INTERNATIONAL STANDARD

ISO 12128

Second edition 2001-09-15

Plain bearings — Lubrication holes, grooves and pockets — Dimensions, types, designation and their application to bearing bushes

Paliers lisses — Trous, rainures et poches de graissage — Dimensions, types, désignation et leurs applications dans les bagues

Reference number ISO 12128:2001(E)

© ISO 2001

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

© ISO 2001

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.ch
Web www.iso.ch

Printed in Switzerland

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 3.

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this International Standard may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

International Standard ISO 12128 was prepared by Technical Committee ISO/TC 123, *Plain bearings*, Subcommittee SC 3, *Dimensions*, *tolerances and construction details*.

This second edition cancels and replaces the first edition (ISO 12128:1995), which has been technically revised.

Plain bearings — Lubrication holes, grooves and pockets — Dimensions, types, designation and their application to bearing bushes

1 Scope

This International Standard specifies dimensions for lubrication holes, grooves and pockets for bearing bushes. These dimensions can be entered, e.g. on drawings, using the designation examples. Their use depends in particular on the specific operating conditions.

In addition, it enables the user to assign the different types of lubricant feed and distribution to plain bearing bushes made of copper alloys, thermosetting plastics, thermoplastics or of artificial carbon.

NOTE Different types of lubricant feed and distribution for plain bearing bushes made of sintered metals have not been specified due to the fact that these bushes are soaked with lubricant. Plain bearing bushes made of artificial carbon are not lubricated with oil or grease.

2 Normative references

The following normative documents contain provisions which, through reference in this text, constitute provisions of this International Standard. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply. However, parties to agreements based on this International Standard are encouraged to investigate the possibility of applying the most recent editions of the normative documents indicated below. For undated references, the latest edition of the normative document referred to applies. Members of ISO and IEC maintain registers of currently valid International Standards.

ISO 2768-1:1989, General tolerances — Part 1: Tolerances for linear and angular dimensions without individual tolerance indications.

ISO 4379:1993, Plain bearings — Copper alloy bushes.

3 Dimensions, types and designation

3.1 General

The dimensions of the lubrication holes, grooves and pockets are related to the bearing wall thickness s. The given diameter d_1 shall only serve as an auxiliary dimension.

All dimensions are given in millimetres.

3.2 Lubrication holes

3.2.1 Dimensions and types

See Figure 1 and Table 1.

Lubrication holes may be provided in conjunction with lubrication grooves and pockets, or, if the requirement to be met by a lubrication point is less stringent, even without these.

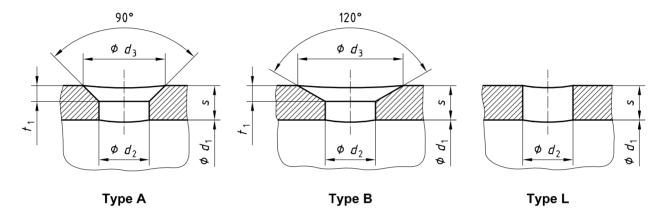


Figure 1 — Lubrication holes

Table 1 — Dimensions of the lubrication holes

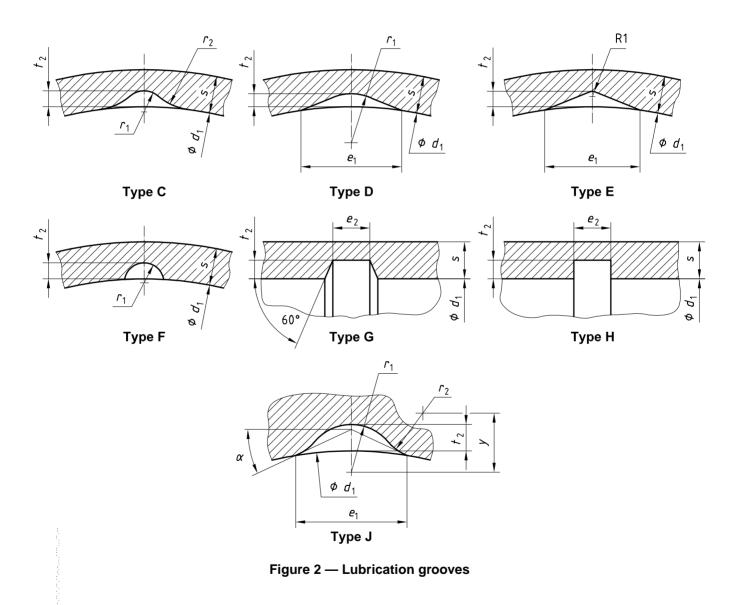
d_2		2,5	3	4	5	6	8	10	12
t_1		1	1,5	2	2,5	3	4	5	6
$d_3 \approx $	Type A	4,5	6	8	10	12	16	20	24
$a_3 \sim $	Type B	6	8,2	10,8	13,6	16,2	21,8	27,2	32,6
s	>	_	2	2.5	3	4	5	7,5	10
	\leq	2	2,5	3	4	5	7,5	10	_
d_1	nom.	$d_1 \le$	€ 30	$30 < d_{1>} \leqslant 100$			$d_1 > 100$		

3.2.2 Designation

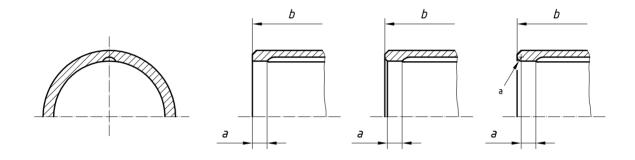
EXAMPLE A lubrication hole of type A with before diameter $d_2 = 3$ mm, is designated as follows:

Lubrication hole ISO 12128 - A3

3.3 Lubrication grooves


3.3.1 Dimensions and types

See Figures 2 and 3 and Tables 2 and 3.


Lubrication grooves are mainly provided on plain bearings. Types C, D and E are also used in conjunction with type H (circumferential groove), predominantly on plain bearings made of non-ferrous metal, steel, cast iron or plastics, types F and G predominantly on plain bearings made from artificial carbon.

Type J is a narrow blended groove principally for use with grease lubrication. In order to facilitate machining and avoid burrs, all sharp corners may have a small break edge or radius.

NOTE In order to facilitate manufacture, the dimension of the bearing thickness remaining at the base of the groove may be specified on the drawing as the control dimension.

t_2	e_1		e	2		r	1		r	2	y	α		s	d_1	
Type	Туре	е	Ту	ре		Ту	ре		Ту	ре	Туре	Туре			Туре	
C toJ	D, E	J	G	Н	С	D	F	J	С	J	J	J	>	€	C to H	J
0,4	3	3	1,2	3	1,5	1,5	1	1	1,5	1	1,5	28°	_	1		16
0,6	4	4	1,6	3	1,5	1,5	1	1,5	2	1,5	2,1	25°	1	1,5	$d_1 \leqslant 30$	20
0,8	5	5	1,8	3	1,5	2,5	1	1,5	3	1,5	2,2	25°	1,5	2	$a_1 \leqslant 30$	30
1	8	6	2	4	2	4	1,5	2	4,5	2	2,8	22°	2	2,5		40
1,2	10,5	6	2,5	5	2,5	6	2	2	6	2	2,6	22°	2,5	3		40
1,6	14	7	3,5	6	3	8	3	2,5	9	2,5	3	20°	3	4	$d_1 \leqslant 100$	50
2	19	8	4,5	8	4	12	4	2,5	12	2,5	26	20°	4	5		60
2,5	28	8	7,5	10	5	20	5	3	15	3	2,8	20°	5	7,5		70
3,2	38	_	11	12	7	28	7	_	21	_	_	_	7,5	10	$d_1 > 100$	_
4	49	_	14	15	9	35	9	_	27	_	_	_	10	_		_

a Rounded

Figure 3 — Lubrication grooves with closed ends

Table 3 — Dimensions for distance a

b	nom.	15 ≤ <i>b</i> ≤ 30	30 < b ≤ 60	60 < <i>b</i> ≤ 100	b > 100
a		3	4	6	10

3.3.2 Designation

EXAMPLE A lubrication groove of type D with groove depth $t_2=$ 0,8 mm, is designated as follows:

Lubrication groove ISO 12128 - D0,8

3.4 Lubrication pockets

3.4.1 Dimensions and types

See Figure 4 and Table 4.

Lubrication pockets shall in general be provided in cases where larger lubrication spaces are required. Type K shall predominantly be used for plain slideways with a to-and-fro movement in a straight line.

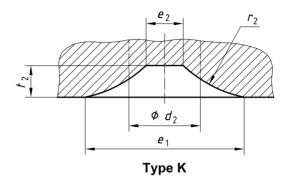


Figure 4 — Lubrication pocket

Table 4 — Dimensions of the lubrication pockets

t_2	d_2	e_{1}	e_2	$r_{ exttt{2}}$
1,6	6	8	1,8	6,5
2,5	8	15	2,8	14
4	10	24	4,5	20
6	12	35	6,3	30

3.4.2 Designation

EXAMPLE A lubrication pocket of type K with pocket depth $t_2=2,5$ mm, is designated as follows:

Lubrication pocket ISO 12128 - K2,5

3.5 Design

Permissible deviations without tolerance indications shall be in accordance with tolerance class "c" specified in ISO 2768-1. The edges shall be chamfered to 0,5 max. or rounded. Sharp-edged transitions to the sliding surface shall be avoided.

Lubrication holes, grooves and pockets should not be arranged in the stressed zone of the plain bearing. With the exception of plain bearings made from artificial carbon, lubrication grooves and pockets shall in general not be made over the whole length of the bearing. The shape of the groove or pocket runout shall be left to the manufacturer's discretion.

NOTE When producing lubrication grooves and pockets in plain bearings from tough and hard materials, chatter marks may occur on the bottom of the groove, which do not impair the operation of the plain bearing. Lubrication holes, grooves and pockets are not provided on plain bearings made from sintered metal, since these are soaked with lubricant.

4 Lubrication holes, grooves and pockets on bearing bushes (see Table 5)

The dimensions and types of the lubrication holes, grooves and pockets on bearing bushes in accordance with this International Standard are given in 3.2 to 3.4.

Examples for the designation of bearing bushes without lubrication holes, grooves and pockets are to be taken from the relevant standards on dimensions.

The symbol x represents, in the ISO designation, the required distance from the insert side, unless x = b/2; the symbol h represents the required dimension for the groove pitch, which is from 0.1h up to 1h.

If two lubrication holes and grooves are provided, they shall be located at 180° to each other, if there are three at 120° and four at 90° to each other.

Only one type and one bush form are illustrated and designated, each with freely chosen values for the dimensions x and h.

5 Examples of the designation of bushes with lubrication holes and/or grooves

Bush C 20 \times 24 \times 20 Y made of CuSn8P accordance with ISO 4379, with two lubrication holes of type L (2L) corresponding to bush A of this International Standard, off-centre, with distance x = 6 mm is designated as follows.

Bush ISO 4379 - C 20 x 24 x 20 Y - A2L6 - CuSn8P

Same bush but with two longitudinal grooves of type D (2D) corresponding to bush type C of this International Standard is designated as follows.

Bush ISO 4379 - C 20 x 24 x 20 Y - A2L62D - CuSn8P

Bush C $20 \times 24 \times 20$ Y made of CuSn8P accordance with ISO 4379, with three longitudinal grooves of type D (3D) corresponding to bush type C of this International Standard, in conjunction with one circumferential groove of type H (1H) corresponding to bush of type E of this International Standard, off-centre, with distance x=6 mm is designated as follows.

Bush ISO 4379 - C 20 x 24 x 20 Y - C3DE1H6 - CuSn8P

Table 5 — Types of bearing bush

Lubrication holes and grooves							
Bush type	Type accordance with clause 3	Type and ap	plication	Bearing bush material			
А	A B L	Lubrication hole, in-centre or off-centre	x	Copper alloys Thermosetting plastics Thermoplastics			
С	C D E J	Longitudinal groove closed at both ends		Copper alloys Thermosetting plastics Thermoplastics			
E	G Н	Circumferential groove, in-centre or off-centre		Copper alloys Thermosetting plastics Thermoplastics Artificial carbon			
G	C D E J	Longitudinal groove open at the end opposite the insert side		Copper alloys Thermosetting plastics Thermoplastics			
н	C D E J	Longitudinal groove open at the end towards the insert side		Copper alloys Thermosetting plastics Thermoplastics			

Table 5 — Types of bearing bush (continued)

Lubrication holes and grooves							
Bush type	Type accordance with clause 3	Type and ap		Bearing bush material			
J	C D E F J	Longitudinal groove open at both ends		Copper alloys Artificial carbon			
K	C F J	Helical groove, right-hand thread		Copper alloys Artificial carbon			
L	C F J	Helical groove, left-hand thread	h	Copper alloys Artificial carbon			
М	C	Octagonal groove		Copper alloys Thermosetting plastics Thermoplastics			
N	CJ	Oval groove		Copper alloys Thermosetting plastics Thermoplastics			

ICS 21.100.10

Price based on 8 pages

 $\hfill \mbox{\em C}$ ISO 2001 – All rights reserved