INTERNATIONAL STANDARD ISO 12642-1 > Second edition 2011-07-15 # Graphic technology — Input data for characterization of four-colour process printing — Part 1: Initial data set Technologie graphique — Données d'entrée pour caractérisation d'impression en quadrichromie — Partie 1: Ensemble de données initiales # **COPYRIGHT PROTECTED DOCUMENT** © ISO 2011 All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester. ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org Published in Switzerland | | Ü | |---|----| | Foreword | iv | | Introduction | | | 1 Scope | | | 2 Normative references | | | 3 Terms and definitions | 1 | | 4 Requirements | 2 | | Annex A (informative) Application notes | 9 | | Bibliography | 13 | # **Foreword** ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2. The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote. Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. ISO 12642-1 was prepared by Technical Committee ISO/TC 130, Graphic technology. This second edition cancels and replaces the first edition (ISO 12642-1:1996) and its Technical Corrigendum (ISO 12642-1:1996/Cor.1:2005) and introduces no change in the technical requirements. Subclause 4.4 and Annex B have been replaced by references to ISO 28178 which has been created to include the data exchange file format for this and other International Standards. ISO 12642 consists of the following parts, under the general title *Graphic technology* — *Input data for characterization of four-colour process printing*: - Part 1: Initial data set - Part 2: Expanded data set # Introduction # 0.1 General background The technical content of this part of ISO 12642 is identical to ANSI IT8.7/3-1993. The ANSI document resulted from the joint efforts of an international industry group that included participants representing a broad range of prepress vendors, film manufacturers, and users. This group, initially identified as the DDES (Digital Data Exchange Standards) Committee, later became the founders of the ANSI IT8 (Image Technology) accredited standards committee which is responsible for electronic data exchange standards in graphic arts prepress. In an environment in which colour information is passed between electronic publishing systems, it is essential for colour to be defined in an unambiguous manner. Substantial experimental evidence enables us to conclude that, for foveal vision, this can be achieved by specifying the mixture of three linearly independent stimuli required to match that colour. In 1931 a complete system of colour definition was developed by the CIE (Commission Internationale de l'Eclairage) based on experimental evidence published during the previous decade. This evidence confirmed the similarity between observers in making such a match. That system and its derivatives are now universally accepted for colour specification. Many half-tone colour printing processes, however, require more than three colourants. There are two reasons for this. Generally the gamut of colours achievable with three printing inks is rather limited, and printing additional inks can extend the gamut significantly. Furthermore, the provision of extra inks can reduce the magnitude of the visual change caused by the variability in colour and register which arises in print production. By far the most common additional ink used is black, and four-colour process printing is accepted as the norm for most forms of printing. The addition of an extra ink means that the production of a colour cannot, in general, be defined uniquely. As a result, different parts of a printed sheet can use varying ink combinations to achieve the same colour. For many practical purposes it is desirable to specify this combination directly, rather than encode it by rules, and this leads to the requirement to transfer data in a four-colour, device-specific mode. If the same data are to be used for other applications, or even if it needs to be modified for a different set of printing characteristics, some additional information is necessary to enable the receiver of the data to interpret it. This part of ISO 12642 has been developed to achieve this objective. It provides a data set which can be transmitted with an image to enable the receiver, if required, either to transform the data into a device-independent state or correct it for a different printing characteristic. An alternative application of the tools provided by this part of ISO 12642 is to enable the characterization of output systems; in this context, work has been undertaken by the committee to generate data for the major types of half-tone printing processes which have been specified internationally. This procedure is described in the application notes (Annex A) and the data will be published in future annexes. The body of this part of ISO 12642 defines the ink values to be used for characterizing any four-colour (cyan, magenta, yellow, and black) half-tone printing process (including gravure). These ink values are defined as either digital data in a computer or half-tone tone values on film. This requires that particular care be taken in the preparation of film to ensure that the output device is properly "linearized" and the half-tone film values match the numerical data in the computer file. For some applications the film values used for linearization can be one or more generations removed from the film produced by the film writer. The measurement procedures and the data format to be used in determining and reporting tristimulus values (X,Y,Z) are also included. While the technique employed in this part of ISO 12642 applies to all output processes, the data have been optimized for four-colour half-tone printing. For non-half-tone processes, or those which use colourants that are significantly different from typical printing inks, it is advisable that the reference data file be determined in such a way that it provides reasonably uniform colour differences when the data file is rendered. For a system which does not meet the criterion, the user-optional data set can be utilized. Suggestions for this are made in the application notes; however, they are not part of this part of ISO 12642. Note that this part of ISO 12642 does not define the physical layout of the patches or their size. This is because any such decision depends on the printing device to be used, and the area required for colour measurement. It is anticipated that a specific layout will be produced to suit the needs of the user. However, in order to realize the colours necessary for the measurements of specific printing processes to be included as future annexes, it was necessary to produce a specific layout. This layout, composed of four groups of patches, has been adopted by both ANSI/CGATS and ISO/TC 130. Within TC 130 the digital data in the appropriate format are contained in images S7 to S10 of the Standard Colour Image Data (SCID), ISO 12640-1:1997. For the guidance of others, this layout is shown in Figure A.1. #### 0.2 Technical background #### 0.2.1 Printing characteristics Various efforts have been made over the past 20 years to reduce the variation which occurs between printing presses. Initially, standards such as ISO 2846 were developed to specify the colour of printing inks. Subsequently, as a result of the lead of FOGRA/BVD in Germany, significant effort has been made in developing specifications which define constraints for the ink transfer onto paper. This is achieved by specifying either the reflection density or the tristimulus values of a uniform (solid) printed ink film, and by specifying tolerances on the optical density (i.e. dot value) of various half-tone dot values. Within the international printing community such specifications are widely recognized and have become, in many cases, de facto printing standards. For magazine and periodical printing, SWOP (in the USA) and FIPP (in Europe) are widely recognized standards. For commercial printing, the specifications of FOGRA and PIRA are widely known in Europe. Specifications are also evolving for newspaper and heat-set web production. Future annexes to this part of ISO 12642 might contain the colorimetric tristimulus values corresponding to these percent dot values when printed in accordance with a number of such printing specifications. Such data can be used as the basis for the conversion between ink values and tristimulus values. Note that any characterization of the process takes account of all steps involved in print production. Thus it
includes production of the separations, any contacting operations that might be required and platemaking. All of the printing specifications as referred to above include recommendations for maintaining consistency of such operations to ensure that validity of a characterization is maintained. For characterizing printing conditions which differ from the published specifications, two options exist. Either the large palette of colours can be printed and measured, or the process can be modelled analytically. The analytical modelling approach has the advantage of requiring far fewer colour measurements; the disadvantages lie in the accuracy of prediction. For many applications, a satisfactory compromise is achieved by using modelling for the modification of published data. This is discussed in more detail in the application notes. # 0.2.2 Choice of colour palette It is generally agreed that measurement of a reasonably large number of colours is preferred for accurate characterization of any printing process. It is not possible to be precise about how many colours are required; the number will depend on many factors including the accuracy of colour rendition required, the uniformity of spacing of the samples in terms of colour, the type of modelling process used, and any nonlinear characteristics of a specific printing process. However, practical experience suggests that measuring all combinations of six levels each for cyan, magenta, yellow, and black, preferably weighted towards lower half-tone dot values, will frequently prove adequate. Generally, for higher levels of black, the number of samples can be considerably reduced, since the colour difference between samples is very small. With the addition of single colour scales which contain extra values to assist in defining local nonlinearity, the accuracy obtained for most printing processes is adequate. A reduced-size data set can be used if: - a less accurate characterization is adequate; - the process can be modelled accurately by one of the well-known models listed in the application notes; - the aim of the measurement is to seek small corrections to an already accurate characterization. The advantages of this approach are that the measurement effort is substantially lower and that the file size of the data is greatly reduced. This can be advantageous when images are compressed although, in general, even the larger file is small compared to most images. The proposal accepted for this part of ISO 12642 defines a colour palette consisting of 928 combinations of cyan, magenta, yellow, and black ink values. It is this palette (hereafter called the extended ink value data set) which has been measured to provide colour characterization data on the major printing specifications. Where such an extensive set of data is not required, a subset of this palette which consists of 182 colours (hereafter called the basic ink value data set) is specified. It provides data suited to a variety of modelling methods and generally provides excessive data for any specific method. It is sufficient for almost all published modelling methods. For a characterization which cannot be achieved with the data sets defined in this part of ISO 12642, provision is made for a user-optional set of any size. The format of the data is defined in this part of ISO 12642. It is anticipated that the basic data set will be the default file supplied in the header of image files to be exchanged, and that by prior agreement, one of the larger palettes can be provided when required. It is the intent of ANSI IT8/CGATS and of ISO/TC 130 to work with those organizations responsible for various printing definitions (SWOP, FOGRA, etc.) to develop tables of colour data that are agreed to be representative of the named printing conditions. When such data are available and published by ISO, they can be referenced as "named" data. Where such named data are identified, they can be used by the receiver and the file need not be sent. For many applications it is expected that the use of named data sets will suffice. ISO 12642-2 is both a newer and larger data set and is currently preferred over this part of ISO 12642 for characterization of graphic arts printing. However, this part of ISO 12642 is essential for the documentation and validation of earlier characterization data. # Graphic technology — Input data for characterization of fourcolour process printing — # Part 1: # Initial data set # 1 Scope This part of ISO 12642 defines an input data file, a measurement procedure and an output data format for use in characterizing any four-colour printing process. #### 2 Normative references The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. ISO 13655, Graphic technology — Spectral measurement and colorimetric computation for graphic arts images ISO 28178, Graphic technology — Exchange format for colour and process control data using XML or ASCII text #### 3 Terms and definitions For the purposes of this document, the following terms and definitions apply. #### 3.1 ### **CIE tristimulus values** amounts of the three reference colour stimuli, in the CIE-specified trichromatic system, required to match the colour of the stimulus considered NOTE In the 1931 CIE standard colorimetric system, the tristimulus values are represented by the symbols X, Y, Z. #### 3.2 #### colour gamut subset of perceivable colours reproducible by a device or medium #### 3.3 #### half-tone dots dots which vary in spatial frequency or size, thereby producing an image of tonal gradation NOTE Half-tone dots are normally quantified by the percentage area they cover. Measurement of dot area is normally made on film separations and is derived from the Murray-Davies equation. #### 3.4 #### keyword value file file that makes use of predefined keywords and data tables to exchange data in an open extensible manner #### 3.5 #### process colour printing reproducing colour images using three or more printing inks NOTE The normal process inks consist of cyan, magenta, yellow, and black. #### 3.6 #### ink value digital file value which represents the amount of a colourant required in a rendering process NOTE For the half-tone printing process this is equivalent to the dot area of the half-tone film expressed as a percentage. # Requirements #### Data set definition 4.1 #### 4.1.1 General Two sets of ink values are specified which span, with differing intervals, the colour space defined by combinations of cyan, magenta, yellow, and black dot area percentages. The basic data set, which is a subset of the extended data set, shall be the default set in the absence of any other information; the extended data set (or subsets of it) may be used if specified. The data are defined as digital data and does not exist as printed images (or sets of separations). However, the colorimetric values needed to produce the colour characterization data file may be determined by printing images which have been made from films containing half-tone values corresponding to the values in the ink value data set. #### 4.1.2 Basic ink value data set The cyan, magenta, yellow, and black ink values specified in this set, and their identification (ID) numbers, shall be as listed in Table 1. The sample location information included in Table 1 is based on the printing layout shown in Figure A.1 and is included for information only. #### 4.1.3 Extended ink value data set The extended data set shall include the values of Table 1 as well as those of Table 2. The sample location information included in Table 2 is based on the printing layout shown in Figure A.1 and is included for information only. #### 4.1.4 User-defined data set For situations where it is deemed necessary to provide a larger or differently spaced ink value data set, the user may define a data set of his own. The ink values selected shall be provided using the data format specified in ISO 28178. #### 4.2 Colour measurement Spectrophotometric measurement and calculation of colorimetric data of the printed sheet shall be made in accordance with ISO 13655. For the purposes of this part of ISO 12642, in those specific situations where a backing other than black is deemed more appropriate and is used in measurement, that shall be noted. NOTE Additional measured or computed data can be reported as desired. The data file format defined in ISO 28178 provides for the typical densitometric and colorimetric data reported. #### 4.3 Data reporting Colorimetric data, measured in accordance with 4.2, shall be reported as CIE tristimulus values to two decimal places using the data file format specified in ISO 28178. The following additional data shall be provided to adequately define the measuring conditions: - a) originator of the data; - b) date of creation of data; - c) description of the purpose or contents of the data; - d) description of the instrumentation used, including, but not limited to, the brand and model number; - e) measurement source (light source and filter) conditions used; - f) wavelength interval used. Table 1 — Basic ink value data set | No. Coation C | | Sample | | % [| Oot | | , | Sample | | % I | Oot | | | Sample | | % [| Oot | |
--|----|--------|-----|------------|-----|-----|-----|--------|-----|-----|-----|-----|-----|--------|-----|------------|-----|-----------| | 1 | ĺ | 1 | С | | 1 | K | | | С | | 1 | K | ĺ | 1 | С | ĺ | ĺ | ĸ | | 2 | 1 | 0A01 | 100 | 0 | 0 | 0 | 62 | 0E10 | 0 | 0 | 15 | 0 | 123 | 0J06 | 100 | 85 | 85 | 80 | | 4 QAO4 | | | | - | | | | | | | | - | | | | | | 60 | | 5 | 3 | | _ | 0 | 100 | 0 | - | _ | 0 | | | 0 | | | | 65 | | 100 | | 6 | | | | | - | - | | | - | | | - | | | | | | 80 | | 7 | | | | | | | | | | | _ | | | | | | | 60 | | S | | | | | | | | | | | | | | | | | | 40 | | 9 0.009 770 0 70 0 70 0 770 0 770 0 770 0 770 0 770 0 770 0 770 0 770 0 770 0 770 0 770 0 770 0 770 0 771 0 F0F6 | | | | | | | | | - | | | | | | | | | 100
80 | | 10 | | | | | | - | | | | | | | | | | | | 60 | | 11 | | | | - | | - | - | | - | | - | | | | | | - | 40 | | 13 | | | | | | | | | 0 | | 0 | | | | | | | 20 | | 14 | 12 | 0A12 | 0 | 40 | 40 | 0 | 73 | 0F08 | 0 | 0 | 0 | 25 | 134 | 0K04 | 40 | 27 | 27 | 100 | | 15 | 13 | | 40 | 40 | - | 0 | | 0F09 | 0 | | 0 | - | 135 | 0K05 | 40 | 27 | | 80 | | 16 | | | _ | - | | - | | | - | | - | | | | _ | | | 60 | | 17 | | | | | | | | | | | | | | | | | | 40 | | 18 | | | | - | | - | | - | | | | | | | | | | 20 | | 19 | | | _ | | | - | | | - | - | - | | | | | | | 10
100 | | 20 | | | | - | - | | | | | | - | - | - | | | | | 80 | | 21 | | | | | - | | | | | | _ | - | | | | | | 60 | | 22 | | | _ | | | | | | - | | - | - | | | | | | 40 | | 24 | 22 | 0B09 | | | 100 | 100 | 83 | 0G05 | 0 | 40 | 100 | 0 | 144 | 0L01 | 20 | 12 | | 20 | | 25 | 23 | 0B10 | 0 | 100 | 100 | 100 | | 0G06 | 40 | 40 | 100 | 0 | 145 | 0L02 | 20 | 12 | 12 | 10 | | 26 | | | 100 | 100 | | | | | 70 | 70 | 70 | - | 146 | | _ | | | 100 | | 27 | | | | | | | | | - | - | | - | | | | | | 80 | | 28 OCO2 80 0 0 0 89 OG11 100 40 40 0 151 OLOR 10 6 6 29 OCO3 70 0 0 0 90 OG12 100 40 0 151 OLO9 100 85 85 31 OCO5 50 0 0 0 92 OH01 70 100 20 0 153 OL10 80 65 65 32 OCO6 40 0 0 93 OH02 20 70 20 0 153 OL10 80 65 65 65 32 OCO6 40 0 0 95 OH04 20 70 40 0 156 OL12 40 27 27 34 OCO8 25 0 0 95 OH04 20 100 70 0 156 OL13 22< | | | | - | | | | | | | | | - | | | | | 60 | | 29 OCO3 70 0 0 90 OG12 100 40 0 151 OLO8 10 6 6 30 OCO4 60 0 0 91 OG13 1100 100 40 0 152 OLO9 100 85 85 31 OCO5 50 0 0 0 92 OH01 70 100 20 0 153 OL10 80 65 65 32 OCO6 40 0 0 0 95 OH04 20 100 155 OL11 60 45 45 43 33 OCO7 30 0 0 0 96 OH05 20 70 70 156 OL13 20 12 12 34 OCO8 25 0 0 0 96 OH05 20 70 710 0 159 OM03 10 | | | | - | | | | | | | - | - | - | | _ | | - | 40 | | 30 | | | | - | | | | | | - | | - | | | | | - | 20
10 | | 31 | | | | - | | | | | | _ | _ | - | | | _ | - | - | 0 | | 32 | | | | - | | - | - | | | | - | - | - | | | | | 0 | | 33 | | | | - | | - | | | | | | - | | | | | | 0 | | 35 | | 0C07 | 30 | 0 | 0 | 0 | 94 | 0H03 | 20 | 70 | 40 | 0 | 155 | 0L12 | 40 | 27 | 27 | 0 | | 36 | | | | 0 | - | - | | 0H04 | | | - | - | | | | | | 0 | | 37 | | | | - | | | | | | - | - | - | | | | | | 0 | | 38 | | | | - | | | - | | | | | | | | | - | | 0 | | 39 | | | | - | | | | | | | - | - | | | | - | - | 20
20 | | 40 0D01 0 90 0 0 101 0H10 100 20 70 0 162 0M06 100 100 0 41 0D02 0 80 0 0 102 0H11 70 20 0 163 0M07 100 0 100 42 0D03 0 70 0 0 103 0H12 100 70 20 0 164 0M08 0 100 100 43 0D04 0 60 0 0 104 0H13 70 70 20 0 165 0M09 40 40 0 44 0D05 0 50 0 0 106 0102 40 70 40 0 167 0M11 0 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40< | | | | - | - | - | | | | | | - | | | | | - | 20 | | 41 0D02 0 80 0 0 102 0H11 70 20 20 0 163 0M07 100 0 100 42 0D03 0 70 0 0 103 0H12 100 70 20 0 164 0M08 0 100 100 43 0D04 0 60 0 0 104 0H13 70 70 20 0 165 0M09 40 40 0 44 0D05 0 50 0 105 0I01 70 100 70 0 166 0M10 40 0 40 45 0D06 0 40 0 0 106 0I02 40 20 0 168 0M11 0 40 40 46 0D07 0 30 0 107 0I03 20 40 20 0 168 0M12 | | | | - | | | | | | | | - | | | _ | - | | 20 | | 42 0D03 0 70 0 0 103 0H12 100 70 20 0 164 0M08 0 100 100 100 43 0D04 0 60 0 0 104 0H13 70 70 20 0 165 0M09 40 40 0 44 0D05 0 50 0 0 105 0I01 70 100 70 0 166 0M10 40 0 40 40 40 0 0 106 0I02 40 70 40 0 167 0M11 0 40 | | | _ | | - | - | | | | | | - | | | | | - | 20 | | 43 0D04 0 60 0 0 104 0H13 70 70 20 0 165 0M09 40 40 0 0 44 0D05 0 50 0 0 105 0I01 70 100 70 0 166 0M10 40 0 40 40 40 0 40 40 40 0 166 0M10 40 | | | | | | | | | | | | | | | | | | 20 | | 45 0D06 0 40 0 0 106 0I02 40 70 40 0 167 0M11 0 40 40 40 20 0 168 0M12 100 100 0 0 47 0D08 0 25 0 0 108 0I04 70 100 100 0 169 0M13 100 0 100 48 0D09 0 20 0 0 109 0I05 20 40 40 0 170 0N01 0 100 100 49 0D10 0 15 0 0 110 0I06 70 70 100 0 171 0N02 40 40 0 40 40 0 100< | | | | | | | | | | | | | 165 | | 40 | | | 20 | | 46 0D07 0 30 0 0 107 0I03 20 40 20 0 168 0M12 100 100 0 47 0D08 0 25 0 0 108 0I04 70 100 100 0 169 0M13 100 0 100 48 0D09 0 20 0 0 109 0I05 20 40 40 0 170 0N01 0 100 100 49 0D10 0 15 0 0 110 0I06 70 70 100 0 171 0N02 40 40 0 50 0D11 0 10 0 111 0I07 40 40 70 0 172 0N03 40 0 40 51 0D12 0 7 0 0 112 0I08 20 20 40 0< | 44 | 0D05 | 0 | 50 | 0 | 0 | 105 | 0101 | 70 | 100 | 70 | 0 | 166 | 0M10 | 40 | 0 | 40 | 20 | | 47 0D08 0 25 0 0 108 0I04 70 100 100 0 169 0M13 100 0 100 48 0D09 0 20 0 0 109 0I05 20 40 40 0 170 0N01 0 100 | | | | | | | | | | | | | | | | | | 20 | | 48 0D09 0 20 0 0 109 0I05 20 40 40 0 170 0N01 0 100 100 100 40 40 0 170 0N01 0 100 | | | | | | | | | | | | | | | | | | 40 | | 49 0D10 0 15 0 0 110 0106 70 70 100 0 171 0N02 40 40 0 0 0 40 40 0 171 0N02 40 40 0 40 40 0 0 172 0N03 40 0 40 40 51 0D12 0 7 0 0 112 0108 20 20 40 0 173 0N04 0 40 40 40 52 0D13 0 3 0 0 113 0109 20 20 20 0 0 174 0N05 100 | | | | | | | | | | | | | | | | | | 40 | | 50 0D11 0 10 0 0 111 0107 40 40 70 0 172 0N03 40 0 40 40 51 0D12 0 7 0 0 112 0108 20 20 40 0 173 0N04 0 40 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>40</td></t<> | | | | | | | | | | | | | | | | | | 40 | | 51 0D12 0 7 0 0 112 0108 20 20 40 0 173 0N04 0 40 40 40 52 0D13 0 3 0 0 113 0109 20 20 20 0 174 0N05 100 | | | | | | | | | | | | | | | | | | 40
40 | | 52 0D13 0 3 0 0 113 0109 20 20 20 0 174 0N05 100 | | | | | | | | | | | | | | | | - | | 40 | | 53 0E01 0 0 90 0 114 0I10 100 70 100 0 175 0N06 0 100 0 54 0E02 0 0 80 0 115 0I11 70 40 70 0 176 0N07 0 0 0 0 100 55 0E03 0 0 70 0 116 0I12 40 20 40 0 177 0N08 100 100 0 56 0E04 0 0 60 0 117 0I13 100 70 70 0 178 0N09 100 0 100 57 0E05 0 0 50 0 118 0J01 40 40 20 0 179 0N10 0 100 100 58 0E06 0 0 40 0 119 0J02 100 100 70 0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>70</td></td<> | | | | | | | | | | | | | | | | | | 70 | | 54 0E02 0 0 80 0 115 0I11 70 40 70 0 176 0N07 0 0 0 100 55 0E03 0 0 70 0 116 0I12 40 20 40 0 177 0N08 100 100 0 56 0E04 0 0 60 0 117 0I13 100 70 70 0 178 0N09 100 0 100 57 0E05 0 0 50 0 118 0J01 40 40 20 0 179 0N10 0 100 100 58 0E06 0 0 40 119 0J02 100 100 70 0 180 0N11 40 40 0 190 59 0E07 0 0 30 0 120 0J033 40 20 20 0 181 0N12 | | | | | | | | | | | | | | | | | | 70 | | 56 0E04 0 0 60 0 117 0I13 100 70 70 0 178 0N09 100 0 100 57 0E05 0 0 50 0 118 0J01 40 40 20 0 179 0N10 0 100 100 100 58 0E06 0 0 40 0 119 0J02 100 100 70 0 180 0N11 40 40 0 40 59 0E07 0 0 30 0 120 0J03 40 20 20 0 181 0N12 40 0 40 40 60 0E08 0 0 25 0 121 0J04 70 40 40 0 182 0N13 0 40 40 61 0E09 0 0 20 0 122 0J05 100 85 85 <t< td=""><td></td><td></td><td>0</td><td>0</td><td></td><td>0</td><td>115</td><td></td><td>70</td><td>40</td><td>70</td><td>0</td><td>176</td><td></td><td>0</td><td></td><td>100</td><td>70</td></t<> | | | 0 | 0 | | 0 | 115 | | 70 | 40 | 70 | 0 | 176 | | 0 | | 100 | 70 | | 57 0E05 0 0 50 0 118 0J01 40 40 20 0 179 0N10 0 100 100 100 50 0 100 100 100 179 0N10 0 100
100 10 | | | | 0 | | | | | | | | | | | | | | 70 | | 58 0E06 0 0 40 0 119 0J02 100 100 70 0 180 0N11 40 40 0 59 0E07 0 0 30 0 120 0J03 40 20 20 0 181 0N12 40 0 40 60 0E08 0 0 25 0 121 0J04 70 40 40 0 182 0N13 0 40 40 61 0E09 0 0 20 0 122 0J05 100 85 85 100 0 0 0 40 40 | | | | | | | | | | | | | | | | | | 70 | | 59 0E07 0 0 30 0 120 0J03 40 20 20 0 181 0N12 40 0 40 60 0E08 0 0 25 0 121 0J04 70 40 40 0 182 0N13 0 40 40 61 0E09 0 0 20 0 122 0J05 100 85 85 100 0 0 0 40 40 | | | | | | | | | | | | | | | | | | 70 | | 60 0E08 0 0 25 0 121 0J04 70 40 40 0 182 0N13 0 40 40 61 0E09 0 0 20 0 122 0J05 100 85 85 100 0 0 40 40 | | | | | | | | | | | | | | | | | | 70 | | 61 0E09 0 0 20 0 122 0J05 100 85 85 100 | | | | | | | | | | | | | | | | | | 70
70 | | | | | | | | | | | | | | | 102 | CIVIO | U | 40 | 40 | 70 | | a Location data are included for information only. | | | | - | | | | | .00 | 00 | 55 | 100 | | | | | | | Location data are included for information only. Table 2 — Extended ink value data set | 9 | Sample | | % C | Oot | | 9 | Sample | | % [| Oot | | 9 | Sample | | % [| Oot | | |------------|------------|------------|------------|----------|---|------------|-----------------------|------------|-----------|----------|--------|------------|-----------------------|------------|-----------|------------|---| | ID | Locationa | С | M | Y | K | ID | Location ^a | С | M | Υ | K | ID | Location ^a | С | M | Υ | K | | 183
184 | 1A1
1A2 | 0 | 0
10 | 0 | 0 | 253
254 | 2F5
2F6 | 100
100 | 70
100 | 10
10 | 0 | 323
324 | 4F3
4F4 | 100
100 | 20
40 | 40
40 | 0 | | 185 | 1A3 | 0 | 20 | 0 | 0 | 255 | 3A1 | 0 | 0 | 20 | 0 | 325 | 4F5 | 100 | 70 | 40 | 0 | | 186
187 | 1A4
1A5 | 0 | 40
70 | 0 | 0 | 256
257 | 3A2
3A3 | 0 | 10
20 | 20
20 | 0 | 326
327 | 4F6
5A1 | 100
0 | 100
0 | 40
70 | 0 | | 188 | 1A6 | 0 | 100 | 0 | 0 | 258 | 3A3 | 0 | 40 | 20 | 0 | 328 | 5A1 | 0 | 10 | 70 | 0 | | 189 | 1B1 | 10 | 0 | 0 | 0 | 259 | 3A5 | 0 | 70 | 20 | 0 | 329 | 5A3 | 0 | 20 | 70 | 0 | | 190
191 | 1B2
1B3 | 10
10 | 10
20 | 0 | 0 | 260
261 | 3A6
3B1 | 0
10 | 100
0 | 20
20 | 0 | 330
331 | 5A4
5A5 | 0 | 40
70 | 70
70 | 0 | | 192 | 1B4 | 10 | 40 | 0 | 0 | 262 | 3B2 | 10 | 10 | 20 | 0 | 332 | 5A6 | 0 | 100 | 70 | 0 | | 193
194 | 1B5
1B6 | 10
10 | 70
100 | 0 | 0 | 263
264 | 3B3
3B4 | 10
10 | 20
40 | 20
20 | 0 | 333
334 | 5B1
5B2 | 10
10 | 0
10 | 70
70 | 0 | | 195 | 1C1 | 20 | 0 | 0 | 0 | 265 | 3B5 | 10 | 70 | 20 | 0 | 335 | 5B3 | 10 | 20 | 70 | 0 | | 196
197 | 1C2
1C3 | 20
20 | 10
20 | 0 | 0 | 266
267 | 3B6
3C1 | 10
20 | 100
0 | 20
20 | 0 | 336
337 | 5B4
5B5 | 10
10 | 40
70 | 70
70 | 0 | | 198 | 1C4 | 20 | 40 | 0 | 0 | 268 | 3C2 | 20 | 10 | 20 | 0 | 338 | 5B6 | 10 | 100 | 70 | 0 | | 199 | 1C5
1C6 | 20 | 70
100 | 0 | 0 | 269
270 | 3C3
3C4 | 20 | 20
40 | 20
20 | 0 | 339
340 | 5C1
5C2 | 20 | 0 | 70
70 | 0 | | 200
201 | 1D1 | 20
40 | 0 | 0 | 0 | 271 | 3C4
3C5 | 20
20 | 70 | 20 | 0 | 341 | 5C2
5C3 | 20
20 | 10
20 | 70 | 0 | | 202 | 1D2 | 40 | 10 | 0 | 0 | 272 | 3C6 | 20 | 100 | 20 | 0 | 342 | 5C4 | 20 | 40 | 70 | 0 | | 203
204 | 1D3
1D4 | 40
40 | 20
40 | 0 | 0 | 273
274 | 3D1
3D2 | 40
40 | 0
10 | 20
20 | 0 | 343
344 | 5C5
5C6 | 20
20 | 70
100 | 70
70 | 0 | | 205 | 1D5 | 40 | 70 | 0 | 0 | 275 | 3D3 | 40 | 20 | 20 | 0 | 345 | 5D1 | 40 | 0 | 70 | 0 | | 206
207 | 1D6
1E1 | 40
70 | 100
0 | 0 | 0 | 276
277 | 3D4
3D5 | 40
40 | 40
70 | 20
20 | 0 | 346
347 | 5D2
5D3 | 40
40 | 10
20 | 70
70 | 0 | | 208 | 1E2 | 70 | 10 | 0 | 0 | 278 | 3D6 | 40 | 100 | 20 | 0 | 348 | 5D4 | 40 | 40 | 70 | 0 | | 209
210 | 1E3
1E4 | 70
70 | 20
40 | 0 | 0 | 279
280 | 3E1
3E2 | 70
70 | 0
10 | 20
20 | 0 | 349
350 | 5D5
5D6 | 40
40 | 70
100 | 70
70 | 0 | | 211 | 1E5 | 70 | 70 | 0 | 0 | 281 | 3E3 | 70 | 20 | 20 | 0 | 351 | 5E1 | 70 | 0 | 70 | 0 | | 212
213 | 1E6
1F1 | 70
100 | 100
0 | 0 | 0 | 282
283 | 3E4
3E5 | 70
70 | 40
70 | 20
20 | 0 | 352
353 | 5E2
5E3 | 70
70 | 10
20 | 70
70 | 0 | | 214 | 1F2 | 100 | 10 | 0 | 0 | 284 | 3E6 | 70 | 100 | 20 | 0 | 354 | 5E4 | 70 | 40 | 70 | 0 | | 215
216 | 1F3
1F4 | 100
100 | 20
40 | 0 | 0 | 285
286 | 3F1
3F2 | 100
100 | 0
10 | 20
20 | 0 | 355
356 | 5E5
5E6 | 70
70 | 70
100 | 70
70 | 0 | | 217 | 1F5 | 100 | 70 | 0 | 0 | 287 | 3F3 | 100 | 20 | 20 | 0 | 357 | 5E0
5F1 | 100 | 0 | 70 | 0 | | 218
219 | 1F6
2A1 | 100
0 | 100
0 | 0
10 | 0 | 288
289 | 3F4
3F5 | 100
100 | 40
70 | 20
20 | 0 | 358
359 | 5F2
5F3 | 100
100 | 10
20 | 70
70 | 0 | | 220 | 2A1 | 0 | 10 | 10 | 0 | 290 | 3F6 | 100 | 100 | 20 | 0 | 360 | 5F4 | 100 | 40 | 70 | 0 | | 221
222 | 2A3 | 0 | 20
40 | 10 | 0 | 291
292 | 4A1
4A2 | 0 | 0
10 | 40
40 | 0
0 | 361
362 | 5F5 | 100 | 70 | 70 | 0 | | 223 | 2A4
2A5 | 0 | 70 | 10
10 | 0 | 292 | 4A2
4A3 | 0 | 20 | 40 | 0 | 363 | 5F6
6A1 | 100
0 | 100
0 | 70
100 | 0 | | 224 | 2A6 | 0 | 100 | 10 | 0 | 294 | 4A4 | 0 | 40 | 40 | 0 | 364 | 6A2 | 0 | 10 | 100 | 0 | | 225
226 | 2B1
2B2 | 10
10 | 0
10 | 10
10 | 0 | 295
296 | 4A5
4A6 | 0 | 70
100 | 40
40 | 0 | 365
366 | 6A3
6A4 | 0 | 20
40 | 100
100 | 0 | | 227 | 2B3 | 10 | 20 | 10 | 0 | 297 | 4B1 | 10 | 0 | 40 | 0 | 367 | 6A5 | 0 | 70 | 100 | 0 | | 228
229 | 2B4
2B5 | 10
10 | 40
70 | 10
10 | 0 | 298
299 | 4B2
4B3 | 10
10 | 10
20 | 40
40 | 0 | 368
369 | 6A6
6B1 | 0
10 | 100
0 | 100
100 | 0 | | 230 | 2B6 | 10 | 100 | 10 | 0 | 300 | 4B4 | 10 | 40 | 40 | 0 | 370 | 6B2 | 10 | 10 | 100 | 0 | | 231
232 | 2C1
2C2 | 20
20 | 0
10 | 10
10 | 0 | 301
302 | 4B5
4B6 | 10
10 | 70
100 | 40
40 | 0 | 371
372 | 6B3
6B4 | 10
10 | 20
40 | 100
100 | 0 | | 233 | 2C3 | 20 | 20 | 10 | 0 | 303 | 4C1 | 20 | 0 | 40 | 0 | 373 | 6B5 | 10 | 70 | 100 | 0 | | 234
235 | 2C4
2C5 | 20
20 | 40
70 | 10
10 | 0 | 304
305 | 4C2
4C3 | 20
20 | 10
20 | 40
40 | 0 | 374
375 | 6B6
6C1 | 10
20 | 100
0 | 100
100 | 0 | | 236 | 2C6 | 20 | 100 | 10 | 0 | 306 | 4C4 | 20 | 40 | 40 | 0 | 376 | 6C2 | 20 | 10 | 100 | 0 | | 237
238 | 2D1
2D2 | 40
40 | 0
10 | 10
10 | 0 | 307
308 | 4C5
4C6 | 20
20 | 70
100 | 40
40 | 0 | 377
378 | 6C3
6C4 | 20
20 | 20
40 | 100
100 | 0 | | 239 | 2D3 | 40 | 20 | 10 | 0 | 309 | 4D1 | 40 | 0 | 40 | 0 | 379 | 6C5 | 20 | 70 | 100 | 0 | | 240
241 | 2D4
2D5 | 40
40 | 40
70 | 10
10 | 0 | 310
311 | 4D2
4D3 | 40
40 | 10
20 | 40
40 | 0 | 380
381 | 6C6
6D1 | 20
40 | 100
0 | 100
100 | 0 | | 241 | 2D5
2D6 | 40 | 100 | 10 | 0 | 311 | 4D3
4D4 | 40 | 40 | 40 | 0 | 382 | 6D1
6D2 | 40 | 10 | 100 | 0 | | 243 | 2E1 | 70
70 | 0 | 10 | 0 | 313 | 4D5 | 40 | 70
100 | 40 | 0 | 383 | 6D3 | 40 | 20 | 100 | 0 | | 244
245 | 2E2
2E3 | 70
70 | 10
20 | 10
10 | 0 | 314
315 | 4D6
4E1 | 40
70 | 100
0 | 40
40 | 0 | 384
385 | 6D4
6D5 | 40
40 | 40
70 | 100
100 | 0 | | 246 | 2E4 | 70 | 40 | 10 | 0 | 316 | 4E2 | 70 | 10 | 40 | 0 | 386 | 6D6 | 40 | 100 | 100 | 0 | | 247
248 | 2E5
2E6 | 70
70 | 70
100 | 10
10 | 0 | 317
318 | 4E3
4E4 | 70
70 | 20
40 | 40
40 | 0 | 387
388 | 6E1
6E2 | 70
70 | 0
10 | 100
100 | 0 | | 249 | 2F1 | 100 | 0 | 10 | 0 | 319 | 4E5 | 70 | 70 | 40 | 0 | 389 | 6E3 | 70 | 20 | 100 | 0 | | 250
251 | 2F2
2F3 | 100
100 | 10
20 | 10
10 | 0 | 320
321 | 4E6
4F1 | 70
100 | 100
0 | 40
40 | 0 | 390
391 | 6E4
6E5 | 70
70 | 40
70 | 100
100 | 0 | | 252 | 2F4 | 100 | 40 | 10 | 0 | 322 | 4F2 | 100 | 10 | 40 | 0 | 392 | 6E6 | 70 | 100 | 100 | 0 | Table 2 (continued) | - | Same v I - | % Dot Sample | | | | | | | 0/ = |)-¢ | | | Dames I - | % Dot | | | | |------------|---------------------------------|--------------|-----------|------------|----------|------------|---------------------------------|------------|-----------|----------|----------|------------|---------------------------------|------------|-----------|------------|----------| | ID | Sample
Location ^a | С | % L
M | Oot
Y | K | ID : | Sample
Location ^a | С | % [
M | Oot
Y | ĸ | ID | Sample
Location ^a | С | % L | Oot
Y | к | | 393 | 6F1 | 100 | 0 | 100 | 0 | 463 | 8E5 | 70 | 70 | 10 | 20 | 533 | 10E3 | 70 | 20 | 40 | 20 | | 394
395 | 6F2
6F3 | 100
100 | 10
20 | 100
100 | 0 | 464
465 | 8E6
8F1 | 70
100 | 100
0 | 10
10 | 20
20 | 534
535 | 10E4
10E5 | 70
70 | 40
70 | 40
40 | 20
20 | | 396 | 6F4 | 100 | 40 | 100 | 0 | 466 | 8F2 | 100 | 10 | 10 | 20 | 536 | 10E6 | 70 | 100 | 40 | 20 | | 397 | 6F5 | 100 | 70 | 100 | 0 | 467 | 8F3 | 100 | 20 | 10 | 20 | 537 | 10F1 | 100 | 0 | 40 | 20 | | 398
399 | 6F6
7A1 | 100
0 | 100
0 | 100
0 | 0
20 | 468
469 | 8F4
8F5 | 100
100 | 40
70 | 10
10 | 20
20 | 538
539 | 10F2
10F3 | 100
100 | 10
20 | 40
40 | 20
20 | | 400 | 7A2 | 0 | 10 | 0 | 20 | 470 | 8F6 | 100 | 100 | 10 | 20 | 540 | 10F4 | 100 | 40 | 40 | 20 | | 401
402 | 7A3
7A4 | 0 | 20 | 0 | 20
20 | 471
472 | 9A1
9A2 | 0 | 0
10 | 20
20 | 20
20 | 541 | 10F5
10F6 | 100 | 70
100 | 40
40 | 20 | | 402 | 7A4
7A5 | 0 | 40
70 | 0 | 20 | 472 | 9A2
9A3 | 0 | 20 | 20 | 20 | 542
543 | 11A1 | 100 | 0 | 70 | 20
20 | | 404 | 7A6 | 0 | 100 | 0 |
20 | 474 | 9A4 | 0 | 40 | 20 | 20 | 544 | 11A2 | 0 | 10 | 70 | 20 | | 405
406 | 7B1
7B2 | 10
10 | 0
10 | 0 | 20
20 | 475
476 | 9A5
9A6 | 0 | 70
100 | 20
20 | 20
20 | 545
546 | 11A3
11A4 | 0 | 20
40 | 70
70 | 20
20 | | 407 | 7B2
7B3 | 10 | 20 | 0 | 20 | 477 | 9B1 | 10 | 0 | 20 | 20 | 547 | 11A5 | 0 | 70 | 70 | 20 | | 408 | 7B4 | 10 | 40 | 0 | 20 | 478 | 9B2 | 10 | 10 | 20 | 20 | 548 | 11A6 | 0 | 100 | 70 | 20 | | 409
410 | 7B5
7B6 | 10
10 | 70
100 | 0 | 20
20 | 479
480 | 9B3
9B4 | 10
10 | 20
40 | 20
20 | 20
20 | 549
550 | 11B1
11B2 | 10
10 | 0
10 | 70
70 | 20
20 | | 411 | 7C1 | 20 | 0 | 0 | 20 | 481 | 9B5 | 10 | 70 | 20 | 20 | 551 | 11B3 | 10 | 20 | 70 | 20 | | 412 | 7C2 | 20 | 10 | 0 | 20 | 482 | 9B6 | 10 | 100 | 20 | 20 | 552 | 11B4 | 10 | 40 | 70 | 20 | | 413
414 | 7C3
7C4 | 20
20 | 20
40 | 0 | 20
20 | 483
484 | 9C1
9C2 | 20
20 | 0
10 | 20
20 | 20
20 | 553
554 | 11B5
11B6 | 10
10 | 70
100 | 70
70 | 20
20 | | 415 | 7C5 | 20 | 70 | 0 | 20 | 485 | 9C3 | 20 | 20 | 20 | 20 | 555 | 11C1 | 20 | 0 | 70 | 20 | | 416
417 | 7C6
7D1 | 20
40 | 100
0 | 0 | 20
20 | 486
487 | 9C4
9C5 | 20
20 | 40
70 | 20
20 | 20
20 | 556
557 | 11C2
11C3 | 20
20 | 10
20 | 70
70 | 20
20 | | 418 | 7D1
7D2 | 40 | 10 | 0 | 20 | 488 | 9C6 | 20 | 100 | 20 | 20 | 558 | 11C3
11C4 | 20 | 40 | 70 | 20 | | 419 | 7D3 | 40 | 20 | 0 | 20 | 489 | 9D1 | 40 | 0 | 20 | 20 | 559 | 11C5 | 20 | 70 | 70 | 20 | | 420
421 | 7D4
7D5 | 40
40 | 40
70 | 0 | 20
20 | 490
491 | 9D2
9D3 | 40
40 | 10
20 | 20
20 | 20
20 | 560
561 | 11C6
11D1 | 20
40 | 100
0 | 70
70 | 20
20 | | 422 | 7D3
7D6 | 40 | 100 | 0 | 20 | 492 | 9D3 | 40 | 40 | 20 | 20 | 562 | 11D1 | 40 | 10 | 70 | 20 | | 423 | 7E1 | 70 | 0 | 0 | 20 | 493 | 9D5 | 40 | 70 | 20 | 20 | 563 | 11D3 | 40 | 20 | 70 | 20 | | 424
425 | 7E2
7E3 | 70
70 | 10
20 | 0 | 20
20 | 494
495 | 9D6
9E1 | 40
70 | 100
0 | 20
20 | 20
20 | 564
565 | 11D4
11D5 | 40
40 | 40
70 | 70
70 | 20
20 | | 426 | 7E4 | 70 | 40 | 0 | 20 | 496 | 9E2 | 70 | 10 | 20 | 20 | 566 | 11D6 | 40 | 100 | 70 | 20 | | 427
428 | 7E5 | 70 | 70
100 | 0 | 20 | 497
498 | 9E3 | 70
70 | 20
40 | 20
20 | 20 | 567 | 11E1 | 70 | 0 | 70
70 | 20 | | 429 | 7E6
7F1 | 70
100 | 0 | 0 | 20
20 | 490 | 9E4
9E5 | 70 | 70 | 20 | 20
20 | 568
569 | 11E2
11E3 | 70
70 | 10
20 | 70 | 20
20 | | 430 | 7F2 | 100 | 10 | 0 | 20 | 500 | 9E6 | 70 | 100 | 20 | 20 | 570 | 11E4 | 70 | 40 | 70 | 20 | | 431
432 | 7F3
7F4 | 100
100 | 20
40 | 0 | 20
20 | 501
502 | 9F1
9F2 | 100
100 | 0
10 | 20
20 | 20
20 | 571
572 | 11E5
11E6 | 70
70 | 70
100 | 70
70 | 20
20 | | 433 | 7F5 | 100 | 70 | 0 | 20 | 503 | 9F3 | 100 | 20 | 20 | 20 | 573 | 11F1 | 100 | 0 | 70 | 20 | | 434 | 7F6 | 100 | 100 | 0 | 20 | 504 | 9F4 | 100 | 40 | 20 | 20 | 574 | 11F2 | 100 | 10 | 70 | 20 | | 435
436 | 8A1
8A2 | 0 | 0
10 | 10
10 | 20
20 | 505
506 | 9F5
9F6 | 100
100 | 70
100 | 20
20 | 20
20 | 575
576 | 11F3
11F4 | 100
100 | 20
40 | 70
70 | 20
20 | | 437 | 8A3 | 0 | 20 | 10 | 20 | 507 | 10A1 | 0 | 0 | 40 | 20 | 577 | 11F5 | 100 | 70 | 70 | 20 | | 438 | 8A4 | 0 | 40 | 10 | 20
20 | 508 | 10A2 | 0 | 10 | 40 | 20
20 | 578 | 11F6 | 100 | 100 | 70 | 20 | | 439
440 | 8A5
8A6 | 0 | 70
100 | 10
10 | 20 | 509
510 | 10A3
10A4 | 0 | 20
40 | 40
40 | 20 | 579
580 | 12A1
12A2 | 0 | 0
10 | 100
100 | 20
20 | | 441 | 8B1 | 10 | 0 | 10 | 20 | 511 | 10A5 | 0 | 70 | 40 | 20 | 581 | 12A3 | 0 | 20 | 100 | 20 | | 442
443 | 8B2
8B3 | 10
10 | 10
20 | 10
10 | 20
20 | 512
513 | 10A6
10B1 | 0
10 | 100
0 | 40
40 | 20
20 | 582
583 | 12A4
12A5 | 0 | 40
70 | 100
100 | 20
20 | | 444 | 8B4 | 10 | 40 | 10 | 20 | 514 | 10B1 | 10 | 10 | 40 | 20 | 584 | 12A6 | 0 | 100 | 100 | 20 | | 445 | 8B5 | 10 | 70 | 10 | 20 | 515 | 10B3 | 10 | 20 | 40 | 20 | 585 | 12B1 | 10 | 0 | 100 | 20 | | 446
447 | 8B6
8C1 | 10
20 | 100
0 | 10
10 | 20
20 | 516
517 | 10B4
10B5 | 10
10 | 40
70 | 40
40 | 20
20 | 586
587 | 12B2
12B3 | 10
10 | 10
20 | 100
100 | 20
20 | | 448 | 8C2 | 20 | 10 | 10 | 20 | 518 | 10B6 | 10 | 100 | 40 | 20 | 588 | 12B4 | 10 | 40 | 100 | 20 | | 449 | 8C3 | 20 | 20 | 10 | 20 | 519 | 10C1 | 20 | 0 | 40 | 20 | 589 | 12B5 | 10 | 70 | 100 | 20 | | 450
451 | 8C4
8C5 | 20
20 | 40
70 | 10
10 | 20
20 | 520
521 | 10C2
10C3 | 20
20 | 10
20 | 40
40 | 20
20 | 590
591 | 12B6
12C1 | 10
20 | 100
0 | 100
100 | 20
20 | | 452 | 8C6 | 20 | 100 | 10 | 20 | 522 | 10C4 | 20 | 40 | 40 | 20 | 592 | 12C2 | 20 | 10 | 100 | 20 | | 453
454 | 8D1
8D2 | 40
40 | 0
10 | 10
10 | 20
20 | 523
524 | 10C5
10C6 | 20
20 | 70
100 | 40
40 | 20
20 | 593
594 | 12C3
12C4 | 20
20 | 20
40 | 100
100 | 20
20 | | 455 | 8D3 | 40 | 20 | 10 | 20 | 525 | 10C6
10D1 | 40 | 0 | 40 | 20 | 595 | 12C4
12C5 | 20 | 70 | 100 | 20 | | 456 | 8D4 | 40 | 40 | 10 | 20 | 526 | 10D2 | 40 | 10 | 40 | 20 | 596 | 12C6 | 20 | 100 | 100 | 20 | | 457
458 | 8D5
8D6 | 40
40 | 70
100 | 10
10 | 20
20 | 527
528 | 10D3
10D4 | 40
40 | 20
40 | 40
40 | 20
20 | 597
598 | 12D1
12D2 | 40
40 | 0
10 | 100
100 | 20
20 | | 459 | 8E1 | 70 | 0 | 10 | 20 | 529 | 10D5 | 40 | 70 | 40 | 20 | 599 | 12D3 | 40 | 20 | 100 | 20 | | 460 | 8E2 | 70
70 | 10 | 10 | 20 | 530 | 10D6 | 40 | 100 | 40 | 20 | 600 | 12D4 | 40 | 40
70 | 100 | 20 | | 461
462 | 8E3
8E4 | 70
70 | 20
40 | 10
10 | 20
20 | 531
532 | 10E1
10E2 | 70
70 | 0
10 | 40
40 | 20
20 | 601
602 | 12D5
12D6 | 40
40 | 70
100 | 100
100 | 20
20 | Table 2 (continued) | : | Sample | | % [| | | ; | Sample | | % [| | | ; | Sample | | % [| 1 | | |------------|--------------|------------|-----------|------------|----------|------------|--------------|------------|-----------|------------|----------|------------|--------------------------|------------|-----------|----------|----------| | ID | Locationa | C | M | Y | K | ID | Locationa | С | M | Y | K | ID | Locationa | С | M | Υ | K | | 603
604 | 12E1
12E2 | 70
70 | 0
10 | 100
100 | 20
20 | 673
674 | 15B4
15B5 | 20
20 | 70
100 | 40
40 | 40
40 | 743
744 | 18A4
18A5 | 0 | 70
100 | 0 | 60
60 | | 605 | 12E3 | 70 | 20 | 100 | 20 | 675 | 15C1 | 40 | 0 | 40 | 40 | 745 | 18B1 | 20 | 0 | 0 | 60 | | 606 | 12E4 | 70 | 40 | 100 | 20 | 676 | 15C2 | 40 | 20 | 40 | 40 | 746 | 18B2 | 20 | 20 | 0 | 60 | | 607 | 12E5 | 70 | 70 | 100 | 20 | 677 | 15C3 | 40 | 40 | 40 | 40 | 747 | 18B3 | 20 | 40 | 0 | 60 | | 608
609 | 12E6
12F1 | 70
100 | 100
0 | 100
100 | 20
20 | 678
679 | 15C4
15C5 | 40
40 | 70
100 | 40
40 | 40
40 | 748
749 | 18B4
18B5 | 20
20 | 70
100 | 0 | 60
60 | | 610 | 12F2 | 100 | 10 | 100 | 20 | 680 | 15D1 | 70 | 0 | 40 | 40 | 750 | 18C1 | 40 | 0 | 0 | 60 | | 611 | 12F3 | 100 | 20 | 100 | 20 | 681 | 15D2 | 70 | 20 | 40 | 40 | 751 | 18C2 | 40 | 20 | 0 | 60 | | 612 | 12F4 | 100 | 40 | 100 | 20 | 682 | 15D3 | 70 | 40 | 40 | 40 | 752 | 18C3 | 40 | 40 | 0 | 60 | | 613
614 | 12F5
12F6 | 100
100 | 70
100 | 100
100 | 20
20 | 683
684 | 15D4
15D5 | 70
70 | 70
100 | 40
40 | 40
40 | 753
754 | 18C4
18C5 | 40
40 | 70
100 | 0 | 60
60 | | 615 | 13A1 | 0 | 0 | 0 | 40 | 685 | 15E1 | 100 | 0 | 40 | 40 | 755 | 18D1 | 70 | 0 | 0 | 60 | | 616 | 13A2 | 0 | 20 | 0 | 40 | 686 | 15E2 | 100 | 20 | 40 | 40 | 756 | 18D2 | 70 | 20 | 0 | 60 | | 617 | 13A3 | 0 | 40 | 0 | 40 | 687 | 15E3 | 100 | 40 | 40 | 40 | 757 | 18D3 | 70 | 40 | 0 | 60 | | 618
619 | 13A4
13A5 | 0 | 70
100 | 0 | 40
40 | 688
689 | 15E4
15E5 | 100
100 | 70
100 | 40
40 | 40
40 | 758
759 | 18D4
18D5 | 70
70 | 70
100 | 0 | 60
60 | | 620 | 13B1 | 20 | 0 | 0 | 40 | 690 | 16A1 | 0 | 0 | 70 | 40 | 760 | 18E1 | 100 | 0 | 0 | 60 | | 621 | 13B2 | 20 | 20 | 0 | 40 | 691 | 16A2 | 0 | 20 | 70 | 40 | 761 | 18E2 | 100 | 20 | 0 | 60 | | 622 | 13B3 | 20 | 40 | 0 | 40 | 692 | 16A3 | 0 | 40 | 70 | 40 | 762 | 18E3 | 100 | 40 | 0 | 60 | | 623
624 | 13B4
13B5 | 20
20 | 70
100 | 0 | 40
40 | 693
694 | 16A4
16A5 | 0 | 70
100 | 70
70 | 40
40 | 763
764 | 18E4
18E5 | 100
100 | 70
100 | 0 | 60
60 | | 625 | 13C1 | 40 | 0 | 0 | 40 | 695 | 16B1 | 20 | 0 | 70 | 40 | 765 | 19A1 | 0 | 0 | 20 | 60 | | 626 | 13C2 | 40 | 20 | 0 | 40 | 696 | 16B2 | 20 | 20 | 70 | 40 | 766 | 19A2 | 0 | 20 | 20 | 60 | | 627
628 | 13C3
13C4 | 40 | 40 | 0 | 40
40 | 697 | 16B3
16B4 | 20
20 | 40
70 | 70
70 | 40 | 767 | 19A3
19A4 | 0 | 40
70 | 20
20 | 60
60 | | 629 | 13C4
13C5 | 40
40 | 70
100 | 0 | 40 | 698
699 | 16B4
16B5 | 20 | 100 | 70 | 40
40 | 768
769 | 19A4
19A5 | 0 | 100 | 20 | 60 | | 630 | 13D1 | 70 | 0 | 0 | 40 | 700 | 16C1 | 40 | 0 | 70 | 40 | 770 | 19B1 | 20 | 0 | 20 | 60 | | 631 | 13D2 | 70 | 20 | 0 | 40 | 701 | 16C2 | 40 | 20 | 70 | 40 | 771 | 19B2 | 20 | 20 | 20 | 60 | | 632
633 | 13D3
13D4 | 70
70 | 40
70 | 0 | 40
40 | 702
703 | 16C3
16C4 | 40
40 | 40
70 | 70
70 | 40
40 | 772
773 | 19B3
19B4 | 20
20 | 40
70 | 20
20 | 60
60 | | 634 | 13D4
13D5 | 70 | 100 | 0 | 40 | 703 | 16C4
16C5 | 40 | 100 | 70 | 40 | 774 | 19B 4
19B5 | 20 | 100 | 20 | 60 | | 635 | 13E1 | 100 | 0 | 0 | 40 | 705 | 16D1 | 70 | 0 | 70 | 40 | 775 | 19C1 | 40 | 0 | 20 | 60 | | 636 | 13E2 | 100 | 20 | 0 | 40 | 706 | 16D2 | 70 | 20 | 70 | 40 | 776 | 19C2 | 40 |
20 | 20 | 60 | | 637
638 | 13E3
13E4 | 100
100 | 40
70 | 0 | 40
40 | 707
708 | 16D3
16D4 | 70
70 | 40
70 | 70
70 | 40
40 | 777
778 | 19C3
19C4 | 40
40 | 40
70 | 20
20 | 60
60 | | 639 | 13E5 | 100 | 100 | 0 | 40 | 709 | 16D4 | 70 | 100 | 70 | 40 | 779 | 19C5 | 40 | 100 | 20 | 60 | | 640 | 14A1 | 0 | 0 | 20 | 40 | 710 | 16E1 | 100 | 0 | 70 | 40 | 780 | 19D1 | 70 | 0 | 20 | 60 | | 641 | 14A2 | 0 | 20 | 20 | 40 | 711 | 16E2 | 100 | 20 | 70 | 40 | 781 | 19D2 | 70 | 20 | 20 | 60 | | 642
643 | 14A3
14A4 | 0 | 40
70 | 20
20 | 40
40 | 712
713 | 16E3
16E4 | 100
100 | 40
70 | 70
70 | 40
40 | 782
783 | 19D3
19D4 | 70
70 | 40
70 | 20
20 | 60
60 | | 644 | 14A5 | 0 | 100 | 20 | 40 | 714 | 16E5 | 100 | 100 | 70 | 40 | 784 | 19D5 | 70 | 100 | 20 | 60 | | 645 | 14B1 | 20 | 0 | 20 | 40 | 715 | 17A1 | 0 | 0 | 100 | 40 | 785 | 19E1 | 100 | 0 | 20 | 60 | | 646 | 14B2 | 20 | 20 | 20 | 40 | 716 | 17A2 | 0 | 20
40 | 100 | 40 | 786 | 19E2 | 100 | 20
40 | 20 | 60 | | 647
648 | 14B3
14B4 | 20
20 | 40
70 | 20
20 | 40
40 | 717
718 | 17A3
17A4 | 0 | 70 | 100
100 | 40
40 | 787
788 | 19E3
19E4 | 100
100 | 70 | 20
20 | 60
60 | | 649 | 14B5 | 20 | 100 | 20 | 40 | 719 | 17A5 | Ö | 100 | 100 | 40 | 789 | 19E5 | 100 | 100 | 20 | 60 | | 650 | 14C1 | 40 | 0 | 20 | 40 | 720 | 17B1 | 20 | 0 | 100 | 40 | 790 | 20A1 | 0 | 0 | 40 | 60 | | 651
652 | 14C2
14C3 | 40
40 | 20
40 | 20
20 | 40
40 | 721
722 | 17B2
17B3 | 20
20 | 20
40 | 100
100 | 40
40 | 791
792 | 20A2
20A3 | 0 | 20
40 | 40
40 | 60
60 | | 653 | 14C3
14C4 | 40 | 70 | 20 | 40 | 723 | 17B3
17B4 | 20 | 70 | 100 | 40 | 793 | 20A3
20A4 | 0 | 70 | 40 | 60 | | 654 | 14C5 | 40 | 100 | 20 | 40 | 724 | 17B5 | 20 | 100 | 100 | 40 | 794 | 20A5 | 0 | 100 | 40 | 60 | | 655 | 14D1 | 70 | 0 | 20 | 40 | 725 | 17C1 | 40 | 0 | 100 | 40 | 795 | 20B1 | 20 | 0 | 40 | 60 | | 656
657 | 14D2
14D3 | 70
70 | 20
40 | 20
20 | 40
40 | 726
727 | 17C2
17C3 | 40
40 | 20
40 | 100
100 | 40
40 | 796
797 | 20B2
20B3 | 20
20 | 20
40 | 40
40 | 60
60 | | 658 | 14D3
14D4 | 70 | 70 | 20 | 40 | 728 | 17C3 | 40 | 70 | 100 | 40 | 798 | 20B3
20B4 | 20 | 70 | 40 | 60 | | 659 | 14D5 | 70 | 100 | 20 | 40 | 729 | 17C5 | 40 | 100 | 100 | 40 | 799 | 20B5 | 20 | 100 | 40 | 60 | | 660 | 14E1 | 100 | 0 | 20 | 40 | 730 | 17D1 | 70 | 0 | 100 | 40 | 800 | 20C1 | 40 | 0 | 40 | 60 | | 661
662 | 14E2
14E3 | 100
100 | 20
40 | 20
20 | 40
40 | 731
732 | 17D2
17D3 | 70
70 | 20
40 | 100
100 | 40
40 | 801
802 | 20C2
20C3 | 40
40 | 20
40 | 40
40 | 60
60 | | 663 | 14E3 | 100 | 70 | 20 | 40 | 733 | 17D3
17D4 | 70 | 70 | 100 | 40 | 803 | 20C3
20C4 | 40 | 70 | 40 | 60 | | 664 | 14E5 | 100 | 100 | 20 | 40 | 734 | 17D5 | 70 | 100 | 100 | 40 | 804 | 20C5 | 40 | 100 | 40 | 60 | | 665 | 15A1 | 0 | 0 | 40 | 40 | 735 | 17E1 | 100 | 0 | 100 | 40 | 805 | 20D1 | 70 | 0 | 40 | 60 | | 666
667 | 15A2
15A3 | 0 | 20
40 | 40
40 | 40
40 | 736
737 | 17E2
17E3 | 100
100 | 20
40 | 100
100 | 40
40 | 806
807 | 20D2
20D3 | 70
70 | 20
40 | 40
40 | 60
60 | | 668 | 15A3 | 0 | 70 | 40 | 40 | 738 | 17E3
17E4 | 100 | 70 | 100 | 40 | 808 | 20D3
20D4 | 70 | 70 | 40 | 60 | | 669 | 15A5 | 0 | 100 | 40 | 40 | 739 | 17E5 | 100 | 100 | 100 | 40 | 809 | 20D5 | 70 | 100 | 40 | 60 | | 670 | 15B1 | 20 | 0 | 40 | 40 | 740 | 18A1 | 0 | 0 | 0 | 60 | 810 | 20E1 | 100 | 0 | 40 | 60 | | 671
672 | 15B2
15B3 | 20
20 | 20
40 | 40
40 | 40
40 | 741
742 | 18A2
18A3 | 0 | 20
40 | 0 | 60
60 | 811
812 | 20E2
20E3 | 100
100 | 20
40 | 40
40 | 60
60 | | 0/2 | 1000 | 20 | +∪ | +0 | +0 | 142 | 10/10 | U | 40 | U | JU | 012 | ZULJ | 100 | +∪ | +∪ | JU | Table 2 (continued) | , | Sample | | % [| Dot | | ; | Sample | | % I | Dot | | , | Sample | | % [| Oot | | |-----|-----------------------|---------|------------|----------|--------|--------|-----------------------|-----|-----|-----|----|-----|-----------------------|-----|------------|-----|----| | ID | Location ^a | С | M | Υ | K | ID | Location ^a | С | M | Υ | K | ID | Location ^a | С | M | Υ | Κ | | 813 | 20E4 | 100 | 70 | 40 | 60 | 852 | 22C3 | 40 | 40 | 100 | 60 | 891 | 24C3 | 70 | 70 | 40 | 80 | | 814 | 20E5 | 100 | 100 | 40 | 60 | 853 | 22C4 | 40 | 70 | 100 | 60 | 892 | 24C4 | 70 | 100 | 40 | 80 | | 815 | 21A1 | 0 | 0 | 70 | 60 | 854 | 22C5 | 40 | 100 | 100 | 60 | 893 | 24D1 | 100 | 0 | 40 | 80 | | 816 | 21A2 | 0 | 20 | 70 | 60 | 855 | 22D1 | 70 | 0 | 100 | 60 | 894 | 24D2 | 100 | 40 | 40 | 80 | | 817 | 21A3 | 0 | 40 | 70 | 60 | 856 | 22D2 | 70 | 20 | 100 | 60 | 895 | 24D3 | 100 | 70 | 40 | 80 | | 818 | 21A4 | 0 | 70 | 70 | 60 | 857 | 22D3 | 70 | 40 | 100 | 60 | 896 | 24D4 | 100 | 100 | 40 | 80 | | 819 | 21A5 | 0 | 100 | 70 | 60 | 858 | 22D4 | 70 | 70 | 100 | 60 | 897 | 25A1 | 0 | 0 | 70 | 80 | | 820 | 21B1 | 20 | 0 | 70 | 60 | 859 | 22D5 | 70 | 100 | 100 | 60 | 898 | 25A2 | 0 | 40 | 70 | 80 | | 821 | 21B2 | 20 | 20 | 70 | 60 | 860 | 22E1 | 100 | 0 | 100 | 60 | 899 | 25A3 | 0 | 70 | 70 | 80 | | 822 | 21B3 | 20 | 40 | 70 | 60 | 861 | 22E2 | 100 | 20 | 100 | 60 | 900 | 25A4 | 0 | 100 | 70 | 80 | | 823 | 21B4 | 20 | 70 | 70 | 60 | 862 | 22E3 | 100 | 40 | 100 | 60 | 901 | 25B1 | 40 | 0 | 70 | 80 | | 824 | 21B5 | 20 | 100 | 70 | 60 | 863 | 22E4 | 100 | 70 | 100 | 60 | 902 | 25B2 | 40 | 40 | 70 | 80 | | 825 | 21C1 | 40 | 0 | 70 | 60 | 864 | 22E5 | 100 | 100 | 100 | 60 | 903 | 25B3 | 40 | 70 | 70 | 80 | | 826 | 21C2 | 40 | 20 | 70 | 60 | 865 | 23A1 | 0 | 0 | 0 | 80 | 904 | 25B4 | 40 | 100 | 70 | 80 | | 827 | 21C3 | 40 | 40 | 70 | 60 | 866 | 23A2 | 0 | 40 | 0 | 80 | 905 | 25C1 | 70 | 0 | 70 | 80 | | 828 | 21C4 | 40 | 70 | 70 | 60 | 867 | 23A3 | 0 | 70 | 0 | 80 | 906 | 25C2 | 70 | 40 | 70 | 80 | | 829 | 21C5 | 40 | 100 | 70 | 60 | 868 | 23A4 | 0 | 100 | 0 | 80 | 907 | 25C3 | 70 | 70 | 70 | 80 | | 830 | 21D1 | 70 | 0 | 70 | 60 | 869 | 23B1 | 40 | 0 | 0 | 80 | 908 | 25C4 | 70 | 100 | 70 | 80 | | 831 | 21D2 | 70 | 20 | 70 | 60 | 870 | 23B2 | 40 | 40 | 0 | 80 | 909 | 25D1 | 100 | 0 | 70 | 80 | | 832 | 21D3 | 70 | 40 | 70 | 60 | 871 | 23B3 | 40 | 70 | 0 | 80 | 910 | 25D2 | 100 | 40 | 70 | 80 | | 833 | 21D4 | 70 | 70 | 70 | 60 | 872 | 23B4 | 40 | 100 | 0 | 80 | 911 | 25D3 | 100 | 70 | 70 | 80 | | 834 | 21D5 | 70 | 100 | 70 | 60 | 873 | 23C1 | 70 | 0 | 0 | 80 | 912 | 25D4 | 100 | 100 | 70 | 80 | | 835 | 21E1 | 100 | 0 | 70 | 60 | 874 | 23C2 | 70 | 40 | 0 | 80 | 913 | 26A1 | 0 | 0 | 100 | 80 | | 836 | 21E2 | 100 | 20 | 70 | 60 | 875 | 23C3 | 70 | 70 | 0 | 80 | 914 | 26A2 | 0 | 40 | 100 | 80 | | 837 | 21E3 | 100 | 40 | 70 | 60 | 876 | 23C4 | 70 | 100 | 0 | 80 | 915 | 26A3 | 0 | 70 | 100 | 80 | | 838 | 21E4 | 100 | 70 | 70 | 60 | 877 | 23D1 | 100 | 0 | 0 | 80 | 916 | 26A4 | 0 | 100 | 100 | 80 | | 839 | 21E5 | 100 | 100 | 70 | 60 | 878 | 23D2 | 100 | 40 | 0 | 80 | 917 | 26B1 | 40 | 0 | 100 | 80 | | 840 | 22A1 | 0 | 0 | 100 | 60 | 879 | 23D3 | 100 | 70 | 0 | 80 | 918 | 26B2 | 40 | 40 | 100 | 80 | | 841 | 22A2 | 0 | 20 | 100 | 60 | 880 | 23D4 | 100 | 100 | 0 | 80 | 919 | 26B3 | 40 | 70 | 100 | 80 | | 842 | 22A3 | 0 | 40 | 100 | 60 | 881 | 24A1 | 0 | 0 | 40 | 80 | 920 | 26B4 | 40 | 100 | 100 | 80 | | 843 | 22A4 | 0 | 70 | 100 | 60 | 882 | 24A2 | 0 | 40 | 40 | 80 | 921 | 26C1 | 70 | 0 | 100 | 80 | | 844 | 22A5 | 0 | 100 | 100 | 60 | 883 | 24A3 | 0 | 70 | 40 | 80 | 922 | 26C2 | 70 | 40 | 100 | 80 | | 845 | 22B1 | 20 | 0 | 100 | 60 | 884 | 24A4 | 0 | 100 | 40 | 80 | 923 | 26C3 | 70 | 70 | 100 | 80 | | 846 | 22B2 | 20 | 20 | 100 | 60 | 885 | 24B1 | 40 | 0 | 40 | 80 | 924 | 26C4 | 70 | 100 | 100 | 80 | | 847 | 22B3 | 20 | 40 | 100 | 60 | 886 | 24B2 | 40 | 40 | 40 | 80 | 925 | 26D1 | 100 | 0 | 100 | 80 | | 848 | 22B4 | 20 | 70 | 100 | 60 | 887 | 24B3 | 40 | 70 | 40 | 80 | 926 | 26D2 | 100 | 40 | 100 | 80 | | 849 | 22B5 | 20 | 100 | 100 | 60 | 888 | 24B4 | 40 | 100 | 40 | 80 | 927 | 26D3 | 100 | 70 | 100 | 80 | | 850 | 22C1 | 40 | 0 | 100 | 60 | 889 | 24C1 | 70 | 0 | 40 | 80 | 928 | 26D4 | 100 | 100 | 100 | 80 | | 851 | 22C2 | 40 | 20 | 100 | 60 | 890 | 24C2 | 70 | 40 | 40 | 80 | | | | | | | | a L | ocation data | are inc | luded 1 | for info | rmatio | n only | - | | | | | | | | | | | # Annex A (informative) # **Application notes** #### A.1 General considerations The primary purpose of this part of ISO 12642 is to enable a user to define a colour characterization data file consisting of a fixed set of CMYK ink values and their associated colorimetric tristimulus values (*XYZ*), which can be used to characterize a printing process. A different file may be produced for each process, if necessary. The objective is that every CMYK image, transmitted between systems, can have a file included with it that provides the characterization data for the intended printing process. In the event that a transformation is required for a different printing process or substrate, this file may be used to enable that transformation. Note that for this application the colour conversion need only be from CMYK to *XYZ* (or a derivative) or CMYK to C'M'Y'K'. A secondary use of this part of ISO 12642 is to define a fixed set of ink values which can be used to characterize any rendering process. By printing the values listed in Tables 1 and 2 and measuring them, data are obtained by which the characterization may be determined for that process. When the colour conversion is from CMYK to XYZ, the procedure is identical to that defined above. However, the same data may also be used for computing the reverse transformation, thereby enabling an image encoded in XYZ (or some derivative) to be printed. However, these data may not be adequate for all applications. Where additional data are desired, the data sets defined in this part of ISO 12642 can be used as a starting point and are
not intended to be the only option that can be used. The user-optional data set defined in 4.1.3 is intended for those situations where other data arrangements are desired. Rendering the values as an image which can be measured is straightforward. Since this part of ISO 12642 is not intended to define the size and layout of an image, the final choice is left to the user. Considerations such as size of output recorder, measurement aperture, number of samples to be averaged, and uniformity of the printer will govern this. The ultimate responsibility of the user is to ensure that a data file is produced in the correct format; how that task is achieved is not relevant. The values specified in this part of ISO 12642 have been used to generate a series of digital images which are included as images S7 to S10 of ISO 12640-1. A layout has been proposed for this data set which results in a patch size of 1 cm by 1 cm when output is at 16 lines/mm for the primary data set or 12 lines/mm for the alternate data set. In many cases, it is anticipated that users will render this image for general characterization. However, the SCID layouts can be reduced to approximately 60 % of their size and rearranged (including rotation of SCID image S9) to fit on a single $8\frac{1}{2}$ in \times 11 in or A4 page. This layout is shown in Figure A.1. Such a layout will permit measurement with a small area spectrophotometer and also enable a number of copies of the image to be printed on the same sheet. This is useful for averaging purposes. ### A.2 Output device characterization #### A.2.1 General Various approaches may be used to characterize devices. One extreme is to measure every reproducible combination of inks and define a table in which the colour value is listed for every combination of ink values. While this provides the most accurate method, it is clearly impractical given that in excess of four thousand million combinations can be defined with a 32-bit system producing 8 bits per channel. A reduced size table with interpolation for intermediate points is necessary to produce a workable system. At the other extreme the process can be modelled by using first order equations obtained by measuring the colour of the four solid ink patches and a limited number of ink values in each colour to convert ink values to colorimetric density. Such a model is easy to determine but is not very accurate. Somewhere between the two extremes one can measure a number of colours with interpolation, or model from a more limited number. The two ink value data sets defined in this part of ISO 12642 attempt to allow such options. As an alternative, a user-optional set may be defined by a user. #### A.2.2 Basic data set The ink value combinations in the basic data set have been selected for the purposes of modelling the colour transformation; see Table 1. The selection of these values included the following considerations. - Data for the Neugebauer equations can be obtained from patches 1 to 7 (A1 to A7) and patches 18 to 26 (B5 to B13). - Data for fitting polynomial functions can be obtained from patches 1 to 26, 79 to 121 (rows A,B,G,H,I and J1 to J4). - Patches 27 to 78 (rows C to F) enable characterization of single colour scales for both of the above modelling procedures. - Patches 122 to 182 (J5 to N13) provide additional information which may be used for more accurate calculation of the results of adding black and ensuring that good reproduction of neutrals is obtained (grey balance). For information on the Neugebauer equations, the user is referred to texts on the subject of graphic arts colour calibration. A number of research papers have also been published describing enhancements to the basic models. Reference [3] provides an excellent set of references to many of these papers. #### A.2.3 Extended data set The ink value combinations in the extended data set have been selected based on the needs of data interpolation; see Table 1. The values given in Table 2 were generated using the following levels and combinations of ink values and colours. The first group, patches 183-398, includes all combinations of the following ink values in cyan, magenta, and yellow: 0 %, 10 %, 20 %, 40 %, 70 %, 100 %. The second group, patches 399 to 614, includes these same combinations of cyan, magenta, and yellow with the addition of 20 % black. In the third and fourth groups, patches 615 to 739 and 740 to 864, the 10 % value is dropped in cyan, magenta, and yellow. The remaining combinations then have black added at a value of 40 % and 60 % respectively. The fifth group, patches 865-928, consists of all combinations of 0 %, 40 %, 70 % and 100 % in cyan, magenta, and yellow with 80 % black. Note that 100 % black is used with 0 % and 100 % combinations of the three coloured inks in patches 18 to 25. While the printed results from the extended data set may be used for modelling, they are more likely to be used for table look-up and interpolation. The procedure for this is straightforward and will not be described in detail. It can be summarized by three steps. - Determine 16 ink value combinations, available in the data set, which surround the ink value to be a) characterized. - Look up the tristimulus values for each of the ink values. c) Interpolate between the ink values to obtain the resultant tristimulus values. Interpolation may be linear or of higher order, and in any sequence, as required by the data set. Various techniques are possible, and no general recommendation can be made. The user is referred to texts on the subject if simple linear interpolation is inadequate. While it depends upon the data set used, some benefit is usually gained by conversion to a uniform colour space such as CIELAB prior to interpolation, particularly for simple interpolation methods. # A.3 Characterizing non-half-tone devices The principle described in A.2 is applicable to any output device. A limited number of samples are rendered on the device and the colours measured. The colour transformation from tristimulus values to device colourant amounts is then computed using methods similar to those described for ink values in printing. However, the reason that the data of Tables 1 and 2 may not be applicable to non-half-tone devices is related to the possible lack of uniformity in colour differences of samples produced with the data intervals specified. If this non-uniformity is severe, the interpolation is likely to be inaccurate. In such a situation, the users may generate their own data set in accordance with 4.1.3. Such data should be reported using the optional procedures of 4.1.4 in which both the data values used to render the samples and the measured colorimetric data are specified. The number of samples shown in Tables 1 and 2 provide a general guide to the size and distribution of the data set which should be generated. A useful procedure for checking the uniformity is to measure a number of steps in each colourant, and compute the colour difference between them. Values which correspond to approximately equal colour differences can then be selected. Figure A.1 — Suggested single-page layout # **Bibliography** - [1] ISO 2846 (all parts), Graphic technology Colour and transparency of ink sets for four-colour printing - [2] ISO 12640-1:1997, Graphic technology Prepress digital data exchange Part 1: CMYK standard colour image data (CMYK/SCID) - [3] ANSI IT8.7/3-1993, Graphic technology Input data for characterization of 4-color process printing - [4] RHODES, WARREN L., Fifty years of the Neugebauer equations (Proceedings Paper), 1 June 1990, Proceedings Vol. 1184. Available from http://spie.org ICS 35.240.30; 37.100.99 Price based on 13 pages