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Foreword 

ISO (the International Organization for Standardization) is a worldwide 
federation of national Standards bodies (ISO member bedies). The work 
of preparing International Standards is normally carried out through ISO 
technical committees. Esch member body interested in a subject for 
which a technical committee has been established has the right to be 
represented on that committee. International organizations, governmental 
and non-governmental, in Ciaison with ISO, also take part in the work. ISO 
collaborates closely with the International Electrotechnical Commission 
(IEC) on all matters of electrotechnical standardization. 

Draft International Standards adopted by the technical committees are 
circulated to the member bodies for voting. Publication as an International 
Standard requires approval by at least 75 % of the member bodies casting 
a vote. 

International Standard ISO 11095 was prepared by Technical Committee 
ISO/TC 69, Applications of sfafistical methods, Subcommittee SC 6, 
Measurement methods and results. 

Annexes A and B form an integral part of this International Standard. An- 
nex C is for information only. 
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Introduction 

Calibration is an essential part of most measurement procedures. lt is a 
set of operations which establish, under specified conditions, the re- 
lationship between values indicated by a measurement System and the 
corresponding accepted values of some “Standards”. In this International 
Standard, the Standards are reference materials. 

A reference material (RM) is a substance or an artifact for which one or 
more properties are established sufficiently well to validate a measure- 
ment System. There exist several kinds of RMs: 

a) an internal reference material is an RM developed by a user for his/her 
own internal use; 

b) 

d 

an external ref 
tha n the User; 

erence material is an RM provided by someone other 

a certif ied reference material is an RM issued and certified by an or- 
ganization recognized as competent to do so. 
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Linear calibration using reference materials 

1 Scope 

This International Standard: 

a) outlines the general principles needed to calibrate 
a measurement System and to maintain that 
“calibrated” measurement System in a state of 
statistical control; 

b) provides a basic method 

- for estimating a linear calibration function un- 
der either one of two assumptions relating to 
the variability of the measurements, 

- for checking the assumption of linearity of the 
calibration function and the assumptions on 
the variability of the measurements, and 

- for estimating the value of a new unknown 
quantity by transforming the measured values 
obtained on that quantity with the calibration 
function; 

c) provides a control method for extended use of a 
calibration function 

- for detecting when the calibration function 
needs to be updated, and 

- for estimating the uncertainty of the measured 
values after transformation with the calibration 
function; 

d) provides two alternatives to the basic method 
under special conditions; 

e) illustrates the basic method and the control 
method with an example. 

This International Standard is applicable to measure- 
ment Systems for which reference materials are 
available. 

lt is applicable to measurement Systems with an as- 
sumed linear calibration function. lt offers a method 
for examining the assumption of Iinearity. If it is 
known that the calibration function is nonlinear, then 
this International Standard is not applicable unless one 
uses the “bracketing technique” described in 8.3. 

This International Standard does not make a dis- 
tinction among the various types of RMs and consid- 
ers that the accepted values of the RMs selected to 
calibrate the measurement System are without error. 

2 Normative references 

The following Standards contain provisions which, 
through reference in this text, constitute provisions 
of this International Standard. At the time of publica- 
tion, the editions indicated were valid. All Standards 
are subject to revision, and Parties to agreements 
based on this International Standard are encouraged 
to investigate the possibility of applying the most re- 
cent editions of the Standards indicated below. 
Members of IEC and ISO maintain registers of cur- 
rently valid International Standards. 

ISO 3534-1 :1993, Statistics - Vocabulary and sym- 
bols - Part 7: Probability and general statistical 
terms. 

ISO 3534-2:1993, Statistics - Vocabulary and sym- 
bols - Part 2: Statistical quality control. 

ISO Guide 30:1992, Terms and definitions used in 
connection with reference ma terials. 

3 Definitions 

For the purposes of this International Standard, the 
definitions given in ISO 3534-1 and ISO 3534-2 and 
the following definition apply. 

3.1 reference material: A substance or an artifact 
for which one or more properties are established suf- 

1 
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ficiently weil to be used to validate a measurement 
System. 

4 General principles 

Calibration is a procedure that determines the sys- 
tematic differente that may exist between a 
measurement System and a “reference” System rep- 
resented by the reference materials and their ac- 
cepted values. In this International Standard, the term 
System (measurement System or reference System) 
is used to represent not only a measuring instrument 
but also the set of procedures, Operators and en- 
vironment conditions associated with that instrument. 

The output of a calibration procedure is a calibration 
function that is used to make transformations of fu- 
ture measurement results. In this International Stan- 
dard, the term “transformation” refers to 

- either a correction of the future measurements if 
both the accepted values of the reference ma- 
terials (RMs) and the observed values have the 
Same units, 

- or a translation from the units of the observed 
measurements to the units of the RMs. 

The validity of the calibration function depends on two 
conditions: 

a) that the measurements from which the calibration 
function was calculated are representative of the 
normal conditions under which the measurement 
System operates; and 

b) that the measurement System is in a state of * 
control. 

The calibration experiment must be designed to en- 
Sure that Point a) is met. The control method deter- 
mines, as soon as possible, when the System has to 
be considered out of control. 

The procedure in this International Standard is only 
applicable to measurement Systems which are linearly 
related to their reference Systems. To check whether 
the assumption of linearity is valid, more than two 
RMs must be used during the calibration experiment. 
This is illustrated in the basic method. Using several 
RMs, the basic method provides a strategy and tech- 
niques to analyse the data collected during the cali- 
bration experiment. lf linearity is not in question, then 
an alternative method, simpler than the basic method, 
tan be used to estimate a linear calibration function 
based on one Point. This “one-Point calibration” 
method (following a Zero-level transformation) does 
not allow for any test of assumptions, but it is a quick 

and easy method to “recalibrate” a System that has 
been studied more thoroughly during previous exper- 
iments. If linearity is in question, then a second 
alternative tan be used, called “bracketing”. 

The basic method and the one-Point method are 
based on the assumption that the effort invested in 
calibration will be valid over a period of stability of the 
process. To study the period over which the cali- 
bration is valid, a control method has to be in place. 
The control method is designed to detect whether 
changes have taken place in the System that justify 
an investigation and/or a recalibration. The control 
method also provides a simple way to determine the 
precision of the values that have been transformed 
with a given calibration function. 

The bracketing method is labour intensive but may 
provide greater accuracy in the determination of the 
values of unknown quantities. This method consists 
of surrounding as tightly as possible (bracketingj each 
unknown quantity by two RMs and extracting a 
transformed value for the unknown quantity from 
measurements of both the unknown quantity and the 
values of the two RMs. Only short-term stability of 
the measurement process is assumed (stability during 
the measurement of the unknown quantity and of the 
two RMs). Linearity is assumed solely in the interval 
between the values of the two RMs. 

5 Basic method 

5.1 General 

This clause describes how to estimate and use a lin- 
ear calibration function when several (more than two) 
RMs are available. The availability of several RMs al- 
lows the linearity of the calibration function to be 
verified. 

5.2 Assumptions 

5.2.1 lt is assumed that there is no error in the ac- 
cepted values of the RMs (this assumption will not 
be checked ,in this International Standard). In practice, 
accepted values of RMs are quoted with their uncer- 
tainties. The assumption of no error in the accepted 
values of the RMs tan be considered valid if the un- 
certainties are small compared to the magnitude of 
the errors in the measured values of these RMs (see 
ref. [IJ. 

NOTE 1 In situations where the RMs have been treated 
chemically or, in some instances physically, before Instru- 
ment readings are taken, this International Standard may 
underestimate the uncertainty associated with the trans- 
formation of a new measurement result. 

2 
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5.2.2 The calibration function is assumed to be linear The number of replicates should be the same for all 
(this assumption will be examined). RMs. 

5.2.3 Repeated measurements of a given RM are 
assumed to be independent and normally distributed, 
with variance referred to as “residual variance” (the 
independence and normality assumptions will not be 
checked in this International Standard). The Square 
root of the residual variance is referred to as the re- 
sidual Standard deviation. 

The time and conditions at which the replicates are 
taken should cover as wide a range as is necessary 
to ensure that all operating conditions are rep- 
resented. 

5.4 Strategy for analysing the data 

5.4.1 Plot the data to check 
5.2.4 The residual Standard deviation is assumed to 
be either constant or proportional to the accepted 
value of the RM (this assumption will be examined). 

a) the state of control of the measurement System 
during the calibration experiment, 

5.3 Calibration experiment 

5.3.1 Experimental conditions 

b) the assumption of linearity, and 

cj the variability of the measurements as a function 
of the accepted values of the RMs. . 

Experimental conditions should be the Same as the 
normal operating conditions of the measurement 
System; i.e. if, for example, more than one Operator 
uses the measuring equipment then there should be 
more than one Operator represented in the calibration 
experiment. 

5.3.2 Choice of RMs 

The range of values spanned by the selected RMs 
should include (as far as is possible) the range of val- 
ues encountered during normal operating conditions 
of the measurement System. 

The composition of the selected RMs should be as 
close as possible to the composition of the targeted 
material to be*measured. 

5.4.2 Estimate the linear calibration function under 
the assumption of constant residual Standard devi- 
ation. 

5.4.3 Plot the calibration function and the residuals. 
The residuals plot is a strong indicator of departure 
from either the assumption of linearity or from the 
assumption of constant residual Standard deviation. If 
the assumption of constant residual Standard devi- 
ation does hold, skip step 5.4.4 and continue with 
step 5.4.5. Otherwise, execute step 5.4.4. 

5.4.4 Estimate the linear calibration function under 
the assumption of proportional residual Standard de- 
viation and plot the calibration function and the re- 
siduals. 

The values of the RMs should be distributed approxi- 
mately equidistantly over the range of values en- 
countered during normal operating conditions of the 
measurement System. 

5.3.3 Number of RMs, N 

The number of RMs used to assess the calibration 

5.4.5 Evaluate the lack of fit of the calibration func- 
tion. If the variability due to lack of fit is large relative 
to the variability due to replication of measurements, 
investigate the procedures followed during the cali- 
bration experiment and re-examine the assumption 
of linearity of the calibration function. If the assump- 
tion of linearity does not hold, then an alternative is 
to use the bracketing technique described in 8.3. 

function should be at least 3. 

For an initial assessment of the calibration function, a 
number larger than 3 is recommended (at least 3 over 
any subinterval where there is a doubt about the lin- 
earity of the calibration function). 

5.3.4 Number of replicates, K 

Esch RM should be measured at least twice (as many 
replicates as is possible in practice is recommended). 

NOTE 2 There exist other techniques, beyond the scope 
of this International Standard, that allow the fitting of a 
quadratic or polynomial curve to the data (see refs. [Z] and 
VI)* 

5.4.6 Transform future measured values with the 
calibration function. 

The next clause describes the six Steps of this strat- 
egy. Clause 9 illustrates the basic method with an 
example. 
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6 The Steps of the basic method 

6.1 Plot of the data collected during the 
calibration experiment 

Figure 1 Shows a plot of the measured values versus 
the corresponding accepted values of the RMs. 
Figure 1 as weil as figures 2 to 5 are obtained from 
simulated data. The purpose of these five Plots is to 
illustrate the type of information one tan extract from 
such Plots. A complete example is treated in 
clause 8 with data, Plots and analysis. 

The major purpose of the plot shown as figure 1 is to 
detect visually any unusual behaviour of the 
measurement System during the calibration exper- 
iment, and to identify potential outliers. If possible, 
label the Order of the data Points and look for obvious 
time trends. If some of the data are considered sus- 
picious, or if a time trend is obvious, then an investi- 
gation shall take place to discover Causes of 
irregularities. As soon as the Causes of irregularities 
are removed, the calibration experiment should be 
repeated and new data should be collected to estab- 
lish a calibration function. 

70 

x Replicate 1 
n Replicate 2 
0 Replicate 3 

If the Causes for one or a very few outliers are found, 
and if these Causes do not affect the remaining 
measurements, then the outliers tan be eliminated. 
The calibration experiment then becomes unbalanced; 
i.e. there is an unequal number of measurements K,! 
instead of K for each RM. Estimation of the calibration 
function tan still proceed with the formulae given in 
6.2, 6.4 and 6.5 replaced by the ones in annex B. 

Figure 1 also allows an early diagnosis’ of the as- 
sumption of linearity of the calibration function, as 
weil as a first look at the assumption of constant re- 
sidual Standard deviation. The linearity of the cali- 
bration function tan be visually checked by visualizing . 
a straight line through the data plotted in figure 1 
(there seems to be some curvature in the data of fig- 
ure 1). The assumption of constant residual Standard 
deviation tan be checked by looking at the spread of 
the Points in figure 1 for a given RM. If it appears that 
this spread increases with the accepted values of the 
RMs, then the assumption of constant residual stan- 
dard deviation is probably not correct (this does not 
seem to be the case for figure 1). A more sophisti- 
cated plot to check the assumptions of Iinearity and 
of constant residual Standard deviation is presented in 
63 . . 

Outlier? 
Investigate 

--L i!!i 

hg. 

3 

Accepted vahes of RMs 
phosphorus content, o/io of total 

5 

weig Rt) 

Figure 1 - Schematic diagram of data collected during the calibration experiment 
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6.2 Estimation of the linear calibration 
function under the assumption of constant 
residual Standard deviation 

6.2.1 Model 

The assumptions of linearity of the calibration function 
and of constant residual Standard deviation are cap- 
tured by the model 

p, = y - $p 

Ynk = ß0 + ßlx,, + %k 

where 

Xn is the accepted value of the nth RM 
(n = 1 , . . . . N-J; 

hk Es the L?’ measurement 0% the nth 
RM (k = 1 j . ..I K); 

ßo + ßl-5, represents the expected value of 
the measurements of the nth RM; 

%k is the deviation between &k and 
the expected value of the 
measurement of the nth RM 
(these deviations are assumed to 
be independent and normally dis- 
tributed with mean 0 and with 
variance 0’); 

ßot ß1 and 0 ’ are three Parameters to be esti- 
mated from the data collected 
during calibration: 

ßo is the intercept of the 
calibration function, 

ß 1 is its slope, 

2 
a is a measure of the 

precision of the 
measurement System. 

n= 1 
N c Cxn - x) 

2 

SSE 
(NK - 2) 

x 1 N =- N xn c 
n=l 

Yd 
k=l 

1 N Y=, Y,- c 
n=l 

NK=NxK 

e nk = Ynk - Gn 

SSE = 9, F, (enk) 
n=l k=l 

6.3 Plots of the calibration function and of 
the residuals 

Figures 2 and 3 are recommended to test departures 
from the assumptions embedded in the model of 
62 . . 

6.2.2 Estimates of the Parameters 
6.3.1 Plot of the calibration function 

Estimates of the Parameters ßo, ß1 and CJ’ tan be ob- 
tained by using the formulae below or by running a 
linear regression Software package with two columns 
of equal length as input, one for y and one for X. 

NOTE 3 Estimates of Parameters in this International 
Standard have a Symbol A to differentiate them from the 
Parameters themselves which are unknown. 

In figure2 the estimated calibration function is added 
to figure 1. 

The plot shown as figure2 primarily allows a check 
of the calculations given in 6.2.2. lt also provides a 
visual check of the assumption of linearity of the cali- 
bration function. 
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x Replicate 1 
A Replicate 2 
0 Replicate 3 

70. 

2; 50 
QTn 
u-m 0 0, 
gP2 40 

s 6 

Accepted values of RMs 
(e.g. phosphorus content, % of total weight) 

Figure 2 - Schematic diagram of a calibration curve 

x Replicate 1 
A Replicate 2 
0 Replicate 3 

10 20 30 40 

Fitted values, pn 

SO 

Figure 3 - Schematic diagram of a plot of residuals versus fitted values 
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6.3.2 Plot of the residuals versus the fitted values 

The plot of the residuals enk versus the fitted values 
Gn (figure3) is a powerful tool to detect departure from 
the two assumptions of linearity and of constant re- 
sidual Standard deviation. If these two assumptions 
hold, then figure3 should display a plot of randomly 
distributed Points centred around Zero. Departure 
from the assumption of Iinearity is indicated by a 
systematic Pattern between the residuals and the fit- 
ted values (as is the case in figure3). Departure from 
the assumption of constant residual Standard devi- 
ation is indicated by a dispersion in the data that in- 
creases or decreases with the fitted values. In 
figure 3, the dispersion of the residuals for any fitted 
value is almost constant throughout. Therefore, the 
assumption of constant residual Standard deviation is 
tenable in this Situation. 

NOTE 4 Figure8 illustrates the Situation where the as- 
sumption of constant residual Standard deviation is not ten- 
able. 

lf the assumption of constant residual Standard devi- 
ation does not hold, then the data collected during the 
calibration experiment must be re-analysed. A plot of 
the Standard deviation of the replicated measure- 
ments of an RM versus the accepted value of that RM 
will indicate whether the assumption of proportional 
residual Standard deviation is tenable. See figure 9 for 
such a Plot. 

a) If the assumption of proportional residual Standard 
deviation seems to hold, then the data tan be re- 
analysed according to step 6.4. 

b) lf the assumption of proportional residual Standard 
deviation does not hold but there exists a model 
relating the residual Standard deviation to the ac- 
cepted values of the RMs (for example inverse 
proportionality), then an approach similar to the 
one presented in step 6.4 tan be used. 

If the assumption of linearity does not hold, then an 
alternative is to use the bracketing technique de- 
scribed in 8.3. 

NOTE 5 There exist other techniques, beyond the scope 
of this International Standard, that allow the fitting of a 
quadratic or polynomial curve to these data (see refs. [Z] 
and [3]). 

Finally, testing the assumptions of independence and 
of normality of the && values is beyond the scope of 
this International Standard. These two assumptions 
are crucial to the validity of step 6.5 and tan also be 
checked by studying the residuals. For example, a 
normal probability plot of the residuals allows a check 

of the normality assumption and a plot of the residuals 
against time allows a check of the assumption of in- 
dependence of the measurements. Further infor- 
mation tan be found in ref. [3]. 

6.4 Estimation of the calibration function 
under the assumption of proportional 
residual Standard deviation and plot of the 
calibration function and the residuals 

6.4.1 Model 

An alternate model to the one given in step 6.2.1 is 
one where the calibration function is linear but the 
residual Standard deviation increases with the ac- 
cepted values of the RMs. This is captured in the 
model 

Ynk = YO + ?lxn + qnk 

xn is the accepted value of the nth RM 
(n = 1 , . . . . N); 

Ynk is the kfh measurement of the nth 
RM (k = 1, . . . . K); 

YO + Ylxn ’ represents the expected value of 
the measurement of the nth RM; 

qnk is the deviation between y,.,k and 
the expected measurement of the 
nth RM (these deviations are as- 
sumed to be independent and 
normally distributed with mean 0 
and with a variance proportional to 

2 
x,); i.e. 

va $qnk) = 
2 2 var(ynk) = xn z 

yol yl and 2’ are three Parameters to be esti- 
mated from the data collected 
during calibration: 

Yo and 71 are, respectively, 
the intercept and 
the slope of the 
calibration func- 
tion, 

2 
z is a measure of the 

relative precision 
of the measure- 
ment System. 

This model tan be transformed into a model equiv- 
alent to the one given in 6.2.1; i.e. with errors having 

7 
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constant variance. The transformation consists of div- 
iding by xn both sides of the equation 

Ynk = 70 + ?jxn + qnk 

n=l 
This gives 

Ynk 70 qnk -=- 
xn x +Yl+. n n 

or, equivalently, 

Z nk = 71 + YOwn + &nk 

u nk = ‘nk - z, 

N K 

WSSE = 7, 7, (U,k) 
n=l k=l where 

6.4.3 Plot of the calibration function and 
residuals Wn = 1 IX, 

E nk - - qnklxn As in 6.3, two Plots are recommended: 

The new model tan be analysed as in 6.2 after making 
the correct Substitutions of terms. 

a) a plot of the estimated calibration function 
$ = v. + Y^,x with the data of figure 1; 

b) a plot of the weighted residuals L$k versus the 
weighted fitted values in. 6.4.2 Estimates of the Parameters 

The estimates of the Parameters yo, y1 and Z’ tan be 
obtained by using the formula below or by running a 
weighted linear regression Software package with 
three columns of equal length as input, one for y, one 
for X, and one for the weights ( = I/x'). The same 
Outputs tan also be obtained by using a linear re- 
gression Software package without weights but with 
the two input columns being z and W. 

The interpretation of these Plots is the Same as that 
for figures 2 and 3. 

6.5 Evaluation of the lack of fit of the 
calibration function 

6.5.1 General 

4 A comparison between N 

c Cwn - W) (Zn. - Z) 

Po = 
n=l 

N 

c Cwn - w) 
2 

n=l 

- the variability due to lack of fit of the model 
selected either in 6.2 or in 6.4 and 

- the variability of the pure error representing the 
inability of the System to repeat measurements 
exactly pl = z - i;()w 

AZ WSSE z = (NK- 2) 
is carried out after constructing an ANOVA table. Such 
a comparison Es possible because the measurements 
of each RM have been replicated. 

where 
The selection of the significance level a depends on 
particular applications and is left to the user of this 
International Standard. 

NK=NxK 

Ynk 
znk =- 

xn 
6.5.2 Model with constant residual Standard 
deviation (defined in 6.2) 1 =- wn x n 

1 N w=- 
N wn c 

n=l 

6.5.2.1 The ANOVA table shown as table 1 tan be 
obtained by using the formulae below or as an output 
of most linear regression Software packages. 
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Table 1 - ANOVA table to compare lack of fit and pure error under the assumption of eonstant residual 
Standard deviation 

SSR = SST - SSE 

Residuaf 

Lack of fit N-2 

Pure error NK-N 

Total NK-1 

SSE - SSP 

SSP 

SST 

2; = SSE - SSP 
N-2 

A2 SSP 
o =m P 

SST = : c (J,~ - y)2 n=fR=l 

SSP = c : (y& - y,,.)2 
tt=lk=l 

SSE is defined in 6.2.2. 

6.5.2.2 The variability due to pure error is estimated 
by $. This variability is independent of the model 
(y = po + &x) fitted to the data. The variability due to 
lack of fit is estimated by $. A test of the validity 
of the model defined in 6.2.1 is carried out by com- 

A2 A2 paring q lap to Ft1 -,,(N - 2; NK - N) where 
Ft1 +(N - 2; NK - IV) is the (1 - a)-quantile of the 
F-distribution with N - 2 and NK - N degrees of free- 
dom. 

ation was used, then the ANOVA table is constructed 
as shown in table2. 

The same test, interpretation, conclusions and re- 
marks apply to gr/$ as to $$z described in 6.5.2.2. 4 

6.6 Transformation of future measured 
values with the calibration function 

a) If $/$z is not larger than FC, -,,(N - 2; NK - N), 
then there is no evidente to reject the linear 
model. 

b) If $/$z is larger than FC, -,,(N - 2; NK - N), then 
potential Causes for a large variability due to lack 
of fit relative to the pure error variability should be 
investigated. One common Cause is the inad- 
equacy of the linear assumption of the calibration 
function (see figures 2 and 3). Another possible 
Cause may be the conditions under which the 
calibration experiment was performed (e.g. repli- 
cations may not have been genuine repeats but 
just repetitions of the same reading). 

Once a calibration experiment has been carried out, 
measured values of new unknown quantities (in op- 
Position to Standards which have known or accepted 
values) will be transformed via the calibration function. 
Transforming these measured values will result in a 
Single value X; that estimates the true value of the 
unknown quantity. The transformation depends on 
the assumption made concerning the residual vari- 
ante and is implemented as follows. 

A new unknown quantity is measured I) times, re- 
sulting in p measurements yol, yo2, . . . . yol,. The mean 
F b of these p measurements is obtained as 

6.5.3 Model with proportional residual Standard 
deviation (defined in 6.4) 

If the model with proportional residual Standard devi- 

1’ 
1 

3) = p c YOk 
k=l 

f p = 1, then y. = yo,. 
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Table 2 - ANOVA table to compare lack of fit and pure error under the assumption of proportional 
residual Standard deviation 

Source Degrees of freedom, DF Sum of squares, SS SS/DF F ratio 

Calibration function 1 WSSR = WSST - WSSE 

Residual NK-2 WSSE A2 WSSE z =- 
NK-2 

Lack of fit 

Pure error 

Total 

N-2 

NK-N 

NK-1 

WSSE - WSSP 

WSSP 

WSST 

;2 = WSSE - WSSP 
I N-2 

22 = WSSP 
P NK 

WSST = : : (z,,~ - z) 
rt=lk=l 

wss P = ; : (Z,,k - z,,.)2 
n=lk=l 

WSSE is defined in 6.4.2. 

a) If the model with constant residual Standard devi- 
ation was selected, then 

A 
Yo - Po x; = --y---- 

ß 1 

b) If the model with proportional residual Standard 
deviation was selected, then 

This International Standard does not provide confi- 
dence intervals, either one-at-a-time (see ref. [2]) or 
simultaneous (see refs. [4] and [5]), for the estimates 
of new unknown quantities based on the calibration 
experiment itself. Instead, this International Standard 
offers a control method which, among other benefits, 
allows for the derivation of confidence intervals based 
on the variability observed in monitoring a few RMs 
over a period of time. 

7 Control method 

7.1 General 

When the calibration function is to be used for an ex- 
tended period of time, it is desirable to implement a 

control method to check the validity of the calibration 
curve, as well as to identify, and subsequently elim- 
inate, sources of undesired Variation. The control 
method monitors on a regular basis the measurement 
System in Order to detect quickly when the System 
behaves erratically or shifts, thus potentially making 
the calibration function useless if not harmful. 

Detection is achieved by monitoring the measured 
values (after transformations by the calibration func- 
tion) of a set of m RMs with a control Chart technique. 

NOTE 6 This approach in an extension of traditional con- 
trol Charts described in ISO 787OC61 and ISO 8258[71. 

The control Chart is first established from the data 
collected during the calibration experiment. The con- 
trol Chart is then used to decide if the calibration 
function needs to be re-estimated. The same controi 
Chart is also used to estimate the uncertainty in the 
measurements after they have been transformed with 
the calibration function. 

10 
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7.2 Calculation of upper and lower control 7.2.2 Model with proportional residual Standard 
limits deviation 

a) Calculate the upper control iimit Uc and the iower 
control limit Lc as 

7.2.1 Model with constant residual Standard 
uc = & t(l -(,2,(NK - 2) 

Yl 

deviation 
z Ld,= -7 t(l -p)w - 2) 

Yl 
a) Calculate the upper control iimit Ud and the iower 

controi Iimit Ld as where 

a Ud = 7 $1 -[,,,(NK - 2, z is the Square root of the estimate G2 , 
ß 1 obtained from the calibration exper- 

a 
iment (see 6.4.2); 

&j=-7 t(l 4,2,(NK - 2) 

ß 1 
NK - 2 is the number of degrees of free- 

dom associated with the estimation 

where 
of 22 (see 6.5); 

NK- 

ß 1 

2 

is the Square root of the esti- 
mate a2 obtained from the 
caiibration experiment (see 
6.2.2); 

is the number of degrees of 
freedom associated with the 
estimation of a2 (see 6.5); 

is the estimate of ß1 obtained 
from the calibration exper- 
iment (see 6.2.2); 

b) 

Yl is the estimate of y1 obtained from 
the calibration experiment (see 
6.4.2). 

NOTE 7 cc, q1 -(,2)( NK - 2) and c are as defined in 
7.2.1 a). c 

Plot the limits Uc and L, on the control Chart. 

7.3 Collection and plotting of the data 

a is the significance ievel 
seiected for the controi Chart; 

lt1 -I12J(NK - 2) is the (1 - [/2)-quantiie of the 
t-distribution with NK - 2 de- 
grees of freedom; i.e. 

7.3.1 Select m RMs such that their accepted vaiues 
cover the range of vaiues encountered under normal 
operating conditions of the measurement System. A 
minimum of two RMs is needed. Three RMs are rec- 
ommended. lt is preferabie but not mandatory to use 
RMs that are different from the ones used during the 

p IIt > q1 -1/2)( NK- 2)] = (12 caiibration experiment. 

is the significance ievel as- 
sociated with each individual 
RM and with the iimits Ud and 

7.3.2 On a regular basis (e.g. once a day or once 
every shift), make one measurement on each of these 
m RMs. 

Ld such that the Overall Sig- 
nificance of a is obtained for 
all the m RMs simuitaneousiy; 
c is obtained (for smali values 
of a) as 

7.3.3 Obtain the transformed values of each one of 
these m RMs (see 6.6). These transformed vaiues are 
referred to as x~: for i = 1, . . . . m. 

5 = 1 - exp 
In (1 

m- 4 

7.3.4 Caicuiate the differentes di between the 

N a 
m 

b) Plot the limits Ud and Ld on the COntrOl Chart. 

transformed vaiues xlT and the accepted values of 
these RMs, Xi, as 

di = ~1' - Xi 

11 
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7.3.5 if the calibration modei assumes constant re- 
siduai Standard deviation, iet the differentes di be re- 
ferred to as the control values. 

if the calibration modei assumes proportional residuai 
Standard deviation, normalize the differentes di by 
dividing them by Xi. Let the resuiting values ci be re- 
ferred to as the control vaiues where 

Xi* - Xi 
ci = ~ xi 

7.3.6 Plot the appropriate controi values (di or ci) 
versus the time at which the m RMs are measured 
on the control Chart. Figure4 iilustrates a controi Chart 
for the constant residual Standard deviation modei. A 
similar control Chart tan be drawn for the proportional 
residuai Standard deviation model (see figure 12). 

7.4 Decision about the state of the System 

if one or more vaiues of di falls outside the control 
limits Ud and Ld for the model with COnStant residual 
Standard deviation, the System is declared out-of- 
controi at that time. The m RMs shouid be remeas- 
ured. if at least one of the new measurements of the 
m RMs is still outside the iimits, an investigation shaii 
take piace at this Point to determine the Cause of the 
Problem. Depending on the nature of the Problem, the 
caiibration function may need to be re-estimated from 
a new caiibration experiment. 

The same conclusions are reached for the modei with 
proportional residual Standard deviation by comparing 
the ci values to the iimits Uc and Lc. 

7.5 Estimation of the uncertainty of the 
transformed values 

7.5.1 Estimation during the validity period of a 
given calibration function 

For the calibration function subject to the control 
method, the uncertainty of the transformed vaiues is 
approximated by the pooied variance of the control 
vaiues of two RMs (out of the m RMs selected for the 
controi method): the RMs with smallest and largest 
vaiues. This is expiained by the fact that the trans- 
formed values at the end of the range of vaiues en- 
countered during the caiibration expenment are 
expected to have a iarger variance than the ones in 
the middle of that range. Thus, the confidence intervai 
for a transformed vaiue derived from the variabiiity of 
the two extreme RMs is approximateiy correct for the 
vaiues at the end of the range of appiications and 
conservative for the values in the middie of that 
range. 

To caiculate such a confidence intervai, carry out the 
procedure given in 7.5.1 .l for the appropriate modei 
(constant or proportional residual Standard deviation). 

1 1 1 1 1 1 
2 G 6 8 10 

Key: x = RM with low value, A = RM with middle value, o = RM with upper value 

Figure 4 - Schematic diagram of a control Chart to validate the calibration curve under the assumption 
of constant residual Standard deviation 

12 
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751.1 Model with constant residual Standard 
deviation 

Let db and dmj be the control values of the smallest 
and largest RMs, where j represents the time at 
which the measurements were made. Then, over a 
period of J times when the measurement System is 
in a state of statistical control, the Standard deviation 
of a transfo rmed value is a pproximated by 

J lc Cdf + dijJ 

a cal = 2J 

with 2J degrees of freedom. 

An approximate confidence interval for the unknown 
true value of a quantity estimated by the transformed 
value ~0’ (derived from p measurements made over a 
short period of time) with a confidence level of 
(1 - CC) is obtained as 

4 + kal $1 --~@,(~5) 

where lC, -,,$2J) is the (1 - a/2)-quantile of the t-dis- 
tribution with 2J degrees of freedom. 

7.5.1.2 Model with proportional residual 
Standard deviation 

Let crj and c,j be the control values of the smallest and 
largest RMs,” where j represents the time at which the 
measurements were made. Then, over a period of J 
times when the measurement System has been in a 
state of statistical control, the coefficient of Variation 
of a transformed value is approximated by 

1 J c (Ci + Cij> 

; 
j=l 

cal = 2J 

with 2.1 degrees of freedom. 

An approximate confidence interval for the unknown 
true value of a quantity estimated by the transformed 
value X; (derived from p measurements made over a 
short period of time) with a confidence level of 
(1 - a) is obtained as 

x; If- z^ cal [(l -c@) @J) so' 

where fC, -a,21(2.1) is the (1 - 42)- quantile of the i-dis- 
tribution with 2.1 degrees of freedom. 

7.52 Estimation over a period that includes 
recalibration 

procedure is included in the uncertainty Statement 
pick one set of control values (dv, dmj) or (cy, c:,j) from 
each calibration interval and use the same formula for 
a cal Or %ab where j is now the number of reca- 
librations. 

8 Two alternatives to the basic method 

8.1 General 

Under special conditions, two alternative methods tan 
be used to calibrate a measurement process. These 
two methods are actually special cases of the basic 
method, where only one or two RMs are used. The 
one-Point calibration method is a fast technique that 
allows one to “recalibrate” a measurement System 
when there is no doubt about the Iinearity of the cali- 
bration function. The bracketing method is a labour- 
intensive technique that allows the determination of 
the value of an unknown quantity with great precision 
and with a minimal set of assumptions. 

8.2 One-Point calibration method 

8.21 General 

This method is useful for a quick recalibration when 
there is no doubt about the linearity of the function 
over a given range [0, . . . . m. The “Zero-Point” is ob- 
tained by adjusting some dials to ensure that an un- 
known quantity with true value 0 is measured as 0. 
Only a blank (quantity with true value 0) and one RM 
are used in this method. 

One tan note that, historically, this method is called 
a one-Point calibration but in reality this is a two-Point 
calibration carried out with one blank and one RM. 
This so-called “one-Point calibration” is a weak and 
uncertain method because of the doubtfulness of the 
zero Point. lt should not be recommended for cali- 
bration purposes, but primarily for checking an exist- 
ing linear calibration function. 

8.22 Assumptions 

lt is assumed that: 

a) there are no errors in the accepted value of the 
only RM and of the blank used with this method 
(assumption not tested); 

b) the calibration function is linear over the range 
[0, . . . . m (assumption not tested); 

To insure that the variability due to the calibration 
c) the residual Standard deviation is constant (as- 

sumption not tested). 

13 
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8.2.3 One-Point calibration experiment 

a) Experimental conditions: the experimental condi- 
tions should be the Same as the normal operating 
conditions of the measurement System. 

b) Choice of RM: the only RM used in this exper- 
iment should have an accepted value that is 
greater (as far as is possible) than the values en- 
countered during normal conditions of the 
measurement System. 

c) Number of replicates: the RM should be meas- 
ured at least twice. 

8.2.4 Estimation of the calibration function 

8.2.4.1 Model 

This model is similar to the one of the basic method 
with constant residual variance defined in 6.2.1, but 
without an intercept. This model is 

Yk = ßx + % 

where 

x is the accepted value of the only RM 
used; 

Yk is the kth measurement of that RM 
(k = 1 , . . . . K); 

Ek is the deviation between yk and the 
expected value of the measurement 
of the RM (these deviations are as- 
sumed to be independent and 

u 
zi 12 

; 
E 10 al 
0, 
.- Q 0 
CE 
+ l  - 

&  

ön 6 
ga: 
=It - .- 
F G 
z L 
z 
z 

2 
2 

normally distributed with mean 0 and 
variance 0’); 

ß and CT 2 are two Parameters to be estimated 
from the data collected during the ex- 
periment. 

8.2.4.2 Estimates of ß and 0’ 

These are obtained from the foilowing formulae: 

AZ 1 K 

c (yk - y) 

. 
1 1 1 1 1 1 e 

k=l 

8.2.4.3 Plot of the data 

Plot the data collected during the experiment, as 
shown in figure 5. 

The plot shown as figure 5 allows visual identification 
of potential outliers for investigation. lt also displays 
the linear calibration function constrained to go 
through the origin. 

8.2.5 Transformation of future measurements 
with the calibration function 

An unknown quantity is measured p times, resulting 

0 05 I l,o 1.5 20 I 25 # 30 , 

Accepted value of Single RM used in calibration experiment 

Figure 5 - Schematic diagram of the data in a one-Point calibration experiment 
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in p measurements yOI, yo2, . . . . yoP. The mean Yo of 
these p measurements is obtained as 

accuracy 
unknown 

in d eterm ining the transformed value of an 
ntity. 

1 p Yo = p c YOk 

k=l 

The unknown quantity and the two RMs are meas- 
ured together. The value of the unknown quantity is 
estimated directly, based on a linear interpolation be- 
tween the values of the two RMs. If p = 1, then Yo = yoI. Transforming these measure- 

ments *will result in a Single value being reported as 
x; = yo/ß. 

8.3.2 Assumptions 
NOTE 8 In principle, the blank does not always have a 
true value of 0 but instead has an accepted value of xb, 
known to have a measurement of Yb. lf xb is not negligibie, 
the one-Point calibration method described in 8.2.3 tan be 
used with the following adaptations. 

Because only two RMs are used, the bracketing 
technique does not allow for checking of any of the 
following assumptions: 

a) that there is no error in the accepted values of the 
RMs; a) Me asure the b lan k and adj 

ing instru ment to read Yb. 
ust the dials of the measur- 

b) that the calibration function between the two 
RMs is linear; 

b) Measure the only RM used, as in the case of a blank 
with value 0. 

c) that the residual Standard deviation is constant. c) The model becomes 

yk - Yb = ß(x - xb) + Ek 

8.3.3 Bracketing experiment d) The estimate of ß becomes 

a) Experimental conditions: the experimental condi- 
tions should be such that the variability between 
measurements of the Same RMs is as small as 
possi ble. 

ß = @ - yb)I(X - xb) . 

e) The estimate of C? is unchanged. 

f) The estimate of the true value of an unknown quantity 
measured p times (yO,, yo2, . . . . yop) is 

x; = xb + (.& - Yb)/; 

b) Choice of RMs: the range of values spanned by 
the two RMs should be as small as possible and 
shall include the value of the unknown quantity to 
be measured. 

c) Number of RMs: two RMs are used for each un- 
known quantity. 8.3 Bracketing technique 

d) Number of replicates: both RMs 
quantity should be measured at 

and the unknown 
8.3.1 General least twice. 

This method is useful when there is some doubt 
about the linearity of the calibration function over the 
full range of values encountered during normal oper- 
ations of the measurement System. This method is 
also useful when there is some concern about the 
stability of the measurement process. The principle 
of the method consists in reducing as much as poss- 
ible the interval over which the linearity of the cali- 
bration function is assumed. This leads to surrounding 
as tightly as possible (or bracketing) the value of the 
unknown quantity by two values of reference ma- 
terials (RMs). Because of the tight surrounding of 
each unknown quantity by two RMs, and because of 
the short period of time needed for this procedure 
(time to measure the unknown quantity and the two 
RMs), the bracketing technique usually yields greater 

8.3.4 Estimation of the unknown quantity 

8.3.4.1 Model 

The model is the Same as that for the basic method 
with constant residual Standard deviation (see 6.2), 
i.e. 

Yik = ßo + ßlxi + Eik 

is an index that refers to both 
RMs (i = 1, 2) as weil as to the 
unknown quantity (i = 0); 
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X, and -v2 

l-0 

?ylA, ?72x and jyok 

&ik 

PO/ ß,l x. and 0 2 

are the accepted values of the 
RMs; 

is the unknown true value of the 
unknown quantity; 

are the measurements of the 
two RMs and of the unknown 
quantity, respectively (k = 1, . . . . 
K)’ I 

is the deviation between yik and 
the expected value of the 
measurement of either an RM 
or the unknown quantity (de- 
pending on the value of i) 
(these deviations are assumed 
to be randomly distributed with 
mean 0 and variance 0’); 

are the four Parameters to be 
estimated from the data col- 
lected during the bracketing ex- 
periment (there is no interest in 
ß. and ß., except for the fact that 
they impact the Parameter xo). 

8.3.4.2 Estimates of x. and of the residual 
wariance 0’ 

These are obtained from the following formulae: 

i. = -9(Yo - Fl ) - X,(Yo - 72) 
Y2 - Fl 

K 

c (Yl k - 71)’ + f-)&k - .&j2 + f--$(-)k - Yo)’ 
AZ k=l k=l 
0 

k=l = 
3 (K- 1) 

where 

K 

&- 
K c Yik 

k=l 

when i = 0, 1, 2 

9 Exarnple 

9.1 General 

This example illustrates the basic method for esti- 
mating a linear calibration function for a measurement 
System and the control method for monitoring the 
Same measurement System. The example is based 
on ref. [Ei]. 

9.2 Basic method 

9.2.1 Background and data 

Measurements of line-spacing in integrated circuits 
photomasks in the 0,5 Pm to 12 Pm range tan be 
made with an Optical-imaging System (an Optical 
microscope fitted with a measurement attachmentj. 
Such a System tan be calibrated using the Standard 
reference material SRM-474 issued by the National 
Institute of Standards and Technology (NIST). 
SRM-474 contains (among other thingsj a row of ten 
randomly arranged spacings in the range of 0,5 Pm to 
12 Pm. 

This example describes a calibration experiment con- 
ducted on an Optical-imaging System. Esch one of the 
ten line-spacings of the Standard was measured four 
times. These repetitions were spaced over a 2-week 
interval to ensure independence among the 
measurements. The data displayed in table3 consist 
of four (K = 4) replicates of measurements on ten 
(N = 10) Iine-spacings for which NIST provides ac- 
cepted values. 

9.2.2 Plot of the data 

The plot of the data collected during the experiment, 
as shown in figure 6, does not identify obvious outliers 
or unusual behaviour of the System during the cali- 
bration experiment. lt supports the assumption of lin- 
earity of the calibration function and raises questions 
as to the assumption of constant residual Standard 
deviation, since the spread of the data for a given 
NIST value seems to increase slightly with that NIST 
value. 
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Table 3 - Calibration experiment for line-spacing 
Values in micrometres 

NIST value 

X,r 

6,19 

9,17 

1,99 

7,77 

4,00 

IO,77 

4,78 

2,99 

6,98 

9,98 

Measured value 

Replicate 1 Replicate 2 Replicate 3 Replicate 4 

Yd YH2 Y,,, Yd 

6,31 6,27 6,31 6,28 

9,27 9,21 9,34 9,23 

2,21 2,19 2,22 2,20 

8,00 7,81 7,95 7,84 

4,27 4,15 4,15 4,15 

IO,93 IO,73 IO,92 IO,89 

4,95 4,87 5,00 5,00 

3,24 3,17 3,21 3,21 

7,14 7,07 7,18 7,20 

IO,23 IO,02 IO,07 IO,17 

x Replicate 1 
0 Replicate 2 
A Replicate 3 
0 Replicate 4 

2t 1 1 1 1 
2 4 6 8 Io 

NIST values for xII, Pm 

Figure 6 - Data collected during the calibration experiment for line-spacing 
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92.3 Estimation of the linear calibration function 
under the assumption of constant residual 
standard deviatisn 

The formulae given in 6.2.2 lead to: 

a) N= 10, K=4 , 

b) x = 6,462 

C) yj. is as given in table4 

d) y= 6,614 

e) SSE = 0,146 2 

fl B 1 = 0,987 0 

9) B o = 0,235 8 

h) $* = 0,003 8 

The calibration function is 

$ = 0,235 8 + 0,987x 

The fitted values & are obtained by replacing A in this 
formula with the NIST values xn listed in table3. 

The residuals are obtained as 

These residuals are listed in table5. 

Table 4 - Values Of yi. 

Table 5 - Linear calibration under the assumption of constant residual Standard deviatisn 
Values in micrometres 

NIST value 
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o Replicate 2 
A Replicate 3 
0 Replicate 4 
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/ 
rp I 1 I I 1 

2 4 6 8 Io 

NIST vahes for x,, Pm 

Figure 7 - The calibration curve for line-spacing under the assumption of constant residual Standard 
deviation 

9.24 Plots of the calibration function and of the 
residuals 

The plot of the calibration function (figure 7) confirms 
that a linear calibration function seems to be appro- 
priate. 

The plot of the residuals (figure8) Shows that replicate 
2 has consistently lower residual values than the other 
replicates. These low residual values tan be traced to 
the original data in table3 which are consistently 
lower for replicate 2 than for the other replicates. No 
definite explanation was found for this phenomenon 
and the data from replicate 2 were retained as repre- 
sentative of the behaviour of the measurement sys- 
tem under normal operating conditions. 

A more sophisticated model than the two models 
proposed respectively in 6.2.1 and 6.4.1 could be 
used to analyse these data in Order to take into con- 
sideration the systematic differentes between repli- 
cates. For the sake of simplicity and for an illustration 
of the basic and control methods, this effect will be 
ignored and the present strategy and associated 
models will be pursued. 

Figure8 also indicates that the assumption of con- 
stant residual Standard deviation does not seem to 
hold. This Suggestion is confirmed with figure 9, 

which Shows a plot of the Standard deviation of the 
replicated measurements of a RM versus the ac- 
cepted values of that RM. 

9.2.5 Estimation of the calibration function under 
the assumption of proportional residual Standard 
deviation 

Estimate the calibration function under the assump- 
tion of proportional residual Standard deviation and 
plot the calibration function and the residuals. 

The formulae given in 6.4.2 lead to: 

a) N=lO, K=4 

b) w = 0,203 

c) Zi. is as given in table6 

d) z = 1,035 

e) WSSE = 0,003 4 

fl ; 1 = 0,985 1 

g) Yo = 0,246 9 

hl 2^’ = 0,889 x lO-4 
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x Replicate 1 

0 Replicate 2 
A Replicate 3 
0 Replicate 4 

““r----- X j 

0.10 

0,os 

0 

0.05 

OJO 

1 x X 
q 0 

X n n 0, 
n n 

: 

A 
il 

p9 
0 n x .‘A~ 

0 8 
0 

Cl 

0 

Cl 
0 

0 

2 L 6 0 10 

Fitted values, c,, Pm 

Figure 8 - Residuals versus fitted values for line-spacing under the assumption of constant residual 
Standard deviation 

0.06 

2 6 8 10 

NIST values for x,*, Fm 

Figure 9 - Standard deviations of replicated measurements for line-spacing versus NIST values 

Table 6 - Values Of Zj. 
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The calibration function is 

y^ = 0,246 9 + 0,985lx 

by the NIST values x~. 

The weighted residuals are obtained as 

The fitted values, &, are obtained by replacing x in this 
formula with the NIST values xn. These fitted values 
are listed in table7. 

%k = znk - gn 

These weighted residuals are listed in table 7. 

The weighted fitted values are obtained by replacing 
x in the formula 

Figure 10 Shows the original data and the calibration 
function under the assumption of proportional residual 

z^ = 0,985 1 + 0,246 9/x Standard deviation. 

Table 7 - Linear calibration under the assumption of proportional residual Standard deviation 

NIST value Fitted value Weighted fitted value Weighted residual 

-51 il z,l 
w-n 

u 
Pm t11 u t12 u t13 u 114 

6,19 6,3449 1,025O -0,0056 -0,012 1 -0,0056 -0,0105 
9,17 9,2807 1,0121 -0,001 2 -0,0077 0,0065 -0,0055 
1,99 2,2074 IJ092 0,0013 -0,0087 0,0064 -0,0037 
7,77 7,901 5 1,0169 0,0127 -0,011 8 0,0062 -0,0079 
4,00 4,1875 1,0469 0,0206 -0,0094 -0,0094 -0,0094 
IO,77 IO,8569 1,008l 0,0068 -0,011 8 0,0059 0,003l 
4,78 4,955 9 1,0368 -0,001 2 -0,018O 0,0092 0,0092 
2,99 3,1925 1,0677 0,0159 -0,0075 0,0059 0,0059 
6,98 7,1232 1,0205 0,0024 -0,0076 0,0081 0,0110 
9,98 IO,0786 1,009 9 0,0152 -0,0059 -0,000 9 0,0092 

x Replicate 1 
0 Replicate 2 
A Replicate 3 
0 Replicate 4 

2 
2 6 8 lo 

NIST values for xII, Pm 

Figure 10 - Calibration curve for line-spacing under the assumption of proportional residual Standard 
deviation 
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Figure 10, similarly to figure 7, supports the assump- 
tion of Iinearity. The coefficients of the linear cali- 
bration function have slightly changed compared to 
the ones of figure7. This Change is the result of as- 
signing less weight to the measured values for large 
Iine-spacings than to the measured values for small 
Iine-spacings (assumption of proportional residual 
Standard deviation). 

Figure 11 Shows a plot of the weighted residuals. 

The weighted residuals shown in figure 11 appear to 
be randomly distributed. The increasing spread of the 
residuals of figure 8 has disappeared, lending more 
credence to the assumption of proportional residual 

Standard deviation. As in figure8, figure 11 Shows 
lower weighted residual values for replicate 2. 

9.2.6 Evaluation of the lack of fit of the 
calibration function 

Table8 Shows the ANOVA table under the model of 
proportional residual Standard deviation given in 
6.5.3. 

The ANOVA table reveals that 
residuals due to lack of fit ($ > 
variability in the data due to pu 
$/$ is smaller than the F0 &8,3 C I 

the variabiiity in the 
is smaller than the 

e error ($. The ratio 
1) value equal to 2,27. 

This confirms that the assumption of linearity is ap- 
propriate for the calibration experiment described in 
this example. 
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Figure 11 - Weighted residuals versus weighted fitted values for line-spacing under the assumption of 
proportional residual Standard deviation 

Table 8 - ANOVA table to compare lack of fit and pure error for line-spacing under the assumption of 
proportional residual Standard deviation 

WSSR = 0,0369 

WSSE = 0,0034 

Pure error 

Totai 

WSSP = 0,0028 

WSST = 0,0403 
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9.27 Tranformation of future measurements 

Based on the calibration function obtained in 6.4, 
measurement or measurements on new unknown 
Iine-spacings will be transformed as follows: 

such a way that they cover as large a range as poss- 
ible of values encountered during normal operating 
conditions. Esch line-spacing was measured every 
day. Table 9 Shows measurements obtained during 
the first 7 days, together with the NIST value X+ 

a) a Single measurement y. of an unknown line- 
spacing will lead to a reported line-spacing value 
of 

9.32 Calculation of upper and lower control 
limits 

/y; y. - 0,246 9 A value of 0,05 was selected for a. From = 6.4.2 one 
0,985 1 has 

b) several measurements of the same unknown 
Iine-spacing yol, yo2, . . . . yoP will lead to a Single re- 
ported line-spacing value of 

jjo - 0,246 9 x; = 0,985 1 

?* = 0,889 x 1O-4 

i)1 = 0,985 1 

NK-2=38and 
(5 = 0,025 

9.3 Control method 

9.3.1 Background and data 

Two line-spacings were selected for the control 
method (m = 2). These line-spacings were selected in 

These values lead to: 

4 = 0,009 4 x 2,334 2/0,985 1 = 0,022 3 

Lc = - 0,022 3 

These Iimits are plotted in figure 12. 

Table 9 - Data collected for the control method 

Dw 

NIST value Measured value Transformed value 

xi Yi Xi’ 

Pm P-J-J Pm 

2,99 

IO,77 

2,99 

IO,77 

2,99 

IO,77 

2,99 

IO,77 

2,99 

IO,77 

2,99 

IO,77 

2,99 

IO,77 

Control value 

Ci 

3,154 2,951 -0,013 

10,760 10,673 -0,009 

3,215 3,013 0,008 

10,909 10,823 0,005 

3,165 2,962 -0,009 

10,740 10,652 -0,011 

3,213 3,011 0,007 

10,892 10,806 0,003 

3,179 2,976 -0,005 

10,772 10,685 -0,008 

3,198 2,996 0,002 

10,807 10,720 -0,005 

3,230 3,028 0,013 

10,897 10,811 0,004 
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Key: x = RM with low value, o = RM with high value 

Figure 12 - Control Chart to validate the calibration curve for line-spacings under the assumption of 
proportional residual Standard deviation 

9.3.3 Transformation and plot of the data 

a) The values yi are transformed to xi’ using the cali- 
bration function and the control values 

Xi* - Xi 
ci = ~ 

xi 

are obtained. A model with proportional residual 
Standard deviation was adopted to derive the 
calibration function, the control method uses the 
normalized differe 31 

than the regular 
control values are I 

b) The control values 

lces as control values rather 
differentes (di = x; - Xi). The 

isted in table9. 

are plotted in the control Chart 
(figure 12). 

9.3.4 Decision about the state of the System 

The System seems to be under control and the cali- 
bration function does not need to be updated as of 
day 7. 

9.3.5 Estimation of the uncertainties of the 
transformed values during the validity period of 
the calibration function 

Since only two RMs are used in the control Chart, all 
control values ci are included in the calculation of an 
estimate of the coefficient of Variation of a trans- 
formed value. This estimate is equal to 

z^ j=l 
cal = - 0,007 9 2J - 

with 2J = 14 degrees of freedom. 

An approximate confidence interval for the unknown 
true value of a quantity estimated by the transformed 
value X; with a confidence level of 0,95 is obtained as 

Xc; -t ;cai t(l -,/*](2J)X~ = XG + 0,007 9 X 2,145X0* 
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Annex A 
(normative) 

List of Symbols and abbreviations 3 >. 

Number of reference materials 

Number of replicate measurements per 
reference material 

Total number of measurements on all 
reference materials 

Accepted value of a reference material 

Accepted value of a blank 

Average of all accepted values 

Inverse of an accepted value of a refer- 
ence material (1 /x) 

Average of all inverse accepted values 

Measurement of a reference material 

Measurement of a blank 

Average of all measurements 

Average of measurements of a specific 
reference material 

Ratio of a measurement of a specific 
RM over the accepted value of the same 
RM (Ylx) 

Intercept of the calibration function un- 
der the assumption of constant residual 
Standard deviation 

Slope of the calibration function under 
the assumption of constant residual 
Standard deviation 

Intercept of the calibration function un- 
der the assumption of proportional re- 
sidual Standard deviation 

Slope of the calibration function under 
the assumption of proportional residual 
Standard deviation 

Deviation between a measurement and 
its expected value under the assump- 

e 

u 

2 
0 

2 
OP 

2 
Ol 

2 
z 

2 
zP 

2 
Zl 

tions of linearity and of constant residual 
Standard deviation 

Deviation between a measurement and 
its expected value under the assump- 
tions of linearity and of proportional re- 
sidual Standard deviation 

Residual under the assumptions of Iin- 
earity and of constant residual Standard 
deviation 

Weighted residual under the assump- 
tions of linearity and of proportional re- 
sidual Standard deviation 

Constant residual variance (variance 
of E) 

Variante associated with pure error un- 
der assumption of constant residual 
Standard deviation 

Variante associated with lack of fit un- 
der assumption of constant residual 
Standard deviation 

Proportional residual variance (variance 
of q/x) 

Variante associated with pure error un- 
der assumption of proportional residual 
Standard deviation 

Variante associated with lack of fit un- 
der assumption of proportional residual 
Standard deviation 

SSE Sum of squared residuals e 

WSSE Sum of squared weighted residuals u 

SST, WSST Total sum of squared deviations under, 
respectively, the assumption of constant 
or proportional residual Standard devi- 
ation 

SSP, WSSP Sum of squared deviations due to pure 
error under, respectively, the assump- 
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tion of constant or 
Standard deviation 

proportional residual ‘d 

SSR, WSSR Sum of squared deviations explained by 
the calibration function under the as- 
sumption, respectively, of constant or 
proportional residual Standard deviation 

a Significance level 
Lc 

l-a Confidence level 

F(l -a)(q; y1;1) (1 - cc)- quantile of the F-distribution 
with ~1, and % degrees of freedom 

d 

q1 -&l) (1 - [)-quantile of the t-distribution with 
~2~ degrees of freedom 

c 

UPPer 
consta 

CO 
nt 

ntrol 
resid 

limit u nder as 
ual sta ndard d 

su 
ev 

mptio 
(iation 

n of 

Lower control Iimit under assumption of 
constant residual Standard deviation 

Upper control Iimit under assumption of 
proportional residual Standard deviation 

Lower control Iimit under assumption of 
proportional residual Standard deviation 

Control value under assumption of con- 
stant residual Standard deviation 

Control value under assumption of pro- 
portional residual Standard deviation 
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Annex B 
(normative) 

Basic method when the number of replicates is not constant 

When the number of replicates for each RM, K,, is not 
constant, the calibration function tan still be esti- 
mated by using adjusted formulae in 62.2, 6.4.2 and 
65 . . 

B.1 Estimates of po, fl1 and 0’ are calculated as 
follows: 

N Kl 

A 
x<x, - ax(y,l - Y) 

ß 
= n=l k=l 

1 N 

c K( n % - X)2 

n=l 

AZ SSE 0 = (NK-2) 

where 

N 

NK= K, c 
n=l 

- 1 N 
x=m- c Kt% 

n=l 

n=l k=l 

$n = a() + 21% 

e nk = Ynk - yn 

N Kn 

SSE = 7, 7, Cer&) 
n=l k=l 

B.2 Estimates of y~l y1 and 2’ are calculated as fol- 
lows: 

N K" 

c - W) 
c 

(Z,k - z) 

;, = z - yow 
AZ WSSE z = (NK-2) 

where 

N 

NK= K, c 
n=l 

Ynk 
‘nk =- 

xn 

1 =- wn x n 

1 NK~ FE--- 
NK c n n 

n=l 

n=l k=l 

23, = ;l + ?Own 
u nk = =nk - gn 

N Kn 
WSSE = 7, 7, (u,k) 

n=l k=l 

B.3 The lack of fit is evaluated as follows. Tables 
1 and 2 still apply where 

Kl 
1 =- Ynm K c Ynk 

’ k=l 

N Kn 

SST = 7, 7, (ynk - RZ 
n=l k=l 

N Kn 

SSP = 7, 7, (Ynk - Yn-) 
n=l k=l 

SSE is as defined in B.1 

k= ‘=’ N 
k=l 

c 
Kn(wn - iV)' 

n=l 

and 
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=rr 
1 =- 

Krl c =nk 
k=l 

WSST = 9, 9, (z,k - ?) 
n=l k=l 

Ws% = F4 9, (z,k - z,.,.) 
pl=1 k=l 

WSSE is as defined in B.2. 
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