# INTERNATIONAL STANDARD ISO 11476 Third edition 2016-08-15 # Paper and board — Determination of CIE whiteness, C/2° (indoor illumination conditions) Papier et carton — Détermination du degré de blanc CIE C/2° (éclairage intérieur) # ISO 11476:2016(E) # **COPYRIGHT PROTECTED DOCUMENT** © ISO 2016, Published in Switzerland All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester. ISO copyright office Ch. de Blandonnet 8 • CP 401 CH-1214 Vernier, Geneva, Switzerland Tel. +41 22 749 01 11 Fax +41 22 749 09 47 copyright@iso.org www.iso.org | Coı | ntents | Page | |------|------------------------------------------------------------------------------------------------|------| | Fore | word | iv | | 1 | Scope | 1 | | 2 | Normative references | 1 | | 3 | Terms and definitions | 1 | | 4 | Principle | | | 5 | Apparatus and equipment | 3 | | 6 | Calibration | 4 | | 7 | Sampling and conditioning | 5 | | 8 | Preparation of test pieces | 5 | | 9 | Procedure | 5 | | 10 | Calculation and expression of results | 6 | | 11 | Precision | | | 12 | Test report | 7 | | Ann | ex A (normative) Spectral characteristics of reflectometers for determining tristimulus values | 8 | | Ann | ex B (normative) UV-calibration service | 14 | | Rihl | iogranhy | 16 | # **Foreword** ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see <a href="https://www.iso.org/directives">www.iso.org/directives</a>). Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see <a href="https://www.iso.org/patents">www.iso.org/patents</a>). Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement. For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the WTO principles in the Technical Barriers to Trade (TBT) see the following URL: Foreword - Supplementary information The committee responsible for this document is ISO/TC 6, *Paper, board and pulps*. This third edition cancels and replaces the second edition (ISO 11476:2010), which has been technically revised. The major change is to allow for calculations using ASTM E308 for instruments that have bandpass correction and still maintain the non-bandpass-correction procedure. It is based on the CIE whiteness formula, published in CIE Publication 15:2004, *Colorimetry*. # Paper and board — Determination of CIE whiteness, $C/2^{\circ}$ (indoor illumination conditions) # 1 Scope This International Standard specifies the procedure to be used for determining the CIE whiteness of papers and boards, in order to obtain values which correspond to the visual appearance of white papers and boards, with or without fluorescent whitening agents, when they are viewed indoors. It is based on radiance factor data obtained over the full visible spectral range (VIS) in contrast to the measurement of ISO brightness, which is limited to the blue region of VIS. This International Standard also specifies the procedures for the determination of CIE tint values and the fluorescent component of CIE whiteness. In addition, it specifies a method for adjustment of the UV-content to correspond to that of CIE illuminant C,[10][12] since the results obtained when fluorescent whitening agents are present are dependent upon the UV-content of the radiation falling upon the sample. The CIE illuminant C is taken to be representative of indoor illumination conditions because it contains a suitable proportion of UV radiation.[2] This method is not applicable to coloured papers containing fluorescent dyes. It is specific to the situation where the fluorescence occurs in the blue region of the visible spectral range. This International Standard is read in conjunction with ISO 2469. NOTE 1 It is recognized that the CIE whiteness formula was developed in the context of the CIE standard illuminant D65,<sup>[5]</sup> but the similarity between the relative spectral power curves for the C and D65 illuminants within the visible region and the closeness of their correlated colour temperatures (6 770 K and 6 500 K respectively) are taken as a justification for the use of the analogous whiteness formula with the CIE illuminant C. NOTE 2 A related International Standard, ISO 11475, specifies the procedure for obtaining values corresponding to the appearance of papers viewed under the CIE standard illuminant D65. #### 2 Normative references The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. ISO 186, Paper and board — Sampling to determine average quality ISO 2469, Paper, board and pulps — Measurement of diffuse radiance factor (diffuse reflectance factor) ISO 2470-1, Paper, board and pulps — Measurement of diffuse blue reflectance factor — Part 1: Indoor daylight conditions (ISO brightness) ISO 4094, Paper, board and pulps — International calibration of testing apparatus — Nomination and acceptance of standardizing and authorized laboratories ### 3 Terms and definitions For the purposes of this document, the following terms and definitions apply. NOTE The symbols used here are selected to maintain consistency, wherever possible, with the CIE International Lighting Vocabulary ILV. While the definitions used here are based upon the CIE ILV, they have been adapted for this International Standard. #### 3.1 #### reflectance factor R ratio of the radiation reflected by a body to that reflected by the perfect reflecting diffuser under the same conditions Note 1 to entry: The reflectance factor is usually expressed as a percentage. #### 3.2 #### intrinsic reflectance factor $R_{\alpha}$ reflectance factor (3.1) of a layer or pad of the material thick enough to be opaque, i.e. such that increasing the thickness of the pad by doubling the number of sheets results in no change in the measured reflectance factor #### 3.3 # diffuse radiance factor В ratio of the diffusely reflected radiance of a body in a given direction to that of the perfect reflecting diffuser under specified conditions of irradiation Note 1 to entry: For fluorescent (luminescent) materials, the specified conditions of irradiation in this International Standard are for CIE Illuminant C and the diffuse radiance factor is strictly the total radiance factor, $\beta$ , which contains two components, the reflected radiance factor, $\beta_R$ , and the luminescent radiance factor, $\beta_L$ , so that $$\beta = \beta_{\rm R} + \beta_{\rm L}$$ Note 2 to entry: For non-fluorescent materials, the diffuse radiance factor, $\beta$ , is simply the *reflectance factor*, R (3.1). #### 3.4 #### intrinsic diffuse radiance factor $\beta_{\infty}$ diffuse radiance factor (3.3) of a layer or pad of the material thick enough to be opaque, i.e. such that increasing the thickness of the pad by doubling the number of sheets results in no change in the measured radiance factor Note 1 to entry: For fluorescent (luminescent) materials, the intrinsic total radiance factor, $\beta_{\infty}$ , is the sum of two portions, the intrinsic reflected radiance factor, $\beta_{\infty,R}$ , and the intrinsic luminescent radiance factor, $\beta_{\infty,L}$ , so that $$\beta_{\infty} = \beta_{\infty,R} + \beta_{\infty,L}$$ Note 2 to entry: For non-fluorescent materials, the intrinsic diffuse radiance factor, $\beta_{\infty}$ , is simply the *intrinsic* reflectance factor, $R_{\infty}$ (3.2). #### 3.5 #### **CIE** whiteness W measure of CIE whiteness derived from the CIE tristimulus values determined under the conditions specified in this International Standard Note 1 to entry: The CIE whiteness is expressed in CIE whiteness units. # 3.6 green tint red tint $T_{x_{\lambda \lambda}}$ measure of the deviation from CIE whiteness (3.5) of the test material towards the green or red region under the conditions specified in this International Standard Note 1 to entry: The deviation is expressed as CIE tint units. Note 2 to entry: A positive value of $T_{\rm W}$ indicates a greenish tint and a negative value indicates a reddish tint. #### 3.7 ### fluorescence component F measure of the extent to which the *CIE whiteness* (3.5) of the material is affected by excitation of the added fluorescent whitening agent (FWA) under the conditions specified in this International Standard Note 1 to entry: The absence of a suffix in the terms given in 3.5 to 3.7 is used to indicate that the value refers to the CIE 1931 (2°) observer. # 4 Principle The diffuse radiance factor of the material is determined under standardized conditions after adjustment of the instrument so that the relative UV-content of the illumination corresponds to that of the CIE illuminant C, and the CIE whiteness and tint are calculated. The fluorescence component of the CIE whiteness is calculated from the difference between the diffuse radiance factor value and the value obtained when the fluorescence emission from the material is eliminated, for instance, by the introduction into the light beams of a sharp cut-off UV-absorbing filter. # 5 Apparatus and equipment **5.1 Reflectometer** or **spectrophotometer**, having the geometric, spectral and photometric characteristics described in ISO 2469, calibrated in accordance with the provisions of ISO 2470-1 and equipped with a radiation source having an adequate UV-content and a means of adjusting the relative UV-content so that the measured ISO brightness value agrees with the ISO brightness value assigned to a fluorescent reference standard (5.2.2) and corresponding to the CIE illuminant C. [8][11][12] If a filter (the UV-adjustment filter) is used to make this adjustment, it shall have a cut-off value of 395 nm so that it absorbs UV radiation, but does not, at the same time, alter the visible spectrum within the sphere. NOTE In order to achieve concordance between the conditions for measuring both ISO brightness and CIE whiteness $(C/2^{\circ})$ , an adjustment based on a fluorescent reference standard (5.2.2) having an assigned ISO brightness value is preferred. For the measurement of reflectance factors with the fluorescence effect eliminated, the instrument shall be equipped with a sharp cut-off, UV-absorbing filter (the UV-cut-off filter) having a transmittance not exceeding 5,0 % at and below a wavelength of 410 nm and not exceeding 50 % at a wavelength of 420 nm. The cut-off filter shall have characteristics such that a repeatable reflectance factor value is obtained at 420 nm. The reflectance factor value obtained at 420 nm shall then be considered for computational purposes to be the value which applies at all lower wavelengths, at which it is not possible to make any measurement. For the measurement of fluorescent papers, photometric linearity up to a scale reading of at least 200 % is necessary in the wavelength region corresponding to the fluorescent emission. **5.1.1** In the case of a **filter reflectometer**, pairs of filters giving the photoelectric detectors of the reflectometer responses equivalent to the CIE tristimulus values X, Y, Z of the test piece, [9] evaluated for the CIE illuminant C[10] and CIE 1931 (2°).[4] - **5.1.2** In the case of an **abridged spectrophotometer**, a means of calculating the weighted means in accordance with the requirements of the CIE illuminant C and CIE 1931 (2°) observer using the weighting functions given in <u>Annex A</u> and Reference [6], where the <u>Tables A.1</u> and <u>A.2</u> are used for instruments without bandpass correction and <u>Tables A.3</u> and <u>A.4</u> are used for instruments with bandpass correction. - 5.2 Reference standards for calibration of the instrument and working standards. - **5.2.1 Non-fluorescent reference standard for calibration**, fulfilling the requirements for international reference standards of level 3, as specified in ISO 2470-1. - **5.2.2 Fluorescent reference standard** for use in adjusting the UV-content of the radiation incident upon the sample, having an assigned ISO brightness value, as specified in Annex B, and fulfilling the requirements for international reference standards of level 3, as specified in ISO 2470-1. Use new reference standards sufficiently frequently to ensure satisfactory calibration and UV-adjustment. - 5.3 Working standards. - **5.3.1** Two plates of flat opal glass or ceramic material, cleaned as described in ISO 2469. - **5.3.2 Stable plastic or other tablet**, incorporating a fluorescent whitening agent. - **5.4 Black cavity**, having a reflectance factor which does not differ from its nominal value by more than 0,2 % at all wavelengths. The black cavity should be stored upside down in a dust-free environment or with a protective cover. The condition of the black cavity should be checked by reference to the instrument maker. ### 6 Calibration - **6.1** Using the values assigned to the non-fluorescent reference standard (5.2.1), calibrate the instrument with the UV-cut-off filters removed from the radiation beams. The setting of the UV-adjustment filter is not important at this stage. - **6.2** Using the appropriate measurement procedure, measure the reflectance of the fluorescent reference standard (5.2.2), determine the ISO brightness value as specified in ISO 2470-1 and compare the value obtained with that assigned to the fluorescent reference standard. A measured ISO brightness value higher than the assigned value indicates that the relative UV-content of the illumination is too high and a lower value indicates that the relative UV-content is too low. - **6.3** Using the UV-adjustment filter or other adjustment device, adjust the UV-content of the illumination until measurement gives the correct ISO brightness value. - **6.4** Repeat the calibration as described in <u>6.1</u> using the non-fluorescent standard (<u>5.2.1</u>) with the UV-adjustment in the position which gave the correct ISO brightness value for the fluorescent reference standard. Repeat the measurement of the brightness of the fluorescent standard (<u>5.2.2</u>) as described in <u>6.2</u>. If the ISO brightness value obtained does not agree with the assigned value, adjust the position of the UV-adjustment filter or other adjustment device until the measurement gives the correct ISO brightness value as described in <u>6.3</u>. - **6.5** Repeat the procedure described in 6.4 until the correct value for the ISO brightness of the fluorescent standard (5.2.2) is obtained with the instrument correctly calibrated to the non-fluorescent standard (5.2.1). The UV-content is now correctly adjusted with respect to brightness to a relative UV-content equivalent to the CIE illuminant C. Record the setting of the UV-adjustment. NOTE 1 This setting means that the illumination in the instrument corresponds to the CIE illuminant C for ISO brightness measurement and it will give acceptable agreement for CIE whiteness ( $C/2^{\circ}$ ). Variations in the green/red tint value might still arise and it cannot be assumed that the tristimulus values and other parameters will also be exactly those applicable to the illuminant C. NOTE 2 In some instruments, the procedure indicated in <u>6.2</u> to <u>6.5</u> is performed automatically. **6.6** Calibrate the fluorescent tablet (5.3.2) as a working standard by measuring it and assigning an ISO brightness value. This working standard shall only be used in the specific instrument in which it is calibrated and shall only be used to monitor changes in the lamps and sphere conditions. It shall be recalibrated against a fluorescent reference standard of level 3 (5.2.2) if the lamps are changed. - **6.7** Calibrate the opal glass or ceramic plates (5.3.1) as working standards, as specified in ISO 2469. - **6.8** After adjustment of the UV-content as described in 6.1 to 6.5, insert the UV-cut-off filter and calibrate the instrument in this position, using the non-fluorescent standard (5.2.1), with the UV-adjustment unchanged. # 7 Sampling and conditioning Sampling is not included in this International Standard. If the mean quality of a lot is to be determined, sampling shall be in accordance with ISO 186. If the tests are made on another type of sample, make sure that the test pieces taken are representative of the sample received. Conditioning as described in ISO 187 is recommended, but not required, but preconditioning with elevated temperatures should not be applied since it might change the optical properties. # 8 Preparation of test pieces Avoiding watermarks, dirt and obvious defects, cut rectangular test pieces of approximately 75 mm $\times$ 150 mm. Assemble at least 10 of the test pieces in a pad with their top sides uppermost; the number should be such that doubling the number of test pieces does not alter the radiance factor. Protect the pad by placing an additional sheet on both the top and bottom of the pad. Avoid contamination and unnecessary exposure to light or heat. Mark the top test piece in one corner to identify the sample and its top side. If the top side can be distinguished from the wire side, it shall be uppermost. If the distinction is not possible, as may be the case for papers manufactured on twin-wire machines or those coated on both sides, ensure that the same side of each test piece is uppermost so that the CIE whiteness can be determined separately for each side of the paper or board. NOTE Pulp sheets made in accordance with ISO 3688 can be measured in the same way, but CIE whiteness is not normally considered to be a pulp property. #### 9 Procedure - **9.1** Remove the UV-cut-off filter or other means of eliminating the UV-content from the light beam. Operate the reflectometer or spectrophotometer as described in ISO 2469 and ISO 2470-1. - **9.2** Remove the protecting sheets from the pad of test pieces and measure the intrinsic diffuse radiance factors, $\beta_{\infty}$ , of the top test piece. # ISO 11476:2016(E) - **9.3** Move the measured test piece to the bottom of the pad. Repeat <u>9.2</u> until 10 test pieces have been measured. Repeat on the reverse side of the paper or board. - **9.4** If an assessment of the fluorescence component is required, place the UV-cut-off filter in the light beam or use other means of eliminating the UV-content of the illumination. Operating the reflectometer or spectrophotometer as specified in ISO 2469, measure the intrinsic diffuse radiance factors, $\beta_{\infty}$ , of the top test piece without fluorescence excitation, i.e. the intrinsic reflected radiance factors. - **9.5** Move the measured test piece to the bottom of the pad. Repeat <u>9.4</u> until 10 test pieces have been measured. Repeat on the reverse side of the paper or board. NOTE Normally, the CIE whiteness and tint values will be automatically calculated for each test piece at the time of measurement. In some instruments, it is more convenient to measure the CIE whiteness with and without fluorescence excitation on each test piece before proceeding to the next test piece. # 10 Calculation and expression of results **10.1** Calculate the CIE whiteness, W, and tint, $T_{\rm W}$ , values for each test piece according to the following formulae: $$W = Y + 800 (x_n - x) + 1700 (y_n - y)$$ (1) $$T_{\rm w} = 1\,000\,\left(x_{\rm n} - x\right) - 650\,\left(y_{\rm n} - y\right)$$ (2) where $x_n$ and $y_n$ are the chromaticity coordinates of the perfect reflecting diffuser for the illuminant and observer specified ( $x_n = 0.310\ 0.6$ , $y_n = 0.316\ 1.6$ for C/2°); x and y are the chromaticity coordinates of the test piece, calculated as $$X = \frac{X}{X + Y + Z}$$ $$y = \frac{Y}{X + Y + Z}$$ where X, Y and Z are the tristimulus values of the test piece for $C/2^{\circ}$ conditions. **10.2** The limiting values for a sample to be considered white are given by: $$40 < W < \left(5Y - 280\right) \tag{3}$$ $$-4 < T_w < 2 \tag{4}$$ NOTE As stated in the scope, it is recognized that the CIE whiteness formula was originally developed for the D65 illuminant, but it is assumed here that the use of the formula and its limits can be justified because of the similarity of the spectral power distributions of the C and D65 illuminants in the visible region. **10.3** Where relevant, calculate the CIE whiteness without fluorescence excitation, $W_0$ , i.e. with the UV-cut-off filter in the light beam or other means used to eliminate the UV-content of the illumination (5.1). Calculate the fluorescence component, F, of the CIE whiteness (C/2°) as the difference between the two CIE whiteness values measured with and without fluorescence excitation. $$F = W - W_0 \tag{5}$$ where - *W* is the CIE whiteness determined when the illumination has the desired UV-content corresponding to the C illuminant; - $W_0$ is the CIE whiteness determined when the radiation which excites fluorescence has been eliminated. NOTE A UV-cut-off filter with the characteristics defined in <u>5.1</u>, with a 50 % transmittance at 420 nm and not exceeding 5 % at wavelengths below 410 nm, does not eliminate all the fluorescence effect. **10.4** Calculate the mean values and report the mean CIE whiteness (C/2°) separately for both sides to the nearest integer, and the tint value to one decimal. If either W or $T_{\rm W}$ falls outside the limits given in 10.2, report that the sample is "not white according to CIE". If $W_0$ falls outside the limits given in 10.2, it is not necessary to report this fact. Report the fluorescence component as the CIE whiteness difference to the nearest integer. #### 11 Precision Preliminary tests have shown a between-laboratory standard deviation of the order of ±1 CIE whiteness unit. # 12 Test report The test report shall include the following information: - a) a reference to this International Standard, i.e. ISO 11476:2016; - b) the date and place of testing; - c) the precise identification of the sample; - d) whether the test pieces were conditioned and, if so, the conditioning atmosphere used; - e) the mean CIE whiteness value, the mean CIE tint value and, if required, the mean fluorescence component of the CIE whiteness, for the two sides separately; - f) the type of apparatus used; - g) any departure from this International Standard or any other circumstances that may have affected the results. # **Annex A** (normative) # Spectral characteristics of reflectometers for determining tristimulus values #### A.1 Filter reflectometers The required spectral characteristics of the reflectometer are arrived at by a combination of lamps, integrating sphere, glass optics, filters and photodetectors. The filters shall be such that they, together with the optical characteristics of the instrument, give overall responses equivalent to the CIE tristimulus values *X*, *Y*, *Z* of the CIE 1931 (2°) standard colorimetric system for the test piece evaluated for the CIE illuminant *C*. # A.2 Abridged spectrophotometers The desired tristimulus values are obtained by summing the products of the spectral reflectance factors and the weighting functions given in ASTM E308-08 for the C illuminant and CIE 1931 (2°) observer. "Checksum" and "white point" data are given at the bottom of each column in Tables A.1 and A.2. The "check-sum" is the algebraic sum of the entries. It provides, for convenience, a check value to ensure that the tables have been copied correctly, should copying be required. These checksums may not be identical with the "white point" data located below them because of roundoff. Each value in a column has been rounded to three decimal digits. It is these "white point" data, and no other, that shall be used as $X_n$ $Y_n$ $Z_n$ when converting tristimulus values calculated by use of these tables to CIELAB or CIELUV coordinates or for any other purpose requiring the ratio of the tristimulus value of the specimen to that of the "white point". Apply the following instructions, given in ASTM E308-08, 7.3.2.2, when the values are not available at the top or at the bottom of the range. Wavelength range less than 360 nm to 780 nm. When data for $R(\lambda)$ are not available for the full wavelength range, add the weights at the wavelengths for which data are not available to the weights at the shortest or longest wavelength for which spectral data are available, i.e.: - a) add the weights for all wavelengths (360 nm, ...) for which measured data are not available to the next higher weight for which such data are available; - b) add the weights for all wavelengths (..., 780 nm) for which measured data are not available to the next lower weight for which such data are available. # A.2.1 Procedure for using data without bandpass correction Use <u>Tables A.1</u> and <u>A.2</u> when the spectral data have not been corrected for bandpass dependence and for which the bandpass is approximately equal to the measurement interval; <u>Table A.1</u> is to be used when the data have been obtained at 10 nm measurement intervals; <u>Table A.2</u> is to be used when the data has been obtained at 20 nm measurement intervals. These tables apply a correction for spectral bandpass dependence built into the calculation of the tristimulus values. ### A.2.2 Procedure for using data with bandpass correction Use <u>Tables A.3</u> and <u>A.4</u> when the spectral data have been already corrected for bandpass dependence (e.g. by the instrument manufacturer) and for which the bandpass is approximately equal to the measurement interval; <u>Table A.3</u> is to be used when the data have been obtained at 10 nm measurement intervals; <u>Table A.4</u> is to be used when the data have been obtained at 20 nm measurement intervals. NOTE 1 <u>Tables A.3</u> and <u>A.4</u> were added to this International Standard to allow for calculation using instrumentation that does not require bandpass correction, i.e. has already been built into the instrument and applied to the reported raw data. NOTE 2 Raw reflectance data will differ for instruments with built-in bandpass correction from those without. However, after the appropriate weighting table is used, the resulting colorimetric values will be nearly identical. Table A.1 — Weighting functions ( $C/2^{\circ}$ ) for instruments without bandpass correction and measuring at 10 nm intervals | Wavelength<br>nm | $W_{\mathrm{X}}$ | $W_{\mathrm{Y}}$ | $W_{ m Z}$ | |------------------|------------------|------------------|------------| | 360 | 0,000 | 0,000 | 0,000 | | 370 | 0,001 | 0,000 | 0,003 | | 380 | 0,004 | 0,000 | 0,017 | | 390 | 0,015 | 0,000 | 0,069 | | 400 | 0,074 | 0,002 | 0,350 | | 410 | 0,261 | 0,007 | 1,241 | | 420 | 1,170 | 0,032 | 5,605 | | 430 | 3,074 | 0,118 | 14,967 | | 440 | 4,066 | 0,259 | 20,346 | | 450 | 3,951 | 0,437 | 20,769 | | 460 | 3,421 | 0,684 | 19,624 | | 470 | 2,292 | 1,042 | 15,153 | | 480 | 1,066 | 1,600 | 9,294 | | 490 | 0,325 | 2,332 | 5,115 | | 500 | 0,025 | 3,375 | 2,788 | | 510 | 0,052 | 4,823 | 1,481 | | 520 | 0,535 | 6,468 | 0,669 | | 530 | 1,496 | 7,951 | 0,381 | | 540 | 2,766 | 9,193 | 0,187 | | 550 | 4,274 | 9,889 | 0,081 | | 560 | 5,891 | 9,898 | 0,036 | | 570 | 7,353 | 9,186 | 0,019 | | 580 | 8,459 | 8,008 | 0,015 | | 590 | 9,036 | 6,621 | 0,010 | | 600 | 9,005 | 5,302 | 0,007 | | 610 | 8,380 | 4,168 | 0,003 | | 620 | 7,111 | 3,147 | 0,001 | | 630 | 5,300 | 2,174 | 0,000 | | 640 | 3,669 | 1,427 | 0,000 | | 650 | 2,320 | 0,873 | 0,000 | | 660 | 1,333 | 0,492 | 0,000 | | 670 | 0,683 | 0,250 | 0,000 | NOTE Source ASTM E308–08. Reprinted, with permission, from ASTM E308–08, *Standard Practice for Computing the Colors of Objects by Using the CIE Sysytem*, copyright ASTM International, 100 Barr Harbor Drive, West Conshohocken, PA 19428, USA. A copy of the complete standard may be obtained from ASTM (http://www.astm.org). Table A.1 (continued) | <b>Wavelength</b><br>nm | $W_{\mathrm{X}}$ | $W_{ m Y}$ | $W_{ m Z}$ | |-------------------------|------------------|------------|------------| | 680 | 0,356 | 0,129 | 0,000 | | 690 | 0,162 | 0,059 | 0,000 | | 700 | 0,077 | 0,028 | 0,000 | | 710 | 0,038 | 0,014 | 0,000 | | 720 | 0,018 | 0,006 | 0,000 | | 730 | 0,008 | 0,003 | 0,000 | | 740 | 0,004 | 0,001 | 0,000 | | 750 | 0,002 | 0,001 | 0,000 | | 760 | 0,001 | 0,000 | 0,000 | | 770 | 0,000 | 0,000 | 0,000 | | 780 | 0,000 | 0,000 | 0,000 | | Checksum | 98,074 | 99,999 | 118,231 | | White point | 98,074 | 100,000 | 118,232 | NOTE Source ASTM E308-08. Reprinted, with permission, from ASTM E308-08, *Standard Practice for Computing the Colors of Objects by Using the CIE Sysytem*, copyright ASTM International, 100 Barr Harbor Drive, West Conshohocken, PA 19428, USA. A copy of the complete standard may be obtained from ASTM (http://www.astm.org). Table A.2 — Weighting functions ( $C/2^{\circ}$ ) for instruments without bandpass correction and measuring at 20 nm intervals | Wavelength<br>nm | $W_{\mathrm{X}}$ | $W_{ m Y}$ | $W_{\mathrm{Z}}$ | |-------------------|------------------|------------|------------------| | 360 | 0,000 | 0,000 | 0,000 | | 380 | 0,066 | 0,000 | 0,311 | | 400 | -0,164 | 0,001 | -0,777 | | 420 | 2,373 | 0,044 | 11,296 | | 440 | 8,595 | 0,491 | 42,561 | | 460 | 6,939 | 1,308 | 39,899 | | 480 | 2,045 | 3,062 | 18,451 | | 500 | -0,217 | 6,596 | 4,728 | | 520<br>540<br>560 | 0,881 | 12,925 | 1,341 | | | 5,406 | 18,650 | 0,319 | | | 11,842 | 20,143 | 0,059 | | 580 | 17,169 | 16,095 | 0,028 | | 600 | 18,383 | 10,537 | 0,013 | | 620 | 14,348 | 6,211 | 0,002 | | 640 | 7,148 | 2,743 | 0,000 | | 660 | 2,484 | 0,911 | 0,000 | | 680 | 0,600 | 0,218 | 0,000 | | 700 | 0,136 | 0,049 | 0,000 | | 720 | 0,031 | 0,011 | 0,000 | NOTE Source ASTM E308–08. Reprinted, with permission, from ASTM E308–08, *Standard Practice for Computing the Colors of Objects by Using the CIE Sysytem*, copyright ASTM International, 100 Barr Harbor Drive, West Conshohocken, PA 19428, USA. A copy of the complete standard may be obtained from ASTM (http://www.astm.org). Table A.2 (continued) | Wavelength<br>nm | $W_{\mathrm{X}}$ | $W_{ m Y}$ | $W_{ m Z}$ | |------------------------|------------------|------------|------------| | 740 | 740 0,006 | | 0,000 | | 760 0,002<br>780 0,000 | | 0,001 | 0,000 | | | | 0,000 | 0,000 | | Checksum | 98,073 | 99,998 | 118,231 | | White point | 98,074 | 100,000 | 118,232 | NOTE Source ASTM E308–08. Reprinted, with permission, from ASTM E308–08, *Standard Practice for Computing the Colors of Objects by Using the CIE Sysytem*, copyright ASTM International, 100 Barr Harbor Drive, West Conshohocken, PA 19428, USA. A copy of the complete standard may be obtained from ASTM (http://www.astm.org). Table A.3 — Weighting functions (C/2°) for instruments with bandpass correction and measuring at 10 nm intervals | Wavelength<br>nm | $W_{\mathrm{X}}$ | $W_{ m Y}$ | $W_{ m Z}$ | |------------------|------------------|------------|------------| | 360 | 0,000 | 0,000 | 0,000 | | 370 | 0,001 | 0,000 | 0,004 0 | | 380 | 0,004 | 0,000 | 0,017 | | 390 | 0,018 | 0,001 | 0,084 | | 400 | 0,076 | 0,002 | 0,358 | | 410 | 0,325 | 0,009 | 1,547 | | 420 | 1,292 | 0,038 | 6,207 | | 430 | 2,968 | 0,123 | 14,496 | | 440 | 3,959 | 0,261 | 19,860 | | 450 | 3,931 | 0,443 | 20,728 | | 460 | 3,360 | 0,692 | 19,286 | | 470 | 2,283 | 1,061 | 15,022 | | 480 | 1,116 | 1,612 | 9,479 | | 490 | 0,363 | 2,358 | 5,286 | | 500 | 0,048 | 3,414 | 2,868 | | 510 | 0,092 | 4,842 | 1,512 | | 520 | 0,578 | 6,449 | 0,720 | | 530 | 1,519 | 7,936 | 0,381 | | 540 | 2,786 | 9,145 | 0,195 | | 550 | 4,285 | 9,831 | 0,086 | | 560 | 5,877 | 9,834 | 0,038 | | 570 | 7,323 | 9,148 | 0,020 | | 580 | 8,414 | 7,990 | 0,015 | | 590 | 8,985 | 6,629 | 0,010 | | 600 | 8,958 | 5,321 | 0,007 | | 610 | 8,324 | 4,177 | 0,003 | | 620 | 7,055 | 3,146 | 0,001 | NOTE Source ASTM E308–08. Reprinted, with permission, from ASTM E308–08, *Standard Practice for Computing the Colors of Objects by Using the CIE Sysytem*, copyright ASTM International, 100 Barr Harbor Drive, West Conshohocken, PA 19428, USA. A copy of the complete standard may be obtained from ASTM (http://www.astm.org). Table A.3 (continued) | <b>Wavelength</b><br>nm | $W_{\mathrm{X}}$ | $W_{ m Y}$ | $W_{\mathrm{Z}}$ | |-------------------------|------------------|------------|------------------| | 630 | 5,327 | 2,196 | 0,000 | | 640 | 3,692 | 1,442 | 0,000 | | 650 | 2,352 | 0,887 | 0,000 | | 660 | 1,360 | 0,503 | 0,000 | | 670 | 0,713 | 0,261 | 0,000 | | 680 | 0,364 | 0,132 | 0,000 | | 690 | 0,172 | 0,062 | 0,000 | | 700 | 0,080 | 0,029 | 0,000 | | 710 | 0,039 | 0,014 | 0,000 | | 720 | 0,019 | 0,007 | 0,000 | | 730 | 0,009 | 0,003 | 0,000 | | 740 | 0,004 | 0,001 | 0,000 | | 750 | 0,002 | 0,001 | 0,000 | | 760 | 0,001 | 0,000 | 0,000 | | 770 | 0,000 | 0,000 | 0,000 | | 780 | 0,000 | 0,000 | 0,000 | | Check sum | 98,074 | 100,000 0 | 118,230 | | White point | 98,074 | 100,000 | 118,232 | NOTE Source ASTM E308-08. Reprinted, with permission, from ASTM E308-08, *Standard Practice for Computing the Colors of Objects by Using the CIE Sysytem*, copyright ASTM International, 100 Barr Harbor Drive, West Conshohocken, PA 19428, USA. A copy of the complete standard may be obtained from ASTM (http://www.astm.org). Table A.4 — Weighting functions ( $C/2^{\circ}$ ) for instruments with bandpass correction and measuring at 20 nm intervals | <b>Wavelength</b><br>nm | $W_{\mathrm{X}}$ | $W_{ m Y}$ | $W_{ m Z}$ | |-------------------------|------------------|------------|------------| | 360 | -0,001 | 0,000 | -0,006 | | 380 | -0,011 | 0,000 | -0,054 | | 400 | 0,089 | -0,001 | 0,393 | | 420 | 2,919 | 0,085 | 14,033 | | 440 | 7,649 | 0,511 | 38,518 | | 460 | 6,641 | 1,382 | 38,120 | | 480 | 2,364 | 3,206 | 19,564 | | 500 | 0,069 | 6,910 | 5,752 | | 520 | 1,198 | 12,876 | 1,442 | | 540 | 5,591 | 18,258 | 0,357 | | 560 | 11,750 | 19,588 | 0,073 | | 580 | 16,794 | 15,991 | 0,026 | | 600 | 17,896 | 10,696 | 0,013 | | 620 | 14,018 | 6,261 | 0,003 | NOTE Source ASTM E308-08. Reprinted, with permission, from ASTM E308-08, *Standard Practice for Computing the Colors of Objects by Using the CIE Sysytem*, copyright ASTM International, 100 Barr Harbor Drive, West Conshohocken, PA 19428, USA. A copy of the complete standard may be obtained from ASTM (http://www.astm.org). Table A.4 (continued) | <b>Wavelength</b><br>nm | $W_{\mathrm{X}}$ | $W_{ m Y}$ | $W_{ m Z}$ | |-------------------------|------------------|------------|------------| | 640 | 7,457 | 2,902 | 0,000 | | 660 | 2,746 | 1,008 | 0,000 | | 680 | 0,712 | 0,257 | 0,000 | | 700 | 0,153 | 0,055 | 0,000 | | 720 | 0,034 | 0,012 | 0,000 | | 740 | 0,007 | 0,003 | 0,000 | | 760 | 0,002 | 0,001 | 0,000 | | 780 | 0,000 | 0,000 | 0,000 | | Check sum | 98,077 | 100,001 | 118,234 | | White point | 98,074 | 100,000 | 118,232 | NOTE Source ASTM E308-08. Reprinted, with permission, from ASTM E308-08, *Standard Practice for Computing the Colors of Objects by Using the CIE Sysytem*, copyright ASTM International, 100 Barr Harbor Drive, West Conshohocken, PA 19428, USA. A copy of the complete standard may be obtained from ASTM (http://www.astm.org). # **Annex B** (normative) # **UV-calibration** service #### **B.1** General In this International Standard, reference is made to special reference standards which are required to enable the relative UV-content in the illumination falling on the test piece to be adjusted to conform to the C illuminant. To enable this to be done, the following procedure is established. # **B.2** Standardizing laboratories A laboratory, or laboratories, equipped to make primary spectrofluorimetric measurements using the two-monochromator method is appointed as a "standardizing laboratory" in accordance with the provisions of ISO 4094. This laboratory issues "international reference standards of level 2" (IR2) to the authorized laboratories. Such reference standards shall be assigned spectral total radiance factor data for the C illuminant. Standardizing laboratories shall meet the general requirements for quality and competence of its IR2 calibration results, in accordance with the provisions of ISO 4094. NOTE The standardizing laboratories will not necessarily be the same as those appointed according to ISO 2469 since different equipment is required. # **B.3** Authorized laboratories **B.3.1** Laboratories having the necessary technical competence and maintaining reference instruments having the characteristics specified in ISO 2469 are appointed as "authorized laboratories" in accordance with the provisions of ISO 4094. NOTE It is anticipated that these authorized laboratories will automatically be the same as those authorized in accordance with the requirements of ISO 2469, but the standardizing laboratories will not necessarily be the same as those appointed according to ISO 2469 since different equipment is required. - **B.3.2** The authorized laboratory shall make any necessary adjustment to correct for differences in the basic photometric level between the instrument at the standardizing laboratory and the level specified for the authorized laboratory in ISO 2469, before calculating the ISO brightness value of the IR2 and using this value to adjust the UV-content of the reference instrument. The calculations shall be carried out using 10 nm data and the weighting functions given in Annex A, which are taken from ASTM E308-08. - **B.3.3** The authorized laboratory shall take steps to ensure that directional effects in the IR2, which may affect the measurements at the standardizing laboratory, are recognized and taken into account when determining the value to be used when transferring this calibration to an instrument providing a diffuse illumination. - **B.3.4** Authorized laboratories shall make interlaboratory comparisons at least every second year. Agreement to within ±0,5 ISO brightness units should be achieved. NOTE A list of standardizing and authorized laboratories is available at the ISO/TC 6 secretariat. ### **B.4** IR3 fluorescent reference standards - **B.4.1** The fluorescent reference standards shall consist of white paper, uniform in radiance factor and aged for a sufficient time to give the paper an optical stability of four months to six months without deterioration in the ISO brightness value of more than 0,2 units. - **B.4.2** The standards shall be prepared in the form of opaque paper pads and shall have a smooth non-glossy surface. The paper pad shall be covered with a suitable protective cover. NOTE Fluorescent tablets and tiles are suitable local working standards but they have been shown not to be suitable for use as transfer standards for this procedure which is specific for white papers. **B.4.3** Since the interactive effect of the fluorescence emission into the integrating sphere creates a slight nonlinearity in the CIE whiteness scale, the IR2 and IR3 standards shall have a minimum ISO brightness value of 95 % and a minimum fluorescence component of the brightness of 10 percentage points. #### **B.5** Comments This procedure is specific for white papers that may contain fluorescent whitening agents which fluoresce in the blue region of the visible spectrum (400 nm to 500 nm). This procedure does not provide a valid adjustment for the measurement of fluorescence in other spectral regions. # **Bibliography** - [1] ISO 187, Paper, board and pulps Standard atmosphere for conditioning and testing and procedure for monitoring the atmosphere and conditioning of samples - [2] ISO 3688, Pulps Preparation of laboratory sheets for the measurement of diffuse blue reflectance factor (ISO brightness) - [3] ISO 11475, Paper and board Determination of CIE whiteness, D65/10° (outdoor daylight) - [4] ISO 11664-1:2007 (CIE S 014-2/E:2006), Colorimetry Part 1: CIE standard colorimetric observers - [5] ISO 11664-2:2007 (CIE S 014-2/E:2006), Colorimetry Part 2: CIE standard illuminants - [6] ASTM E308-08,<sup>1)</sup>Standard Practice for Computing the Colors of Objects by Using the CIE System - [7] Bristow J.A., Karipidis C., Tappi J. 82 (1999) 1, pp. 183-193 - [8] Bristow J.A. Color Res. App. 19 (1994) 6, pp. 475-483 - [9] CIE S 017/E:2011 ILV: International Lighting Vocabulary - [10] CIE 15:2004, Colorimetry, 3rd edition, CIE Central Bureau, Vienna, Austria - [11] GÄRTNER F., & GRIESSER R. Die Farbe. 1975, 24 pp. 199–207 - [12] JORDAN B., & O'NEILL M.A. Tappi J. 74 (1991) 5, pp. 93-101 <sup>1)</sup> Withdrawn. Replaced by ASTM E308-15.