the case of a standard_protocol. They
shall be based on previous agreement between the library data suppliers and the library users in the
case of a non_standard_protocol.

For the exchange structure, the file format of the library delivery file shall be encoded according to the
syntax and EXPRESS language mapping defined in ISO 10303-21 for the schema defined in annex K
of this part of ISO 13584. The header of the exchange structure shall identify use of this part of
ISO 13584 by the schema name 'ISO13584_f_v_iim_schema'.

NOTE Identification of the library delivery file is done by separate agreement between the sender and the
receiver and is outside the scope of this part of ISO 13584.

Annex N
(normative)

ISO 13584-24:2003(E)

556 © ISO 2003 – All rights reserved

Logical description of the compiling process of
ISO 13584-conformant dictionaries and libraries

A library description is designed by one library data supplier who is responsible for the
dictionary_elements and content_items provided in the ISO 13584-conformant library exchange
context. Such a description is intended to be compiled by an ISO 13584-conformant LMS to make it
usable by a library end-user.

A logical description of such a compiling process is therefore needed to define the consequences for
the library end-user of the description choices done by the library data supplier.

A library description from one library data supplier may also contain BSUs or dictionary_elements
that refer to other library data suppliers. These information elements are provided for convenience and
their compiling process is outside the scope of the process described in this annex.

EXAMPLE Assume that a library data supplier wants to reference (for instance through an
a_posteriori_case_of relationship) the dictionary defined in IEC 61360-4. Assume that some end-user libraries
contain this dictionary, and some others do not. In order to decide to reference such a dictionary, or not, and to
duplicate the definitions from IEC 61360-4, or not, the supplier shall know what would be the consequences for
both kinds of end-user libraries.

The goal of this annex is to specify what shall be the result of a library compiling process however this
process be performed.

NOTE 1 The logical process defined in this annex is only intended to specify the required result of a
compiling process. The process itself is not standardised by this part of ISO 13584 and may be different from the
logical description provided below.

An ISO 13584 exchange context, whether it contains only dictionary_element or it contains also a
library specification, is modelled through one dictionary or library entity.

It is assumed in the following description of the compiling process that the user dictionary and/or
library is also modelled through the same entities. It is also assumed that the dictionary and/or library
to be compiled refers to a library integrated information model and to view exchange protocol(s) in
some conformance classes that are supported by the receiving system.

NOTE 2 References to library integrated information models and to view exchange protocols are made by
means of library_iim_identification and view_exchange_protocol_identification entities.

The design of the information models presented in this part of ISO 13584 are based on the following
assumptions about the logical behaviour of the compiling process of a supplier library.

The compiling process is a two step process.

a) In the first step all the inverse pointers defined in the information model are solved. That is, the
values of the attributes of the EXPRESS entities defined as INVERSE in the information model,
and that are not represented in the exchange context, are computed. Moreover, inverse
pointers from the class_BSUs to the document_BSUs and table_BSUs that reference these
class_BSUs through their name_scope attributes are computed and created.

b) In the second step, if the system supports conformance classes defined as extended
conformance classes (see clauses 16, 17 and 18 of this part of ISO 13584) the
external_file_protocols referenced by the library or dictionary entity are compared to the
supported external_file_protocols, and if the library or dictionary entity references not
supported external_file_protocols, the compiling process fails and the library or dictionary is
not compiled; otherwise, the library or dictionary is compiled. The compiling process of the
library or dictionary is a sequential process that consists in compiling successively each
attribute of the library or dictionary and, for the LIST ordered attributes, each item of this

Annex O
(informative)

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 557

attribute following the LIST order, and for the SET-valued attributes, each item of this attribute in
any order.

NOTE Only those items, provided by the responsible supplier of the library, need to be compiled.

Compiling any item consists of processing this item (inserting it or updating it in the user library or
dictionary) and then in compiling all the items referenced directly or indirectly by this item, by direct or
inverse pointers.

The processing of any item may fail. Compiling failure is not an error that stops the compiling process.
It is an exception that shall be acknowledged as follows:

— the compiling process returns to the state it had before compiling the current library or
dictionary-referenced item, and

— this library or dictionary-referenced item is skipped and the compiling process goes on until the
end of the library or dictionary.

Processing of a supplier_BSU fails if:

— its dictionary_element is not provided in the supplier library and/or dictionary and is not present
in the user library and/or dictionary.

Processing of a program_library_BSU fails if:

— its dictionary_element is not provided in the supplier library and/or dictionary and is not present
in the user library and/or dictionary, or

— its content_item is not provided in the supplier library and/or dictionary and is not present in the
user library and/or dictionary, or

— its version is greater than the corresponding BSU available in the user library and/or dictionary and
its dictionary_element is not provided in the supplier library and/or dictionary, or

— its version is greater than the corresponding BSU available in the user library and/or dictionary and
its content_item is not provided in the supplier library and/or dictionary.

Processing of a linked_interface_program_protocol fails if:

— the processing of any program_library_BSU it references in its link_libraries attribute failed.

Processing of a class_BSU fails if:

— its dictionary_element is not provided in the supplier library and/or dictionary and is not present
in the user library and/or dictionary, or

— its version is greater than the version of the corresponding BSU available in the user library and/or
dictionary and its dictionary_element is not provided, or

— its dictionary_element is provided in the supplier library and/or dictionary and the user library
and/or dictionary contains a content_item corresponding to this BSU and a content_item
corresponding BSU in the supplier library is not provided, or

— the processing of any BSU referred to, directly or indirectly either by the class_BSU (i.e., its
supplier_BSU through its name_scope) or by its class dictionary_element failed, or

— the processing of any linked_interface_program_protocol referenced by the used_protocols
attribute of the model_class_extension content_item failed.

ISO 13584-24:2003(E)

558 © ISO 2003 – All rights reserved

Processing of a BSU referred to from a class dictionary_element fails if:

— its dictionary_element is not provided in the supplier library and/or dictionary and is not present
in the user library and/or dictionary, or

— its version is greater than the version of the corresponding BSU available in the user library and/or
dictionary and its dictionary_element is not provided, or

— its version is greater than the version of the corresponding BSU available in the user library and/or
dictionary and the user library and/or dictionary contains a content_item corresponding to this
BSU and a content_item corresponding BSU in the supplier library is not provided, or

— it is a table_BSU that has no corresponding BSU in the user library and/or dictionary and its
table_content is not provided, or

— it is a document_BSU that has no corresponding BSU in the user library and/or dictionary and its
document dictionary_element is not provided.

NOTE 3 Processing of document_BSU is not considered has having failed when

— either no document_content is provided, or

— the system is unable to compile the document_content because the external_file_protocol(s) it
references is (are) not supported.

Processing of an a_posteriori_semantic_relationship fails if:

— the processing of either class_BSU referred to in the relationship failed.

When the processing of an item fails, the items referenced directly or indirectly by this item are not
compiled and this item is skipped in the compiling process.

This assumption about the compiling process:

— ensures the feasibility of the compiling process of a library and/or dictionary whose integrated
information model is one of the ones defined in clauses 16, 17 or 18 of this International Standard,

— ensures that when a reference hierarchy (such as the dictionary defined in IEC 61360-4) has
already been compiled, a supplier library and/or dictionary can make reference to properties, data
types and tables associated, through their name_scope attribute, to the reference hierarchy (i.e.,
they are visible) even if they are not referenced, through their described_by attribute or through a
class_BSU_relationship by any class in this hierarchy (not required to be applicable).

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 559

Commented example of Parts Library physical files
This annex presents, on an example, an overview of the different resources and steps involved in the
description of a parts library according to the ISO 13584 series.

The content of this annex is as follows:

— Clause 1: describes the example parts family and discusses the two different levels of description
of such a family: dictionary definition and explicit/implicit library specification.

— Clause 2: explicit description of a parts library

— Clause 2.1: outlines the main resource constructs involved in the physical file that defines this
family.

— Clause 2.2: outlines the main resource constructs involved in the physical file that defines a
functional model class able to create a geometry view of this family.

— Clause 2.3: presents the two resulting physical files conformant with ISO 10303-21.

— Clause 3: implicit description of a parts library.

— Clause 3.1: outlines the main resource constructs involved in the physical file that defines this
family.

— Clause 3.2: outlines the main resource constructs involved in the physical file that defines a
functional model class able to create a geometry view of this family.

— Clause 3.3: presents the resulting physical files conformant with ISO 10303-21.

NOTE All the examples of physical files presented in clauses P.2.1, P2.2 and P.3.1, P3.2 are extracted
from those presented respectively in clauses P.2.3 and P3.3. Therefore, the content of the entities referenced
from these examples may be found (with the same entity names respectively in clauses P.2.3 and P3.3.

P.1 Capturing a parts family in ISO 13584

Figure P.1 illustrates the parts family intended to be described. It is a family of washers, denoted PAW,
that is sold by a bearing supplier and that is used as a bearing in some mechanical contexts.

e d_out

d_in

Figure P.1 — PAW family description

Such a parts family may be described at two levels of abstraction.

The dictionary level (ISO13584_IEC61360_dictionary_schema and
ISO13584_extended_dictionary_schema) permits the description of the concepts of a part family,
i.e., the supplier(s), the class(es), the property(ies), the table(s), etc. It defines what are the meaning
and the value type of each property, in which classes the properties are visible, by which supplier the
classes are specified, etc. Such a data dictionary_element may be done both for the general model

Annex P
(informative)

ISO 13584-24:2003(E)

560 © ISO 2003 – All rights reserved

description (what is this family of parts) and for the functional model description (what kind of
representations may be defined for this family of parts).

The library level (ISO13584_library_content_schema) permits the restriction of the values domains
of the properties to implicitly define the allowed instances of the parts family. This level is for instance
useful when describing a paper catalogue, because all the allowed values of the different parts are
clearly specified through tables and algebraic functions.

These two levels of abstraction have to be represented in two different ways.

The following figure (Figure P.2) presents an example of instances of a family that is only defined at
the dictionary level. The permitted instances are those where the values of the properties describing
the part belong to the type defined in the data dictionary.

e d_out

d_in

x y

z

PAW Family Description One particular PAW

X∈ De, y∈ Dd_out, z∈ Dd_in

Instanciation

Figure P.2 — Instance of a dictionary description

P.1.1 Explicit modeling approach

 Figure P.3 describes and presents an example of a family that is associated with a two-fold
description: dictionary_element and library specification. The allowed instances are those where the
values of the properties describing the part belong to the explicit list of authorized tuples of values
defined in the library specification of a part. This approach is called the explicit representation of a
library content.

 d_in e d_out

 10 1 15

 11 1 16.5

 13 2 19.5

 17 3 25.5

 19 4 28.5

Figure P.3 — Explicit representation of a dictionary description

P.1.2 Implicit modeling approach

The library content may also be described by specifying the allowed instances where the values of the
properties describing the part belong to the implicit list of authorized tuples of values defined in the
library specification of a part. This approach is called the implicit representation of a library content. It
is illustrated in Figure P.4.

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 561

e d_out

d_in

1 16.5

11
PAW Family Description

One particular instance
belonging to the licit

values set

Instanciation
d_in e
10
11
...

1
1
...

Licit values

d_out = d_in * 1.5

Figure P.4 — Implicit representation of a dictionary description

 P.2 Capturing a parts family in ISO 13584 using the explicit representation of a
library content

 P.2.1 Description of the PAW parts family

 This description is two-fold. First the concept of PAW and of its properties are defined. Second, the
allowed instances are precisely (but implicitly) defined.

 P.2.1.1 Dictionary description: the BSU mechanism

 The description of a data dictionary according to the ISO13584_IEC61360_dictionary_schema
schema requires the specification of what are the identifiers of the different concepts (called basic
semantic unit: BSU) involved in the parts family definition. These identifiers define unambiguously and
universally each concept within an ISO 13584-compliant data dictionary.

 The following example (Figure P.5) outlines the resources used for the specification of these
identifiers:

 /*BSU for supplier */

 /* The code of the supplier must be defined according to ISO13584-26: Supplier identification
 Here, the code doesn't follow the ISO 13584-26 requirements, because the supplier code is not
known at the moment */
 #20 = SUPPLIER_BSU ('INA', *);

 /* BSU for component_class */

 /* The class BSUs defines the identification of the various classes, and who is the supplier that is
responsible of the class definitions */
 #50 = CLASS_BSU ('BEARING', '001', #20);
 #60 = CLASS_BSU ('PAW', '001', #20);

 /* BSU for properties */

 /* The property BSU defines the identifications of the properties and the class where these
properties are visible */

ISO 13584-24:2003(E)

562 © ISO 2003 – All rights reserved

 #90 = PROPERTY_BSU ('d_in', '001', #50);
 #100 = PROPERTY_BSU ('d_out', '001', #50);
 #110 = PROPERTY_BSU ('e', '001', #60);

 Figure P.5 — Identifiers of the concepts involved in the PAW family

 P.2.1.2 Dictionary description: the dictionary element definition

 A BSU only identifies a concept. A dictionary_element provides a computer-sensible and human-
readable definition of the concept. This relationship between these two levels is presented in
Figure P.6.

BSUDictionary
Element

identified_by

(INV)
definition S[0:1]

 Figure P.6 — The BSU / Dictionary element relationship

 The following figure (Figure P.7) outlines the main structure of the dictionary_elements
corresponding to the previous basic semantic units identifiers.

/* Supplier definition */
#21=SUPPLIER_ELEMENT(

#20, /* reference to its BSU */
$, '001',
#22, #23); /* organisation and address */

/* Property definition */
/* d_in */
#91=NON_DEPENDENT_P_DET(

#90, /* reference to its BSU */
$, '001',
#92, /* item_names (human-readable name of the concept,

with possible translations) */
TEXT('inner diameter'), $, $, $, $, (), $,
'TO3', /* the data element type classification,

according to ISO 31*/
#93, /* the specific data type of the property

(not represented: measure in mm) */
$);

 /* d_out */
 #101 = NON_DEPENDENT_P_DET(

#100, $, '001', #102, TEXT('outer diameter'), $,
$, $, $, (), $, 'TO3', #93, $);

 /* e */
 #111 = NON_DEPENDENT_P_DET(

#110, $, '001', #112, TEXT('thickness'), $, $, $,

$, (), $, 'TO3', #93, $);
/* Class definition*/
/* Part class */
#71=COMPONENT_CLASS(

#50, /* reference to its BSU */
$, '001',
#72, /* item_names */

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 563

TEXT('Class associated...'), /* definition */
$, $, $, $,
(#90, #100), /* the list of the properties that may be
used to describe an instance of this class
(applicability of the properties) */
(), $, (),(), $);

 /* PAW class */

#81 = COMPONENT_CLASS(#60, $, '001', #82, TEXT('Class associated to the
PAW part family'), $, $, $, #50, (#110), (), $, (),(), $);

 Figure P.7 — Dictionary_element of the concepts involved in the PAW family

 P.2.1.3 Explicit library specification: description of the class extension

The PAW family being a catalogue defined family, only some instances are really allowed. This set of
instances is explicitly defined through:

a) the choice (by the library data supplier) of the identification characteristics of the family (in this
example: the d_in property),

b) the explicit description of each of the components delivered by the parts supplier.

P.2.1.3.1 Overall architecture

The relationship between a dictionary element and an associated library specification content_item is
outlined in Figure P.8:

BSUDictionary
Element

identify_by

(INV)
definition S[0:1]

Content
item

(INV)
referenced_by

S[0:?]

dictionary_
definition

Figure P.8 — The Dictionary Element / Library Content relationship

Each content item shall be consistent with the corresponding dictionary element definition (respect of
the type / value relationship).

P.2.1.3.2 Instances description

Each class instance is described by the list of its property values. Figure P.9 gives the description, by
extension of one instance corresponding to the part family for which d_in equals 10, e equals 1 and
d_out equals 15.

 /* Extension of a library component */

#8100=LIB_COMPONENT_INSTANCE(
#60, /* the BSU associated to the class which
the current instance is an instance of */

ISO 13584-24:2003(E)

564 © ISO 2003 – All rights reserved

(#8101, #8102, #8103), /* the property values */
(), $, $, $, $, $);

 /* Property values of the extension of a class */

#8101=PROPERTY_VALUE(REAL_VALUE(10.0), #90);
#8102=PROPERTY_VALUE(REAL_VALUE(1.0), #100);
#8103=PROPERTY_VALUE(REAL_VALUE(15.0), #110);

 Figure P.9 — Description of one particular instance of the PAW parts family

P.2.1.3.2 Explicit class extension

The extension of a class is given by the set of instances of a class. Each instance of a class contains
a set of property values that correspond to the values of the properties belonging to the part family
described by this instance. Figure P.10 describes the extension of a class by an explicit modeling.

 /* Dictionary extension */
 /* Extension of a class */

#8000= EXPLICIT_ITEM_CLASS_EXTENSION(
#60, /*Reference to the BSU */
(), (), (), '001', '001', (),
(#90), /* an identification property: d_in */

(#8100, #8200, #8300, #8400, #8500), /* the extension of
class given by a list of class instances */
.T., $, $, (), $, (), ());

 Figure P.10 — Description of the PAW explicit class extension

P.2.2 Description of geometric representations for the PAW parts family

 P.2.2.1 Description of the functional model dictionary properties

 The description of the PAW family is identical to the one described and commented in the previous
clause, except that supplier elements have been introduced in order to describe the view and the
geometry suppliers (Figure P.11).

/* BSU for suppliers */
#20=SUPPLIER_BSU('INA', *); /* Note: INA code unknown */

/* Supplier of the part family */
#30=SUPPLIER_BSU('9/19860073600021', *);

/* LISI/ENSMA code in the coding scheme ICD=0009: SIRET
number */
/* Supplier of the functional model class */

#40=SUPPLIER_BSU('0112/1///13584_101_1', *);
/*Identification of ISO 13584-101 according to ISO 13584-26*/
/* Supplier of the functional view */

 Figure P.11 — Description of the supplier identifiers

 The two class_BSUs PAW_Gemetry and basic_geometry identify respectively the classes
corresponding to the functional model and of the functional view (Figure P.12).

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 565

/* BSU for classes */
#50=CLASS_BSU('Bearing', '001', #20);
#60=CLASS_BSU('PAW', '001', #20);
#130=CLASS_BSU('PAW_Geometry', '001', #30);
#140=CLASS_BSU('basic_geometry', '001', #40);

 Figure P.12 — Description of the class identifiers

 The following property_BSU describes the properties of the parts family PAW as defined in the
previous clause (Figure P.13).

/* BSU for properties */
#90=PROPERTY_BSU('d_in', '001', #50);
#100=PROPERTY_BSU('d_out', '001', #50);
#110=PROPERTY_BSU('e', '001', #50);

 Figure P.13 — Description of the general model property identifiers

 The definition of the geometry for a given part, and particularly for the part family PAW requires the
definition of representation properties. These properties are defined as for part family properties
through the BSU mechanism (Figure P.14).

/* BSU for properties */
#150=PROPERTY_BSU('geometry_level', '001', #140);
#160=PROPERTY_BSU('detail_level', '001', #140);
#170=PROPERTY_BSU('side', '001', #140);
#180=PROPERTY_BSU('prg', '001', #130);
#200=PROPERTY_BSU('variant', '001', #140);
#210=PROPERTY_BSU('unreg_variant', '001', #140);

 Figure P.14 — Description of the functional model / view property identifiers

 The following supplier_element describes LISI/ENSMA as supplier. It will be used as supplier of a
functional model class (Figure P.15).

/* supplier description */
#31=SUPPLIER_ELEMENT(#30, $, '001', #32, #33);
#32=ORGANIZATION('LISI/ENSMA', 'LISI/ENSMA', '');
#33=ADDRESS($, $, $, $, $, $, $, 'FRANCE', $, $, $, $);

 Figure P.15 — Functional model supplier description

 Data type elements associated to representation properties are representation_P_DETs. For
example, the following data element (Figure P.16) describes the variable allowing to refer programs
(prg).

/* prg */
#91=REPRESENTATION_P_DET(#180,

ISO 13584-24:2003(E)

566 © ISO 2003 – All rights reserved

$, '001', #92,
TEXT('variable used to reference geometry programs'),
$, $, $, $, (), $, 'A58', #93, $);

#92=ITEM_NAMES(LABEL('related program'), (), LABEL(''), $, $);
#93=PROGRAM_REFERENCE_TYPE((

'ISO13584_F_M_IIM_LIBRARY_IMPLICIT_SCHEMA.PROGRAM_REFERENCE'));

 Figure P.16 — Property description for referencing programs

 P.2.2.2 Description of the geometric functional model

 We assume now that some library data supplier wants to provide a geometric representation for all the
instances of the PAW family that are described in an explicit manner (by extension). This requires the
description of a functional model class.

 A functional model class is intended to represent different perspectives of the different parts described
in the general model class. A functional model class has to be described like a general model class,
i.e., through a class definition and through a dictionary extension (library specification).

 A functional_model_class describes a particular view (is-view-of relationship) of a given parts family
(described as a general model class), according to the point of view specified by a
functional_view_class.

 In the example, it will be defined a functional model class representing some kind of geometry
(specified by) a functional_view_class for the PAW parts family.

 A fm_class_view_of is a functional model class that refers to a well defined general model class
(here the class that models the PAW family) and that provides a particular kind of representation
(specified by a functional_view_class) for this general model class.

 A functional model class is not required to provide representation for all the values of the functional
view class view control variables. The range of supported values is specified by
view_control_variable_range as shown in Figure P.17.

/* v_c_v range */
#155=VIEW_CONTROL_VARIABLE_RANGE(#150, 1, 1);
#165=VIEW_CONTROL_VARIABLE_RANGE(#160, 2, 2);
#175=VIEW_CONTROL_VARIABLE_RANGE(#170, 1, 6);
#205=VIEW_CONTROL_VARIABLE_RANGE (#200, 1, 1);
#215=VIEW_CONTROL_VARIABLE_RANGE (#210, 0, 0);

 Figure P.17 — View control variables range definition

 In our example, the functional model class only provides 2D views (range 1..1, for #150 that is
‘geometry_level’), with standard representation (range 2..2, for #160 that is ‘detail-level’) for all the
sides from ‘front’ to ‘bottom’ (range 1..6, for # 170 that is ‘side’).

 Moreover, to be able to create the geometry, the fm_class_view_of needs to import some properties
of the PAW family. The dictionary_element of the fm_class_view_of is presented in the
Figure P.18.

 The following instance describes the is_view_of relationship through a fm_class_view_of class
supplied by LISI/ENSMA (Figure P.18).

/* Functional model class view_of definition*/

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 567

#71=FM_CLASS_VIEW_OF(
#130, /* reference to BSU */
$, '001', #72, /* item names */
TEXT('Explicit ...'), $, $, $, $,
(#180), /* BSU of ‘prg’ and ‘required_side’ properties */
(), *, *, *, *, *,
#140, /* the created view (reference to the BSU of the
functional_view_class */
(#155, #165, #175, #205, #215), /* the vcv ranges */
(#150, #160, #170, #200, #210), /* vcv’s imported from the
functional view class */
(), (), (), (), (), (), (), (),
#60, /* is_view_of relationship. Reference to the functional

model */
(#90, #100, #110),/* imported properties from the general model

*/
(),(),());

#72=ITEM_NAMES(LABEL('Functional model class of PAW'), (),
LABEL('fm class of PAW'), $, $);

 Figure P.18 — Specification of the view created by a functional model class

 P.2.2.3 Library specification of the functional model class

 An explicit_functional_model_class_extension is the content_item that constitutes the library
specification a functional_model_class and fm_class_view_of subtype). It gives the set of the
properties that need to be valued in the context of an instance of such a class.

 In the case of an explicit representation, the instances of a functional model are explity enumerated. In
the following explict_functional_model_extension instance, the instances of a functional model are
described by lib_F_model_instances in the range 3000 to 3450.

/* Functional model class extension*/
#1300=EXPLICIT_FUNCTIONAL_MODEL_CLASS_EXTENSION(

#130,
(#2501, #2502, #2503,#2504, #2505, #2506), /* the set of program
references. The programs which allow to display geometry.*/
(#7), (#12), '001', '001', (), (),
(#90, #170), /* properties needed to display the geometry */
(#3000, #3010, #3020, #3030, #3040, #3050,
#3100, #3110, #3120, #3130, #3140, #3150,
#3200, #3210, #3220, #3230, #3240, #3250,
#3300, #3310, #3320, #3330, #3340, #3350,
#3400, #3410, #3420, #3430, #3440, #3450), /* The extension of

all
the instances of a functional model. They are given by the
lib_f_model_instances */
.T., $, (#90, #100, #110), #180, $, $, (), $);

 Figure P.19 — Description by extension of the instances of a functional a functional model

ISO 13584-24:2003(E)

568 © ISO 2003 – All rights reserved

 According to the previous instance, references to programs that describe geometry representation are
performed. These program_references refer themselves to external files PAW_p1.for .. PAW_p6.for
containing geometry programs written in the FORTRAN language according to view exchange
protocol ISO 13584-101 (Figure P.20).

/* Reference to programs which display geometry */
#2501=PROGRAM_REFERENCE(#7, #2601, 'Add1_PAW', 'PAW_p1',

(#90, #100, #110), $, $);
#2502=PROGRAM_REFERENCE(#7, #2602, 'Add2_PAW', 'PAW_p2', (#90, #100,
#110), $, $);
...
#2601=NOT_TRANSLATABLE_EXTERNAL_CONTENT((#2701));
#2602=NOT_TRANSLATABLE_EXTERNAL_CONTENT((#2702));
...
#2701=LANGUAGE_SPECIFIC_CONTENT((#2801), #2801, $);
#2702=LANGUAGE_SPECIFIC_CONTENT((#2802), #2802, $);

 ...
/* Description of the source files for geometry */
#2801=EXTERNAL_FILE_UNIT('PAW_p1.for', '7bit');
#2802=EXTERNAL_FILE_UNIT('PAW_p2.for', '7bit');
...

 Figure P.20 — References to FORTRAN programs that display geometry.

 Instances of functional models described by extension, describe themselves their property values by
extension. Figure P.21 shows one instance of functional model which describes by extension the
values of its properties.

/* Description of library functional model instance by extension */
#3000=LIB_F_MODEL_INSTANCE(#130, (#3001, #3002, #3003, #3004, #3005,

#3006, #3007), ());
#3000=LIB_F_MODEL_INSTANCE(#130, (#3001, #3008, #3009, #3002, #3003,

#3004, #3005, #3006, #3007), ());
#3001=PROPERTY_VALUE(REAL_VALUE(10.0), #90);
#3008=PROPERTY_VALUE(REAL_VALUE(1.0), #100);
#3009=PROPERTY_VALUE(REAL_VALUE(15.0), #110);
#3002=PROPERTY_VALUE(1, #170);
#3003=PROPERTY_VALUE(1, #150);
#3004=PROPERTY_VALUE(2, #160);
#3005=PROPERTY_VALUE(1, #200);
#3006=PROPERTY_VALUE(0, #210);
#3007=PROPERTY_VALUE(#2501, #180);

 Figure P.21 — The BSU / Dictionary element relationship

P.2.3 Resulting Physical files

In this clause, the complete examples of physical files are provided. The first physical file, conformant
with LIBRARY INTEGRATED INFORMATION MODEL 24-1 defines the PAW family. The second
physical file, conformant with LIBRARY INTEGRATED INFORMATION MODEL 24-2 and VIEW
EXCHANGE PROTOCOL DIS 101 (for the definition of the geometry view) defines the 2D geometry of
the PAW family by means of programs conformant with ISO 13584-31.

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 569

P.2.3.1 Example of a general model

This subclause contains the complete physical file presented in clause P.2.1.

*/
ISO-10303-21;
HEADER;

FILE_DESCRIPTION (('THIS IS AN EXAMPLE OF AN EXPLICIT GENERAL MODEL'),
'2');
FILE_NAME('P24_gm_explicit.p21',

'2001-07-30T17:38:14',
(''),
('LISI/ENSMA'),
'ECCO RUNTIME SYSTEM BUILT-IN PREPROCESSOR V2.3.3',
'ECCO RUNTIME SYSTEM V2.3.3',
'');

FILE_SCHEMA (('ISO13584_G_M_IIM_LIBRARY_IMPLICIT_SCHEMA'));
ENDSEC;
DATA;

/* Global library description */
#2 = LIBRARY_IN_STANDARD_FORMAT ($, $, $, $, (), #20, #11, (), (),
(#20), (#50, #60),
(), #3, $, $, ());
#3 = ITEM_NAMES (LABEL('Explicit general model example'), (), LABEL(''),
$, $);
#10 = GLOBAL_LANGUAGE_ASSIGNMENT ('en');
#11=LIBRARY_IIM_IDENTIFICATION($, 'IS', 'ISO_13584_24_1', 2001, '3', $,
());

/* DICTIONARY DESCRIPTION */
/*BSU for supplier */
#20 = SUPPLIER_BSU ('INA', *);

/* BSU for component_class */
#50 = CLASS_BSU ('BEARING', '001', #20);
#60 = CLASS_BSU ('PAW', '001', #20);

/* BSU for properties */
#90 = PROPERTY_BSU ('d_in', '001', #50);
#100 = PROPERTY_BSU ('d_out', '001', #50);
#110 = PROPERTY_BSU ('e', '001', #60);

/* Dictionary properties description */
/* supplier description */
#21 = SUPPLIER_ELEMENT (#20, $, '001', #22, #23);
#22 = ORGANIZATION ($, 'INA', '');
#23 = ADDRESS ($, $, $, $, $, $, $, 'GERMANY', $, $, $, $);

/* d_in */

ISO 13584-24:2003(E)

570 © ISO 2003 – All rights reserved

#91 = NON_DEPENDENT_P_DET(#90, $, '001', #92, TEXT('inner diameter'),
$,
$, $, $, (), $, 'TO3', #93, $);
#92 = ITEM_NAMES(LABEL('inner diameter'), (), LABEL(''), $, $);
#93 = REAL_MEASURE_TYPE('NR2..3.3', #94);
#94 = DIC_UNIT(#95, $);
#95 = SI_UNIT(*, .MILLI., .METRE.);
/* d_out */
#101 = NON_DEPENDENT_P_DET (#100, $, '001', #102, TEXT('outer
diameter'),
$, $, $, $, (), $, 'TO3', #93, $);

#102 = ITEM_NAMES (LABEL('outer diameter'), (), LABEL(''), $, $);
#103 = REAL_MEASURE_TYPE ('NR2..3.3', #104);
#104 = DIC_UNIT (#105, $);
#105 = SI_UNIT (*, .MILLI., .METRE.);

/* e */
#111 = NON_DEPENDENT_P_DET (#110, $, '001', #112, TEXT('thickness'), $,
$, $, $, (), $, 'TO3', #93, $);

#112 = ITEM_NAMES (LABEL('thickness'), (), LABEL(''), $, $);
#113 = REAL_MEASURE_TYPE ('NR2..3.3', #114);
#114 = DIC_UNIT (#115, $);
#115 = SI_UNIT (*, .MILLI., .METRE.);

/* Dictionary class description */
/* Part class */
#71 = COMPONENT_CLASS (#50, $, '001', #72, TEXT('Class associated to
the
generic bearing family'), $, $, $, $, (#90, #100), (), $, (),(), $);
#72 = ITEM_NAMES (LABEL('Generic bearing family'), (), LABEL('Bearing
family'), $,
$);

/* PAW class */
#81 = COMPONENT_CLASS (#60, $, '001', #82, TEXT('Class associated to the
PAW part family'), $, $, $, #50, (#110), (), $, (),(), $);
#82 = ITEM_NAMES (LABEL('PAW family'), (), LABEL('PAW'), $, $);

/* Dictionary extension */
#8000=
EXPLICIT_ITEM_CLASS_EXTENSION(#60,(),(),(),'001','001',(),(),(#90),(
#8100,#8200,#8300,#8400,#8500),.T.,$,$,(),$,(),());

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 571

#8100=LIB_COMPONENT_INSTANCE(#60, (#8101, #8102, #8103), (), $, $, $, $,
.T., $);
#8101=PROPERTY_VALUE(REAL_VALUE(10.0), #90);
#8102=PROPERTY_VALUE(REAL_VALUE(1.0), #100);
#8103=PROPERTY_VALUE(REAL_VALUE(15.0), #110);

#8200=LIB_COMPONENT_INSTANCE(#60, (#8201, #8202, #8203), (), $, $, $, $,
.T., $);
#8201=PROPERTY_VALUE(REAL_VALUE(11.0), #90);
#8202=PROPERTY_VALUE(REAL_VALUE(1.0), #100);
#8203=PROPERTY_VALUE(REAL_VALUE(16.5), #110);

#8300=LIB_COMPONENT_INSTANCE(#60, (#8301, #8302, #8303), (), $, $, $, $,
.T., $);
#8301=PROPERTY_VALUE(REAL_VALUE(13.0), #90);
#8302=PROPERTY_VALUE(REAL_VALUE(2.0), #100);
#8303=PROPERTY_VALUE(REAL_VALUE(19.5), #110);

#8400=LIB_COMPONENT_INSTANCE(#60, (#8401, #8402, #8403), (), $, $, $, $,
.T., $);
#8401=PROPERTY_VALUE(REAL_VALUE(17.0), #90);
#8402=PROPERTY_VALUE(REAL_VALUE(3.0), #100);
#8403=PROPERTY_VALUE(REAL_VALUE(25.5), #110);

#8500=LIB_COMPONENT_INSTANCE(#60, (#8501, #8502, #8503), (), $, $, $, $,
.T., $);
#8501=PROPERTY_VALUE(REAL_VALUE(19.0), #90);
#8502=PROPERTY_VALUE(REAL_VALUE(4.0), #100);
#8503=PROPERTY_VALUE(REAL_VALUE(28.5), #110);

ENDSEC;
END-ISO-10303-21;
/*

P.2.3.2 Example of a functional model

This subclause contains a physical file of an explicitly described functional model that defines the 2D
geometry of the PAW family by means of programs conformant with ISO 13584-31.

*/
ISO-10303-21;
HEADER;
FILE_DESCRIPTION(('PLIB EXPLICIT FUNCTIONAL MODEL EXAMPLE 1'), '1');
FILE_NAME('P25_fm_explicit_p101.p21',

'2001-07-30T18:38:14',
(''),
('LISI/ENSMA'),
'ECCO RUNTIME SYSTEM BUILT-IN PREPROCESSOR V2.3.3',
'ECCO RUNTIME SYSTEM V2.3.3',
'');

FILE_SCHEMA(('ISO13584_F_M_IIM_LIBRARY_IMPLICIT_SCHEMA'));

ISO 13584-24:2003(E)

572 © ISO 2003 – All rights reserved

ENDSEC;

DATA;

/* Global library description */
#2=LIBRARY_IN_STANDARD_FORMAT($, $, $, $, (), #30, #11, (#7), (#12),
(#20, #30,
#40), (#50, #60, #140, #130), (), #3, $, $, ());
#3=ITEM_NAMES(LABEL('Explicit functional model: Geometry'), (),
LABEL('Geometry'), $,
$);
#6=ORGANIZATION('LISI/ENSMA', 'LISI/ENSMA', '');
#7=STANDARD_SIMPLE_PROGRAM_PROTOCOL(#6, $, 'ISO_IS_13584_31',
'001', $, #8, $, 'FORTRAN', .SOURCE., $, $, $);
#8=ITEM_NAMES(LABEL('Geometric prog. interface'), (),
LABEL('ISO_IS_13584_31'), $, $);
#11=LIBRARY_IIM_IDENTIFICATION($, 'IS', 'ISO_13584_24_2', 2001, '3', $,
());
#12=VIEW_EXCHANGE_PROTOCOL_IDENTIFICATION($, 'IS', 'ISO13584_101',
2001, '2D', $,
(#7), $);
#10=GLOBAL_LANGUAGE_ASSIGNMENT('en');

/* DICTIONARY DESCRIPTION */
/*BSU for suppliers */
#20=SUPPLIER_BSU('INA', *); /* INA code: parts family supplier*/
#30=SUPPLIER_BSU('9/19860073600021', *);
/* LISI/ENSMA code in the coding scheme ICD=0009: SIRET number */
#40=SUPPLIER_BSU('0112/1///13584_101_1', *);
/* Identification of ISO 13584-101 according to ISO 13584-26 */

/* BSU for component_class */
#50=CLASS_BSU('Bearing', '001', #20);
#60=CLASS_BSU('PAW', '001', #20);
#130=CLASS_BSU('PAW_Geometry', '001', #30);
#140=CLASS_BSU('basic_geometry', '001', #40);

/* BSU for properties */
#90=PROPERTY_BSU('d_in', '001', #50);
#100=PROPERTY_BSU('d_out', '001', #50);
#110=PROPERTY_BSU('e', '001', #50);
#150=PROPERTY_BSU('geometry_level', '001', #140);
#160=PROPERTY_BSU('detail_level', '001', #140);
#170=PROPERTY_BSU('side', '001', #140);
#180=PROPERTY_BSU('prg', '001', #130);
#200=PROPERTY_BSU('variant', '001', #140);
#210=PROPERTY_BSU('unreg_variant', '001', #140);

/* v_c_v range */
#155=VIEW_CONTROL_VARIABLE_RANGE(#150, 1, 1);
#165=VIEW_CONTROL_VARIABLE_RANGE(#160, 2, 2);
#175=VIEW_CONTROL_VARIABLE_RANGE(#170, 1, 6);

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 573

#205=VIEW_CONTROL_VARIABLE_RANGE (#200, 1, 1);
#215=VIEW_CONTROL_VARIABLE_RANGE (#210, 0, 0);

/* supplier description */
#31=SUPPLIER_ELEMENT(#30, $, '001', #32, #33);
#32=ORGANIZATION('LISI/ENSMA', 'LISI/ENSMA', '');
#33=ADDRESS($, $, $, $, $, $, $, 'FRANCE', $, $, $, $);

/* Dictionary properties description */
/* prg */
#91=REPRESENTATION_P_DET (#180, $, '001', #92, TEXT('variable used to
reference geometry programs'), $, $, $, $, (), $, 'A58', #93, $);
#92=ITEM_NAMES (LABEL('related program'), (), LABEL(''), $, $);
#93=PROGRAM_REFERENCE_TYPE
(('ISO13584_F_M_IIM_LIBRARY_IMPLICIT_SCHEMA.PROGRAM_REFERENCE'));

/* Dictionary class description */
/* Functional model class view_of definition*/
#71=FM_CLASS_VIEW_OF(#130, $, '001', #72, TEXT('Explicit functional
model
class describing the 2d standard geometry of PAW'), $, $, $, $, (#180),
(), *, *, *, *, *, #140, (#155, #165, #175, #205, #215), (#150, #160,
#170, #200, #210),
(), (), (), (), (), (), (), (), #60, (#90, #100, #110), (),(),());
#72=ITEM_NAMES(LABEL('Functional model class of PAW'), (), LABEL('fm
class of PAW'), $, $);

/* LIBRARY DESCRIPTION */

#1300=EXPLICIT_FUNCTIONAL_MODEL_CLASS_EXTENSION(#130, (#2501, #2502,
#2503,
#2504, #2505, #2506), (#7), (#12), '001', '001', (), (),
(#90, #100, #110, #170),
(#3000, #3010, #3020, #3030, #3040, #3050,
#3100, #3110, #3120, #3130, #3140, #3150,
#3200, #3210, #3220, #3230, #3240, #3250,
#3300, #3310, #3320, #3330, #3340, #3350,
#3400, #3410, #3420, #3430, #3440, #3450),
.T., $, (#90, #100, #110), #180, $, $, (), $);

#2501=PROGRAM_REFERENCE(#7, #2601, 'Add1_PAW', 'PAW_p1', (#90, #100,
#110), (), ());
#2502=PROGRAM_REFERENCE(#7, #2602, 'Add2_PAW', 'PAW_p2', (#90, #100,
#110), (), ());
#2503=PROGRAM_REFERENCE(#7, #2603, 'Add3_PAW', 'PAW_p3', (#90, #100,
#110), (), ());
#2504=PROGRAM_REFERENCE(#7, #2604, 'Add4_PAW', 'PAW_p4', (#90, #100,
#110), (), ());
#2505=PROGRAM_REFERENCE(#7, #2605, 'Add5_PAW', 'PAW_p5', (#90, #100,
#110), (), ());

ISO 13584-24:2003(E)

574 © ISO 2003 – All rights reserved

#2506=PROGRAM_REFERENCE(#7, #2606, 'Add6_PAW', 'PAW_p6', (#90, #100,
#110), (), ());

#2601=NOT_TRANSLATABLE_EXTERNAL_CONTENT((#2701));
#2602=NOT_TRANSLATABLE_EXTERNAL_CONTENT((#2702));
#2603=NOT_TRANSLATABLE_EXTERNAL_CONTENT((#2703));
#2604=NOT_TRANSLATABLE_EXTERNAL_CONTENT((#2704));
#2605=NOT_TRANSLATABLE_EXTERNAL_CONTENT((#2705));
#2606=NOT_TRANSLATABLE_EXTERNAL_CONTENT((#2706));
#2701=LANGUAGE_SPECIFIC_CONTENT((#2801), #2801, $);
#2702=LANGUAGE_SPECIFIC_CONTENT((#2802), #2802, $);
#2703=LANGUAGE_SPECIFIC_CONTENT((#2803), #2803, $);
#2704=LANGUAGE_SPECIFIC_CONTENT((#2804), #2804, $);
#2705=LANGUAGE_SPECIFIC_CONTENT((#2805), #2805, $);
#2706=LANGUAGE_SPECIFIC_CONTENT((#2806), #2806, $);
#2801=EXTERNAL_FILE_UNIT('PAW_p1.for', '7bit');
#2802=EXTERNAL_FILE_UNIT('PAW_p2.for', '7bit');
#2803=EXTERNAL_FILE_UNIT('PAW_p3.for', '7bit');
#2804=EXTERNAL_FILE_UNIT('PAW_p4.for', '7bit');
#2805=EXTERNAL_FILE_UNIT('PAW_p5.for', '7bit');
#2806=EXTERNAL_FILE_UNIT('PAW_p6.for', '7bit');

/*
GM | FV | FM

d_in d_out e | side | geom_level | det_level | var | unreg_var | prg

*/

#3000=LIB_F_MODEL_INSTANCE(#130, (#3001, #3008, #3009, #3002, #3003,
#3004, #3005, #3006, #3007), ());
#3001=PROPERTY_VALUE(REAL_VALUE(10.0), #90);
#3008=PROPERTY_VALUE(REAL_VALUE(1.0), #100);
#3009=PROPERTY_VALUE(REAL_VALUE(15.0), #110);
#3002=PROPERTY_VALUE(INTEGER(1), #170);
#3003=PROPERTY_VALUE(INTEGER(1), #150);
#3004=PROPERTY_VALUE(INTEGER(2), #160);
#3005=PROPERTY_VALUE(INTEGER(1), #200);
#3006=PROPERTY_VALUE(INTEGER(0), #210);
#3007=PROPERTY_VALUE(#2501, #180);
#3010=LIB_F_MODEL_INSTANCE(#130, (#3011, #3018, #3019, #3012, #3013,
#3014, #3015, #3016, #3017), ());
#3011=PROPERTY_VALUE(REAL_VALUE(10.0), #90);
#3018=PROPERTY_VALUE(REAL_VALUE(1.0), #100);
#3019=PROPERTY_VALUE(REAL_VALUE(15.0), #110);
#3012=PROPERTY_VALUE(INTEGER(2), #170);
#3013=PROPERTY_VALUE(INTEGER(1), #150);
#3014=PROPERTY_VALUE(INTEGER(2), #160);
#3015=PROPERTY_VALUE(INTEGER(1), #200);
#3016=PROPERTY_VALUE(INTEGER(0), #210);
#3017=PROPERTY_VALUE(#2502, #180);

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 575

#3020=LIB_F_MODEL_INSTANCE(#130, (#3021, #3028, #3029, #3022, #3023,
#3024, #3025, #3026, #3027), ());
#3021=PROPERTY_VALUE(REAL_VALUE(10.0), #90);
#3028=PROPERTY_VALUE(REAL_VALUE(1.0), #100);
#3029=PROPERTY_VALUE(REAL_VALUE(15.0), #110);
#3022=PROPERTY_VALUE(INTEGER(3), #170);
#3023=PROPERTY_VALUE(INTEGER(1), #150);
#3024=PROPERTY_VALUE(INTEGER(2), #160);
#3025=PROPERTY_VALUE(INTEGER(1), #200);
#3026=PROPERTY_VALUE(INTEGER(0), #210);
#3027=PROPERTY_VALUE(#2503, #180);
#3030=LIB_F_MODEL_INSTANCE(#130, (#3031, #3038, #3039, #3032, #3033,
#3034, #3035, #3036, #3037), ());
#3031=PROPERTY_VALUE(REAL_VALUE(10.0), #90);
#3038=PROPERTY_VALUE(REAL_VALUE(1.0), #100);
#3039=PROPERTY_VALUE(REAL_VALUE(15.0), #110);
#3032=PROPERTY_VALUE(INTEGER(4), #170);
#3033=PROPERTY_VALUE(INTEGER(1), #150);
#3034=PROPERTY_VALUE(INTEGER(2), #160);
#3035=PROPERTY_VALUE(INTEGER(1), #200);
#3036=PROPERTY_VALUE(INTEGER(0), #210);
#3037=PROPERTY_VALUE(#2504, #180);
#3040=LIB_F_MODEL_INSTANCE(#130, (#3041, #3048, #3049, #3042, #3043,
#3044, #3045, #3046, #3047), ());
#3041=PROPERTY_VALUE(REAL_VALUE(10.0), #90);
#3048=PROPERTY_VALUE(REAL_VALUE(1.0), #100);
#3049=PROPERTY_VALUE(REAL_VALUE(15.0), #110);
#3042=PROPERTY_VALUE(INTEGER(5), #170);
#3043=PROPERTY_VALUE(INTEGER(1), #150);
#3044=PROPERTY_VALUE(INTEGER(2), #160);
#3045=PROPERTY_VALUE(INTEGER(1), #200);
#3046=PROPERTY_VALUE(INTEGER(0), #210);
#3047=PROPERTY_VALUE(#2505, #180);
#3050=LIB_F_MODEL_INSTANCE(#130, (#3051, #3058, #3059, #3052, #3053,
#3054, #3055, #3056, #3057), ());
#3051=PROPERTY_VALUE(REAL_VALUE(10.0), #90);
#3058=PROPERTY_VALUE(REAL_VALUE(1.0), #100);
#3059=PROPERTY_VALUE(REAL_VALUE(15.0), #110);
#3052=PROPERTY_VALUE(INTEGER(6), #170);
#3053=PROPERTY_VALUE(INTEGER(1), #150);
#3054=PROPERTY_VALUE(INTEGER(2), #160);
#3055=PROPERTY_VALUE(INTEGER(1), #200);
#3056=PROPERTY_VALUE(INTEGER(0), #210);
#3057=PROPERTY_VALUE(#2506, #180);

#3100=LIB_F_MODEL_INSTANCE(#130, (#3101, #3108, #3109, #3102, #3103,
#3104, #3105, #3106, #3107), ());
#3101=PROPERTY_VALUE(REAL_VALUE(11.0), #90);
#3108=PROPERTY_VALUE(REAL_VALUE(1.0), #100);
#3109=PROPERTY_VALUE(REAL_VALUE(16.5), #110);
#3102=PROPERTY_VALUE(INTEGER(1), #170);

ISO 13584-24:2003(E)

576 © ISO 2003 – All rights reserved

#3103=PROPERTY_VALUE(INTEGER(1), #150);
#3104=PROPERTY_VALUE(INTEGER(2), #160);
#3105=PROPERTY_VALUE(INTEGER(1), #200);
#3106=PROPERTY_VALUE(INTEGER(0), #210);
#3107=PROPERTY_VALUE(#2501, #180);
#3110=LIB_F_MODEL_INSTANCE(#130, (#3111, #3118, #3119, #3112, #3113,
#3114, #3115, #3116, #3117), ());
#3111=PROPERTY_VALUE(REAL_VALUE(11.0), #90);
#3118=PROPERTY_VALUE(REAL_VALUE(1.0), #100);
#3119=PROPERTY_VALUE(REAL_VALUE(16.5), #110);
#3112=PROPERTY_VALUE(INTEGER(2), #170);
#3113=PROPERTY_VALUE(INTEGER(1), #150);
#3114=PROPERTY_VALUE(INTEGER(2), #160);
#3115=PROPERTY_VALUE(INTEGER(1), #200);
#3116=PROPERTY_VALUE(INTEGER(0), #210);
#3117=PROPERTY_VALUE(#2502, #180);
#3120=LIB_F_MODEL_INSTANCE(#130, (#3121, #3128, #3129, #3122, #3123,
#3124, #3125, #3126, #3127), ());
#3121=PROPERTY_VALUE(REAL_VALUE(11.0), #90);
#3128=PROPERTY_VALUE(REAL_VALUE(1.0), #100);
#3129=PROPERTY_VALUE(REAL_VALUE(16.5), #110);
#3122=PROPERTY_VALUE(INTEGER(3), #170);
#3123=PROPERTY_VALUE(INTEGER(1), #150);
#3124=PROPERTY_VALUE(INTEGER(2), #160);
#3125=PROPERTY_VALUE(INTEGER(1), #200);
#3126=PROPERTY_VALUE(INTEGER(0), #210);
#3127=PROPERTY_VALUE(#2503, #180);
#3130=LIB_F_MODEL_INSTANCE(#130, (#3131, #3138, #3139, #3132, #3133,
#3134, #3135, #3136, #3137), ());
#3131=PROPERTY_VALUE(REAL_VALUE(11.0), #90);
#3138=PROPERTY_VALUE(REAL_VALUE(1.0), #100);
#3139=PROPERTY_VALUE(REAL_VALUE(16.5), #110);
#3132=PROPERTY_VALUE(INTEGER(4), #170);
#3133=PROPERTY_VALUE(INTEGER(1), #150);
#3134=PROPERTY_VALUE(INTEGER(2), #160);
#3135=PROPERTY_VALUE(INTEGER(1), #200);
#3136=PROPERTY_VALUE(INTEGER(0), #210);
#3137=PROPERTY_VALUE(#2504, #180);
#3140=LIB_F_MODEL_INSTANCE(#130, (#3141, #3148, #3149, #3142, #3143,
#3144, #3145, #3146, #3147), ());
#3141=PROPERTY_VALUE(REAL_VALUE(11.0), #90);
#3148=PROPERTY_VALUE(REAL_VALUE(1.0), #100);
#3149=PROPERTY_VALUE(REAL_VALUE(16.5), #110);
#3142=PROPERTY_VALUE(INTEGER(5), #170);
#3143=PROPERTY_VALUE(INTEGER(1), #150);
#3144=PROPERTY_VALUE(INTEGER(2), #160);
#3145=PROPERTY_VALUE(INTEGER(1), #200);
#3146=PROPERTY_VALUE(INTEGER(0), #210);
#3147=PROPERTY_VALUE(#2505, #180);
#3150=LIB_F_MODEL_INSTANCE(#130, (#3151, #3158, #3159, #3152, #3153,
#3154, #3155, #3156, #3157), ());
#3151=PROPERTY_VALUE(REAL_VALUE(11.0), #90);

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 577

#3158=PROPERTY_VALUE(REAL_VALUE(1.0), #100);
#3159=PROPERTY_VALUE(REAL_VALUE(16.5), #110);
#3152=PROPERTY_VALUE(INTEGER(6), #170);
#3153=PROPERTY_VALUE(INTEGER(1), #150);
#3154=PROPERTY_VALUE(INTEGER(2), #160);
#3155=PROPERTY_VALUE(INTEGER(1), #200);
#3156=PROPERTY_VALUE(INTEGER(0), #210);
#3157=PROPERTY_VALUE(#2506, #180);

#3200=LIB_F_MODEL_INSTANCE(#130, (#3201, #3208, #3209, #3202, #3203,
#3204, #3205, #3206, #3207), ());
#3201=PROPERTY_VALUE(REAL_VALUE(13.0), #90);
#3208=PROPERTY_VALUE(REAL_VALUE(2.0), #100);
#3209=PROPERTY_VALUE(REAL_VALUE(19.5), #110);
#3202=PROPERTY_VALUE(INTEGER(1), #170);
#3203=PROPERTY_VALUE(INTEGER(1), #150);
#3204=PROPERTY_VALUE(INTEGER(2), #160);
#3205=PROPERTY_VALUE(INTEGER(1), #200);
#3206=PROPERTY_VALUE(INTEGER(0), #210);
#3207=PROPERTY_VALUE(#2501, #180);
#3210=LIB_F_MODEL_INSTANCE(#130, (#3211, #3218, #3219, #3212, #3213,
#3214, #3215, #3216, #3217), ());
#3211=PROPERTY_VALUE(REAL_VALUE(13.0), #90);
#3218=PROPERTY_VALUE(REAL_VALUE(2.0), #100);
#3219=PROPERTY_VALUE(REAL_VALUE(19.5), #110);
#3212=PROPERTY_VALUE(INTEGER(2), #170);
#3213=PROPERTY_VALUE(INTEGER(1), #150);
#3214=PROPERTY_VALUE(INTEGER(2), #160);
#3215=PROPERTY_VALUE(INTEGER(1), #200);
#3216=PROPERTY_VALUE(INTEGER(0), #210);
#3217=PROPERTY_VALUE(#2502, #180);
#3220=LIB_F_MODEL_INSTANCE(#130, (#3221, #3228, #3229, #3222, #3223,
#3224, #3225, #3226, #3227), ());
#3221=PROPERTY_VALUE(REAL_VALUE(13.0), #90);
#3228=PROPERTY_VALUE(REAL_VALUE(2.0), #100);
#3229=PROPERTY_VALUE(REAL_VALUE(19.5), #110);
#3222=PROPERTY_VALUE(INTEGER(3), #170);
#3223=PROPERTY_VALUE(INTEGER(1), #150);
#3224=PROPERTY_VALUE(INTEGER(2), #160);
#3225=PROPERTY_VALUE(INTEGER(1), #200);
#3226=PROPERTY_VALUE(INTEGER(0), #210);
#3227=PROPERTY_VALUE(#2503, #180);
#3230=LIB_F_MODEL_INSTANCE(#130, (#3231, #3238, #3239, #3232, #3233,
#3234, #3235, #3236, #3237), ());
#3231=PROPERTY_VALUE(REAL_VALUE(13.0), #90);
#3238=PROPERTY_VALUE(REAL_VALUE(2.0), #100);
#3239=PROPERTY_VALUE(REAL_VALUE(19.5), #110);
#3232=PROPERTY_VALUE(INTEGER(4), #170);
#3233=PROPERTY_VALUE(INTEGER(1), #150);
#3234=PROPERTY_VALUE(INTEGER(2), #160);
#3235=PROPERTY_VALUE(INTEGER(1), #200);

ISO 13584-24:2003(E)

578 © ISO 2003 – All rights reserved

#3236=PROPERTY_VALUE(INTEGER(0), #210);
#3237=PROPERTY_VALUE(#2504, #180);
#3240=LIB_F_MODEL_INSTANCE(#130, (#3241, #3248, #3249, #3242, #3243,
#3244, #3245, #3246, #3247), ());
#3241=PROPERTY_VALUE(REAL_VALUE(13.0), #90);
#3248=PROPERTY_VALUE(REAL_VALUE(2.0), #100);
#3249=PROPERTY_VALUE(REAL_VALUE(19.5), #110);
#3242=PROPERTY_VALUE(INTEGER(5), #170);
#3243=PROPERTY_VALUE(INTEGER(1), #150);
#3244=PROPERTY_VALUE(INTEGER(2), #160);
#3245=PROPERTY_VALUE(INTEGER(1), #200);
#3246=PROPERTY_VALUE(INTEGER(0), #210);
#3247=PROPERTY_VALUE(#2505, #180);
#3250=LIB_F_MODEL_INSTANCE(#130, (#3251, #3258, #3259, #3252, #3253,
#3254, #3255, #3256, #3257), ());
#3251=PROPERTY_VALUE(REAL_VALUE(13.0), #90);
#3258=PROPERTY_VALUE(REAL_VALUE(2.0), #100);
#3259=PROPERTY_VALUE(REAL_VALUE(19.5), #110);
#3252=PROPERTY_VALUE(INTEGER(6), #170);
#3253=PROPERTY_VALUE(INTEGER(1), #150);
#3254=PROPERTY_VALUE(INTEGER(2), #160);
#3255=PROPERTY_VALUE(INTEGER(1), #200);
#3256=PROPERTY_VALUE(INTEGER(0), #210);
#3257=PROPERTY_VALUE(#2506, #180);

#3300=LIB_F_MODEL_INSTANCE(#130, (#3301, #3308, #3309, #3302, #3303,
#3304, #3305, #3306, #3307), ());
#3301=PROPERTY_VALUE(REAL_VALUE(17.0), #90);
#3308=PROPERTY_VALUE(REAL_VALUE(3.0), #100);
#3309=PROPERTY_VALUE(REAL_VALUE(25.5), #110);
#3302=PROPERTY_VALUE(INTEGER(1), #170);
#3303=PROPERTY_VALUE(INTEGER(1), #150);
#3304=PROPERTY_VALUE(INTEGER(2), #160);
#3305=PROPERTY_VALUE(INTEGER(1), #200);
#3306=PROPERTY_VALUE(INTEGER(0), #210);
#3307=PROPERTY_VALUE(#2501, #180);
#3310=LIB_F_MODEL_INSTANCE(#130, (#3311, #3318, #3319, #3312, #3313,
#3314, #3315, #3316, #3317), ());
#3311=PROPERTY_VALUE(REAL_VALUE(17.0), #90);
#3318=PROPERTY_VALUE(REAL_VALUE(3.0), #100);
#3319=PROPERTY_VALUE(REAL_VALUE(25.5), #110);
#3312=PROPERTY_VALUE(INTEGER(2), #170);
#3313=PROPERTY_VALUE(INTEGER(1), #150);
#3314=PROPERTY_VALUE(INTEGER(2), #160);
#3315=PROPERTY_VALUE(INTEGER(1), #200);
#3316=PROPERTY_VALUE(INTEGER(0), #210);
#3317=PROPERTY_VALUE(#2502, #180);
#3320=LIB_F_MODEL_INSTANCE(#130, (#3321, #3328, #3329, #3322, #3323,
#3324, #3325, #3326, #3327), ());
#3321=PROPERTY_VALUE(REAL_VALUE(17.0), #90);
#3328=PROPERTY_VALUE(REAL_VALUE(3.0), #100);
#3329=PROPERTY_VALUE(REAL_VALUE(25.5), #110);

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 579

#3322=PROPERTY_VALUE(INTEGER(3), #170);
#3323=PROPERTY_VALUE(INTEGER(1), #150);
#3324=PROPERTY_VALUE(INTEGER(2), #160);
#3325=PROPERTY_VALUE(INTEGER(1), #200);
#3326=PROPERTY_VALUE(INTEGER(0), #210);
#3327=PROPERTY_VALUE(#2503, #180);
#3330=LIB_F_MODEL_INSTANCE(#130, (#3331, #3338, #3339, #3332, #3333,
#3334, #3335, #3336, #3337), ());
#3331=PROPERTY_VALUE(REAL_VALUE(17.0), #90);
#3338=PROPERTY_VALUE(REAL_VALUE(3.0), #100);
#3339=PROPERTY_VALUE(REAL_VALUE(25.5), #110);
#3332=PROPERTY_VALUE(INTEGER(4), #170);
#3333=PROPERTY_VALUE(INTEGER(1), #150);
#3334=PROPERTY_VALUE(INTEGER(2), #160);
#3335=PROPERTY_VALUE(INTEGER(1), #200);
#3336=PROPERTY_VALUE(INTEGER(0), #210);
#3337=PROPERTY_VALUE(#2504, #180);
#3340=LIB_F_MODEL_INSTANCE(#130, (#3341, #3348, #3349, #3342, #3343,
#3344, #3345, #3346, #3347), ());
#3341=PROPERTY_VALUE(REAL_VALUE(17.0), #90);
#3348=PROPERTY_VALUE(REAL_VALUE(3.0), #100);
#3349=PROPERTY_VALUE(REAL_VALUE(25.5), #110);
#3342=PROPERTY_VALUE(INTEGER(5), #170);
#3343=PROPERTY_VALUE(INTEGER(1), #150);
#3344=PROPERTY_VALUE(INTEGER(2), #160);
#3345=PROPERTY_VALUE(INTEGER(1), #200);
#3346=PROPERTY_VALUE(INTEGER(0), #210);
#3347=PROPERTY_VALUE(#2505, #180);
#3350=LIB_F_MODEL_INSTANCE(#130, (#3351, #3358, #3359, #3352, #3353,
#3354, #3355, #3356, #3357), ());
#3351=PROPERTY_VALUE(REAL_VALUE(17.0), #90);
#3358=PROPERTY_VALUE(REAL_VALUE(3.0), #100);
#3359=PROPERTY_VALUE(REAL_VALUE(25.5), #110);
#3352=PROPERTY_VALUE(INTEGER(6), #170);
#3353=PROPERTY_VALUE(INTEGER(1), #150);
#3354=PROPERTY_VALUE(INTEGER(2), #160);
#3355=PROPERTY_VALUE(INTEGER(1), #200);
#3356=PROPERTY_VALUE(INTEGER(0), #210);
#3357=PROPERTY_VALUE(#2506, #180);

#3400=LIB_F_MODEL_INSTANCE(#130, (#3401, #3408, #3409, #3402, #3403,
#3404, #3405, #3406, #3407), ());
#3401=PROPERTY_VALUE(REAL_VALUE(19.0), #90);
#3408=PROPERTY_VALUE(REAL_VALUE(4.0), #100);
#3409=PROPERTY_VALUE(REAL_VALUE(28.5), #110);
#3402=PROPERTY_VALUE(INTEGER(1), #170);
#3403=PROPERTY_VALUE(INTEGER(1), #150);
#3404=PROPERTY_VALUE(INTEGER(2), #160);
#3405=PROPERTY_VALUE(INTEGER(1), #200);
#3406=PROPERTY_VALUE(INTEGER(0), #210);
#3407=PROPERTY_VALUE(#2501, #180);

ISO 13584-24:2003(E)

580 © ISO 2003 – All rights reserved

#3410=LIB_F_MODEL_INSTANCE(#130, (#3411, #3418, #3419, #3412, #3413,
#3414, #3415, #3416, #3417), ());
#3411=PROPERTY_VALUE(REAL_VALUE(19.0), #90);
#3418=PROPERTY_VALUE(REAL_VALUE(4.0), #100);
#3419=PROPERTY_VALUE(REAL_VALUE(28.5), #110);
#3412=PROPERTY_VALUE(INTEGER(2), #170);
#3413=PROPERTY_VALUE(INTEGER(1), #150);
#3414=PROPERTY_VALUE(INTEGER(2), #160);
#3415=PROPERTY_VALUE(INTEGER(1), #200);
#3416=PROPERTY_VALUE(INTEGER(0), #210);
#3417=PROPERTY_VALUE(#2502, #180);
#3420=LIB_F_MODEL_INSTANCE(#130, (#3421, #3428, #3429, #3422, #3423,
#3424, #3425, #3426, #3427), ());
#3421=PROPERTY_VALUE(REAL_VALUE(19.0), #90);
#3428=PROPERTY_VALUE(REAL_VALUE(4.0), #100);
#3429=PROPERTY_VALUE(REAL_VALUE(28.5), #110);
#3422=PROPERTY_VALUE(INTEGER(3), #170);
#3423=PROPERTY_VALUE(INTEGER(1), #150);
#3424=PROPERTY_VALUE(INTEGER(2), #160);
#3425=PROPERTY_VALUE(INTEGER(1), #200);
#3426=PROPERTY_VALUE(INTEGER(0), #210);
#3427=PROPERTY_VALUE(#2503, #180);
#3430=LIB_F_MODEL_INSTANCE(#130, (#3431, #3438, #3439, #3432, #3433,
#3434, #3435, #3436, #3437), ());
#3431=PROPERTY_VALUE(REAL_VALUE(19.0), #90);
#3438=PROPERTY_VALUE(REAL_VALUE(4.0), #100);
#3439=PROPERTY_VALUE(REAL_VALUE(28.5), #110);
#3432=PROPERTY_VALUE(INTEGER(4), #170);
#3433=PROPERTY_VALUE(INTEGER(1), #150);
#3434=PROPERTY_VALUE(INTEGER(2), #160);
#3435=PROPERTY_VALUE(INTEGER(1), #200);
#3436=PROPERTY_VALUE(INTEGER(0), #210);
#3437=PROPERTY_VALUE(#2504, #180);
#3440=LIB_F_MODEL_INSTANCE(#130, (#3441, #3448, #3449, #3442, #3443,
#3444, #3445, #3446, #3447), ());
#3441=PROPERTY_VALUE(REAL_VALUE(19.0), #90);
#3448=PROPERTY_VALUE(REAL_VALUE(4.0), #100);
#3449=PROPERTY_VALUE(REAL_VALUE(28.5), #110);
#3442=PROPERTY_VALUE(INTEGER(5), #170);
#3443=PROPERTY_VALUE(INTEGER(1), #150);
#3444=PROPERTY_VALUE(INTEGER(2), #160);
#3445=PROPERTY_VALUE(INTEGER(1), #200);
#3446=PROPERTY_VALUE(INTEGER(0), #210);
#3447=PROPERTY_VALUE(#2505, #180);
#3450=LIB_F_MODEL_INSTANCE(#130, (#3451, #3458, #3459, #3452, #3453,
#3454, #3455, #3456, #3457), ());
#3451=PROPERTY_VALUE(REAL_VALUE(19.0), #90);
#3458=PROPERTY_VALUE(REAL_VALUE(4.0), #100);
#3459=PROPERTY_VALUE(REAL_VALUE(28.5), #110);
#3452=PROPERTY_VALUE(INTEGER(6), #170);
#3453=PROPERTY_VALUE(INTEGER(1), #150);
#3454=PROPERTY_VALUE(INTEGER(2), #160);

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 581

#3455=PROPERTY_VALUE(INTEGER(1), #200);
#3456=PROPERTY_VALUE(INTEGER(0), #210);
#3457=PROPERTY_VALUE(#2506, #180);

ENDSEC;
END-ISO-10303-21;
/*

P.3 Capturing a parts family in ISO 13584 using the implicit modeling approach

P.3.1 Description of the PAW parts family

This description is twofold. First, concepts of PAW and of its properties are defined. Second, the
allowed set of instances is precisely (but implicitly) defined.

P.3.1.1 Dictionary description: the BSU mechanism

The description of a data dictionary according to the ISO13584_IEC61360_dictionary_schema
requires the specification of what are the identifiers of the different concepts (called basic semantic
units: BSU) involved in the parts family definition. These identifiers define unambiguously and
universally each concept within an ISO 13584-conformant data dictionary.

The following example (Figure P.22) outlines the resources used for the specification of these
identifiers:

/*BSU for supplier */
/* The code of the supplier must be defined according to ISO 13584-26: Supplier identification
Here, the code doesn't follow the ISO 13584-26 requirements, because the supplier code is not
known at the moment */
#20=SUPPLIER_BSU('INA', *);

/* BSU for component_class */
/* The class BSUs defines the identification of the various classes, and who is the supplier that is
responsible of the class definitions */
#50=CLASS_BSU('BEARING', '001', #20);

#60=CLASS_BSU('PAW', '001', #20);

/* BSU for properties */
/* The properties BSUs define the properties identification and the class where these properties
are visible. */
#90=PROPERTY_BSU('d_in', '001', #50);
#100=PROPERTY_BSU('d_out', '001', #50);
#110=PROPERTY_BSU('e', '001', #60);

/* BSU for table */
/* The table BSU defines the identification of the table, and the class where this table is visible */
#120=TABLE_BSU('T1', '001', #50);

Figure P.22 — Identifiers of the concepts involved in the PAW family

ISO 13584-24:2003(E)

582 © ISO 2003 – All rights reserved

P.3.1.2 Dictionary description: the dictionary element definition

A BSU only identifies a concept. A dictionary_element provides a computer-sensible and human-
readable definition of the concept. This relationship between these two levels is presented in
Figure P.23.

BSUDictionary
Element

identified_by

(INV)
definition S[0:1]

Figure P.23 — The BSU / Dictionary element relationship

Figure P.24 outlines the main structure of the dictionary_elements corresponding to the previous
basic semantic units identifiers.

/* Supplier definition */
#21=SUPPLIER_ELEMENT(

#20, /* reference to its BSU */
$, '001',
#22, #23); /* organisation and address */

/* Property definition */
#91=NON_DEPENDENT_P_DET(

#90, /* reference to its BSU */
$, '001',
#92, /* item_names (human-readable name of the concept,

with possible translations) */
TEXT('inner diameter'), $, $, $, $, (), $,
'TO3', /* the data element type classification,

according to ISO 31*/
#93, /* the specific data type of the property

(not represented: measure in mm) */
$);

/* Class definition*/
#71=COMPONENT_CLASS(

#50, /* reference to its BSU */
$, '001',
#72, /* item_names */
TEXT('Class associated...'), /* definition */
$, $, $, $,
(#90, #100), /* the list of the properties that may be
used to describe an instance of this class
(applicability of the properties) */
(), $, (),(), $);

/* Table definition*/
#121=RDB_TABLE_ELEMENT(

#120, /* reference to its BSU */
$, '001',
#122, /* item_names */
TEXT('This table...'), $, $, *,
(#96, #116), /* the columns meaning: variable_semantics

entities that refer to the previous property_BSU
(not represented) */

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 583

(#96), /* the key of the table */
);

/* Class table relationship */
#122=CLASS_TABLE_RELATIONSHIP(#81, (#120));

Figure P.24 — Dictionary_element of the concepts involved in the PAW family

The dictionary_element of the table is similar to the other elements of the data dictionary. Here, the
table is defined as a relational database table: that means that the type of the elements belonging to
each columns are simple data types (number, Boolean or string data type).

Moreover, theclass/table relationship permits to define the applicability level of the table in the data
dictionary. It plays the same role as the described_by attribute for the applicability of properties in the
class dictionary_element.

P.3.1.3 Library specification: description of the class extension

The PAW family being a catalogue defined family, only some instances are really allowed. This set of
instances is implicitly defined:

c) the choice (by the library data supplier) of the identification characteristics of the family (in this
example: the d_in property),

d) the definition of the allowed set of values for these (here: this) identification characteristics by
means of a domain_restriction (here: a table_defined_domain), and

e) the definition of the derivation functions that specify the values of the other parts characteristics
as a set of functions whose domains consist of derived characteristics (here: d_out is specified
by means of an algebraic expression and e by means of a table whose key corresponds to the
identification characteristics d_in).

P.3.1.3.1 Overall architecture

The relationship between a dictionary element and an associated library specification content_item is
outlined in Figure P.25:

BSUDictionary
Element

identify_by

(INV)
definition S[0:1]

Content
item

(INV)
referenced_by

S[0:?]

dictionary_
definition

Figure P.25 — The Dictionary Element / Library Content relationship

Each content item shall be consistent with the corresponding dictionary element definition (respect of
the type / value relationship).

P.3.1.3.2 Representation of the SELF variables

When defining expressions, it is required to model the variables that are involved as operands.

ISO 13584-24:2003(E)

584 © ISO 2003 – All rights reserved

In ISO 13584, a variable is modeled by a threefold structure:

— a syntactical level (generic_variable): definition of the name (entity name) and of the type of the
variable.

EXAMPLE 1 In the EXPRESS language (ISO 10303-11), this level is captured by the following syntactical
notation:

x: INTEGER;
— a semantic level (variable_semantics): definition of the meaning of the variable, and of the

mechanism that associates it with a value:

EXAMPLE 2 In the EXPRESS language (ISO 10303-11), an example of semantic level is provided by the SELF
notation:

WHERE SELF.x = 1;
An association between syntax and semantics is done using the classical entity/relationship mechanism as
shown in Figure P.26.

environment

variable_
semantics

generic_
variable

syntactic_
representation semantics

Figure P.26 — Syntax / Semantics variable association

Figure P.27 shows this association for the inner diameter (i.e., d_in) part characteristics..

/* Properties syntax definition */
#97=REAL_NUMERIC_VARIABLE(); /* a real variable named #97 */
/* Definition of the properties semantics */
#96=SELF_PROPERTY_VALUE_SEMANTICS(#90, $); /* the meaning of the

variable #97 is the current value associated with the #90 BSU
property for the SELF class instance */

/* Syntax / semantics association */
#98=ENVIRONMENT(#97, #96); /* the real variable identified

by #97 stands for the SELF value of the inner diameter (d_in)*/

Figure P.27 — Data model of the variable that stands of the inner diameter
of a PAW instance

P.3.1.3.3 Optional and displayable nature of properties

The library specification includes the definition of the optional or mandatory nature of the data
dictionary properties, and the possible displayability (in a library management system) of these same
properties.

/* Library definition of the properties */
#900=OPT_OR_MAND_PROPERTY_BSU(

#90,
.F., /* is not optional */
.T.); /* is displayable */

Figure P.28 — Displayable and optional properties

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 585

P.3.1.3.4 Table content

The library specification of a table (RDB_table_content) enables to define the real content of this
table that shall be consistent with the data types defined in the data dictionary (RDB_table_element).
Figure P.29 describes the content of the table defined in Figure P.6. It contains two columns.

/* Content of the table */
#910=RDB_TABLE_CONTENT(

#120, /* reference to its BSU */
*,
(#911, #912), /* the list of the referenced columns */
'001', '2000-09-06');

#911=REAL_COLUMN(
(10.0, 11.0, 13.0, 17.0, 19.0),/* the values of the column */
'NR2..3.3' /* the format of the values of the column */
);

Figure P.29 — Content of a table

P.3.1.3.5 Implicit description of the allowed instances: Domain

The identification characteristics of a part (its inner diameter d_in in our example) shall belong to
some well defined value domains. Such a constraint is specified through a domain_restriction whose
structure is outlined in Figure P.30.

domain_
restriction

guarded_
simple_
domain

table_defined_
domain

table_
 literal

assumes defines

domains

domain

from_table

Figure P.30 — Domain restriction description

This construct specifies the allowed values for the properties belonging to the defines attribute list,
assuming that the values of the properties referenced in the assumes list are known. If the considered
domain is a table, the particular domain_restriction used is a table_defined_domain (a
specialisation of the simple_domain) that refers to the considered table.

/* Property domain */
#901=DOMAIN_RESTRICTION(

(#96), /* the property domain that is defined */
(), /* the required properties for evaluating the

ISO 13584-24:2003(E)

586 © ISO 2003 – All rights reserved

property domain ('assumes' list)*/
(#902), /* the guarded domain */
$);

#902=GUARDED_SIMPLE_DOMAIN(
#903, /* the guard */
#904 /* the domain */
);

#903=OTHERS(); /* this guard means 'in every cases' */
#904=TABLE_DEFINED_DOMAIN(#905); /* the table domain */
#905=TABLE_LITERAL(#120); /* the referenced table */

Figure P.31 — Specification of a domain as a table

P.3.1.3.6 Description of the derivation functions

d_in being the only identification characteristics of a PAW instance, there exists a functional
dependency between d_in and d_out and between d_in and e. The general structure of a derivation
function is outlined Figure P.32.

functional_
domain_

restriction

assumes

guarded_
functional_

domain

simple_
functional_

domain

domains

domain

defines

Figure P.32 — Derivation

It is built on the same template as the domain_restriction presented function. A derivation function is
represented as a functional_domain_restriction that references some assumes properties (the
parameters of the derivation relation) and defines properties (the derived properties). The domains
attribute defines the associated guarded domains. These domains are specialised as some
simple_functional_domains (i.e. mathematical functions).

P.3.1.3.6.1 Algebraic derivation function

For the d_out property, the derivation function is defined by a specialisation of the
simple_functional_domains that is a library_expression_defined_value as presented in
Figure P.33.

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 587

simple_
functional_

domain

 library_expression
defined_

value

mult_
expression_

numeric_
expression

its_value
operands

L[2:?]

Figure P.33 — Derivation by algebraic expressions

In the physical file, the derivation function is described as a multiplication between a real constant and
a real variable (associated with the inner diameter d_in). The result of this expression specifies the
value of the d_out SELF property.

/* Definition of the derivation function 'd_out = d_in * 1.5' */
#1001=FUNCTIONAL_DOMAIN_RESTRICTION(

(#106), /* the property of which the value is defined */
(#96), /* the self properties that define the parameters

of the derivation function */
(#1002), /* domains */
$);

#1002=GUARDED_FUNCTIONAL_DOMAIN(
#1003, /* the guard */
#1004, /* the derivation function */
);

#1003=OTHERS();
#1004=LIBRARY_EXPRESSION_DEFINED_VALUE(#1005);
#1005=MULT_EXPRESSION((#1006, #97)); /* the operands */
#1006=REAL_LITERAL(1.5); /* a literal value */

Figure P.34 — Specification of a property value by an algebraic expression

P.3.1.3.6.2 Table-defined derivation function

The derivation table is defined by a specialisation of the simple_functional_domains that is a
table_defined_value as presented in the Figure P.35.

simple_
functional_

domain

table_
defined_

value
table_
literal

table_
identification

from_table the_value

Figure P.35 — Derivation table

In the physical file, the derivation table defines the value of the thickness e of the part from the inner
diameter d_in. The derivation table is referred to by the EXPRESS entity table_defined_value.

ISO 13584-24:2003(E)

588 © ISO 2003 – All rights reserved

#1101=FUNCTIONAL_DOMAIN_RESTRICTION(
(#116), /* the property domain that is defined

(belonging to the table) */
(#96), /* the parameter of the derivation function

(belonging to the table)*/
(#1102), $);

#1102=GUARDED_FUNCTIONAL_DOMAIN(#1103, #1104);
#1103=OTHERS();
#1104=TABLE_DEFINED_VALUE(#1105);
#1105=TABLE_LITERAL(#120); /* the referenced table */

Figure P.36 — Specification of a property value by a table

P.3.1.3.7 Class extension

The final description of the PAW class extension is a specialisation of the content_item presented in
Figure P.37. It associates to the class all the derivation functions and constraints defined previously.

/* Class extension */
#8000 = ITEM_CLASS_EXTENSION(

#60, /* reference to its BSU */
(), (), (), '001', '001', (), (), *, *, *,
(#901), /* the constrained domain */
(#1001, #1101), /* the derivations */
(), (),
(#900), /* the identification characteristics */
(#1000, #1100), /* the derived characteristics */
(), .F., $, $, $, $, (), $, (), ()
);

Figure P.37 — Description of the PAW implicit class extension

P.3.2 Description of geometric representations for the PAW parts family

We assume now that some library data supplier wants to provide a geometric representation for all the
instances of the PAW family. This requires the description of a functional model class.

P.3.2.1 Overview

A functional model class is intended to represent different perspectives of the different parts described
in the general model class. A functional model class has to be described like a general model class,
i.e., through a class definition and through a dictionary extension (library specification).

The relationship between the three kinds of classes defined in ISO 13584 is outlined in Figure P.38.

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 589

General
Model

Functional
Model class

- a view of a given component
- dictionary definition
- class extension

imported properties

is view of

Functional
View Class

- 1 point of view (geometry),
- dictionary definition,
- view control variables.

* geometry: 2D, wireframe, ...
* detail: simplified, standard, ...
* side: front, rear, left, right, …
* variant: external shape, …
* unregistered variant: library supplier dependent

imported properties

Figure P.38 — Association mechanism between a general model and a functional model

A functional_model_class describes a particular view (is-view-of relationship) of a given parts family
(described as a general model class), according to the point of view specified by a
functional_view_class.

In the example, a functional model class representing some kind of geometry specified by a
functional_view_class for the PAW parts family will be defined.

P.3.2.2 The functional_view_class to be described

A functional_view_class is identified by a class_BSU (i.e., essentially a code) and further specified
through some properties called the view control variables.

NOTE 1 Functional_view_classes are intended to be specified as standard data in the view exchange
protocol series of parts of ISO 13584 and to be stored in the user libraries. Such standard
functional_view_classes are intended to be exchanged using LIBRARY INTEGRATED INFORMATION
MODEL 24-3 defined in this part of ISO 13584. Moreover, a functional_view_class is only described by a
dictionary_element.

NOTE 2 The data type of any view control variable is non_quantitative_int_type that is a subtype of
integer. The values of view control variables are therefore integer values. But, each value is associated with a
human-readable (and translated) label defined in the representation_P_DET that constitutes the
dictionary_element of the view control variable.

In the example, we assume that the receiving system supports the geometric view defined in the
current version of ISO 13584-101.

ISO 13584-24:2003(E)

590 © ISO 2003 – All rights reserved

Table P.1 — View control variables of the geometry functional view class

View control variable of the ISO 13584-101 geometry view

code version value corresponding label
(in English)

‘geometry_level’ ‘001’
1
2
3

‘2D’
‘wireframe’

‘solid’

‘detail_level’ ‘001’
1
2
3

‘simplified’
‘standard’
‘extended’

‘side’ ‘001’

0
1
2
3
4
5
6

'null'
‘front’
‘rear’
‘right’
‘left’
‘top’

‘bottom’

'variant' '001'
0
1
2

3 ... n

'null'
'external_shape'

'section'
reserved for future registration

'unreg_variant' '001' 0
1 ... n

'null'
library data supplier dependent

This geometric view is:

— defined by ISO in ISO 13584-101, supplier code: ‘0112/1///13584_101_1’;

— identified by the class_BSU code: ‘basic_geometry’ and by the class_BSU version = ‘001’;

— characterised by five view control variables defined in table P.1:

P.3.2.3 Dictionary_element of a functional model class

A fm_class_view_of is a functional model class that refers to a well defined general model class
(here the class that models the PAW family) and that provides a particular kind of representation
(specified by a functional_view_class) for this general model class.

A functional model class is not required to provide representation for all the values of the functional
view class view control variables. The range of supported values is specified by
view_control_variable_range as shown in Figure P.39.

/* v_c_v range */
#155=VIEW_CONTROL_VARIABLE_RANGE(#150, 1, 1);

/* reference to geometry_level property_bsu (#150)
/* values range: [1:1] */

#165=VIEW_CONTROL_VARIABLE_RANGE(#160, 2, 2);

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 591

/* reference to detail_level property_bsu (#160) */
/* values range: [2:2] */

#175=VIEW_CONTROL_VARIABLE_RANGE(#170, 1, 6);
/* reference to side property_bsu (#170) */
/* values range: [1:6] */

#205 = VIEW_CONTROL_VARIABLE_RANGE (#200, 1, 1);
/* reference to variant property_bsu (#200) */
/* values range: [1:1] */

#215 = VIEW_CONTROL_VARIABLE_RANGE (#210, 0, 0);
/* reference to unreg_variant property_bsu (#210) */
/* values range: [0:0] */

Figure P.39 — View control variables range definition

In our example, the functional model class only provides 2D views (range 1..1, for #150 that is
‘geometry_level’), with standard representation (range 2..2, for #160 that is ‘detail-level’) for all the
sides from ‘front’ to ‘bottom’ (range 1..6, for # 170 that is ‘side’) and with a standardised shape
definition (range bounds to 0 for #215 that is 'unreg_variant', and range 1..1 for #205 that is 'variant').

Moreover, to be able to create the geometry, the fm_class_view_of needs to import some properties
from the PAW family (in fact all the three defined properties). The dictionary_element of the
fm_class_view_of is presented in the Figure P.40.

/* Functional model class definition*/
#71=FM_CLASS_VIEW_OF(

#130, /* reference to its BSU */
$, '001',
#72, /* item_names */
TEXT('Functional model... of PAW'),
$, $, $, $,
(#180, #190), /* BSU of the 'prg' and of the required_side

properties: not represented. See P.3.4*/
(), *, *, *, *, *,
#140, /* the created view (reference to the BSU of the

functional_view_class */
(#155, #165, #175, #205, #215), /* the v_c_v ranges */
(#150, #160, #170, #200, #210), /* the v_c_v imported from

the functional_view_class */
(), (), (),
(), /* the possible referenced functional model classes */
(), (), (), (), /* importation from referenced functional

model classes*/
#60, /* the is-view-of semantic relationship: the reference

to the BSU of the described class */
(#90, #100, #110), /* imported properties from the described

class of the general model */
(),(),());

Figure P.40 — Specification of the view created by a functional model class

ISO 13584-24:2003(E)

592 © ISO 2003 – All rights reserved

P.3.2.4 Library specification of the functional model class

P.3.2.4.1 Overview of the view creation mechanism

A functional_model_class_extension is the content_item that constitutes the library specification of
a functional_model_class and fm_class_view_of subtype). It permits the definition of what are the
properties that need to be valued in the context of an instance of such a class, and what are the
methods associated with such a class (the main role of such methods is to call the different programs
or representations associated, as external files, to such a class).

Figure P.41 outlines the different steps performed by the library management system when the user
requires a particular view for some PAW instance already selected from the PAW family.

"SCREW geometry,
2D, simplified, front view"

1

message
to the LMS

2a

Hexa Screw
instance

12

5

2.5height

diameter

length

View
instance

simplified

2D

side

level

geometry
2b

represent.

variant

front (=1)

ext. shape

3

imported
properties Hexa Screw

representation
instance

12

5

2.5height

diameter

length

?

?prog.

req. side

METHODS

4

open view
property value

semantics

5

6

1

2

3

prg1

prg2

prg3

req. side prg.

4

5

6

prg4

prg5

prg6

i

i = open view property
value semantics ?

external
file

program
call

7

prg1
ISO13584-31

interface
8

unr. variant ext. shape

Figure P.41 — The view creation mechanism

These are the steps followed:

a) The end-user asks for a particular geometry (2D, simplified, front view) of a particular part of the
PAW family (1). It is assumed at this level that this instance of PAW is already selected.

b) The following two processes are performed in parallel:

1) a message is sent to the LMS (2a) in order to determine what is the
functional_model_class that must be instanciated, according to the instance of the general
model assumed to exist in the LMS and the view required by the user, and

2) an instance of the functional_view_class is created (2b), according to the view and view
control variable values defined by the end-user.

c) The functional_model_class instance (that is a fm_class_view_of subtype) is initialised by the
LMS that assigns values for the properties declared as required properties from the PAW part (3).
Then, the relevant instance method is triggered. Note that during the run of the method, the
functional_model_class instance is associated with the instance of the functional_view_class.
Now, it is assumed that the prg property needs to be evaluated, through a derivation table, from
the side property. Therefore, the functional_model_class instance needs to know the value of the

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 593

i

side view_control_variable defined in the instance of the functional_view_class in order to
compute the right prg program (through the methods).

d) Through an open_view_property_value_semantics the method access to the geometry view to
get the side value of this functional_view_class instance (4).

e) The prg attribute is computed through a derivation table and a selection expression (5)(6): the
table record for which the side view_control_variable value equals to the required_side
fm_class_view_of property value (the table key) given in the table is selected, and permits to call
the relevant program stored as an external file (7).

f) The program stored as an external file creates the functional_view_class instance
representation through the ISO 13584-31 interface (8).

P.3.2.4.2 Description of methods

A method is defined firstly by its specifications (method_specif), that specifies:

— the view(s) created by the method,

— the functional model class instance properties used in the method,

and, secondly, by its body (method_body), that specifies the list of the statements that shall be
performed.

A method also defines the external_file_protocol referenced for filling the items attribute of the
current open view that will be used (for instance, the ISO 13584-31 Geometric Programming Interface,
a CAD system specific interface, an Application Protocol from ISO 10303, ...).

The example of Figure P.42 presents a particular method that calls a program according to the view
requested by the end-user.

The method_specif contains the following attributes: the reference to a particular functional view
class, the supported view_control_variables_ranges and the model needed properties.

The method_body declares the variables accessed from the method (context) and describes the
different (guarded) statements that have to be performed: in our example, a program call. Note that
such a statement triggers an external program whose name is stored in a table whose key is the side
property as required by the user.

/* Definition of the methods */
#3000=METHOD(

#3001, /* the specification of the method */
#3002, /* the body of the method */
#7); /* the used program protocol */

#3001=METHOD_SPECIF(
#140, /* reference to the BSU of the functional_view_class */
(#155, #165, #175; #205, #215), /* the supported v_c_v

ranges*/
(#90, #100, #110), /* the properties from the functional

model whose values are needed */
());

#3002=METHOD_BODY(
(#97, #107, #117, #177, #187, #197, #207), /* the variables

of the method context */
(#3019)); /* the statement of the method */

ISO 13584-24:2003(E)

594 © ISO 2003 – All rights reserved

#3019=METHOD_STATEMENT((#3020));
#3020=GUARDED_STATEMENT((#3021, #3023));
#3021=BOOLEAN_LITERAL(.T.);
#3023=CALL_PROGRAM_STATEMENT(

#187, /* the method variable (prg) */
#2401, /* the referenced program to be executed (specified by

a functional domain restriction (see fig. R.12) */
(#97, #107, #117), /*the input parameters */
(), ());

Figure P.42 — Description of a method

P.3.2.5 Functional_model_class_extension

The functional_model_class_extension is the content_item associated with the
fm_class_view_of dictionary_element. It gathers all the entities involved in the class description: the
external files used, the external_file_protocols required, the part characteristics needed and the
methods it supports. The relationship between the dictionary_element and the library specification is
done as presented in Figure P.43 (through the associated BSU).

#1300=FUNCTIONAL_MODEL_CLASS_EXTENSION(
#130, /* reference to the BSU */
*, *, *, (), (), (), (), (),
(#2303, #2304, #2305, #2306, #2307, #2308), /* the derivation

table that computes the program from the side */
(#7), /* the used program protocol: ISO 13584-31*/
(#12), /* the used view exchange protocol */
'001', '001', (), (), $,
(#900, #1000, #1100), /* the required item characteristics */
(), (),
(#1700, #1800, #1900), /* method variables */
(),
(#3000), /* the associated method */
$, $, (), $);

Figure P.43 — Library specification of a functional model class

P.3.3 Resulting Physical files

In this clause, the complete examples of physical files are provided. The first physical file, conformant
with LIBRARY INTEGRATED INFORMATION MODEL 24-1 defines the PAW family. The second
physical file, conformant with LIBRARY INTEGRATED INFORMATION MODEL 24-2 and VIEW
EXCHANGE PROTOCOL DIS 101 (for the definition of the geometry view) defines the 2D geometry of
the PAW family by means of programs conformant with ISO 13584-31.

P.3.3.1 Example of a general model

This subclause contains the complete physical file presented in clause P.2.

/*
The PAW family

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 595

e d_out

d_in

d_in e
10
11

1
1

d_out = d_in * 1.5

13
17
19

2
3
4

*/

ISO-10303-21;
HEADER;
FILE_DESCRIPTION(('PLIB GENERAL MODEL EXAMPLE'), '1');
FILE_NAME('P24_gm_implicit.p21', '2000-06-05T02:38:14',

(''),
('LISI/ENSMA'),
'ECCO RUNTIME SYSTEM BUILT-IN PREPROCESSOR V2.3.3',
'ECCO RUNTIME SYSTEM V2.3.3',
'');

FILE_SCHEMA(('ISO13584_G_M_IIM_LIBRARY_IMPLICIT_SCHEMA'));
ENDSEC;

DATA;

/* Global library description */
#2=LIBRARY_IN_STANDARD_FORMAT($, $, $, $, (), #20, #11, (), (), (#20),
(#50, #60), (), #3, $, $, ());
#3=ITEM_NAMES(LABEL('General model example'), (), LABEL(''), $, $);
#10=GLOBAL_LANGUAGE_ASSIGNMENT ('en');
#11=LIBRARY_IIM_IDENTIFICATION($, 'IS', 'ISO_13584_24_1', 2001, '3', $,
());

/* DICTIONARY DESCRIPTION */

/* BSU for supplier */
#20=SUPPLIER_BSU('INA', *);

/* BSU for component_class */
#50=CLASS_BSU('BEARING', '001', #20);
#60=CLASS_BSU('PAW', '001', #20);

/* BSU for properties */
#90=PROPERTY_BSU('d_in', '001', #50);
#100=PROPERTY_BSU('d_out', '001', #50);
#110=PROPERTY_BSU('e', '001', #60);

/* BSU for table */
#120=TABLE_BSU('T1', '001', #60);

/* Dictionary properties description */
/* supplier description */

ISO 13584-24:2003(E)

596 © ISO 2003 – All rights reserved

#21=SUPPLIER_ELEMENT(#20, $, '001', #22, #23);
#22=ORGANIZATION($, 'INA', '');
#23=ADDRESS($, $, $, $, $, $, $, 'GERMANY', $, $, $, $);

/* d_in */
#91=NON_DEPENDENT_P_DET(#90, $, '001', #92, TEXT('inner diameter'),
$, $, $, $, (), $, 'TO3', #93, $);
#92=ITEM_NAMES(LABEL('inner diameter'), (), LABEL(''), $, $);
#93=REAL_MEASURE_TYPE('NR2..3.3', #94);
#94=DIC_UNIT(#95, $);
#95=SI_UNIT(*, .MILLI., .METRE.);

/* d_out */
#101=NON_DEPENDENT_P_DET(#100, $, '001', #102, TEXT('outer
diameter'), $, $, $, $, (), $, 'TO3', #93, $);
#102=ITEM_NAMES(LABEL('outer diameter'), (), LABEL(''), $, $);
#103=REAL_MEASURE_TYPE('NR2..3.3', #104);
#104=DIC_UNIT(#105, $);
#105=SI_UNIT(*, .MILLI., .METRE.);

/* e */
#111=NON_DEPENDENT_P_DET(#110, $, '001', #112, TEXT('thickness'), $,
$, $, $, (), $, 'TO3', #93, $);
#112=ITEM_NAMES(LABEL('thickness'), (), LABEL(''), $, $);
#113=REAL_MEASURE_TYPE('NR2..3.3', #114);
#114=DIC_UNIT(#115, $);
#115=SI_UNIT(*, .MILLI., .METRE.);

/* Dictionary class description */
/* Part class */
#71=COMPONENT_CLASS(#50, $, '001', #72, TEXT('Class associated to
the generic bearing family'), $, $, $, $, (#90, #100), (), $, (),(),
$);
#72=ITEM_NAMES(LABEL('Generic bearing family'), (), LABEL('Bearing
family'), $, $);

/* PAW class */
#81=COMPONENT_CLASS(#60, $, '001', #82, TEXT('Class associated to
the PAW part family'), $, $, $, #50, (#110), (), $, (),(), $);
#82=ITEM_NAMES(LABEL('PAW family'), (), LABEL('PAW'), $, $);

/* class / table relationship */
#1422=CLASS_TABLE_RELATIONSHIP(#81, (#120));

/* Dictionary table description */
#121=RDB_TABLE_ELEMENT(#120, $, '001', #122, TEXT('This table
defines the relationship (derivation) between the inner diameter and
the thickness of PAW'), $, $, *, (#96, #116), (#96));
#122=ITEM_NAMES (LABEL('d_in / e table'), (), LABEL(''), $, $);

/* Properties semantics definition */
#96=SELF_PROPERTY_VALUE_SEMANTICS(#90, $);

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 597

#106=SELF_PROPERTY_VALUE_SEMANTICS(#100, $);
#116=SELF_PROPERTY_VALUE_SEMANTICS(#110, $);

/* Properties syntax definition */
#97=REAL_NUMERIC_VARIABLE();
#107=REAL_NUMERIC_VARIABLE();
#117=REAL_NUMERIC_VARIABLE();

/* Syntax / semantics association */
#98=ENVIRONMENT(#97, #96);
#108=ENVIRONMENT(#107, #106);
#118=ENVIRONMENT(#117, #116);

/* LIBRARY DESCRIPTION */

/* Library definition of the properties */
#900=OPT_OR_MAND_PROPERTY_BSU(#90, .F., .T.);
#1000=OPT_OR_MAND_PROPERTY_BSU(#100, .F., .T.);
#1100=OPT_OR_MAND_PROPERTY_BSU(#110, .F., .T.);

/* Dictionary extension */
#8000=ITEM_CLASS_EXTENSION(#60, (), (), (), '001', '001', (), (), *, *,
*, (#901), (#1001, #1101), (), (), (#900), (#1000, #1100), (), .F., $,
$, $, $, (), $, (), ());

/* Property domain */
#901=DOMAIN_RESTRICTION((#96), (), (#902), $);
#902=GUARDED_SIMPLE_DOMAIN(#903, #904);
#903=OTHERS();
#904=TABLE_DEFINED_DOMAIN(#905);
#905=TABLE_LITERAL(#120);

/* Extension of the table */
#910=RDB_TABLE_CONTENT(#120, *, (#911, #912), '001', '1997-12-19');
#911=REAL_COLUMN((10.0, 11.0, 13.0, 17.0, 19.0), 'NR2..3.3');
#912=REAL_COLUMN((1.0, 1.0, 2.0, 3.0, 4.0), 'NR2..3.3');

/* Definition of the derivation function 'd_out=d_in * 1.5' */
#1001=FUNCTIONAL_DOMAIN_RESTRICTION((#106), (#96), (#1002), $);
#1002=GUARDED_FUNCTIONAL_DOMAIN(#1003, #1004);
#1003=OTHERS();
#1004=LIBRARY_EXPRESSION_DEFINED_VALUE(#1005);
#1005=MULT_EXPRESSION((#1006, #97));
#1006=REAL_LITERAL(1.5);

/* Definition of the derivation table that computes 'e' from 'd_in' */
#1101=FUNCTIONAL_DOMAIN_RESTRICTION((#116), (#96), (#1102), $);
#1102=GUARDED_FUNCTIONAL_DOMAIN(#1103, #1104);
#1103=OTHERS();
#1104=TABLE_DEFINED_VALUE(#1105);
#1105=TABLE_LITERAL(#120);

ISO 13584-24:2003(E)

598 © ISO 2003 – All rights reserved

ENDSEC;
END-ISO-10303-21;

/*

P.3.3.2 Example of functional model class descriptions using a standard external file
protocol

This subclause contains the complete physical file presented in clause P.3.

e d_out

d_in

P.3.3.2.1 Example of a functional model class using a standard program protocol

*/ISO-10303-21;
HEADER;
FILE_DESCRIPTION(('PLIB FUNCTIONAL MODEL EXAMPLE 1'), '1');
FILE_NAME('P24_fm_implicit_p101.spf',

'2000-06-05T02:38:14',
(''),
('LISI/ENSMA'),
'ECCO RUNTIME SYSTEM BUILT-IN PREPROCESSOR V2.3.3',
'ECCO RUNTIME SYSTEM V2.3.3',
'');

FILE_SCHEMA(('ISO13584_F_M_IIM_LIBRARY_IMPLICIT_SCHEMA'));
ENDSEC;

DATA;

/* Global library description */

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 599

#2=LIBRARY_IN_STANDARD_FORMAT($, $, $, $, (), #30, #11, (#7), (#12),
(#20, #30, #40), (#50, #60, #140, #130), (), #3, $, $, ());
#3=ITEM_NAMES(LABEL('Functional geometry model'), (), LABEL(''), $,
$);
#6=ORGANIZATION('ISO', 'International Organization for Standardization',
'');
#7=STANDARD_SIMPLE_PROGRAM_PROTOCOL(#6, $, 'ISO_13584_31', '001', '1',
#8, $, 'FORTRAN', .SOURCE., $, $, $);
#8=ITEM_NAMES(LABEL('ISO_13584_31'), (), LABEL('ISO_13584_31'), $, $);
#11=LIBRARY_IIM_IDENTIFICATION($, 'IS', 'ISO_13584_24_2', 2001, '3', $,
());
#12=VIEW_EXCHANGE_PROTOCOL_IDENTIFICATION($, 'IS', 'ISO_13584_101',
2001, '1', '1', (#7), $);
#10=GLOBAL_LANGUAGE_ASSIGNMENT('en');

/* DICTIONARY DESCRIPTION */
/* BSU for supplier */
#20=SUPPLIER_BSU('INA', *); /* INA code unknown */
#30=SUPPLIER_BSU('9/19860073600021', *);

/* LISI/ENSMA code in the coding scheme ICD=0009: SIRET number */
#40=SUPPLIER_BSU('0112/1///13584_101_1', *);

/* Identification of ISO 13584-101 according to ISO 13584-26 */

/* BSU for component_class */
#50=CLASS_BSU('Bearing', '001', #20);
#60=CLASS_BSU('PAW', '001', #20);
#130=CLASS_BSU('PAW_Geometry', '001', #30);
#140=CLASS_BSU('basic_geometry', '001', #40);

/* BSU for properties */
#90=PROPERTY_BSU('d_in', '001', #50);
#100=PROPERTY_BSU('d_out', '001', #50);
#110=PROPERTY_BSU('e', '001', #50);
#150=PROPERTY_BSU('geometry_level', '001', #140);
#160=PROPERTY_BSU('detail_level', '001', #140);
#170=PROPERTY_BSU('side', '001', #140);
#180=PROPERTY_BSU('prg', '001', #130);
#190=PROPERTY_BSU('required_side', '001', #130);
#200=PROPERTY_BSU('variant', '001', #140);
#210=PROPERTY_BSU('unreg_variant', '001', #140);

/* BSU for table */
#230=TABLE_BSU('T2', '001', #130);

/* v_c_v range */
#155=VIEW_CONTROL_VARIABLE_RANGE(#150, 1, 1);
#165=VIEW_CONTROL_VARIABLE_RANGE(#160, 2, 2);
#175=VIEW_CONTROL_VARIABLE_RANGE(#170, 1, 6);
#205=VIEW_CONTROL_VARIABLE_RANGE(#200, 1, 1);
#215=VIEW_CONTROL_VARIABLE_RANGE(#210, 0, 0);

ISO 13584-24:2003(E)

600 © ISO 2003 – All rights reserved

/* supplier description */
#31=SUPPLIER_ELEMENT(#30, $, '001', #32, #33);
#32=ORGANIZATION('LISI/ENSMA', 'LISI/ENSMA', '');
#33=ADDRESS($, $, $, $, $, $, $, 'FRANCE', $, $, $, $);

/* Dictionary table description */
#231=TABLE_ELEMENT(#230, $, '001', #232, TEXT('Definition of the
geometry programs according to the side of the part'), $, $, *, (#196,
#186), (#196));
#232=ITEM_NAMES(LABEL('side / prg table'), (), LABEL(''), $, $);

/* Dictionary properties description */
/* prg */

#91=REPRESENTATION_P_DET (#180, $, '001', #92, TEXT('variable used to
reference geometry programs'), $, $, $, $, (), $, 'A58', #93, $);
#92=ITEM_NAMES (LABEL('related program'), (), LABEL(''), $, $);
#93=PROGRAM_REFERENCE_TYPE ((
'ISO13584_F_M_IIM_LIBRARY_IMPLICIT_SCHEMA.PROGRAM_REFERENCE'));

/* required side */
#101=REPRESENTATION_P_DET(#190, $, '001', #102, TEXT('property used
to store the required side'), $, $, $, $, (), $, 'A58', #103, $);
#102=ITEM_NAMES(LABEL('side to be represented'), (), LABEL(''), $,
$);
#103=INT_TYPE('N 1');

/* class - table relationship */
#1424=CLASS_TABLE_RELATIONSHIP(#71, (#230));

/* Dictionary class description */
/* Functional model class view_of definition*/

#71=FM_CLASS_VIEW_OF(#130, $, '001', #72, TEXT('Functional model
class describing the 2d standard geometry of PAW'), $, $, $, $, (#180,
#190), (), *, *, *, *, *, #140, (#155, #165, #175, #205, #215), (#150,
#160, #170, #200, #210), (), (), (), (), (), (), (), (), #60, (#90,
#100, #110), (),(),());
#72=ITEM_NAMES(LABEL('Functional model class of PAW'), (), LABEL('fm
class of PAW'), $, $);

/* Definition of the properties semantics */
#176=OPEN_VIEW_PROPERTY_VALUE_SEMANTICS(#170, $);
#186=SELF_PROPERTY_VALUE_SEMANTICS(#180, $);
#196=SELF_PROPERTY_VALUE_SEMANTICS(#190, $);
#206=COLUMN_TRAVERSAL_VARIABLE_SEMANTICS(#2407, #196);

#96 =SELF_PROPERTY_VALUE_SEMANTICS(#90, $);
#106=SELF_PROPERTY_VALUE_SEMANTICS(#100, $);
#116=SELF_PROPERTY_VALUE_SEMANTICS(#110, $);

/* Properties syntax definition */
#177=INT_NUMERIC_VARIABLE();
#187=ENTITY_INSTANCE_VARIABLE((

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 601

'ISO13584_F_M_IIM_LIBRARY_IMPLICIT_SCHEMA.PROGRAM_REFERENCE'));
#197=INT_NUMERIC_VARIABLE();
#207=INT_NUMERIC_VARIABLE();
#97 =REAL_NUMERIC_VARIABLE();
#107=REAL_NUMERIC_VARIABLE();
#117=REAL_NUMERIC_VARIABLE();

/* Syntax / semantics association */
#178=ENVIRONMENT(#177, #176);
#188=ENVIRONMENT(#187, #186);
#198=ENVIRONMENT(#197, #196);
#208=ENVIRONMENT(#207, #206);
#98 =ENVIRONMENT(#97, #96);
#108=ENVIRONMENT(#107, #106);
#118=ENVIRONMENT(#117, #116);

/* LIBRARY DESCRIPTION */

/* Extension of the table */
#2300=TABLE_CONTENT(#230, *, (#2301, #2302), '001', '1997-12-19');
#2301=INTEGER_COLUMN((1, 2, 3, 4, 5, 6), 'NR1..1');
#2302=ENTITY_INSTANCE_COLUMN((#2303, #2304, #2305, #2306, #2307,
#2308),
('ISO13584_F_M_IIM_LIBRARY_IMPLICIT_SCHEMA.PROGRAM_REFERENCE'));
#2303=PROGRAM_REFERENCE(#7, #2313, 'Add1_PAW', 'PAW_p1', (), (), ());
#2304=PROGRAM_REFERENCE(#7, #2314, 'Add2_PAW', 'PAW_p2', (), (), ());
#2305=PROGRAM_REFERENCE(#7, #2315, 'Add3_PAW', 'PAW_p3', (), (), ());
#2306=PROGRAM_REFERENCE(#7, #2316, 'Add4_PAW', 'PAW_p4', (), (), ());
#2307=PROGRAM_REFERENCE(#7, #2317, 'Add5_PAW', 'PAW_p5', (), (), ());
#2308=PROGRAM_REFERENCE(#7, #2318, 'Add6_PAW', 'PAW_p6', (), (), ());
#2313=NOT_TRANSLATABLE_EXTERNAL_CONTENT((#2323));
#2314=NOT_TRANSLATABLE_EXTERNAL_CONTENT((#2324));
#2315=NOT_TRANSLATABLE_EXTERNAL_CONTENT((#2325));
#2316=NOT_TRANSLATABLE_EXTERNAL_CONTENT((#2326));
#2317=NOT_TRANSLATABLE_EXTERNAL_CONTENT((#2327));
#2318=NOT_TRANSLATABLE_EXTERNAL_CONTENT((#2328));
#2323=LANGUAGE_SPECIFIC_CONTENT((#2333), #2333, $);
#2324=LANGUAGE_SPECIFIC_CONTENT((#2334), #2334, $);
#2325=LANGUAGE_SPECIFIC_CONTENT((#2335), #2335, $);
#2326=LANGUAGE_SPECIFIC_CONTENT((#2336), #2336, $);
#2327=LANGUAGE_SPECIFIC_CONTENT((#2337), #2337, $);
#2328=LANGUAGE_SPECIFIC_CONTENT((#2338), #2338, $);
#2333=EXTERNAL_FILE_UNIT('PAW_p1.for', '7bit');
#2334=EXTERNAL_FILE_UNIT('PAW_p1.for', '7bit');
#2335=EXTERNAL_FILE_UNIT('PAW_p1.for', '7bit');
#2336=EXTERNAL_FILE_UNIT('PAW_p1.for', '7bit');
#2337=EXTERNAL_FILE_UNIT('PAW_p1.for', '7bit');
#2338=EXTERNAL_FILE_UNIT('PAW_p1.for', '7bit');

/* Library definition of the properties */
#900 =OPT_OR_MAND_PROPERTY_BSU(#90, .F., .T.);

ISO 13584-24:2003(E)

602 © ISO 2003 – All rights reserved

#1000=OPT_OR_MAND_PROPERTY_BSU(#100, .F., .T.);
#1100=OPT_OR_MAND_PROPERTY_BSU(#110, .F., .T.);
#1700=OPT_OR_MAND_PROPERTY_BSU(#170, .F., .T.);
#1800=OPT_OR_MAND_PROPERTY_BSU(#180, .F., .F.);
#1900=OPT_OR_MAND_PROPERTY_BSU(#190, .F., .F.);

/* Functional model class extension */
#1300=FUNCTIONAL_MODEL_CLASS_EXTENSION(#130, (#2303, #2304, #2305,
#2306, #2307, #2308), (#7), (#12),'001', '001', (), (), *, *, *, (), (),
(), $, (#900, #1000, #1100), (), (), (#1700, #1800, #1900), (),
(#3000), $, $, (), $);

/* Definition of the derivation table that computes 'prg' from 'side' */
#2401=FUNCTIONAL_DOMAIN_RESTRICTION((#186), (#176, #196, #206),
(#2402), $);
#2402=GUARDED_FUNCTIONAL_DOMAIN(#2403, #2405);
#2403=OTHERS();
#2405=TABLE_DEFINED_VALUE(#2406);
#2406=SELECT_EXPRESSION((#2407, #2408));
#2407=TABLE_LITERAL(#230);
#2408=EQUALS_EXPRESSION((#207, #177));

/* Definition of the methods */
#3000=METHOD(#3001, #3002, #7);
#3001=METHOD_SPECIF(#140, (#155, #165, #175, #205, #215), (#90, #100,
#110),
());
#3002=METHOD_BODY((#97, #107, #117, #177, #187, #197, #207),
(#3019));

#3019=METHOD_STATEMENT((#3020));
#3020=GUARDED_STATEMENT(#3021, #3023);
#3021=BOOLEAN_LITERAL(.T.);
#3023=CALL_PROGRAM_STATEMENT(#187, #2401, (#97, #107, #117), (),
());

ENDSEC;
END-ISO-10303-21;

/*

This ISO 10303-21 conformant physical file is associated with six external files that contain the
parametric specifications of the PAW geometry for the different 2D side views. This parametric
specification is exchanged as parametric programs conformant with ISO 13584-31 and is supposed to
be generated by some parametric geometry editor.

The following file, named Add1_PAW shows an example of such an automatically generated
parametric program. This file has been automatically generated from the EBP (Example Based
Programming) system developed in order to support the generation of programs (in this example, the
program that generates a front view is called PAW_p1)from a user design.

SUBROUTINE PAW_p1 (d_out, d_int)
! implicit declarations

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 603

!
! entity types: (d)ir, (p)nt, (l)in, (c)ir,
! (g)rp, (s)et, (e)nt, (a)rc or (a)2p
IMPLICIT INTEGER (d,p,l,c,g,s,e,a,n)
!
! transfo_type(n) are strings that will contain
! "mirror", "shift", "rotation" or "homotetia"
IMPLICIT CHARACTER*(80) (t)
!
! prefix of D.P. var used: (r)adius, (v)al
IMPLICIT DOUBLE PRECISION (r,v)
!
! global constants
INTEGER TDB, CAD
DOUBLE PRECISION ZERO_VALUE
PARAMETER (TDB = 0,CAD = 1)
PARAMETER (ZERO_VALUE = 0.001)
INTEGER lstent (1000)
INTEGER FALSE, TRUE
!
! parameter declarations:
!
DOUBLE PRECISION d_out
DOUBLE PRECISION d_int
!
! include the types of the P31 and LIB functions
include 'P31_FUNCTIONS_TYPES'
include 'LIB_FUNCTIONS_TYPES'
!
! *** Program Body ***
!
! initialise some constant used entities
grpfix = CREATE_GRP ()
CALL CLOSE_GRP ()
a2p_ref = a2p_ref_sys (TDB)
dir_x = dir_a2p_x (a2p_ref, TDB)
dir_y = dir_a2p_y (a2p_ref, TDB)
pnt_origin = PNT_CARTESIAN_ABSOLUTE(0.0D0, 0.0D0, 0.0D0, TDB)
FALSE = 0
TRUE = 1
CALL INQ_GEOMETRICAL_POWER(POWER,ERR)
three_d = (POWER .GT. 1)
if three_d then
dir_z = dir_a2p_z (a2p_ref, TDB)
end if
!
!
!
! *** START OF THE RECORDING SESSION ***
!
!

ISO 13584-24:2003(E)

604 © ISO 2003 – All rights reserved

! horizontal line of a given y value
pnt1 = PNT_CARTESIAN_ABSOLUTE(0.0D0, 0.0D0, 0.0D0, TDB)
lin1C1 = lib_lin_max(LIN_PNT_LENGTH_DIR(pnt1, 1.0D0, dir_x, TDB))
CALL ADD_ENT_GRP(grpfix, lin1C1)
!
! vertical line of a given x value
pnt1 = PNT_CARTESIAN_ABSOLUTE(0.0D0, 0.0D0, 0.0D0, TDB)
lin2C1 = lib_lin_max(LIN_PNT_LENGTH_DIR(pnt1, 1.0D0, dir_y, TDB))
CALL ADD_ENT_GRP(grpfix, lin2C1)
!
! intersection of 2 lines
pntnm1 = PNT_INTERSECTION_2_ENT(lin2C1, lin1C1, TDB)
!
! circle by its centre and its radius
cir3C1 = CIRCLE_RAD_A2P ((d_out) / (2.000D0), &
lib_a2p_pnt(pntnm1),false, TDB)
CALL ADD_ENT_GRP(grpfix, cir3C1)
!
! centre of a circle
pntnm2 = PNT_CENTRE_ARC(cir3C1, TDB)
! circle by its centre and its radius
cir4C1 = CIRCLE_RAD_A2P ((d_int) / (2.000D0), &
lib_a2p_pnt(pntnm2),false, TDB)
CALL ADD_ENT_GRP(grpfix, cir4C1)
!
! arc by a circle
arc5C1 = cir3C1
CALL ADD_ENT_GRP(grpfix, arc5C1)
!
! arc by a circle
arc6C1 = cir4C1
CALL ADD_ENT_GRP(grpfix, arc6C1)
!
! *** FIX ENTITIES into CAD SYSTEM ***
!
lstent (1) = grpfix
CALL FIX_ENT (1,lstent)
RETURN
END

P.3.3.2.2 A second example of a functional model class using a nonstandard program protocol
based on the Pro-Engineer CAD system

*/
ISO-10303-21;
HEADER;
FILE_DESCRIPTION(('PLIB FUNCTIONAL MODEL EXAMPLE 2'), '1');
FILE_NAME('P24_fm_implicit_p102.spf',

'2000-06-05T02:54:41',
(''),
('LISI/ENSMA'),
'ECCO RUNTIME SYSTEM BUILT-IN PREPROCESSOR V2.3.3',
'ECCO RUNTIME SYSTEM V2.3.3',

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 605

'');
FILE_SCHEMA(('ISO13584_F_M_IIM_LIBRARY_IMPLICIT_SCHEMA'));
ENDSEC;

DATA;

/* Global library description */
#2=LIBRARY_IN_STANDARD_FORMAT($, $, $, $, (), #30, #11, (#7), (#12),
(#20, #30, #40), (#50, #60, #140, #130), (), #3, $, $, ());
#3=ITEM_NAMES(LABEL('Functional geometry model'), (), LABEL(''), $,
$);
#6=ORGANIZATION('Parametric Technology Corporation', 'PTC', '');
#7=NON_STANDARD_SIMPLE_PROGRAM_PROTOCOL(#6, 'United States',
'ProEngineerInterface', '001', $, #8, $, 'BINARY', .COMPILED., #6, '',
'001');
#8=ITEM_NAMES(LABEL('Pro-Engineer interface'), (), LABEL('Pro-Engineer
interface'), $, $);
#11=LIBRARY_IIM_IDENTIFICATION($, 'IS', 'ISO_13584_24_2', 2001, '3E', $,
());
#12=VIEW_EXCHANGE_PROTOCOL_IDENTIFICATION($, 'IS', 'ISO_13584_101',
2001, $, $, (#7), $);
#10=GLOBAL_LANGUAGE_ASSIGNMENT('en');

/* DICTIONARY DESCRIPTION */
/*BSU for supplier */
#20=SUPPLIER_BSU('INA', *); /* Unknown Id */
/* LISI/ENSMA code in the coding scheme ICD = 0009: SIRET number */
#30=SUPPLIER_BSU('9/19860073600021', *);
/* Identification of ISO 13584-101 according to ISO 13584-26 */
#40=SUPPLIER_BSU('0112/1///13584_101_1', *);

/* BSU for component_class */
#50=CLASS_BSU('Bearing', '001', #20);
#60=CLASS_BSU('PAW', '001', #20);
#130=CLASS_BSU('PAW_Geometry', '001', #30);
#140=CLASS_BSU('basic_geometry', '001', #40);

/* BSU for properties */
#90=PROPERTY_BSU('d_in', '001', #50);
#100=PROPERTY_BSU('d_out', '001', #50);
#110=PROPERTY_BSU('e', '001', #50);
#150=PROPERTY_BSU('geometry_level', '001', #140);
#160=PROPERTY_BSU('detail_level', '001', #140);
#170=PROPERTY_BSU('side', '001', #140);
#180=PROPERTY_BSU('prg', '001', #130);
#190=PROPERTY_BSU('required_side', '001', #130);
#200=PROPERTY_BSU('variant', '001', #140);
#210=PROPERTY_BSU('unreg_variant', '001', #140);

/* BSU for table */

ISO 13584-24:2003(E)

606 © ISO 2003 – All rights reserved

#230=TABLE_BSU('T2', '001', #130);

/* v_c_v range */
#155=VIEW_CONTROL_VARIABLE_RANGE(#150, 1, 1);
#165=VIEW_CONTROL_VARIABLE_RANGE(#160, 2, 2);
#175=VIEW_CONTROL_VARIABLE_RANGE(#170, 1, 6);
#205=VIEW_CONTROL_VARIABLE_RANGE (#200, 0, 0);
#215=VIEW_CONTROL_VARIABLE_RANGE (#210, 1, 1);

/* supplier description */
#31=SUPPLIER_ELEMENT(#30, $, '001', #32, #33);
#32=ORGANIZATION('LISI/ENSMA', 'LISI/ENSMA', '');
#33=ADDRESS($, $, $, $, $, $, $, 'FRANCE', $, $, $, $);

/* Dictionary table description */
#231=TABLE_ELEMENT(#230, $, '001', #232, TEXT('Definition of the
geometry programs according to the side of the part'), $, $, *, (#196,
#186), (#196));
#232=ITEM_NAMES(LABEL('required side / prg table'), (), LABEL(''), $,
$);

/* Dictionary properties description */
/* prg */
#91=REPRESENTATION_P_DET(#180, $, '001', #92, TEXT('variable used to
reference geometry programs'), $, $, $, $, (), $, 'A58', #93, $);
#92=ITEM_NAMES (LABEL('related program'), (), LABEL('prg'), $, $);
#93=PROGRAM_REFERENCE_TYPE((
'ISO13584_F_M_IIM_LIBRARY_IMPLICIT_SCHEMA.PROGRAM_REFERENCE'));

/* required side */

#101=REPRESENTATION_P_DET(#190, $, '001', #102, TEXT('property used to
store the required side'), $, $, $, $, (), $, 'A58', #103, $);
#102=ITEM_NAMES(LABEL('side to be represented'), (), LABEL('reqside'),
$, $);
#103=INT_TYPE('N 1');

/* class - table relationship */
#1424=CLASS_TABLE_RELATIONSHIP(#71, (#230));

/* Dictionary class description */
/* Functional model class view_of definition*/

#71=FM_CLASS_VIEW_OF(#130, $, '001', #72, TEXT('Functional model
class describing the 2d standard geometry of PAW'), $, $, $, $, (#180,
#190), (), *, *, *, *, *, #140, (#155, #165, #175, #205, #215), (#150,
#160, #170, #200, #210), (), (), (), (), (), (), (), (), #60, (#90,
#100, #110), (),(),());
#72=ITEM_NAMES(LABEL('Functional model class of PAW'), (), LABEL('fm
class of PAW'), $, $);

/* Definition of the properties semantics */
#176=OPEN_VIEW_PROPERTY_VALUE_SEMANTICS(#170, $);

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 607

#186=SELF_PROPERTY_VALUE_SEMANTICS(#180, $);
#196=SELF_PROPERTY_VALUE_SEMANTICS(#190, $);
#206=COLUMN_TRAVERSAL_VARIABLE_SEMANTICS(#2407, #196);

#96=SELF_PROPERTY_VALUE_SEMANTICS(#90, $);
#106=SELF_PROPERTY_VALUE_SEMANTICS(#100, $);
#116=SELF_PROPERTY_VALUE_SEMANTICS(#110, $);

/* Properties syntax definition */
#177=INT_NUMERIC_VARIABLE();
#187=ENTITY_INSTANCE_VARIABLE((
'ISO13584_F_M_IIM_LIBRARY_IMPLICIT_SCHEMA.PROGRAM_REFERENCE'));
#197=INT_NUMERIC_VARIABLE();
#207=INT_NUMERIC_VARIABLE();
#97=REAL_NUMERIC_VARIABLE();
#107=REAL_NUMERIC_VARIABLE();
#117=REAL_NUMERIC_VARIABLE();

/* Syntax / semantics association */
#178=ENVIRONMENT(#177, #176);
#188=ENVIRONMENT(#187, #186);
#198=ENVIRONMENT(#197, #196);
#208=ENVIRONMENT(#207, #206);
#98=ENVIRONMENT(#97, #96);
#108=ENVIRONMENT(#107, #106);
#118=ENVIRONMENT(#117, #116);

/* LIBRARY DESCRIPTION */

/* Extension of the table */
#2300=TABLE_CONTENT(#230, *, (#2301, #2302), '001', '1997-12-19');
#2301=INTEGER_COLUMN((1, 2, 3, 4, 5, 6), 'NR1..1');
#2302=ENTITY_INSTANCE_COLUMN((#2303, #2304, #2305, #2306, #2307,
#2308), (
'ISO13584_F_M_IIM_LIBRARY_IMPLICIT_SCHEMA.PROGRAM_REFERENCE'));
#2303=PROGRAM_REFERENCE(#7, #2313, 'Add1_PAW', 'PAW_p1', (), (), ());
#2304=PROGRAM_REFERENCE(#7, #2314, 'Add2_PAW', 'PAW_p2', (), (), ());
#2305=PROGRAM_REFERENCE(#7, #2315, 'Add3_PAW', 'PAW_p3', (), (), ());
#2306=PROGRAM_REFERENCE(#7, #2316, 'Add4_PAW', 'PAW_p4', (), (), ());
#2307=PROGRAM_REFERENCE(#7, #2317, 'Add5_PAW', 'PAW_p5', (), (), ());
#2308=PROGRAM_REFERENCE(#7, #2318, 'Add6_PAW', 'PAW_p6', (), (), ());
#2313=NOT_TRANSLATABLE_EXTERNAL_CONTENT((#2323));
#2314=NOT_TRANSLATABLE_EXTERNAL_CONTENT((#2324));
#2315=NOT_TRANSLATABLE_EXTERNAL_CONTENT((#2325));
#2316=NOT_TRANSLATABLE_EXTERNAL_CONTENT((#2326));
#2317=NOT_TRANSLATABLE_EXTERNAL_CONTENT((#2327));
#2318=NOT_TRANSLATABLE_EXTERNAL_CONTENT((#2328));
#2323=LANGUAGE_SPECIFIC_CONTENT((#2333), #2333, $);
#2324=LANGUAGE_SPECIFIC_CONTENT((#2334), #2334, $);
#2325=LANGUAGE_SPECIFIC_CONTENT((#2335), #2335, $);
#2326=LANGUAGE_SPECIFIC_CONTENT((#2336), #2336, $);

ISO 13584-24:2003(E)

608 © ISO 2003 – All rights reserved

#2327=LANGUAGE_SPECIFIC_CONTENT((#2337), #2337, $);
#2328=LANGUAGE_SPECIFIC_CONTENT((#2338), #2338, $);
#2333=EXTERNAL_FILE_UNIT('PAW_p1.ptc', '7bit');
#2334=EXTERNAL_FILE_UNIT('PAW_p1.ptc', '7bit');
#2335=EXTERNAL_FILE_UNIT('PAW_p1.ptc', '7bit');
#2336=EXTERNAL_FILE_UNIT('PAW_p1.ptc', '7bit');
#2337=EXTERNAL_FILE_UNIT('PAW_p1.ptc', '7bit');
#2338=EXTERNAL_FILE_UNIT('PAW_p1.ptc', '7bit');

/* Library definition of the properties */
#900=OPT_OR_MAND_PROPERTY_BSU(#90, .F., .T.);
#1000=OPT_OR_MAND_PROPERTY_BSU(#100, .F., .T.);
#1100=OPT_OR_MAND_PROPERTY_BSU(#110, .F., .T.);
#1700=OPT_OR_MAND_PROPERTY_BSU(#170, .F., .T.);
#1800=OPT_OR_MAND_PROPERTY_BSU(#180, .F., .F.);
#1900=OPT_OR_MAND_PROPERTY_BSU(#190, .F., .F.);

/* Functional model class extension */
#1300=FUNCTIONAL_MODEL_CLASS_EXTENSION(#130, (#2303, #2304, #2305,
#2306, #2307, #2308), (#7), (#12),'001', '001', (), (), *, *, *,
(), (), (), $, (#900, #1000, #1100), (), (), (#1700, #1800, #1900), (),
(#3000), $, $, (), $);

/* Definition of the derivation table that computes 'prg' from 'side' */
#2401=FUNCTIONAL_DOMAIN_RESTRICTION((#186), (#176, #196, #206),
(#2402), $);
#2402=GUARDED_FUNCTIONAL_DOMAIN(#2403, #2405);
#2403=OTHERS();
#2405=TABLE_DEFINED_VALUE(#2406);
#2406=SELECT_EXPRESSION((#2407, #2408));
#2407=TABLE_LITERAL(#230);
#2408=EQUALS_EXPRESSION((#207, #177));

/* Definition of the methods */
#3000=METHOD(#3001, #3002, #7);
#3001=METHOD_SPECIF(#140, (#155, #165, #175, #205, #215), (#90, #100,
#110), ());
#3002=METHOD_BODY((#97, #107, #117, #177, #187, #197, #207), (#3019));

#3019=METHOD_STATEMENT((#3020));
#3020=GUARDED_STATEMENT(#3021, #3023);
#3021=BOOLEAN_LITERAL(.T.);
#3023=CALL_PROGRAM_STATEMENT(#187, #2401, (#97, #107, #117), (),
());

ENDSEC;
END-ISO-10303-21;

/*

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 609

Annex Q
(informative)

Guidelines for creating functional model classes
ISO 13584-42 provides rules and guidelines for creating hierarchies of parts families, i.e., hierarchies
of general model classes. When creating new representation categories, and/or new view exchange
protocols, intended to be represented by new functional model classes and, possibly, by new
functional view classes, the question arises whether some property shall be defined within a general
model class or within a functional model class. The following three rules provide guidelines for this
choice.

Q.1 RULE 1 — Representation property Vs item characteristics

When the value of some property for some item inserted in the same environment may change
without changing the item identification, this property shall be defined as a representation property in
some functional model class.

EXAMPLE 1 The price of a part, in the same currency, may change over the time. Therefore, this property is
not a part characteristics, it is a representation property that shall be defined within a functional model class.

EXAMPLE 2 The radius of the sphere that constitutes the end of a needle in a needle bearing results from the
production process of this needle. If the bearing supplier does not want to guarantee such a radius, this property
is not a part characteristics. It shall be represented in the functional model of geometry.

Q.2 RULE 2 — Sharing of parts' characteristics

When a property is a part characteristics, i.e., its value (for a given part) may never change without
changing the part, this property shall be defined within the general model class that models the family
of this part.

EXAMPLE The threaded diameter of a screw cannot change without changing the screw. Moreover, this
diameter is intended to be used in more than one representation category (for instance, geometry and any
representation category that refers to mechanical behaviour, for instance stress analysis). Therefore this
property shall be defined within the general model class of which one instance models this screw.

Q.3 RULE 3 — Context parameters Vs representation properties

Three criteria have been defined in order to define which properties should be considered as some
context parameters or some representation properties:

a) When the value of some properties in a parts family are measured in some environmental
condition, the context parameter(s) that characterise(s) this environment shall be represented,
within the general model that models this parts family, as a context parameter.

EXAMPLE In the catalogue of a semi-conductor manufacturer, the value provided for the LOW-state dc input
voltage, applied to a digital function of an integrated circuit, depends on two environmental conditions:the supply
voltage and the temperature.

b) When a usual selection criteria of a part consist of some environmental condition that capture a
user requirement, this environmental condition shall be represented as a context parameter in
the general model class that models this family of part. These context parameters may be used
both to filter the set of part that are proposed to the user and to compute some context-
dependent characteristics that proves useful for the user selection process.

EXAMPLE When selecting a bearing, the dynamic load and the required rotation speed are usually used as
selection criteria, they shall be modelled as context parameters.

ISO 13584-24:2003(E)

610 © ISO 2003 – All rights reserved

NOTE A context parameter is not intended to be recorded after the selection process. Therefore, if such
a context parameter is intended to be used in some functional model class, a different free model properties
shall be defined in this functional model class.

c) When some environmental condition is mainly required to create a representation, in some
context, of some part but not used for selection purpose, it shall be represented as a
(selectable) representation property in the relevant functional model.

EXAMPLE When creating a geometric representation of a bolt + nut assembly, the distance from the nut to
the head of the bolt is needed. This property shall be represented as a (selectable) representation property in
the functional model of geometry. If it is also considered as a selection criteria for the assembly, a different
property shall be modelled in the general model class as a context parameter.

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 611

Annex R
(informative)

EXPRESS-G diagrams
Figure R.1 through R.25 correspond to the EXPRESS schemas given in chapters 7 to 15. The
diagrams use the EXPRESS-G graphical notation for the EXPRESS language. EXPRESS-G is
defined in annex A of ISO 10303-11.

ISO 13584-24:2003(E)

612 © ISO 2003 – All rights reserved

Figure R.1 — ISO13584_instance_resource_schema diagram 1 of 3

(ABS)
uncontrolled_entity

_instance_value

simple_valuenumber_value

translatable_
string_value

boolean_value

integer_value real_value

INTEGER REAL

STRING

BOOLEAN
defined_entity

_instance_value

STEP_entity_
instance_value

2, 1 (ABS) level_spec_value

2, 2 (ABS) dic_class_instance

1, 1 (2, 3)

geometry_schema.
axis2_placement_2d

geometry_schema.
placement

geometry_schema
.axis1_placement

geometry_schema
.axis2_placement_3d

product_definition
_schema

.product_category

product_property_
definition_schema
.property_definition

product_definition
_schema.product

person_organisation_
schema.person

organization_select

product_definition
_schema

.product_definition

representation_schema
.representation

product_definition
schema.product
definition_formation

representation_schema
.representation_item

ISO13584_external_file
_schema.representation

_reference

ISO13584_external
_file_schema

.program_reference

PLIB_entity_
instance_value

controlled_entity
_instance_value

complex_value

entity_instance
_value

primitive_value

representation_schema
.representation_context

geometry_schema.
geometric_

representation_context

1, 2 (3)

1, 3 (3)

1, 4 (3)

1, 5 (3)
1, 6 (3)

1, 9 (3)

1, 7 (3) 1, 8 (3)

string_value translated_
string_value

string_values
L[1:?]

ISO13584_IEC61360_language_
resource_schema.present_translations

languages

ISO13584_external_file
_schema.property

_value_external_item

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 613

REAL

(ABS)
level_spec_value

int_level_
spec_value

real_level_
spec_value

(ABS)
dic_class_
instance

(ABS)
dic_item_
instance

dic_component_
instance

dic_material_
instance

(ABS)
lib_item_
instance

lib_component_
instance

lib_material_
instance

dic_f_model_
instance

lib_f_model_
instance

property_value

NUMBER

dic_f_view_
instance

*values A[1:4]

INTEGER
(RT) *values A[1:4](RT) *values A[1:4]

ISO13584_IEC61360
_dictionary_schema

.data_type_BSU

*class_def

*properties
L[0:?]

1, 1 primitive_value*its_value

ISO13584_IEC61360
_dictionary_schema

.property_BSU

prop_def

1

1

STRING

STRING

supplier_identification

supplier_designation

user_identification

user_designation

*generated_by

view_of

2, 1 (1,3)

2, 2 (1, 3)

1

1

representation_schema
.representation

dic_feature_
instance

lib_feature_
instance

property_or_data_type_BSU

ISO13584_IEC61360
_dictionary_schema

.property_BSU

ISO13584_IEC61360
_dictionary_schema

.class_BSU *case_of
S[0:?]

context_dependent
property_value

the_context
L[1:?]

ISO13584_IEC61360_
language_ressource_schema

.translatable_label

BOOLEAN

is_global_id

2, 3 (3) 2, 4 (3)

ISO13584_IEC61360_
dictionary_schema

.version_type

source_class_content

Figure R.2 — ISO13584_instance_resource_schema diagram 2 of 3

ISO 13584-24:2003(E)

614 © ISO 2003 – All rights reserved

null_or_
boolean_value

1, 5 boolean_value

null_or_
integer_value

null_or_
real_value

null_or_
primitive_value

null_or_translatable
string_value

null_or_int_
level_spec_value

null_or_real_
level_spec_value

null_or_entity_
instance_value

null_or_dic_
class_instance

null_value

2, 2 (ABS) dic_class_instance

1, 1 (ABS) primitive_value

1, 6 entity_instance_value 1, 3 integer_value

2, 4 real_level_spec_value 2, 3 int_level_spec_value 1, 4 translatable
 string_value

1, 2 real_value

2, 1 (ABS) level_spec_value

null_or_level_
spec_value

null_or_
number_value

1, 9 number_value

null_or_
simple_value

null_or_
complex_value

1, 7 (ABS) simple_value

1, 8 (ABS) complex_value

Figure R.3 — ISO13584_instance_resource_schema diagram 3 of 3

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 615

ISO13584_IEC61360
_dictionary_schema

.level

1, 4 (2)

(ABS)
level_spec_
expression

(ABS)
entity_instance_

expression

(ABS)
class_instance_

expression

library_expression

(ABS)
level_spec_

variable

(ABS)
entity_instance_

variable

(ABS)
class_instance_

variable

ISO13584
_expressions_schema

.variable

ISO13584_generic
_expressions_schema

.generic_variable

int_level_spec_
variable

real_level_spec_
variable

1

value_type

levels *L[1:4]

1, 2 (2)

1, 1 (2) 1, 3 (2) 1, 5 (3, 3)

ISO13584_IEC61360
_dictionary_schema

.class_BSU

expr_type

1, 6 (3)

1, 7 (3, 3, 3, 3)

ISO13584_generic
_expressions_schema
.generic_expression

ISO13584_generic
_expressions_schema
.generic_expression

ISO13584_generic
_expressions_schema
.generic_expression

ISO13584_IEC61360
_dictionary_schema

.number_type

library_variable

ISO13584
_expressions_schema

.expression

1, 8 (3)

STRING

type_name
S[1:?]

Figure R.4 — ISO13584_library_expressions_schema diagram 1 of 3

ISO 13584-24:2003(E)

616 © ISO 2003 – All rights reserved

ISO13584_generic
_expressions_schema

.simple_generic_expression

1

(ABS)
simple_level_spec

_expression

(ABS)
level_spec_

literal

ISO13584_generic
_expressions_schema

.simple_generic_expression
1, 1 (ABS) level_spec_expression

1, 2 (ABS) level_spec_variable

1

int_level_spec_
literal

real_level_spec_
literal

ISO13584_generic
_expressions_schema

.generic_literal

ISO13584_instance
_resource_schema

.int_level_spec_value

ISO13584_instance
_resource_schema

.real_level_spec_value

ISO13584_instance
_resource_schema
.level_spec_value

*the_value

(RT)
 *the_value

(RT)
*the_value

1

(ABS)
simple_entity_

instance_expression

(ABS)
entity_

instance_literal
1, 4 (ABS) entity_instance_variable

1, 3 (ABS) entity_instance_expression

ISO13584_generic
_expressions_schema

.generic_literal

*the_value ISO13584_instance
_resource_schema

.entity_instance_value

Figure R.5 — ISO13584_library_expressions_schema diagram 2 of 3

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 617

1
1

property_
assignment

*its_value prop_def

exists_valuefor_variable1, 8 (ABS) library_variable

(DER) operand

1, 5 (ABS)
class_instance_expression

1

*the_value

ISO13584_generic
_expressions_schema

.simple_generic_expression

(ABS)
simple_class_

instance_expression
ISO13584_generic

_expression_schema
generic_literal

ISO13584_instance
_resource_schema
.dic_class_instance

1, 6 (ABS) class_instance_variable (ABS)
class_

instance_literal

ISO13584_generic
_expressions_schema

.unary_generic_expression

(ABS)
unary_class_

instance_expression

1, 5 (ABS)
class_instance

_expression

unary_class_
instance_constructor

(ABS)
class_instance
_constructor

(DER) operands
L[2:2]

1, 7 library_expression

ISO13584_generic
_expressions_schema

.binary_generic_expression

binary_class_
instance_constructor

(ABS)
binary_class_

instance_expression

(DER) operands
L[2:?]

ISO13584_generic
_expressions_schema

.multiple_arity_generic_
expression

multiple_arity_class_
instance_constructor

(ABS)
multiple_arity_class_
instance_expression

1, 7 library_expression
ISO13584_IEC61360
_dictionary_schema

.property_BSU

ISO13584_generic
_expressions_schema

.unary_generic_expression

ISO13584_generic
_expressions_schema

.boolean_defined_function

properties S[1:?]

3,1 property_assignment

1, 7 library_expression

1, 7 library_expression

3,1 property_assignment

(RT) properties S[1:1]

(RT) properties S[2:2]

(RT) properties S[2:?]

3,1 (3, 3)

ISO13584_generic
_expressions_schema

.binary_generic_expression

instance_comparison_equal

Figure R.6 — ISO13584_library_expressions_schema diagram 3 of 3

ISO 13584-24:2003(E)

618 © ISO 2003 – All rights reserved

(ABS)
table

_identification

ISO13584_generic
_expressions_schema
.variable_semantics

table
_extensiontable

_specification

RDB_table
specification

RDB_table_
extension

1, 1 (3)

*content *L[1:?]

(INV) belongs_to

(RT)
content *L[1:?]

*key S[1:?]

column_meaning *L[1:?]

ISO13584_IEC61360
_dictionary_schema

.date_type

content_revision_date

revision_of_content

(ABS)
column

(ABS)
simple_column

boolean_column(ABS)
formatted_column

string_column
(ABS)

number_column

integer_column real_column

2, 1 (ABS) complex_column

ISO13584_instance
_resource_schema

.null_or_primitive_value

ISO13584_instance
_resource_schema

.null_or_integer_value

ISO13584_instance
_resource_schema
.null_or_real_value

1

1

1

1

values L[1:?]

value_format

(RT)
 values L[1:?]

(RT)
values L[1:?]

(RT) values L[1:?]

(RT)
values L[1:?]

(RT)
values L[1:?]

(RT)
values L[1:?]

table_identifier *table_identifier

ISO13584_IEC61360
_dictionary_schema

.revision_type

ISO13584_instance
_resource_schema

.null_or_simple_value

ISO13584_IEC61360
_dictionary_schema
.value_format_type

ISO13584_instance
_resource_schema

.null_or_boolean_value

ISO13584_instance
_resource_schema

.null_or_translatable_
string_value

ISO13584_instance
_resource_schema

.null_or_number_value

Figure R.7 — ISO13584_table_resource_schema diagram 1 of 4

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 619

1

(ABS)
complex_column

(ABS)
level_spec
_column

(ABS)
class_instance

_column

ISO13584_instance
_resource_schema

.null_or_complex_value

ISO13584_instance
_resource_schema

.null_or_level_spec_value

1

(RT) values L[1:?]

(RT) *values
L[1:?]

entity_instance
_column

int_level_spec
_column

real_level_spec
_column

ISO13584_IEC61360
_dictionary_schema

.class_BSU

ISO13584_instance
_resource_schema

.null_or_dic_class_instance

class_ref

(RT) *values L[1:?]

ISO13584_IEC61360
_dictionary_schema

.level

 levels *L[1:4]

ISO13584_instance
_resource_schema

.null_or_int_level_spec_value

(RT) values L[1:?] (RT) values L[1:?]

ISO13584_instance
_resource_schema

.null_or_entity_instance_value

STRING

type_name
S[1:?]

(RT)
*values
L[1:?]

2, 1 (1)

ISO13584_instance
_resource_schema

.null_or_real_level_spec_value

Figure R.8 — ISO13584_table_resource_schema diagram 2 of 4

ISO 13584-24:2003(E)

620 © ISO 2003 – All rights reserved

(ABS)
table_expression

1, 1 (ABS) table_identification

select_expression
(ABS)

simple_table_
expression

(ABS)
unary_table_
expression

(ABS)
binary_table_

expression

(ABS)
multiple_arity_

table_expression

ISO13584_generic
_expressions_schema
.multiple_arity_generic

_expression

ISO13584_generic
_expressions_schema

.unary_generic
_expression

table_variable table_literal

1

1

multiple_arity_
cartesian_product

natural_join_
expression

(ABS)
set_table_
expression

1

ISO13584_generic
_expressions_schema

.generic_variable

structure
L[1:?]

*its_key
S[1:?]

*the_value

(RT) operand

(RT) operands L[2:2]

(RT)
operands

L[2:?]

ISO13584_generic
_expressions_schema
.variable_semantics

(DER) *its_columns L[1:?]

(DER) the_key S[1:?]

ISO13584_generic
_expressions_schema
.generic_expression

ISO13584_table
_resource_schema
.generic_expression

*table_1
(DER)

*table_2
(DER)

projection_
expression

*argts_var

(DER)
*from_table

(DER)
*condition

union_table_
expression

intersect_table_
expression

difference_table_
expression

1

ISO13584_generic
_expressions_schema

.generic_variable

ISO13584_generic
_expressions_schema

.generic_literal

LOGICAL

(DER)
is_sql_mappable

ISO13584_generic
_expressions_schema

.simple_generic_expression

*domain

*ctxt

RDB_table_
variable

column_traversal_
variable_semantics

ISO13584_generic
_expressions_schema

.binary_generic
_expression

ISO13584_generic
_expressions_schema

.binary_generic
_expression

ISO13584_generic
_expressions_schema
.variable_semantics

Figure R.9 — ISO13584_table_resource_schema diagram 3 of 4

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 621

in_RDB_
table_boolean

expression

ISO13584_generic
_expressions_schema
.generic_expression

(DER) (RT)
*from_table

(DER) *tuple L[1:?]

ISO13584_generic
_expressions_schema

.multiple_arity_generic_expression

ISO13584_generic
_expressions_schema

.SQL_mappable_defined_function

ISO13584_generic
_expressions_schema

.boolean_defined_function

Figure R.10 — ISO13584_table_resource_schema diagram 4 of 4

ISO 13584-24:2003(E)

622 © ISO 2003 – All rights reserved

property_
semantics_or_path

(ABS)
property_
semantics

ISO13584_IEC61360
_dictionary_schema

.property_BSU

sub_property_
path

(ABS)
self_property_

semantics

(ABS)
open_view_

property_semantics

(ABS)
open_view_

variable_
semantics

open_view_
property_value_

semantics

(ABS)
self_variable_

semantics

(ABS)
self_class_
variable_
semantics

its_own_property

*the_property

1

self_property_
value_semantics

(ABS)
self_property_

name_semantics

self_property_
preferred_name_

semantics

self_property_
short_name_

semantics

self_property_
code_semantics

self_property_
version_semantics

self_property_
class_code_
semantics

self_property_
class_supplier_
code_semantics

self_property_
class_version_

semantics

(ABS)
self_class_

name_semantics

self_class_
preferred_name_

semantics

self_class_
short_name_

semantics

self_class_
code_semantics

self_class_
supplier_code_

semantics

self_class_
version_semantics

1

1 1

*the_property

its_own_property

1

ISO13584_generic
_expressions_schema
.variable_semantics

ISO13584_generic
_expressions_schema
.variable_semantics

Figure R.11 — ISO13584_variable_semantics_schema diagram 1 of 1

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 623

ISO13584_external_
files_schema

.message

ISO13584_
expressions_schema
.numeric_expression

*minimal
*maximal

*step

domain_
restriction

ISO13584_
expressions_schema
.boolean_expression

others

functional_
domain_
restriction

guarded_
simple_domain

(ABS)
simple_domain

type_defined_
domain

subclass_defined_
domain

constant_range_
defined_domain

variable_range_
defined_domain

predicate_
defined_domain

(ABS) simple_
functional_

domain

table_defined_
domain

*from_table

constraint_description

defines S[1:?]

assumes S[0:?]

*domains S[1:?]

ISO13584_table
_resource_schema
.table_identification

(DER) base_tables S[0?]

*guard

domain

(INV) item_of

guarded_
functional_

domain

(RT)
domains S[1:?]

(INV)
referenced_by

*from_class

*minimal
*maximal
*step

ISO13584_table
_resource_schema
.table_expression

ISO13584_IEC61360
_dictionary_schema

.class_BSU

ISO13584_
expressions_schema

.literal_number

ISO13584_
expressions_schema
.boolean_expression

*constraint

1

null_
defined_

value

table_
defined_

value

library_expression
defined_value

1

ISO13584_table
_resource_schema
.table_expression

*from_table ISO13584_library_
expressions_schema
.library_expression

its_value

(RT) domain

boolean_expression
_or_other

ISO13584_generic
_expressions_schema
.variable_semantics

Figure R.12 — ISO13584_domain_resource_schema diagram 1 of 1

ISO 13584-24:2003(E)

624 © ISO 2003 – All rights reserved

1, 1 (6)

dictionary

a_posteriori_semantic_
relationships

S[0:?]

names

note

remark
base_protocols S[0:?]

referred_suppliers
S[1:?]

*contained_classes
*L[0:?]

(ABS)
data_exchange_

specification_identification

supported_vep
S[0:?]

dictionary_in_
standard_format

status
support_resource
_schema.identifier

application

name

date_time_schema
.year_number

6, 1 (ABS) a_posteriori_semantic_relationship

ISO13584_IEC61360
_dictionary_schema

.item_names

ISO13584_IEC61360
_dictionary_schema

.note_type

ISO13584_IEC61360
_dictionary_schema

.remark_type

ISO13584_IEC61360
_dictionary_schema

.supplier_BSU

ISO13584_IEC61360
_dictionary_schema

.class_BSU

ISO13584_external
_files_schema

.external_file_protocol

support_resource
_schema.label

library_iim_
identification

view_exchange_
protocol_identification

1

library_
structure

level

application_context_schema
.application_protocol_definition

referenced_ISO10303_AP

ISO13584_external_files
_schema.

_external_file_protocol
external_file_protocols

S[0:?]

*responsible_supplier

date

BOOLEAN

*identified_by

referenced_dictionaries S[0:?]

*is_complete

support_resource
_schema.identifier

*update_agreement

6, 2 dictionary_identification

*updates

support_resource
_schema.identifier

source_document_identifier

Figure R.13 — ISO13584_extended_dictionary_schema diagram 1 of 7

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 625

program_
library_BSU

table_BSU document_BSU

ISO13584_IEC61360
_dictionary_schema

.supplier_related_BSU

ISO13584_IEC61360
_dictionary_schema
.class_related_BSU

ISO13584_table
_resource_schema
.table_identification

ISO13584_IEC61360
_dictionary_schema

.supplier_BSU

defined_by

(RT) code

(DER) absolute_id*

supplier_
program_library_

relationship

(RT)
related_tokens

S[1:?]

(INV)
 associated_to_supplier

ISO13584_IEC61360
_dictionary_schema

.class_BSU

name_scope name_scope
(RT) code

*table_code_type

*document
_code_type

(RT) code

support_resource
_schema.identifier

class_document
_relationship

class_table
_relationship

(DER)
absolute_id*

(DER) absolute_id*

(RT)
 related_tokens

S[1:?] (RT)
 related_tokens

S[1:?]

2, 1 (7)

2, 2 (3,3,3,4,4,4,4,5,5,7)

2, 3 (3,3,3,4,4,4,4,6,6,7)

*program_library
_code_type

support_resource
_schema.identifier

ISO13584_IEC61360
_dictionary_schema

.supplier_BSU_relationship

ISO13584_IEC61360
_dictionary_schema

.class_BSU_relationship

ISO13584_IEC61360
_dictionary_schema

.code_type

ISO13584_IEC61360
_dictionary_schema

.code_type

ISO13584_IEC61360
_dictionary_schema

.code_type

Figure R.14 — ISO13584_extended_dictionary_schema diagram 2 of 7

ISO 13584-24:2003(E)

626 © ISO 2003 – All rights reserved

item_class_case_of

(ABS)
a_priori_semantic

relationship

1

ISO13584_IEC61360
_dictionary_schema

.item_class

ISO13584_IEC61360
_dictionary_schema

.class_BSU

ISO13584_IEC61360
_dictionary_schema

.data_type_BSU

ISO13584_IEC61360
_dictionary_schema

.property_BSU

*referenced_properties
LIST [0:?]

*referenced_data_types
SET [0:?]

*referenced_classes
SET [1:?]

material_class_
case_of

component_class_
case_of

*is_case_of
S[1:?]

ISO13584_IEC61360
_dictionary_schema

.property_BSU

ISO13584_IEC61360
_dictionary_schema

.data_type_BSU

*imported_properties
L[0:?]

*imported_types
S[0:?]

ISO13584_IEC61360
_dictionary_schema
.component_class

ISO13584_IEC61360
_dictionary_schema

. class_BSU

ISO13584_IEC61360
_dictionary_schema

.material_class

4,1 functional_model_class 4,2 fm_class_view_of

ISO13584_IEC61360
_dictionary_schema

.property_BSU

ISO13584_IEC61360
_dictionary_schema

.data_type_BSU

ISO13584_IEC61360
_dictionary_schema

. class_BSU

1

(DER) (RT)
referenced_properties

LIST [0:?]

(DER) (RT)
referenced_data_types

SET [0:?]

(DER) (RT)
referenced_classes

SET [1:?]

ISO13584_IEC61360
_dictionary_schema

.class

2,2 document_BSU

2,3 table_BSU

*referenced_tables
SET [0:?]

*referenced_documents
SET [0:?]

2,2 document_BSU

2,3 table_BSU

*imported_tables
SET [0:?]

* imported _documents
SET [0:?]

2,2 document_BSU

2,3 table_BSU
(DER)(RT)

referenced_tables
SET [0:?]

(DER)(RT)
 referenced _documents

SET [0:?]

5,1 feature_class_
case_of

Figure R.15 — ISO13584_extended_dictionary_schema diagram 3 of 7

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 627

4, 2 (3)
1

fm_class_
view_of

functional_
model_class

(ABS)
abstract_functional_

model_class
ISO13584_IEC61360
_dictionary_schema

.class_BSU *created_view

view_control_
variable_range

*v_c_v_range S [0:?]

ISO13584_IEC61360
_dictionary_schema

.property_BSU

*parameter_type

INTEGER
*range_lobound

range_hibound
ISO13584_IEC61360
_dictionary_schema

.property_BSU

ISO13584_IEC61360
_dictionary_schema

.data_type_BSU

*imported_properties
_from_view L[0:?]

*imported_types_
from_models S[0:?]

ISO13584_IEC61360
_dictionary_schema

.property_BSU

ISO13584_IEC61360
_dictionary_schema

.data_type_BSU

ISO13584_IEC61360
_dictionary_schema

.class_BSU

*imported_properties_
from_item

L[0:?]

*view_of

*imported_types_
from_item

S[0:?]

4, 1 (3)
ISO13584_IEC61360
_dictionary_schema

.property_BSU

ISO13584_IEC61360
_dictionary_schema

.data_type_BSU

ISO13584_IEC61360
_dictionary_schema

. class_BSU

(DER) (RT)
referenced_properties

LIST [0:?]

(DER) (RT)
referenced_data_types

SET [0:?]

(DER) (RT)
referenced_classes

SET [2:2]

ISO13584_IEC61360
_dictionary_schema

.property_BSUISO13584_IEC61360
_dictionary_schema

.data_type_BSU

ISO13584_IEC61360
_dictionary_schema

. class_BSU

(DER) (RT)
referenced_properties

LIST [0:?]
(DER) (RT)

referenced_data_types
SET [0:?]

(DER) (RT)
referenced_classes

SET [1:?]

ISO13584_IEC61360
_dictionary_schema

.class

2,2 document_BSU

2,3 table_BSU

*imported_tables
_from_item
SET [0:?]

*imported_documents_from_models SET [0:?]

2,2 document_BSU

2,3 table_BSU
*imported_documents

_from_item
SET [0:?]

(DER)(RT)
referenced_tables

SET [0:?]

2,2 document_BSU

2,3 table_BSU
(DER)(RT)

referenced_documents
SET [0:?]

2,2 document_BSU

2,3 table_BSU

(DER)(RT)
referenced_tables

SET [0:?]

(DER)(RT)
referenced_documents

SET [0:?]

*imported_tables
_from_view SET [0:?]

case_of S [0:?]

*imported_properties
_from_models

L[0:?]

*imported_types_
from_view S[0:?]

*imported_documents
_from_view SET [0:?]

*imported_tables_
from_models SET [0:?]

Figure R.16 — ISO13584_extended_dictionary_schema diagram 4 of 7

ISO 13584-24:2003(E)

628 © ISO 2003 – All rights reserved

(DER)
view_properties

*L[0:?]

ISO13584_IEC61360
_dictionary_schema

.class

functional_
view_class

ISO13584_IEC61360
_dictionary_schema

.property_BSU

*view_control_variables
*L[0:?]

view_properties
*L[0:?]

(DER) described_by *L[0:?]

ISO13584_IEC61360
_dictionary_schema

.property_BSU

STRING
*representation_type

non_instanciable
functional
view_class

ISO13584_IEC61360
_dictionary_schema.

item_class

feature_class

ISO13584_IEC61360
_dictionary_schema

.document

referenced_
document

document_reference

ISO13584_IEC61360
_dictionary_schema

.graphics

referenced_
graphics

graphics_reference

2,2 document_BSU 2,2 document_BSU

ISO13584_IEC61360
_dictionary_schema.
entity_instance_type

representation_type
geometric_

representation_
context_type

representation_
reference_

type

program_
reference_

type

feature_class

_case_of

5,1 (3)

Figure R.17 — ISO13584_extended_dictionary_schema diagram 5 of 7

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 629

2,3 table_BSU

(ABS)
a_posteriori_

semantic_
relationship

a_posteriori_
case_of

a_posteriori_
view_of

1
*source

*is_case_of

corresponding_properties
L[0:?] OF L[2:2]

*functional_model

*is_view_of

corresponding_properties
L[0:?] OF L[2:2]

table_content

ISO13584_IEC61360
_dictionary_schema

.content_item

(RT)
*dictionary_definition

(DER)
table_identifier

RDB_table_content

6, 1 (1)

ISO13584_IEC61360
_dictionary_schema

. class_BSU

ISO13584_IEC61360
_dictionary_schema

. class_BSU

ISO13584_IEC61360
_dictionary_schema

. property_BSU

ISO13584_IEC61360
_dictionary_schema

. property_BSU

ISO13584_table
_resource_schema

.RDB_table_extension

ISO13584_table
_resource_schema

.table_extension

representation
_P_DET

ISO13584_IEC61360
_dictionary_schema

.property_DET

dictionary_identification
*dictionary_code_type

code

ISO13584_IEC61360
_dictionary_schema.

version_type

version
ISO13584_IEC61360
_dictionary_schema.

revision_type

ISO13584_IEC61360
_dictionary_schema.

supplier_bsu defined_by

revision

support_resource_schema.identifier

(DER)
*absolute_id

6, 2 (1, 1, 1)

(INV) definition S[0:1]
2, 6 dictionary

ISO13584_IEC61360
_dictionary_schema

.code_type

2,3 table_BSU

Figure R.18 — ISO13584_extended_dictionary_schema diagram 6 of 7

ISO 13584-24:2003(E)

630 © ISO 2003 – All rights reserved

ISO13584_IEC61360
_dictionary_schema

.supplier_related_BSU
ISO13584_IEC61360
_dictionary_schema
.class_related_BSU

ISO13584_IEC61360
_dictionary_schema
.dictionary_element

person_organization
_schema

.organization(RT)
identified_by

languages

(RT)
*column_meaning

*L[1:?]

(ABS)
supplier_related_

_dictionary_element

(ABS)
class_related_

dictionary_element(RT)
identified_by

ISO13584_IEC61360
_dictionary_schema

.item_names (RT)
identified_by

ISO13584_IEC61360
_dictionary_schema

.definition_type

ISO13584_IEC61360
_dictionary_schema

.note_type

ISO13584_IEC61360
_dictionary_schema

.remark_type

table
_element

ISO13584_table
_resource_schema
.table_specification

1

RDB_table
_element

2, 3 table_BSU

(RT)
identified_by

(RT)
key S[1:?]

ISO13584_table
_resource_schema

.RDB_table_
specification

(DER)
table_identifier

person_organization
_schema.person

authors
L[1:?]

2, 2 document_BSU

publishing_
organisation

document_element
_with_http_access

document_element_with
_translated_http_access

ISO13584_IEC61360_
language_ressource_schema.

present_translations

absolute_
URL_type

support_ressource
_schema.
identifier

remote_
location

1

remote_
locations

L [1:?]

program_library
_element

2,1 program_library_BSU

(RT)
identified_by

names

note

remark

definition

names

note

remark

definition

document
_element

ISO13584_table
_resource_schema
.table_identification

ISO13584_variable
_semantics_schema

.self_property_semantics

Figure R.19 — ISO13584_extended_dictionary_schema diagram 7 of 7

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 631

ISO13584_extended
_dictionary_schema

.dictionary_in_standard_
format

ISO13584_external
_files_schema.linked_
external_file_protocol

library

ISO13584_extended
_dictionary_schema

.dictionary

library_in_
standard_format

*linked_interface
S[0:?]

1, 1 (2, 2, 2, 3, 3, 3, 3, 3
 3, 3, 3, 3, 3, 3, 3, 3, 3)

opt_or_mand
_property_BSU

BOOLEAN

is_optional

displayable
property

ISO13584_IEC61360
_dictionary_schema.

property_BSU

property
_classification

classification
_value

INTEGER

its_valueISO13584_IEC61360
_dictionary_schema.

property_BSU

prop_def

property_value
_recommended_presentation

prop_def ISO13584_IEC61360
_dictionary_schema.
value_format_type

recommended_
presentation_format

measure_schema.unit

recommended_
presentation_unit

1, 3 (2)

1, 2 (2)

Figure R.20 — ISO13584_library_content_schema diagram 1 of 4

ISO 13584-24:2003(E)

632 © ISO 2003 – All rights reserved

ISO13584_external
_files_schema.

class_extension_external_item

(RT)
dictionary_definition

ISO13584_IEC61360
_dictionary_schema.

content_item

(ABS)
class_extension

ISO13584_IEC61360
_dictionary_schema.

class_BSU

(ABS)
model_class
_extension

1

*referenced_
external_items

S[0:?]

*used_protocols
S[0:?]

* content_version

* content_revision

ISO13584_IEC61360
_dictionary_schema.

version_type

ISO13584_IEC61360
_dictionary_schema.

revision_type

ISO13584_external
_files_schema.

external_file_protocol

(ABS)
explicit_model_
class_extension

(ABS)
implicit_model_
class_extension

ISO13584_extended
_dictionary_schema.

view_exchange
_protocol_identification

referenced_view_
exchange_protocol

L[0:?]

ISO13584_domain
_resource_schema.

functional_
domain_restriction

ISO13584_domain
_resource_schema.
domain_restriction

*class_extension
S[0:?]

*filters
S[0:?]

*derivation S[0:?]

*selectable_properties
*L[0:?]

*required_properties
*L[0:?]

3, 1 item_class_extension

3, 2 functional_model_class_extension

4, 1 explicit_item_class_extension

4, 2 explicit_functional_model_class_extension

1, 1 opt_or_mand_property_BSU

1 1

1, 1 opt_or_mand_property_BSU

*derived_properties
*L[0:?]

ISO13584_IEC61360
_dictionary_schema.

property_BSU

ISO13584_instance
resource_schema.
dic_class_instance

instance_identification *L[1:?]

population *L[1:?]
BOOLEAN

table_like

1, 2 property_classification

* classification
S[0:?]

1, 3 property_value_
recommended_presentationrecommended_

presentation S[0:?]

Figure R.21 — ISO13584_library_content_schema diagram 2 of 4

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 633

context_param_icon
L[0:?]

item_class
_extension1, 1 opt_or_mand_property_BSU

*selection_context_parameters *L[0:?]

*identification_characteristics *L[0:?]

*derived_characteristics *L[0:?]

*context_dependent_characteristics *L[0:?]

BOOLEAN
identified_item

*create_icon
L[0:?]

*create_msg

*supplier_identification

*supplier_designation

*access_icon

*content_msg

3, 2 (2)

(DER) selectable_properties *L[0:?]

(DER) required_properties *L[0:?]

(DER) derived_properties *L[0:?]

*required_item_characteristics *L[0:?]

free_model_properties *L[0:?]

*representation_properties *L[0:?]

*method_variables S[0:?]

available_views_msg

context_param_msg

ISO13584_external
_files_schema
.A6_illustration

available_views_icon

referenced_
representation

S[0:?]

measure_unit

ISO13584_external
_files_schema
.A6_illustration

ISO13584
_expressions_schema

.string_expression

ISO13584_external
_files_schema
.A9_illustration

ISO13584_external
_files_schema

.message

1, 1 opt_or_mand_property_BSU functional_model
_class_extension

ISO13584_external
_files_schema

.message

representation
_schema

.representation

measure_schema
.global_unit_assigned

_context

provided_methods
S[0:?] ISO13584_method

_schema
.method

3, 1 (2)

ISO13584_external
_files_schema

.illustration

class_presentation_on_paper
L[0:?]

class_presentation_on_screen
L[0:?]

(DER) selectable_properties *L[0:?]

(DER) required_properties *L[0:?]

(DER) derived_properties *L[0:?]
ISO13584_external

_files_schema
.message

ISO13584_external
_files_schema

.message

ISO13584_external
_files_schema

.message

Figure R.22 — ISO13584_library_content_schema diagram 3 of 4

ISO 13584-24:2003(E)

634 © ISO 2003 – All rights reserved

context_param_icon
L[0:?]

explicit_item_
class_extension

*create_icon
L[0:?]

*create_msg

*access_icon

*content_msg

4, 2 (2)

*required_item_values
S[0:?]

available_views_msg

context_param_msg

ISO13584_external
_files_schema
.A6_illustration

available_views_icon

measure_unit

ISO13584_external
_files_schema
.A6_illustration

ISO13584_external
_files_schema
.A9_illustration

ISO13584_external
_files_schema

.message

explicit_functional_model
_class_extension

ISO13584_external
_files_schema

.message

measure_schema
.global_unit_assigned

_context

4, 1 (2)

ISO13584_external
_files_schema

.illustration

class_presentation_on_paper
L[0:?]

class_presentation_on_screen
L[0:?]

ISO13584_IEC61360
_dictionary_schema.

property_BSU

referenced_
representation ISO13584_IEC61360

_dictionary_schema.
property_BSU

Figure R.23 — ISO13584_library_content_schema diagram 4 of 4

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 635

(ABS)
external_file

_protocol

(ABS)
program_protocol

(ABS)
data_protocol

(ABS)
standard
_protocol

(ABS)
non_standard

_protocol

1

1

standard
data_protocol

non_standard
data_protocol

(ABS)
simple_

program_protocol

linked_interface
_program_protocol

1

non_standard_simple_
program_protocol

standard_simple_
program_protocol

1

1

1, 1 (2)

designation

1

country

level

*protocol_version

organisation
person_organization
_schema.organization

*protocol_name

http_protocol

1

3, 2 IAB_RFC
http_RFC

1, 2 (2, 2, 2)

*status

language

*compiler_name

*compiler
_version

*compiler
_supplier

base_protocol

1, 3 (2, 2)

link_
libraries
S[1:?]

program_status

ISO13584_IEC61360
_dictionary_schema

.item_names

support_resource
_schema.identifier

support_resource
_schema.identifier

person_organization
_schema.organization

ISO13584_extended
_dictionary_schema

.program_library_BSU

*compiler_version_type

Figure R.24 — ISO13584_external_file_schema diagram 1 of 3

ISO 13584-24:2003(E)

636 © ISO 2003 – All rights reserved

Figure R.25 — ISO13584_external_file_schema diagram 2 of 3

referenced_external_item

(ABS)
external_item

(ABS)
supplier_BSU

_related_content

(ABS)
class_BSU

_related_content
(ABS)

dialogue_resource
(ABS)

representation
_reference

program_
reference

(ABS)
dictionary_

external_item

(RT)
used_protocol

(RT)
used_protocol

(ABS)
class_extension_

external_item

revision

1, 1 (ABS) external_file_protocol

3, 1 (ABS) external_content

used_protocol

content

(INV) describes

(INV) *belongs_to

message

ISO13584_instance
_resource_schema

.property_or
_datatype_BSU

1

1, 3 (ABS) program_protocol

syntactical_
name

(RT) used_protocol

in_parameters
L[0:?]

1

program_
_library_content

1

(RT)
dictionary
_definition

(RT)
dictionary
_definition

1, 2 (ABS) data_protocol

(RT)
used_protocol

(RT)
used_protocol

A6_illustration A9_illustration
1

1

*external_item
_code_type

*code

(RT)
dictionary
_definition

(RT)
dictionary
_definition

out_
parameters

L[0:?]

representation_id

ISO13584_IEC61360
_dictionary_schema

.content_item

ISO13584_library
_content_schema.model

_class_extensionISO13584_IEC61360
_dictionary_schema

.revision_type

support_resource
_schema.identifier

1, 2 (ABS) data_protocol

inout_parameters
L[0:?]

support_resource
_schema.label

ISO13584_extended
_dictionary_schema
.class_related_BSU

ISO13584_extended
_dictionary_schema

.supplier_related_BSU

ISO13584_extended
_dictionary_schema

.program_library_BSU

ISO13584_extended
_dictionary_schema

.document_BSU

illustration

1, 3 (ABS) program_protocol

support_resource
_schema.identifier

program_reference
_name_type

measure_schema.
length_measure_

with_unit

*width

*height

illustration_type

kind_of_content

ISO13584_IEC1360
_dictionary_schema

.graphics

document_
content

property_value
external_item

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 637

(ABS)
external_content

translated_
external_content

not_translated_
external_content

language_
specific_
content

1

external_
file_unit

*consists_of L[1:?]

(INV) content_of
3, 1 (2)

character_
encoding

http_file

*MIME_type

*MIME_subtype

*http_file_name_type

mime

exchange_format

*http_file_name

file

format_RFC

INTEGER

remote_access

http_class
_directory

*http_directory

content_files S[1:?]

(INV) unit_of

*main_file

3, 2 (1)

class

not_translatable_
external_content

name

(INV)
content_of

ISO13584_IEC61360
_language_resource_schema.

present_translations

*languages

support_resource
_schema.identifier

ISO13584_extended
_dictionary_schema
.absolute_URL_type

ISO13584_IEC61360_
dictionary_schema

.class_BSU

support_resource
_schema.identifier

*external_file_address

*IAB_RFC

character_set_type

*http_directory_name_type

*content_encoding_type
content_encoding

Figure R.26 — ISO13584_external_file_schema diagram 3 of 3

ISO 13584-24:2003(E)

638 © ISO 2003 – All rights reserved

ISO13584_library
_content_schema
.functional_model
class_extension

method_body

2, 1 (ABS) simple_statement

*assignment_allowed
_variable

*accessible_variable
_for_method

*control_allowed
_variable

method method_specif

*declaration
S[1:?]

body

(INV)
*describes

(INV)
*specifies

specification

method_statement

guarded_statement

view_generation
L[1:?]

(INV)
defines

statements
L[1:?]

ISO13584
_expressions_schema
.boolean_expression

*guard

created_view

*v_c_v_range
S[0:?]

ISO13584_IEC61360
_dictionary_schema

.property_BSU

model_needed_properties
S[0:?]

referred_subobject_models
S[0:?]

*representation_interface

statement

1, 1 (2, 2, 2, 2, 2, 2)

ISO13584_library
_expressions_schema

.library_variable

ISO13584_external
_files_schema

.external_file_protocol

ISO13584_IEC61360
_dictionary_schema

.class_BSU

ISO13584_IEC61360
_dictionary_schema

.class_BSU

(INV)
its_class ISO13584_extended

_dictionary_schema
.view_control_variable

_range

(INV)
item_of

Figure R.27 — ISO13584_method_schema diagram 1 of 2

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 639

2, 1 (1)

(ABS)
simple_statementnull_statement assignment

_statement

ISO13584_library
_expressions_schema

.library_expression
1, 1 assignment_allowed_variable

(ABS)
modelling

_statement

(ABS)
predefined_

representation_
call_statement

(ABS)
sub_object_

view_statement

1

*assigned_value
*assigned_variable

set_reference
_lcs

begin_set

close_set

set_2d_
relative_view_level

send
_representation

_statement

send_
representation_

reference_statement

call
_program

_statement

*z_rotation

*x_translation

*x_rotation

*y_rotation

*y_translation

*z_translation

*set_name

*set_name

*offset

1, 1 assignment_allowed_variable

1
*corresponding_method_

variable

*representation_to_
be_processed

*corresponding_method_
variable

*representation_reference
_to_be_processed

1, 1 assignment_allowed_variable

*corresponding_method_
variable

input_parameters L[0:?]

inout_
parameters

L[0:?]

output_
parameters

L[0:?]

*program_reference
_to_be_processed

reference_
sub_item_

view_statement

constructed_
sub_model_

view_statement

*sub_object

*sub_model

1

ISO13584_IEC61360
_dictionary_schema

.class_BSU

ISO13584_library
_expressions_schema
.property_assignment

*created_view v_c_v_
values
S[0:?]

1

ISO13584_domain
_resource_schema
.functional_domain

_restriction

ISO13584_domain
_resource_schema
.functional_domain

_restriction

ISO13584_library
_expressions_schema

.library_expression

ISO13584_domain
_resource_schema
.functional_domain

_restriction

ISO13584_variable
_semantics_schema
.self_property_value

_semantics

ISO13584_library
_expressions_schema

.class_instance
_constructor

ISO13584
_expressions_schema
.numeric_expression

ISO13584
_expressions_schema

.string_expression

ISO13584
_expressions_schema

.string_expression

ISO13584
_expressions_schema
.numeric_expression

(INV)
referenced_by

Figure R.28 — ISO13584_method_schema diagram 2 of 2

ISO 13584-24:2003(E)

640 © ISO 2003 – All rights reserved

Annex S
(informative)

Notational Conventions and Generic Grammar
for URL-encoded strings

This annex summarises the augmented Backus-Naur Form (BNF) notations used in the HTTP
protocol, IAB RFC 2068, for syntax specification. It also uses these notations to outline the syntax of
URL encoded strings as defined in IAB RFC 1808.

S.1 Augmented BNF [IAB RFC 2068]

The augmented BNF includes the following constructs.

name = definition
The name of a rule is simply the name itself (without any enclosing"<" and ">") and is separated from
its definition by the equal "="character. White space is only significant in that indentation of
continuation lines is used to indicate a rule definition that spans more than one line.

"literal"
Quotation marks surround literal text. Unless stated otherwise, the text is case-insensitive.

rule1 | rule2
Elements separated by a bar ("|") are alternatives. For instance, "yes | no" will accept yes or no.

(rule1 rule2)
Elements enclosed in parentheses are treated as a single element. Thus, "(elem (foo | bar) elem)"
allows the token sequences "elem foo elem" and "elem bar elem".

*rule
The character "*" preceding an element indicates repetition. The full form is "<n>*<m>element"
indicating at least <n> and at most<m> occurrences of element. Default values are 0 and infinity so
that "*(element)" allows any number, including zero; "1*element"requires at least one; and
"1*2element" allows one or two.

[rule]
Square brackets enclose optional elements; "[foo bar]" is equivalent to "*1(foo bar)".

N rule
Specific repetition: "<n>(element)" is equivalent to"<n>*<n>(element)"; that is, exactly <n>
occurrences of (element).

; comment
A semi-colon, set off some distance to the right of rule text, starts a comment that continues to the end
of line. This is a simple way of including useful notes in parallel with the specifications.

S.2 URL-encoded string [IAB RFC 1808]

This is an augmented BNF description of the relative URL syntax. Note that this differs from the URL
syntax defined in RFC 1738:1995 in that all schemas are required to use a single set of reserved
characters and use them consistently within the major URL components.

The following rules define the allowed content of an URL as defined in IAB RFC 1808.

— URL = (absoluteURL | relativeURL) ["#" fragment]

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 641

— absoluteURL = generic-RL | (scheme ":" *(uchar | reserved))

— generic-RL = scheme ":" relativeURL

— relativeURL = net_path | abs_path | rel_path

— net_path = "//" net_loc [abs_path]

— abs_path = "/" rel_path

— rel_path = [path] [";" params] ["?" query]

— path = fsegment *("/" segment)

— fsegment = 1*pchar

— segment = *pchar

— params = param *(";" param)

— param = *(pchar | "/")

— scheme = 1*(alpha | digit | "+" | "-" | ".")

— net_loc = *(pchar | ";" | "?")

— query = *(uchar | reserved)

— fragment = *(uchar | reserved)

— pchar = uchar | ":" | "@" | "&" | "="

— uchar = unreserved | escape

— unreserved = alpha | digit | safe | extra

— escape = "%" hex hex

— hex = digit | "A" | "B" | "C" | "D" | "E" | "F" | "a" | "b" | "c" | "d" | "e" | "f"

— alpha = lowalpha | hialpha

— lowalpha = "a" | "b" | "c" | "d" | "e" | "f" | "g" | "h" | "i" | "j" | "k" | "l" | "m" | "n" | "o" | "p" | "q" | "r"

| "s" | "t" | "u" | "v" | "w" | "x" | "y" | "z"

— hialpha = "A" | "B" | "C" | "D" | "E" | "F" | "G" | "H" | "I" | "J" | "K" | "L" | "M" | "N" | "O" | "P" | "Q"

| "R" | "S" | "T" | "U" | "V" | "W" | "X" | "Y" | "Z"

— digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"

— safe = "$" | "-" | "_" | "." | "+"

— extra = "!" | "*" | "'" | "(" | ")" | ","

— national = "{" | "}" | "|" | "\" | "^" | "~" | "[" | "]" | "`"

— reserved = ";" | "/" | "?" | ":" | "@" | "&" | "="

— punctuation = "<" | ">" | "#" | "%" | <">

ISO 13584-24:2003(E)

642 © ISO 2003 – All rights reserved

Bibliography

[1] ELU, P., PIERRA, G., SARDET, E., KASAN, D., NEUMAIER, A., Design of PLib-Compliant
intelligent electronic catalogues - Supplier Oriented Methodology - Deliverable #13/22 of the
European ESPRIT project #8984, PLUS, December 1996., (available on the Internet,
http://www.lisi.ensma.fr /pub/PLUS/D13_22_PLUS_PLIB_METHOD/
D13_22_PLUS_PLIB_METHOD.<doc|ps|rtf|txt>)

[2] IAB RFC 1738:1994, Internet architecture board proposed standard protocol: Uniform Resource
Locators (URL)

[3] IAB RFC 2046:1996, Internet architecture board draft standard protocol: MIME Media Types
(MIME-MEDIA)

[4] IAB RFC 2047:1996, Internet architecture board draft standard protocol: MIME Message Header
Extensions for Non-ASCII Text (MIME-MSG)

[5] IAB RFC 2048:1996, Internet Architecture Board Draft Standard Protocol: MIME Registration
Procedures (available on the Internet Official Internet Server at the following URL:
http//DS.INTERNIC.NET)

[6] IAB RFC 2376:1998, Internet Architecture Board Informational Protocol: XML Media Types
(available on the Internet Official Internet Server at the following URL: http//DS.INTERNIC.NET)

[7] ISO 10303-22:1998, Industrial automation systems and integration — Product data representation
and exchange — Part 22: Implementation methods: Standard data access interface

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 643

Index

a_posteriori_case_of ...232
a_posteriori_semantic_relationship ...232
a_posteriori_view_of..233
a_priori_semantic_relationship..218
A6_illustration ..402
A9_illustration ..402
ABNF ...5
absolute uniform resource locator ...3
absolute_URL_type ...193
abstract part...4
abstract_functional_model_class ..221
accessible_variable_for_method ...420
acyclic_class_extension_definition ..330
acyclic_order..331
all_context_parameters_referenced..73
all_properties_are_applicable..353
all_v_c_v_range_available ..342
all_vcvs_belong_to_instance_identification...370
all_view_control_variables_belong_to_each_view ..368
all_views_available_for_components ..365
all_views_available_for_each_component_rule ..330
allowed_named_type_usage_rule ...237
allowed_properties...333
allowed_reference_to_LIIM_24_1_rule ...523
allowed_reference_to_LIIM_24_2_rule ...537
allowed_reference_to_LIIM_24_3_rule ...550
AP..4
API ...4
applicable property ..4
applicable_documents...250
applicable_properties...246
applicable_properties_for_applicable_tables...279
applicable_tables ...248
applicable_types ..247
application..4
application context ...4
application programming interface ..4
application protocol..4
assembled item ...4
assert_oneof_for_class_rule ...238
assert_oneof_for_library_rule..326
assert_oneof_for_table_rule..238
assignment_allowed_variable..420
assignment_statement ..441
at_most_one_dictionary_rule...462
atomic item ..4
augmented Backus-Naur form ..5
available_components_views ..367
basic semantic unit ..5
begin_set ...431
binary_class_instance_constructor ...100
binary_class_instance_expression..99
binary_table_expression..128
boolean_column ..120
boolean_expression_or_others ...170
boolean_value ...40
BSU ...5

ISO 13584-24:2003(E)

644 © ISO 2003 – All rights reserved

BSU_of_property_semantics...165
call_program_statement ..438
cdr_list ...344
character_set_type ..385
characteristic of a part ...5
check_all_view_control_variables_belong_to_view ..369
check_class_type_for_dic_f_model_instance ...76
check_class_type_for_dic_f_view_instance..76
check_class_type_for_dic_item_instance ...75
check_is_case_of_referenced_classes_definition ..282
check_iterator_context ..148
check_iterator_domain_uniqueness..148
check_property_semantics..166
check_property_values_translations ...77
check_view_of_instance_datatype..281
checks_applicable_properties_in_path ...449
checks_classes_in_path..448
class extension ..5
class valued property...5
class_associated_items_rule...462, 485, 503
class_BSU_related_content ..396
class_document_relationship ..210
class_extension ...304
class_extension_external_item ...398
class_instance_column ...125
class_instance_constructor ...98
class_instance_expression..95
class_instance_literal...97
class_instance_variable...96
class_related_dictionary_element ...212
class_table_relationship ..209
classification_value..302
close_set..432
collects_assigned_instance_properties...71
collects_assigned_properties ..105
collects_columns ...141
collects_property_context ..74
collects_referenced_library_expressions ..105
collects_var_sem...181
collects_variables ..181
column ...120
column_traversal_variable_semantics ..127
common dictionary schema...5
compatible_class_and_class...65
compatible_column_and_variable ...137
compatible_column_and_variable_semantics...139
compatible_content_and_specification..280
compatible_item_caseof_with_class_definition...78
compatible_level_type_and_instance..67
compatible_list_library_types_and_columns ...273
compatible_list_variable_semantics_and_columns ..139
compatible_list_variable_semantics_and_expressions...141
compatible_model_caseof_with_class_definition..79
compatible_simple_type_and_expression...106
compatible_subclass ...266
compatible_type_and_library_expression ...107
compatible_type_and_value ..68
compatible_types...268

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 645

compatible_variable_and_expression ...109
compatible_variable_and_library_expression..110
compatible_variable_semantics_and_expression...140
compiler_version_length..380
compiler_version_type...386
complete_identification_for_instance_rule ..327
complete_identification_for_item_instance_rule..328
complete_identification_for_model_instance_rule...329
completely defined instance ..6
complex_column..123
complex_type_data_type...266
complex_value...42
component_class_case_of ..230
computable_set_of_created_views_from_model ..345
compute_item_caseof_closure..82
compute_model_caseof_closure...84
compute_superclass_closure..80
conformance..6
conformance class...6
conformance requirement ...6
conformant_8859_1_protocol_24_1..526
conformant_8859_1_protocol_24_2..540
conformant_8859_1_protocol_24_3..553
conformant_external_file_protocol_24_1 ..527
conformant_external_file_protocol_24_2 ..541
conformant_external_file_protocol_24_3 ..553
conformant_http_protocol_24_1..525
conformant_http_protocol_24_2..539
conformant_http_protocol_24_3..551
conforming implementation ...6
conformity ..6
constant_range_defined_domain ..174
constructed_sub_model_view_statement ...444
content_encoding_type..385
context ...6
context parameter..6
context_dependent_property_value ..57
context-dependent characteristic of a part ..6
control_allowed_variable ...421
control_compiler_version_format ..415
controlled_entity_instance_value...45
correct_parameters_for_explicit_program...361
correct_view_from_model ...72
created_view_is_functional_view ..282
created_view_v_c_v_rule ..446
created_views_by_methods ..347
data..7
data element type ..7
data exchange ...7
data type ..7
data_exchange_specification_identification ..201
data_protocol ...389
data_type_class_of..260
data_type_level_spec ..263
data_type_level_value_typeof ...264
data_type_named_type ...258
data_type_non_quantitative_code_type ..278
data_type_non_quantitative_int_type ..277
data_type_of_BSU...356

ISO 13584-24:2003(E)

646 © ISO 2003 – All rights reserved

data_type_type_name ...261
data_type_typeof ...259
database oriented navigation...7
declared_created_views ..346
declared_created_views_are_created_rule...327
defined_derivation_function...332
defined_domain ...332
defined_entity_instance_value ..44
definition table..7
derivation function..7
derived characteristics...7
derived_properties_list...336
DET..7
dialogue_resource ...400
dic_class_instance ..49
dic_component_instance...51
dic_f_model_instance..54
dic_f_view_instance...56
dic_feature_instance ...52
dic_item_instance..50
dic_material_instance..51
dictionary ...198
dictionary ...8
dictionary data ...8
dictionary element..8
dictionary_code_len...192
dictionary_code_type...193
dictionary_external_item..395
dictionary_identification ...194
dictionary_in_standard_format ..200
diff_columns ..143
difference_table_expression..132
document oriented navigation..8
document_BSU ...208
document_code_type ..192
document_content ...397
document_element ..214
document_element_with_http_access ..215
document_element_with_translated_http_access...216
domain_restriction ...170
element_code_len ...191
entity ..8
entity (data type) instance..9
entity data type...8
entity_instance_column ...125
entity_instance_expression ...93
entity_instance_literal ..94
entity_instance_value ..44
entity_instance_variable ..94
exactly_one_dictionary_rule ..485, 503
exchange structure ..9
exists_representation_for_instanciable_view ..359
exists_super ..340
exists_value...102
explicit_functional_model_class_extension...312
explicit_item_class_extension ...310
explicit_model_class_extension ..308
external_content ..407

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 647

external_file_address ..382
external_file_address_length...381
external_file_protocol...387
external_file_unit..410
external_item ...394
external_item_code_length ...381
external_item_code_type...382
family of parts ..9
feature..9
feature_class ...217
feature_class_case_of...231
fm_class_view_of ..224
fm_free_model_properties_list ..339
fm_free_properties_are_valued_for_explicit_spec_rule...64
fm_free_properties_are_valued_for_implicit_spec_rule...63
fm_valued_properties_are_allowed_for_explicit_spec_rule...62
fm_valued_properties_are_allowed_for_implicit_spec_rule...61
formatted_column..121
functional model of a part ..9
functional view of a part ...9
functional_domain_restriction..177
functional_model_class ...223
functional_model_class_extension..323
functional_view_class ..226
functional_view_v_c_v...256
general model of a part..10
generic family of parts ...9
geometric_representation_context_type ...204
get_dic_item_instances_from_required_item_properties..362
get_list_of_required_properties ...364
get_property_BSU_from_property_semantics ..272
get_translated_string_values_of_tuple..151
get_v_c_v_range ...342
gm_identification_characteristics_list ..338
guarded_functional_domain ..178
guarded_simple_domain ...171
guarded_statement..427
HTML...10
HTTP ...10
http file ...10
http_class_directory...413
http_directory_name_length ..381
http_directory_name_type ...383
http_directory_refers_to_bsu_related_class_rule..405
http_directory_refers_to_class_extension_rule ...405
http_file ..411
http_file_name_length ...381
http_file_name_type ..382
http_protocol ..393
hypertext markup language ...10
hypertext transfer protocol ...10
IAB...11
IAB_RFC..384
IANA ..12
identification characteristics...10
identification_properties_are_valued_for_explicit_spec_rule ..60
identification_properties_are_valued_for_implicit_spec_rule ..60
illustration...401
illustration_is_not_a_referenced_graphics_rule ..406

ISO 13584-24:2003(E)

648 © ISO 2003 – All rights reserved

illustration_type..387
implementation method ...11
implementation resources ...11
implicit_model_class_extension ..316
imported_data_types_are_visible_or_applicable_rule...240
imported_documents_are_visible_or_applicable_rule ..242
imported_properties_are_visible_or_applicable_rule ..240
imported_tables_are_visible_or_applicable_rule...241
in_RDB_table_boolean_expression ..133
in_typeof ..347
information...11
information model ..11
instance ...11
instance_comparison_equal..103
int_level_spec_column ..124
int_level_spec_literal ...92
int_level_spec_value ...47
int_level_spec_variable ...91
integer_column ..122
integer_value ...39
integrated library ..11
Internet...11
Internet architecture board ..11
Internet assigned numbers authority ...12
Internet client ...12
Internet server..12
intersect_table_expression..132
is_condition_det...72
is_correct_liim_24_1_application_value..527
is_correct_liim_24_2_application_value..541
is_correct_liim_24_3_application_value..554
is_dependent_p_det ..73
is_extended_liim_24_1_application_value ..528
is_extended_liim_24_2_application_value ..542
is_extended_liim_24_3_application_value ..555
is_in_v_c_v_range...341
is_provided_once_property_value...360
is_SQL_mappable_table_expression..145
is-a relationship..12
is-case-of relationship..12
ISO13584_domain_resource_schema..167
ISO13584_extended_dictionary_schema..185
ISO13584_external_file_schema ..371
ISO13584_f_m_iim_conformance_schema ..536
ISO13584_f_m_iim_schema ...478
ISO13584_f_v_iim_conformance_schema ...548
ISO13584_f_v_iim_schema ..500
ISO13584_g_m_iim_conformance_schema ...522
ISO13584_g_m_iim_schema ..455
ISO13584_instance_resource_schema ..32
ISO13584_library_content_schema ..284
ISO13584_library_expressions_schema...85
ISO13584_method_schema..415
ISO13584_table_resource_schema..112
ISO13584_variable_semantics_schema...152
is-part-of ..12
is-view-of..12
item..13

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 649

item_caseof_closure..81
item_class_case_of ...229
item_class_extension ..319
language_specific_content ..409
LCS..14
level_spec_column ..123
level_spec_expression ..89
level_spec_literal ...91
level_spec_value ...47
level_spec_variable ...90
lib_component_instance..54
lib_f_model_instance...55
lib_feature_instance...54
lib_item_instance...53
lib_material_instance...54
library ...302
library ...13
library data supplier ...13
library delivery file ..13
library end-user..13
library exchange context..13
library external file..13
library integrated information model ..14
library management system ..14
library part ..14
library specification of a class..14
library_expression..88
library_expression_defined_value ...179
library_iim_identification ..202
library_in_standard_format..303
library_variable...89
LIIM..14
linked_interface_program_protocol ...392
LMS ...14
local coordinate system ...14
make_ordered_list_of_v_c_v_range ...343
make_tuple ..344
makes_reference_outside ...251
makes_sub_list..271
mandatory property..14
material_class_case_of ...231
message ..401
method...422
method_body...425
method_specif ...423
method_statement...427
method_variables ..338
MIME ...15
MIME_subtype...384
MIME_type...383
MIME-like file ...15
model_caseof_closure...83
model_class_extension ...306
modelling_statement ...429
multiple_arity_cartesian_product ...132
multiple_arity_class_instance_constructor ..101
multiple_arity_class_instance_expression ..100
multiple_arity_table_expression ..129
multi-purpose Internet mail extensions..15

ISO 13584-24:2003(E)

650 © ISO 2003 – All rights reserved

natural_join_expression...136
network resource ...15
next_item_caseof ..81
next_model_caseof ...83
no_forward_reference_from_table_rule ..239
no_http_directory_for_supplier_related_file_rule...404
no_null_values_in_key_columns ...149
no_v_c_v_in_assigned_variables_set_rule ...447
non_instantiable_functional_view_class..228
non_standard_data_protocol ...393
non_standard_protocol ..389
non_standard_simple_program_protocol ..391
not_translatable_external_content...409
not_translated_external_content ...408
null_defined_value...180
null_or_boolean_value...41
null_or_complex_value..43
null_or_dic_class_instance..50
null_or_entity_instance_value..44
null_or_int_level_spec_value...48
null_or_integer_value ..40
null_or_level_spec_value ..47
null_or_number_value ...39
null_or_primitive_value ..38
null_or_real_level_spec_value ..48
null_or_real_value ...40
null_or_simple_value...39
null_or_translatable_string_value ..42
null_statement ...428
null_value...37
number_column...121
number_of_instance_representations ...360
number_value..39
object view coordinate ...15
open_view_property_semantics ..165
open_view_property_value_semantics..165
open_view_variable_semantics...164
opt_or_mand_property_BSU...304
optional property ..15
optional_properties_list..337
ordered_index_value ...271
others...170
OVC...15
part...16
part characteristic ..5
partially defined instance ...16
parts library ..16
physical part...16
PLIB_entity_instance_value...46
population ..16
predefined_representation_call_statement ...434
predicate_defined_domain ..177
prefix_ordered_class_list...254
presentation_unit_is_correct ...357
primitive_value...38
product...16
product data...16
program_library_BSU ..205

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 651

program_library_code_type ...192
program_library_content..396
program_library_element...212
program_protocol ..390
program_reference..400
program_reference_name_type ..386
program_reference_type ...205
program_status..386
projection_expression..135
properties_projection_on_population...364
property..16
property_assignment ...99
property_classification ...305
property_or_data_type_BSU ...46
property_semantics ...154
property_semantics_or_path ...154
property_value ...57
property_value_external_item ...403
property_value_recommended_presentation ..306
provided_properties_list...333
provided_properties_or_method_variables ...334
RDB_table_content..236
RDB_table_element...214
RDB_table_extension..119
RDB_table_specification..117
RDB_table_variable...130
real_column ...121
real_level_spec_column ..124
real_level_spec_literal ...92
real_level_spec_value ...48
real_level_spec_variable ...91
real_value ..40
referenced_document..216
referenced_graphics..217
referenced_protocols_exist_in_supported_protocols ..349
referenced_sub_item_view_statement..443
referenced_veps_exist_in_supported_veps ..348
relative uniform resource locator ...17
representation..17
representation category...17
representation property..17
representation_P_DET ..210
representation_property_for_model_and_view ...237
representation_reference ..399
representation_reference_type..204
representation_type ...203
request for comments..17
required_defined_properties..335
required_properties_are_imported_properties ..350
required_properties_are_non_dependent_p_det ..349
required_values_are_imported_properties..355
required_values_are_non_dependent_p_det ..354
resource construct ...17
retrieve_documents ...251
retrieve_functional_view_v_c_v...257
retrieve_tables ...249
return_key..144
RFC ...17
right_values_for_level_spec ..66

ISO 13584-24:2003(E)

652 © ISO 2003 – All rights reserved

same_order_for_properties ...352
same_string_values_translations_for_class_extension ..371
same_translations ...77
same_translations_for_string_values ..150
same_translations_for_table_extension..151
same_view_model_method...450
select_expression..134
selectable_properties_list ..335
self_class_code_semantics...163
self_class_name_semantics ...161
self_class_preferred_name_semantics...162
self_class_short_name_semantics ...162
self_class_supplier_code_semantics ..163
self_class_variable_semantics ..161
self_class_version_semantics ...164
self_property_class_code_semantics..160
self_property_class_supplier_code_semantics ...160
self_property_class_version_semantics..161
self_property_code_semantics..159
self_property_name_semantics...157
self_property_preferred_name_semantics..158
self_property_semantics..156
self_property_short_name_semantics...159
self_property_value_semantics ...157
self_property_value_semantics_is_item_class ...450
self_property_version_semantics ..159
self_variable_semantics ..156
semantics_of ...104
send_representation_reference_statement...436
send_representation_statement ..434
set_2d_relative_view_level ..432
set_reference_lcs ..429
set_table_expression...131
simple family of parts...18
simple_class_instance_expression ...96
simple_column...120
simple_domain ..172
simple_entity_instance_expression...94
simple_functional_domain ...178
simple_level_spec_expression..90
simple_program_protocol ..390
simple_statement ..428
simple_table_expression ...129
simple_type_data_type..265
simple_value..38
SQL..18
standard data...18
standard_data_protocol ...393
standard_protocol ..389
standard_simple_program_protocol ..391
standardised identification hierarchy ...18
STEP_entity_instance_value...45
string_column ..122
string_value ...42
structured query language ...18
sub_list_until ..271
sub_object_view_statement ..442
sub_property_path...155

ISO 13584-24:2003(E)

© ISO 2003 – All rights reserved 653

subclass_defined_domain ...174
super..341
superclass_closure..79
superclass_of_item_is_item ..280
supplier library ...18
supplier_associated_http_files ..413
supplier_associated_items_rule ..486
supplier_BSU_related_content ..395
supplier_program_library_relationship...209
supplier_related_dictionary_element ...211
syntax_of ...104
table_BSU..207
table_code_type ..193
table_content ...235
table_defined_domain ...172
table_defined_value...179
table_element ..213
table_expression..127
table_extension..118
table_identification ...116
table_literal ..130
table_specification ...116
table_variable ..129
translatable_string_value...41
translated_external_content ..408
translated_string_value..41
two_fold_variable_representation_rule..103
type_defined_domain ..173
unary_class_instance_constructor ..100
unary_class_instance_expression...99
unary_table_expression...128
uncontrolled_entity_instance_value...46
uniform resource locator..18
union_table_expression...131
unique_http_directory_name_per_supplier_rule ...404
unique_http_file_name_per_supplier_element_rule..403
URL..18
used_table_literals...147
used_tables_in_domain...182
used_variables_in_domain..183
user library ...18
user modeling system..18
v_c_v_values_set_and_created_view_v_c_v_set_equality_rule...446
valued_properties_are_allowed_for_explicit_spec_rule..59
valued_properties_are_allowed_for_implicit_spec_rule..58
variable_range_defined_domain ...175
variables_belong_to_assumes ..184
VEP..19
view control variable ..19
view exchange protocol ...19
view logical name ..19
view_control_variable_range ...228
view_control_variables_attributes_belong_to_domain ..281
view_exchange_protocol_identification ...202
visible property...19
visible_documents ...245
visible_properties...242
visible_tables ...244
visible_types ..243

ISO 13584-24:2003(E)

ICS 25.040.40
Price based on 653 pages

© ISO 2003 — All rights reserved

	Scope
	Normative references
	Terms, definitions, and abbreviations
	Structure of ISO€13584˚24
	Generic resources
	ISO13584_instance_resource_schema
	ISO13584_library_expressions_schema
	ISO13584_table_resource_schema
	ISO13584_variable_semantics_schema
	ISO13584_domain_resource_schema

	Parts library specific resources
	ISO13584_extended_dictionary_schema
	ISO13584_library_content_schema
	ISO13584_external_file_schema
	ISO13584_method_schema

	Library integrated information models
	ISO13584_g_m_iim_schema and LIIM€24-1
	ISO13584_f_m_iim_schema and LIIM€24-2
	ISO13584_f_v_iim_schema and LIIM€24-3

	Fundamental concepts and assumptions
	Conceptual model of a supplier library
	Implicit versus explicit description of a parts library
	Explicit modelling of simple families of parts: by set extension
	Implicit modeling of simple families by entity data type
	Explicit and implicit description of classes in this part of ISO€13584

	Direct use of EXPRESS versus meta-modelling for implicit description
	Direct use of the EXPRESS language for modelling classes
	Meta-modelling of classes using EXPRESS

	Two level description of a supplier library and the ISO/IEC common dictionary schema
	Common dictionary description for ISO€13584 and IEC€61360
	Dictionary descriptions for ISO€13584
	Interoperability of ISO€13584 and IEC€61360

	Independence between dictionary_elements and content_items: the BSU mechanism
	Reference between several EXPRESS schema populations via the BSU mechanism
	Expressing constraints between dictionary entries

	ISO€13584 and the Internet
	Documents represented within a library exchange context
	Support of the HTTP protocol and local Internet server
	Particular HTTP formats to be supported by an implementation
	Remote access to a document through the Internet

	ISO13584_instance_resource_schema
	Introduction to the ISO13584_instance_resource_schema
	Fundamental concepts and assumptions for the ISO13584_instance_resource_schema
	Two-fold description of classes and instance representation
	Representation of a context-dependent characteristic value
	Optional properties

	ISO13584_instance_resource_schema type definitions
	Null_value
	Primitive_value
	Null_or_primitive_value
	Simple_value
	Null_or_simple_value
	Number_value
	Null_or_number_value
	Integer_value
	Null_or_integer_value
	Real_value
	Null_or_real_value
	Boolean_value
	Null_or_boolean_value
	Translatable_string_value
	Translated_string_value
	String_value
	Null_or_translatable_string_value
	Complex_value
	Null_or_complex_value
	Entity_instance_value
	Null_or_entity_instance_value
	Defined_entity_instance_value
	Controlled_entity_instance_value
	STEP_entity_instance_value
	PLIB_entity_instance_value
	Uncontrolled_entity_instance_value
	Property_or_data_type_BSU

	ISO13584_instance_resource_schema entity definitions
	Level_spec_value
	Null_or_level_spec_value
	Int_level_spec_value
	Null_or_int_level_spec_value
	Real_level_spec_value
	Null_or_real_level_spec_value
	Class instances
	Dic_class_instance
	Null_or_dic_class_instance
	Dic_item_instance
	Dic_component_instance
	Dic_material_instance
	Dic_feature_instance
	Lib_item_instance
	Lib_component_instance
	Lib_material_instance
	Lib_feature_instance
	Dic_f_model_instance
	Lib_f_model_instance
	Dic_f_view_instance

	Property_value
	Context_dependent_property_value

	ISO13584_instance_resource_schema rule definition
	Valued_properties_are_allowed_for_implicit_spec_rule rule
	Valued_properties_are_allowed_for_explicit_spec_rule rule
	Identification_properties_are_valued_for_implicit_spec_rule rule
	Identification_properties_are_valued_for_explicit_spec_rule rule
	Fm_valued_properties_are_allowed_for_implicit_spec_rule rule
	Fm_valued_properties_are_allowed_for_explicit_spec_rule rule
	Fm_free_properties_are_valued_for_implicit_spec_rule rule
	Fm_free_properties_are_valued_for_explicit_spec_rule rule

	ISO13584_instance_resource_schema function definitions
	Compatible_class_and_class function
	Right_values_for_level_spec function
	Compatible_level_type_and_instance function
	Compatible_type_and_value function
	Collects_assigned_instance_properties function
	Correct_view_from_model function
	Is_condition_det function
	Is_dependent_p_det function
	All_context_parameters_referenced function
	Collects_property_context function
	Check_class_type_for_dic_item_instance function
	Check_class_type_for_dic_f_model_instance function
	Check_class_type_for_dic_f_view_instance function
	Check_property_values_translations function
	Same_translations function
	Compatible_item_caseof_with_class_definition function
	Compatible_model_caseof_with_class_definition function
	superclass_closure function
	compute_superclass_closure procedure
	item_caseof_closure function
	next_item_caseof function
	compute_item_caseof_closure procedure
	model_caseof_closure function
	next_model_caseof function
	compute_model_caseof_closure procedure

	ISO13584_library_expressions_schema
	Introduction to the ISO13584_library_expressions_schema
	Fundamental concepts and assumptions for the ISO13584_library_expressions_schema
	Information model of a variable
	Strong typing of variables and expressions

	ISO13584_library_expressions_schema type definitions
	Library_expression
	Library_variable

	ISO13584_library_expressions_schema entity definitions
	Level_spec_expression
	Simple_level_spec_expression
	Level_spec_variable
	Int_level_spec_variable
	Real_level_spec_variable
	Level_spec_literal
	Int_level_spec_literal
	Real_level_spec_literal

	Entity_instance_expression
	Simple_entity_instance_expression
	Entity_instance_variable
	Entity_instance_literal

	Class_instance_expression
	Simple_class_instance_expression
	Class_instance_variable
	Class_instance_literal
	Class_instance_constructor
	Property_assignment
	Unary_class_instance_expression
	Binary_class_instance_expression
	Multiple_arity_class_instance_expression
	Unary_class_instance_constructor
	Binary_class_instance_constructor
	Multiple_arity_class_instance_constructor

	Exists_value
	Instance_comparison_equal

	ISO13584_library_expressions_schema rule definition
	Two_fold_variable_representation_rule rule

	ISO13584_library_expressions_schema function definitions
	Syntax_of function
	Semantics_of function
	Collects_assigned_properties function
	Collects_referenced_library_expressions function
	Compatible_simple_type_and_expression function
	Compatible_type_and_library_expression function
	Compatible_variable_and_expression function
	Compatible_variable_and_library_expression function

	ISO13584_table_resource_schema
	Introduction to the ISO13584_table_resource_schema
	Fundamental concepts and assumptions for the ISO13584_table_resource_schema
	Description of tables
	Description of table expressions

	ISO13584_table_resource_schema entity definitions
	Table_identification
	Table_specification
	RDB_table_specification

	Table_extension
	RDB_table_extension

	Column
	Simple_column
	Boolean_column
	Formatted_column
	Number_column
	Real_column
	Integer_column
	String_column

	Complex_column
	Level_spec_column
	Int_level_spec_column
	Real_level_spec_column

	Entity_instance_column
	Class_instance_column

	Table expressions
	Table_expression
	Column_traversal_variable_semantics
	Unary_table_expression
	Binary_table_expression
	Multiple_arity_table_expression
	Simple_table_expression
	Table_variable
	RDB_table_variable
	Table_literal
	Set_table_expression
	Union_table_expression
	Intersect_table_expression
	Difference_table_expression
	Multiple_arity_cartesian_product
	In_RDB_table_boolean_expression
	Select_expression
	Projection_expression
	Natural_join_expression

	ISO13584_table_resource_schema functions definition
	Compatible_column_and_variable function
	Compatible_column_and_variable_semantics function
	Compatible_list_variable_semantics_and_columns function
	Compatible_variable_semantics_and_expression function
	Compatible_list_variable_semantics_and_expressions function
	Collects_columns function
	Diff_columns function
	Return_key function
	Is_SQL_mappable_table_expression function
	Used_table_literals function
	Check_iterator_context function
	Check_iterator_domain_uniqueness function
	No_null_values_in_key_columns function
	Same_translations_for_string_values function
	Same_translations_for_table_extension function
	Get_translated_string_values_of_tuple function

	ISO13584_variable_semantics_schema
	Introduction to the ISO13584_variable_semantics_schema
	Fundamental concepts and assumptions for the ISO13584_variable_semantics_schema
	Instance related operation
	Instance structure
	Context of a method

	ISO13584_variable_semantics_schema type definition
	Property_semantics_or_path

	ISO13584_variable_semantics_schema entity definitions
	Property_semantics
	Sub_property_path
	Variable_semantics referring to the SELF entity
	Self_variable_semantics
	Self_property_semantics
	Self_property_value_semantics
	Self_property_name_semantics
	Self_property_preferred_name_semantics
	Self_property_short_name_semantics
	Self_property_code_semantics
	Self_property_version_semantics
	Self_property_class_code_semantics
	Self_property_class_supplier_code_semantics
	Self_property_class_version_semantics

	Self_class_variable_semantics
	Self_class_name_semantics
	Self_class_preferred_name_semantics
	Self_class_short_name_semantics
	Self_class_code_semantics
	Self_class_supplier_code_semantics
	Self_class_version_semantics

	Variables referring to the open view characteristics
	Open_view_variable_semantics
	Open_view_property_semantics
	Open_view_property_value_semantics

	ISO13584_variable_semantics_schema function definitions
	BSU_of_property_semantics function
	Check_property_semantics function

	ISO13584_domain_resource_schema
	Introduction to the ISO13584_domain_resource_schema
	Fundamental concepts and assumption for the ISO13584_domain_resource_schema
	ISO13584_domain_resource_schema type definition
	Boolean_expression_or_others

	ISO13584_domain_resource_schema entity definitions
	Others
	Domain_restriction
	Guarded_simple_domain
	Simple_domain
	Table_defined_domain
	Type_defined_domain
	Subclass_defined_domain
	Constant_range_defined_domain
	Variable_range_defined_domain
	Predicate_defined_domain
	Functional_domain_restriction
	Guarded_functional_domain
	Simple_functional_domain
	Library_expression_defined_value
	Table_defined_value
	Null_defined_value

	ISO13584_domain_resource_schema function definitions
	Collects_variables function
	Collects_var_sem function
	Used_tables_in_domain function
	Used_variables_in_domain function
	Variables_belong_to_assumes function

	ISO13584_extended_dictionary_schema
	Introduction to the ISO13584_extended_dictionary_schema
	Fundamental concepts and assumptions for the ISO13584_extended_dictionary_schema
	Dictionary structure
	Class related elements
	Supplier related elements
	Three-fold description of dictionary elements
	Unique identification of dictionary elements
	Applicable elements
	Visibility rule
	Semantic relationships between classes
	A priori semantic relationships and importation rule
	Type checking for the tables referenced in the dictionary

	ISO13584_extended_dictionary_schema constant definitions
	Element_code_len
	Dictionary_code_len

	ISO13584_extended_dictionary_schema type definitions
	Document_code_type
	Program_library_code_type
	Table_code_type
	Absolute_URL_type
	Dictionary_code_type

	ISO13584_extended_dictionary_schema identification of a dictionary
	ISO13584_extended_dictionary_schema overall architecture of a dictionary
	Dictionary_in_standard_format
	Data_exchange_specification_identification
	Library_iim_identification
	View_exchange_protocol_identification
	ISO13584_extended_dictionary_schema entity definitions: additional entity instance types
	Representation_type
	Geometric_representation_context_type
	Representation_reference_type
	Program_reference_type

	ISO13584_extended_dictionary_schema entity definitions: additional basic semantic units
	Program_library_BSU
	Table_BSU
	Document_BSU

	ISO13584_extended_dictionary_schema entity definitions: supplier BSU relationship
	Supplier_program_library_relationship

	ISO13584_extended_dictionary_schema entity definitions: class BSU relationships
	Class_table_relationship
	Class_document_relationship

	ISO13584_extended_dictionary_schema entity definitions: properties of functional models and functional views
	Representation_P_DET

	ISO13584_extended_dictionary_schema entity definitions: specific dictionary elements
	Supplier_related_dictionary_element
	Class_related_dictionary_element
	Program_library_element

	ISO13584_extended_dictionary_schema entity definitions: class related elements
	Table_element
	RDB_table_element
	Document_element
	Document_element_with_http_access
	Document_element_with_translated_http_access
	Referenced_document
	Referenced_graphics

	ISO13584_extended_dictionary_schema entity definitions: feature class
	ISO13584_extended_dictionary_schema entity definitions: a priori semantic relationship
	ISO13584_extended_dictionary_schema entity definitions: functional model class
	Abstract_functional_model_class
	Functional_model_class
	Fm_class_view_of

	ISO13584_extended_dictionary_schema entity definitions: functional view class
	Functional_view_class
	Non_instantiable_functional_view_class
	Specification of the range of a view control variable

	ISO13584_extended_dictionary_schema entity definitions: item class a priori case of
	Item_class_case_of
	Component_class_case_of
	Material_class_case_of
	Feature_class_case_of

	ISO13584_extended_dictionary_schema entity definitions: a€posteriori semantic relationships
	A_posteriori_semantic_relationship
	A_posteriori_case_of
	A_posteriori_view_of

	ISO13584_extended_dictionary_schema entity definitions: table contents
	Table_content
	RDB_table_content

	ISO13584_extended_dictionary_schema: RULE definitions
	Representation_properties_for_model_and_view_rule rule
	Allowed_named_type_usage_rule rule
	Assert_oneof_for_table_rule rule
	Assert_oneof_for_class_rule rule
	No_forward_reference_from_table_rule rule
	Imported_properties_are_visible_or_applicable_rule rule
	Imported_data_types_are_visible_or_applicable_rule rule
	Imported_tables_are_visible_or_applicable_rule rule
	Imported_documents_are_visible_or_applicable_rule rule

	ISO13584_extended_dictionary_schema: function definitions
	Visible_properties function
	Visible_types function
	Visible_tables function
	Visible_documents function
	Applicable_properties function
	Applicable_types function
	Applicable_tables function
	Retrieve_tables function
	Applicable_documents function
	Retrieve_documents function
	Makes_reference_outside function
	Prefix_ordered_class_list function
	Functional_view_v_c_v function
	Retrieve_functional_view_v_c_v function
	Data_type_named_type function
	Data_type_typeof function
	Data_type_class_of function
	Data_type_type_name function
	Data_type_level_spec function
	Data_type_level_value_typeof function
	Simple_type_data_type function
	Complex_type_data_type function
	Compatible_subclass function
	Compatible_types function
	Ordered_index_value function
	Makes_sub_list
	Sub_list_until
	Get_property_BSU_from_property_semantics function
	Compatible_list_library_types_and_columns function
	Data_type_non_quantitative_int_type function
	Data_type_non_quantitative_code_type function
	Applicable_properties_for_applicable_tables function
	Superclass_of_item_is_item function
	Compatible_content_and_specification function
	Check_view_of_instance_datatype function
	View_control_variables_attributes_belong_to_domain function
	Created_view_is_functional_view function
	Check_is_case_of_referenced_classes_definition function

	ISO13584_library_content_schema
	Introduction to the ISO13584_library_content_schema
	Fundamental concepts and assumption for the ISO13584_library_content_schema
	Class extension of non-leaf classes
	Explicit description of class extensions
	Implicit description of class extensions
	Common pieces of information in implicit description and in explicit description of class extensions
	Properties modeling in explicit description of class extensions
	Typical usage of explicit description of class extensions
	Properties modeling in implicit description of class extensions
	Assemblies modeling in explicit description of class extensions
	Assemblies modeling in implicit description of class extensions
	Instances satisfying a class definition in an implicit description of a class extension
	Domain definition of the identification characteristics
	Part selection through context parameters

	Mandatory support of the user selection process when implicit description of class extensions are used
	Design a class extension
	Model of a class extension
	Requirements for the user dialogue

	ISO13584_library_content_schema constant definitions
	Classification_value

	ISO13584_library_content_schema: overall architecture of a library
	Library_in_standard_format
	Extension of a class
	Class_extension
	Opt_or_mand_property_BSU
	Property_classification
	Property_value_recommended_presentation
	Model_class_extension
	Explicit_model_class_extension
	Explicit_item_class_extension
	Explicit_functional_model_class_extension
	Implicit_model_class_extension
	Item_class_extension
	Functional_model_class_extension

	ISO13584_library_content_schema: RULE definitions
	Assert_oneof_for_library_rule rule
	Declared_created_views_are_created_rule rule
	Complete_identification_for_instance_rule rule
	Complete_identification_for_item_instance_rule rule
	Complete_identification_for_model_instance_rule rule
	All_views_available_for_each_component_rule rule

	ISO13584_library_content_schema function definitions
	Acyclic_class_extension_definition
	Acyclic_order
	Defined_domain function
	Defined_derivation_function function
	Allowed_properties function
	Provided_properties_list function
	Provided_properties_or_method_variables function
	Selectable_properties_list function
	Required_defined_properties function
	Derived_properties_list function
	Optional_properties_list function
	Method_variables function
	Gm_identification_characteristics_list function
	Fm_free_model_properties_list function
	Exists_super function
	Super function
	Is_in_v_c_v_range function
	Get_v_c_v_range function
	All_v_c_v_range_available function
	Make_ordered_list_of_v_c_v_range function
	Cdr_list function
	Make_tuple function
	Computable_set_of_created_views_from_model
	Declared_created_views function
	Created_views_by_methods function
	In_typeof function
	Referenced_veps_exist_in_supported_veps function
	Referenced_protocols_exist_in_supported_protocols function
	Required_properties_are_non_dependent_p_det function
	Required_properties_are_imported_properties function
	Same_order_for_properties function
	All_properties_are_applicable function
	Required_values_are_non_dependent_p_det function
	Required_values_are_imported_properties function
	Data_type_of_BSU function
	Presentation_unit_is_correct function
	Exists_representation_for_instanciable_view function
	Is_provided_once_property_value function
	Number_of_instance_representations
	Correct_parameters_for_explicit_program function
	Get_dic_item_instances_from_required_item_properties function
	Get_list_of_required_properties function
	Properties_projection_on_population function
	All_views_available_for_components function
	Available_components_views function
	All_view_control_variables_belong_to_each_view function
	Check_all_view_control_variables_belong_to_view function
	All_vcvs_belong_to_instance_identification function
	Same_string_values_translations_for_class_extension function

	ISO13584_external_file_schema
	Introduction to the ISO13584_external_file_schema
	Fundamental concepts and assumptions for the ISO13584_external_file_schema
	Representations of items
	Explicit and implicit description of item representations
	Support of user dialogue
	Http files storage
	Http_file storage rule

	Hyper-text link usage
	Escape mechanism from document navigation to data retrieval and selection
	Common Gateway Interface access
	Common Gateway Interface access rule 1
	Common Gateway Interface access rule 2
	Common Gateway Interface access rule 3

	Common Gateway Interface implementation rule

	ISO13584_external_file_schema constant definitions
	Compiler_version_length
	External_file_address_length
	External_item_code_length
	Http_file_name_length
	Http_directory_name_length

	ISO13584_external_file_schema type definitions
	External_file_address
	External_item_code_type
	Http_file_name_type
	Http_directory_name_type
	MIME_type
	MIME_subtype
	IAB_RFC
	Character_set_type
	Content_encoding_type
	Program_status
	Program_reference_name_type
	Compiler_version_type
	Illustration_type

	ISO13584_external_file_schema entity definitions: external_file_protocols
	External_file_protocol
	Standard_protocol
	Non_standard_protocol
	Data_protocol
	Program_protocol
	Simple_program_protocol
	Standard_simple_program_protocol
	Non_standard_simple_program_protocol
	Linked_interface_program_protocol
	Standard_data_protocol
	Non_standard_data_protocol
	Http_protocol

	ISO13584_external_file_schema entity definitions: dictionary external items
	External_item
	Dictionary_external_item
	Supplier_BSU_related_content
	Program_library_content
	Class_BSU_related_content
	Document_content

	ISO13584_external_file_schema entity definition: class extension external items
	Class_extension_external_item
	Representation_reference
	Program_reference
	Dialogue_resource
	Message
	Illustration
	A6_illustration
	A9_illustration

	ISO13584_external_file_schema entity definition: property_value_external_item
	ISO13584_external_file_schema rule definition
	Unique_http_file_name_per_supplier_element_rule rule
	Unique_http_directory_name_per_supplier_rule rule
	No_http_directory_for_supplier_related_file_rule rule
	Http_directory_refers_to_bsu_related_class_rule rule
	Http_directory_refers_to_class_extension_rule rule
	Illustration_is_not_a_referenced_graphics_rule rule

	ISO13584_external_file_schema entity definitions: external content
	External_content
	Translated_external_content
	Not_translated_external_content
	Not_translatable_external_content
	Language_specific_content
	External_file_unit
	Http_file
	Http_class_directory

	ISO13584_external_file_schema function definitions
	Supplier_associated_http_files
	Control_compiler_version_format

	ISO13584_method_schema
	Introduction to the ISO13584_method_schema
	Fundamental concepts and assumptions for the ISO13584_method_schema
	ISO13584_method_schema type definitions
	Accessible_variable_for_method
	Assignment_allowed_variable
	Control_allowed_variable

	ISO13584_method_schema entity definitions
	Method
	Method_specif
	Method_body
	Method_statement
	Guarded_statement
	Simple_statement
	Null_statement
	Modelling statement
	Set_reference_lcs
	Begin_set
	Close_set
	Set_2d_relative_view_level
	Predefined_representation_call_statement
	Send_representation_statement
	Send_representation_reference_statement
	Call_program_statement
	Assignment_statement
	Sub_object_view_statement
	Referenced_sub_item_view_statement
	Constructed_sub_model_view_statement

	ISO13584_method_schema rules definitions
	Created_view_v_c_v_rule rule
	V_c_v_values_set_and_created_view_v_c_v_set_equality_rule rule
	No_v_c_v_in_assigned_variables_set_rule rule

	ISO13584_method_schema function definitions
	Checks_classes_in_path function
	Checks_applicable_properties_in_path function
	same_view_model_method
	self_property_value_semantics_is_item_class

	Conformance requirements
	Exchange of general model classes: library integrated information model€24-1
	ISO13584_g_m_iim_schema short listing
	ISO13584_g_m_iim_schema global rule definitions
	At_most_one_dictionary_rule rule
	Class_associated_items_rule rule

	Conformance class requirements
	Conformance class 0
	Conformance class 1
	Conformance class 1E
	Conformance class 2
	Conformance class 2E
	Conformance class 3
	Conformance class 3E
	Conformance class 4
	Conformance class 4E
	Conformance class 5
	Conformance class 5E
	Conformance class 6
	Conformance class 6E

	Exchange of functional model classes: library integrated information model 24-2
	ISO13584_f_m_iim_schema short listing
	ISO13584_f_m_iim_schema global rule definitions
	Exactly_one_dictionary_rule rule
	Class_associated_items_rule rule
	Supplier_associated_items_rule rule

	Conformance class requirements
	Conformance class 1
	Conformance class 1E
	Conformance class 2
	Conformance class 2E
	Conformance class 3
	Conformance class 3E
	Conformance class 4
	Conformance class 4E
	Conformance class 5
	Conformance class 5E
	Conformance class 6
	Conformance class 6E

	Exchange of functional view classes: library integrated information model€24-3
	ISO13584_f_v_iim_schema short listing
	ISO13584_f_v_iim_schema global rule definitions
	Exactly_one_dictionary_rule rule
	Class_associated_items_rule rule

	Conformance class requirements
	Conformance class 1
	Conformance class 1E
	Conformance class 2
	Conformance class 2E

