INTERNATIONAL STANDARD ISO 12643-1 Second edition 2009-12-15 # Graphic technology — Safety requirements for graphic technology equipment and systems — # Part 1: **General requirements** Technologie graphique — Exigences de sécurité pour les systèmes et l'équipement de technologie graphique — Partie 1: Exigences générales #### PDF disclaimer This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area. Adobe is a trademark of Adobe Systems Incorporated. Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below. # **COPYRIGHT PROTECTED DOCUMENT** #### © ISO 2009 All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester. ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org Published in Switzerland # **Contents** Page | Forew | vord | v | |----------|---|----------| | Introd | duction | vi | | 1 | Scope | 1 | | 2 | Normative references | 2 | | 3 | Terms and definitions | 4 | | 4 | Conformity with this part of ISO 12643 | | | 5 | Risk assessment | | | _ | Guarding of significant hazards | | | 6
6.1 | GeneralGeneral | | | 6.2 | Guards | | | 6.3 | In-running (in-going) nips | | | 6.4 | Guarding in-running nips | | | 6.5 | Interlocks | | | 6.6 | Hold-to-run controls | | | 6.7 | Other safeguarding measures | | | 6.8 | Guarding reel unwinding, rewinding and transport devices | | | 6.9 | Threading of web material | | | 6.10 | Feeding units, delivery units (pile lifting and lowering devices) | | | | | | | 7 | Requirements for protection against other hazards | | | 7.1 | General | | | 7.2 | Fire and explosion | | | 7.3 | Electrical equipment | | | 7.4 | Working platforms, access stairs, passageways and raised workplaces | | | 7.5 | Stability | | | 7.6 | High contact temperatures | | | 7.7 | Noise | | | 7.8 | Radiation hazards | | | 7.9 | Stationary knives | | | 7.10 | Rotary tools | | | 7.11 | Transport and storage of hazardous tools | | | 7.12 | Protruding machine parts | | | 7.13 | Handwheels and cranks | | | 7.14 | Routine handling of heavy machine parts | | | 7.15 | Oxidizers, incinerators or thermal cleaning plants | | | 7.16 | Protection against crushing and shearing hazards | | | 7.17 | Contact with hazardous substances | 44 | | 8 | Release from hazardous situation | 45 | | 9 | Control zones | 45 | | 9.1 | General | | | 9.2 | Purpose of zone configuration | 45 | | 9.3 | Motion-control stations in control zones | 45 | | 10 | Controls | AG | | 10.1 | General | | | 10.1 | Manual control devices | | | 10.2 | Initiating machine motion | | | 10.3 | Hold-to-run controls | | | 10.4 | Two-hand controls | 54
55 | # ISO 12643-1:2009(E) | 10.6 | Electro-sensitive protective devices | | |--------------|---|----| | 10.7
10.8 | Pressure-sensitive mats, pressure-sensitive bumpers, trip devices Braking devices and clutches | | | 11 | Control stations | 57 | | 11.1 | Motion-control stations | | | 11.2 | Remote access | | | 12 | Control systems | | | 12
12.1 | Hydraulic, pneumatic, electric and electronic control systems | | | 12.1 | Electronic adjustable speed drives | | | 12.3 | Cut-off of main energy source | | | 12.4 | Residual-pile monitoring systems | | | 12.5 | Unobserved unguarded hazard zones | | | 12.6 | Cableless controls | | | 12.7 | Additional requirements for hand-fed machines | | | 40 | • | | | 13 | Ergonomics and labelling of indicators and actuators | | | 14 | Signals and warning devices | 64 | | 14.1 | General | | | 14.2 | Audible warning system | | | 14.3 | Area-light warning system | 67 | | 15 | Safety signs and labels | 67 | | 15.1 | General | | | 15.2 | Specific requirements for machine markings | | | 4.0 | Contents of instruction handbook | | | 16 | | | | 16.1
16.2 | General Machines using flammable liquids | | | 16.2
16.3 | Machines with cutting knives | | | 16.4 | Handling heavy machine parts | | | 16.5 | Machines with automatic paper loading | | | 16.6 | Residual risks using ESPDs | | | 16.7 | Pile turners and reel turners | | | 16.8 | Pile carriers | | | 16.9 | Residual risk for hold-to-run speeds of above 10 m/min under two-hand control | 70 | | 16.10 | Use of stroboscopes | | | Annex | A (informative) Risk analysis relating to the pitch angle of access stairs | 71 | | Annex | B (informative) Noise | 73 | | Annex | C (normative) Area-light warning system | 75 | | Annex | D (informative) Example layout of instruction handbooks | 77 | | Bibliod | yraphy | 79 | # **Foreword** ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2. The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote. Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. ISO 12643-1 was prepared by Technical Committee ISO/TC 130, Graphic technology. This second edition of ISO 12643-1 constitutes a technical revision of the first edition (ISO 12643-1:2007). Significant changes incorporated into this second edition include, but are not limited to, the following: - addition of prepress systems, converting equipment and systems, and stand-alone platen presses to the Scope; - requirements for performance levels (PL) or safety integrity levels (SIL) as defined in the current version of ISO 13849-1 and IEC 62061, respectively; - additional requirements for fixed guards; - additional requirements for interlocking with guard locking; - additional requirements for hydraulic, pneumatic, electric and electronic control systems. It is the intent of ISO/TC 130 that both the first and second editions of ISO 12643-1 be applicable until 2010-12-31. ISO 12643-1:2007 is thus provisionally retained until this date. As from 2011-01-01, ISO 12643-1:2009 will cancel and replace ISO 12643-1:2007. Accordingly, as from 2011-01-01, only ISO 12643-1:2009 will be applicable to new equipment manufactured. ISO 12643 consists of the following parts, under the general title *Graphic technology* — *Safety requirements* for graphic technology equipment and systems: - Part 1: General requirements - Part 2: Prepress and press equipment and systems - Part 3: Binding and finishing equipment and systems - Part 4: Converting equipment and systems - Part 5: Stand-alone platen presses Requirements specific to printing prepress and press equipment and systems, binding and finishing equipment and systems, converting equipment and systems and stand-alone platen presses that are not included in this part of ISO 12643, are given in subsequent parts of ISO 12643 that contain additional requirements specific to that type of equipment. # Introduction During the development of this part of ISO 12643, existing relevant standards of other countries were taken into consideration. An effort has been made to take into consideration the requirements of many countries, recognizing that national standards or laws may dictate national requirements. In cases where it was known that there is a national requirement that differs from this part of ISO 12643, that has been noted. This part of ISO 12643 was developed to harmonize the requirements of the following U.S. and European safety standards: - ANSI B65.1, Graphic technology Safety standard Printing press systems; - ANSI B65.2, Graphic technology Safety requirements for binding and finishing systems and equipment; - ANSI B65.3, Safety standard Guillotine paper cutters, mill trimmers, and integral handling equipment, - ANSI B65.4, Safety standard Three-knife trimmers, including rotary, and single- and multiple-knife trimmers: - ANSI B65.5, Safety standard Stand-alone platen presses - EN 1010-1, Safety of machinery Safety requirements for the design and construction of printing and paper converting machines — Part 1: Common requirements; - EN 1010-2, Safety of machinery Safety requirements for the design and construction of printing and paper converting machines — Part 2: Printing and
varnishing machines including pre-press machinery; - EN 1010-3, Safety of machinery Safety requirements for the design and construction of printing and paper converting machines — Part 3: Cutting machines; - EN 1010-4, Safety of machinery Safety requirements for the design and construction of printing and paper converting machines — Part 4: Bookbinding, paper converting and finishing machines. # Graphic technology — Safety requirements for graphic technology equipment and systems — # Part 1: # **General requirements** # 1 Scope maahaniaal. This part of ISO 12643 provides safety specifications for the design and construction of new equipment used in prepress systems, printing press systems, binding and finishing systems, converting systems and stand-alone platen presses. It is applicable to equipment used in stand-alone mode, or in combination with other machines, including ancillary equipment, in which all the machine actuators (e.g. drives) of the equipment are controlled by the same control system. The requirements given in this part of ISO 12643 are applicable to the equipment covered by all parts of ISO 12643, unless otherwise noted. This part of ISO 12643 is intended to be used in conjunction with the applicable part of ISO 12643 that contains additional requirements specific to a particular type of equipment. This part of ISO 12643 addresses recognized significant hazards specific to equipment and systems in the following areas: | _ | mechanical, | |---|---| | _ | electrical; | | _ | slipping, tripping, falling; | | _ | ergonomics; | | | noise; | | _ | UV and laser radiation; | | _ | fire and explosion; | | _ | thermal; | | _ | other types of emissions [e.g. ozone, ink mist, volatile organic compounds (VOCs), etc.]. | The safety principles established in this part of ISO 12643 can also be applicable to the design of equipment within areas of technology that are not specified in ISO 12643. #### 2 Normative references The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. ISO 3864-1, Graphical symbols — Safety colours and safety signs — Part 1: Design principles for safety signs in workplaces and public areas ISO 3864-2, Graphical symbols — Safety colours and safety signs — Part 2: Design principles for product safety labels ISO 3864-3, Graphical symbols — Safety colours and safety signs — Part 3: Design principles for graphical symbols for use in safety signs ISO 7010, Graphical symbols — Safety colours and safety signs — Safety signs used in workplaces and public areas ISO 8031, Rubber and plastics hoses and hose assemblies — Determination of electrical resistance and conductivity ISO 11553-1, Safety of machinery — Laser processing machines — Part 1: General safety requirements ISO/TR 11688-1, Acoustics — Recommended practice for the design of low-noise machinery and equipment — Part 1: Planning ISO 11689, Acoustics — Procedure for the comparison of noise-emission data for machinery and equipment ISO 12100-1, Safety of machinery — Basic concepts, general principles for design — Part 1: Basic terminology, methodology ISO 12100-2, Safety of machinery — Basic concepts, general principles for design — Part 2: Technical principles ISO 12643-2, Graphic technology — Safety requirements for graphic technology equipment and systems — Part 2: Prepress and press equipment and systems ISO 12643-3, Graphic technology — Safety requirements for graphic technology equipment and systems — Part 3: Binding and finishing equipment and systems ISO 12643-4, Graphic technology — Safety requirements for graphic technology equipment and systems — Part 4: Converting equipment and systems ISO 12643-5, Graphic technology — Safety requirements for graphic technology equipment and systems — Part 5: Stand-alone platen presses ISO 13732-1, Ergonomics of the thermal environment — Methods for the assessment of human responses to contact with surfaces — Part 1: Hot surfaces ISO 13849-1, Safety of machinery — Safety-related parts of control systems — Part 1: General principles for design ISO 13850, Safety of machinery — Emergency stop — Principles for design ISO 13851, Safety of machinery — Two-hand control devices — Functional aspects and design principles ISO 13854, Safety of machinery — Minimum gaps to avoid crushing of parts of the human body - ISO 13855, Safety of machinery Positioning of protective equipment with respect to the approach speeds of parts of the human body - ISO 13856-1, Safety of machinery Pressure-sensitive protective devices Part 1: General principles for design and testing of pressure-sensitive mats and pressure-sensitive floors - ISO 13857, Safety of machinery Safety distances to prevent hazard zones being reached by upper and lower limbs - ISO 14119:1998, Safety of machinery Interlocking devices associated with guards Principles for design and selection - ISO 14120, Safety of machinery Guards General requirements for the design and construction of fixed and movable guards - ISO 14121-1, Safety of machinery Risk assessment Part 1: Principles - ISO 14122-1, Safety of machinery Permanent means of access to machinery Part 1: Choice of fixed means of access between two levels - ISO 14122-2, Safety of machinery Permanent means of access to machinery Part 2: Working platforms and walkways - ISO 14122-3, Safety of machinery Permanent means of access to machinery Part 3: Stairs, stepladders and guard-rails - ISO/TR 15847, Graphic technology Graphical symbols for printing press systems and finishing systems, including related auxiliary equipment - IEC 60079-1, Explosive atmospheres Part 1: Equipment protection by flameproof enclosures "d" - IEC 60079-2, Explosive atmospheres Part 2: Equipment protection by pressurized enclosures "p" - IEC 60079-5, Explosive atmospheres Part 5: Equipment protection by powder filling "q" - IEC 60079-6, Explosive atmospheres Part 6: Equipment protection by oil immersion "o" - IEC 60079-7, Explosive atmospheres Part 7: Equipment protection by increased safety "e" - IEC 60079-11, Explosive atmospheres Part 11: Equipment protection by intrinsic safety "i" - IEC 60079-14, Explosive atmospheres Part 14: Electrical installations design, selection and erection - IEC 60079-18, Explosive atmospheres Part 18: Equipment protection by encapsulation "m" - IEC 60204-1, Safety of machinery Electrical equipment of machines Part 1: General requirements - IEC 60825-1, Safety of laser products Part 1: Equipment classification and requirements - IEC 60947-2, Low-voltage switchgear and controlgear Part 2: Circuit-breakers - IEC 60947-3, Low-voltage switchgear and controlgear Part 3: Switches, disconnectors, switch-disconnectors and fuse-combination units - IEC 60947-5-1, Low-voltage switchgear and controlgear Part 5-1: Control circuit devices and switching elements Electromechanical control circuit devices IEC 61010-1, Safety requirements for electrical equipment for measurement, control, and laboratory use — Part 1: General requirements IEC 61310-1, Safety of machinery — Indication, marking and actuation — Part 1: Requirements for visual, acoustic and tactile signals IEC 61310-2, Safety of machinery — Indication, marking and actuation — Part 2: Requirements for marking IEC 61310-3, Safety of machinery — Indication, marking and actuation — Part 3: Requirements for the location and operation of actuators IEC 61496-1, Safety of machinery — Electro-sensitive protective equipment — Part 1: General requirements and tests IEC 61496-2, Safety of machinery — Electro-sensitive protective equipment — Part 2: Particular requirements for equipment using active opto-electronic protective devices (AOPDs) IEC 62061, Safety of machinery — Functional safety of safety-related electrical, electronic and programmable electronic control systems EN 1127-1, Explosive atmosphere — Explosion prevention and protection — Part 1: Basic concepts and methodology EN 1760-2, Safety of machinery — Pressure sensitive protective devices — Part 2: General principles for the design and testing of pressure sensitive edges and pressure sensitive bars EN 12198-1:2000, Safety of machinery — Assessment and reduction of risks arising from radiation emitted by machinery — Part 1: General principles EN 13023, Noise measurement methods for printing, paper converting, paper making machines and auxiliary equipment — Accuracy grades 2 and 3 #### 3 Terms and definitions For the purposes of this document, the terms and definitions given in ISO 13849-1 and the following apply. # 3.1 #### actuator part of the actuating system to which an external actuating force is applied [IEV 441-15-22]^[22] NOTE 1 The actuator can take the form of a handle, knob, pushbutton, roller, plunger, trip wire, pressure-sensitive mat, etc. NOTE 2 There are some actuating means that do not require an external actuating force, but only an action; e.g. light beams. Such actuating means are not considered to be actuators. #### 3.2 #### armed condition machine status in which machine motion can be automatically initiated NOTE **Zero speed** (3.68) is considered to be an armed condition. #### 3.3 # audible alarm horn, bell or other distinctive audible warning device that sounds to indicate impending machine motion #### authorized person person identified by management as having special training or designated to act in specified situations NOTE Examples of "specified situations" include: - special tasks to be performed; - the function of the adjustments in the work zone; - proper operation of adjustments and controls; - all types of hazards in the area where the task is to be performed; - the application of equivalent, alternative protection to perform the task; - improper actions that can cause injury and the
consequences of those improper actions. #### 3.5 #### auxiliary device mechanism or machine, either built-in or attached, used for the production process #### 3.6 #### barrier guard **guard** (3.21) that reduces or prevents physical access to a hazard zone by closing off access to an area containing one or more hazards EXAMPLE A perimeter fence or tunnel guard. #### 3.7 #### binding and finishing system combination of machines functioning in an integrated configuration to turn an incomplete printed product into a finished product by means of one or more processes, such as cutting, folding, binding, stitching, gluing, wrapping, etc. # 3.8 #### Category 0 stop ### uncontrolled stop stopping by immediate removal of power to the machine actuators (3.29) [IEC 60204-1:2009, 9.2.2] #### 3.9 #### Category 1 stop controlled stop with power available to the **machine actuators** (3.29) to achieve the stop and then removal of power when the stop is achieved [IEC 60204-1:2009, 9.2.2] #### 3.10 #### Category 2 stop controlled stop with power left available to the machine actuators (3.29) [IEC 60204-1:2009, 9.2.2] #### 3.11 #### continuous run machine motion at a steady speed initiated by a momentary-contact control # ISO 12643-1:2009(E) #### 3.12 #### control station defined location containing one or more controls #### 3.13 # control zone control configuration of single or multiple machine motions using the same control devices NOTE See Clause 9. #### 3.14 #### drive mechanism, divided into the following two general categories, which causes a machine or any of its elements to move: - drives with no stored energy, which include, but are not limited to, direct-motor drives; - drives having stored energy, which include, but are not limited to, motor-flywheel-clutch drives and hydraulic-pneumatic drives #### 3.15 #### electrical hazard source of potential injury or death from electric shock or burn NOTE Adapted from ISO 12100-1:2003. #### 3.16 #### electro-sensitive protective device #### **ESPD** apparatus that detects the presence of a person or part of a person or object in a defined area, using any detection means, including, but not limited to, photoelectric, light screen, ultrasonic, etc. #### 3.17 #### emergency stop device manually actuated control used to initiate an emergency stop function (3.18) NOTE Adapted from ISO 13850:1996. #### 3.18 #### emergency stop function mechanism activated by a single human motion and intended to halt machine activity in order to avoid injury to persons, damage to machinery or damage to work in progress # 3.19 # exposing device machinery used for creating images by exposing photo-sensitive material such as printing plates or printing formes #### 3.20 #### fixed guard **guard** (3.21) that is securely affixed by fasteners that require a tool(s) to remove in order to gain access to an area with a significant hazard #### 3.21 #### guard physical barrier that restricts access to a significant hazard # 3.22 #### hazard point location of a hazard on a machine where a person can be injured #### hazard zone any area within and/or around machinery in which a person is exposed to risk of injury or damage to health NOTE Adapted from ISO 12100-1:2003. #### 3.24 #### hold-to-run control control that starts and maintains machine motion only as long as the control is activated #### 3.25 #### inch #### jog (operation of machinery) machine motion requiring maintained activation engagement of a hold-to-run control and which will continue until the control is released or until a pre-determined displacement (limited inch) has been reached #### 3.26 #### infrequently used workplace area in which an activity is carried out, such as observation, make-ready, jam clearing, minor servicing, crossing inserting hoppers or conveyer belts, etc., that is routine, repetitive, integral to (but not necessarily during) production, and is done only on an occasional basis # 3.27 # in-running nip #### in-going nip area created either by two rotating components that are rotating inward, or by one component rotating toward an adjacent surface NOTE See Figure 3 for examples of in-running nips. #### 3.28 #### interlock (for safeguarding) arrangement that interconnects guard(s) or device(s) with the control system and/or all or part of the electrical energy distributed to the machine [IEC 60204-1:2009, definition 3.32] #### 3.29 #### machine actuator power mechanism used to affect motion of the machine [IEC 60204-1:2009, definition 3.34] #### 3.30 # maintained-contact control control that remains in an open or closed state after its activation #### 3.31 # maintenance operation(s) required to ensure that the machine remains in acceptable operating condition and that is/are usually performed when the machine is not available for production NOTE Maintenance (for example, repairing or replacing broken, worn or damaged parts; performing lubrication; preventive servicing) is normally performed by qualified maintenance personnel, or operators, who have been trained about the types of hazards in the area in which their tasks are to be performed and about how these hazards can be avoided. Such maintenance is generally performed with energy isolated, when possible. #### make-ready tasks preceding a production run, such as adjusting ink controls for proper colour, plate alignment for proper registration, adjusting pressures, measurement with quality control devices, etc. #### 3.33 #### manual control device mechanism comprising part of the actuating system to which a manual action is applied [IEV 441-15-22]^[22] #### 3.34 #### manually fed substrate is placed into and/or removed from the machine by hand #### 3.35 #### mechanical hazard source of potential injury to a person created by motion of machinery, components or material EXAMPLES Crushing and shearing points; trapping points; in-running nips; cutting, punching and impact points; gear, chain and worm drives; V-belt, flat belt, cord and rope drives; pulling and supporting elements on continuous conveyors; spoke wheels and fly wheels; shafts and shaft ends; rollers; slides; push rods and similar parts, tools and clamping devices. # 3.36 # momentary-contact control control that is opened or closed only during its actuation #### 3.37 #### motion control control that initiates machine movement or movement at **zero speed** (3.68), or places the machine in the **armed condition** (3.2) #### 3.38 #### motion-control station station that contains a **motion control** (3.37) #### 3.39 #### motion zone area defined by any machine component, or group of machine components, which is driven directly by the system drive motor(s) or **machine actuator**(s) (3.29), or indirectly by other means #### 3.40 #### movable control station control station that is permanently wired to the equipment, but which can be moved within a range limited by the length of the attached cable #### 3.41 # movable guard guard (3.21) that does not require a tool to move or remove it to gain access to a significant hazard #### 3.42 #### nip guard guard (3.21) located at an in-going nip EXAMPLES Nip bar, finger bar, finger guard. #### normal operation usual functioning and conditions that exist during set-up, make-ready, production and minor servicing, adjusting and cleaning performed by operators, but not including **maintenance** (3.31) operations #### 3.44 # operating position location where normal functions (make-ready and other routine, repetitive tasks) requiring control of the main drive motor(s) are performed #### 3.45 #### permissive period time interval during which machine motion can be initiated NOTE See 14.2.3. #### 3.46 #### personnel warning light red or green light used to indicate the ready, running and safe conditions of the machine relative to personnel safety NOTE These lights are not the same as machine **status lights** (3.60). #### 3.47 # portable control station control station that can be disconnected from one location, moved to another location and be reconnected NOTE This is not the same as a **remote control** (3.52). # 3.48 #### positive mechanical action linkage of one component with another component such that movement of the former inevitably compels movement of the latter, either by direct contact or by a rigid connection NOTE 1 This definition also applies to a component that prevents any movement of another component by virtue of its presence. NOTE 2 When the movement of one mechanical component simply allows another component to move freely (e.g. by gravity, spring force, etc.), there is no positive mechanical action of the former component on the latter. #### 3.49 #### positive opening contact separation as the direct result of a specified movement of the **actuator** (3.1) through non-resilient members, e.g. those not dependent on springs #### 3.50 # raised workplace area where functions are regularly performed, and are at least 0,5 m above access level #### 3.51 # ready condition status of a machine in which motion can be initiated by the operator #### 3.52 #### remote control access connection to one or more control stations of a machine by use of an external communication link NOTE This is not the same as **portable control station** (3.47). #### routine and regular access repetitive access to a hazard point (3.22) that is required during normal production activity #### 3.54 # safe condition machine status in which movement of the main drive motor(s) (prime mover) of the motion zone is prevented, which may apply to the entire machine or to one or more motion zones, and which exists only when one or more stop/safe or emergency stop control(s) is/are activated #### 3.55 #### safety distance minimum distance a protective device is required to be placed from a hazard zone (3.23) [ISO 13857:2008, definition 3.2] #### 3.56 #### separating element part on feeders of sheets, blanks or similar materials that separates the individual sheets, blanks, etc. #### 3.57 #### sheet-fed substrate is
fed in separate sheets, either manually or mechanically #### 3.58 #### significant hazard potential source of severe or disabling injury or death #### 3.59 # smooth cylinder #### smooth roller elongated body, solid or hollow, with a circular cross-section having a smooth surface with either of the following: - a) grooves no more than 4 mm deep (measured in the radial direction) and no more than 8 mm wide (measured in the circumferential direction), with no sharp or cutting edges (see Figure 1); or - b) grooves no more than 4 mm wide (measured in the circumferential direction), with no sharp or cutting edges NOTE "Cylinders" includes plate cylinders, blanket cylinders, impression cylinders, etc. Ink rollers, dampening water rollers or distribution drums are not considered to be cylinders as defined in this part of ISO 12643. Dimensions in millimetres Figure 1 — Smooth roller/cylinder #### status light light that indicates machine status or machine process condition NOTE Status lights are not the same as **personnel warning lights** (3.46). #### 3.61 #### tool implement, such as a key or wrench, designed to operate a fastener NOTE An item such as a coin or fingernail file is not considered to be a tool. #### 3.62 #### trip device protective device that activates the interlocking safety system of the machine #### 3.63 #### trip nip bar movable protective bar located at an in-running nip which, when pushed, activates the interlocked safety system of the machine #### 3.64 #### two-hand control safety device that consists of two manual control devices that must be operated simultaneously by a single operator to initiate potentially hazardous machine motion #### 3.65 #### warning period time interval during which machine motion is prevented and a warning is given to personnel that machine motion is about to occur #### 3.66 #### web-fed substrate is fed from a roll or a pack of continuous stock #### 3.67 # wireless control transmission of commands and signals between a machine-control system and the motion-control station(s) using means other than a physical connection # 3.68 # zero speed condition of machine movement in which the drive control system is actively holding the machine at a position and while machine movement is not discernible, machine movement can be initiated without warning NOTE **Zero speed** is considered to be an **armed condition** (3.2). # 4 Conformity with this part of ISO 12643 In order to claim conformity with this part of ISO 12643, all equipment manufactured as of 2011-01-01 shall be in accordance with this second edition of ISO 12643-1 rather than ISO 12643-1:2007. #### 5 Risk assessment Risk assessment on machinery covered by all parts of ISO 12643 shall be conducted in accordance with ISO 12100-1, ISO 12100-2 and ISO 14121-1. # 6 Guarding of significant hazards #### 6.1 General Guarding, consistent with operation of the machine, shall be provided in those areas where it is recognized that operators are exposed to significant hazards. Exposure to significant hazards is not considered to exist if, during normal operation, the distance to the hazard complies with those specified in ISO 13857. Machinery shall be designed using the risk assessment process of ISO 14121-1 and the principles of ISO 12100-1 and ISO 12100-2 for hazards, and the relevant parts of ISO 12643 for significant hazards. Significant hazards vary from machine to machine. It is important that each machine be evaluated to determine what hazards might exist and that shall be guarded. Machines should be designed to allow normal production operations such as make-ready, wash-up, operator-performed maintenance or troubleshooting without machine motion. Where machine motion is required to perform these functions, guards and safety devices shall provide protection against hazards. These operations shall be carried out using a hold-to-run device as specified in this part of ISO 12643, and specified in the requirements for hold-to-run controls defined in ISO 12643-2 for prepress and press equipment and systems, ISO 12643-3 for binding and finishing equipment and systems, ISO 12643-4 for converting equipment and systems, or ISO 12643-5 for stand-alone platen presses. Where moving components or product flow require surveillance, equipment shall be designed to allow the needed visibility and to allow adjustments, if needed, to equipment operation with the guards remaining closed. EXAMPLES A transparent guard or remote viewing system. #### 6.2 Guards # 6.2.1 Guard types and travel # 6.2.1.1 Type of guards For the purpose of this part of ISO 12643, there are two types of guards, fixed and movable. Guards that do not have to be opened frequently shall be interlocked or shall be fixed in such a way that their removal necessitates the use of a tool (see 3.61), such as a key or wrench, designed to operate a fastener. The fixing systems of fixed guards that are designed for access by operators during operations (e.g. set-up, make-ready, routine cleaning, etc.) shall remain attached to the guards or to the machine when the guards are removed. Where possible, guards should be incapable of remaining in place without their fixings. This requirement is not applicable to guards and enclosures removed by trained service personnel performing maintenance when the machine is not available for production. All movable guards shall be interlocked in accordance with 6.5. Guards that are designed to be opened, removed, and/or moved at least once per working shift (on average) during normal operation, with or without the use of a tool, shall be interlocked. NOTE A typical working shift is 8 h. Guards and doors may be removed for set-up and for other purposes. EXAMPLE 1 Cases when guards and doors may be removed include, but are not limited to, the following: - to supply the material to be processed; - to change the format; - to change tools; - for make-ready. The interlock system shall operate as described in 6.5.1. When the interlocking guard is open, one of the measures set out in 6.6 shall become effective. Where production processes need to be watched, guards shall be designed to ensure sufficient visibility of the functional process and not to impair vision by reflections. EXAMPLE 2 Mesh-type guards painted in matte black, placement of lighting behind the guard, etc. Guards shall not create any additional significant hazards to personnel and shall satisfy the requirements of ISO 14120. # 6.2.1.2 Automatic travel of movable guards Automatic travel of movable guards shall not create any significant mechanical hazards. This can be achieved, for example, by limiting the force of the guard movement. The following guidelines are suggested: - 50 N or less where the likely contact surface of the guard is a blunt edge or projection and there is no risk of cutting or stabbing injuries; or - 150 N or less where the likely contact surface of the guard is a plane such that there is no risk of a crushing injury. Higher values may be chosen based upon risk analysis. # 6.2.1.3 Protection against gravity falls of guards Guards that can be opened shall be safeguarded against gravity falls if such a fall creates a risk of injury. EXAMPLE The following are examples of means that may be used for safeguarding: - devices for balancing the mass; - pneumatic springs; - devices which automatically hold the parts open; - power-driven worm gear drives actuated by hold-to-run controls if the hazard points can be observed from the position where the hold-to-run control is actuated; - ensuring that the centre of gravity of the guard in the open position is sufficiently far behind the axis of rotation to prevent closing. Springs used for balancing the mass shall be designed such that no hazard shall result from failure of the spring or movement of the guard. Compression-type springs are preferred. Springs shall not display any permanent deformation, even after extensive use. #### 6.2.2 Guard positioning #### 6.2.2.1 Guard distances and gaps The safety distance between the guard and the in-running nip is measured from that point where the distance between the rotating surfaces, or the rotating surface and a fixed surface, is 10 mm (see Figure 2). Safety distances shall be as specified in ISO 13857. The design and construction of the barrier guard shall ensure that personnel cannot encounter the hazard by reaching up, over, under, around or through the barrier guard. The safety distance for guide rollers shall be a minimum of 120 mm. Dimensions in millimetres Figure 2 — Measuring safety distance at the in-running nips # 6.2.2.2 Reaching upwards If there is a low risk (as determined by risk assessment) from the hazard zone when reaching upwards, the height of the hazard zone shall be 2 500 mm or more, as specified by ISO 13857. Otherwise, - a) either the height of the hazard zone shall be 2 700 mm or more; or - b) other safety measures shall be used. NOTE For further information on risk assessment, see ISO 14121-1. # 6.2.2.3 Reaching over protective structures If there is a low risk (as determined by risk assessment) from a hazard zone when reaching over a protective structure, the horizontal distances to the hazard zone as specified in Table 1 shall be used as the minimum values. There shall be no interpolation of the values specified in Table 1. Therefore, when the known height of the hazard zone, a, the height of the protective structure, b, or the horizontal distance to the hazard zone, c, is between two values in Table 1, the value used shall be that which provides the higher level of safety. Table 1 — Horizontal distance to hazard zone for low risk Dimensions in millimetres | Height of | Height of protective structure b^{a} | | | | | | | | | | | |--------------------|---|------------------------------------|-------|-------|-------|-------|-------|-------|-------|--|--| | hazard
zone | 1 000 | 1 200 | 1 400 | 1 600 | 1
800 | 2 000 | 2 200 | 2 400 | 2 500 | | | | a | | Horizontal distance to hazard zone | | | | | | | | | | | | | | | | c | | | | | | | | 2 500 ^b | | _ | _ | _ | _ | _ | | _ | | | | | 2 400 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | | | | | 2 200 | 600 | 600 | 500 | 500 | 400 | 350 | 250 | _ | _ | | | | 2 000 | 1 100 | 900 | 700 | 600 | 500 | 350 | _ | _ | _ | | | | 1 800 | 1 100 | 1 000 | 900 | 900 | 600 | _ | _ | _ | _ | | | | 1 600 | 1 300 | 1 000 | 900 | 900 | 500 | _ | _ | _ | _ | | | | 1 400 | 1 300 | 1 000 | 900 | 800 | 100 | _ | _ | _ | _ | | | | 1 200 | 1 400 | 1 000 | 900 | 500 | _ | _ | _ | _ | _ | | | | 1 000 | 1 400 | 1 000 | 900 | 300 | _ | _ | _ | _ | _ | | | | 800 | 1 300 | 900 | 600 | _ | _ | _ | _ | _ | _ | | | | 600 | 1 200 | 500 | _ | _ | _ | _ | _ | _ | _ | | | | 400 | 1 200 | 300 | _ | _ | _ | _ | _ | _ | _ | | | | 200 | 1 100 | 200 | _ | _ | _ | _ | _ | _ | _ | | | | 0 | 1 100 | 200 | _ | _ | _ | _ | _ | _ | _ | | | ^a Protective structures less than 1 000 mm in height are not included because they do not sufficiently restrict movement of the body. If there is a high risk (as determined by risk assessment) from a hazard zone when reaching over a protective structure, the horizontal distances to the hazard zone as specified in Table 2 shall be used as the minimum values. There shall be no interpolation of the values specified in Table 2. Therefore, when the known height of the hazard zone, a, the height of the protective structure, b, or horizontal distance to the hazard zone, c, is between two values in Table 2, the value used shall be that which provides the higher level of safety. For hazard zones above 2 500 mm, see 6.2.2.2. Table 2 — Horizontal distance to hazard zone for high risk Dimensions in millimetres | Height of | | | | Heig | ht of prote | ective struc | cture | | | | |--------------------|-------|-------|--------------------|---------|-------------|--------------|---------|-------|-------|-------| | hazard
zone | 1 000 | 1 200 | 1 400 ^b | 1 600 | 1 800 | 2 000 | 2 200 | 2 400 | 2 500 | 2 700 | | а | | | | Horizoi | ntal distan | ce to haza | rd zone | | | | | 2 700 ^c | | _ | _ | _ | _ | _ | _ | _ | _ | | | 2 600 | 900 | 800 | 700 | 600 | 600 | 500 | 400 | 300 | 100 | | | 2 400 | 1 100 | 1 000 | 900 | 800 | 700 | 600 | 400 | 300 | 100 | | | 2 200 | 1 300 | 1 000 | 1 000 | 900 | 800 | 600 | 400 | 300 | _ | _ | | 2 000 | 1 400 | 1 300 | 1 100 | 900 | 800 | 600 | 400 | _ | _ | _ | | 1 800 | 1 500 | 1 400 | 1 100 | 900 | 800 | 600 | _ | _ | _ | _ | | 1 600 | 1 500 | 1 400 | 1 100 | 900 | 800 | 500 | _ | _ | _ | _ | | 1 400 | 1 400 | 1 400 | 1 100 | 900 | 800 | _ | _ | _ | _ | _ | | 1 200 | 1 500 | 1 400 | 1 100 | 900 | 700 | _ | _ | _ | _ | _ | | 1 000 | 1 500 | 1 400 | 1 000 | 800 | _ | _ | _ | _ | _ | _ | | 800 | 1 500 | 1 300 | 900 | 600 | _ | _ | _ | _ | _ | _ | | 600 | 1 400 | 1 300 | 800 | _ | _ | _ | _ | _ | _ | _ | | 400 | 1 400 | 1 200 | 400 | _ | _ | _ | _ | _ | _ | _ | | 200 | 1 200 | 900 | _ | _ | _ | _ | _ | _ | _ | _ | | 0 | 1 100 | 500 | _ | _ | _ | _ | _ | _ | _ | _ | Protective structures less than 1 000 mm in height are not included because they do not sufficiently restrict movement of the body. # 6.2.3 Guard openings Guard openings shall comply with the requirements of ISO 13857. For guarding in-running nips that are accessible while a movable guard is open, see 6.3. # 6.3 In-running (in-going) nips Hazards from in-running nips may exist between the following: - a) two counter-rotating surfaces, powered or non-powered; - NOTE 1 An example of a non-powered surface is a roller that is driven by movement of product. For non-powered surfaces, this hazard will depend on a number of factors (e.g. type of material, wrapping angle, inertia, etc.). - b) one surface rotating toward an adjacent fixed part of the machine; - surfaces rotating in the same direction, but with different peripheral speeds or surface properties, such as friction; - NOTE 2 Rollers rotating in the same direction do not create a hazardous in-running nip if the rollers have the same surface characteristics and same circumferential speeds. b Protective structures lower than 1 400 mm should not be used without additional safety measures. For hazard zones above 2 700 mm, refer to 6.2.2.2. - d) guide roller and driving belt, conveyor belt, and unwind/rewind devices; - e) non-powered riding rollers (guide rollers) that are driven by the movement of the product (see NOTE 1). Examples of in-running nips are shown in Figure 3. Figure 3 — In-running nips # 6.4 Guarding in-running nips #### 6.4.1 General All in-running nips that are accessible during normal operation shall be guarded by one or more of the following types of guards: - a) barrier guard or fence guard with or without openings; if the guard has an opening, the safety distances shall be established in relation to the width of the opening in accordance with Table 3; - b) nip guard (only allowed on smooth rollers/cylinders), as bars designed in suitable sections and extending across the entire working width (see Figure 4 for examples of nip guards); - c) trip nip bars shall be in accordance with 10.6. In-running nips created by rollers are not considered to be a significant hazard if the maximum force exerted does not exceed 50 N. When machine motion is reversed, out-going nips that do not generally pose a hazard can become in-running nips and shall be guarded as such. Figure 4 — Examples of nip guards Whenever possible, the angle between the surface of the cylinder and the surface of the guard should be 90° to prevent wedging. However, if other design considerations, such as stiffness of the guard, web path, etc., make the use of a 90° angle less desirable, an angle of not less than 60° is permitted (see Figure 5). # Key - 1 tangent - a Preferred. - ^b Acceptable. Figure 5 — Minimum cylinder-to-guard angle Table 3 — Safety distances $L_{ m Sr}$ for regular openings for persons 14 years of age and above Dimensions in millimetres | Part of body | Illustration | Opening | Safety distance $L_{ m Sr}$ | | | | |---------------------------|---------------|---------------------|-----------------------------|-------------|-------|--| | | | | Slot | Slot Square | | | | Finger tip | o l | <i>e</i> ≤ 4 | ≥ 2 | ≥ 2 | ≥ 2 | | | | | 4 < <i>e</i> ≤ 6 | ≥ 10 | ≥ 5 | ≥ 5 | | | Finger up to | Sr. a | 6 < <i>e</i> ≤ 8 | ≥ 20 | ≥ 15 | ≥ 5 | | | knuckle joint | | 8 < <i>e</i> ≤ 10 | ≥ 80 | ≥ 25 | ≥ 20 | | | or
 | | 10 < <i>e</i> ≤ 12 | ≥ 100 | ≥ 80 | ≥ 80 | | | hand | | 12 < <i>e</i> ≤ 20 | ≥ 120 | ≥ 120 | ≥ 120 | | | | | 20 < <i>e</i> ≤ 30 | ≥ 850 ^a | ≥ 120 | ≥ 120 | | | Arm up to | ↓ ⟨, a | 30 < <i>e</i> ≤ 40 | ≥ 850 | ≥ 200 | ≥ 120 | | | junction with
shoulder | | 40 < <i>e</i> ≤ 120 | ≥ 850 | ≥ 850 | ≥ 850 | | NOTE The dimensions of openings e correspond to the side of a square opening, the diameter of a round opening and the narrowest dimension of a slot opening. The clearance between the nip guard and the respective machine part shall not exceed 6 mm under its normal operating configuration (for example, plate or blanket installed on the cylinder, if applicable) (see Figure 6). On small-format machines, the clearance should be smaller, if possible, considering both safety and production concerns. Nip guards shall not be shaped or oriented such that a "wedge pocket" is created (see Figure 7 and Figure 8). The shapes shown in Figure 7 may be used as trip nip bars, since activation of the trip nip bar stops hazardous motion, as specified in 6.7.4. Figure 6 — Safeguarding an in-running nip by means of a fixed nip guard #### Key 1 wedge pocket Figure 7 — Shapes creating wedge pockets Figure 8 — Shapes not creating wedge pockets # 6.5 Interlocks # 6.5.1 Opening an interlocking guard When an interlocking guard is opened, moved or removed while the machine is in continuous motion, the machine shall stop, utilizing the maximum braking action established for that machine. When any interlocking guard is open, initiation of continuous run shall not be permitted. Closing or replacing an interlocking guard shall not cause the machine to restart its operation. Machine motion shall not be able to be initiated without the operator going through a normal starting sequence. EXCEPTION — If a machine is operating at inching speed and under the conditions defined in 6.6, motion may continue. # 6.5.2 More than one interlocking guard open Where more than one interlocking guard is open and there are any unguarded hazard zones that cannot be observed from all operating positions, only an inch function or reverse inch function (as specified in 10.2.3.5) shall be permitted if - a) all in-running cylinder nips behind interlocking guards are additionally guarded by nip guards and all other hazards are guarded; or - b) multiple operators depress and maintain a hold-to-run control at each unguarded area during the same permissive period. Releasing any hold-to-run control shall stop machine motion. #### 6.5.3 Remote control with interlocking guard open When any interlocking guard is open, initiation of motion of the system by remote control shall be prohibited. #### 6.5.4 Interlock design #### 6.5.4.1 Interlock design for personnel safety Interlocks shall be designed so that they cannot be overridden without the use of special tools. NOTE While it is recognized that all interlocking schemes are capable of being defeated, the intent of the above requirement is to ensure that the interlocking arrangement is designed in such a manner that it cannot be defeated by commonly available items such as tape, paper, a single common magnet, etc., which are not considered to be tools. The requirements of ISO 14119:1998, Clauses 5 and 6, shall be satisfied. # 6.5.4.2 Safety-position switches for interlocking guards Safety-position switches shall be built in accordance with IEC 60947-5-1 and shall be installed in accordance with IEC 60204-1. For machines
where routine and regular access to a hazardous area is not required, it is sufficient to provide only one safety-position switch for each interlocking guard. NOTE A single switch is adequate because it is assumed that no safety-related malfunction will occur in switches built and installed to the specified requirements. Control systems of safety-position switches shall satisfy PL, d of ISO 13849-1 or SIL 2 of IEC 62061. For manually fed devices where interlocking guards are used to safeguard routine and regular access (see 3.53) to hazard points, control systems for safety-position switches shall satisfy PL_r e of ISO 13849-1 or SIL 3 of IEC 62061. #### 6.5.4.3 Protection of electric wires outside the switch cabinet Short circuits between two electric wires outside the switch cabinet due to physical impacts shall be prevented by mechanical protection of the cable. See 6.5.4.2 and 12.1 for requirements relating to design of safety-related parts of an electric/electronic control system. EXAMPLE Locating wires within ducts or within the machine frame to protect them from impact. # 6.5.5 Interlocking with guard locking Interlocking guards shall be designed so that the sensor (interlock) shall be activated within the limits specified in Table 4, depending on the distance to the hazard. Otherwise, guard locking shall be utilized. Interlocking with guard locking is also required where the hazardous movement cannot be stopped in 10 s or less after actuation of the position detector. Table 4 — Requirements for interlocking guards without guard locking | Safety distance ^a , $L_{\rm Sr}$, between guard opening and hazard point mm | Maximum opening $^{\rm a}$, $L_{\rm g}$, of the guard while the detector changes its state $${\rm mm}$$ | | | | | |---|---|--|--|--|--| | < 80 | ≤ 30 | | | | | | ≥ 80 and < 500 | ≤ 40 | | | | | | ≥ 500 and < 850 | ≤ 80 | | | | | | ≥ 850 ≤ 160 | | | | | | | a See Figure 9 for location of the measurements. | | | | | | a) Motor running b) Motor stopped #### Key - 1 failsafe limit switch - 2 guard closed - 3 motor - 4 guard open L_{SI} safety distance $L_{\mbox{\scriptsize g}}$ maximum opening Figure 9 — Distances related to requirements for guard locking #### 6.6 Hold-to-run controls If all hazard points are safeguarded by nip guards in accordance with 6.4, the requirements for hold-to-run controls and speed limitations do not apply. Where hold-to-run controls are used for safeguarding a hazard, running the machine in the hold-to-run mode after opening the interlocking guard shall be possible only when guards protecting hazardous areas that are not visible from the operating position are closed. When the hazardous area can be viewed from the operating position, machine motion with an interlocking guard open and hazardous points unprotected may be initiated by means of a hold-to-run device under only one of the following conditions: - a) with a displacement limited to a maximum of 25 mm or with a maximum operating (surface) speed of 1 m/min; or - b) with displacement limited to a maximum of 75 mm or with a maximum operating speed of 5 m/min where the measures defined in a) would reduce the ability of the machine to perform its function and where there would be no substantial increase in hazard. Guard circuitry for the hold-to-run condition shall satisfy the requirements of PL_r d of ISO 13849-1 or SIL 2 of IEC 62061. Control circuitry (including selector switch relays and PLC circuits) that allows interlocked areas to be operated independently shall satisfy the requirements of PL_r b of ISO 13849-1 or SIL 1 of IEC 62061. For hold-to-run devices designed as two-hand controls, the same limitations of displacement and speed shall apply. At speeds faster than 5 m/min, the maximum speed shall be as low as possible and no faster than 10 m/min, provided either a two-hand control is used, or the control is located such that the hazard cannot be reached from the operating position and the operator has clear view of the hazard. Any speed greater than 10 m/min shall have a means of achieving a level of safety equivalent to that at 10 m/min unless an exception to this requirement is specified in the requirements for hold-to-run controls defined in ISO 12643-2 for prepress and press equipment and systems, ISO 12643-3 for binding and finishing equipment and systems, ISO 12643-4 for converting equipment and systems, or ISO 12643-5 for stand-alone platen presses. EXCEPTION — Where machine-specific requirements allow for speeds greater than 10 m/min, all of the following requirements shall be met. - Other interlocking guards in an area that cannot be observed by the operator from the operating position shall be closed. - A selector switch for this kind of operation shall be provided in addition to a two-hand control. - The hold-to-run speed shall be the slowest possible under procedural requirements. Any two-hand control device shall meet the requirements specified in 10.5. The stopping time shall be as short as technically feasible. See 12.1 for general requirements for control systems. # 6.7 Other safeguarding measures #### 6.7.1 General Where safeguarded accessible hazard zones cannot be observed from positions from which hazardous movements can be started, the requirements of 6.7.2 to 6.7.4 shall apply. #### 6.7.2 Fence-type enclosures Where accessible hazard zones are safeguarded by a fence-type enclosure, either: - a) it shall not be possible for one or more persons within the enclosure to close the interlocking access gate; or - b) an additional control device shall be provided outside the enclosure in such a position that it cannot be actuated from the inside. Any hazardous movement, with the exception of movement controlled by holdto-run, shall be permitted only after the access door has been closed and the additional control device has been actuated. EXAMPLES Additional control devices include reset buttons, captured keys, trapped keys, and similar devices. Fence-type enclosures shall be designed such that the distance between base level and the lower edge is a maximum of 200 mm, and between base level and the upper edge is a minimum of 1 400 mm. Safety distance requirements shall be in accordance with ISO 13857. NOTE Fence-type enclosures are often used in areas such as behind reel stands, automatic pile changers, etc. It shall not be possible to initiate machine motion while a person is within the hazard zone except under hold-to-run conditions as defined in 6.6. # 6.7.3 Electro-sensitive protective devices Where accessible hazard zones are safeguarded by means of electro-sensitive protective devices (ESPDs), an additional control device shall be provided outside the hazard zone and shall not be accessible from any position in the hazard zone. Provisions shall be made to ensure that the hazardous movement can only be started after the person has actuated the additional control devices. NOTE For example, accessible safeguarded hazard zones are areas generally protected by means of guards or electro-sensitive protective devices that allow whole-body access. The objective is to prevent anyone from starting the machine while a person is within the hazard zone. Electro-sensitive protective devices shall comply with 10.6. #### 6.7.4 Pressure-sensitive mats, pressure-sensitive bumpers, trip nip bars Pressure-sensitive mats, pressure-sensitive bumpers and trip nip bars shall function in accordance with 10.7. Where accessible hazard zones are safeguarded by means of pressure-sensitive mats, an additional control element that is not accessible from any position in the hazard zone shall be provided outside the hazard zone. Any hazardous movement, with the exception of movement controlled by hold-to-run, shall be permitted only after the additional control device has been re-actuated. EXAMPLE An example of an additional control device is a reset button. For safety-related applications, the approach speed specified in ISO 13855 shall be used as a basis for determining the correct positioning of the pressure-sensitive mats. #### 6.7.5 Auxiliary devices that act as guards Auxiliary devices (see 3.5) that act as guards to prevent access to hazard points in the built-in position shall be fitted so that they can be removed only by means of tools. Auxiliary devices that prevent access to hazardous areas, and that need to be removed frequently or accessed for set-up, act as movable guards and shall be interlocked with any hazardous movement (see 6.5). NOTE For example, auxiliary devices that prevent access to hazard points in their built-in position might be continuous flow drying devices on the delivery side of sheet offset printing presses where drying modules are inserted into the printing press from the side that, when removed, allow access to hazard points on the sheet gripper system. A premelter on a binder is another example of an auxiliary device that prevents access to the hazard point. When the machine is operated with the auxiliary device removed, thereby exposing a hazard, alternative guards shall be used to protect the hazard point(s). # 6.8 Guarding reel unwinding, rewinding and transport devices # 6.8.1 Hazard point between reel and belt On unwinding and rewinding devices where the reel is driven by a belt on the reel circumference (see Figure 10), any accessible hazard point between the reel and the belt shall be safeguarded if the force between belt and reel is more than 300 N. Guards shall be provided for protecting the in-running nips on the drive belt guide rollers (see Figure 11). Figure 10 — Belt drives Figure 11 — Safeguarding of belt in-running nips on belt drives # 6.8.2 In-running nips On unwinding and rewinding devices, the accessible in-running nips at reels, pressure rollers or
support rollers shall be safeguarded by means of guards or safety devices having approach reaction (trip nip bars, pressure-sensitive mats, electro-sensitive devices). The safety device selected shall be effective at all operating reel diameters and operating speeds. Access to the in-running nip from the side shall not be possible. Included in this requirement is the safeguarding of the in-running nip facing the machine, if drawing-in hazards exist as long as the diameter of the reel is small (at the beginning of the rewinding process) or the diameter of the pressure roller is small. For trip nip bars and pressure-sensitive mats, see 6.7.4 and 10.7. For electro-sensitive protective devices, see 6.7.3 and 10.6. #### 6.8.3 Chucking cones on devices using non-automatic control On unwinding or rewinding devices using non-automatic control, the chucking cones shall be designed so that they can be inserted only while the device moving the cones is in the hold-to-run control mode. Control devices shall be arranged such that hazard points between chucking cones and reel can be observed from the position of the hold-to-run control allocated to the unwinding and rewinding unit. The hold-to-run speed shall be as specified in 6.6. For automatic reel loading, see 6.8.10. # 6.8.4 Separation of chucking cones Provision shall be made to prevent unintentional separation of the chucking cones after the reel has been lifted. NOTE 1 For example, unintended separation can be prevented by allowing the chucking cones to separate only in the hold-to-run control mode at a maximum speed of 2 m/min, or by two-hand control. Separation of the chucking cones during the unwinding or rewinding motion shall be prevented. NOTE 2 For example, an interlocking system can be used to prevent separation of the chucking cones during roll movement. # 6.8.5 Non-conical chucking devices Where there is a risk of damaging non-conical chucking devices by lifting only one end of the roll, provisions shall be made to prevent lifting only one end of the roll more than 50 mm. NOTE 1 Risk of damaging non-conical chucking devices by lifting only one end of the roll exists, for example, when a heavy, long roll is stuck on the chucking device. NOTE 2 These provisions are to help prevent possible damage to the chucking device, which could possibly result in the unexpected release of the roll. Generally, this risk increases in proportion to the width and mass of the roll. #### 6.8.6 Shaftless unwinding and rewinding units Provisions shall be made to ensure that shaftless unwinding and rewinding units can be started only after the chucking cones are fully inserted. NOTE 1 For example, this can be accomplished for manually operated machines by providing the operator with a clear view of the chucking cones using mirrors or a video monitor. For fully automatic machines, this can be accomplished by using a pressure-sensing monitor. On shaftless unwinding and rewinding devices, hazards caused by small diameter reels being ejected shall be prevented. NOTE 2 The following are examples of preventative measures that might be taken: - changing reels at a lower speed; - preventing the reel from being reduced to a diameter that is less than the minimum reel diameter specified by the supplier; - fitting an adequate safety device to the unwinding unit. #### 6.8.7 Lifting arm If hazard points between lifting arm(s) and machine frame cannot be avoided by built-in design or be safeguarded, the lifting arm(s) shall be movable only in the hold-to-run control mode. Control devices shall be arranged such that hazard points can be observed from the place of actuation. The hold-to-run speed shall be as specified in 6.6. #### 6.8.8 Protection against drawing in hazard On reel unwinding and rewinding devices, provisions shall be made to guard against being drawn in between the end surface of a rotating paper reel and fixed parts or lifting arms if the distance is less than 25 mm. # 6.8.9 Transport of the material reel to the reel stand On semi-automatic reel transport systems, transport of the material reel to the reel stand shall be done in the hold-to-run control mode with a maximum speed of 20 m/min. The stopping distance shall not exceed 200 mm. It shall be possible to clearly see the total transport way from the respective hold-to-run control position. Safety distances to prevent crushing parts of the human body shall comply with ISO 13854. # 6.8.10 Protection of hazard zones on unwinding unit of automatic reel-loading systems On automatic reel-loading systems, the hazard zone associated on the unwinding unit shall be completely safeguarded by electro-sensitive devices or by guards. Hazard zones exist between material reel and fixed machine parts, between the material reel and the lifting arm and the floor, and between material reel and the chucking cone. Where ESPDs, in accordance with 6.7.3, are used for safeguarding the automatic reel-loading area on unwinding units, the device may be muted while material reels or unwound cores are transported through the area safeguarded by the electro-sensitive device under the following conditions: - An additional photoelectric device is provided at a height (h) of not more than 50 mm above the top of the largest reel that will cause immediate stopping of all hazardous movements on the unwinding unit whenever the beam is interrupted during insertion of the material reel or removal of unwound cores, caused by persons accessing the hazard area or other intrusions (see Figure 12). - Emergency stop devices shall be provided within reach of the operator on the unwinding unit that will also stop the automatic loading operation. Dimensions in millimetres #### Key - 1 photoelectric device - 2 photoelectric beams - 3 additional photoelectric device - 4 ree - h height to the top of the largest reel plus a maximum of 50 mm Figure 12 — Use of ESPDs to guard automatic reel loading on unwinding unit on automatic reel loading systems # 6.9 Threading of web material On machines, safe threading of the web-type material shall be ensured. For certain types of machines, this may require the use of auxiliary threading devices. On power-driven threading devices for web-type material, access to hazard points shall be prevented by guards. Access to hazard points is considered prevented if the following conditions are satisfied. - On rope-type threading devices, the in-running nips between the threading rope and the idler pulley are safeguarded. Safeguarding may include the provision of a fixed disc on the outside of the pulleys, the radius of which is at least 120 mm larger than the radius of the pulley. - On power-driven bar-type threading devices with transport chains, the in-running nips between chains and chain wheels are protected by guards that fill the in-running nips as far as possible. # 6.10 Feeding units, delivery units (pile lifting and lowering devices) # 6.10.1 Pile lifting and lowering devices A pile lifting and lowering device integrated as part of a system shall be designed such that it can stand a static load test with a load of 1,25 times the maximum load capacity without showing permanent deformations or apparent defects. It shall stand a dynamic load test with a load of 1,1 times the maximum load capacity under normal operating conditions. NOTE 1 Examples of this type of equipment include the feeder and delivery on a sheet-fed press, pile lifting device on a guillotine cutter, a feeder on a sheet folding machine, a delivery on a rotary sheeter on a web press, etc. Devices such as cranes, scissor lifts and hoists are generally stand-alone equipment, and not covered by this requirement. NOTE 2 If the required tests are not done within a type test of the device and if the pile lifting and lowering device will not be assembled at the manufacturer in the form in which it is to be used, then every unique device needs to be tested at the manufacturer or at the place of use. # 6.10.2 Breaking strength of components On lifting and lowering devices with production format sizes greater than 2.5 m^2 , the breaking strength of the steel link chains shall be at least six (6) times the permissible static load; on pile lifting and lowering devices with production format sizes less than 2.5 m^2 , the breaking strength of the steel link chains shall be at least three (3) times the permissible static load. Calculations shall be based on a minimum specific density of 1 400 kg/m³ for paper and a minimum specific gravity of 200 kg/m³ for corrugated board. # 6.10.3 Lifting height of pile lifting and lowering devices #### 6.10.3.1 Pile carrier On pile lifting and lowering devices with production format sizes greater than 2,5 m², and a lifting height greater than 1,5 m, provisions shall be made to prevent the pile carrier from moving more than 100 mm in case of failure of a rope, chain, supporting nut or gear drive in areas where such failure may cause injury. NOTE This requirement is satisfied for worm drives, for example, by providing an additional nut of the same type as the supporting nut in order to back up the supporting nut in the event of a breakage or thread wear. The requirement is satisfied for chains (or ropes), for example, by providing one or more unloaded double chains that, in the event of a chain breakage, take over the load and function of the operating chain. EXCEPTION — This requirement is not applicable to gears that are rated for double load. This requirement also is not applicable to lifting and lowering devices with a hydraulic or pneumatic drive if, in case of leakage in the pipe system, the lowering speed of the pile carrier does not accelerate to more than 1,5 times the speed under normal operating conditions. See also 6.10.4.1. # 6.10.3.2 Pile-carrier plate On pile lifting and lowering devices with production format sizes greater than 2,5 m², the area below the pile carrier plate shall be safeguarded by guards or by
electro-sensitive protective devices. ISO 13855 need not be considered. On pile carrier plates, the hazard points between the edges of the pile carrier plate and the place where the operator may stand shall be safeguarded by one of the following means, to prevent injury to the operator. - a) On feeders with production format sizes of up to and including 1,0 m², and on deliveries with format production sizes of up to and including 0,175 m², the pile carrier plate shall be allowed to lower automatically down to a height of 120 mm above the floor, and further down to the base only in the hold-to-run control mode. - b) On feeders with production format sizes greater than 1,0 m², and on deliveries with format production sizes greater than 0,175 m², one of the following protective measures shall be provided in order to safeguard the exposed edges of the pile carrier plates. - 1) Resilient, non-switching, overhanging shields with their forward edges protruding over the hazardous edges by at least 250 mm shall be used (see Figure 13). - 2) Electro-sensitive protective devices located in front of the pile carrier plate edges shall be used. ISO 13855 need not be considered. The movement of the pile carrier plate may be automatically initiated when the electro-sensitive protection device is no longer actuated. - 3) A horizontal distance of 300 mm between the vertical projection of the machine frame and the pile carrier plate shall be used. The protruding parts of the machine frame shall not be higher than 1,5 m above the base. Carrier arms reaching into the safety distance (300 mm) shall be at least 120 mm above the floor (see Figure 14). To lower the pile carrier plate below 120 mm, hold-to-run control shall be used. - 4) Pressure-sensitive bumpers or trip devices shall be used. - 5) Hold-to-run control shall be used on feeders at a horizontal distance of at least 850 mm from the hazard point and at a position from where the hazard point is in the operator's view. - c) On feeders and deliveries with production format sizes greater than 2,5 m², the hazard point shall be safeguarded by one or more of the following safety devices: - 1) guard; - photoelectric device in front of the edge of the pile carrier plate, or on board feeding and delivery units by a photoelectric device fitted at a distance of 300 mm minimum from the edge of the pile carrier plate; - other presence sensing devices as defined in 6.7.3 and 6.7.4. - d) On delivery units with a pile carrier, where a pile mass of 500 kg is not exceeded, crushing of the toes shall be prevented as defined in ISO 13854 by providing a clearance of 50 mm between the lower edge of the pile carrier and the floor. In addition, the lowering movement shall be permitted only in the normal operating mode of the printing press or under hold-to-run control. Pile carrier wheels shall be fitted as close to the centre of the carrier plate as possible without decreasing stability. Where platforms or gangways are fitted to the feeding or delivery unit, the hazard point between platform or gangway and the edge of the pile carrier plate shall be safeguarded. See also 6.10.4.1. NOTE For example, this can be achieved by one of the following measures: - minimum distance of 120 mm between pile carrier edge and edge of platform; - electro-sensitive protective devices in front of the pile carrier edge (ISO 13855 need not be followed); - horizontal distance of 300 mm between the vertical projection of the outer edge of the machine frame and pile carrier edge, with protruding parts of the machine frame arranged at a maximum distance of 1,5 m above platform or gangway; - trip device. Dimensions in millimetres #### Key - 1 pile carrier plate - 2 overhanging shield - 3 foot Figure 13 — Overhanging shield Dimensions in millimetres Figure 14 — Safeguarding by deflecting parts of the machine frame # 6.10.4 Guarding crushing and shearing points # 6.10.4.1 Guarding sheet feeding and delivery units On sheet feeding and delivery units, the crushing and shearing points caused by the upward movement of the pile or pile carrier plate shall be safeguarded. NOTE For example, protective measures might include one or more of the following measures: - safety distances in accordance with ISO 13854; - trip devices; - guards; - hold-to-run operation. # 6.10.4.2 Pile-changing devices for sheet-feeding and delivery systems Where the movement of pile-changing devices causes a crushing hazard between the pile-changing device, the pile lifting and lowering device, the paper pile and fixed machine parts, protective measures shall be provided. This can be achieved by means that include, but are not limited to: - fixed or interlocking guards in accordance with 6.2; - electro-sensitive protective devices in accordance with 6.7.3; - safety distances and gaps in accordance with ISO 13857 and ISO 13854; - hold-to-run control in accordance with 6.6; - trip devices in accordance with 10.7. For trip devices the requirements of PL_r d of ISO 13849-1 or SIL 2 of IEC 62061 shall be satisfied. #### 6.10.5 Separating elements on feeders Separating elements on feeders shall be designed such that their movement does not create hazard points. Where blanks are fed from the top of the pile, the requirement is satisfied if safety distances between suction heads are used or if suction heads touch down only under spring force. #### 6.10.6 Suction heads on sheet feeders Hazard points on suction head drive gears that can be accessed during the production process shall be safeguarded by guards completely enclosing the head, leaving only the bottom open (see Figure 15). Hazard points caused by moving parts outside the suction head (such as a forwarding sucker or lifting sucker) shall be safeguarded by one or more of the following measures: - a) a distance of at least 25 mm is maintained between moving parts, such as a forwarding sucker, that are accessible during production; - b) the parts are moved only by springs with a non-hazardous low force (e.g. pressure foot, lifting sucker); - c) all hazard points (shearing and crushing hazards) are protected by guards. The drive shaft of the suction head shall be completely enclosed. #### Key - 1 forwarding sucker - 2 lifting suckers - 3 pressure foot Figure 15 — Movement of the suction head # 6.10.7 Pull-in and forwarding wheels In-running nips on the pull-in and forwarding wheels on the sheet feeding system shall be safeguarded. NOTE For example, this can be achieved by one or more of the following: - using a deflection of 25 mm (obtained with a force that would not cause injury); - using a deflection of 15 mm (obtained with a force that would not cause injury) with roller widths limited to 25 mm; - providing guards in accordance with Clause 6. # 7 Requirements for protection against other hazards #### 7.1 General Protection shall be provided against other hazards as defined in 7.2 to 7.16, inclusive. See annexes in ISO 12643-2 and ISO 12643-3 for a list of hazards associated with the equipment covered by those parts of ISO 12643. # 7.2 Fire and explosion #### 7.2.1 General Explosion zones shall be identified through risk assessment for the applicable equipment. #### 7.2.2 Fans Fans integrated in machines to exhaust potentially explosive atmospheres (fumes, dust, etc.) shall be designed such that they do not introduce an ignition hazard, and shall be built in compliance with requirements defined for individual explosion zones. # 7.2.3 Hoses and pipes Hoses and pipes used for combustible or explosive materials, or for impregnating material, shall be conductive and electrostatically grounded (resistance less than $10^6 \Omega$ over the total length of the hose). EXAMPLES Examples of combustible or explosive materials include, but are not limited to, paper, paper dust, plastic shavings, inks, coatings, glues, solvents over a certain concentration, etc. Hoses and pipes used for exhausting solvent vapours shall be conductive and electrostatically grounded (resistance less than $10^6 \Omega$ over the total length of the hose) where the solvent concentration under any single failure may exceed 25 % of the lower explosion limit (LEL). Measurement of resistance shall be made in accordance with ISO 8031. # 7.2.4 Electric motors for pumps The electric motor for pumps on supply ducts for inks, coating substances, impregnating material or glues shall be protected as specified in IEC 60079-1. Where protective motor switches are mounted on the pump, compliance with IEC 60079-7 is considered to be sufficient. Solvents, including those evaporating from the agitator shaft, shall be prevented from reaching the motor. The distance between the electric drive motor for viscosity control and the outer flange of the agitating device shall be at least 50 mm. NOTE One means of preventing solvents evaporating from the agitator shaft from reaching the motor is to mount a disc on the shaft. # 7.2.5 Prevention of ignition of explosive atmospheres by electrical apparatus If the build-up of explosive atmospheres under normal operating conditions or under operational disturbances cannot be avoided, especially by means of ventilation, additional measures, dependent on the zones defined in ISO 12643-2 and ISO 12643-3, shall be taken in order to avoid ignition of the explosive atmosphere. Electrical apparatus shall comply with IEC 60079-14. # ISO 12643-1:2009(E) - For electrical apparatus used in Zone 0, IEC 60079-11 shall also apply. Electrical apparatus used in Zone 1 shall additionally comply with one or more of the following standards for explosion protection: IEC 60079-1, IEC 60079-2, IEC 60079-5, IEC 60079-6, IEC 60079-7, IEC 60079-11 and IEC 60079-18. - Electrical apparatus designed in accordance with IEC 60079-11 shall be designed to explosion group IIA. NOTE 1 For a description of the electrical apparatus that are considered to be group II, see IEC 60079-0^[12]. Depending on the type of solvent used, the chosen temperature class
shall ensure that the electrical apparatus cannot be a source of ignition due to its surface temperature. NOTE 2 For a description of surface temperature classifications for electrical apparatus, see IEC 60079-0^[12]. - Brakes and clutches shall be designed such that they cannot be a source of ignition. - Hazardous electrostatic charges shall be minimized, as far as technically feasible (e.g. by using static eliminators). #### 7.2.6 Explosion protection exceptions Explosion protection is not required for machinery where there are no combustible liquids with a flash point below 55 °C being used and no combustible liquids are sprayed or heated to a temperature above flash point under operating conditions. All other machinery shall satisfy the requirements of EN 1127-1 as well as the requirements for electric motors and pumps defined in 7.2.4 of this part of ISO 12643, and for continuous flow drying devices defined in ISO 12643-2. NOTE 1 For washing equipment, see ISO 12643-2. NOTE 2 Heating of a combustible liquid occurs under operational conditions (e.g. in film and printing plate development units with bath heating). The requirements of EN 1127-1 are satisfied where the build-up of explosive atmospheres is prevented by adequate ventilation systems. This applies where the level of 25 % of the lower explosion limit is not exceeded even if the system fails. EXAMPLE An example of system failure would be a breakdown of the ventilation system. #### 7.3 Electrical equipment #### 7.3.1 General All electrical equipment shall be designed in accordance with IEC 60204-1, such that electrical hazards (such as electric shock or burns) are prevented. The requirements of IEC 60204-1 shall be fulfilled, taking into account the additional requirements specified in 7.3.2 to 7.3.6, inclusive. # 7.3.2 Supply-disconnecting device Machines shall be provided with a device to disconnect the electric power supply. The supply-disconnecting device shall be either a switch-disconnector, with or without fuses, in accordance with IEC 60947-3, utilization Category AC-23B or Category DC-23B; or a circuit-breaker suitable for isolation in accordance with IEC 60947-2. The device shall be provided with a means to be locked in the OFF position. If actuation of a stopping device will cause a low-voltage (under-voltage) tripping of the circuit breaker (shunt-trip device), a circuit breaker suitable for isolation in accordance with IEC 60947-2 shall be provided to prevent the contact from welding in the closed position. The following circuits need not be disconnected by the supply disconnecting device: - lighting circuits for lighting needed during maintenance or repair; - plug and socket outlets for the exclusive connection of repair or maintenance tools and equipment (e.g. hand drills, test equipment); - undervoltage protection circuits that are only used for automatic tripping in the event of supply failure; - circuits supplying equipment that should normally remain energized for satisfactory operation [e.g. temperature controlled measuring devices, product (work in progress) heaters, program storage devices]; - control circuits for interlocking. Where these circuits are not disconnected by the supply-disconnecting device, such circuits shall be provided with their own disconnecting device. # EXCEPTION — Auxiliary devices may be equipped with supply-disconnecting devices as follows: - a) a plug/socket combination for a machine with a rated current not exceeding 16 A and a total power rating not exceeding 3 kW; - b) a plug and socket-outlet or an appliance coupler for a flexible cable supply (e.g. reeled, festooned) to a mobile machine under the following conditions: - 1) it shall not be possible to connect or disconnect a plug and socket-outlet or an appliance coupler, without breaking capacity, during load conditions; - 2) the plug and socket-outlet or the appliance coupler shall be so connected that the part connected to the incoming supply is that which is protected to at least IP2X or IPXXB. Where a plug/socket combination with breaking capacity is used, it shall have a breaking capacity of at least the rated current of the machine at rated voltage. Where a plug/socket combination is used for disconnection under overload (e.g. locked rotor), the rating should be at least locked rotor current. In addition, the electrical equipment shall have a device for switching the machine on and off. #### 7.3.3 Installation Electrical devices and conductors shall be installed in such a way as to prevent damage from mechanical stress and environmental influences. #### 7.3.4 Insulated single-core conductors For insulated single-core conductors connected between two terminals inside an enclosure (for example, a switch cabinet), the conductor identification number or letter may be omitted if - it is identified by colour in accordance with IEC 60204-1; or - the conductors are secured in position (for example by using comb-type wire fixation) in such a way that there is no confusion of conductors when changing electric components. # 7.3.5 Testing of electrical equipment All electrical equipment shall be designed such that it will withstand the testing specified in IEC 60204-1. Voltage tests as specified in IEC 60204-1 are not required for electronic control circuits. # 7.3.6 Measuring devices Measuring devices shall comply with IEC 61010-1. # 7.4 Working platforms, access stairs, passageways and raised workplaces #### 7.4.1 General requirements For regular operation, the means of access and passageways to workplaces shall comply with the requirements of ISO 14122-1, ISO 14122-2 and ISO 14122-3. For infrequently used workplaces (see 3.26), the exceptions specified in 7.4.2 shall apply. The usable width of machine gangways shall be at least 0,5 m. For gangways fitted at a height of more than 0,3 m, adequate means of access shall be provided. The reader should be aware of the effects of mathematical conversion and rounding when converting from SI units to other units. NOTE For example, requirements stated by the U.S. Occupational Health and Safety Administration (OSHA) might supersede the resulting conversions in the U.S. #### 7.4.2 Exceptions for infrequently used platforms and access steps #### 7.4.2.1 General As an exception to the requirements of 7.4.1, infrequently used platforms and access steps shall comply with the requirements of 7.4.2.2 to 7.4.2.6 below. # 7.4.2.2 Ergonomics Ergonomic principles as specified in ISO 14122-2 shall be considered in the design of such access platforms. EXAMPLES The following are examples of measures by which this can be achieved: - sufficient number of handholds, part of which can be reached from the reference level; - mobile platforms; - permanently fixed and hinged platforms. # 7.4.2.3 Footstep dimensions # 7.4.2.3.1 General Footstep dimensions should be kept as uniform as possible throughout the system. When one or more footsteps are provided, one or more handles shall also be provided. The size of platforms used infrequently for stepping or short-term standing shall be at least 200 mm \times 200 mm. #### 7.4.2.3.2 Single footsteps For single footsteps (fixed or hinged), access levels may be permanent platforms or gangways. The following dimensions shall apply: | _ | normal step height | ≤ 300 mm; | |---|----------------------------|-----------| | _ | maximum step height | 500 mm; | | _ | minimum width (for 1 foot) | 200 mm; | | _ | minimum width (for 2 feet) | 300 mm; | | _ | minimum depth | 300 mm. | # 7.4.2.3.3 Multiple steps Where multiple steps (fixed or hinged) are needed, the reference level shall have an effective width of at least 500 mm. The following dimensions shall apply: maximum height of upper footstep1 200 mm; maximum height of intermediate steps 300 mm; — minimum depth of footstep 200 mm; — maximum height without railing 1 200 mm. # 7.4.2.4 Handle dimensions Where handles are required, the following dimensions shall apply (see Figure 16): — minimum handle clearance 40 mm; — minimum handle length 110 mm; minimum handle diameter20 mm; maximum handle diameter50 mm. Dimensions in millimetres #### Key - 1 handle - a handle clearance ($a \ge 40 \text{ mm}$) - b handle length ($b \ge 110$ mm) - c handle diameter (20 mm $\leqslant c \leqslant$ 50 mm) Figure 16 — Handles for infrequently used access platforms #### 7.4.2.5 Hinged platforms Hinged platforms shall be secured against unintended movement and shall be easy to position. Hinged platforms between 0,5 m and 1,6 m high (the height is considered to be the maximum distance a person can fall from the hinged platform) shall be provided with at least one handrail. Where a handrail is not feasible and practical, a handhold shall be provided. For hinged platforms above 1,6 m high, the requirements of 7.4.1 shall apply. Hinged platforms are generally provided in areas where space limitations prevent fixed platforms with handrails. Wherever feasible, the design of the platform should provide operators with sufficient support for ascending to or descending from the platform, as well as protection from falling off the platform. #### 7.4.2.6 Mobile hand-operated platforms Mobile hand-operated platforms provided between stationary machine units do not require any fall-off protection on the machine side if the clearance between machine and platform does not exceed 200 mm (see Figure 17). For platforms more than 1,5 m high where the clearance exceeds 70 mm, toe plates shall be provided as minimum protection. Dimensions in millimetres Figure 17 — Mobile platform #### 7.4.3 Platform, gangway, and step surfaces Platform, gangway and step surfaces shall be slip resistant in accordance with ISO 14122-2. EXAMPLE By using profiled metal plate. Plates of material with a low slip-resistance capability (e.g. glass) fitted in access floors to allow the operator to observe the production process are permissible if they are fitted at a distance of at least 200 mm from the nearest
fall-off edge (e.g. access stairs), and the accessible area of such materials does not exceed 18 000 mm² with a maximum width of 90 mm. As an exception to the design load requirements of ISO 14122-2, calculations or tests of plates of such material should be conducted to verify that a static load of 1 500 N applied to an area of 50 mm \times 50 mm in the centre of such material will not lead to damage. The area being tested shall not include the metal frame surrounding the glass or other transparent area. # 7.4.4 Access stairs and passageways Access stairs and passageways shall have a clear height for passage of at least 2 m. If, for construction reasons, this height cannot be maintained, the protruding parts shall be padded and provided with hazard markings. The maximum pitch angle on access stairs shall be 45°. # EXCEPTION — In some cases, higher pitch angles may be allowed depending on the results of a risk analysis (see Annex A). Where stairs with pitch angles between 20° and 45° are used, the height of one flight of stairs should not exceed 3 m. Only where spatial restrictions exist may the height of one flight be a maximum of 4 m. Stairs with a total height of more than 4 m shall be fitted with an intermediate platform; the flight above the platform shall have a maximum height of 3 m. The platform should be at least 800 mm long where possible, but shall in no case be less than 600 mm. The reader should be aware of the effects of mathematical conversion and rounding when converting from SI units to U.S./Imperial units. NOTE Requirements stated by the U.S. Occupational Health and Safety Administration (OSHA) might supersede the resulting conversions in the U.S. # 7.4.5 Extended use raised workplaces Raised workplaces at which personnel spend an extended period of time should have a clear working area of at least 1,5 m² per person and a width of at least 1 m unless this inhibits ergonomic requirements (e.g. handling of objects). # 7.4.6 Infrequently used workplaces For infrequently used workplaces (see 3.26) that cannot be accessed by stairs, secured ladders may be used if the access height does not exceed 2 m. Toe plates and intermediate rails on railings are not required if the falling height is less than 2 m. #### 7.4.7 Railings, toe plates and self-closing gates Railings with handrails, intermediate rails, toe plates or self-closing gates shall satisfy the requirements specified in ISO 14122-3. Where the difference in height does not exceed 1,6 m, a toe board is not required if - the respective level is not required for taking up auxiliary means required for production reasons; and - operational intervention below that level is not required under the intended use. In such cases, the intermediate rail shall be centred between the hand rail and the platform floor. # 7.5 Stability # 7.5.1 Unforeseeable changes of position Machines and their elements shall be designed and equipped to be stable and to ensure that no unanticipated changes of position can occur; i.e. so that they do not fall over and are not capable of being unintentionally moved by vibration, wind pressure, impact or other foreseeable external forces or internal dynamic forces (inertial forces, electrodynamic forces, etc.). # ISO 12643-1:2009(E) Means for preventing unanticipated changes of position include the following: - a) adequate size of the base; - b) low centre of gravity; - c) adequate means for anchoring; - d) adequate design of wheels on track-mounted assemblies. If this cannot be accomplished by design, then stability shall be obtained by special safety measures. Such special safety measures may include, but are not limited to, the following: - restriction of the movements of parts of the machine; - warning indicators or alarms if stability is endangered; - provision of interlocks to prevent tipping; - anchoring the machine securely to a foundation. Both static and dynamic stability shall be considered. If special safety measures are required, a warning shall be provided on the machine and/or in the instruction handbook. #### 7.5.2 Unintended travel Movable machines (machines on wheels) shall be safeguarded against unintended travel. Measures to prevent unintended travel include, but are not limited to, the following: - for machines with four wheels, providing a means of locking at least one wheel; - for machines with two wheels and two caster wheels, providing a means of locking at least one caster wheel; - for machines with four caster wheels, providing a means of locking at least two caster wheels. Where possible, automatic locking devices should be used. EXAMPLE Self-locking gears are an example of automatic locking devices. Unintended travel of machines on wheels and caster wheels with no brakes may occur on machines such as the following: small UV dryers; dampening water devices; inserting devices; jogging tables; sheet folding, riveting, stitching and eyeletting machines; strapping and tying machines; bundling and baling presses; printing slotters; rotary die-cutters and combined machines (in-line). #### 7.6 High contact temperatures Contact temperatures of accessible heated parts on machines shall not be greater than the limit values specified in ISO 13732-1. NOTE Means to safeguard against contact with heated parts include the use of insulation, guarding or by distance. #### 7.7 Noise Machines shall be so designed and constructed that risks from noise emission produced by the machines are reduced to the lowest practical level for that type of machine. Means to reduce noise include sound absorption materials, covers, silencers, vibration dampening or selection of component materials or other methods as specified in ISO/TR 11688-1. Sound measurements to determine the noise emission shall be carried out in accordance with the requirements specified in EN 13023 and ISO 11689. The level of noise emission may be assessed with reference to comparative emission data for similar machinery. NOTE 1 Examples of significant sources of noise include gears; hydraulic devices; compressors, pumps; exhaust fans; blast air nozzles; suction devices (paper dust, trimmings); paper embossing; cutting, die-cutting, creasing of paper, board, paper grinders; cylinder rolling motion; paper stops; separation of paper or board from the printing plate or printing forme; power transmission systems; pneumatic systems. NOTE 2 Requirements relating to noise emission and protection of workers differ from country to country. National requirements should be consulted. NOTE 3 See Annex B for guideline values from the German Berufsgenossenschaft (BG), and test results from Japan. #### 7.8 Radiation hazards # 7.8.1 Laser devices incorporated in machinery Laser devices incorporated in machinery shall comply with the requirements of ISO 11553-1 and IEC 60825-1. The equipment shall be provided with fixed or interlocking guards in order to prevent access to positions where laser radiation emission is above the Category 1 limit values as specified by IEC 60825-1 for the intended use of the machine. During repairs, it may be necessary for trained personnel to operate the machine for short periods of time without fixed or interlocking guards. If this requires access to positions where laser radiation emission is above the Category 1 limit values, additional safety measures shall be taken in accordance with IEC 60825-1. NOTE 1 Examples of laser devices include laser exposing devices, laser gravure equipment, laser cutting devices, etc. NOTE 2 Means of additional safety measures include, but are not limited to, providing instruction to personnel regarding the use of personal protective equipment. NOTE 3 For user information see Clause 16. # 7.8.2 Ultraviolet irradiance The level of ultraviolet irradiance emitted by machinery shall not exceed Category 1 limit values as specified in EN 12198-1:2000, Table B.1, for permanent workplaces, as well as for occasionally occupied positions. Actual irradiance values shall be determined as specified in EN 12198-1:2000, Annex B.1 and Table B.2. The values specified for Category 1 of EN 12198-1:2000, Annex B.1, Table B.2, refer to the maximum duration of exposure of 8 h per day. Where normal conditions of operation allow the expected time, $t_{\rm exp}$, in hours, of exposure per person to be less than the maximum duration, the UV-B/C radiation limit value of 1×10^{-3} W/m² may be multiplied by the factor $8/t_{\rm exp}$. The UV-A radiation limit value is 10 W/m² for exposure times from 1 000 s to 8 h. If the exposure time is less than 1 000 s, the limit value for radiation emission is calculated by dividing the radiation value of 10 000 J/m² by the exposure time defined in seconds. A lower maximum duration of exposure may be expected for equipment intermittently emitting UV, for example, where the emission of radiation is interrupted for procedural reasons in the preparatory phase of the exposing operation (feeding of the copy, travel to required position). #### 7.8.3 Ozone hazards caused by UV radiation Every attempt shall be made at the design stage to eliminate hazards due to ozone creation by UV radiation. If the design cannot completely eliminate ozone creation, exposure to air containing ozone shall be prevented. NOTE Measures for reducing ozone emission include low-ozone UV dryers, provision of exhaust equipment, or provision of adequate purification systems to filter out the ozone. On UV continuous flow drying devices, any hazards caused by the build-up of ozone shall be prevented. EXAMPLE By using devices with low ozone radiation or by providing exhaust systems that are designed such that they act as much as possible on the source of radiation. Radiators shall be operated only when the exhaust system is switched on. The function of the exhaust system shall be monitored. Failures in the exhaust system shall cause automatic stopping of the substrate feeding system (such as feeders on sheet-fed printing presses)
or machine motion shall be stopped (such as on web-fed rotary printing presses). It shall be ensured that the drying device stops automatically after the drying of the substrate (such as the last sheet) is finished. The control system for monitoring the function of the exhaust system shall satisfy PL_r of ISO 13849-1 or SIL 1 of IEC 62061. # 7.9 Stationary knives The cutting edge of a stationary knife blade (a knife that does not move during use) shall be guarded. Safeguards shall be provided to prevent contact with stationary knife blades that can be tilted, even when they are not in working position. # 7.10 Rotary tools On rotary tools, both the in-running nips and the part of the peripheral area that is not used for the process shall be protected against contact by personnel. Preference shall be given to guards that do not have to be removed for tool change. The requirements of Clause 6 shall be satisfied. EXAMPLE Examples of rotary tools include circular cutters, perforating knives, perforating tools, rotary slitting tools, rotary bending tools, circular saws. Split rotary tools shall be securely fastened to the tool carrier. # 7.11 Transport and storage of hazardous tools Devices shall be provided that prevent injuries caused by the hazardous tools of machines during their transport and storage. This requirement also applies to an individual tool that forms part of an assembly. EXAMPLE Knives are an example of a "hazardous tool". Knife boxes are an example of a "device". # 7.12 Protruding machine parts Machine parts that unavoidably protrude, causing a collision hazard, shall be padded and provided with a distinctive and permanent marking. #### 7.13 Handwheels and cranks Handwheels and cranks shall be so designed that they do not automatically rotate during machine motion. EXAMPLE One means of preventing automatic rotation is to decouple the handwheels and cranks by spring force. # 7.14 Routine handling of heavy machine parts Where heavy machine parts need to be removed and replaced regularly, necessitating the lifting of a load of at least 25 kg per person, the need for the user to provide adequate means of lifting and transport shall be indicated in the instruction handbook (see 16.4). EXAMPLE Examples of machine parts that need to be installed and removed routinely include screen rolls, gravure cylinders, some rubber rolls, flexo forme cylinders, hoppers, feeders, etc. The 25 kg requirement shall apply when ideal lifting conditions exist. Under conditions that are less than ideal, e.g. where lifting is more difficult such as from positions that require unfavourable body postures, the use of lifting devices may be required for lifting loads less than 25 kg. Determination of the lifting condition should take into consideration such things as distance between the body and the load, how high the load must be lifted, the shape of the object being lifted, the need to twist the body while lifting, etc. The reader should be aware of the effects of mathematical conversion and rounding when converting from SI units to U.S./Imperial units. NOTE Requirements stated by the U.S. Occupational Health and Safety Administration (OSHA) may supersede the resulting conversions in the U.S. # 7.15 Oxidizers, incinerators or thermal cleaning plants Hazards associated with oxidizers, incinerators and thermal cleaning plants shall be reduced or, where possible, prevented. NOTE For guidance, see EN 12753^[39], NFPA 86^[55] and EN 746-1^[29]. Information on methods for reducing residual risks associated with these hazards shall be provided in the instruction handbook. # 7.16 Protection against crushing and shearing hazards #### 7.16.1 General Automatic travel of movable components shall not create any significant mechanical hazards. One means of achieving this is by limiting the force of the component movement. The following guidelines are suggested: - a) 50 N or less where the likely contact surface of the guard is a blunt edge or projection and there is no risk of cutting or stabbing injuries; or - b) 150 N or less where the likely contact surface of the guard is a plane such that there is no risk of a crushing injury. Higher values may be chosen based upon risk analysis. # 7.16.2 Reel unwinding, rewinding devices On devices with movable parts, all hazard zones where the risk of crushing exists from automatic movements shall be safeguarded according to the distances and gaps defined in ISO 13857 and ISO 13854. Risk of crushing exists between movable parts such as lifting arms, paper reel and devices for acceleration, cutting and gluing, or in connection with fixed parts such as side frames, connecting bars or floor. #### 7.16.3 Control and measuring devices Crushing and shearing points between movable and fixed parts of control and measuring devices on systems shall be safeguarded. NOTE This can be achieved, for example, by one or more of the following: - safety distances in accordance with ISO 13854; - limiting the operating force to a non-hazardous level; - electro-sensitive protective devices in accordance with 10.6; - guards in accordance with 6.2. #### 7.16.4 Pile turners and reel turners On pile turners and reel turners, the crushing point between the floor and load-lifting member (lifting fork, pile carrier plate, pallet) or paper pile shall be safeguarded. The following are examples of safeguarding: - a) Where hold-to-run control is being adopted as a safety measure, pile descent shall only be done in the hold-to-run control mode with a maximum speed of 5 m/min. Unintended access to the hazard zone shall be prevented by providing a sufficient distance between the location of the hold-to-run control and loadlifting member, or by providing a foot guard. The hazard point shall be in the operator's view from the location of the hold-to-run control. Hazard points on the far side of the paper pile are considered to be in the operator's view if the pile height, including load lifting member, does not exceed 1,4 m in the lowest position. - b) Electro-sensitive devices used for safeguarding a hazard zone with crushing points between the floor and the load-lifting member shall satisfy the requirements of 10.6.1 and 10.6.3. Hand approach speeds according to ISO 13855 need not be taken into account where the descent speed is not more than 5 m/min. On hydraulic and pneumatic lifting equipment of pile turners and reel turners, an unblockable check valve shall be provided directly on the lifting cylinder if there is the possibility of uncontrolled gravity falling of the lifting device in the event of hose breakage or leakages. The load-lifting device shall be designed and constructed such that it can stand a static load of 1,25 times the maximum load capacity without permanent deformations or apparent defects. It shall be able to stand a dynamic test with 1,1 times the maximum load under normal operating conditions. On pile lifting and lowering devices, the breaking strength of steel sprocket chains shall be at least four (4) times the admissible static load. On pile turners and reel turners that are not exclusively operated in the hold-to-run control mode, an emergency stop button shall be provided on each motion-control station. # 7.17 Contact with hazardous substances Means shall be provided to prevent personnel from coming into contact with, or inhaling, hazardous substances such as solvents, solvent mist and dust. Any personal protection measures required shall be described in the instruction handbook. #### 8 Release from hazardous situation Means shall be provided for the release of persons in the event of entrapment. NOTE Examples of release mechanisms include the following: - provisions for moving some elements by hand or with the use of a tool; - reversing the direction of the machine; - opening the entrapment space. Where means for manual movement are provided, indication of the direction of rotation should be provided near such means to assist in the release of persons. #### 9 Control zones #### 9.1 General A system can consist of a multitude of machines and control systems. These may be divided into one or more subsystems creating "control zones" governing machine motion or non-motion for separate portions of the complete system. Small control zones may be used for independent operation. In other cases, these control zones may be combined to form a larger control zone. # 9.2 Purpose of zone configuration Generally, the purpose of zone configuration is to avoid the situation where pushing an emergency stop in one zone stops motion in all zones. However, it is possible to configure the system such that an emergency stop control would affect all motion zones of the system (see 10.2.3.1.2). Each control zone shall have a safety signalling system as specified in Clause 14, if the overall view of the personnel by the operator is obstructed or communication between operating personnel is difficult within that control zone. Each control zone shall also have a motion-control station as described in Clause 11. See ISO 12643-2 for an exception for web presses with multiple folders. # 9.3 Motion-control stations in control zones The motion-control stations within each control zone shall affect the hazardous motion of all equipment within that control zone. When multiple control zones are combined into a larger control zone, all motion-control stations within the larger control zone shall be able to control all hazardous motion in that zone. EXCEPTION — Some auxiliary equipment, although part of the system, does not affect motion of other portions of the system. The function or motion of this auxiliary equipment is affected only by its own motion-control station(s) and/or the motion of specific other equipment within the system. Motion-control stations on this auxiliary equipment shall not cause motion of any other machine within the system. NOTE Examples of such auxiliary equipment include splicers, stackers/palletizers, stream
feeders, hopper loaders, ink jet devices, labelling machines, card blowers, etc. Any motion-control station that can initiate motion shall also have a stop function to stop that same motion. Portable motion-control stations shall function in accordance with 11.1.2. Wireless motion-control stations shall function in accordance with 11.2.2. # ISO 12643-1:2009(E) If some portion of the control zone is not currently being used, the stop/safe and guard interlock functions of that unused portion shall not be disabled. # EXCEPTION — Guard interlocks on the unused portion of the control zone may be disabled only if - the unused portion of the machine is disengaged (declutched, de-energized, etc.), or all energy sources are locked, blocked or otherwise effectively controlled; - after opening the guard, the hazardous area of another zone cannot be reached. If the motion-control station for the unused portion of the control zone can initiate motion, the stop/safe function shall not be disabled. If portions of the system are being used independently, thus creating separate control zones, the motion-control stations for each control zone shall be independent of any other. For example, for a system that contains a gatherer, binder, trimmer, conveyor and polywrapper, the trimmer, conveyor and polywrapper may be temporarily used together as a small independent system. This will create two independent control zones, one consisting of the trimmer, conveyor and polywrapper (control zone A), the other consisting of the gatherer and binder (control zone B). In this case, - a) the motion-control station of each machine within control zone A affects motion of all machines within control zone A; - b) the motion-control station of each machine within control zone B affects motion of all machines within control zone B; - c) the motion-control station of each machine within control zone A does not affect motion of any machine within control zone B and vice versa. #### 10 Controls # 10.1 General This clause addresses specific controls that shall meet the criteria put forth in this part of ISO 12643. The system may have other controls not specified in this part of ISO 12643, but such additional controls shall not interfere with the function of those specified, nor shall their function be liable to be confused with the function of those specified. # 10.2 Manual control devices The requirements in this subclause apply only to the system drives that cause hazardous motion. Unless otherwise specified by this part of ISO 12643, the manual control devices specified by this part of ISO 12643 shall be flush. EXCEPTION — The manual control devices on touchpads may be slightly raised or slightly recessed to enhance tactile recognition. Operating elements of manual control devices for starting hazardous movements shall be safeguarded against unintended actuation. Manual control devices shall be designed and located so that they are clearly visible and identifiable, and appropriately marked where necessary; - they can be safely operated without hesitation or loss of time and without ambiguity (e.g. by the adoption of a standard layout of controls to reduce the possibility of error when an operator changes from one machine to another of similar type having the same pattern of operation); - their location (for pushbuttons) and their movement (for levers and handwheels) are consistent with their effect; - their operation cannot cause additional risk. Where a control device is designed and constructed to perform several different actions, the action to be performed shall be clearly displayed and subject to confirmation where necessary. Control devices shall be arranged such that their layout, travel and resistance to operation are compatible with the action to be performed, taking into account ergonomic principles. Constraints due to the necessary or anticipated use of personal-protection equipment (such as footwear, gloves, etc.) by personnel during the operation of control devices shall be taken into account. A stop control device shall be placed near each start control device. Where the start/stop function is performed by means of a hold-to-run control device, a separate stop control device shall be provided if there is a risk that the hold-to-run control device will fail to stop the hazardous motion when it is released. Control devices shall be located outside the hazard zones, except for certain control devices such as emergency stop, teach pendant, etc., which, of necessity, are located within a hazard zone. As far as possible, control devices (especially start control devices) shall be located so that the operator can see the elements being controlled when actuating the control device. Control devices shall be designed or protected so that their effect, where a risk is involved, cannot occur without intentional operation. Control switches for starting and stopping machine motion and their operating elements shall satisfy the requirements of IEC 60204-1. For emergency stopping devices, the requirements of ISO 13850 and IEC 60204-1 shall be satisfied. If symbology is used, the symbol shall be as defined in ISO/TR 15847. # 10.2.1 Types of manual control devices # 10.2.1.1 Flush control devices Flush control devices shall be flush with their respective collars or with their adjacent surfaces. #### 10.2.1.2 Guarded control devices Guarded control devices shall utilize raised collars or borders that extend beyond the surface of the control device to protect the control device from inadvertent actuation. # 10.2.1.3 Mushroom-head and palm-type pushbuttons Mushroom-head and palm-type pushbuttons shall protrude at least 9 mm beyond their respective collars. They shall also protrude above the actuators of adjacent unguarded, non-stop function control devices. The head of the mushroom-head or palm-type pushbuttons shall be at least 25 % larger than the surrounding pushbuttons, and have a minimum diameter of 28 mm (see Figure 18). NOTE The intent is to make these pushbuttons more prominent than surrounding pushbuttons. a) Mushroom-head pushbuttons b) Palm-type pushbuttons Figure 18 — Types of emergency stop pushbuttons #### 10.2.2 Colours for manual control devices Colours used for control devices shall be as specified in Table 5. Although Table 5 indicates both required and preferred implementations, for the purpose of promoting safety through uniformity in the industry, manufacturers are encouraged to use the preferred colours for the control as specified in Table 5. The colour of the controls, illuminated or non-illuminated, shall be as specified in IEC 60204-1, and shall be uniform throughout the system. If illuminated controls are used in conjunction with personnel warning lights, they shall be distinct in design and/or location so as not to be confused with personnel warning lights. Table 5 — Colours for manual control devices | Control | Required | Preferred | Remarks | |--|---|-----------|-------------------------------------| | Emergency stop | red on yellow background | _ | _ | | Stop/safe | grey, black, white red, if used as emergency stop | red | red required in U.S. | | Other motion stop | grey, black, white or red | red | red required in U.S. | | Run | black, white, grey or green | black | _ | | Forward inch | black, white or grey | grey | _ | | Reverse inch | black, white or grey | black | _ | | Forward/Reverse inch | black, white or grey | black | used with a selector switch | | Ready (see ISO 12643-2) | black, white or grey | black | _ | | Reset | blue, black, white or grey | blue | _ | | Faster | black, white or grey | grey | _ | | Slower | black, white or grey | white | _ | | Speed limit (see ISO 12643-2) | green, black, white or grey | green | used primarily on newspaper presses | | Plate position (or comparable control) (see ISO 12643-2) | black, white or grey | grey | _ | | Automatic faster/resume (see ISO 12643-5) | black, white or grey | _ | used primarily on platen presses | | Programmed position (see ISO 12643-5) | black, white or grey | _ | used primarily on platen presses | | Other motion-initiating controls | black, white or grey | | _ | # 10.2.3 Functions, operations and mechanical specifications of manual control devices #### 10.2.3.1 Emergency stop #### 10.2.3.1.1 General Emergency stops shall satisfy the requirements of ISO 13850 and IEC 60204-1. #### 10.2.3.1.2 Emergency stop function The emergency stop function shall be able to be initiated by a single human motion. The emergency stop function shall override all other functions in all operating modes of the machine but shall not disable any system designed to release trapped persons as defined in Clause 7. It shall not be possible for any start command (intended, unintended or unexpected) to be effectuated until the emergency stop function has been manually reset. The emergency stop function shall be designed so that after the actuation of the emergency stop control, either of the following occurs: - a) all hazardous motion of all devices in the system is stopped as quickly as possible, without creating an additional hazard; or - b) all hazardous motion of the device(s) in the stop-button control zone is stopped as quickly as possible, without creating an additional hazard. In this case, it shall be readily apparent through labelling, marking, warning lights or other means (including training) which devices will be affected by the actuation of the emergency stop function. The emergency stop function shall not be bypassed. The emergency stop function shall not be used as a substitute for protective measures and other safety-related devices, but should be designed for use as a backup measure. The emergency stop function shall not impair the effectiveness of protective devices or of devices with other safety-related functions. For this purpose, it may be necessary to ensure
the continuing operation of auxiliary equipment such as braking devices. #### 10.2.3.1.3 Emergency stop devices Emergency stop devices shall be designed in accordance with IEC 60204-1, either as a Category 0 stop or as a Category 1 stop. Every machine shall have at least one Category 0 stop. This may be satisfied by the requirements of IEC 60204-1. Where a Category 0 stop is used for the emergency stop function, it shall have only hard-wired electromechanical components. In addition, its operation shall not depend on electronic logic (hardware or software) or the transmission of commands over a communications network or link. Where a Category 1 stop is used for the emergency stop function, ultimate removal of power to the machine actuators shall be ensured and shall be by means of electromechanical components. EXCEPTION — If a.c. drives are used, the activation of an emergency stop control device may cause the drive to make a Category 2 stop, as defined in IEC 60204-1, if pulse blocking in the inverter and disconnection of the power to the control circuitry are separate functions, in accordance with PL_r d of ISO 13849-1 or SIL 2 of IEC 62061. # ISO 12643-1:2009(E) The emergency stop device shall be designed for easy actuation by the operator and others who may need to operate it. Types of controls that may be used include the following: | — | mus | hroom | -type | or | pa | lm-ty | pe: | |---|-----|-------|-------|----|----|-------|-----| |---|-----|-------|-------|----|----|-------|-----| — wires, ropes, bars; — handles: in specific applications, foot pedals without protective cover. Keypads and touch screens shall not be used for emergency stop functions. Emergency stop devices shall be provided on each machine unit, and at all operating positions in control zones where hazardous motion may exist (see also 11.1.1). Emergency stop devices shall be located on or within arm's reach of each motion-control station and operating position, and at other locations where the initiation of an emergency stop may be required. The emergency stop devices shall be positioned for easy access and for non-hazardous operation by the operator and others who may need to operate them. The emergency stop device shall apply the principle of positive mechanical action. If a moving mechanical component inevitably moves another component along with it, either by direct contact or via rigid elements, these components are connected in the positive mode. An example of this is positive opening operation of switching devices in an electrical circuit. NOTE Where a mechanical component moves and thus allows another one to move freely (e.g. by gravity, by spring force), there is no positive mechanical action of the first one on the other one. An example of the application of this principle is an emergency stop device employing electrical contacts having positive opening operations. Positive opening operation of a contact element is the achievement of contact separation as the direct result of a specified movement of the switch actuator through non-resilient members (e.g. not dependent upon springs). Once the emergency stop command has been generated as a result of actuation of the emergency stop device, the emergency stop command shall be maintained by engagement or latching-in of the actuating means. The emergency stop command shall be maintained until the emergency stop device is manually reset (unlatched). It shall not be possible for the control device to engage without generating the stop command. In case of a failure in the emergency stop device (including the engagement mechanism), generation of the stop command shall have priority over the engagement means. Actuation of an emergency stop control does not place the machine in the safe condition, unless it meets the criteria of a stop/safe function. Therefore, unless a stop/safe control has been activated, personnel warning lights or area warning lights shall not indicate a safe condition. Resetting the emergency stop device shall not by itself generate a restart command. It shall not be possible to restart the machine until all emergency stop devices that have been actuated are reset. The operator shall go through the normal starting sequence in order to initiate machine motion. If a pushbutton is used as an emergency stop control, it shall comply with the provisions of IEC 60204-1. A pushbutton used for emergency stop shall meet the criteria of a stop/safe pushbutton, including integration with the safety signalling system, if required. The use of an emergency stop control other than a pushbutton does not meet the requirements for the safe or safe-ready functions. If an emergency stop device other than a pushbutton is used, its function shall be clearly identified by colour and labelling and its function shall comply with that specified in this subclause. If using wires or ropes as emergency stop controls, consideration shall be given to the following: - the amount of deflection necessary for generating the emergency stop command; - the maximum deflection possible; - the minimum clearance between the wire/rope and the nearest adjacent object; - the force to be applied to the wire/rope (at maximum deflection) in order to engage the emergency stop device; - making such wires/ropes visible for operators (e.g. by use of marker flags). An emergency stop command shall be generated automatically in the event of disengagement, breakage or slack/sag in the wire/rope. The reset mechanism for the emergency stop device should be placed so that the whole length of the wire or rope is visible from the location of the reset mechanism. # 10.2.3.1.4 Emergency stop and auxiliary devices For auxiliary devices built into system that require an emergency stop device according to this part of ISO 12643, the emergency stop buttons on the system shall function in accordance with the requirements of Clause 9. The emergency stop function shall be designed so that after the actuation of the emergency stop control, either - all hazardous motion of all devices in the system is stopped as quickly as possible, without creating an additional hazard; or - all hazardous motion of the device(s) in the stop-button control zone is stopped as quickly as possible, without creating an additional hazard. In this case, it shall be readily apparent through labelling, marking, warning lights or other means (including training) which devices will be affected by the actuation of the emergency stop function. #### 10.2.3.2 Stop/safe pushbutton This part of ISO 12643 does not require that a stop/safe pushbutton be provided. However, if provided, it shall meet the provisions of this subclause. The stop/safe pushbutton shall meet the same design and control requirements of an emergency stop pushbutton, as defined in 10.2.3.1.3, with the following exceptions: - it does not need to stop the machine as fast as possible; - a Category 0, 1 or 2 stop is permitted. NOTE The stop/safe function is required in the United States and might be required in other countries. Stop/safe functions shall be controlled only by the use of a stop/safe pushbutton as specified in this part of ISO 12643. Keypads and touch screens shall not be used for stop/safe functions. The stop/safe pushbutton shall be an extended-head maintained-contact pushbutton which, when depressed, latches in the depressed position. In addition, it shall not be possible for the stop/safe control to mechanically engage without generating the stop command. # ISO 12643-1:2009(E) A stop/safe pushbutton shall be clearly distinguishable from an emergency stop pushbutton, if separate pushbuttons are used for each function. Stop/safe pushbuttons not designed to function also as an emergency stop pushbutton shall not have a yellow background. After a stop/safe pushbutton is released, the machine shall not automatically start. The operator shall go through the normal starting sequence in order to initiate machine motion. If personnel warning lights are used, the light shall be red. Single-point failure of the latching component shall not result in the machine automatically reverting to the ready condition. The latching mechanism shall be designed such that a person is prevented from unintentionally releasing the pushbutton to the ready condition. This pushbutton may be designed to be used also as an emergency stop control. If so used, it shall comply with the requirements for both the stop/safe and emergency stop functions and controls as defined in this part of ISO 12643, and shall be a mushroom-head or palm-type pushbutton. All stop/safe pushbuttons shall be operational and shall not be bypassed. The stop/safe function shall be designed so that, after actuation of the stop/safe pushbutton, all hazardous motion of the machine(s) in that control zone is stopped without creating an additional hazard. When the pushbutton is latched in the depressed position, machine motion is prevented and the machine is placed in the safe condition. The stop/safe function shall override all other motion functions, except the emergency stop function, and shall not be bypassed. The stop/safe function shall not impair the effectiveness of protective devices or of devices with other safety-related functions. For this purpose, it may be necessary to ensure the continuing operation of auxiliary equipment such as clutches or braking devices. #### 10.2.3.3 Other motion stop control devices Activating a stop control as defined in this subclause shall stop hazardous machine motion at least in the motion zone, or part of the motion zone, with which it is associated. A stop control need not stop motion in the entire control zone. When the stop is complete, the motion zone affected shall be in the fault or ready condition. This stop control shall not be used for the stop/safe or emergency stop functions. #### 10.2.3.4 Run control device The run control shall be a momentary-contact control. Activating a run control
initiates continuous (maintained run) machine motion as described in 10.3.2 or places the machine in an armed condition such that the machine is running at zero speed. However, auxiliary equipment that is part of the system may be running at zero speed and/or may be in the armed condition. NOTE A system might have any number of run controls, labelled differently, allowing the machine to run at different particular or set speeds, including speeds which are slower than production speed. See Clause 14 and Annex C for the requirements of a warning period in systems using either a personnel warning-light signalling system or an area-light warning signalling system. Once motion is established, the machine shall run continuously at the speed set by the speed-setting control. # 10.2.3.5 Inch control (jog) #### 10.2.3.5.1 Forward inch control The forward inch control shall be a momentary-contact control that functions as described in 10.3.1, and moves the system in a forward direction. The control shall be designed and mounted so as to minimize inadvertent operation. One means of achieving this is by the use of a double-push activation as described in 10.3.1 b). During the permissive period, the machine shall respond promptly to any inch control and shall continue to operate at inching speed as long as the control is depressed, or until the displacement limitation specified in 6.6 is reached. The machine shall stop when the control is released. Motion with an inch control while one or more guard(s) is/are open shall be permitted in accordance with 6.5.1 and 6.6. The inch control may also be used to activate the reset function, which shall reset the machine and initiate a warning period as specified in Clause 14 and Annex C. #### 10.2.3.5.2 Reverse inch control A reverse inch control shall be a momentary-contact guarded control. The control shall be designed and mounted so as to minimize inadvertent operation. A reverse inch control initiates system motion at inch speed in a reverse direction as specified in 10.3.1. #### 10.2.3.5.3 Forward/reverse inch control A forward/reverse inch control shall be a single device incorporating a two-position selector and a momentary-contact control, which initiates system motion as defined in 10.3.1. With the selector switch in the forward position, the inch control shall function in accordance with 10.2.3.5.1. With the selector switch in the reverse position, the inch control shall function in accordance with 10.2.3.5.2. #### 10.2.3.6 Reset The control used for the reset function shall be a momentary-contact control that resets a tripped circuit. It is permitted to use the inch control to activate the reset function. In this case, the colour of the reset control shall conform to the colour requirements for the inch control. Motion controls shall not be enabled until all faults are cleared, all interlocks are made and all stop/safe pushbuttons are released. The reset function shall not automatically enable motion controls unless these conditions have been satisfied. If these conditions have been satisfied, activating the reset function shall place the machine in the ready condition. Activating a reset control shall not initiate a warning period or machine motion. See 10.2.3.5.1 for use of an inch control to accomplish the reset function. # 10.2.3.7 Faster control A faster control shall be a momentary-contact control. Activating a faster control while the machine is in the run mode shall increase machine speed until the control is released or maximum speed is attained. The faster control may also be used in conjunction with the inch control to initiate machine motion as defined in 10.3.2 at a minimum continuous run speed. #### 10.2.3.8 Slower control Activating a slower control shall decrease machine speed as long as the control is depressed or until minimum continuous run speed is obtained. If any faster or slower controls are activated simultaneously, the slower control shall take precedence. The slower control may also be used in conjunction with the inch control to initiate machine motion as defined in 10.3.2 at a minimum continuous run speed. #### 10.2.3.9 Other motion-initiating controls Other controls used to initiate motion of the main drive shall be momentary-contact controls. EXAMPLE An example would be a blanket cylinder positioning control or a re-synchronization control. #### 10.2.3.10 Selector switches A multiple-position selector switch may be used in conjunction with another motion control. However, it shall not be used as an alternative or substitute for the controls defined in this part of ISO 12643. # 10.3 Initiating machine motion #### 10.3.1 Initiating machine motion at inch speed Machine motion at inch speed may be initiated for a machine at standstill by either of the following methods: - a) activating the inch or reverse inch control through the warning period; or - b) sequential (double-push) activation of the same inch or reverse inch control. Regardless of which implementation is chosen, it shall be uniform throughout the system. # 10.3.2 Initiating continuous machine motion (run) Continuous machine motion may be initiated by any one of the following methods: - a) double-push activation of the run-control device; - activation of the run, the slower or the faster control with the inch control at the same motion-control station while the machine is in the ready condition will initiate a warning period, followed by machine motion at a speed set by a speed setting device; or - c) activation of the run, the slower or the faster device with the inch device at the same motion-control station while the machine is in the permissive period initiates machine motion at a speed set by a speed setting device without going through an additional warning period if all hazards are protected. Regardless of which implementation is chosen, it shall be uniform throughout the system. # 10.4 Hold-to-run controls A hold-to-run control shall require continuous actuation of the control device(s) to achieve operation. #### 10.5 Two-hand controls #### 10.5.1 General Two-hand controls as safety devices are acceptable only if all hazardous movement stops when one manual control device is released. The hazardous movement shall come to a stop in a time period that, taking into consideration the hand-approach speed, ensures there is no hazard for the operator. The hand-approach speeds specified in ISO 13855 shall be taken as a basis (see 6.6 for hold-to-run devices designed as two-hand controls). #### 10.5.2 Two-hand controls on cables Two-hand controls on cables (pendant-style control station) used for make-ready and trouble-shooting shall be permissible if, from the place of operation of the two-hand control, it is possible to observe the hazard points and hazard zones. In these circumstances, ISO 13855 is not applicable. Cables shall have sufficient strength to withstand any anticipated mechanical stresses and be provided with tension-relief measures. #### 10.5.3 Two-hand controls safeguarding hazard points Where two-hand controls are used to safeguard hazards that are infrequently accessed, hydraulic/pneumatic two-hand controls shall meet the requirements specified for Type IIIA, and electric/electronic two-hand controls shall meet the requirements specified for Type IIIB of ISO 13851. Where two-hand controls are used for safeguarding hazard points requiring routine and regular access, hydraulic/pneumatic two-hand controls shall satisfy the requirements specified for Type IIIB, and electric/electronic two-hand controls shall satisfy the requirements specified for Type IIIC of ISO 13851. # 10.6 Electro-sensitive protective devices # 10.6.1 General requirements Electro-sensitive protective devices (ESPDs) shall satisfy the requirements of Type 2 of IEC 61496-1 and IEC 61496-2. EXCEPTION — Electro-sensitive protective devices that safeguard routine and regular access to the hazard zone on manually-fed devices, shall satisfy the requirements of Type 4 of IEC 61496-1 and IEC 61496-2. # 10.6.2 Positioning of ESPDs The hand-approach speed specified in ISO 13855 shall be used as a basis for determining the correct positioning of the electro-sensitive protective device. # 10.6.3 Use of ESPDs to prevent whole-body access Where electro-sensitive protective devices are used to prevent whole-body access to hazard zones, a minimum of two photoelectric beams shall be provided, one at a height of 400 mm and another at 900 mm. # 10.7 Pressure-sensitive mats, pressure-sensitive bumpers, trip devices Pressure-sensitive mats and pressure-sensitive bumpers shall satisfy the requirements of ISO 13856-1. Trip devices shall satisfy the requirements of EN 1760-2 and of PL, d of ISO 13849-1 or SIL 2 of IEC 62061. Trip devices and pressure-sensitive mats, and their related signal processing, which safeguard routine and regular access to a hazard point on a manually-fed device shall comply with PL_r d of ISO 13849-1 or SIL 2 of IEC 62061. Pressure-sensitive bumpers and trip devices shall function such that the hazardous movements, which they are safeguarding, shall be stopped before personnel can reach the hazard (see Figure 19). # 10.8 Braking devices and clutches # 10.8.1 Switch-off of braking device The braking device may be switched off only by either of the following: - a) use of a maintained-contact control, if the disengagement of the brake is interlocked with the hazardous machine movement; or - b) use of a momentary-contact control which, when released, re-engages the braking device. Braking devices are switched off, for example, when powered machines operate in a non-powered mode. Dimensions in millimetres # Key - 1 cylinder gaps - 2 nip point - 3 normal guard position - 4 tripped guard position - 5 maximum guard position - a Maximum stopping distance of hazardous motion. - b Maximum length of movement of trip device. Figure 19 — Trip devices # 10.8.2 Clutch or brake failure on single-stroke machines On
single-stroke operation machines, clutch or brake failures shall not cause any hazardous movement. NOTE A single-stroke operation machine is one that completes a single cycle, then pauses before the next cycle is initiated. For example, trimmers, paper drills, and bundling machines are single-stroke operation machines. A guillotine cutter is the most common example of a single-stroke machine. #### 11 Control stations #### 11.1 Motion-control stations The use of a motion-control station is determined by the desired functions to be performed at its location. The contents and location (if necessary) of motion-control stations are specified in 11.1.1 and 11.1.2. In a motion-control station, controls shall be arranged so that the emergency stop is readily accessible from an operating position. The stop/safe may function as an emergency stop if it meets the criteria defined for an emergency stop. In most cases, the emergency stop control is located closest to the operating position. The respective order of controls should be uniform throughout the system. When a motion-control station is located with another (non-motion control) station, the functions of the motion-control station shall be distinctly set apart from the non-motion functions by spacing, marking or framing. When a motion-control station contains both a motion control and a stop/safe pushbutton or emergency stop control, the stop/safe or emergency stop function shall affect the same machine or group of machines within the system affected by the motion control in that motion-control station. The respective order of stop and motion controls should be uniform throughout the system. When a motion-control station includes a separate emergency stop function in addition to a separate stop/safe function, the emergency stop function shall be distinctly set apart by spacing, marking or framing. #### 11.1.1 Minimum motion-control station Each operating position capable of initiating hazardous motion shall have an emergency stop function on or at the operating position. EXCEPTION — If the control station contains only two-hand hold-to-run controls used to move the machine at inch speed, an emergency stop function on the control station is not required. However, the emergency stop function shall be provided in accordance with 10.2.3.1.3. A motion-control station at a location where an operator has access to a hazard through a movable guard shall contain an emergency stop pushbutton or a stop/safe (if it serves as the emergency stop function). A single stop/safe pushbutton that is also used as an emergency stop control may be used as long as it meets the requirements for both an emergency stop and a stop/safe pushbutton. #### 11.1.2 Motion-control station location Motion-control stations shall be securely affixed and readily accessible for normal make-ready and other routine, repetitive operations integral to the operation of the equipment and which require control of the main drive motor(s). Examples of routine, repetitive operations are clearing jams, adjusting operations, etc. Every operating position of the system shall have a motion-control station within arm's reach of the operator and shall be placed so that the operator does not have to reach past moving parts. Within a hazardous zone, the only motion-initiating control permitted shall be a forward inch-control device and a reverse inch-control device as specified in 6.6, 10.2.3.5.1 and 10.2.3.5.2. Emergency stop controls on motion-control stations shall be pushbutton controls and shall latch in the safe condition. Controls shall be easily viewed from the operating positions associated with that control station. # ISO 12643-1:2009(E) If a motion-control station is movable (not portable), the station shall be physically supported by a suitable means other than the electrical wiring. Portable motion-control stations shall meet the same criteria as other motion-control stations. In addition, cables shall be protected from damage and shall not pose an additional hazard to personnel. If a portable motion-control station can extend into a hazardous zone in which the guard could be closed while the operator is within the hazardous zone, that control station shall not permit motion at a speed greater than that specified in 6.6. #### 11.2 Remote access #### 11.2.1 Remote control via datalink #### 11.2.1.1 General Systems that utilize warning periods as defined in 14.2.2 and permissive periods as defined in 14.2.3 may use remote control communications links for the purposes of performing diagnostic and calibration functions, including those functions requiring remote activation of machine motion. #### 11.2.1.2 Maintaining system and data integrity The equipment manufacturer or service provider shall take into consideration the following measures, and shall comply with PL_r d of ISO 13849-1 or SIL 2 of IEC 62061, and/or the measures shall be accomplished by a computer system in accordance with PL_r d of ISO 13849-1 or SIL 2 of IEC 62061. Measures shall be in place to perform the following. - Guard against transmission of faulty data. One means of achieving data integrity during transmission is by the implementation of a block protection process or other comparable measures with block replication. The size of the data block should not exceed 512 bytes. For every single block, at least a 16-bit cyclic redundancy check should be made. The selection of the polynomial should be such that the so-called burst errors are recognized by the cyclic redundancy check (CRC) algorithm. In the event of a CRC error, the faulty block should be rejected and be transmitted anew. The generator polynomial $P(x) = x^{16} + x^{15} + x^2 + 1$ is recommended as this 16-degree polynomial allows the recognition of all burst errors up to a length of 26 bits. Additionally, 99,996 % of all 17-bit errors and 99,998 5 % of all burst errors larger than 15 bits are recognized, including all odd-bit positions. - Ensure that the remote control data link is connected to the intended system control computer. Identification of the system may be achieved, for example, by use of a unique machine-identification code, normally a multi-digit number. This number is posted in a safe portion of the control system and should be compared with the identification number associated with the remote transmission. The identification code should, for example, be checked by means of the CRC mechanism or comparable measures. - Guard against the possibility of the establishment of unauthorized data links to the system control computer. Unauthorized entry to the system control computer may be prevented, for example, by requiring the use of a password and a subscriber identification with so-called transaction numbers which should contain at least a 64-bit coding method equivalent to those in on-line banking, and should also include a check of the unique machine identification. # 11.2.1.3 Datalink line blocking It shall be possible to disable (block) access to a local system control computer via a remote control datalink by disconnecting the remote control communications line connection to the system control computer. There shall be a minimum of two such disconnects as follows: - a switch (safety relay) controlled by the safety-guard interlock system (see 6.5.5); - a manually operated switch requiring a key or a password to close the connection. #### 11.2.1.4 Indication of enabled condition of remote control datalink Whenever the power supply to the local system control computer is ON and the capability exists for remote control communications link to be enabled (unblocked), there shall be a method to alert personnel at the local system of the enabled condition. NOTE This can be achieved, for example, by either indicator light(s) on one or more control stations, or a notification message on a display screen(s). #### 11.2.1.5 Indication of activated condition of remote control datalink Whenever a remote control communications link has been established to the local system control computer, there shall be a method to alert personnel at the local system of the active condition of the remote control datalink. NOTE This can be achieved, for example, by either blinking indicator light(s) on one or more control stations, or a blinking notification message on a display screen(s). # 11.2.1.6 Remote control use of warning and permissive periods A remote control datalink shall not be able to initiate machine motion without the use of the same warning and permissive periods defined in 14.2.2 and 14.2.3 and in effect during normal local operation of that system. #### 11.2.1.7 Response to motion command from remote control datalink The design of the system controls shall require that every command initiated by the remote control datalink that causes the system to enter warning and permissive periods for machine motion shall be responded to by a local manually generated ready signal issued within the warning or permissive periods before motion may begin. It shall not be possible to initiate motion by remote control on any equipment for which hold-to-run control serves as the only hazard protection. Remote control shall not override any safety-related functions. Failure to receive the local ready signal shall cause the system to stop under the same conditions, and with the same effects, as a trip of the system safety-guard interlock system, including blocking the datalink line. #### 11.2.1.8 Remote control datalink time-out The system shall be equipped with a time-out function which, when a remote control data link is established, will cause the system to stop under the same conditions and with the same effects (including blocking of the datalink line) as a trip of the system safety-guard interlock system if the time-out function is not reset manually by local personnel within a period of less than 30 min from the last manual reset. #### 11.2.1.9 Acceptance safety test for software changes If
risk assessment determines that a software change may potentially affect safety functions of a machine, (an) authorized person(s) shall conduct a comprehensive acceptance safety test at the machine (not by remote access) on the basis of broad functional tests of the safety functions that may be affected by the newly recorded data. The manufacturer (or manufacturer's agent) shall provide detailed instructions to the authorized person(s) at the installation site (for example, in the form of checklists) for this acceptance test. The machine may be returned to operation after successful completion of the on-site test(s). The process for the acceptance-test procedure and the subsequent return of the machine to service shall be documented in a protocol, which shall be recorded by the responsible authorized person(s) at the machine site and retained by the manufacturer. #### 11.2.2 Wireless motion-control stations This subclause addresses the minimum requirements for the use of wireless controls used to control production motion of equipment. Wireless motion controls shall be permitted only under the following conditions and shall meet the following requirements: - a) Wireless motion controls shall be used only if the equipment to be controlled is in full compliance with all requirements of this part of ISO 12643. - b) The emergency stop control shall remain functional at all times and shall override all functions, both local and remote. - c) Controls shall be designed to ensure that no obstacles block the path of the signal to a receiver, and the position of the controls shall be such that ensures that the operator can see the motion zone being controlled; i.e. with no machinery, walls or other objects blocking the operator's ability to see the relevant motion zone. - d) Each motion-control station that is not attached to the machine it controls shall carry a clear indication of which machine is controlled by that control station. - e) The controls meet the requirements specified in Clause 10. - f) The wireless control station shall contain a control which, when activated, shall generate an emergency stop command. As specified in 10.2.3.1.3, generation of an emergency stop command does not place the machine in the safe condition and the warning lights shall not indicate a safe condition. Therefore, this control shall not be labelled as an emergency stop control or a stop/safe control. Following such a stop, the machine shall go through a normal starting sequence before motion can be initiated. - EXCEPTION If the wireless control station contains only hold-to-run controls used to move the machine at inch speed with all guards closed, a stop control on the control station is not required. - g) Measures shall be taken to ensure that control commands affect only the intended machines and machine functions. - h) Measures shall be taken to prevent the machine from responding to signals other than those from the intended motion-control station(s). - i) Any fault or single-point failure in a wireless control station shall result in the automatic initiation of a stop command, which shall stop the machine as quickly as possible without creating a hazard or damaging the machine, and shall prevent potentially hazardous operation. Such a stop does not place the machine in the safe condition. Following such a stop, the machine shall go through a normal starting sequence before motion can be initiated. - EXAMPLE An example of such a failure is when a valid signal has not been detected within a specified period of time. - j) In a machine where the control of safety-related functions relies on serial data transfer, correct communications shall be ensured by using an error-detection method that is able to cope with up to three error bits in any command sequence. - k) On battery-powered control stations, a variation in the battery voltage shall not cause a hazardous condition. If one or more potentially hazardous motions are controlled using a battery-powered motion-control station, a clear warning shall be given to the operator when a variation in battery voltage exceeds specified limits. Under those circumstances, the motion-control station shall remain functional long enough to put the machine into a non-hazardous condition. Instructions on the use of wireless control shall be included in the instruction handbook. These instructions shall provide the basis for training of authorized personnel. # 12 Control systems # 12.1 Hydraulic, pneumatic, electric and electronic control systems #### **12.1.1 General** Faults in the auxiliary relays and contactors of the control circuit shall be detected and cause the machine to shut down. When computers, modems or programmable logic controls (PLCs) are used, safety-related malfunctions shall be detected and shall cause the machine to shut down. When computers, modems or PLCs are used, this requirement may be satisfied, for example, by monitoring the function of safety-related signals using parallel control systems or redundant contact-type circuit breaking principles. Safety-related parts of control systems include, for example, emergency stop circuits, electric interlocking circuits, limiters of displacement or operating speed on hold-to-run controls. External influences as well as faults in the control system could result in hazardous movements and hazards. Examples of hazardous movements, depending on the type of machine, include the following: - unintended start-up; - unintended speed increase up to production speed with a guard open; - unintended movement following an intended movement (unintended cycle); - unintended continuation of a movement when the movement is intended to stop. The build-up of potentially explosive atmospheres might constitute a hazard. #### 12.1.2 Performance levels The performance level (PL) or safety integrity level (SIL) requirements of safety-related parts of control systems depend on the result of risk assessment (see Table 6). In the hydraulic/pneumatic control system, the safety-related parts shall satisfy at least a required performance level $PL_r c$ of ISO 13849-1. If there is a risk of head or torso injuries then the required performance level is $PL_r d$ of ISO 13849-1. In the electric/electronic control system, the safety-related parts shall meet the required safety levels of ISO 13849-1 (performance level PL_r) or IEC 62061 (safety integrity level SIL), based upon the potential extent of harm, as follows. - a) If a malfunction of the safety related control system can cause permanent injuries, or if there is a risk of head or torso injuries, PL_r d or SIL 2 is required. - b) If the hazards caused by a malfunction of the safety related control system are small (no permanent injuries), PL_r c or SIL 1 is required. Table 6 shows the performance level classification of general applications. Classifications differing from those shown in Table 6 may be specified in ISO 12643-2 for prepress and press equipment and systems, ISO 12643-3 for binding and finishing equipment and systems, ISO 12643-4 for converting equipment and systems, or ISO 12643-5 for stand-alone platen presses, as a result of risk assessment of the function relative to the specific device, machine or system. Table 6 — Performance level classifications | | PL _r c or SIL 1 | PL _r d or SIL 2 | |---|----------------------------|----------------------------| | Emergency stop for main drive movement | | Х | | Electrically inter-locked protective devices (limit switches) | | Х | | Operating modes (e.g. hold-to-run, crawl speed) | | Х | | Acoustic start-up warning signal / flashing warning lights | Х | | | Sheet pile fan control system in the delivery | Х | | | Pull lay adjustment system on the feeder | Х | | #### 12.1.3 Automatic mode For machinery functioning in automatic mode, the starting of the machinery, or restarting after a stoppage or a change in operating conditions, may be possible without intervention by the operator if this does not lead to a hazardous situation. # 12.2 Electronic adjustable speed drives On electronic adjustable speed drives, the control system shall be designed such that in the event a guard or safety device causes the machine to stop, either the main contactor will also be switched off or any other appropriate measure will be taken. NOTE 1 "Safety devices" include, but are not limited to, emergency stop devices, electro-sensitive protective devices, and trip devices. "Other appropriate measures" include, but are not limited to, the application of a mechanical brake with a braking torque greater than the drive torque of the motor. An "additional control measure" is, for example, an electric/electronic device (timer) that switches off after a preset time. On electronic adjustable speed drives which feed energy back into the electric circuit during stopping, appropriate control-related measures (in addition to pulse blocking) shall be taken to ensure that the main contactor is switched off no later than after the elapse of the normal stopping time, or any other adequate measure to that effect. During hold-to-run control operations, there is no need to disconnect the main contactor during release time. NOTE 2 For example, on electronic adjustable speed drives, the speed of rotation of the motor is changed by shifting the supply voltage and/or frequency. # 12.3 Cut-off of main energy source When an emergency stop device is fitted with a main contactor that detects a low-voltage condition, the main contactor shall meet at least PL_r c of ISO 13849-1 or SIL 1 of IEC 62061, and shall disconnect the main power supply. NOTE For example, opening the contact of the emergency stop device directly disconnects the power supply to the low-voltage tripping coil. #### 12.4 Residual-pile monitoring systems A residual-pile monitoring system that is also used as a safety device shall comply with the requirements of at least
PL_r b of ISO 13849-1 or SIL 1 of IEC 62061. # 12.5 Unobserved unguarded hazard zones When more than one interlocking guard is open and there are any unguarded hazard zones that cannot be observed from all operating positions, the circuits controlling mutual interlocking of safety devices that prevent machine motion under hold-to-run condition shall comply with the requirements of at least PL_r b of ISO 13849-1 or SIL 1 of IEC 62061. The interlocking may be controlled by computer. For areas that are not visible from the operating position, see 6.7.1. All other safety-related parts of control systems, including limiters of displacement or operating speed on hold-to-run controls and mechanisms for preventing machine motion under continuous-run condition, shall comply with the requirements of 12.1. #### 12.6 Cableless controls For cableless (cordless) controls, an automatic stop shall be activated when correct control signals are not received, including loss of communication. # 12.7 Additional requirements for hand-fed machines #### **12.7.1 General** For those hand-fed machines where the operator has routine and regular access to hazard points at which the operator's hands can come into contact with the tools or the path of tool movement, the additional requirements of 12.7.2 to 12.7.5 shall apply. For example, this may apply to certain platen and screen presses, guillotine cutters, hand-fed trimmers and hand-fed label punching machines. # 12.7.2 Hydraulic/pneumatic control system The safety-related parts of the hydraulic/pneumatic control system shall comply with the requirements of PL_r d of ISO 13849-1. #### 12.7.3 Electric/electronic control system The safety-related parts of the electric/electronic control system shall comply with the requirements of PL_r e of ISO 13849-1 or SIL 3 of IEC 62061. #### 12.7.4 Main contactors Main contactors shall be redundant. Faults in the main contactors shall be detected and shall lead to shutdown. # 12.7.5 Systems using electronic braking Systems using electronic braking shall have, as back-up, an additional electro-mechanical or pneumatic-mechanical brake that works independently of the electronic brake. The mechanical-brake torque shall be greater than the maximum electric-drive torque of the electronic drive. NOTE For example, electronic brakes exist on electronic drives where the braking effect is caused by energy being fed back into the circuit. # 13 Ergonomics and labelling of indicators and actuators Unless otherwise specified in this part of ISO 12643, the ergonomic design and labelling requirements relating to indicators and actuators shall comply with the requirements as specified in IEC 61310-1, IEC 61310-2 and IEC 61310-3. # 14 Signals and warning devices #### 14.1 General A warning system shall be required for systems in which the overall visibility of personnel to the operator is obstructed, or if communication between operating personnel is difficult. NOTE 1 This condition may exist, for example, on systems if - the machine length exceeds 7 m; - there is more than one machine unit/section, and the height of the machine unit/section, measured from floor level, is greater than 1,6 m; - the system includes machines on different floors. An audible alarm as defined in 14.2, or an area-light warning system as described in Annex C, shall be used. A combination of audible alarm and area warning lights may be used. Use of personnel warning lights without an audible alarm is not permitted except as noted in 14.2.6. NOTE 2 The audible alarm system is required in Europe by EN 1010-1^[33]. Optional personnel warning lights as defined in 14.2.4 may be used in addition to an audible alarm. NOTE 3 In some countries, such as in the United States, the use of personnel warning lights is required by ANSI B65^{[41][42][43][44][45]} standards unless the area-light warning system is used. In such cases, national requirements take precedence over this part of ISO 12643. Warning signals shall occur before the initiation of machine motion, and shall be clearly recognized and differentiated from all other signals used. When a system with multiple machine actuators is configured into multiple control zones, there shall be, at a minimum, a common warning system activated independently by each motion zone. Unique audible alarms (with different audible characteristics) for each control zone are optional, but are not required. If personnel warning lights are used, their independent operation is optional (see Clause 9). # 14.2 Audible warning system #### 14.2.1 Audible alarm The audible warning system shall consist of an audible alarm, a warning period and a permissive period. Different audible characteristics may be used to distinguish between different machines. # 14.2.2 Warning period The warning period shall end not less than 2 s after depressing a motion control. Machine motion shall not occur during the warning period. Machine motion may occur at the end of the warning period. The audible alarm shall sound throughout the entire warning period. For warning systems equipped with personnel warning lights, the red personnel warning lights shall have a discernible flash. The light may need to flash more than once for the warning to be discernible. At the end of the warning period, one of the following two procedures is permitted: a) The following "double-push" sequence is preferred. At the end of the warning period, machine motion will occur as the result of releasing a motion control during or after the warning period, and reactivating a motion control during the permissive period. The warning period shall be cancelled by depressing a stop/safe pushbutton or by opening a safety circuit. b) Alternatively, machine motion will occur as the result of holding a motion control through and beyond the warning period. The warning period shall be cancelled by depressing a stop/safe pushbutton or by opening a safety circuit. The warning period may also be cancelled by releasing a motion control before the end of the warning period. If the warning period is cancelled by releasing a motion control prior to the completion of the warning period, the machine shall return to the ready condition. Although option b) is not considered to be unsafe, option a) is preferred for the purpose of consistency. #### 14.2.3 Permissive period The permissive period shall be a period that shall be initiated after completion of a full warning period. A permissive period shall also be initiated when an inch or reverse-function control is released after machine motion has been established. If the "double push" is used to initiate motion (e.g. a motion button is activated during the warning period, released, and reactivated during the permissive period), the permissive period shall not exceed 6 s. Each successive inching operation during a permissive period initiates a new permissive period. EXCEPTION — If, for operational reasons, it is necessary that the permissive period exceed 6 s, a permissive period of no more than 12 s is permitted with the addition of a flashing light or an audible signal (or both) in the hazardous area(s). The warning shall cycle throughout the entire permissive period. If a single push to initiate motion at inch speed is used (e.g. an inch button is depressed and held through the warning period), machine motion at inch speed will occur at the end of the warning period. When the inch button is released, a permissive period not exceeding 4 s shall be initiated. During this permissive period, an inch button may again be depressed and motion initiated at inch speed without going through an additional warning period. Each successive inching operation during a permissive period initiates a new permissive period. If an inch button is not pressed during the permissive period, motion shall not be permitted without going through a new warning periods. It is permissible to use a combination of double-push and single-push to initiate inch and run. For example, for production reasons it may be preferable to use the double-push system to initiate inch, but a single-push system to initiate run. The permissive period is cancelled by depressing a stop or stop/safe pushbutton, or by breaking a safety circuit. A change in direction of machine motion at inch speed within the same permissive period is permitted without the initiation of a new warning period (see Figure 20). If the optional personnel warning light system is used, the warning lights shall operate as specified in 14.2.4. NOTE The permissive period allows for successive inch or reverse operations without each being preceded by a warning period. Dimensions in seconds Key - A inch-reverse operation - B warning period and audible alarm - C permissive period - D machine motion - E stop, stop-safe, breaking a safety circuit - t time, s - a Cancellation of the permissive period. Figure 20 — Audible warning system with double-push sequence # 14.2.4 Optional personnel warning lights with audible alarm If a personnel warning-light system is used, red and green lights shall be used to indicate the ready/running and the safe conditions, respectively; e.g. the red colour shall indicate a ready or running condition and the green colour shall indicate a safe condition. Personnel warning lights shall be clearly visible from any motion-control station. These personnel warning lights shall be distinct from any machine status lights. In a vertical orientation, the red personnel warning light shall be above the green personnel warning light. In a horizontal orientation, the red personnel warning light shall be to the left of the green personnel warning light. Horizontal orientation shall not be permitted if personnel warning lights mounted in a horizontal orientation could be viewed from both sides, resulting in a reversal of the colour sequence. NOTE The restrictions for horizontal orientation are to ensure that personnel, especially those with visual impairments
such as colour blindness, can expect the colour sequence to always be the same. The personnel warning lights and audible alarms shall comply with the requirements specified in Table 7. Table 7 — State of warning devices for audible warning system with personnel warning lights | Warning-device
status | Machine condition | | | | | | |--------------------------|-------------------|----------------|-------------------|-------------------|-------------------|------------------------| | | Stop/safe | Ready or fault | Warning
period | Permissive period | Machine
motion | Armed | | Green light | ONa | OFF | OFF | OFF | OFF | OFF | | Red light | OFF | ON | FLASH | FLASH | ON/OFFb | ON/FLASH ^c | | Audible alarm | OFF | OFF | ON | OFF ^d | OFF | OFF/PULSE ^c | ^a An option for indicating the location of the stop/safe pushbutton is for the green personnel-warning light at that location to flash, while the green personnel-warning light(s) at all other locations shall be on (steady burn, not flashing). #### 14.2.5 Optional personnel warning lights for automatic set-up operations Red lights may be used to warn of the machine motion of an automatic set-up system. The light shall flash for 2 s prior to the initiation of the automatic sequence and during the entire period of automatic motion. These personnel warning lights shall be distinct from any machine-status lights. #### 14.2.6 Optional personnel warning lights for auxiliary equipment having armed status If auxiliary equipment connected to a system is capable of running at zero speed (armed condition), this equipment may use personnel-warning lights to indicate the armed condition, the running condition, and the safe condition. A separate audible alarm is not required on the auxiliary equipment. When this auxiliary equipment is used in a stand-alone mode, if overall visibility of personnel by the operator of the equipment is not obstructed, warning signals as specified in Clause 14 are not required. ### 14.3 Area-light warning system An area-light warning system, as specified in Annex C, may be used instead of the audible warning system defined in 14.2. NOTE The use of the area-light warning system without an audible alarm is not permitted in Europe in accordance with EN 1010-1^[33]. ### 15 Safety signs and labels #### 15.1 General If a national or regional regulation exists for the use of safety labels or signs, that regulation shall take precedence over this part of ISO 12643. If no such regulation exists, safety signs shall meet the requirements of ISO 3864-1, ISO 3864-2, ISO 3864-3 and ISO 7010. Information and warnings on the machine should be provided in the form of readily understandable symbols or pictograms. Any significant hazards that were not eliminated by design or by safeguarding shall have an associated warning sign or label affixed on, or posted as close as possible to, the hazard. NOTE Risk assessment, as discussed in an informative annex of ISO 12643-2 and ISO 12643-3, provides guidance in determining what hazards exist and if there is any residual risk remaining that needs to be considered. ^b If the red personnel warning light is off when the machine is in motion, first it shall be on until at least 30 s after the machine reaches production speed before turning off. Machines at which no lights are illuminated shall be considered to be in an unsafe condition. c Either condition is permitted. See 14.2.3 for an exception if the permissive period exceeds 6 s. ### 15.2 Specific requirements for machine markings ### 15.2.1 Markings and signs/labels Machinery shall be provided with the markings, signs/labels as specified in ISO 12100-2, and IEC 60204-1. #### 15.2.2 Additional requirements for pile lifting and lowering devices, pile turners and reel turners On pile lifting and lowering devices (feeding and delivery devices), pile turners and reel turners, the following additional information shall be clearly marked: - permissible operating pressure on pneumatically driven pile lifting and lowering devices; - permissible operating pressure on hydraulically driven pile lifting and lowering devices inasmuch as the pressure generator is not a component part of the pile lifting and lowering device; - maximum carrying capacity; - sign saying that riding on the device is forbidden for format sizes larger than 2,5 m². #### 15.2.3 Machinery fitted with laser equipment On machinery fitted with laser equipment, the classification of the equipment shall be indicated together with any warnings in accordance with IEC 60825-1, where required. ### 15.2.4 Machinery with UV radiation emission On machinery where UV radiation of at least Category 1 as specified in EN 12198-1 is expected, the category number as specified in EN 12198-1 and the type of radiation shall be indicated. #### 15.2.5 Machines having hot parts Extra warnings need to be provided on machines with hot machine parts, including hot pipes that are an integral part of the machine, if the surface temperature is above 65 °C and if the surfaces are not protected against contact by insulation or additional guards. NOTE Refer to ISO 13732-1 for further information relating to the assessment of burn hazards. #### 15.2.6 Feeding belt A safety sign warning against access shall be provided on the feeding belt. A warning shall also be included in the instruction handbook. ### 16 Contents of instruction handbook #### 16.1 General Each machine shall be accompanied by an instruction handbook, in one of the official languages of the country of destination, containing the minimum information listed in 15.2 and basic specifications in accordance with ISO 12100-2. Instruction handbooks shall be devised in accordance with ISO 12100-2. The instruction handbook shall also give the declared noise-emission levels of the machine. It shall provide reference to the noise-test code in EN 13023, and to the basic noise-emission standards on which the determination of the declared noise-emission levels are based. See Annex D for examples of instruction handbook layout. In addition, the instruction handbook(s) shall, where required, - a) describe the protective measure, if any in addition to 15.2.5, to prevent accidental contact with hot machine parts with a surface temperature of more than 65 °C; - b) indicate those areas on the machine suitable for fitting suction devices in order to avoid the emission of hazardous gases, vapours and dusts and shall specify the required suction capacity; - describe any residual risks that cannot be excluded despite the safety measures provided and shall identify where special training is required and which personal protective measures (for example wearing protective gloves, eye protection, clothing and hearing protectors) are required; - d) provide all information and instructions relating to safety requirements where it is anticipated that equipment may be used in potentially explosive atmospheres; - e) give a warning in the installation instructions to place the machines at sufficient distances from elements of the building (the walls, pillars, etc.) such that persons avoid being crushed between them and the moving machine parts: - f) provide information about the requirements for interfaces connecting a machine to the preceding or following equipment and to external power supplies (operation of emergency stop control systems, overall system control, etc.); - g) give instructions for the proper handling and adjusting of guards; - h) provide information regarding the use of personal protective equipment when appropriate; - i) give instructions for safe threading of the web for machines working with web material (roll laminators, coaters, feeding systems for case makers, etc.). #### 16.2 Machines using flammable liquids The instruction handbook for machines using flammable liquids with a flash point below 55 °C shall contain the instruction that the flooring in an area extending 1 m beyond the Zone 1 hazardous area shall be conductive in order to dissipate static electricity before coming into contact with flammable liquids. NOTE The Zone 1 hazardous area is considered to be the area in which an explosive atmosphere consisting of a mixture of air with flammable substances in the form of gas, vapour or mists is likely to occur occasionally during normal operation. When changing hoses and pipes used for combustible or explosive materials, the instruction handbook shall contain the instruction that the hoses and pipes shall be conductive and electrostatically grounded as required in 7.2.3. ### 16.3 Machines with cutting knives The instruction handbook for machines with cutting knives shall contain information regarding total response time, in milliseconds, for all electronic and mechanical lag times associated with stopping the hazardous motion of a knife at any point in the cycle. The handbook shall describe safe working practices for the changing of knives, including the means of safeguarding knife blades and the adjustment of knives in order to prevent hazards from exposed knife edges. The handbook shall give detailed instructions as to the removal of the knives using the tools and the knife covers supplied, and the subsequent storage in knife boxes. ### 16.4 Handling heavy machine parts Where heavy machine parts need to be installed and removed regularly, necessitating the lifting of a load of at least 25 kg per person, the instruction handbook shall indicate the need for the user to provide adequate means of lifting and transport. ### 16.5 Machines with automatic paper loading The instruction handbook for machines with automatic paper loading shall describe the correct positioning of the paper supply for feeding to ensure safe working conditions. An example of this type of information is stating the distance and the angle between paper pile and feeding table. ### 16.6 Residual risks using ESPDs The instruction handbook shall warn the user of any residual risks that may exist when using one or
more ESPDs to safeguard the delivery. The following conditions shall be covered by relevant notes: - a) risks occurring through intentionally defeating the bypass sequences; - b) movement of persons in areas where the view is obstructed by product or machinery; - c) intended use, and prohibited use, of the bypass function (top and bottom ESPD); - d) climbing over or crawling underneath the ESPD; - e) pressing a reset pushbutton and activating (or reactivating) the ESPD protection zone if a person is in the delivery. The documentation shall contain information regarding maintenance intervals and separate inspection and test notes for this safety equipment. #### 16.7 Pile turners and reel turners The instruction handbook shall clearly state the maximum load capacity of pile turners and reel turners. #### 16.8 Pile carriers The instruction handbook shall describe methods of applying a mechanical device during maintenance operations as a stable means to ensure that lowering of the pile carrier plate is prevented. ### 16.9 Residual risk for hold-to-run speeds of above 10 m/min under two-hand control Where it is required for production reasons to start machines with guards open under two-hand control with a speed of more than 10 m/min, a residual risk exists. The instruction handbook shall provide information to the operator to ensure that there is no other person in the hazard area before operating the control. ### 16.10 Use of stroboscopes Where the use of stroboscopes is required for fault-finding and troubleshooting, a residual risk exists if machines are required to run with very high hold-to-run speeds with guards open. The instruction handbook shall contain a warning to this effect, and shall also instruct the person operating the hold-to-run/two-hand control to ensure that there is no other person in the hazard area before operating the control. ## Annex A (informative) ### Risk analysis relating to the pitch angle of access stairs Access stairs for raised workplaces should preferably be stairs with a maximum pitch angle of 45° . If due to lack of space, no stairs can be installed, the following exceptions are based on a calculated E value [see Equation (A.1)]: - with an evaluation value of $E \leq 6$: - solid stepladders safeguarded against skidding with a pitch angle of 46° to a maximum 60° and lateral handrails; - with an evaluation value of $E \leq 3$: solid stepladder with a pitch angle of from more than 45° up to 75°; — with an evaluation value of $E \leq 2$ and $E_2 = 0$: ladders with a pitch angle of 75° to 90°. The evaluation, E, is computed as the sum of the individual factors using Equation (A.1): $$E = E_1 + E_2 + F_1 + F_2 \tag{A.1}$$ where - E_1 is the numerical factor determined in accordance with Table A.1; - $\it E_{ m 2}$ is the numerical factor determined in accordance with Table A.2; - F_1 is an additional numerical factor determined in accordance with Table A.3; - F_2 is an additional numerical factor determined in accordance with Table A.3. Table A.1 — Evaluation E_1 for the frequency of use | Frequency of use | E_1 | |---|-------| | Less than once per week | 1 | | Once per week | 2 | | More than once per week, and not more than once per day | 3 | | More than once per day | 4 | Table A.2 — Evaluation E_2 for carrying objects | Objects to be carried | E_2^a | | | | |--|---------|--|--|--| | No objects to be carried in the hands | 0 | | | | | Light objects (≤ 5 kg) | 1 | | | | | Objects of moderate mass (> 5 kg and ≤ 10 kg) | 2 | | | | | Heavy objects (> 10 kg) | 3 | | | | | a Where the height to which an object is lifted is less than 1,6 m, the value is deemed to be 0. | | | | | Table A.3 — Additional factors F_1 and F_2 | Additions for the following conditions | F_1 | F_2 | |---|-------|-------| | At least one bulky object has to be carried | 1 | _ | | The height to which the object is lifted is more than 3 m | _ | 1 | # **Annex B** (informative) ### **Noise** ### **B.1 General** The data contained in this annex is for information only. ### B.2 Guideline noise emission values provided by Germany The German Berufsgenossenschaft (BG) conducted tests on equipment in several countries, including equipment manufactured in those countries. The tests resulted in the development of guideline values for some types of machinery, determined in accordance with EN 13023 and ISO 11689. The resulting guidelines are shown in Table B.1. These are not absolute values (minimums or maximums), but are intended to be general guidelines. These values are based on emissions from a single machine and do not take into account the effect of combined emissions from multiple machines. The testing procedures specified by EN 13023 eliminate the effects of sound reflections (e.g. from walls or roof) or noise from other sources. Table B.1 — BG guideline values for noise emission | Type of machinery | EN 13023
annex | Measuring point(s) | Noise emission value ^a
dB(A-weighted) | | | |---|-------------------|-----------------------------|---|--|--| | Sheet-fed offset press | H.2.2 | Control desk on feeder side | 78 | | | | — working width max. 450 mm | Π.Ζ.Ζ | Delivery | 78 | | | | Sheet-fed offset press | H.2.2 | Control desk on feeder side | 82 | | | | — working width over 450 mm | П.2.2 | Delivery | 82 | | | | Gang stitcher with trimmer | J.3.1.2 | Feeding: gang stitcher | 82 | | | | | J.S. 1.2 | Delivery: trimmer | 82 | | | | Collating machines | J.3.2.1 | Feeding | 80 | | | | (performance max. 7 500 copies/h) | J.3.2.1 | Manual delivery | 80 | | | | Perfect binders | | Feeding of book signatures | 80 | | | | manual feeding of book signatures | J.4.3.1 | Cover feeder | 80 | | | | | | Delivery | 80 | | | | Perfect binders | 1424 | Cover feeder | 84 | | | | automatic feeding of book signatures | J.4.3.1 | Delivery | 84 | | | | a Values provided by German Technical Experts of TC 130/WG 5. | | | | | | ### B.3 Results of tests conducted in Japan JPMA conducted noise emission tests among seven Japanese manufacturers of sheet-fed printing presses. The range of emissions found as a result of these tests are shown in Table B.2 and Table B.3. The tests were conducted in Japan in accordance with the requirements of EN 13023 and ISO 11689. All measurements were taken in the participating company's factory. Table B.2 — Test results for noise emission for working width up to 450 mm | Company | Noise emission values | Number of
machine types | Number of measurements | Number of measuring point(s) | |-----------|-----------------------|----------------------------|------------------------|------------------------------| | | dB(A-weighted) | | | | | Company A | 75 to 80 | 11 | 11 | 3 | | Company B | 74 to 76 | 1 | 2 | 3 | Table B.3 — Test results for noise emission for working width of 450 mm or more | Company | Noise emission values | Number of machine types | Number of measurements | Number of measuring point(s) | |-----------|-----------------------|-------------------------|------------------------|------------------------------| | | dB(A-weighted) | | | | | Company A | 82 to 94 | 5 | 5 | 6 | | Company B | 83 to 85 | 2 | 2 | 2 | | Company C | 77 to 84 | 10 | 10 | 3 | | Company D | 82 to 86 | 3 | 4 | 2 | | Company E | 74 to 83 | 2 | 4 | 2 | | Company F | 76 to 84 | 11 | 11 | 3 | | Company G | 76 to 79 | 1 | 1 | 3 | # Annex C (normative) ### Area-light warning system ### C.1 Area-light warning system The area lights shall consist of white lights positioned about the machine in sufficient number and of adequate intensity so that when flashing OFF (dim) and ON (bright), the varying reflected intensity is apparent in the appropriate machine motion zone(s). The status of area warning lights shall be as specified in Table C.1. ### C.2 Warning period The warning period is initiated by clearing all stop/safe pushbuttons and by depressing a motion control and ends not less than 2 s later. Actuation of a motion control prior to the completion of the warning period shall not induce machine motion. During the warning period, the area warning lights are flashing and a minimum of two complete flash cycles shall occur. ### C.3 Permissive period The permissive period is a period of not more than 6 s which is initiated after completion of a full warning period. EXCEPTION — If, for operational reasons, it is necessary that the permissive period exceed 6 s, a permissive period of no more than 12 s is permitted with the addition of a flashing light or an audible signal (or both) in the hazardous area(s). The warning shall cycle throughout the entire permissive period. A permissive period is also initiated when an inch or reverse function control is released after machine motion has been established. The permissive period is cancelled by initiating a change in direction of machine motion or by depressing a stop/safe pushbutton under the following conditions. - If the permissive period is cancelled by initiating a change in machine direction, a new full warning period shall be automatically initiated. - If the permissive period is cancelled by depressing a stop/safe pushbutton, the machine is returned to the safe condition. During the permissive period, the area warning lights shall flash. When machine motion is established, the area lights shall be ON (bright). At the end of the permissive period, the system automatically reverts to a ready condition. The area warning lights shall be ON (bright). NOTE The permissive period allows for successive inch or reverse operations without being preceded by a warning period. ### C.4 Armed or zero-speed condition If a
machine is in the armed condition or running at zero speed, the area warning lights shall flash. ### C.5 Safe condition During the safe condition, the area warning lights shall be ON (bright). ### C.6 Flashing operation Flashing operation is initiated by the release of all stop/safe pushbuttons and by depressing a motion control. Flashing operation when machine motion will be in the forward direction shall have a period of 1 s or less with a duty cycle of 50 %. Table C.1 — Status of warning devices for area warning lights | Warning device | Machine condition | | | | | | |---------------------------------|-------------------|---------|----------------|-------------------|---------------------|------------------------| | warning device | Stop/safe | Fault | Warning period | Permissive period | Machine motion | Armed | | Area warning light | On | On/Offa | Flash | Flash | On/Off ^a | Flash | | Audible alarm ^b | Off | Off | On | Off | Off | Off/pulse ^b | | a Either condition is permitted | | | | | | | Either condition is permitted. ^b If used. ## Annex D (informative) ### **Example layout of instruction handbooks** ### **D.1 General** It is suggested that the following information, in addition to that required by this part of ISO 12643, be included in instruction handbooks. The lists presented in D.2 are not all-inclusive and are intended to serve as a guideline. ### **D.2 Types of information** - **D.2.1** Information relating to the machine includes the following: - name and address of the manufacturer or supplier, - designation of series or type, - performance data and data on noise emission, - description of application of machinery (intended use), - specification of workplaces on the machine. - **D.2.2** Information relating to safety includes the following: - diagrams or cross-sections of the machine showing safety devices and measures, - risks caused by neglecting safety measures, - safe working practices, - safety information for the operator, - possible results of unintended use. - **D.2.3** Information relating to transport, handling and storage of the machine includes the following: - safety measures, - dimensions and mass of the machine. - **D.2.4** Information relating to installation, commissioning and removal includes the following: - assembly and mounting, - de-commissioning, - fixing and anchoring conditions, - space needed for operation, preventive maintenance and maintenance, - permissible environmental conditions, - instructions for connecting the machine to power supply. ### ISO 12643-1:2009(E) | D.2 | 5 Information relating to the use of the machine includes the following: | | |--|--|--| | _ | description of manual controls, | | | _ | instructions for setting-up and adjustment and the handling of guards, | | | _ | information about residual risks, | | | _ | information about prohibited applications and errors of operation, | | | _ | instructions for fault detection and repair, | | | _ | instructions relating to the use of personal protective equipment. | | | D.2.6 Information relating to maintenance of the machine includes the | | | | _ | nature and frequency of inspections, | | | _ | preventive measures (parts with defined life, lubrication), | | | _ | spare parts, | | | _ | troubleshooting. | | ### **Bibliography** - [1] ISO 9355-1, Ergonomic requirements for the design of displays and control actuators Part 1: Human interactions with displays and control actuators - [2] ISO 9355-2, Ergonomic requirements for the design of displays and control actuators Part 2: Displays - [3] ISO 11228-1, Ergonomics Manual handling Part 1: Lifting and carrying - [4] ISO/TS 13732-2, Ergonomics of the thermal environment Methods for the assessment of human responses to contact with surfaces Part 2: Human contact with surfaces at moderate temperature - [5] ISO 14118, Safety of machinery Prevention of unexpected start-up - [6] ISO 14123-1, Safety of machinery Reduction of risks to health from hazardous substances emitted by machinery Part 1: Principles and specifications for machinery manufacturers - [7] ISO 14123-2, Safety of machinery Reduction of risks to health from hazardous substances emitted by machinery Part 2: Methodology leading to verification procedures - [8] ISO 15534-1, Ergonomic design for the safety of machinery Part 1: Principles for determining the dimensions required for openings for whole-body access into machinery - [9] ISO 15534-2, Ergonomic design for the safety of machinery Part 2: Principles for determining the dimensions required for access openings - [10] ISO 15534-3, Ergonomic design for the safety of machinery Part 3: Anthropometric data - [11] IEC 60073, Basic and safety principles for man-machine interface, marking and identification Coding principles for indicators and actuators - [12] IEC 60079-0, Explosive atmospheres Part 0: Equipment General requirements - [13] IEC 60079-4, Electrical apparatus for explosive gas atmospheres. Part 4: Method of test for ignition temperature - [14] IEC 60079-10-1, Explosive atmospheres Part 10-1: Classification of areas Explosive gas atmospheres - [15] IEC 60079-10-2, Explosive atmospheres Part 10-2: Classification of areas Combustible dust atmospheres - [16] IEC 60204-11, Safety of machinery Electrical equipment of machines Part 11: Requirements for HV equipment for voltages above 1 000 V a.c. or 1 500 V d.c. and not exceeding 36 kV - [17] IEC 60204-32, Safety of machinery Electrical equipment of machines Part 32: Requirements for hoisting machines - [18] IEC 60447, Basic and safety principles for man-machine-interface, marking and identification Actuating principles - [19] IEC 60529, Degrees of protection provided by enclosures (IP Code) - [20] IEC 61000-6-4, Electromagnetic compatibility (EMC) Part 6-4: Generic standards Emission standard for industrial environments ### ISO 12643-1:2009(E) - [21] IEC 61491, Electrical equipment of industrial machines Serial data link for real-time communication between controls and drives - [22] IEV, International Electrotechnical Vocabulary (IEV) < http://dom2.iec.ch/iev> - [23] ANSI/ASSE Z244.1, Control of Hazardous Energy Lockout/Tagout and Alternative Methods - [24] ANSI Z535.3, Criteria for safety symbols - [25] ANSI Z535.4, Product safety signs and labels - [26] EN 378-1, Refrigerating systems and heat pumps Safety and environmental requirements Part 1: Basic requirements, definitions, classification and selection criteria - [27] EN 614-1, Safety of machinery Ergonomic design principles Part 1: Terminology and general principles - [28] EN 614-2, Safety of machinery Ergonomic design principles Part 2: Interactions between the design of machinery and work tasks - [29] EN 746-1, Industrial thermoprocessing equipment Part 1: Common safety requirements for industrial thermoprocessing equipment - [30] EN 894-1, Safety of machinery Ergonomics requirements for the design of displays and control actuators Part 1: General principles for human interactions with displays and control actuators - [31] EN 894-2, Safety of machinery Ergonomics requirements for the design of displays and control actuators Part 2: Displays - [32] EN 894-3, Safety of machinery Ergonomics requirements for the design of displays and control actuators Part 3: Control actuators - [33] EN 1010-1, Safety of machinery Safety requirements for the design and construction of printing and paper converting machines Part 1: Common requirements - [34] EN 1010-2, Safety of machinery Safety requirements for the design and construction of printing and paper converting machines Part 2: Printing and varnishing machines including pre-press machinery - [35] EN 1010-3, Safety of machinery Safety requirements for the design and construction of printing and paper converting machines Part 3: Cutting machines - [36] EN 1010-4, Safety of machinery Safety requirements for the design and construction of printing and paper converting machines Part 4: Bookbinding, paper converting and finishing machines - [37] EN 1760-1, Safety of machinery Pressure sensitive protective devices Part 1: General principles for the design and testing of pressure sensitive mats and pressure sensitive floors - [38] EN 1760-3, Safety of machinery Pressure sensitive protective devices Part 3: General principles for the design and testing of pressure sensitive bumpers, plates, wires and similar devices - [39] EN 12753, Thermal cleaning systems for exhaust gas from surface treatment equipment Safety requirements - [40] EN 61000-6-4, Electromagnetic compatibility (EMC) Generic standards Emission standard for industrial environments - [41] ANSI B65.1, Graphic technology Safety standard Printing press systems - [42] ANSI B65.2, Graphic technology Safety requirements for binding and finishing systems and equipment - [43] ANSI B65.3, Safety standard Guillotine paper cutters, mill trimmers and integral handling equipment - [44] ANSI B65.4, Safety standard Three-knife trimmers, including rotary and single- and multiple-knife trimmers - [45] ANSI B65.5, Safety standard Stand-alone platen presses - [46] ASME B20.1, Safety Standard for Conveyors and Related Equipment - [47] Directive 98/37/EC, *Mechanical equipment Machinery*, of the European Parliament and of the Council of 22 June 1998 on the approximation of the laws of the Member States relating to machinery - [48] Directive 2006/42/EC, *Mechanical equipment Machinery*, of the European Parliament and of the Council of 17 May 2006 on machinery, and amending Directive 95/16/EC (recast) - [49] NFPA 54, National Fuel Gas Code - [50] NFPA 68, Guide for Venting of Deflagrations - [51] NFPA 69, Standard on Explosion Prevention Systems - [52] NFPA 70, National Electrical Code - [53] NFPA 77, Recommended Practice on Static Electricity - [54] NFPA 79, Electrical Standard for Industrial Machinery - [55]
NFPA 86, Standard for Ovens and Furnaces - [56] NFPA 91, Standard for Exhaust Systems for Air Conveying of Vapors, Gases, Mists, and Non-combustible Particulate Solids - [57] NFPA 329, Recommended Practice for Handling Releases of Flammable and Combustible Liquids and Gases - [58] OSHA 29 CFR 1910.147, The control of hazardous energy (lockout/tagout)