INTERNATIONAL STANDARD

ISO 11504

First edition 2012-06-01

Soil quality — Assessment of impact from soil contaminated with petroleum hydrocarbons

Qualité du sol — Évaluation de l'impact du sol contaminé avec des hydrocarbures pétroliers

Reference number ISO 11504:2012(E)

COPYRIGHT PROTECTED DOCUMENT

© ISO 2012

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

Contents Page Forewordiv Introduction v 1 2 3 Terms and definitions 1 4 5 5.1 General 4 5.2 Fractions 4 5.3 Individual compounds 4 6 Petroleum hydrocarbons in soil 6 7 7.1 7.2 Exposure assessment methods 9 7.3 7.4 Toxicity assessment methods ______10 7.5 8 8.1 8.2 Issues related to analysis ______13 Annex A (informative) Physico-chemical properties of different petroleum hydrocarbons.......15 Annex B (informative) Examples of suggested tolerated concentrations in air (TCA) and tolerable daily intake (TDI) values for different specific petroleum hydrocarbons.......19 Annex C (informative) Overview of suggested fractionations in different countries.......20

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 11504 was prepared by Technical Committee ISO/TC 190, Soil quality, Subcommittee SC 7, Soil and site assessment.

Introduction

Petroleum hydrocarbons (PHCs) are common environmental contaminants. They are components of crude oil and products derived from it and are consequently found on a variety of sites including refineries, sites where they are used as feedstock (e.g. for manufacture of plastics), manufactured gas production sites, sites where hydrocarbons are used as fuel or lubricants and retail service stations. They may also be present as a result of spills and leaks during transportation.

Petroleum hydrocarbons can present unacceptable risks to the health and safety of humans, ecological systems, surface water, groundwater resources and to structures and building materials. Measuring the total concentration of petroleum hydrocarbons (TPH) in soil (and pore water and pore gas) does not give a useful basis for the evaluation of the potential risks to man and the environment. The variety of physical-chemical properties, and thus differences in the migration and fate of individual compounds, and the toxicity and carcinogenicity of different fractions and compounds in oil products, must be taken into account in human health and environmental risk assessments.

Only a limited number of individual compounds can be routinely identified and quantified. It is, consequently, necessary to adopt methods of analysis that provide information about the amount of different hydrocarbon fractions present, preferably distinguishing between aliphatic and aromatic fractions, and the concentrations of single compounds of particular concern in respect of the potential health and environmental risks that they pose.

Although most petroleum hydrocarbons found in soil are of an anthropogenic nature, there are some natural sources of these materials and other organic substances (e.g. peat and coal). The analytical methods historically used for the measurement of total petroleum hydrocarbons (TPH) tend to measure natural materials as TPH. This issue will not be dealt with in this International Standard, except to note that a method able to give a more precise determination of the petroleum hydrocarbons is less prone to giving results that can be misinterpreted and potentially lead to unnecessary or unsustainable remedial actions.

The purpose of this International Standard is to give recommendations with respect to the choice of relevant fractions and individual compounds, and to give guidance on the appropriate use of the results. Decisions about which analytical methods to adopt must be based primarily on the need to provide the right type and quality of data for use in risk assessments. This requires consideration of how the results of the analysis are most appropriately used in a risk assessment, e.g. how can the fractions be used in exposure models and assessments, and is it sufficient to analyse soil or is it necessary to obtain related values in other media as well (pore water and pore gas).

There are three published International Standards covering the analysis of the range of petroleum hydrocarbons of interest:

ISO 16703 can be used to measure mineral oil (C_{10} to C_{40}) and ISO 22155 or ISO 15009 to measure volatiles. However, revised methods are required to be able to properly measure the fractions and compounds recommended for determination in this International Standard. ISO/TC 190 is developing International Standards for methods of analysis designed to be compatible with the recommendations provided in this International Standard.

INTERNATIONAL STANDARD

ISO 11504:2012(E)

Soil quality — Assessment of impact from soil contaminated with petroleum hydrocarbons

1 Scope

This International Standard gives recommendations with regard to the choice of fractions and individual compounds when carrying out analysis for petroleum hydrocarbons in soils, soil materials and related materials, including sediments, for the purpose of assessing risks to human health, the environment and other possible receptors. Since many products based on petroleum hydrocarbons often contain substances that are not hydrocarbons, the recommendations also encompass such compounds where relevant.

This International Standard also includes relevant background information on which the recommendations are based together with guidance on the use of the fractions recommended in the assessment of risk.

This International Standard does not set criteria or guidelines for use as assessment criteria, since this is typically a national or regional regulatory issue. This International Standard also does not include recommendations as to the specific model for the exposure assessment or the specific parameter values to be used; with respect to guidance on this matter, reference is made to ISO 15800.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 11074, Soil quality — Vocabulary

ISO 15009, Soil quality — Gas chromatographic determination of the content of volatile aromatic hydrocarbons, naphthalene and volatile halogenated hydrocarbons — Purge-and-trap method with thermal desorption

ISO 15800, Soil quality — Characterization of soil with respect to human exposure

ISO 16703, Soil quality — Determination of content of hydrocarbon in the range C_{10} to C_{40} by gas chromatography

ISO 18512, Soil quality — Guidance on long and short term storage of soil samples

ISO 22155, Soil quality — Gas chromatographic determination of volatile aromatic and halogenated hydrocarbons and selected ethers — Static headspace method

ISO 25177, Soil quality — Field soil description

3 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO 11074, ISO 15800, ISO 25177 and the following apply.

3.1

aliphatic hydrocarbon

acyclic or cyclic, saturated or unsaturated carbon compound, excluding aromatic compounds

3.2

aromatic hydrocarbon

hydrocarbon, of which the molecular structure incorporates one or more planar sets of six carbon atoms that are connected by delocalized electrons, numbering the same as if they consisted of alternating single and double covalent bonds

3.3

boiling point

RD

point at which the vapour pressure of a liquid equals the external pressure acting on the surface of a liquid

NOTE Units: degrees Celsius.

3.4

carcinogen

substance that causes the development of malignant cells in animals or humans

3.5

compliance point

location (in, for example, soil or groundwater) where the assessment criteria shall be measured and shall not be exceeded

3.6

equivalent carbon number

empirically determined parameter related to the boiling point of a chemical normalized to the boiling point of the n-alkanes or its retention time in a boiling-point gas chromatographic (GC) column

3.7

fraction

group of aromatic and/or aliphatic hydrocarbons with similar physico-chemical properties

NOTE In this International Standard: group of aromatic or aliphatic compounds with leaching and volatilization factors that differ by approximately one order of magnitude.

3.8

gas chromatography

analytical method that is used to separate and determine the components of complex mixtures based on partitioning between a gas phase and stationary phase

3.9

hydrocarbon

compound of hydrogen and carbon which are the principal constituents of crude oil, refined petroleum products and products derived from the carbonization of coal (at a high or low temperature)

3.10

indicator compound

compound chosen to describe properties, primarily toxicity, of a petroleum mixture or fraction

NOTE This method is often used to assess carcinogenic compounds.

3.11

NSO compounds

organic compounds that contain nitrogen, sulfur and oxygen

NOTE NSO compounds occur in organic matter and crude oil. Asphaltenes are examples of NSO compounds. NSO compounds can be separated from crude oil by polar solvents such as methanol.

3.12

partitioning

extent to which a compound of a hydrocarbon mixture separates into different media (or phases) based on its chemical and physical properties and the size and properties of the media in the specific situation

3.13

petroleum hydrocarbon

organic compound comprised of carbon and hydrogen atoms arranged in varying structural configurations which make up the principal constituents of crude oil and petroleum products

NOTE Mineral oil is a colloquial term for petroleum hydrocarbons or petroleum products.

3.14

polycyclic aromatic hydrocarbon

PAH

compound whose molecules contain two or more simple aromatic rings fused together by sharing two neighbouring carbon atoms

NOTE Examples are naphthalene, anthracene and phenanthrene.

3.15

surrogate compound

representative compound with toxicological and/or physical properties indicative of a hydrocarbon fraction, which can therefore be used to represent the fraction in an exposure assessment

3.16

total petroleum hydrocarbons

method-defined parameter, depending on the analytical method used to measure it

4 Principle

A petroleum hydrocarbon product typically consists of a mixture of a very large number of individual compounds. When assessing exposure and risk related to a mixture of compounds, such as in a petroleum hydrocarbon product, evaluation has to be made with respect to the migration, fate and toxicity of the different compounds in the mixture and the toxicity of the mixture. During transport in the subsurface, the composition of a mixture may change due to different rates of dissolution, volatilization, retardation, biodegradation, etc. acting on different component compounds. As a result, the toxicity of the resulting mixture may vary with both time and distance from the source zone.

Assessing the potential exposure to a mixture consisting of a large number of compounds is not feasible, neither in relation to the measurement of the concentration of all the compounds, in relation to the evaluation of the resulting mixture (after migration and degradation) in the relevant point of compliance (such as in the groundwater or in the indoor air), nor with respect to the resulting toxicity. A method, where only a number of compounds or surrogate compounds are measured and evaluated, is therefore preferable.

On the other hand, it is necessary when choosing the relevant compounds and surrogate compounds (such as relevant fractions of the total oil product) to ensure that the resulting evaluation of either overall exposure or toxicity is a reasonable estimate of the exposure and toxicity related to the oil product as a whole. Furthermore, selection of surrogate compounds should ensure that, if risk-management action is necessary, the risk-management applied for the surrogate is also likely to mitigate the risks associated with other (unquantified) substances present in the mixture.

Studies on migration, fate and toxicity of petroleum hydrocarbons show substantial differences between the properties of individual compounds and fractions of aliphatic and aromatic hydrocarbons. Similar differences exist between hydrocarbon compounds with different carbon content. The choice of surrogate compounds for assessing exposure and toxicity of petroleum hydrocarbons should be based on fractions of the total hydrocarbon mix in a mineral oil product and on individual compounds and fractions with similar properties.

This International Standard gives recommendations about the choice of relevant individual compounds and fractions as a basis for the assessment of risks to humans and the environment at relevant compliance points using established risk assessment models. It should be noted that, for the suggested combination of fractions and singular compounds, it is necessary that comparable analytical methods exist for the suggested fractions, etc. not only for soil, but also for water, air and petroleum hydrocarbons present as non-aqueous-phase liquids (NAPL) in order to verify exposure assessment calculations and the assumptions employed in the risk assessment model.

As mentioned in the introduction, the choice of fractions and indicator compounds should, apart from the above, be based on the performance characteristics of the possible analytical methods, and on the overall cost of the analysis in relation to the goal of the assessment to be carried out.

5 Recommendation of relevant fractions and individual compounds

5.1 General

This clause summarizes the recommendations given with respect to relevant petroleum hydrocarbon fractions and individual compounds to measure and use in risk assessment, unless local or national regulations set other requirements. The recommendations are based on the arguments given in the following subclauses.

5.2 Fractions

It is recommended that the fractions given in Table 1 should be used when measuring and assessing risk related to petroleum hydrocarbons. These fractions will ensure that the calculation of exposure can be carried out using surrogate physico-chemical properties for the fractions that represent all compounds within the fraction reasonably well and that toxicity of the compounds within the fractions will be reasonably similar, except for the specific compounds of significant toxicological potency that will also have to be assessed as individual compounds, see 5.3.

Surrogate physico-chemical properties can be set for each of the fractions suggested, either by using a single property for each fraction or by using a set of relevant indicator compounds representing the fraction by set percentages and then using their properties. The first method is the one utilized by TPHCWG^[30]. The other method is used, for instance, in the Danish exposure assessment tool for contaminated soils, JAGG^[12]. Some jurisdictions may have specific requirements regarding the properties to be used in risk assessments. If not, it is recommended to use the properties listed in Annex A.

Table 1 — Recommended petroleum hydrocarbon fractions for use in risk assessment related to human health and the environment, based on Equivalent Carbon (EC) number

Aliphatic fractions	Aromatic fractions		
> 5 to 6	> 5 to 7		
> 6 to 8	> 7 to 8		
> 8 to 10	> 8 to 10		
> 10 to 12	> 10 to 12		
> 12 to 16	> 12 to 16		
> 16 to 35	> 16 to 21		
> 35 to 44	> 21 to 35		
> 35 to 44			
> 44	to 70		

NOTE Depending on the available knowledge concerning the contaminant situation on the site in question, not all fractions may be relevant on a specific site.

5.3 Individual compounds

Since petroleum hydrocarbon mixtures may contain specific compounds with a toxicity that is substantially higher than the other compounds in the fraction it is part of, it is recommended to carry out separate exposure and toxicity assessments of these compounds, unless the initial desk study and conceptual model of the site in question shows that it is not relevant. Table 2 gives the recommended list of specific compounds to include.

Table 2 — Recommendations for individual compounds to be included in assessments (the list is not comprehensive)

Non-threshold compounds	Threshold compounds
Benzene Benzo[a]pyrene Benz[a]anthracene Benzo[b]fluoranthene Benzo[k]fluoranthene Benzo[ghi]perylene Chrysene Coronene Dibenz[a,h]anthracene	n-Hexane Toluene Ethylbenzene Xylenes Styrene Naphthalene Methylnaphthalenes Anthracene Fluoranthene
Indeno[1,2,3-c,d]pyrene	Phenathrene Pyrene

NOTE Other PAHs are potentially of concern and can be included if found relevant at the specific site.

Other compounds of this type include compounds containing nitrogen, sulfur and oxygen (NSO-compounds) that can also be found in petroleum hydrocarbon mixtures (e.g. benzo[b]thiophen, carbazole). Many products based on petroleum hydrocarbons also contain additives of different types with purposes specific to the products [e.g. methyl *tert*-butyl ether (MTBE), ethyl-*tert*-butylether (ETBE), *tert*-amyl methyl ether (TAME), ethanol, fatty acid methyl ester (FAME)]. These may have different environmental fate and characteristics, such as a higher solubility, a lower biodegradability or lowest olfactory and taste detection thresholds. When choosing the individual compounds to include in an investigation of a specific site, these issues should be taken into account.

It is recommended that the NSO-compounds and additives given in Table 3 are considered, when deciding which compounds should be considered in the risk assessment. Not all compounds may be relevant at all sites.

Table 3 — List of NSO-compounds and additives to be assessed if relevant

NSO-compounds					
Benzo[b]thiophene Dibenzofuran Dibenzothiophene Acridine Carbazole Aniline Dimethyl disulfide 4-methyl aniline 4-methyl quinoline Thiophene Quinoline					
Additives					
Ethyl tert-butyl ether (ETBE) Methyl tert-butyl ether (MTBE) Di-isopropyl ether (DIPE) Methanol Ethanol Butanol Tert-butyl alcohol (TBA) Fatty-acid methyl esters (FAME) Tert-amyl methyl ether (TAME) Amino ethyl ethanolamine Diethylene triamine (DETA) Ethylene diamine Tetraethylenepentamine (TEPA) 1,2-dibromoethane 1,2-dichloroethane					

It should be noted that other compounds can be relevant at a specific site (e.g. lead additives and fuel dyes). There are potentially approximately 14 000 different NSO compounds in crude oil belonging to different heteroatomic classes, e.g. asphaltenes, carboxylic acids and oxygenates. The compounds suggested are typical of NSOs found at fuel and gasoline spill sites and similar.

In the risk assessments based on the fractions and individual compounds measured, the properties listed in Annex A should be used, unless local jurisdictions require otherwise. Since acceptance criteria and guideline values usually are regulated nationally or regionally, this International Standard does not give recommendations with respect to such criteria/guidelines.

6 Petroleum hydrocarbons in soil

When talking about petroleum hydrocarbons, the difference between the term petroleum hydrocarbons as such and the term total petroleum hydrocarbons should be noted. Petroleum hydrocarbons (PHC) typically refer to the hydrogen- and carbon-containing compounds that originate from crude oil, while total petroleum hydrocarbons (TPH) refers to the measurable amount of petroleum-based hydrocarbons in an environmental matrix and thus to the actual results obtained by sampling and chemical analysis.

TPH is thus a method-defined term. In other words, estimates of TPH concentrations will vary depending on the analytical method used to measure them.

Historically, this has been a significant source of inconsistency, as laboratories have different interpretations of the term TPH. By defining PHC fractions for risk assessment, this International Standard improves consistency in reporting and PHC risk assessments.

Petroleum hydrocarbons are constituents of crude oil, which on the other hand is the basis for the production of a large number of processed hydrocarbons/products. Crude oil contains aliphatic and aromatic hydrocarbons plus NSO compounds, etc. Hydrocarbon products can be either aliphatic or aromatic hydrocarbons or a mixture of both plus the addition of other organic and inorganic compounds (e.g. naturally occurring NSO

compounds, additives in fuels and motor oils, dyes, etc.). Petroleum hydrocarbons can be grouped according to their structure as shown in Table 4.

Table 4 — Hydrocarbon structural relationship

	Hydrocarbons								
-	Aliphatic hydrocarbo	ons	Aromatic hydrocarbons						
Alkanes	Alkenes	Alkynes	Monoaromatics	oaromatics Diaromatics					
Cyclo- alkanes					Polycyclic aromatic hydrocarbons				

Petroleum hydrocarbons are typically found in soils due to spills, leakages and other forms of contamination with different types of mineral oil products, such as gasoline (petroleum) or diesel, jet fuel (kerosene), fuel oil, lubricants and solvents. The complexity of the mixture of petroleum hydrocarbons found in soils arises in part from the complexity of the original crude oil itself (which again depends on the location of its origin). In order to satisfy specific needs related to the different commercial products derived from crude oil, the oil is processed, typically by fractionation through distillation and thereafter by a number of thermal and catalytic processes. The distillation fractions are conventionally described by the carbon number range of straight chain n-alkanes in the fraction, e.g. C_6 to C_{10} .

Examples of typical products based on petroleum hydrocarbons are given in Table 5 that also shows the carbon number ranges and boiling point ranges of some common petroleum products.

Table 5 — Typical products based on petroleum hydrocarbons with approximate carbon number and boiling point ranges

Petroleum fuel mixture	Alkane carbon number ranges	Boiling point range	Compound classes
Gasoline	C ₄ to C ₁₂	20 to 200	High concentrations of BTEX compounds ^a
			Mono-aromatics and branched alkanes
			Lower concentrations of <i>n</i> -alkanes, alkenes, cyclo-alkanes and naphthalenes
			Very low concentrations of PAHs
Diesel	C ₈ to C ₂₁	200 to 300	High concentrations of <i>n</i> -alkanes
			Lower concentrations of branched alkanes, cyclo-alkanes, mono-aromatics, naphthalenes and PAHs
			Very low concentrations of BTEX compounds
Fuel oil	C ₁₂ to > C ₄₀	150 to 700	High concentrations of <i>n</i> -alkanes and cyclo-alkanes
			Lower concentrations of naphthalenes and PAHs
			Very low concentrations of BTEX compounds
Motor oils	C ₁₈ to > C ₃₄	200 to 750	High concentrations of branched alkanes and cyclo-alkanes
			Very low concentrations of BTEX compounds and PAHs
Crude oil	$C_1 \text{ to } > C_{40}$	_	High concentrations of <i>n</i> -alkanes, branched alkanes and cyclo-alkanes
			Lower concentrations of BTEX compounds, PAH without naphthalenes
			Variable concentrations of NSO compounds
a BTEX compo	unds = benzene, tolue	ne, ethylbenzenes an	d xylenes.

After their release to the environment, the petroleum hydrocarbons partition to different extents between a liquid oil phase (non-aqueous-phase liquid) and the soil, water and air phase in the soil matrix. The partitioning is dependent on the physico-chemical properties of the compounds or groups of compounds. In addition, the composition of a petroleum hydrocarbon mix changes over time due to preferential volatilization or dissolution of certain components, or due to the effects of biodegradation, both in the original spill and in the different compartments of the soil matrix. The composition of specific oil contamination in soil, apart from the properties of the hydrocarbons in the mixture, also depends on soil and water chemistry and degradation of the different compounds.

Suggested physico-chemical properties of different petroleum hydrocarbon compounds to be used in the assessment are given in Annex A. It should be noted that some jurisdictions may have specific requirements regarding the properties to be used in risk assessments. Some properties are temperature dependent and it is therefore important that the values used are appropriate for the risk assessment that is to be carried out.

The toxicity to humans and the relevant ecology varies substantially between compounds and thus between different mineral oil products and different migrating streams (mixtures of compounds migrating along different transfer routes, e.g. through vaporization or leaching). Different petroleum hydrocarbons will also exhibit variously both non-threshold toxicological behaviour (e.g. carcinogens) and threshold effects.

An illustration of the relative toxicity of specific petroleum hydrocarbon compounds is given by the list of suggested assessment criteria shown in Annex B. It should be noted that many jurisdictions have specific requirements or recommendations regarding toxicity values to be used in risk assessments.

7 Exposure assessment of petroleum hydrocarbons in soil

7.1 General

With respect to general guidance on human health risk assessment, refer to ISO 15800.

When assessing risk to humans and the environment, a number of aspects should be taken into account within a conceptual site model:

- the existence of plausible source-pathway-receptor linkages;
- the nature of the contaminant source (fuel type; NAPL/dissolved phase; fresh/weathered fuel; high/trace concentration);
- the compounds present in the source material, including appropriate surrogate or indicator compounds;
- the toxicity of the compounds concerned;
- the relevant transport and exposure routes;
- the nature and sensitivity of the receptors present;
- the likely consequences to the receptor(s) arising from the likely exposure to the contaminants.

7.2 Relevant exposure routes for petroleum hydrocarbons

Since petroleum hydrocarbon mixtures typically contain a wide range of compounds with a large variety of properties, many different exposure routes can be relevant for soils contaminated with petroleum hydrocarbons. Examples are given in Table 6.

Table 6 — Examples of exposure routes relevant for soil contaminated with petroleum hydrocarbons

Source (part of soil column)	Pathway (Transfer/exposure route)	Receptor
Surface soil ^a	Direct contact, ingestion/absorption	Resident
	Inhalation of particles	Recreational user
	Inhalation of volatile compounds	Terrestrial ecology
	Uptake by vegetables	Crops and plants
		Public health
Subsurface soil ^b	Direct contact, ingestion/absorption	Construction worker
	Inhalation of particles	Resident
	Inhalation of volatile compounds	Terrestrial ecology
	Vapour intrusion into indoor spaces	Crops and plants
	Uptake by vegetables	Public health
	Leaching to groundwater	Building foundations/materials
Groundwater	Direct contact, ingestion/absorption	Resident
	Vapour intrusion into indoor spaces	Water resources
	Drinking water	Surface-water bodies
		Aquatic ecology
a Soil within 0,20 m of the ground surface	e.	
b Soil below 0,20 m of the ground surfac	e.	

For different petroleum hydrocarbons not all pathways may be relevant, depending on the properties of the types of petroleum compounds in the product. This can also depend on the weathering of the product in the soil which may cause changes in the composition of the product with time. This should be assessed in the specific

case, based on the available information on the products possibly used on the site.

Furthermore, the specific land use should be assessed with the aim of identifying the possible complete exposure pathways on the site. Further guidance on exposure assessment of soils and sites is given in ISO 15800.

7.3 Exposure assessment methods

The exposure assessment on contaminated sites usually involves developing an initial conceptual model, identifying sources, pathways and potential receptors. If no plausible source-pathway-receptor linkages exist, the assessment may conclude at this stage. However, if plausible source-pathway-receptor linkages are identified, the likely exposure needs to be estimated. At the preliminary stages, the exposure assessment typically takes measured soil concentrations as the starting point and then bases the assessment of impacts encountered in other media (e.g. groundwater, indoor air) on calculations based on mathematical descriptions of the partitioning and transport of the compounds to the relevant point of compliance, at least at the preliminary stages of the assessment.

Exposure assessment methods can be grouped into two principally different overall methods. Either they calculate exposure through different relevant exposure pathways and compare the derived values to specific quality criteria for the media in question (e.g. groundwater); or acceptable concentration levels in the soil are calculated, based on the summation of impacts through the relevant pathways and comparison of this sum to an accepted reference dose for the relevant receptors, typically expressed as milligrams per day relative to body weight, in kilograms. In either case, it is relevant to calculate partitioning from a measured soil concentration to the relevant compartments (liquid oil, soil, water and air) and transport in this compartment (if relevant). To be able to do this in a meaningful way for petroleum hydrocarbons, the grouping of the individual compounds has to be based on them having similar partitioning and transport properties.

In order to compare the obtained results to a reference dose or a criterion (and to be able to establish such values), it is necessary that the compounds within the group have similar toxicological properties.

7.4 Toxicity assessment methods

In principle, toxicity can be assessed based on the toxicity of a product as a whole, of indicator compound(s) or of fractions of the product. These different assessment methods are illustrated in Table 7. With the whole product method, toxicity criteria for unweathered whole products are typically used. With the indicator method, toxicity of a petroleum hydrocarbon mixture is determined by the toxicity of one or more of the toxic compounds. This method is often used to assess carcinogenic compounds. The fraction method involves dividing petroleum hydrocarbon mixtures into fractions and assigning representative toxicity criteria to each fraction.

 Method
 Toxicity criteria used
 Applicable to

 Whole product method
 Unweathered whole products (Petroleum hydrocarbon mixtures)
 e.g. Diesel, JP-4 jet-propellant fuel

 Indicator method
 Toxicity of one or more toxic compounds
 Benzene, carcinogenic PAHs

 Fraction method
 Toxicity criteria assigned to each fraction
 Petroleum hydrocarbon mixtures

Table 7 — Toxicity assessment methods (according to [29])

Information on non-threshold toxicity typically exists, based on investigations of specific compounds (that are also measurable in a petroleum hydrocarbon mix, such as benzene or polycyclic aromatic hydrocarbons). Carcinogenicity varies quite widely between otherwise quite similar compounds (Table 7). Information on non-carcinogenic effects is not as abundant, but existing research seems to show that the variation is relatively small between similar compounds. This indicates that evaluation of toxicity should be based on a combination of indicator compounds representing the compounds of significant toxicological potency (threshold and non-threshold), and fractions representing a wider range of compounds.

The toxicity evaluation of a single compound or fraction can be combined into an evaluation of the overall toxicity of a petroleum hydrocarbon mixture in a number of ways. It is recommended that the concentrations of specific compounds of significant toxicity should usually be compared to criteria specific to these compounds, and that concentrations of fractions are compared to criteria set specifically for each fraction without subtracting the concentration of possible specific compounds in that fraction, since the specific compounds are assumed to contribute to the toxicity of the fraction.

When assessing the toxicity of a mixture, each fraction should be assessed by itself, if criteria or soil guideline values are given for each fraction. The measured fractions can also be used for the calculation of hazard quotients for each fraction. The sum of all the quotients, typically called a hazard index, represents the overall toxicity of the mixture, since the toxicities of the fractions are assumed to be additive.

$$I_{h} = \sum_{1}^{N} Q_{h,Fi} = \sum_{1}^{N} \frac{\rho_{Fi}}{V_{s,Fi}}$$

where

 I_h is the hazard index;

 Q_h is the hazard quotient;

Fi is the fraction i;

 ρ_{Fi} is the mass concentration of fraction i, in milligrams per cubic metre (mg/m³);

 V_{s} is the soil guideline value for fraction i.

If the hazard index is greater than one, the contamination can be assumed to pose an unacceptable risk to human health under that exposure scenario, and further evaluation becomes necessary, even if the hazard quotients are all separately below unity.

7.5 Relations between oil fractions in different media related to exposure

Migration of petroleum hydrocarbons through the different environmental compartments varies depending on the physical and chemical properties of the specific compound. The lighter compounds are typically relatively volatile and soluble and fairly easily transported away from the original spill with the soil water and soil gas and also degrade fairly easily. The heavier and more branched compounds are more strongly bound to the soil particles and more stable, which means that they tend to persist in the environment, but are also less likely to be mobile and able to migrate towards distant receptors. Since different mineral oil products consist of different mixtures of petroleum hydrocarbons, these tendencies will also vary between products.

NOTE 1 Migration of a spill can vary due to a large number of other factors, such as the volume and type of PHC released, the site-specific hydrogeology, soil and water chemistry, and degradation of the different compounds.

The principal mechanisms that control PHC movement in the subsurface, and thus the possible exposure pathways, are leaching to groundwater and volatilizing to air. The physico-chemical properties of PHC compounds that control these processes (e.g. soil-water partition coefficient, vapour pressure, Henry's law constant) should therefore be similar when individual compounds are grouped together in fractions to be used for exposure assessments.

Several studies have been carried out with respect to grouping of petroleum hydrocarbons with similar properties (see Bibliography). Evaluations have also been made with respect to how the properties of a group are best represented: by the properties of an indicator compound that, for example, typically constitutes a large proportion of the group in question, or by averaging the properties for the group. Averaging can also be done in different ways: either by simple average, by a weighted average based on composition or by correlation of the properties based on a unifying characteristic (e.g. the equivalent carbon number, EC).

The last method has been used by the Total Petroleum Hydrocarbon Criteria Working Group (TPHCWG) as the basis for dividing petroleum hydrocarbons into groups with similar potential for leaching and volatilizing. Their studies showed that correlation with a good fit between leaching properties and the equivalent carbon number could be obtained, if aliphatic and aromatic compounds were evaluated separately. For volatilization there was not an obvious difference between aliphatics and aromatics.

NOTE 2 The Total Petroleum Hydrocarbon Criteria Working Group was formed in the USA in 1993 with the following goal: to develop scientifically defensible information for establishing soil-cleanup levels that are protective of human health at hydrocarbon-contaminated sites. The group had more than 400 participants from the oil industry, consultants, several state governments and the US Environmental Protection Agency (EPA). The group has published 5 reports encompassing their findings and their recommendations.

The equivalent carbon number (EC) of a petroleum hydrocarbon is related to its boiling point, normalized to the boiling point of n-alkanes and is correlated with its retention time on a non-polar boiling-point gas chromatographic column. For example, benzene's EC number is 6,5 because its boiling point and GC retention time are approximately halfway between those of n-hexane (C₆) and n-heptane (C₇). Benzene's EC number is higher than that of n-hexane because its ring structure results in a higher boiling point although they are both C₆-compounds.

The TPHCWG suggestion for fractionation is based on a division into groups with leaching and volatilization factors that differ by approximately one order of magnitude. The one-order-of-magnitude criterion was chosen after considering the level of uncertainty in performing toxicity and exposure assessments. Suggested transport properties were assigned to each fraction based on the observed correlations with the EC-number. It should be noted that the calculated leaching and volatilization factors are based partly on properties that are estimated based on correlation equations (e.g. the octanol/water partition coefficient, K_{OW}), where the basis for the correlation is not necessarily fully consistent with the range of petroleum hydrocarbons for which it is used, but obviously represents the best available knowledge.

This method of using fractions with quite similar leaching and volatilization behaviour and estimating the relevant transport properties based on correlation with the fraction's EC numbers has been further evaluated by the American Petroleum Institute (API). The original version of the TPHCWG methodology did not include hydrocarbons greater than carbon number 35 (EC $_{35}$). This is appropriate for most refined petroleum products such as gasoline and diesel. However, the concentration of hydrocarbons with carbon numbers greater than 35 (i.e. EC $_{35+}$) can be as high as 50 % to 60 % in some crude oils. Therefore, API suggested a modification of the method to be able to conduct a risk-based analysis of sites where crude oil was present. This was done by

modifying the gas chromatographic technique to quantify hydrocarbons up to EC_{44} . Then the fraction EC_{44+} can be determined by distillation or it can be estimated.

In 2008 the World Health Organization (WHO) published a background document for development of Guidelines for Drinking-water Quality for petroleum products^[36]. WHO recommends the use of a fraction approach for the evaluation of exposure from drinking water based on the TPHCWG approach. It gives guidance about tolerable levels of hydrocarbon fractions in drinking-water, in the event of spills of petroleum products, for the following fractions:

- > EC₅ to EC₆ and > EC₆ to EC₈ aromatic fraction;
- -- > EC₈ to EC₁₀, > EC₁₀ to EC₁₂ and > EC₁₂ to EC₁₆ aromatic fraction;
- -- > EC₁₆ to EC₂₁ and > EC₂₁ to EC₃₅ aromatic fraction;
- EC₅ to EC₆ and EC₇ to EC₈ aliphatic fraction;
- EC₉ to EC₁₀, > EC₁₀ to EC₁₂ and > EC₁₂ to EC₁₆ aliphatic fraction;
- PAHs.

Other authorities or research bodies have, both before and after the suggestions of the Total Petroleum Hydrocarbon Criteria Working Group and API, suggested similar methodologies for soil, some with fewer fractions, and some with an assumed fixed division between the aromatic and aliphatic fraction (see Annex C). Obviously, a coarser fractionation gives rise to a higher order of magnitude between each end of the value span for the different transport properties of the compounds included in the fraction and thus a less precise calculation of the partitioning and transport of the fractions.

Some authorities or research bodies suggest supplementing the measured fractions with the measurement of specific compounds, typically with high relative toxicity compared to the fractions that they would otherwise be part of.

To be able to evaluate the appropriateness of suggested fractions, it is necessary to also compare toxicity values within and between the fractions. Studies carried out by RIVM (e.g. [19]) with a higher number of fractions show similar results with respect to maximum permissible concentrations for the sum of fractions comparable to the toxicity studies carried out by the Total Petroleum Hydrocarbon Criteria Working Group, and with no great variety between the smaller fractions. This is true for both soil and water. For soils alone, the maximum permissible concentrations are fairly similar between some of the soil fractions, but this is in general not true for the similar fractions in water. This comparison is based on studies evaluating ecological risk. Similar evaluations for human risk have only been carried out for the fractions suggested by the Total Petroleum Hydrocarbon Criteria Working Group. For human risk, the difference between the fractions is fairly large. On this basis a smaller number of fractions is not recommended.

Finally, an evaluation of the suggested fractions should be based on a verification of results obtained by calculation of resulting concentrations in different media based on measured soil concentrations and the suggested fractions, and a comparison with measurements of the same fractions in the different media. This type of verification has unfortunately not been carried out in a systematic way. Verification studies of the use of coarser fractions and no split between aliphatics and aromatics have been carried out by the Danish EPA, showing that these coarser fractions (3 to 4 fractions in all and no split) only gave a relatively good fit between the calculated concentrations based on measured soil concentrations and the measured concentrations in a leaching test carried out on, in principle, the same soil sample.

8 Issues related to sampling and investigation

8.1 General

Sampling is very critical if volatile compounds are involved and precautions have to be taken to prevent losses. The methods to prevent losses described in ISO 22155 and ISO 15009 are recommended. The less volatile fractions can be present as homogenous contaminants, but also as patches. A good pretreatment is necessary to ensure that a representative sample is measured in the laboratory. Recommended pretreatment methods are described in ISO 14507.

Samples have to be stored and transported cool according to ISO 18512, and analysis shall be commenced as soon as possible after sampling. Sample containers for analysis of volatiles shall only be opened and used once in order to avoid the results obtained being compromised by evaporation losses. If supplementary analysis is envisaged to be necessary, two or more samples shall be taken and stored separately.

The number and proportion of samples to be analysed for non-fractionated and fractionated will depend on the nature of the site and the exposure pathways relevant. It shall therefore be determined, based on the desk study (the conceptual model), the field observations and eventual field test results.

It should be noted that variation between sampling points in the field typically is much larger than the variations due to uncertainty related to handling of samples and chemical analysis, if standardized methods are used.

8.2 Issues related to analysis

As noted previously, Total Petroleum Hydrocarbons (TPH) refers to the measurable amount of petroleum-based hydrocarbons in an environmental matrix and thus to actual results obtained by sampling and chemical analysis. TPH is thus a method-defined term. In other words, estimates of TPH concentrations will vary depending on the analytical method used to measure them. Based on International Standards, TPH is the sum of the measurements using ISO 16703, and the aliphatic and aromatic compounds can be measured, based on ISO 22155 or ISO 15009.

Determination using gas chromatography/flame ionization detection (GC/FID) of the range C_5 to C_{40} on a single extract without clean-up is also used (see examples of clean-up methods below). This latter method has to be considered as a screening technique, because pretreatment to obtain a representative sample is not usually carried out.

If a petroleum hydrocarbon mixture is split into the aliphatic and the aromatic compounds, the aromatic compounds are typically more easily defined and described as singular peaks in a chromatogram than is the case for individual aliphatics. Identification and measurement of the individual aromatic compounds is thus much easier than identification and measurement of the individual aliphatic compounds, at least for the lighter compounds (C_6 to C_{12}). Determination of the total concentrations of the more volatile aromatic fractions can therefore be achieved by summation of the concentrations of individual compounds.

Petroleum hydrocarbons can be quantified using methods based on published International Standards that measure the following.

- 1) Volatiles: ISO 22155 or ISO 15009;
- 2) The fractions between C_{10} and C_{40} : ISO 16703.

For the volatiles < C_{10} , sampling pretreatment and extraction is used as described in ISO 22155 or ISO 15009. Individual aromatics are measured with gas chromatography/mass spectrometry (GC/MS) following the described procedure. Aliphatics are measured as groups by the following.

- 1) Summation of all peaks in the desired range using FID-detection and subtracting the aromatics, or
- 2) Using the MS detector and detection of mass fractions representative for aliphatics.

For the compounds above C_{10} , sampling pretreatment and extraction is used as described in ISO 16703. The clean-up procedure with Florisil[®] ¹⁾ is not used but instead, a silica gel column is used to split the TPH in an aliphatic and an aromatic fraction. Both fractions are measured using GC/FID and the total concentration of the desired fractions is integrated from the instrument response-time graphs.

NOTE Both methods are under further development by ISO/TC 190. See ISO 16558-1 and ISO 16558-2 in the Bibliography.

If higher fractions are deemed present, the methodology to determine these developed by API can be used.

13

¹⁾ Florisil is an example of a suitable product available commercially. This information is given for the convenience of users of this document and does not constitute an endorsement by ISO of this product.

Where leaching to groundwater is a potential exposure mechanism, assessment of the site-specific leaching potential may require leaching test procedures to be completed. In such circumstances, laboratory glassware and equipment should be selected that minimizes the potential for sorption of organic compounds to laboratory consumables. Furthermore, in the case of volatile PHC compounds, care should be taken to exclude any air-filled headspace in the leaching test procedure. VOCs are liable to partition into the headspace and generate misleading leaching data. With respect to recommendations in relation to choice and execution of leaching tests, reference is made to ISO 18772 and ISO/TS 21268 (all parts).

Annex A (informative)

Physico-chemical properties of different petroleum hydrocarbons

Explanation of abbreviations and symbols

EC is the equivalent carbon number;

MW is the molecular weight, in grams per mole (g/mol);

S is the solubility in water, in micrograms per litre ($\mu g/I$);

VP is the vapour pressure, in kilopascals (kPa);

 $\log K_{ow}$ is the log octanol/water partition coefficient;

BP is the boiling point, in degrees Celsius (°C);

 D_{air} is the diffusion coefficient in air, in square centimetres per second (cm²/s).

Table A.1 — Aliphatics and aromatics

Commonad	Carbon	F0	D4304	S	VP	la mV	ВР	D_{air}
Compound	atoms	EC	MW	μg/l	kPa	$\log K_{\sf ow}$	°C	cm ² /s
Aliphatics								
3-Methylpentane	6	5,6	86,18	17,9	25,27	3,6	63,2	8,0x10 ⁻²
<i>n</i> -Hexane	6	6	86,18	9,5	20,08	3,9	68,7	8,0x10 ⁻²
Methylcyclopentane	6	6,12	84,16	42	18,25	3,37	71,8	8,1x10 ⁻²
Cyclohexene	6	6,74	82,15	213	11,86	2,86	82,9	7,8x10 ⁻²
2-Methylhexane	7	6,68	100,21	2,54	8,84	3,71	90	7,4x10 ⁻²
2,2,4-Trimethylpentane	8	7,04	114,23	2,44	6,56	4,09	99,2	6,9x10 ⁻²
n-Propylcyclopentane	8	7,10	112,1	2,04	1,62	4,37	101	7,0x10 ⁻²
Ethylcyclopentane	7	7,34	98,19	0,77	5,32	3,84	103,5	7,6x10 ⁻²
<i>n</i> -Octane	8	8	114,23	0,66	1,88	5,18	125,6	6,9x10 ⁻²
2,2,5-Trimethylhexane	9	7,87	128,26	1,15	2,21	5,06	124	6,6x10 ⁻²
1-Decene	10	9,91	140,27	0,1	0,22	5,31	170,5	6,3x10 ⁻²
2-Methylnonane	10	9,75	142,29	0,90	0,25	5,18	167,1	6,2x10 ⁻²
n-Decane	10	10	142,29	0,052	0,19	5,01	174,1	6,2x10 ⁻²
n-Dodecane	12	12	170,34	0,0037	0,018	6,1	216,3	5,7x10 ⁻²
n-Tetradecane	14	14	198,40	0,0022	0,0015	7,2	253,5	5,3x10 ⁻²
n-Pentadecane	15	15	212,42	0,000076	0,00046	7,71	270,6	5,1x10 ⁻²
n-Hexadecane	16	16	226,45	0,0009	0,00019	8,25	286,8	4,9x10 ⁻²
Pristane	19	16,63	268,53	0,000053	0,00058	9,38	296	4,5x10 ⁻²
n-Octadecane	18	18	254,50	0,006	0,000045	9,18	316,3	4,7x10 ⁻²
n-Eicosane	20	20	282,56	0,0019	6,1x10 ⁻⁷	10,16	343	4,4x10 ⁻²
Heneicosane	21	20,65	296,58	2,9x10 ⁻⁸	0,000012	10,65	356,6	4,3x10 ⁻²
n-Pentacosane	25	25	352,69	2,9x10 ⁻⁸	2,0x10 ⁻⁷	12,62	401,9	4,0x10 ⁻²
n-Hexacosane	26	26	366,72	0,0017	6,2x10 ⁻⁸	13,11	412,2	3,9x10 ⁻²

Table A.1 (continued)

0	Carbon	F0	84147	S	VP	la »V	BP	D_{air}
Compound	atoms	EC	MW	μg/l	kPa	$\log K_{\sf ow}$	°C	cm ² /s
n-Octacosane	28	28	394,77	8,8x10 ⁻¹⁰	2,1x10 ⁻¹⁰	14,09	431,6	3,7x10 ⁻²
n-Triacontane	30	30	422,83	8,6x10 ⁻¹¹	3,6x10 ⁻¹²	15,07	449,7	3,6x10 ⁻²
n-Dotriacontane	32	32	450,88	8,3x10 ⁻¹²	2,7x10 ⁻⁸	16,06	467	3,5x10 ⁻²
Pentatricontane	35	35	492,96	2,5x10 ⁻¹³	7,2x10 ⁻¹³	17,53	490	3,3x10 ⁻²
Aromatics				,				
Benzene	6	6,50	78,10	1790	12,6	2,13	80,1	8,4x10 ⁻²
Toluene	7	7.58	92,10	526	3,78	2,73	110,6	7,7x10 ⁻²
Styrene			104,15	9,600	0,85	3,00		7,4x10 ⁻²
Ethyl benzene	8	8,5	106,2	169	1,28	3,15	136,1	7,2x10 ⁻²
<i>m</i> -Xylene	8	8,60	106,2	161	1,10	3,20	139,1	7,2x10 ⁻²
1,2,4-Trimethylbenzene	9	9,84	120,2	57	0,28	3,63	169,3	6,8x10 ⁻²
1,3,5-Trimethylbenzene	9	9,62	120,2	48,2	0,33	3,63	164,7	6,8x10 ⁻²
3-Ethyltoluene	9	9,49	120,2	40	0,40	3,98	161,3	6,8x10 ⁻²
1,2-Diethylbenzene	10	10,52	134,22	71,1	0,14	3,72	184	6,4x10 ⁻²
<i>m</i> -Cumene	10	10,11	134,22	42,5	0,23	4,5	175,1	6,4x10 ⁻²
1,2,3,5-Tetramethylbenzene	10	11,19	134,22	27,9	0,066	4,10	198	6,4x10 ⁻²
Naphthalene	10	11,69	128,18	31	0,011	3,37	218	6,7x10 ⁻²
1-Methylanthracene	15	11,27	192,26	0,27	0,000007	3,87	244,7	6,2x10 ⁻²
2-Ethylnaphthalene	12	12,99	156,23	8,01	0,0042	4,38	258	5,9x10 ⁻²
Acenaphthylene	12	15,06	152,2	16,1	0,00089	3,94	280	6,0x10 ⁻²
Acenaphthene	12	15,50	154,21	3,92	0,00029	3,92	277,5	6,0x10 ⁻²
2,3,5-Trimethylnaphthalene	13	15,96	170,26	4,78	0,00034	4,78	285	5,7x10 ⁻²
Fluorene	13	16,55	166,22	1,69	0,00008	4,18	295	5,7x10 ⁻²
Phenanthrene	14	19,36	178,24	1,15	0,000016	4,46	340	5,7x10 ⁻²
Anthracene	14	19,43	178,24	0,043	8,7x10 ⁻⁷	4,45	340	5,7x10 ⁻²
Pyrene	16	20,8	202,26	0,14	6,0x10 ⁻⁷	4,88	404	5,3x10 ⁻²
Fluoranthene	16	21,85	202,26	0,26	0,0000012	5,16	384	5,3x10 ⁻²
Chrysene	18	27,41	228,3	0,002	8,3x10 ⁻¹⁰	5,81	448	5,3x10 ⁻²
Benzo[a]pyrene	20	31,34	252,3	0,0016	7,3x10 ⁻¹⁰	6,13	495	4,8x10 ⁻²
Dibenzo(ah)anthracene	22	33,92	278,36	0,0025	1,3x10 ⁻¹⁰	6,75	524	4,4x10 ⁻²
Benzo(g,h,i)perylene	22	34,01	276,34	0,0003	1,3x10 ⁻¹¹	6,63	520	4,5x10 ⁻²
Coronene	24	34,01	300,36	0,0001	2,9x10 ⁻¹³	7,64	525	4,3x10 ⁻²
Indeno(1,2,3-cd)pyrene	22	35,01	276,34	0,0002	1,7x10 ⁻¹¹	6,7	536	4,5x10 ⁻²

Table A.2 — Fractions, NSO compounds and additives

Communication	B4147	S	VP	la n P	ВР	D_{air}
Compound	MW	μg/l	kPa	$\log K_{\sf ow}$	°C	cm ² /s
Fractions	,	•	^	"	*	^
Aliphatic > EC ₅ to EC ₆	86	14	22	3,8	66	8,0x10 ⁻²
Aliphatic > EC ₆ to EC ₈	100	5,4	7,5	4,5	95	7,4x10 ⁻²
Aliphatic > EC ₈ to EC ₁₀	140	0,35	0,32	5,2	195	6,2x10 ⁻²
Aliphatic > EC ₁₀ to EC ₁₂	160	0,026	0,03	6,3	200	5,9x10 ⁻²
Aliphatic > EC ₁₂ to EC ₁₆	210	0,0049	0,001	7,7	270	5,1x10 ⁻²
Aliphatic > EC ₁₆ to EC ₃₅	340	0,0001	0,0001	12	380	4,1x10 ⁻²
Aliphatic > EC ₃₅ to EC ₄₄	490	2,5x10 ⁻¹³	7,0x10 ⁻¹³	15	490	3,3x10 ⁻²
Aromatic > EC ₅ to EC ₇ ^a	78	1790	12,6	2,13	80	8,4x10 ⁻²
Aromatic > EC ₇ to EC ₈ ^b	92	526	3,8	2,73	110	7,7x10 ⁻²
Aromatic > EC ₈ to EC ₁₀	115	95	0,64	3,7	150	7,0x10 ⁻²
Aromatic > EC ₁₀ to EC ₁₂	145	35	0,089	3,9	200	6,4x10 ⁻²
Aromatic > EC ₁₂ to EC ₁₆	160	8,2	0,0014	4,3	275	5,9x10 ⁻²
Aromatic > EC ₁₆ to EC ₂₁	180	0,75	0,00002	4,9	350	5,6x10 ⁻²
Aromatic > EC ₂₁ to EC ₃₅	250	0,04	0,0000002	6,4	480	4,8x10 ⁻²
Aromatic > EC ₃₅ to EC ₄₄	280	0,0002	1,5x10 ⁻¹¹	6,7	540	4,5x10 ⁻²
> EC ₄₄ to EC ₇₀	400	0,0001	8,5x10 ⁻¹²	10	500	4,0x10 ⁻²
NSO compounds				•		
Thiophene	84,14	3,010	10,6	1,81	84	9,0x10 ⁻²
Dimethylsulfide	94,2	3,000	3,8	1,77	109,8	8,5x10 ⁻²
Aniline	93,13	36,000	0,065	0,9	184,1	8,5x10 ⁻²
4-Methylaniline	107,15	6,500	0,038	1,39	201,4	7,9x10 ⁻²
Quinoline	129,16	6,110	0,008	2,03	237,1	7,2x10 ⁻²
Benzo(b)thiophene	134,20	130	0,032	3,12	221	7,1x10 ⁻²
4-Methylquinoline	143,19	480	0,0008	2,61	262	6,9x10 ⁻²
Dibenzofuran	168,19	3,1	0,00033	4,12	287	6,3x10 ⁻²
Dibenzothiophene	184,25	1,47	0,000027	4,38	332,5	6,1x10 ⁻²
Acridine	179,22	38,4	0,000018	3,4	346	6,1x10 ⁻²
Carbazole	167,21	1,8	9,9x10 ⁻⁸	3,72	354,7	6,3x10 ⁻²
Additives						
Methanol	32,05	С	12,8	-0,8	64,8	6,0x10 ⁻²
Ethanol	46,08	С	7,9	-0,31	78,3	12,1x10 ⁻²
Butanol	74,14	77,000	0,59	0,88	117,4	8,1x10 ⁻²
MTBE	88,15	51,000	33	0,94	54	8,8x10 ⁻²
ETBE	102,2	5,030	20,3	1,89	72	7,0x10 ⁻²
TAME	102,2	12,000	13,3	1,95	86	7,0x10 ⁻²
DIPE	102,2	8,8000	10,3	1,52	69	6,8x10 ⁻²
1,2-Dichloroethane	99,0	8,600	30,3	1,48	83,5	8,3x10 ⁻²
1,2-Dibromoethane	187,9	4,300	2,3	1,76	131,6	6,0x10 ⁻²

a Benzene.

b Toluene.

c Miscible with water.

Table A.2 (continued)

Compound	MW	S	VP	low V	BP	D_{air}
	IVIVV	μg/l	kPa	$\log K_{\sf ow}$	°C	cm ² /s
DETA	103,2	С	0,02	-1,3	207	8,1x10 ⁻²
Diethanolamine	105,1	С	0,00001	-2,18	269	8,0x10 ⁻²
Triethanolamine	149,2	С	0,0000004	-2,3	335	6,7x10 ⁻²
TEPA	189,3	С	0,0000001	-3,16	340	6,0x10 ⁻²

a Benzene.

NOTE The values given for individual compounds are based on the database in the updated version of the Danish exposure assessment model JAGG^[12]. This database was updated in 2008 and 2010 based on a comprehensive literature search. The values for fractions are based on data from the TPHCWG reports with updates from [12], [20] and [23].

b Toluene.

c Miscible with water.

Annex B

(informative)

Examples of suggested tolerated concentrations in air (TCA) and tolerable daily intake (TDI) values for different specific petroleum hydrocarbons

Compound	EC	TCA	TDI
Benzene	6,5	0,03 mg/m ³ to 4,5 mg/m ^{3a}	0,000 4 mg/kg·d to 0,004 mg/kg·db
Toluene	7,58	0,1 mg/kg·d ^c ; 3 mg/m ³	0,2 mg/kg·d to 0,43 mg/kg·d
Ethylbenzene	8,5	0,077 mg/m ³	0,136 mg/kg·d
<i>m</i> -Xylene	8,6	0,2 mg/kg·d ^c	0,15 mg/kg·d
Styrene	8,83	0,8 mg/m ³	0,077 mg/kg·d
Trimethylbenzene	9,62 to 10,06	0,1 mg/kg·d ^c	_
Naphthalene	11,69	10 mg/m ^{3a}	0,03 mg/kg·d
Phenanthrene	19,36	_	0,02 mg/kg·d
Anthracene	19,43	_	0,05 mg/kg·d
Benzo[a]pyrene	31,34	0,14 ng/ m ^{3a}	0,87 ng/kg·d ^c
<i>n</i> -Hexane	6	0,2 mg/m ³	0,023 mg/kg·d
<i>n</i> -Heptane	7	_	3,1 mg/kg·d
<i>n</i> -Octane	8	_	3,1 mg/kg·d
Cyclohexane	6,59	0,4 mg/kg·d ^c	_
<i>n</i> -Nonane	9,00	5,8 mg/m ³	0,3 mg/kg·d

a Based on an additional cancer risk of 1:100 000.

NOTE The listed values are compiled from different nationally suggested guidelines.

b For example, per kg of body weight.

c TDI, inhalation.

Annex C

(informative)

Overview of suggested fractionations in different countries

Country	Non-split fractions	Aliphatic fractions	Aromatic fractions	Indicator parameters	Carbon interval
Australia		6	7		C ₅ to C ₃₅
		5 to 6, 6 to 8, 8 to 10, 10 to 12, 12 to 16, 16 to 35	5 to 7, 7 to 8, 8 to 10, 10 to 12, 12 to 16, 16 to 21, 21 to 35		
Belgium	1	7	8	No	$C_6 \ to > C_{44}$
Canada	4 6 to 10, 10 to 16, 16 to 34, > 34			No	C ₆ to C ₃₄
Germany		5 6 to 8, 8 to 10, 10 to 12, 12 to 16, 16 to 34	3 9 to 10, 10 to 12, 12 to 15	Volatiles and PAH	C ₆ to C ₁₆
Denmark	3 6 to 10, 10 to 25, 25 to 40			NSOs	C ₆ to C ₄₀
Japan	3 6 to 12, 12 to 28, > 28			No	C ₆ to C ₄₄
Netherlands		6/9 ^b	7/10 ^b		C ₅ to C ₄₀
		5 to 6, 6 to 8, 8 to 10, 10 to 12, 12 to 16, 16 to 21	5 to 7, 7 to 8, 8 to 10, 10 to 12, 12 to 16, 16, 21, 21 to 35		
New Zea- land	4			No	C ₇ to C ₃₆
Sweden		5 5 to 8, 8 to10, 10 to 12, 12 to 16, 16 to 35	6 8 to 10 (2 groups), 10, 35 (4 groups)	Yes ^a	C ₆ to C ₃₅
United	1 (>C ₄₄)	7	8		C ₆ to > C ₄₄
Kingdom		5 to 6, 6 to 8, 8 to 10, 10 to 12, 12 to 16, 16 to 35, 35 to 44	5 to 7, 7 to 8, 8 to 10, 10 to 12, 12 to 16, 16 to 21, 21 to 35, 35 to 44		
USA (API)	1 (>C ₄₄)	6	7		C_6 to $> C_{44}$
		5 to 6, 6 to 8, 8 to 10, 10 to 12, 12 to 16, 16 to 21	5 to 7, 7 to 8, 8 to 10, 10 to 12, 12 to 16, 16 to 21, 21 to 35		
USA		3	2	Yes	C ₅ to C ₃₆
(MaDEP)		5 to 8, 8 to 18, 18 to 35	9 to 10, 10 to 22		
USA		6	7	No	C ₅ to C ₃₅
(TPHCWG)		5 to 6, 6 to 8, 8 to 10, 10 to 12, 12 to 16, 16 to 21	5 to 6, 6 to 8, 8 to 10, 10 to 12, 12 to 16, 16 to 21		

NOTE The information is compiled based on information from members of the ISO working group responsible for this International Standard.

a Identification of 7 specific aromates and 4 additives.

b Similar to the TNRCC method but with more fractions.

Bibliography

- [1] ISO 10381 (all parts), Soil quality Sampling
- [2] ISO 14507, Soil quality Pretreatment of samples for determination of organic contaminants
- [3] ISO 15799, Soil quality Guidance on the ecotoxicological characterisation of soils and soil materials
- [4] ISO 16558-1, Soil quality Risk-based petroleum hydrocarbons Part 1: Determination of aliphatic and aromatic fractions of volatile petroleum hydrocarbons using gas chromatography (static headspace method) (currently at the Committee Draft stage)
- [5] ISO 16558-2, Soil quality Risk-based petroleum hydrocarbons Part 2: Determination of aliphatic and aromatic fractions of semi-volatile petroleum hydrocarbons using gas chromatography with flame ionisation detection (GC/FID) (currently at the Committee Draft stage)
- [6] ISO 18772, Soil quality Guidance on leaching procedures for subsequent chemical and ecotoxicological testing of soil and soil materials
- [7] ISO/TS 21268 (all parts), Soil quality Leaching procedures for subsequent chemical and ecotoxicological testing of soil and soil materials
- [8] ASTM (2002): Standard Guide for the Risk-Based Corrective Action Applied at Petroleum Release Sites. Designation: E 1739 95 (Reapproved 2002)
- [9] Canadian Council of Ministers of the Environment (CCME): Canada-Wide Standard for Petroleum Hydrocarbons (PHC) in Soil. User Guidance. 10-6162
- [10] Concawe (2003): European Oil Industry guideline for Risk-Based assessment of Contaminated Sites (revised)
- [11] Danish EPA (2006): Danish Environmental Protection Agency's Reference Laboratory for Environmental Chemistry. *Method Evaluation Study Oil in soil*. Interlaboratory Study 2004 and Supplementary Study 2005
- [12] Danish EPA (2008): Upgrading of JAGG (the Danish exposure assessment model). Revision of fugacity calculations, assessment of free phase and mixed contaminants (In Danish)
- [13] Environment Agency. 2005. The UK approach for evaluating human health risks from petroleum hydrocarbons in soils. Science report P5-080/TR3, February 2005. Environment Agency, Bristol. Available: www.environment-agency.gov.uk
- [14] Franken, R.O.G., Baars, A.J., Crommentuijn, G.H. and Otte, P. (1999): A proposal for revised Intervention Values for petroleum hydrocarbons ("mineral oil") on base of fractions of petroleum hydrocarbons. Bilthoven, The Netherlands. National Institute of Public Health and the Environment. RIVM report 601501 012
- [15] HARMSEN, J. et al (2005): Risk assessment for mineral oil: Development of standardized analytical methods in soil and soil-like materials. Alterra Report 1225
- [16] IARC (2010): Agents Classified by the IARC Monographs, Volumes 1 100 (updated May 26 2010)
- [17] IUPAC (1997): Compendium of Chemical Terminology, 2nd ed. (the "Gold Book"). Compiled by McNaught, A.D. and Wilkinson, A. Blackwell Scientific Publications, Oxford
- [18] Ministry of the Environment of Japan (2006): Guidelines for the Countermeasures against Oil Contamination Landowner's Response Policy Concerning Oil Slick and Odour Problems from Mineral Oil Contaminated Soil
- [19] LIJZEN, J.P.A. and VERBRUGGEN, E.M.J. (2005): Beoordeling bodemverontreiniging met minerale olie via een fractiebenadering. RIVM, LER notitie 05/05

- [20] LIJZEN, J.P.A, BAARS, A.J, OTTE, P.F., RIKKEN, M.G.J., SWARTJES, F.A., VERBRUGGEN, E.M.J., and VAN WEZEL, A.P. (2001): Technical evaluation of the Intervention Values for Soil/sediment and Groundwater. Human and ecotoxicological risk assessment and derivation of risk limits for soil, aquatic sediment and groundwater, RIVM report 711701 023
- [21] MADEP (2002a): Draft Updated Petroleum Hydrocarbon Fraction Toxicity Values for the VPH/EPH/ APH Methodology, Massachusetts Department of Environmental Protection, Bureau of Waste Site Cleanup, Massachusetts
- [22] MADEP (2002b): Characterizing Risks Posed by Petroleum Contaminated Sites: Implementing the VPH/EPH/APH Approach, Policy #WSC-02-411, Massachusetts Department of Environmental Protection, Executive Office of Environmental Affairs, Commonwealth of Massachusetts, dated 31/10/02
- [23] Mole Valley District Council (2009): *Human Health Generic Assessment Criteria for Petroleum Hydrocarbons*. Position paper, SLR Ref: 411-2022-00003
- [24] SADLER, R. and CONNELL, D. (2003): Analytical Methods for the Determination of Total petroleum Hydrocarbons in Soil, in: Proceedings of the Fifth National Workshop on the Assessment of Site Contamination, NEPC Service Corporation
- [25] SCHNEIDER, K. et al (2005): Bewertung von Mineralölkohlenwasserstoffen und Erarbeitung einer Begründung für einen Prüfwert gemäß BBodSchV für den Direktpfad Boden-Mensch. Umweltforschungsplan des Bundesministeriums für Umwelt, Naturschutz und Reaktorsicherheit
- [26] Texas Natural Resource Conservation Commission (TNRCC) 2001: *Guidance for conducting ecological risk assessments at remediation sites in Texas.* Available at: http://www.tceq.state.tx.us/comm_exec/forms-pubs/pubs/rg/rg-263.html
- [27] TNRCC (2001) *Total Petroleum Hydrocarbons*, TNRCC Method 1005, Revision 03, June 1, 2001, Texas Natural Resource Conservation Commission, Austin, Texas
- [28] Total Petroleum Hydrocarbon Criteria Working Group (1997a): Selection of Representative TPH Fractions Based on Fate and Transport Considerations
- [29] Total Petroleum Hydrocarbon Criteria Working Group (1997b): Development of Fraction Specific Reference Doses (RfDs) and Reference Concentrations (RfCs) for Total Petroleum Hydrocarbons (TPH)
- [30] Total Petroleum Hydrocarbon Criteria Working Group (1998): Composition of Petroleum Mixtures
- [31] Total Petroleum Hydrocarbon Criteria Working Group Series (1999): *Human Health Risk-Based Evaluation of Petroleum Release Sites*: Implementing the Working Group Approach
- [32] UK Environment Agency (2003): Principles for Evaluating the Human Health Risks from Petroleum Hydrocarbons in Soils: A Consultation Paper. R & D Technical Report P5-080/TR1
- [33] UK Environment Agency (2004): Review of Comments on: Environment Agency Public Consultation paper Principles for Evaluating the Human Health Risks from Petroleum Hydrocarbons, Science Report P5-080/TR2
- [34] UK Environment Agency (2005): *The UK Approach for Evaluating Human Health Risks from Petroleum Hydrocarbons in Soils.* Science Report P5-080/TR3
- [35] VERBRUGGEN, E.M.J. (2004): Environmental Risk Limits for Mineral Oil (Total Petroleum Hydrocarbons). RIVM Report 601501021/2004
- [36] WHO (2008): *Petroleum Products in Drinking-water*. Background document for development of WHO Guidelines for Drinking-water Quality. WHO/SDE/WSH/05.08/123

ICS 13.080.01

Price based on 23 pages