INTERNATIONAL STANDARD ISO 11687-2 > First edition 1995-02-01 # Plain bearings — Pedestal plain bearings — Part 2: Side flange bearings Paliers lisses — Paliers lisses à chaise sur le sol — Partie 2: Paliers à bride latérale #### **Foreword** ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote. International Standard ISO 11687-2 was prepared by Technical Committee ISO/TC 123, *Plain bearings*, Subcommittee SC 3, *Dimensions*, *tolerances* and construction details. ISO 11687 consists of the following parts, under the general title *Plain bearings* — *Pedestal plain bearings*: - Part 1: Pillow blocks - Part 2: Side flange bearings - Part 3: Centre flange bearings All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher. International Organization for Standardization Case Postale 56 • CH-1211 Genève 20 • Switzerland Printed in Switzerland [©] ISO 1995 # Plain bearings — Pedestal plain bearings — ### Part 2: Side flange bearings #### 1 Scope This part of ISO 11687 specifies design characteristics for side flange bearings for the size range 9 to 28, as well as design characteristics for shafts. It is applicable to side flange bearings used mainly in electrical and turbo engineering industries. #### 2 Normative references The following standards contain provisions which, through reference in this text, constitute provisions of this part of ISO 11687. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agreements based on this part of ISO 11687 are encouraged to investigate the possibility of applying the most recent editions of the standards indicated below. Members of IEC and ISO maintain registers of currently valid International Standards. ISO 185:1988, Grey cast iron — Classification. ISO 426-1:1983, Wrought copper-zinc alloys — Chemical composition and forms of wrought products — Part 1: Non-leaded and special copper-zinc alloys. ISO 426-2:1983, Wrought copper-zinc alloys — Chemical composition and forms of wrought products — Part 2: Leaded copper-zinc alloys. ISO 630:1980, Structural steels. ISO 683-11:1987, Heat-treatable steels, alloy steels and free-cutting steels — Part 11: Wrought case-hardening steels. ISO 1302:1992, Technical drawings — Method of indicating surface texture. ISO 2768-1:1989, General tolerances — Part 1: Tolerances for linear and angular dimensions without individual tolerance indications. ISO 2768-2:1989, General tolerances — Part 2: Geometrical tolerances for features without individual tolerance indications. ISO 3755:1991, Cast carbon steels for general engineering purposes. ISO 4381:1991, Plain bearings — Lead and tin casting alloys for multilayer plain bearings. ISO 8062:1994, Castings — System of dimensional tolerances and machining allowances. ISO 12129-1:—11, Plain bearings — Part 1: Fits. ISO 12129-2:—1), Plain bearings — Part 2: Tolerances on form and position and surface roughness for shafts, flanges and thrust collars. ¹⁾ To be published. ISO 11687-2:1995(E) © ISO #### Types of pillow block According to their design, side flange bearings can be devised as follows, each characteristic being designated by a letter symbol. #### Housing: Side flange bearing with cooling fins #### Heat dissipation: - Natural cooling - Water cooling in oil sump W - Circulation pump and natural cooling 11 - Т Circulation pump and water cooling in oil sump - Z Recirculating oil lubrication with external cooling of #### Shape of bore for journal bearing and type of lubrication: - Circular cylindrical bore without oil ring - Circular cylindrical bore with split oil ring not fixed L on a rotating shaft - Lobed bearing with two sliding surfaces without oil Υ - Lobed bearing with four sliding surfaces without oil ring #### Thrust bearing: - Without sliding surfaces [non-locating (free) bearing - Plain sliding surfaces with oil grooves (guide bear-В - Wedge surfaces (design and dimensions K at the manufacturer's discretion) - Tilting pads #### Seal: Type and dimensions subject to agreement The symbols above figure 1 explain only the type illustrated; the complete type required shall be specified in the above-mentioned sequence when ordering. #### 4 Dimensions See figures 1 to 3 and tables 1 and 2. The side flange bearings are not expected to conform to the designs illustrated in figure 1; compliance is only required with respect to the dimensions specified. NOTE 1 All dimensions are given in millimetres. Details which are not specified shall be chosen as appropriate. #### 5 Shaft design See figures 2 and 3 and table 2. #### Materials #### Housing: Grade 300 in accordance with ISO 185; other materials subject to agreement #### Half-bearing: Bearing back: Fe 360 B in accordance with ISO 630 C10 or C15 E 4 in accord- ance with ISO 683-11 200 to 400 in accordance with ISO 3755 Type of material at the manufacturer's discretion #### Bearing metal: Lead-tin-alloy in accordance with ISO 4381, or subject to agreement #### Seal: Copper alloy, aluminium alloy or plastic, subject to agreement #### Oil ring, not fixed on rotating shaft: Copper-zinc alloy in accordance with ISO 426, or subject to agreement #### 7 Design #### General tolerances: For machined surfaces: ISO 2768-1 and ISO 2768-2 - mH For unmachined surfaces: ISO 8062 - CT 9 (for grade 300), or corresponding standards for other materials agreed upon. #### Surface roughness in accordance with ISO 1302: Flange bearing: Mounted surfaces: $R_a = 3.2 \mu m$ Sliding surfaces: $R_a = 0.8 \mu m$ Shaft: See table 2, footnote 1. #### Housing: Flange bearing housing with lifting eye bolts or means of conveyance at the manufacturer's discretion. The inner surfaces of the housing shall be clean and shall have a coat of paint resistant to oil and solvents. The outer surfaces of the housing shall be protected against corrosion. For the purpose of pressure compensation, the individual oil spaces within the flange bearing housing shall be connected to each other by means of appropriate openings above the oil level. All bearing housing connections on both sides; other connecting dimensions and arrangements than those given in figure 1 as well as additional connections subject to agreement. Type of inspection plate at the manufacturer's discretion. With bolts and screws for housing parts and seals, at the manufacturer's discretion. Bolts and screws for the housing flange do not form part of the delivery. #### General: Particular agreements shall be made for applications under special conditions (e.g. inclined positions). Chamfered edges: type of edge chamfering at the manufacturer's discretion. If the bearing is only applicable to one direction of rotation, a directional arrow shall be provided. #### 8 Designation #### **EXAMPLE** Designation of a side flange bearing of size 14, shaft diameter 125 mm, housing with cooling fins (F), for recirculating oil lubrication with external cooling of oil (Z), circular cylindrical bore with split oil ring not fixed on a rotating shaft for emergency run (L) and thrust bearing with wedge surfaces (K): Side flange bearing ISO 11687-2 - 14 - 125 - FZLK ISO 11687-2:1995(E) © ISO - d₉ Oil inlet (recirculating plant, circulation pump) - 2 Thread G 1/2 Connection for thermoprobe - d_{10} Oil-level indicator or oil drainage for recirculating plant Screw plug (connection for radiator, oil-sump thermometer, suction line of circulation pump, finned cooler) Figure 1 — Examples of side flange bearings — Size range 9 to 28 Table 1 — Side flange bearings — Size range 9 to 28 (see figure 1) | Table 1 — Olde Hange Bearings — Olze Fange 3 to 20 (See Ingule 1) |---|-----|---------|-----|-----|-------|-----|-----|---------|-----|-----|-------|-----|-----|-------|-----|-----|-------|-----| | Size | 9 | | | 11 | | 14 | | | 18 | | | 22 | | | 28 | | | | | D H7 1) | 80 | 90 | 100 | 100 | 110 | 125 | 125 | 140 | 160 | 160 | 180 | 200 | 200 | 225 | 250 | 250 | 280 | 300 | | B 2) | | 60 | | | 80 | | | 105 | | | 135 | | | 170 | | | 215 | | | <i>b</i> ₁ | | 80 | | | 100 | | | 125 | | | 160 | | | 200 | | | 250 | | | <i>b</i> ₂ | | 162 | | | 192 | | | 232 | | | 273 | | | 354 | | | 414 | | | <i>b</i> ₃ | | 70 | | | 80 | | | 100 | | | 116 | | | 150 | | | 170 | | | b ₄ | | 14 | | | 15 | | | 16 | | | 18 | | | 20 | | | 24 | | | <i>b</i> ₅ | | 12 | | | 17 | | | 23 | | | 25 | | | 37 | | | 42 | | | b ₆ 3) | | 23 | | | 29 | | | 26 | | | 31 | | | 32 | | | 43 | | | d_1 | | 80 | | | 100 | | | 125 | | | 160 | | | 200 | | | 250 | | | (nominal dimension | | 90 | | | 110 | | | 140 | | | 180 | | | 225 | | | 280 | | | seal) | | 100 | | | 125 | | | 160 | | | 200 | | | 250 | | | 315 | | | | | 110 | | | 140 | | | 180 | | | 225 | | | 280 | | | 355 | | | d_2 | | 100 | | | 125 | | | 160 | | | 200 | | | 250 | | | 315 | | | <i>d</i> ₃ | | 150 | | | 180 | | | 230 | | | 275 | | | 340 | | | 440 | | | <i>d</i> ₄ h6 | 280 | | | 315 | | | 355 | | | 400 | | | 500 | | | 600 | | | | d ₅ | | 310 | | | 350 | | | 415 | | | 490 | | | 620 | | | 770 | | | d ₆ | | 340 | | | 380 | | | 460 | | | 540 | | | 680 | | | 850 | | | d ₇ 4) | | 420 | | | 460 | | | 550 | | | 640 | | | 785 | | | 970 | | | d_8 | | 13,5 | | | 13,5 | | | 17,5 | | | 22 | | | 26 | | | 33 | | | d ₉ 5) | | G 3/8 | | C | 3/8 | | | G 3/8 | | (| G 1/2 | | | G 3/4 | | | G 3/4 | | | d ₁₀ 5) | 0 | 3 1 1/4 | 4 | G | 1 1/4 | 1 | G | 3 1 1/2 | 2 | G | 1 1/: | 2 | | G 2 | | G | 2 1/2 | 2 | | d ₁₁ | | M12 | | 1 | M12 | | | M16 | | | M20 | | | M24 | | | M30 | | | h_1 | | 250 | | | 280 | | | 340 | | | 400 | | | 450 | | | 500 | | | h ₂ | 130 | | | 145 | | | 185 | | | 225 | | | 275 | | | 325 | | | | 1 | | 270 | | | 310 | | | 370 | | | 440 | | | 550 | | | 690 | | | $\phi k^{(6)}$ (spherical) h6 | | 190 | | | 212 | | | 280 | | | 335 | | | 425 | | | 530 | | ¹⁾ Applies only to circular cylindrical bores. ²⁾ For the design with thrust bearing part (A), dimensions B may slightly deviate in order to obtain (depending on the type of tilting pad) a constant dimension b_1 (interchangeability of the half-bearing shell). ³⁾ Applies only to the seal shown in figure 1. ⁴⁾ Diameter of the machined surface of the machine plate. ⁵⁾ If larger connections are necessary, this shall be the subject of a special agreement. ⁶⁾ The fit of the half-bearing and housing shall be a transition fit or shall be subject to agreement. ISO 11687-2:1995(E) © ISO Figure 2 — Shaft design for non-locating (free) bearing (thrust bearing part Q) Surface roughness in micrometres Ra0,633 Ra0,633 Ra0,633 Ra0,633 Figure 3 — Shaft design for fixed bearing (thrust bearing parts A, B and K) 1) Bearing width including seal. Table 2 — Shaft dimensions — Size range 9 to 28 (see figures 2 and 3) | Size | | 9 | | | 11 | | | 14 | | | 18 | | | 22 | | | 28 | | | | |---------|--------------------------|--|--|--|---|---|---|--|---|--|--|---|---|---|---|---|---|---|--|--| | | 80 | 90 | 100 | 100 | 110 | 125 | 125 | 140 | 160 | 160 | 180 | 200 | 200 | 225 | 250 | 250 | 280 | 300 | | | | ± 0,1 | 80,4 | | | 100,4 | | | 125,4 | | | 160,4 | | | 200,4 | | | 250,4 | | | | | | | 90 | | | 110 | | | 140 | | | 180 | | | 220 | | | 280 | | | | | | | 100 | | | 120 | | | 150 | | | 188 | | | 240 | | | 296 | | | | | | | 5 | | | 6 | | | 8,5 | | | 10 | | | 13,5 | | | 19 | | | | | | В, К | 110 | 120 | 130 | 135 | 150 | 160 | 170 | 190 | 200 | 215 | 240 | 250 | 265 | 290 | 315 | 325 | 355 | 375 | | | | Α | 132 | 142 | 143 | 157 | 162 | 168 | 192 | 207 | 217 | 244 | 264 | 273 | 308 | 328 | 339 | 378 | 408 | 408 | | | | e8 | 100 | | | 125 | | | 160 | | | 200 | | | 250 | | | 315 | | | | | | | | d_{14} d_{15} | | d_{14} d_{15} | | d ₁₅ | d ₁₄ | | d_{15} | d ₁₄ | | d ₁₅ | d_{14} d_{15} | | d ₁₅ | d_{14} | | d ₁₅ | | | | | 80 80
90 80
100 90 | | 80 | 100 100 | | 125 125
140 125 | | 160 160
180 160 | | 200 | 200 200 | | 250 2 | | 250 | | | | | | | | | | 110 100
125 110 | | 100 | | | | | 225 200 | | 280 2 | | 250 | | | | | | | | | | | | | 160 140 | | | 200 180 | | 250 225 | | 315 28 | | 280 | | | | | | | | 110 100 | | 100 | 140 125 | | | 180 160 | | | 225 200 | | | 280 250 | | 355 315 | | 315 | | | | | | | 90 | 100 | 110 | 110 | 125 | 140 | 140 | 160 | 180 | 180 | 200 | 225 | 225 | 250 | 280 | 280 | 315 | 315 | | | | | 2,5 | | | 2,5 | | | 4 | | | 4 | | | 6 | | | | 6 | | | | | | 4 | | | 4 | | | 6 | | | 6 | | | 10 | | | | 10 | | | | | | В, К | ± 0,1 B, K 110 A 132 e8 d ₁₄ 80 90 100 110 | 80 90 ± 0,1 80,4 90 100 5 B, K 110 120 A 132 142 e8 100 d ₁₄ 80 90 100 110 90 100 2,5 | 80 90 100 ± 0,1 80,4 90 100 5 B, K 110 120 130 A 132 142 143 e8 100 4 ₁₄ 4 ₁₅ 80 80 90 80 100 90 110 100 90 110 100 90 110 110 2,5 | 80 90 100 100 ± 0,1 80,4 90 100 5 B, K 110 120 130 135 A 132 142 143 157 e8 100 4 ₁₄ 4 ₁₅ 4 ₁₄ 80 80 100 90 80 110 100 90 125 110 100 140 90 100 110 110 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 80 90 100 100 110 125 125 ± 0,1 80,4 100,4 90 110 100 120 5 6 B, K 110 120 130 135 150 160 170 A 132 142 143 157 162 168 192 e8 100 125 4 ₁₄ 4 ₁₅ 4 ₁₄ 4 ₁₅ 4 ₁₄ 80 80 100 100 125 90 80 110 100 140 100 90 125 110 160 110 100 140 125 180 90 100 110 110 125 140 140 2,5 2,5 | 80 90 100 100 110 125 125 140 ± 0,1 80,4 100,4 125,4 90 110 140 100 120 150 5 6 8,5 B, K 110 120 130 135 150 160 170 190 A 132 142 143 157 162 168 192 207 e8 100 125 160 414 415 414 415 414 80 80 100 100 125 90 80 110 100 140 100 90 125 110 160 110 100 140 125 180 90 100 110 110 125 140 140 160 2,5 2,5 4 | 80 90 100 100 110 125 125 140 160 ± 0,1 80,4 100,4 125,4 140 90 110 120 150 5 6 8,5 B, K 110 120 130 135 150 160 170 190 200, A 132 142 143 157 162 168 192 207 217 e8 100 125 160 80 80 100 100 125 125 90 80 110 100 140 125 100 90 125 110 160 140 110 100 140 125 180 160 90 100 110 110 125 140 140 160 180 2,5 2,5 4 | 80 90 100 100 110 125 125 140 160 160 ± 0,1 80,4 100,4 125,4 140 125,4 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 150 160 150 150 160 150 150 160 150 150 160 150 150 160 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 80 90 100 100 110 125 125 140 160 160 180 200 200 ± 0,1 80,4 100,4 125,4 160,4 90 110 120 150 188 5 6 8,5 10 B, K 110 120 130 135 150 160 170 190 200 215 240 250 265 A 132 142 143 157 162 168 192 207 217 244 264 273 308 e8 100 125 160 200 ### ### ### ### ### ### ### ### ### | 80 90 100 100 110 125 125 140 160 160 180 200 200 225 ± 0,1 80,4 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | ¹⁾ Limit deviations for shafts and tolerances of form and position and surface roughness in accordance with ISO 12129-1 and ISO 12129-2. ²⁾ Normal axial clearance of 0,5 mm is provided. If a change in direction of the axial loads of axial thrusts is to be expected, dimension b_7 may be reduced by 0,2 mm. If a fixed bearing (thrust bearing parts B, K) is only needed for the test run, dimension b_7 may be increased. ³⁾ If the non-locating (free) bearing (thrust bearing part Q) has to allow major axial movements (e.g. due to thermal expansion or large constitutional axial clearance), dimension b_8 may be increased. ⁴⁾ The clearance groove d_{15} may be omitted if it is equal to or smaller than the shaft diameter D. ⁵⁾ The radii r_1 and r_2 may be replaced by an undercut. ## ICS 21.100.10 Descriptors: bearings, plain bearings, specifications, materials specifications, manufacturing requirements, dimensions, designation. Price based on 7 pages