ISO 11092 93 **388** 4851903 0546655 538 **388**

INTERNATIONAL STANDARD

ISO 11092

> First edition 1993-10-15

Textiles — Physiological effects — Measurement of thermal and water-vapour resistance under steady-state conditions (sweating guarded-hotplate test)

Textiles — Effets physiologiques — Mesurage de la résistance thermique et de la résistance à la vapeur d'eau en régime stationnaire (essai de la plaque chaude gardée transpirante)

Reference number ISO 11092:1993(E)

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting

International Standard ISO 11092 was prepared by Technical Committee ISO/TC 38, Textiles.

Annexes A and B form an integral part of this International Standard.

© ISO 1993

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Organization for Standardization Case Postale 56 • CH-1211 Genève 20 • Switzerland

Printed in Switzerland

Introduction

ISO 11092 is the first of a number of standard test methods in the field of clothing comfort.

The physical properties of textile materials which contribute to physiological comfort involve a complex combination of heat and mass transfer. Each may occur separately or simultaneously. They are time-dependent, and may be considered in steady-state or transient conditions.

Thermal resistance is the net result of the combination of radiant, conductive and convective heat transfer, and its value depends on the contribution of each to the total heat transfer. Although it is an intrinsic property of the textile material, its measured value may change through the conditions of test due to the interaction of parameters such as radiant heat transfer with the surroundings.

Several methods exist which may be used to measure heat and moisture properties of textiles, each of which is specific to one or the other and relies on certain assumptions for its interpretation.

The sweating guarded-hotplate (often referred to as the "skin model") described in this International Standard is intended to simulate the heat and mass transfer processes which occur next to human skin. Measurements involving one or both processes may be carried out either separately or simultaneously using a variety of environmental conditions, involving combinations of temperature, relative humidity, air speed, and in the liquid or gaseous phase. Hence transport properties measured with this apparatus can be made to simulate different wear and environmental situations in both transient and steady states. In this standard only steady-state conditions are selected.

Textiles — Physiological effects — Measurement of thermal and water-vapour resistance under steady-state conditions (sweating guarded-hotplate test)

1 Scope

This International Standard specifies methods for the measurement of the thermal resistance and water-vapour resistance, under steady-state conditions, of e.g. fabrics, films, coatings, foams and leather, including multilayer assemblies, for use in clothing, quilts, sleeping bags, upholstery and similar textile or textile-like products.

The application of this measurement technique is restricted to a maximum thermal resistance and water-vapour resistance which depend on the dimensions and construction of the apparatus used (e.g. 2 m²·K/W and 700 m²·Pa/W respectively, for the minimum specifications of the equipment referred to in this International Standard).

The test conditions used in this standard are not intended to represent specific comfort situations, and performance specifications in relation to physiological comfort are not stated.

2 Definitions

For the purposes of this International Standard, the following definitions apply.

2.1 thermal resistance, $R_{\rm ct}$: Temperature difference between the two faces of a material divided by the resultant heat flux per unit area in the direction of the gradient. The dry heat flux may consist of one or more conductive, convective and radiant components.

Thermal resistance $R_{\rm ct}$, expressed in square metres kelvin per watt, is a quantity specific to textile materials or composites which determines the dry heat flux across a given area in response to a steady applied temperature gradient.

2.2 water-vapour resistance, $R_{\rm et}$: Water-vapour pressure difference between the two faces of a material divided by the resultant evaporative heat flux per unit area in the direction of the gradient. The evaporative heat flux may consist of both diffusive and convective components.

Water-vapour resistance $R_{\rm et}$, expressed in square metres pascal per watt, is a quantity specific to textile materials or composites which determines the "latent" evaporative heat flux across a given area in response to a steady applied water-vapour pressure gradient.

2.3 water-vapour permeability index, *i*_{mt}: Ratio of thermal and water-vapour resistances in accordance with equation (1):

$$i_{\rm mt} = S \cdot \frac{R_{\rm ct}}{R_{\rm et}}$$
 ...(1)

where S equals 60 Pa/K

 $i_{
m mt}$ is dimensionless, and has values between 0 and 1. A value of 0 implies that the material is water-vapour impermeable, that is, it has infinite water-vapour resistance, and a material with a value of 1 has both the thermal resistance and water-vapour resistance of an air layer of the same thickness.

2.4 water-vapour permeability, W_d : Characteristic of a textile material or composite depending on water-vapour resistance and temperature in accordance with equation (2):

$$W_{\rm d} = \frac{1}{R_{\rm el} \cdot \phi_{T_{\rm el}}} \qquad \qquad \dots (2)$$

where

 $\phi_{T_{\rm m}}$ is the latent heat of vaporization of water at the temperature $T_{\rm m}$ of the measuring unit

equals, for example, 0,672 W·h/g at $T_{\rm m} = 35~{\rm ^{\circ}C}$

Water-vapour permeability is expressed in grams per square metre hour pascal.

3 Symbols and units

$R_{\rm ct}$	is the thermal resistance, in square metres
0.	kelvin per watt

$$R_{
m ct0}$$
 is the apparatus constant, in square metres kelvin per watt, for the measurement of thermal resistance $R_{
m ct}$

$$R_{\mathrm{et0}}$$
 is the apparatus constant, in square metres pascal per watt, for the measurement of water-vapour resistance R_{et}

$$\phi_{T_{\rm m}}$$
 is the latent heat of vaporization of water at the temperature $T_{\rm m}$, in watt hours per gram

$$T_{\rm m}$$
 is the temperature of the measuring unit, in degrees Celsius

$$T_{\rm s}$$
 is the temperature of the thermal guard, in degrees Celsius

$$p_{\rm a}$$
 is the water-vapour partial pressure, in pascals, of the air in the test enclosure at temperature $T_{\rm a}$

$$p_{
m m}$$
 is the saturation water-vapour partial pressure, in pascals, at the surface of the measuring unit at temperature $T_{
m m}$

v_{a}	is the speed of air above the surface of the
	test specimen, in metres per second

$$s_{\rm v}$$
 is the standard deviation of air speed $v_{\rm a}$, in metres per second

$$\Delta H_{\rm c}$$
 is the correction term for heating power for the measurement of thermal resistance $R_{\rm cr}$

$$\Delta H_{\mathrm{e}}$$
 is the correction term for heating power for the measurement of water-vapour resistance R_{et}

is the slope of the correction line for the calculation of
$$\Delta H_c$$

$$\beta$$
 is the slope of the correction line for the calculation of $\Delta H_{\rm e}$

4 Principle

The specimen to be tested is placed on an electrically heated plate with conditioned air ducted to flow across and parallel to its upper surface as specified in this International Standard.

For the determination of thermal resistance, the heat flux through the test specimen is measured after steady-state conditions have been reached.

The technique described in this International Standard enables the thermal resistance $R_{\rm ct}$ of a material to be determined by subtracting the thermal resistance of the boundary air layer above the surface of the test apparatus from that of a test specimen plus boundary air layer, both measured under the same conditions.

For the determination of water-vapour resistance, an electrically heated porous plate is covered by a water-vapour permeable but liquid-water impermeable membrane. Water fed to the heated plate evaporates and passes through the membrane as vapour, so that no liquid water contacts the test specimen. With the test specimen placed on the membrane, the heat flux required to maintain a constant temperature at the plate is a measure of the rate of water evaporation, and from this the water-vapour resistance of the test specimen is determined.

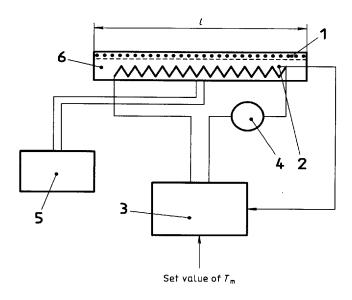
The technique described in this International Standard enables the water-vapour resistance $R_{\rm et}$ of a material to be determined by subtracting the water-vapour resistance of the boundary air layer above the surface of the test apparatus from that of a test specimen plus boundary air layer, both measured under the same conditions.

5 Apparatus

5.1 Measuring unit, with temperature and water supply control, consisting of a metal plate approximately 3 mm thick with a minimum area of 0,04 m² (e.g. a square with each side 200 mm in length) fixed to a conductive metal block containing an electrical heating element [see figure 1, items (1) and (6)]. For the measurement of water-vapour resistance, the metal plate (1) must be porous. It is surrounded by a thermal guard [item (8) of figure 2] which is in turn located within an opening in a measuring table (11).

The coefficient of radiant emissivity of the plate surface (1) shall be greater than 0,35, measured at 20 °C between the wavelengths 8 μm to 14 μm , with the primary beam perpendicular to the plate surface and the reflection hemispherical.

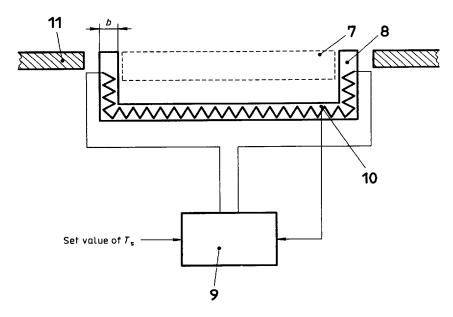
Channels are machined into the face of the heating element block (6) where it contacts the porous plate to enable water to be fed from a dosing device (5).


The position of the measuring unit with respect to the measuring table shall be adjustable, so that the upper surface of test specimens placed on it can be made coplanar with the measuring table.

Heat losses from the wiring to the measuring unit or to its temperature-measuring device should be minimized, e.g. by leading as much wiring as possible along the inner face of the thermal guard (8).

The temperature controller (3), including the temperature sensor of the measuring unit (2), shall maintain the temperature $T_{\rm m}$ of the measuring unit (7) constant to within \pm 0,1 K. The heating power H shall be measurable by means of a suitable device (4) to within \pm 2 % over the whole of its usable range.

Water is supplied to the surface of the porous metal plate (1) by a dosing device (5) such as a motor-driven burette. The dosing device is activated by a switch which senses when the level of water in the plate falls more than approximately 1,0 mm below the plate surface, in order to maintain a constant rate of evaporation. The level switch is mechanically connected to the measuring unit.


Before entering the measuring unit, the water shall be preheated to the temperature of the measuring unit. This can be achieved by passing it through tubes in the thermal guard before it enters the measuring unit.

- 1 Metal plate
- 2 Temperature sensor
- 3 Temperature controller

- 4 Heating-power measuring device
- 5 Water-dosing device
- 6 Metal block with heating element

Figure 1 — Measuring unit with temperature and water supply control

- 7 Measuring unit according to 5.1
- 8 Thermal guard
- 9 Temperature controller
- 10 Temperature-measuring device
- 11 Measuring table

Figure 2 — Thermal guard with temperature control

5.2 Thermal guard with temperature control [item (8) of figure 2], consisting of a material with high thermal conductivity, typically metal, and containing electrical heating elements.

Its purpose is to prevent heat leakage from the sides and bottom of the measuring unit (7).

The width b of the thermal guard (figure 2) should be a minimum of 15 mm. The gap between the upper surface of the thermal guard and the metal plate of the measuring unit shall not exceed 1,5 mm.

The thermal guard may be fitted with a porous plate and water-dosing system similar to that of the measuring unit to form a moisture guard.

The thermal guard temperature $T_{\rm s}$ measured by the temperature sensor (10) shall, by means of the controller (9), be maintained at the same temperature as the measuring unit $T_{\rm m}$ to within \pm 0,1 K.

5.3 Test enclosure, into which is built the measuring unit and thermal guard, and in which the ambient air temperature and humidity are controlled.

The conditioned air shall be ducted so that it flows across and parallel to the upper surface of the meas-

uring unit and thermal guard. The height of the duct above the measuring table shall not be less than 50 mm.

The drift of the temperature T_a of this air flow shall not exceed \pm 0,1 K for the duration of a test. For the measurement of thermal resistance, and water-vapour resistance values below 100 m²·Pa/W, an accuracy of \pm 0,5 K is sufficient.

The drift of the relative humidity R.H. of this air flow shall not exceed \pm 3 % R.H. for the duration of a test.

This air flow is measured at a point 15 mm above the measuring table over the centre of the uncovered measuring unit and at an air temperature $T_{\rm a}$ of 20 °C. The air speed $v_{\rm a}$ measured at this point shall have a mean value of 1 m/s, with the drift not exceeding \pm 0,05 m/s for the duration of a test.

It is important that at this point the air flow shall have a certain degree of turbulence, expressed by the related variation in air speed s_{ν}/v_{a} , of between 0,05 and 0,1, measured at approximately 6 s intervals over a time period of at least 10 min with an instrument which has a time constant of less than 1 s.

6 Test specimens

Test specimens shall completely cover the surfaces of the measuring unit and thermal guard.

From each material to be tested, a minimum of three test specimens shall be cut and tested.

Before testing, specimens shall be conditioned for a minimum of 12 h at the temperature and humidity specified in either 7.3 or 7.4 as appropriate.

6.2 Materials > 5 mm thick

6.2.1 Specimens falling into this category require a special test procedure to avoid loss of heat or water vapour from their edges.

In the measurement of thermal resistance, corrections for thermal edge losses are necessary if the specimen thickness is greater than approximately twice the width b of the thermal guard (see figure 2). The deviation from the linear relationship between

thermal resistance and specimen thickness can be determined and corrected by the factor $[1 + (\Delta R_{\rm ct}/R_{\rm ct~measured})]$ using the measurement of the $R_{\rm ct}$ values for several thicknesses of a homogeneous material such as foam, up to a total thickness d of at least that of the specimen to be tested (see figure 3).

- **6.2.2** If the thermal guard is not fitted with a porous plate and water-dosing system similar to that of the measuring unit, for the measurement of water-vapour resistance the vertical sides of the cut specimens shall be surrounded by a water-vapour impermeable frame of approximately the same height as that of the free-standing specimen. The inner dimensions of the frame shall be the same on all sides as those of the porous plate of the measuring unit.
- **6.2.3** Before testing, specimens shall be conditioned for a minimum of 24 h at the temperature and humidity specified in either 7.3 or 7.4 as appropriate.
- **6.2.4** Specimens containing loose filling materials or having uneven thickness, such as quilts and sleeping bags, require a special mounting procedure as described in annex A.

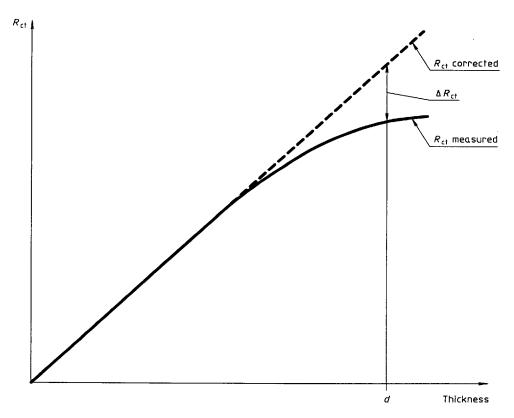


Figure 3 — Corrections for thermal edge losses during the measurement of thermal resistance

7 Test procedure

7.1 Determination of apparatus constants

In the values for thermal and water-vapour resistance measured with the device described in this International Standard, constants intrinsic to the apparatus are included. These constants comprise the resistance within the measuring unit itself, plus that of the boundary air layer adhering to the surface of the test specimen. The latter is dependent on the speed and degree of turbulence of the air flowing over the test specimen.

These apparatus constants, $R_{\rm ct0}$ and $R_{\rm et0}$, are determined as "bare plate" values, and it is essential that the upper surface of the measuring unit is coplanar with the measuring table.

7.1.1 Determination of R_{ctO}

For the determination of $R_{\rm ct0}$ set the temperature of the measuring unit $T_{\rm m}$ at 35 °C and the air temperature $T_{\rm a}$ at 20 °C with a relative humidity R.H. of 65 %. Set the air speed $v_{\rm a}$ to 1 m/s. Any deviations from these values shall be within the limits stated in clause 5. Wait until the measured quantities ($T_{\rm m}$, $T_{\rm a}$, R.H., H) reach steady-state before recording their values.

The bare plate resistance $R_{\rm ct0}$ is determined from equation (3).

$$R_{\rm ct0} = \frac{(T_{\rm m} - T_{\rm a}) \cdot A}{H - \Delta H_{\rm c}} \qquad (3)$$

 $\Delta H_{\rm c}$ is a correction term and is determined as described in annex B.

7.1.2 Determination of R_{etO}

7.1.2.1 During the determination of $R_{\rm et0}$, the surface of the porous plate is kept constantly moist by means of a water-dosing device (see 5.1). A smooth, water-vapour permeable but liquid-water impermeable cellophane membrane of thickness 10 μ m – 50 μ m shall be fitted over the porous plate.

The cellophane membrane shall be moistened with distilled water and fixed to the measuring plate by appropriate means so that it remains completely free of wrinkles.

The water supplied to the measuring plate shall be distilled, preferably double-distilled, and reboiled prior to use so that it is free of gas in order to prevent the formation of gas bubbles beneath the membrane.

7.1.2.2 Set the temperature of both the measuring unit $T_{\rm m}$ and the air temperature $T_{\rm a}$ at 35 °C. Set the air speed $v_{\rm a}$ to 1 m/s.

The relative humidity R.H. of the air shall be kept constant at 40 %, corresponding to a water-vapour partial pressure $p_{\rm a}$ of 2 250 Pa. The water-vapour partial pressure $p_{\rm m}$ directly at the surface of the measuring unit can be assumed equal to the saturation vapour pressure at the temperature of this surface, i.e. 5 620 Pa, without compromising the accuracy of the test.

Any deviations from the above values of $T_{\rm m}$, $T_{\rm a}$, $v_{\rm a}$ and R.H. shall be within the limits stated in clause 5. Wait until the measured quantities ($T_{\rm m}$, $T_{\rm a}$, R.H., H) reach steady-state before recording their values.

7.1.2.3 The bare plate resistance $R_{\rm et0}$ is determined from equation (4).

$$R_{\text{et0}} = \frac{(p_{\text{m}} - p_{\text{a}}) \cdot A}{H - \Delta H_{\text{e}}} \qquad (4)$$

 $\Delta H_{\rm e}$ is a correction term and is determined as described in annex B.

7.1.3 Reference material

A useful cross-check of the apparatus can be obtained by measuring a precalibrated thermal resistance material, e.g. a reference material for thermal conductivity¹⁾.

7.1.4 Recalibration

Check the apparatus constants $R_{\rm ct0}$ and $R_{\rm et0}$ at regular intervals. Where deviations greater than the accuracy of the measuring device occur (see clause 8), an adjustment shall be made. In most cases a change in $R_{\rm ct0}$ or $R_{\rm et0}$ is caused by a deviation in the speed of the air $v_{\rm a}$ over the surface of the test specimen. Air speed should be checked at regular intervals by the technique described in 5.3.

The air flow (both speed and degree of turbulence) over the surface of the test specimen influences the resistance of the boundary layer which adheres to the outer surface of the specimen, and thus influences the test result.

7.2 Assembly of test specimens on the measuring unit

7.2.1 Where appropriate, the orientation of the test specimens with respect to the air flow shall be defined and described in the test report.

¹⁾ Obtainable from the Community Bureau of Reference, Rue de la Loi 2000, B-1049 Brussels, Belgium; Order No. CRM 064 A (dimensions 300 mm \times 300 mm, thickness 33,5 mm, density 90.9 kg/m³, thermal resistance $R_{\rm ct} = 1,092 \pm 0,015$ m²-K/W).

The test specimens shall be placed so that they lie flat across the measuring unit, with the side normally facing the human body towards the measuring unit. In the case of multiple layers, specimens shall be arranged and stacked on the measuring unit as on the human body. Water-vapour impermeable adhesive tape or a light metal frame may be used around the edges of the test specimen to keep it flat.

Bubbles and wrinkles in the test specimen, or air gaps between the specimen and measuring unit or between the components of multilayer specimens, shall be prevented provided they are not specific to the surface profile of the specimens.

- **7.2.2** Normally, test specimens are measured free from stretch or loading and, in the case of multiple layers, without air gaps between layers. However, if a test is carried out under extension or applied pressure or with air gaps, this shall be mentioned in the test report.
- **7.2.3** With test specimens thicker than 3 mm, the measuring unit shall be lowered so that the outer surface of the specimen is flush with the measuring table.

7.3 Measurement of thermal resistance R_{ct}

7.3.1 Set the temperature of the measuring unit $T_{\rm m}$ at 35 °C and the air temperature $T_{\rm a}$ at 20 °C with a relative humidity R.H. of 65 %. Set the air speed $\nu_{\rm a}$ at 1 m/s. Any deviations from these values shall be within the limits stated in clause 5.

Other conditions of air temperature $T_{\rm a}$, relative humidity R.H. and air speed $v_{\rm a}$ may be used. The test report shall describe the alternative conditions and shall include a statement to the effect that the results differ from those of tests carried out under the conditions stated in this International Standard.

After placing the test specimen on the measuring unit, wait until the measured quantities ($T_{\rm m}$, $T_{\rm a}$, R.H., H) reach steady-state before recording their values.

7.3.2 Calculate the thermal resistance $R_{\rm ct}$ from equation (5):

$$R_{\rm ct} = \frac{(T_{\rm m} - T_{\rm a}) \cdot A}{H - \Delta H_{\rm c}} - R_{\rm ct0} \qquad \qquad \dots (5)$$

where the symbols and units are defined in clause 3.

Calculate the thermal resistance $R_{\rm ct}$ of the material being tested as the arithmetic mean of the individual measurements.

7.4 Measurement of water-vapour resistance R_{et}

- **7.4.1** For the measurement of water-vapour resistance, a water-vapour permeable but liquid-water impermeable cellophane membrane shall be fitted over the surface of the measuring unit as described in 7.1.2.
- **7.4.2** Set the temperature of both the measuring unit $T_{\rm m}$ and the air $T_{\rm a}$ to 35 °C with a relative humidity R.H. of 40 %. Hold the air speed $\nu_{\rm a}$ at 1 m/s. Any deviations from these values shall be within the limits stated in clause 5.

These isothermal conditions prevent water-vapour condensation within the test specimen.

Other conditions of relative humidity and air speed ν_a may be used. The test report shall describe the alternative conditions and shall include a statement to the effect that the results may differ from those of tests carried out under the conditions stated in this International Standard.

If the air temperature $T_{\rm a}$ is changed, the test is non-isothermal and this International Standard no longer applies.

After placing the test specimen on the measuring unit, wait until the measured quantities ($T_{\rm m}$, $T_{\rm a}$, R.H., H) have reached steady-state before recording their values.

7.4.3 Calculate the water-vapour resistance $R_{\rm et}$ from equation (8):

$$R_{\text{et}} = \frac{(p_{\text{m}} - p_{\text{a}}) \cdot A}{H - \Delta H_{\text{e}}} - R_{\text{et0}} \qquad (6)$$

where the symbols and units are defined in clause 3.

Calculate the water-vapour resistance $R_{\rm et}$ of the material being tested as the arithmetic mean of the individual measurements.

8 Precision of results

8.1 Repeatability

For thermal resistance $R_{\rm ct}$, the precision of repeated measurements on the same specimens with values up to $50\times10^{-3}~{\rm m}^2\cdot{\rm K/W}$ has been found to be $3.0\times10^{-3}~{\rm m}^2\cdot{\rm K/W}$, as measured on single layers of fabrics. With $R_{\rm ct}$ values higher than $50\times10^{-3}~{\rm m}^2\cdot{\rm K/W}$, the precision has been found to be 7 %, as measured on foams.

For water-vapour resistance $R_{\rm et}$, the precision of repeated measurements on the same specimens with values up to 10 m²-Pa/W has been found to be 0,3 m²-Pa/W, as measured on single layers of fabrics.

With $R_{\rm et}$ values higher than 10 m²·Pa/W, the precision has been found to be 7 %, as measured on foams.

8.2 Reproducibility

In an interlaboratory trial using three specimens of a foam material of 3 mm, 6 mm and 12 mm thickness tested in four laboratories, an average standard deviation of 6.5×10^{-3} m²·K/W for thermal resistance $R_{\rm ct}$ and of 0.67 m²·Pa/W for water-vapour resistance $R_{\rm et}$ was found.

9 Test report

The test report shall include at least the following information:

a) reference to this International Standard;

- b) complete description of the material to be tested;
- c) arrangement of test specimens according to 7.2;
- d) number of test specimens per material to be tested and number of individual measurements on each test specimen;
- e) test climate;
- f) arithmetic mean value of the thermal resistance; and/or
- g) arithmetic mean value of the water-vapour resistance;
- h) details of deviations from this International Standard;
- i) date of test.

Annex A

(normative)

Mounting procedure for specimens containing loose filling materials or having uneven thickness

- **A.1** For samples containing loose filling materials or having uneven thickness, such as quilts and sleeping bags, a minimum of three test specimens shall be cut if possible. If not possible, the actual number of specimens tested shall be noted in the test report. With material composites such as quilts and sleeping bags which are of uneven thickness due to quilting, a minimum of two test specimens each are prepared for the measurement of thermal and water-vapour resistance.
- **A.2** These specimens shall be placed into frames of approximately the same height as that of the free-standing specimen.

For the measurement of thermal resistance $R_{\rm ctr}$ the inner dimensions of these frames shall be at least (l+2b) (see figures 1 and 2).

For the measurement of water-vapour resistance $R_{\rm et}$, the inner dimensions of the frames shall be the same on all sides as those of the porous plate of the measuring unit.

A.3 Select the two specimens so that one has the maximum possible number of quiltings and the other the minimum possible number of quiltings located in their central areas.

Annex B

(normative)

Determination of correction terms for heating power

- **B.1** During the measurement of thermal resistance and water-vapour resistance, the temperatures of the measuring unit and the thermal guard are set to the same value. However, the tolerances stated in 5.1 and 5.2 in practice may cause slight differences in temperature between measuring unit and thermal guard. In such cases the heating power supplied to the measuring unit does not equal the heat flux through the test specimen. This shall be taken into account by the application of correction terms $\Delta H_{\rm c}$ or $\Delta H_{\rm e}$ for the heating power in the measurement of thermal resistance or water-vapour resistance, respectively.
- **B.2** The correction term for heating power $\Delta H_{\rm c}$ is linearly related to the difference in temperature between measuring unit and thermal guard, as given by equation (B.1).

$$\Delta H_{\rm c} = \alpha (T_{\rm m} - T_{\rm s}) \qquad \qquad \dots (B.1)$$

The slope α is determined as follows.

The measuring unit and thermal guard are covered with a material of high thermal insulation (e.g. foam with a thickness of 4 cm min.). The air temperature is set to 20 °C, with the temperature of the measuring unit at 35 °C. The temperature controller of the thermal guard is used to vary the guard temperature between 34 °C and 36 °C in steps of 0,2 K. After steady-state is reached at each setting, the heating power supplied to the measuring unit is recorded. A

linear regression of this heating power versus the difference in temperature between measuring unit and thermal guard gives a straight line with slope α .

B.3 The correction term for heating power $\Delta H_{\rm e}$ is determined as given by equation (B.2).

$$\Delta H_{\rm e} = \beta (T_{\rm m} - T_{\rm s}) \qquad \qquad \dots (B.2)$$

The slope β is determined as follows.

The measuring unit is covered by a water-vapour permeable membrane as described in 6.1.2 and supplied with water by the dosing device. The measuring unit and thermal guard are covered by a water-vapour impermeable material [e.g. polyethylene terephthalate (PET) film] and a material of high thermal insulation (e.g. foam with a thickness of 4 cm min.). The air temperature is set to 35 °C with a relative humidity R.H. of 40 %, and the temperature of the thermal guard is set to 35 °C.

The temperature of the measuring unit is raised relative to the thermal guard in steps of 0,2 K. After steady-state is reached at each setting, the heating power supplied to the measuring unit is recorded. The regression line of this heating power versus the difference in temperature between measuring unit and thermal guard gives the slope β .

B.4 The slopes α and β for the correction terms for heating power shall be checked after changes or repairs to the apparatus.

UDC 677.017.87

Descriptors: textiles, fabrics, physiological property, thermal comfort, tests, determination, thermal resistance, water-vapour resistance, measurement.

Price based on 10 pages