INTERNATIONAL STANDARD

ISO 11963

Second edition 2012-11-15

Plastics — Polycarbonate sheets — Types, dimensions and characteristics

Plastiques — Plaques en polycarbonate — Types, dimensions et caractéristiques

Reference number ISO 11963:2012(E)

COPYRIGHT PROTECTED DOCUMENT

© ISO 2012

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org

Published in Switzerland

Co	Contents		
Fore	eword		iv
1	Scop	pe	1
2	Nori	mative references	1
3	Composition		
4	Requirements		
	4.1 4.2 4.3 4.4 4.5 4.6 4.7	Masking Appearance Colour Dimensions Shrinkage Basic properties Weathering behaviour Other properties	
5	Test 5.1 5.2 5.3 5.4 5.5 5.6 5.7	methods General Colour Dimensions Mechanical properties Thermal properties Optical properties Weathering behaviour	
6	Read	ction to fire	7
7	Use	in contact with food	7
8	Rete	est and rejection	7
Ann		ormative) Determination of change in dimensions at elevated perature (shrinkage)	8

ISO 11963:2012(E)

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 11963 was prepared by Technical Committee ISO/TC 61, *Plastics*, Subcommittee SC 11, *Products*.

This second edition cancels and replaces the first edition (ISO 11963:1995), which has been technically revised.

Plastics — Polycarbonate sheets — Types, dimensions and characteristics

1 Scope

This International Standard specifies the requirements for solid, flat extruded sheets of polycarbonate (PC) for general applications. It applies specifically to sheets made of poly(p,p'-isopropylidene-diphenyl carbonate). The sheets may be coloured or colourless, and they may be transparent, translucent or opaque. The sheets may also have a special weather-protective layer on one or both surfaces.

This International Standard applies only to thicknesses equal to or greater than 1,5 mm.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 62:2008, Plastics — Determination of water absorption

ISO 75-1, Plastics — Determination of temperature of deflection under load — Part 1: General test method

ISO 75-2:2004, Plastics — Determination of temperature of deflection under load — Part 2: Plastics and ebonite

ISO 179-1:2010, Plastics — Determination of Charpy impact properties — Part 1: Non-instrumented impact test

ISO 291, Plastics — Standard atmospheres for conditioning and testing

ISO 306:2004, Plastics — Thermoplastic materials — Determination of Vicat softening temperature (VST)

ISO 489:1999, Plastics — Determination of refractive index

ISO 527-1, Plastics — Determination of tensile properties — Part 1: General principles

ISO 527-2, Plastics — Determination of tensile properties — Part 2: Test conditions for moulding and extrusion plastics

ISO 877-1, Plastics — Methods of exposure to solar radiation — Part 1: General guidance

ISO 877-2, Plastics — Methods of exposure to solar radiation — Part 2: Direct weathering and exposure behind window glass

ISO 877-3, Plastics — Methods of exposure to solar radiation — Part 3: Intensified weathering using concentrated solar radiation

ISO 1183-1, Plastics — Methods for determining the density of non-cellular plastics — Part 1: Immersion method, liquid pyknometer method and titration method

ISO 2818, Plastics — Preparation of test specimens by machining

ISO 2859-1, Sampling procedures for inspection by attributes — Part 1: Sampling schemes indexed by acceptance quality limit (AQL) for lot-by-lot inspection

ISO 2859-10, Sampling procedures for inspection by attributes — Part 10: Introduction to the ISO 2859 series of standards for sampling for inspection by attributes

ISO 4892-1, Plastics — Methods of exposure to laboratory light sources — Part 1: General guidance

ISO 11963:2012(E)

ISO 4892-2, Plastics — Methods of exposure to laboratory light sources — Part 2: Xenon-arc lamps

ISO 7391-1, Plastics — Polycarbonate (PC) moulding and extrusion materials — Part 1: Designation system and basis for specifications

ISO 8256:2004, Plastics — Determination of tensile-impact strength

ISO 11359-2, Plastics — Thermomechanical analysis (TMA) — Part 2: Determination of coefficient of linear thermal expansion and glass transition temperature

ISO 13468-1, Plastics — Determination of the total luminous transmittance of transparent materials — Part 1: Single-beam instrument

ISO 14782, Plastics — Determination of haze for transparent materials

IEC 60093, Methods of test for volume resistivity and surface resistivity of solid electrical insulating materials

CIE 15, Colorimetry

CIE 85, Solar spectral irradiance

3 Composition

The following type of PC is preferred for PC sheet extrusion:

Thermoplastics ISO 7391-PC,E,61-09

(see ISO 7391-1 for explanation of designation system for PC)

- The sheet may contain colorants, additives, processing aids and stabilizers (e.g. UV-absorbers) up to a total mass content of 5 %.
- Sheets of the type specified in Clause 4 may have a protective layer (on one or both surfaces) with a UV-absorber content higher than that of the substrate. The composition of the protective layer (e.g. polycarbonate and UV-absorber, or PMMA and UV-absorber, or other materials) and the application techniques (e.g. co-extrusion, coating, lamination, flow-coating, dipping) are not specified by this International Standard.

Requirements

4.1 Masking

The surface of the sheet as delivered shall be protected by plastic film or paper or a combination of both.

4.2 Appearance

Requirements concerning defects and optical quality shall be agreed upon between the interested parties.

Colour 4.3

The colorant(s) shall be homogeneously and uniformly distributed throughout the material, unless otherwise specified. For critical requirements, the degree of homogeneity shall be specified by the interested parties.

4.4 Dimensions

4.4.1 Conditions of measurement

Measurements should preferably be made under the standard conditions 23 °C \pm 2 °C and (50 \pm 10) % relative humidity. For measurements made under ambient conditions, allowance shall be made for dimensional changes due to the differences in temperature and relative humidity at the place of measurement from the preferred temperature and relative humidity.

4.4.2 Length and width

The length and width of the sheets shall be agreed upon between the interested parties. The tolerances on length and width shall be as specified in Table 1.

 Length or width mm
 Tolerance

 Up to 1 000
 $^{+3}_{0}$ mm

 From 1 001 to 2 000
 $^{+6}_{0}$ mm

 From 2 001 to 3 000
 $^{+9}_{0}$ mm

 3 001 and over
 $^{+0,3}_{0}\%$

Table 1 — Tolerances on length and width

4.4.3 Deviation of shape from rectangular

The difference Δl between the lengths of the two diagonals of the rectangular sheet shall be less than $3.5 \times 10^{-3} \times b$ (where b is the width, in millimetres, of the sheet, measured perpendicular to the direction of extrusion), but need not be less than 2 mm.

4.4.4 Thickness

The tolerance on the thickness of the sheets shall be as specified in Table 2.

Table 2 — Tolerances on thickness

Thickness, d	Tolerance
mm	%
1,5 ≤ <i>d</i> ≤ 5	±10
5 < <i>d</i>	±5

4.5 Shrinkage

The maximum shrinkage (see 5.5.3) shall be as specified in Table 3.

Table 3 — Maximum shrinkage

Thickness, d	Maximum shrinkage
mm	%
1,5 ≤ <i>d</i> ≤ 5	10
5 < <i>d</i>	5

4.6 Basic properties

The basic mechanical, thermal and optical properties of transparent, colourless sheets shall be as specified in Table 5. For other grades, the required properties shall be agreed upon between the interested parties.

4.7 Weathering behaviour

Any requirements on natural- or artificial-weathering behaviour shall be agreed upon between the interested parties, as required.

4.8 Other properties

Other properties of transparent, colourless sheets, needed for specific applications, shall be agreed upon between the interested parties. Examples of, and test methods for, such properties are presented in Table 4.

Table 4 — Typical values of other properties of transparent, colourless sheets

	Unit	Test method	Typical value
Density	g/cm ³	ISO 1183-1	1,2
Coefficient of linear thermal expansion	K-1	ISO 11359-2	65 × 10 ⁻⁶
Refractive index, n_{D}^{20}		ISO 489:1999, method A	1,59
Haze (3 mm)	%	ISO 14782	1
Surface resistivity	Ω	IEC 60093	1015
Water absorption (pre-conditioning: 50 °C/24 h; immersion time in water: 24 h)	mg	ISO 62:2008, method 1	16

For other grades, the required properties shall be agreed upon between the interested parties.

5 Test methods

5.1 General

5.1.1 Sampling

The sampling procedure shall be agreed upon between the interested parties. The procedures described in ISO 2859-1 and ISO 2859-10 are widely accepted and frequently used. Hence these are recommended for sampling.

5.1.2 Conditioning and testing of specimens

Conditioning (48 h) and testing of specimens shall be carried out at 23 °C \pm 2 °C and (50 \pm 10) % relative humidity, in accordance with ISO 291, except for the Vicat softening temperature and the temperature of deflection under load (see 5.5.1 and 5.5.2).

5.1.3 Preparation of specimens

Specimens shall be prepared, wherever applicable, in accordance with the procedures described in ISO 2818. When it is necessary to machine the sheet to reduce its thickness to the dimension required for a particular test method, one original surface shall be left intact.

With PC sheets coated on one side, the coated side shall remain unmachined. With PC sheets coated on both sides, two groups of specimens shall be prepared. One group shall retain one of the original coated sides and the other group, the other original coated side. The two groups shall be tested separately.

5.2 Colour

Colour differences between a reference material (standard) and the specimens shall be determined using a differential colorimetric instrument, as agreed between the parties concerned: e.g. CIELAB data (CIE 15) may be used.

5.3 Dimensions

5.3.1 The length and width of the sheets shall be measured to the nearest 1 mm.

Table 5 — Requirements on basic properties

		Unit	Test method	Type of specimen	Required value	Sub- clause
Mechanical p	oroperties					
Tensile stress at yield, $\sigma_{ m y}$		МРа	ISO 527-2/1A/50 ISO 527-2/1B/50	1A 1B	≥ 55	5.4.1
Modulus of elasticity in tension, E_{t}		МРа	ISO 527-2/1A/1 ISO 527-2/1B/1	1A 1B	≥ 2 200	5.4.1
Nominal tensile strain at break, $arepsilon_{ ext{tB}}$		%	ISO 527-2/1A/50 ISO 527-2/1B/50	1A 1B	≥ 60	5.4.1
Charpy impact strength (notched, notch radius 0,25 mm; thickness ≥ 4 mm)		kJ/m²	ISO 179-1/1eA	1	≥ 6	5.4.2
Tensile impac thickness < 4	t strength (double-notched; mm)	kJ/m²	ISO 8256:2004, method A	1	≥ 150	5.4.2
Thermal pro	perties					
Vicat softening temperature		°C	ISO 306:2004, method B50		≥ 145	5.5.1
Temperature of deflection under load (thickness ≥ 3mm)		°C	ISO 75-2:2004, method A		≥ 130	5.5.2
Optical prop	erties					
Light transmittance, $\tau_{\rm t}$ (380 nm to 780 nm)			ISO 13468-1			5.6
Thickness, t	1,5 mm $\leq t < 4$ mm 4 mm $\leq t < 6$ mm 6 mm $\leq t < 12$ mm 12 mm $\leq t$ mm				≥ 85 ≥ 82 ≥ 80 ≥ 75	

5.3.2 The thickness of the sheets shall be measured to the nearest 0,05 mm, excluding the masking film or paper, and without damaging the surface. Measurements shall be made at points not less than 100 mm from the sheet edge.

5.4 Mechanical properties

5.4.1 Tensile properties shall be determined in accordance with ISO 527-1 and ISO 527-2, using specimen type 1A or 1B. The test speed for tensile stress at yield and nominal strain at break shall be 50 mm/min and for the modulus of elasticity in tension, 1 mm/min.

ISO 11963:2012(E)

5.4.2 When the sheet thickness is greater than or equal to 4 mm, the Charpy notched impact strength shall be determined in accordance with ISO 179-1:2010, method 1eA (edgewise), using a notched bar (80 mm \times 10 mm \times d mm, V-notch, radius 0,25 mm), where d is equal to the sheet thickness.

If the thickness is less than 4 mm, the tensile impact strength shall be determined using a double V-notch (notch radius 1 mm) in accordance with ISO 8256:2004 (specimen type 1, method A).

The notched impact strength shall be measured with specimens taken parallel and perpendicular to the extrusion direction.

These two different tests are required because, when determining the notched impact strength to ISO 179-1 (Charpy), extruded PC shows a tough/brittle transition in the range between approximately 2,5 mm and 3,5 mm thickness, which gives rise to large deviations in measurements made in this range.

Thermal properties 5.5

The Vicat softening temperature shall be determined in accordance with ISO 306:2004. method B50, indenting the original surface. The rate of heating shall be 50 °C/h.

Prior to the test, the specimens shall be conditioned at 120 °C ± 2 °C for 3 h and allowed to cool to room temperature in a desiccator.

5.5.2 The temperature of deflection under load shall be determined in accordance with ISO 75-1 and ISO 75-2:2004, method A. Prior to the test, the specimens shall be conditioned at 120 °C ± 2 °C for 3 h and allowed to cool to room temperature in a desiccator.

If the sheet thickness is less than 3 mm, this requirement shall not apply.

5.5.3 The change in dimensions at elevated temperature (shrinkage) shall be determined in accordance with the method described in Annex A of this International Standard.

5.6 Optical properties

The light transmittance τ_t shall be determined in accordance with ISO 13468-1 by using an integrating sphere on specimens of original thickness.

5.7 Weathering behaviour

5.7.1 Natural weathering

Natural-weathering performance, when needed, shall be determined using ISO 877-1, ISO 877-2 and ISO 877-3.

5.7.2 Artificial-weathering tests

Artificial weathering, when required, shall be carried out in accordance with ISO 4892-1 and ISO 4892-2 with a filtered xenon lamp with a spectral intensity distribution recommended by CIE 85, at a blackstandard temperature of 65 °C ± 3 °C, at (65 ± 5) % relative humidity and with a wet/dry cycle of 18 min/102 min.

The pass/fail criteria to be determined by artificial weathering shall be agreed upon between the interested parties.

Because of the special photochemical degradation mechanism of PC, the result of accelerated weathering depends very much on the light source, especially in the UV range. No light of wavelength less than 300 nm may be present.

A very good correlation between natural and accelerated weathering, even over a long time of exposure, is given by the specified procedure.

6 Reaction to fire

Testing of reaction to fire, when needed, shall be agreed upon between the interested parties. Above all, the national laws of the countries in which the suppliers and customers are situated shall be considered.

7 Use in contact with food

If PC sheets are intended for use in food-contact applications, the special requirements shall be agreed upon between the interested parties in every case. Above all, the national laws of the countries in which the suppliers and users are situated shall be considered.

8 Retest and rejection

If any failure occurs, the material may be retested by agreement between the interested parties.

Annex A

(normative)

Determination of change in dimensions at elevated temperature (shrinkage)

Cut two specimens 150 mm square (one side parallel to the extrusion direction) from the sample sheet in areas approximately equally spaced across the width of the sample. Mark the direction of extrusion on each sample and, with a pair of compasses, mark a circle measuring 100 mm ± 1 mm across. Dry the specimens at 90 °C for 24 h and allow them to cool to room temperature in a desiccator at 18 °C to 28 °C (in cases of dispute, 23 °C ± 2 °C). Measure the diameter of the circle, parallel and perpendicular to the extrusion direction, to the nearest 0.05 mm.

Place the specimens horizontally on a plane plate, and put them on a shelf in an oven at a controlled temperature of 190 °C ± 2 °C. To avoid sticking of the specimens, use a plate coated with an anti-sticking layer, e.g. polytetrafluoroethylene. The heating period, which depends on the thickness of the sheet, shall be as specified in Table A.1.

Table A.1 — Heating period

Thickness, d	Time
mm	min
1,5 ≤ <i>d</i> ≤ 5	60
5 < <i>d</i>	75

During the heating period, any water contained in the sheet may produce bubbles (a few are allowed) and the sample may foam. If this is the case, the test shall be repeated with an additional (pre-drying) stage, using the following conditions:

Pre-drying temperature:

Pre-drying time in hours: $2 \times d^2$, where d is the thickness of the specimens in millimetres.

A.3 Allow the specimens to cool to room temperature in a desiccator at 18 °C to 28 °C (in cases of dispute, 23 °C ± 2 °C) and measure the diameter of the circle, parallel and perpendicular to the extrusion direction, to the nearest 0.05 mm.

A.4 Calculate the change in diameter (shrinkage) S for each specimen as a percentage of the initial value, using the following equation:

$$S = \frac{l_0 - l}{l_0} \times 100$$

where

is the diameter after drying;

is the diameter after heating.

Calculate the average percentage change for the two specimens parallel and perpendicular to the extrusion direction.

A.5 Report the presence of bubbles or cracks and any other changes in the appearance of the specimens.

ICS 83.140.10

Price based on 9 pages