

Reference number
ISO 10303-50:2002(E)

© ISO 2002

INTERNATIONAL
STANDARD

ISO
10303-50

First edition
2002-05-01

Industrial automation systems and
integration — Product data representation
and exchange —
Part 50:
Integrated generic resource: Mathematical
constructs

Systèmes d'automatisation industrielle et intégration — Représentation
et échange de données de produits —

Partie 50: Ressources génériques intégrées: Constructions mathématiques

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 10303-50:2002(E)

PDF disclaimer
This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not
be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this
file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this
area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters
were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event
that a problem relating to it is found, please inform the Central Secretariat at the address given below.

© ISO 2002
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic
or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body
in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.ch
Web www.iso.ch

Printed in Switzerland

ii © ISO 2002 – All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

Contents Page

1 Scope . 1

2 Normative references . 1

3 Terms, definitions, and symbols . 2
3.1 Terms defined in ISO 10303-1 . 2
3.2 Other terms and definitions . 2
3.3 Symbols . 5

4 Mathematical functions . 6
4.1 Introduction . 8
4.2 Fundamental concepts and assumptions . 8

4.2.1 Mathematical function . 8
4.2.2 Mathematical object or value . 9
4.2.3 Mathematical expression . 10
4.2.4 Mathematical space . 10
4.2.5 Mathematical tuple . 11
4.2.6 Function domains and ranges . 11
4.2.7 Spaces of one-tuples . 12
4.2.8 Array function . 12
4.2.9 Table function . 12
4.2.10 Matrix . 12
4.2.11 Inputs and Parameters . 13
4.2.12 Function evaluation . 14
4.2.13 Function application . 14

4.3 Mathematical functions schema constant definitions 14
4.3.1 schema prefix . 15
4.3.2 the elementary spaces . 15
4.3.3 the empty space . 15
4.3.4 real intervals . 15
4.3.5 tuple spaces . 16
4.3.6 empty values . 16

4.4 Mathematical functions schema type definitions 17
4.4.1 nonnegative integer . 17
4.4.2 positive integer . 17
4.4.3 zero or one . 17
4.4.4 one or two . 18
4.4.5 local names for simple types . 18
4.4.6 maths simple atom . 18
4.4.7 maths atom . 19
4.4.8 atom based tuple . 19
4.4.9 atom based value . 19
4.4.10 maths tuple . 20
4.4.11 maths value . 20
4.4.12 maths expression . 20
4.4.13 maths function select . 21
4.4.14 input selector . 21
4.4.15 elementary space enumerators . 22
4.4.16 ordering type . 23
4.4.17 lower upper . 24
4.4.18 symmetry type . 24

iii

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 10303-50:2002(E)

4.4.19 elementary function enumerators . 25
4.4.20 open closed . 31
4.4.21 space constraint type . 31
4.4.22 repackage options . 32
4.4.23 extension options . 32
4.4.24 maths enum atom . 33
4.4.25 dotted express identifier . 34
4.4.26 express identifier . 34
4.4.27 product space . 34
4.4.28 tuple space . 35
4.4.29 maths space or function . 35
4.4.30 real interval . 35

4.5 Mathematical functions schema entity definitions 36
4.5.1 quantifier expression . 36
4.5.2 dependent variable definition . 37
4.5.3 bound variable semantics . 37
4.5.4 free variable semantics . 38
4.5.5 complex number literal . 38
4.5.6 logical literal . 39
4.5.7 binary literal . 39
4.5.8 maths enum literal . 39
4.5.9 real tuple literal . 40
4.5.10 integer tuple literal . 40
4.5.11 atom based literal . 40
4.5.12 maths tuple literal . 41
4.5.13 maths variable . 41
4.5.14 maths real variable . 42
4.5.15 maths integer variable . 42
4.5.16 maths boolean variable . 43
4.5.17 maths string variable . 43
4.5.18 function application . 44
4.5.19 maths space . 45
4.5.20 elementary space . 46
4.5.21 finite integer interval . 46
4.5.22 integer interval from min . 47
4.5.23 integer interval to max . 47
4.5.24 finite real interval . 47
4.5.25 real interval from min . 48
4.5.26 real interval to max . 49
4.5.27 cartesian complex number region . 49
4.5.28 polar complex number region . 50
4.5.29 finite space . 51
4.5.30 uniform product space . 52
4.5.31 listed product space . 53
4.5.32 extended tuple space . 54
4.5.33 function space . 55
4.5.34 maths function . 56
4.5.35 finite function . 57
4.5.36 constant function . 58
4.5.37 selector function . 59
4.5.38 elementary function . 60
4.5.39 restriction function . 60

iv © ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

4.5.40 repackaging function . 61
4.5.41 reindexed array function . 63
4.5.42 series composed function . 64
4.5.43 parallel composed function . 64
4.5.44 explicit table function . 67
4.5.45 listed real data . 68
4.5.46 listed integer data . 69
4.5.47 listed logical data . 69
4.5.48 listed string data . 70
4.5.49 listed complex number data . 71
4.5.50 listed data . 72
4.5.51 externally listed data . 72
4.5.52 linearized table function . 73
4.5.53 standard table function . 75
4.5.54 regular table function . 76
4.5.55 triangular matrix . 78
4.5.56 strict triangular matrix . 78
4.5.57 symmetric matrix . 79
4.5.58 symmetric banded matrix . 80
4.5.59 banded matrix . 81
4.5.60 basic sparse matrix . 83
4.5.61 homogeneous linear function . 85
4.5.62 general linear function . 86
4.5.63 b spline basis . 87
4.5.64 b spline function . 88
4.5.65 rationalize function . 89
4.5.66 partial derivative function . 91
4.5.67 partial derivative expression . 92
4.5.68 definite integral function . 94
4.5.69 definite integral expression . 95
4.5.70 abstracted expression function . 97
4.5.71 expression denoted function . 98
4.5.72 imported point function . 99
4.5.73 imported curve function . 100
4.5.74 imported surface function . 100
4.5.75 imported volume function . 101
4.5.76 application defined function . 102
4.5.77 mathematical description . 103

4.6 Mathematical functions schema function definitions 104
4.6.1 all members of es . 104
4.6.2 any space satisfies . 106
4.6.3 assoc product space . 107
4.6.4 atan2 . 109
4.6.5 bool . 110
4.6.6 check sparse index domain . 110
4.6.7 check sparse loc range . 111
4.6.8 check sparse index to loc . 112
4.6.9 compare basis and coef . 113
4.6.10 compare list and value . 113
4.6.11 compare values . 114
4.6.12 compatible complex number regions . 115
4.6.13 compatible es values . 117

v

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

4.6.14 compatible intervals . 118
4.6.15 compatible spaces . 118
4.6.16 composable sequence . 124
4.6.17 convert to literal . 124
4.6.18 convert to maths function . 125
4.6.19 convert to maths value . 125
4.6.20 convert to operand . 126
4.6.21 convert to operands . 127
4.6.22 convert to operands prcmfn . 128
4.6.23 definite integral check . 128
4.6.24 definite integral expr check . 129
4.6.25 derive definite integral domain . 130
4.6.26 derive elementary function domain . 132
4.6.27 derive elementary function range . 135
4.6.28 derive finite function domain . 137
4.6.29 derive finite function range . 138
4.6.30 derive function domain . 138
4.6.31 derive function range . 141
4.6.32 domain from . 144
4.6.33 dot count . 145
4.6.34 dotted identifiers syntax . 145
4.6.35 drop numeric constraints . 146
4.6.36 enclose cregion in pregion . 147
4.6.37 enclose pregion in cregion . 151
4.6.38 enclose pregion in pregion . 154
4.6.39 equal cregion pregion . 160
4.6.40 equal maths functions . 162
4.6.41 equal maths spaces . 163
4.6.42 equal maths values . 166
4.6.43 es subspace of es . 168
4.6.44 expression is constant . 169
4.6.45 extract factors . 169
4.6.46 extremal position check . 170
4.6.47 factor1 . 171
4.6.48 factor space . 172
4.6.49 free variables of . 172
4.6.50 function applicability . 173
4.6.51 function is 1d array . 174
4.6.52 function is 1d table . 175
4.6.53 function is 2d table . 176
4.6.54 function is array . 177
4.6.55 function is table . 177
4.6.56 has values space . 178
4.6.57 list selected components . 180
4.6.58 make abstracted expression function . 180
4.6.59 make atom based literal . 181
4.6.60 make b spline basis . 181
4.6.61 make b spline function . 182
4.6.62 make banded matrix . 182
4.6.63 make basic sparse matrix . 183
4.6.64 make binary literal . 184
4.6.65 make boolean literal . 184

vi

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

4.6.66 make cartesian complex number region 185
4.6.67 make complex number literal . 185
4.6.68 make constant function . 186
4.6.69 make cos expression . 186
4.6.70 make definite integral expression . 187
4.6.71 make definite integral function . 187
4.6.72 make elementary function . 188
4.6.73 make elementary space . 188
4.6.74 make environment . 189
4.6.75 make expression denoted function . 189
4.6.76 make extended tuple space . 190
4.6.77 make finite function . 190
4.6.78 make finite integer interval . 191
4.6.79 make finite real interval . 191
4.6.80 make finite space . 192
4.6.81 make function application . 192
4.6.82 make function space . 193
4.6.83 make general linear function . 194
4.6.84 make int literal . 194
4.6.85 make integer interval from min . 195
4.6.86 make listed complex number data . 195
4.6.87 make listed data . 196
4.6.88 make listed integer data . 196
4.6.89 make listed product space . 197
4.6.90 make listed real data . 197
4.6.91 make logical literal . 198
4.6.92 make maths enum literal . 198
4.6.93 make maths real variable . 199
4.6.94 make maths tuple literal . 199
4.6.95 make mult expression . 200
4.6.96 make parallel composed function . 200
4.6.97 make partial derivative expression . 201
4.6.98 make partial derivative function . 201
4.6.99 make polar complex number region . 202
4.6.100 make rationalize function . 202
4.6.101 make real interval from min . 203
4.6.102 make real interval to max . 203
4.6.103 make real literal . 204
4.6.104 make regular table function . 204
4.6.105 make reindexed array function . 205
4.6.106 make repackaging function . 205
4.6.107 make selector function . 206
4.6.108 make series composed function . 207
4.6.109 make sin expression . 207
4.6.110 make standard table function . 208
4.6.111 make strict triangular matrix . 208
4.6.112 make string literal . 209
4.6.113 make unary minus expression . 210
4.6.114 make uniform product space . 210
4.6.115 max exists . 211
4.6.116 max included . 211
4.6.117 member of . 212

vii

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

4.6.118 min exists . 217
4.6.119 min included . 217
4.6.120 no cyclic domain reference . 218
4.6.121 no cyclic space reference . 219
4.6.122 nondecreasing . 220
4.6.123 number superspace of . 220
4.6.124 number tuple subspace check . 221
4.6.125 one tuples of . 221
4.6.126 parallel composed function composability check 222
4.6.127 parallel composed function domain check 222
4.6.128 parse express identifier . 223
4.6.129 partial derivative check . 224
4.6.130 real max . 225
4.6.131 real min . 225
4.6.132 regular indexing . 226
4.6.133 remove first . 227
4.6.134 repackage . 227
4.6.135 shape of array . 228
4.6.136 simplify function application . 229
4.6.137 simplify generic expression . 243
4.6.138 simplify maths space . 249
4.6.139 simplify maths value . 250
4.6.140 singleton member of . 251
4.6.141 space dimension . 252
4.6.142 space is continuum . 252
4.6.143 space is singleton . 253
4.6.144 stripped typeof . 254
4.6.145 subspace of . 254
4.6.146 subspace of es . 260
4.6.147 substitute . 261
4.6.148 values space of . 263

Annex A (normative) Short names of entities . 266

Annex B (normative) Information object registration 269

Annex C (informative) Computer-interpretable listings 270

Annex D (informative) EXPRESS-G diagrams . 271

Bibliography . 282

Index . 283

Figures

Figure 1 — Schema relationships of the mathematical functions schema xi
Figure D.1 — EXPRESS-G diagram of the mathematical functions schema (1 of 10) . . . 272
Figure D.2 — EXPRESS-G diagram of the mathematical functions schema (2 of 10) . . . 273
Figure D.3 — EXPRESS-G diagram of the mathematical functions schema (3 of 10) . . . 274
Figure D.4 — EXPRESS-G diagram of the mathematical functions schema (4 of 10) . . . 275
Figure D.5 — EXPRESS-G diagram of the mathematical functions schema (5 of 10) . . . 276
Figure D.6 — EXPRESS-G diagram of the mathematical functions schema (6 of 10) . . . 277

viii

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

Figure D.7 — EXPRESS-G diagram of the mathematical functions schema (7 of 10) . . . 278
Figure D.8 — EXPRESS-G diagram of the mathematical functions schema (8 of 10) . . . 279
Figure D.9 — EXPRESS-G diagram of the mathematical functions schema (9 of 10) . . . 280
Figure D.10 — EXPRESS-G diagram of the mathematical functions schema (10 of 10) . . 281

Tables

Table 1 — Mathematical symbology . 6
Table 2 — Orderings indicated by ordering type . 23
Table A.1 — Short names of entities . 266

IS O 10303-50:2002(E)

© ISO 2002 — All rights reserved ix

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national
standards bodies (ISO member bodies). The work of preparing International Standards is nor-
mally carried out through ISO technical committees. Each member body interested in a subject
for which a technical committee has been established has the right to be represented on that
committee. International organizations, governmental and non-governmental, in liaison with
ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical
Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives,
Part 3.

The main task of technical committees is to prepare International Standards. Draft International
Standards adopted by the technical committees are circulated to the member bodies for voting.
Publication as an International Standard requires approval by at least 75% of the member bodies
casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the
subject of patent rights. ISO shall not be held responsible for identifying any or all such patent
rights.

ISO 10303–50 was prepared by Technical Committee ISO/TC 184, Industrial automation systems
and integration, Subcommittee SC4, Industrial data.

This International Standard is organized as a series of parts, each published separately. The
structure of this International Standard is described in ISO 10303-1.

Each part of this International Standard is a member of one of the following series: description
methods, implementation methods, conformance testing methodology and framework, integrated
generic resources, integrated application resources, application protocols, abstract test suites,
application interpreted constructs, and application modules. This part is a member of the inte-
grated generic resources series. The integrated generic resources and the integrated application
resources specify a single conceptual product data model.

A complete list of parts of ISO 10303 is available from the Internet:

<http://www.nist.gov/sc4/editing/step/titles/>

Annexes A and B form a normative part of this part of ISO 10303. Annexes C and D are for
information only.

x

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

Introduction

ISO 10303 is an International Standard for the computer-interpretable representation of product
information and for the exchange of product data. The objective is to provide a neutral mech-
anism capable of describing products throughout their life cycle. This mechanism is suitable
not only for neutral file exchange, but also as a basis for implementing and sharing product
databases, and as a basis for archiving.

This part of ISO 10303 is a member of the integrated resource series. This part of ISO 10303
specifies the mathematical functions schema.

This part of ISO 10303 specifies EXPRESS data representations for a large class of mathemat-
ical functions, expressions, and arrays. They are intended to be used to communicate product
property data and related engineering analysis data. Familiarity with the branches of math-
ematics commonly used in engineering applications is assumed. The central concept is that
mathematical functions and arrays are the abstract data objects of interest for expressing any
property which requires more than a single number as a value, for describing deterministic rela-
tionships between properties, and for documenting behavioural responses of products to varying
conditions.

The relationships of the schema in this part of ISO 10303 to other schemas that define the
integrated resources of this International Standard are illustrated in Figure 1 using the EX-
PRESS-G notation. EXPRESS-G is defined in annex D of ISO 10303-11. The documents
containing the specifications for these related schemas are identified in note 1 at the beginning
of clause 4.

mathematical functions schema eISO13584 generic expressions schema

e ISO13584 expressions schema

e support resource schema
?
label
text

e geometry schema
?

curve
dimension of
point
surface
volume

e external reference schema
?externally defined item

Figure 1 – Schema relationships of the mathematical functions schema

xi

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

INTERNATIONAL STANDARD

Industrial automation systems and integration —
Product data representation and exchange —
Part 50 :
Integrated generic resource: Mathematical constructs

1 Scope

This part of ISO 10303 specifies the resource constructs for the explicit representation of math-
ematical structures and data related to properties of a product.

The following are within the scope of this part of ISO 10303:

— multi-dimensional tables;

— mathematical expressions;

— mathematical functions;

— mathematical spaces.

The following are outside the scope of this part of ISO 10303:

— context of application;

— physical units;

— non-mathematical semantics.

2 Normative references

The following normative documents contain provisions which, through reference in this text,
constitute provisions of this part of ISO 10303. For dated references, subsequent amendments
to, or revisions of, any of these publications do not apply. However, parties to agreements
based on this part of ISO 10303 are encouraged to investigate the possibility of applying the
most recent editions of the normative documents indicated below. For undated references, the
latest edition of the normative document referred to applies. Members of ISO and IEC maintain
registers of currently valid International Standards.

ISO/IEC 8824-1:1998, Information technology — Abstract Syntax Notation One (ASN.1): Spec-
ification of basic notation

ISO 10303-1:1994, Industrial automation systems and integration — Product data representa-
tion and exchange — Part 1: Overview and fundamental principles

1

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO 10303-11:1994, Industrial automation systems and integration — Product data representa-
tion and exchange — Part 11: Description methods: The EXPRESS language reference manual

ISO 10303-41:2000, Industrial automation systems and integration — Product data representa-
tion and exchange — Part 41: Integrated generic resource: Fundamentals of product description
and support

ISO 10303-42:2000, Industrial automation systems and integration — Product data representa-
tion and exchange — Part 42: Integrated generic resource: Geometric and topological represen-
tation

ISO 13584-20:1998, Industrial automation systems and integration — Parts Library — Part 20:
Logical resource: Logical model of expressions

3 Terms, definitions, and symbols

3.1 Terms defined in ISO 10303-1

For the purpose of this part of ISO 10303, the following terms defined in ISO 10303-1 apply:

— integrated resource

3.2 Other terms and definitions

For the purposes of this part of ISO 10303, the following definitions apply:

3.2.1
actual function domain
mathematical space containing precisely the tuples of inputs to the function which are related
to some tuple of outputs

NOTE See the definitions for “mathematical function” and “function domain”. See also 4.2.1 and 4.2.6.

3.2.2
actual function range
mathematical space containing precisely the tuples of outputs from the function which are related
to some tuple of inputs

NOTE See the definitions for “mathematical function” and “function range”. See also 4.2.1 and 4.2.6.

3.2.3
array function
function whose domain is either a Cartesian product of finite intervals of integers or the one-
tuples from such a Cartesian product

NOTE An element of such a domain is a subscript tuple. Evaluation of the function at such an element
produces the “array entry” for that subscript tuple.

3.2.4
bound variable
variable which has been specifically referenced by a quantifier in a quantifier expression

2

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

NOTE A bound variable is no longer available for substitution by a constant value. The semantics of
the quantifier expression uses all possible values of the variable rather than one (perhaps undetermined)
value.

EXAMPLE 1 The variable x in the statement ∀x(x = x).

EXAMPLE 2 The variable x in the set declaration {x|x2 = x}.

EXAMPLE 3 The variable x in the definite integral
∫ 2
1 ln(x) dx.

EXAMPLE 4 The variable x in the function definition f(x) ≡ x + 2.

3.2.5
Cartesian product space
mathematical space consisting of all ordered tuples whose components are members of the cor-
responding factor spaces of the product

NOTE Some care must be taken to be explicit about which spaces are the factors entering into the
Cartesian product. For example, R3 × R3 is the space of ordered pairs of ordered triples from space R,
not the space of ordered sextuples from space R. When the factor spaces of the explicit factors are to be
treated as the factor spaces of the Cartesian product, that is, the member tuples are to be concatenated
rather than entupled, a subscript ‘a’ (indicating the “associative” product) is appended to the Cartesian
product symbol. Thus, R3 ×a R3 ≡ R6.

3.2.6
compatible spaces
mathematical spaces whose intersection is not determined to be empty by the algorithm repre-
sented by the EXPRESS function compatible spaces

NOTE Two spaces are compatible if their intersection is not “obviously” empty. In practice, “obvious”
is defined by what is detected by the algorithm. The purpose is to rule out some obvious nonsense while
permitting ignorance.

3.2.7
computable function
mathematical function for which the relationship between tuples of inputs and tuples of out-
puts is expressible by means of an algorithm which takes the inputs and produces the related
outputs

NOTE All the mathematical functions of interest in the intended applications of this part of ISO 10303
are computable. Nevertheless, the possibility of representing non-computable functions is not ruled out.

3.2.8
expression
language construct composed of constants, variables, operators, quantifiers, and grouping mark-
ers, organized in accordance with the language’s grammar and denoting some object in the
domain of the language

3.2.9
free variable
variable which has not been bound by a quantifier in the expression in which it is used

NOTE A free variable denotes an undetermined member of some set of possible values. There is an
implicit assumption that it may be substituted by any constant denoting one of those values.

3

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

3.2.10
function abstraction
quantifier operation which creates an expression denoting a mathematical function from another
expression and a list of variables

NOTE The variables become bound and identify the inputs to the function. The algorithm to be used
to produce an output is implied by the expression. The ”abstraction” comes from the change in the
semantics of what the new expression denotes. The expression going into the operation denotes some
object. The resulting expression denotes a higher-order object, namely a function which produces objects
of the original type from inputs of the types associated with the variables named as inputs.

3.2.11
function application
operation which creates an expression by applying a function to appropriate inputs

NOTE The resulting expression denotes the object which would be the first (and, usually, only) output
of the function when it is applied to the given inputs and evaluated.

3.2.12
function domain
mathematical space specifying all nominally valid tuples of inputs to the mathematical func-
tion

NOTE See the definitions for “mathematical function” and “actual function domain”. See also 4.2.1
and 4.2.6.

3.2.13
function evaluation
process of ascertaining either the outputs a function associates to given inputs, or an error
indication if the function does not associate any outputs to the given inputs

NOTE In the case of a computable function, the process amounts to carrying out the algorithm on the
inputs to produce the outputs, or an error indication.

3.2.14
function range
mathematical space specifying all permissible tuples of outputs from the mathematical func-
tion

NOTE See the definitions for “mathematical function” and “actual function range”. See also 4.2.1 and
4.2.6.

3.2.15
mathematical function
relationship between tuples of mathematical objects called inputs and tuples of mathematical
objects called outputs in which each tuple of inputs is related to at most one tuple of outputs,
together with a mathematical space specifying the function domain and a mathematical space
specifying the function range

NOTE The phrase “mathematical function” in this part of ISO 10303 implies a specification of the
domain and range in addition to the pairing of inputs and outputs. See 4.2.1 and 4.2.6 for the reasons
this definition was chosen for this part of ISO 10303.

4

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

3.2.16
mathematical object; mathematical value
abstract object from the domain of mathematics

NOTE The terms mathematical object and mathematical value are formally synonymous in this part
of ISO 10303. There is a tendency to favor the use of mathematical value for simple objects like numbers,
characters, and enumeration values, and to favor object for complex objects like spaces, functions and
expressions, but no formal distinction is being made.

3.2.17
mathematical space; mathematical set
instance of the fundamental aggregate object type in the domain of mathematics

NOTE No topological, metric, ordering, or vector structure is implied or required. In this part of
ISO 10303, mathematical space is synonymous with mathematical set. See 4.2.4.

3.2.18
matrix
table function whose domain contains pairs of integers

3.2.19
table function
array function with the additional constraint that all the integer interval factor spaces of the
domain either start at zero or at one

NOTE The implication of the constraint is that only the relative values of the subscripts are significant.
Hence, one can use pure relative positions (all subscript ranges start from zero), or pure ordinal positions
(all subscript ranges start from one), depending on the usual practice in the application area.

3.2.20
tuple
linearly ordered, aggregate mathematical object which has finitely many component mathemat-
ical objects

NOTE A tuple contains a first component, a second component, et cetera, up to some maximum which
is the length of the tuple. The tuple of zero length exists and has no components.

3.2.21
variable
atomic expression component which has the semantics of denoting an undetermined value from
some space of possible values

NOTE See free variable and bound variable.

3.3 Symbols

For the purposes of this part of ISO 10303, the following symbols and definitions apply.

The mathematical symbol convention used in the mathematical functions schema is given in
Table 1.

5

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

Table 1 – Mathematical symbology

4 Mathematical functions

The following EXPRESS declaration begins the mathematical functions schema and iden-
tifies the necessary external references.

EXPRESS specification:

*)
SCHEMA mathematical_functions_schema;
-- Master document: ISO 10303-50:2002
-- EXPRESS last modified: 2001-09-07

REFERENCE FROM ISO13584_generic_expressions_schema -- ISO 13584-20
(binary_generic_expression,
environment,
generic_expression,
generic_literal,
generic_variable,
multiple_arity_generic_expression,
simple_generic_expression,
unary_generic_expression,
variable_semantics);

REFERENCE FROM ISO13584_expressions_schema -- ISO 13584-20
(abs_function AS abs_expression,
acos_function AS acos_expression,
and_expression,
asin_function AS asin_expression,
atan_function AS atan_expression,
binary_boolean_expression,
binary_function_call AS binary_numeric_call_expression,
binary_numeric_expression,
boolean_defined_function AS boolean_defined_expression,
boolean_expression,
boolean_literal,
boolean_variable,
comparison_equal,
comparison_expression,
comparison_greater,
comparison_greater_equal,
comparison_less,
comparison_less_equal,

6

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Symbol Definition
× Cartesian product of spaces
×a associative Cartesian product of spaces
∪ set union of spaces
Bm The Cartesian product of m factors of space B
Rm m-dimensional real space
S summation of numerical terms
P product of numerical factors

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

comparison_not_equal,
concat_expression,
cos_function AS cos_expression,
defined_function AS defined_expression,
div_expression,
equals_expression,
exp_function AS exp_expression,
expression,
format_function AS format_expression,
index_expression,
int_literal,
int_numeric_variable,
int_value_function AS int_value_expression,
integer_defined_function AS integer_defined_expression,
interval_expression,
length_function AS length_expression,
like_expression,
literal_number,
log_function AS log_expression,
log10_function AS log10_expression,
log2_function AS log2_expression,
maximum_function AS maximum_expression,
minimum_function AS minimum_expression,
minus_expression,
minus_function AS unary_minus_expression,
mod_expression,
mult_expression,
multiple_arity_boolean_expression,
multiple_arity_function_call AS multiple_arity_numeric_call_expression,
multiple_arity_numeric_expression,
not_expression,
numeric_defined_function AS numeric_defined_expression,
numeric_expression,
numeric_variable,
odd_function AS odd_expression,
or_expression,
plus_expression,
power_expression,
real_defined_function AS real_defined_expression,
real_literal,
real_numeric_variable,
simple_boolean_expression,
simple_numeric_expression,
simple_string_expression,
sin_function AS sin_expression,
slash_expression,
sql_mappable_defined_function AS sql_mappable_defined_expression,
square_root_function AS square_root_expression,
string_defined_function AS string_defined_expression,
string_expression,
string_literal,
string_variable,
substring_expression,
tan_function AS tan_expression,
unary_boolean_expression,
unary_function_call AS unary_numeric_call_expression,
unary_numeric_expression,
value_function AS value_expression,
variable,

7

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

xor_expression);

REFERENCE FROM support_resource_schema -- ISO 10303-41
(label,
text);

REFERENCE FROM external_reference_schema -- ISO 10303-41
(externally_defined_item);

REFERENCE FROM geometry_schema -- ISO 10303-42
(curve,
dimension_of,
point,
surface,
volume);

(*

NOTE 1 The schemas referenced above can be found in the following parts of ISO 10303 and ISO 13584:

ISO13584 generic expressions schema ISO 13584-20
ISO13584 expressions schema ISO 13584-20
support resource schema ISO 10303-41
external reference schema ISO 10303-41
geometry schema ISO 10303-42

NOTE 2 All entity types defined in the two ISO 13584-20 schemas are explicitly referenced in this
schema. The identifiers in the reference statement are arranged in alphabetic order in order to facilitate
identification of the defining schema.

NOTE 3 All entity types from ISO13584 expressions schema whose names contained the word
“function” have been renamed using the word “expression” in this part of ISO 10303. This change
reflects the fact that instances of those types do not represent mathematical functions, but rather the
application of certain functions to operands to form mathematical expressions.

NOTE 4 The references to geometry schema are required only for the definition of the imported -
[point,curve,surface,volume] function entity types.

NOTE 5 See annex D, Figures D.1 to D.10, for a graphical presentation of this schema.

4.1 Introduction

The subject of the mathematical functions schema is the representation of mathematical
functions. The context for these mathematical functions is provided by other parts of ISO 10303
and the applications which use this schema. Only the unitless, purely mathematical aspects of
mathematical functions are considered in this schema.

4.2 Fundamental concepts and assumptions

4.2.1 Mathematical function

As used in this schema, the phrase mathematical function refers to an identified functional rela-
tionship between mathematical objects called inputs and mathematical objects called outputs,
together with a specification of the number and kinds of inputs, and a specification of the number
and kinds of outputs.

8

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

A relationship is a functional relationship when the inputs determine the outputs. Usually, a
functional relationship exists because the outputs associated with given inputs can be computed
from the inputs by means of an algorithm.

In this schema, the specification of the number and kinds of inputs is accomplished by specifying
the domain of the function as a mathematical tuple space, where the number of factors of the
tuple space indicates the number of individual inputs to the function and the corresponding
factor spaces of the tuple space identify the kinds of the inputs.

Analogously, the specification of the number and kinds of outputs is accomplished by specifying
the range of the function as a mathematical tuple space, where the number of factors of the
tuple space indicates the number of individual outputs from the function and the corresponding
factor spaces of the tuple space identify the kinds of the outputs.

NOTE 1 The concept of mathematical function defined in this part of ISO 10303 is a blend of the
computer science concept and the mathematical concepts. The exact form it assumes was driven by the
requirements of data exchange using the existing structure of ISO 10303.

NOTE 2 Mathematics has two basic views of functions. In the set theoretic view, a function is a set
of ordered pairs no two of which have the same first member. In the algorithmic view, a function is
a well-formed expression in a formal language with a semantics equivalent to a programming language.
Neither of these views is appropriate for the present purpose. The present purpose requires only that
sufficient information be recorded so that a function can be reliably reproduced on a different system than
that in which it originated. It is assumed that certain very general algorithms are sufficiently well known
and understood that it is sufficient to associate them with a named subtype and supply as attributes
the parameters necessary to determine a particular instance of that type of function. Examples of such
general algorithms are algebraic expression evaluation, matrix multiplication, B-spline evaluation, partial
differentiation, and tensor contraction.

NOTE 3 Some of the simplest and most general algorithms are those that combine existing functions
to make new functions. Examples are composition of functions (that is, applying a second function
to the output of a first function), concatenation of the outputs of two or more functions, and taking
linear combinations of functions. In order to identify which functions it makes sense to combine in
such ways, functions must be classified according to the kinds of inputs they require and the kinds of
outputs they produce. This consideration leads to the inclusion of representations of mathematical spaces,
mathematical values and mathematical ordered tuples in the schema.

NOTE 4 Theoretically, the functional relationship precisely determines an actual domain and an actual
range and the nominal domain and range required above are redundant. Unfortunately, it is generally
impossible to derive this information reliably, as it is equivalent to solving the Turing Machine Halting
Problem. Even in simple cases, it is impractical. Consider a function defined as the reciprocal of a
fifth degree polynomial. Its actual domain is all real numbers except the one to five real roots of the
polynomial. There is no algebraic formula for solving fifth degree (or higher) polynomials. Rather than
trying to deal with the complexity of actual domains or ranges, it is far better to specify the nominal
domain of such a function as all real numbers, and then accept that the function may fail to produce
outputs for some inputs. Similarly, it is better to specify the nominal range of a function and accept that
not all values in that range actually appear as outputs.

4.2.2 Mathematical object or value

The phrases “mathematical object” and “mathematical value” are synonymous in this part of
ISO 10303. Both are used for any abstract object from the domain of mathematics. As a
consequence of providing representations of mathematical functions, there is need to provide a
representation of any mathematical object which could be an input to a mathematical function,
an output from a mathematical function, or used in a definition of a mathematical function.
The EXPRESS language “select” type maths value (see 4.4.11) is defined in this schema

9

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

with the intent of encompassing all EXPRESS language representations of mathematical val-
ues.

NOTE 1 The maths value type is highly recursive and includes values isomorphic to any instance
or value constructed using this schema except expressions containing free variables and instances of
mathematical description.

NOTE 2 There is one fundamental philosophical mismatch between mathematical values and their EX-
PRESS representations. EXPRESS instances can be created, modified, and destroyed. Mathematical
values merely exist. In mathematics there is exactly one object which is the integer three, one object which
is the space of all real numbers, and one object which is the (set theoretic) trigonometric sine function
taking a real number as input and producing a real number as output. In the context of a language whose
constructs represent mathematical objects, however, there will necessarily be many instances representing
the same object (for example, 3, 2 + 1, 5− 2, | − 3|, eln3), so no attempt is made in this schema to try to
prevent this redundancy even at the simple level of multiple instances of the same entity type with the
same attribute values. With the notable exception of instances of maths variable, only value equality
or inequality has any significance within this schema.

4.2.3 Mathematical expression

A mathematical expression is a linguistic construct, possibly containing free variables, which
denotes a mathematical object once any free variables have been substituted by appropriate
constants. An expression is composed of symbols representing constants, variables, operators,
quantifiers, and grouping marks and is constructed in accordance with a grammar.

NOTE 1 In effect, a mathematical expression is a template with some missing parts indicated by free
variables. There is a close relationship between mathematical expressions and mathematical functions.
Either can be used to construct instances of the other. The difference is that an expression denotes an
undetermined object of a certain sort and a corresponding function denotes a whole functional relationship
among objects of that sort.

EXAMPLE If n is an integer variable, then n + 2 is an expression denoting an (indeterminate) integer,
and it makes sense to ask whether it is, for example, an even integer, even though no answer can be given
in the absence of further information.

Corresponding to this expression, there is a function, which might be described in English as ”add two”,
which could be expressed in the formalism of the Lambda Calculus (see, for example, [4]) as λn(n + 2),
where lambda is the quantifier indicating ”function abstraction” with respect to the associated variable.
The variable n in this latter expression is now a bound variable rather than a free variable. This latter
expression has no free variables and therefore denotes a mathematical constant. However, the constant
denoted is of a higher order than an integer, namely that of functions from integers to integers. It does
not make any sense to ask whether this object is an even integer, since it is not an integer.

NOTE 2 The designation of a specific formal language, grammar, and symbology for mathematics is
outside the scope of this part of ISO 10303. It is expected that the correspondence between the EX-
PRESS representations for mathematical expressions in this part of ISO 10303 and any formal or informal
language for mathematics will be clear and unambiguous.

4.2.4 Mathematical space

In this part of ISO 10303, mathematical space is a synonym for mathematical set, the funda-
mental aggregate of mathematics.

NOTE 1 In many contexts the word “space” implies a set with some additional structure, such as in
“topological space”, “vector space”, “Euclidean space”, “projective space”, or “Hilbert space”. Here it
has no such implication. The term “space” is preferred in this part of ISO 10303 to avoid confusion with
the EXPRESS concept of set. In actual implementations, the EXPRESS set construct can only be used

10

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

to represent finite sets. Almost all the mathematical spaces of interest have infinitely many members.
Consequently, they cannot be directly represented by an EXPRESS set value.

NOTE 2 The present edition provides representations for only the simplest and most useful mathemat-
ical spaces. The addition of further subtypes to maths space awaits specific application needs.

4.2.5 Mathematical tuple

The second most important aggregate in mathematics after mathematical set is the ordered
tuple. An ordered tuple has a length, a first component, a second component, et cetera, up to
the length of the tuple. The components need not have any common type.

The EXPRESS list aggregate type is chosen to represent mathematical ordered tuples in this
schema.

Mathematically, there is a unique zero-tuple object. As with many vacuous or trivial or extremal
objects in mathematics it plays a useful simplifying role in some applications. It is represented
by the zero-length list and such a list is explicitly included in maths tuple, but will usually be
excluded in the related tuple types.

4.2.6 Function domains and ranges

The classification of mathematical functions by the “kinds of inputs they require” and the “kinds
of outputs they produce” is accomplished by explicitly representing the mathematical spaces
which contain all legitimate inputs and all possible outputs. In mathematical terminology, these
spaces are the domains and ranges of the functions, respectively.

In order to talk about the domain of a function of several inputs, the several “natural” inputs are
implicitly combined into an ordered tuple and the space of all such ordered tuples is the space
which is the domain of the function. Similarly, a function or procedure which might naturally be
conceived as having multiple outputs is described as having a single output which is an ordered
tuple of the “natural” outputs. The “dimension” of the tuple space which is the domain or
range of a function indicates the number of individual natural inputs or outputs, respectively.
The top level of tupling in a domain or range can be decomposed to obtain the individual input
domains or output ranges. (See also 4.2.7.)

The range of a mathematical function is nominal to the extent that any mathematical space
which contains all the actual output values may be specified as the value for the range at-
tribute. Since mathematical function in this context means mathematical partial function, the
mathematical space supplied as the value for the domain attribute is also technically nominal.
However, this is somewhat deceptive. To the greatest extent that is practical, the schema re-
quires a function domain to be the space of all “valid” inputs or some subset thereof. The cases
of valid inputs for which the associated algorithm fails should generally be rare.

The domain and range attributes of the abstract supertype maths function are derived at-
tributes. For each subtype, the schema derives appropriate values from the nature of the implied
algorithm and explicit attributes of that subtype. For some subtypes, the explicit attributes di-
rectly determine the domain and/or range. In any case, the effective domain or range may be
further restricted by explicitly composing the function with a restriction function.

The principal effect of the values of domain and range attributes is in determining to which classes
of functions the function will belong and, consequently, which roles it might fill in constructing
additional functions.

11

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

The actual range space of a given mathematical function on an explicit domain space is the
unique mathematical space which contains all and only the output values actually produced
by the function from members of that domain. The actual range space is a subspace of every
legitimate range space that might be specified for the function. Although mathematically well-
defined, the image space is often ill-defined computationally.

The actual domain space of a given mathematical function refers to the unique mathematical
space which contains all and only the input values for which the function’s algorithm actually
produces an output other than the indeterminate value ‘?’. It, too, is often ill-defined computa-
tionally.

4.2.7 Spaces of one-tuples

Mathematicians typically identify a space X and the space X1 of all one-tuples of elements
of X via the obvious canonical natural isomorphism. However, when this is done it becomes
impossible to distinguish between the domains of a function f(x, y) which takes two real numbers
as input and a function g((x, y)) which takes a single input which is a pair of real numbers. These
two cases have quite distinct domains for computer programming purposes. Consequently, this
schema does maintain the distinction between the domain of f , which is R2, and the domain of
g, which is (R2)1.

4.2.8 Array function

An array function is a mathematical function whose domain is either a subscript space or the
space of one-tuples from a subscript space. A subscript space is a finite Cartesian product of
finite intervals of integers. The set of valid subscript tuples for a multi-dimensional array is a
subscript space. Given an ordered tuple of subscripts as input, an array function produces a
corresponding value. However, an array function need not have a storage location allocated for
every possible subscript tuple. Moreover, varying numbers of dimensions can be accommodated
in a uniform manner without resorting to recursive constructs such as “ARRAY [1:4] OF ARRAY
[0:3] OF ...”. Array functions generalize, unify, and support efficient representations of the many
specializations of the multi-dimensional array concept.

NOTE Since array functions which are not table functions are uncommon, this part of ISO 10303
primarily provides facilities for representing table functions. Any array function can be represented by
reindexing the corresponding table function using the type reindexed array function. For an example
of the representation of a general array function, see example 3 in 4.5.53.

4.2.9 Table function

A table function is an array function in which all the finite intervals of integers appearing in
the domain start at zero, or all start at one. In practice, almost all instances of array functions
are table functions. Table functions occur when the subscript tuple inputs have no significance
beyond establishing relative position. In such cases it is most convenient to use ordinal positions
(all subscript ranges start at one) or relative positions (all subscript ranges start at zero). Since
both choices are widely used by applications, both are supported.

4.2.10 Matrix

Within this schema, matrix is synonymous with table function defined on a two-dimensional
subscript space. Matrices are visualized as rectangular tables of values and much of the ter-
minology is based on this visualization. A position in a matrix is a pair of integers belonging
to the subscript domain. The first integer of the pair that constitute a matrix position is the

12

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

row position and the second is the column position. The matrix entry at a position is the value
produced as output by the table function when it is applied to the position. Terms for important
subsets of positions are also applied to the corresponding subsets of entries. A row is the set
of all positions with the same row position. A column is the set of all positions with the same
column position. The main diagonal is the set of all positions for which the row position equals
the column position. The upper triangle is the set of positions for which the row position is
less than or equal to the column position. The strictly upper triangle is the set of positions for
which the row position is less than the column position. The lower triangle is the set of positions
for which the row position is greater than or equal to the column position. The strictly lower
triangle is the set of positions for which the row position is greater than the column position.
A diagonal is a set of positions for which the signed difference between the column position and
the row position is a given integer constant. This signed difference is the diagonal “position”
and is referenced when discussing diagonals “above” or “below” the main diagonal.

NOTE The upper or lower “triangle” could, in the case of a non-square matrix, actually look more like
a trapezoid. The word “triangle” will however still be used.

4.2.11 Inputs and Parameters

When a mathematical function is defined by means of an expression, it is sometimes necessary to
view the variables as being of two types: function inputs and function parameters. The function
parameters are conceived as having been given specific (but, so far, undetermined) values from
their corresponding domains, and the function is viewed as having only the remaining inputs as
its inputs.

In informal mathematics one might define a function f as follows:

Let f(x) = a · x + b, where a and b are constants.

One might then describe the function f as a general linear function from R1 to R1. However, if
one examines the defining expression out of context, it appears to describe a quadratic function
of three variables, not a linear function of one variable. The expression alone does not provide
enough information to capture the mathematical intent. In the informal language of inputs and
parameters used above, one would say that x is being viewed as an input while a and b are
viewed as parameters.

The formalism which does capture what is occurring here is the Lambda Calculus, which would
express the function definition above as:

f ≡ λx(a · x + b)

This notation uses a logical quantifier, λ, to make clear that the role of the variable x has changed
to that of a bound variable. It is now just a placeholder in the expression for the actual input to
the function. At the same time, the semantics of the expression has changed and it now denotes
a real-valued function of one real variable rather than a real number. This function object is
undetermined in that it still depends on the values chosen for the free variables (parameters)
a and b. But the function object does not depend on x and it makes no sense to talk about
choosing a value for x. Alternatively, one might say that the function object depends on all the
possible values for x simultaneously.

The abstracted expression function subtype explicitly represents the quantifier operation
which converts an expression into a function by identifying the variables which are to be treated
as function inputs and by specifying their order. Any other variables in the expression are
function parameters.

13

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

4.2.12 Function evaluation

A mathematical function is evaluated at inputs to produce the corresponding outputs. The
details of the implementation of this process are out of the scope of this standard. However,
when such a process is to be evaluated for conformance with this part of ISO 10303, the results
shall be equivalent to the following:

First the tuple of inputs is tested to determine whether or not it is in the domain space of the
function. If it is not, then the evaluation process ceases and the indeterminate value is produced
as output. Second, the functional relationship is invoked to find the output tuple corresponding
to the input tuple, if any. If the functional relationship is defined by an algorithm, this means
that the algorithm is carried out to produce the corresponding tuple of outputs. If this process
fails, the evaluation process ceases and the indeterminate value is produced as output. Third,
the tuple of outputs is tested to determine whether or not it is in the range space of the function.
If it is not, the indeterminate value is produced as output. Otherwise, the values produced by
the second stage are the outputs.

NOTE 1 The price of explicitly providing information about domains and ranges of functions is the
need to ensure its validity by incorporating it in the evaluation process.

NOTE 2 Testing a value for membership in a mathematical space may itself require the evaluation of
explicit or implicit functions in a recursive manner.

NOTE 3 The general problem of detecting evaluation processes which will not terminate is known to
be unsolvable. It is in the self interest of all users to avoid creating or communicating functions whose
evaluation does not terminate.

4.2.13 Function application

Function application is the process of forming an expression from a function and an appropriate
set of inputs. The term may also be used for an expression resulting from the process. A
function application expression denotes the first output from the evaluation of the function on
those inputs.

NOTE In most contexts, the term “function” is restricted to algorithms which only have one output,
and “first output” is synonymous with “the output”. This part of ISO 10303 uses the term in the
wider sense which includes algorithms with multiple outputs, and must therefore adopt this refinement
to harmonize the computer programming situation with the more traditional one.

4.3 Mathematical functions schema constant definitions

The following constants are used repeatedly in the remainder of the formal specification of this
part of ISO 10303.

NOTE Implementor information: Since schema constants cannot be referenced from ISO 10303-21 files,
these constants are only useful within the formal specifications. Instantiations of product data models
must reproduce these constant instances as needed. Only one instance of any constant is ever required
in a model, although it does no harm if an implementation generates several.

EXPRESS specification:

*)
CONSTANT

14

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved
Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

(*

4.3.1 schema prefix

This string constant defines a frequently needed prefix for type names.

EXPRESS specification:

*)
schema_prefix : STRING := ’MATHEMATICAL_FUNCTIONS_SCHEMA.’;

(*

4.3.2 the elementary spaces

These instances of elementary space represent unique and frequently referenced mathematical
spaces.

EXPRESS specification:

*)
the_integers : elementary_space := make_elementary_space(es_integers);
the_reals : elementary_space := make_elementary_space(es_reals);
the_complex_numbers : elementary_space := make_elementary_space(es_complex_numbers);
the_numbers : elementary_space := make_elementary_space(es_numbers);
the_logicals : elementary_space := make_elementary_space(es_logicals);
the_booleans : elementary_space := make_elementary_space(es_booleans);
the_strings : elementary_space := make_elementary_space(es_strings);
the_binarys : elementary_space := make_elementary_space(es_binarys);
the_maths_spaces : elementary_space := make_elementary_space(es_maths_spaces);
the_generics : elementary_space := make_elementary_space(es_generics);

(*

4.3.3 the empty space

An instance of finite space representing the unique mathematical space with no elements is
frequently referenced.

EXPRESS specification:

*)
the_empty_space : finite_space := make_finite_space([]);

(*

4.3.4 real intervals

These instance of maths space represent unique and frequently referenced intervals of real
numbers.

15

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

EXPRESS specification:

*)
the_nonnegative_reals : real_interval_from_min :=

make_real_interval_from_min(0.0, closed);
the_zero_one_interval : finite_real_interval := make_finite_real_interval(

0.0, closed, 1.0, closed);
the_zero_pi_interval : finite_real_interval := make_finite_real_interval(

0.0, closed, pi, closed);
the_neg1_one_interval : finite_real_interval := make_finite_real_interval(

-1.0, closed, 1.0, closed);
the_neghalfpi_halfpi_interval : finite_real_interval := make_finite_real_interval(

-0.5*pi, closed, 0.5*pi, closed);
the_negpi_pi_interval : finite_real_interval := make_finite_real_interval(

-pi, open, pi, closed);
(*

4.3.5 tuple spaces

These instances of tuple space represent unique and frequently referenced mathematical tuple
spaces.

EXPRESS specification:

*)
the_zero_tuple_space : listed_product_space := make_listed_product_space([]);
the_tuples : extended_tuple_space := make_extended_tuple_space(

the_zero_tuple_space, the_generics);
the_integer_tuples : extended_tuple_space := make_extended_tuple_space(

the_zero_tuple_space, the_integers);
the_real_tuples : extended_tuple_space := make_extended_tuple_space(

the_zero_tuple_space, the_reals);
the_complex_tuples : extended_tuple_space := make_extended_tuple_space(

the_zero_tuple_space, the_complex_numbers);
(*

4.3.6 empty values

These special “empty” values of maths value are frequently referenced.

EXPRESS specification:

*)
the_empty_maths_tuple : maths_tuple := [];
the_empty_maths_value : maths_value := the_empty_maths_tuple;
the_empty_atom_based_tuple : atom_based_tuple := [];
the_empty_atom_based_value : atom_based_value := the_empty_atom_based_tuple;

(*

16

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

EXPRESS specification:

*)
END_CONSTANT;
(*

NOTE Since entity instance identity has almost no significance in this schema, the repeated use of the
same constant entity instance is acceptable and reduces overhead.

4.4 Mathematical functions schema type definitions

4.4.1 nonnegative integer

This type provides a named type for the nonnegative integers.

EXPRESS specification:

*)
TYPE nonnegative_integer = INTEGER;
WHERE nonnegativity: SELF >= 0;
END_TYPE;
(*

4.4.2 positive integer

This type provides a named type for the positive integers.

EXPRESS specification:

*)
TYPE positive_integer = nonnegative_integer;
WHERE positivity: SELF > 0;
END_TYPE;
(*

4.4.3 zero or one

This subset type of the nonnegative integers is used to indicate whether the derived standard
indexing for a table function should start from zero or from one.

EXPRESS specification:

*)
TYPE zero_or_one = nonnegative_integer;
WHERE in_range: (SELF = 0) OR (SELF = 1);
END_TYPE;
(*

17

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

4.4.4 one or two

This subset type of the positive integers is used to indicate whether the summation index for a
linear function is one or two.

EXPRESS specification:

*)
TYPE one_or_two = positive_integer;
WHERE in_range: (SELF = 1) OR (SELF = 2);
END_TYPE;
(*

4.4.5 local names for simple types

These type definitions provide named types for the EXPRESS simple types.

NOTE In order to create the “generic” type maths value (see 4.4.11) and other similar “supertypes”
using the EXPRESS select construct, named types must be defined for the EXPRESS simple types.

EXPRESS specification:

*)
TYPE maths_number = NUMBER;
END_TYPE;
TYPE maths_real = REAL;
END_TYPE;
TYPE maths_integer = INTEGER;
END_TYPE;
TYPE maths_logical = LOGICAL;
END_TYPE;
TYPE maths_boolean = BOOLEAN;
END_TYPE;
TYPE maths_string = STRING;
END_TYPE;
TYPE maths_binary = BINARY;
END_TYPE;
(*

4.4.6 maths simple atom

This type encompasses any EXPRESS simple value.

EXPRESS specification:

*)
TYPE maths_simple_atom = SELECT
(maths_number,
maths_real,
maths_number,
maths_logical,

18

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

maths_boolean,
maths_string,
maths_binary);

END_TYPE;
(*

4.4.7 maths atom

This type encompasses any EXPRESS simple value and any enumeration item of any EX-
PRESS enumeration type defined in this schema. It is a foundation type for the recursive
constructions for types atom based value and maths value.

EXPRESS specification:

*)
TYPE maths_atom = SELECT
(maths_simple_atom,
maths_enum_atom);

END_TYPE;
(*

4.4.8 atom based tuple

This type provides representations for arbitrary finite tuples of atom based value values.

EXPRESS specification:

*)
TYPE atom_based_tuple = LIST OF atom_based_value;
END_TYPE;
(*

4.4.9 atom based value

This type represents all values constructed from maths atom values by recursive formations
of tuples. The EXPRESS representation is arbitrarily nested lists of atoms or the atoms
themselves.

EXPRESS specification:

*)
TYPE atom_based_value = SELECT
(maths_atom,
atom_based_tuple);

END_TYPE;
(*

NOTE Since there is no mechanism for self reference, the values are necessarily finite and acyclic. Note,
in particular, that no entity instances can participate in values of this type.

19

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

4.4.10 maths tuple

This type represents the mathematical ordered tuple.

NOTE 1 The semantics of mathematical ordered tuple differs subtly from that of the EXPRESS list
aggregate in that there are no notions of creation or destruction or element insertion or removal operations.

NOTE 2 In the context of formal mathematics, there is a single object which can be called the zero-
tuple. It is naturally represented by a zero-length list. This object is permitted in the type maths tuple,
but not in the other tuple types.

EXPRESS specification:

*)
TYPE maths_tuple = LIST [0:?] OF maths_value;
END_TYPE;
(*

4.4.11 maths value

This type is intended to encompass any data value which could be an input to a mathemat-
ical function, an output from a mathematical function, or useful in defining a mathematical
function.

NOTE The EXPRESS type ”generic“ would be appropriate if it were allowed. Instead, applications
needing to use data values not belonging to this type will have to define additional subtypes of the
supertypes provided in this schema.

EXPRESS specification:

*)
TYPE maths_value = SELECT
(atom_based_value,
maths_tuple,
generic_expression);

WHERE
constancy: NOT (’GENERIC_EXPRESSION’ IN stripped_typeof(SELF)) OR

expression_is_constant(SELF);
END_TYPE;
(*

Formal propositions:

constancy: If a maths value is a generic expression then it shall denote a constant math-
ematical object.

4.4.12 maths expression

This type is intended to encompass any expression recognizable as mathematical.

20

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

EXPRESS specification:

*)
TYPE maths_expression = SELECT
(atom_based_value,
maths_tuple,
generic_expression);

END_TYPE;
(*

4.4.13 maths function select

This type enables the use of either elementary function enumerators values or maths -
function instances to reference a mathematical function in certain attributes of parallel -
composed function and function application.

NOTE This select type enables a more efficient representation of an enormous variety of mathematical
functions. In particular, it reduces the number of entity instances required.

EXPRESS specification:

*)
TYPE maths_function_select = SELECT
(maths_function,
elementary_function_enumerators);

END_TYPE;
(*

4.4.14 input selector

This type of positive integer adds the special semantics of denoting a particular input of a
function of several inputs, or a particular component of the first input when there is only one
input and that input is a tuple. The positive integer value indicates the ordinal position of the
selected input in the list of inputs or in the list of components of the sole tuple input. Values
larger than the number of inputs or number of components, respectively, shall be prevented by
rules in each context using this type.

NOTE 1 It is normally the case that either all the inputs to a function have been prepackaged as a
single input tuple, or the function has multiple inputs, or the single input is not a tuple. If there is a
single input that is a tuple and it is desired to select that single input rather than one of its components,
then the desired selector function is just an identity function on that domain, and an appropriate instance
of restriction function may be used instead.

NOTE 2 This type is used by selector function, partial derivative function, and definite inte-
gral function.

EXPRESS specification:

*)
TYPE input_selector = positive_integer;
END_TYPE;
(*

21

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

4.4.15 elementary space enumerators

This enumeration type provides unique nominal values to represent the mathematical spaces
associated with the EXPRESS simple types, the complex numbers and the generic type.

EXPRESS specification:

*)
TYPE elementary_space_enumerators = ENUMERATION OF
(es_numbers,
es_complex_numbers,
es_reals,
es_integers,
es_logicals,
es_booleans,
es_strings,
es_binarys,
es_maths_spaces,
es_maths_functions,
es_generics);

END_TYPE;
(*

Enumerated item definitions:

es numbers: Enumeration item used to identify the mathematical space of all numbers.

es complex numbers: Enumeration item used to identify the mathematical space of all com-
plex numbers.

es reals: Enumeration item used to identify the mathematical space of all real numbers.

es integers: Enumeration item used to identify the mathematical space of all integers.

es logicals: Enumeration item used to identify the mathematical space of all EXPRESS type
LOGICAL values.

es booleans: Enumeration item used to identify the mathematical space of all EXPRESS type
BOOLEAN values.

es strings: Enumeration item used to identify the mathematical space of all EXPRESS type
STRING values.

es binarys: Enumeration item used to identify the mathematical space of all EXPRESS type
BINARY values.

es maths spaces: Enumeration item used to identify the mathematical space of all mathemat-
ical spaces representable by instances of maths space.

es maths functions: Enumeration item used to identify the mathematical space of all math-
ematical functions representable by instances of maths function.

es generics: Enumeration item used to identify the mathematical space of all mathematical
values representable using this schema.

NOTE The “space of all numbers” consists of all mathematical values corresponding to EXPRESS
type NUMBER values and the complex numbers.

22

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

4.4.16 ordering type

This enumeration type indicates which of the two most natural linear ”ascending“ orderings on
the members of a subscript space is to be used. The enumeration identifier by rows indicates a
lexicographic order in which the first subscript is most significant and the last subscript varies
most rapidly. The enumeration identifier by columns indicates an order in which the last
subscript is most significant and the first subscript varies most rapidly.

NOTE The enumeration identifiers were chosen to be meaningful in the most common case, that of
subscript pairs for matrices. Traditionally, the first index indicates the row position and the second
the column position. Languages which define multi-dimensional arrays by a recursive application of a
one-dimensional array construct imply the by rows ordering. The FORTRAN programming language
specified the by columns ordering.

EXPRESS specification:

*)
TYPE ordering_type = ENUMERATION OF
(by_rows,
by_columns);

END_TYPE;
(*

Enumerated item definitions:

by rows: This enumeration value indicates that the subscript tuples are in ascending left-to-
right-lexicographic order with the last subscript varying most rapidly.

by columns: This enumeration value indicates that the subscript tuples are in ascending right-
to-left-lexicographic order with the first subscript varying most rapidly.

EXAMPLE Consider the twelve subscript tuples for a 2 by 2 by 3 table indexed from 1. Table 2 shows
the two linear orderings of these triples indicated by values by rows and by columns.

Table 2 – Orderings indicated by ordering type

Ordinal by rows by columns
1 [1,1,1] [1,1,1]
2 [1,1,2] [2,1,1]
3 [1,1,3] [1,2,1]
4 [1,2,1] [2,2,1]
5 [1,2,2] [1,1,2]
6 [1,2,3] [2,1,2]
7 [2,1,1] [1,2,2]
8 [2,1,2] [2,2,2]
9 [2,1,3] [1,1,3]
10 [2,2,1] [2,1,3]
11 [2,2,2] [1,2,3]
12 [2,2,3] [2,2,3]

23

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

4.4.17 lower upper

This enumeration type is used to indicate whether the elements below the main diagonal of a
matrix are being considered or the elements above. In other words, whether the ordinal positions
with the row ordinal greater than or equal to the column ordinal are being considered or the
ordinal positions with the row ordinal less than or equal to the column ordinal.

When used in a higher-dimensional context, the enumeration value lower indicates the set of
ordinal positions for which the ordinal indices are non-increasing, and the enumeration value
upper indicates the set of ordinal positions for which the ordinal indices are non-decreasing.

NOTE Other context information in a given use of this type may further restrict the set of positions
by changing all the inequalities to strict inequalities. Such restrictions are described by using the terms
“strictly lower” and “strictly upper”.

EXPRESS specification:

*)
TYPE lower_upper = ENUMERATION OF
(lower,
upper);

END_TYPE;
(*

Enumerated item definitions:

lower: The lower triangle of a matrix is to be considered. That is, the elements which have
their row ordinal greater than or equal to their column ordinal.

upper: The upper triangle of a matrix is to be considered. That is, the elements which have
their row ordinal less than or equal to their column ordinal.

4.4.18 symmetry type

This enumeration type is used to indicate the kind of symmetry present in a symmetric matrix.
Values indicating identity symmetry, skew symmetry, Hermitian symmetry and skew-Hermitian
symmetry are defined.

EXPRESS specification:

*)
TYPE symmetry_type = ENUMERATION OF
(identity,
skew,
hermitian,
skew_hermitian);

END_TYPE;
(*

24

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

Enumerated item definitions:

identity: The element in position [j, k] is the same as the element in position [k, j].

skew: The element in position [j, k] is the numeric negative of the element in position [k, j].

hermitian: The element in position [j, k] is the complex conjugate of the element in position
[k, j].

skew hermitian: The element in position [j, k] is the negative complex conjugate of the element
in position [k, j].

4.4.19 elementary function enumerators

This enumeration type provides unique nominal values identifying a wide collection of elemen-
tary mathematical functions and operators. This type is used in constructing expressions and
elementary function instances. The enumeration items denoting trigonometric functions and
their inverses all assume angle measures in radians.

The naming convention is to use a suffix to distinguish the argument type(s) for those functions
or operations which occur in more than one type domain. The suffix “ i” indicates the operation
is applied to integers, the suffix “ r” indicates the operation is applied to real numbers, the suffix
“ c” indicates the operation is applied to complex numbers, the suffix “ s” indicates the operation
is applied to strings, the suffix “ b” indicates the operation is applied to binarys, the suffix “ t”
indicates the operation is applied to tuples, the suffix “ it” indicates the operation is applied to
integer tuples, the suffix “ rt” indicates the operation is applied to real tuples, and the suffix “ -
ct” indicates the operation is applied to complex number tuples . In the case of exponentiation,
the integer exponent case, which can be interpreted purely in terms of repeated multiplication
and division, has been distinguished using suffixes “ i”, “ ri” and “ ci”, for the cases of integer,
real and complex numbers raised to integral powers, with results in the same space as the base.

The six comparison operators are abbreviated in the enumeration item names as follows: “eq”
abbreviates “equal” (=), “ne” abbreviates “not equal” (<> or 6=), “gt” abbreviates “greater
than” (>), “lt” abbreviates “less than” (<), “ge” abbreviates “greater than or equal” (>= or
≥), and “le” abbreviates “less than or equal” (<= or ≤).

NOTE 1 The only difference between functions and operators is in the notation that is usually used.
For the purposes of this schema, the two terms are synonymous.

NOTE 2 Many of these enumeration items correspond to EXPRESS language functions, procedures
or operations. Many of the EXPRESS operators are “overloaded”, that is, they are unions of several
mathematical functions defined on different domains. For the purposes of this schema, the individual
operators are identified.

NOTE 3 Consider the following differences in the exponentiation operations: Two to the power minus
two, using the function indicated by ef exponentiate i, is the integer zero obtained from the integer
division of one by four. Two to the power minus two, using the function indicated by ef exponentiate -
ri, is the real number 0.25 exactly. Two to the power minus two, using the function indicated by
ef exponentiate r, is a real number which is very close to 0.25, but which might not be exactly 0.25 on
all systems because of computational round-off error.

NOTE 4 The EXPRESS procedures insert and remove each have only one VAR parameter, so they
correspond directly to functions. The notion that there is some sense in which the input and output
aggregates are the same “instance” is not recognized in the mathematical function.

NOTE 5 The EXPRESS aggregate operators - intersection, union, difference, subset, and superset -

25

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

rely in part on the EXPRESS “in” operator, which relies on instance equality rather than value equality.
Similarly, the “rolesof” function and the “usedin” function depend explicitly on instance equality, and
on an implicit current population of instances. Consequently, they do not correspond to mathematical
functions (in the sense used in this schema). The “hibound” and “lobound” functions depend on the
type definitions in a schema rather than on the intrinsic structure of a data value, and have also been
omitted.

NOTE 6 A useful extension to this part of ISO 10303 would describe a mathematical model of an EX-
PRESS-based computational environment and an EXPRESS representation thereof. Such an extension
would support notions of entity instances and instance identity within a specified schema context and
model state and would support the communication of functions defined on model states.

EXPRESS specification:

*)
TYPE elementary_function_enumerators = ENUMERATION OF
(ef_and, ef_or, ef_not, ef_xor,
ef_negate_i, ef_add_i, ef_subtract_i, ef_multiply_i, ef_divide_i, ef_mod_i,
ef_exponentiate_i, ef_eq_i, ef_ne_i, ef_gt_i, ef_lt_i, ef_ge_i, ef_le_i,
ef_abs_i, ef_max_i, ef_min_i, ef_if_i,
ef_negate_r, ef_reciprocal_r, ef_add_r, ef_subtract_r, ef_multiply_r,
ef_divide_r, ef_mod_r, ef_exponentiate_r, ef_exponentiate_ri,
ef_eq_r, ef_ne_r, ef_gt_r, ef_lt_r, ef_ge_r, ef_le_r, ef_abs_r,
ef_max_r, ef_min_r, ef_acos_r, ef_asin_r, ef_atan2_r, ef_cos_r, ef_exp_r,
ef_ln_r, ef_log2_r, ef_log10_r, ef_sin_r, ef_sqrt_r, ef_tan_r, ef_if_r,
ef_form_c, ef_rpart_c, ef_ipart_c,
ef_negate_c, ef_reciprocal_c, ef_add_c, ef_subtract_c, ef_multiply_c,
ef_divide_c, ef_exponentiate_c, ef_exponentiate_ci, ef_eq_c, ef_ne_c,
ef_conjugate_c, ef_abs_c, ef_arg_c, ef_cos_c, ef_exp_c, ef_ln_c, ef_sin_c,
ef_sqrt_c, ef_tan_c, ef_if_c,
ef_subscript_s, ef_eq_s, ef_ne_s, ef_gt_s, ef_lt_s, ef_ge_s, ef_le_s,
ef_subsequence_s, ef_concat_s, ef_size_s, ef_format, ef_value, ef_like, ef_if_s,
ef_subscript_b, ef_eq_b, ef_ne_b, ef_gt_b, ef_lt_b, ef_ge_b, ef_le_b,
ef_subsequence_b, ef_concat_b, ef_size_b, ef_if_b,
ef_subscript_t, ef_eq_t, ef_ne_t, ef_concat_t, ef_size_t,
ef_entuple, ef_detuple, ef_insert, ef_remove, ef_if_t,
ef_sum_it, ef_product_it,
ef_add_it, ef_subtract_it, ef_scalar_mult_it, ef_dot_prod_it,
ef_sum_rt, ef_product_rt,
ef_add_rt, ef_subtract_rt, ef_scalar_mult_rt, ef_dot_prod_rt, ef_norm_rt,
ef_sum_ct, ef_product_ct,
ef_add_ct, ef_subtract_ct, ef_scalar_mult_ct, ef_dot_prod_ct, ef_norm_ct,
ef_if, ef_ensemble, ef_member_of);

END_TYPE;
(*

Enumerated item definitions:

ef and: Enumeration member denoting the EXPRESS logical and operation.

ef or: Enumeration member denoting the EXPRESS logical or operation.

ef not: Enumeration member denoting the EXPRESS logical not operation.

ef xor: Enumeration member denoting the EXPRESS logical xor operation.

ef negate i: Enumeration member denoting the integer negation operation.

26

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ef add i: Enumeration member denoting the integer addition operation.

ef subtract i: Enumeration member denoting the integer subtraction operation.

ef multiply i: Enumeration member denoting the integer multiplication operation.

ef divide i: Enumeration member denoting the integer division operation. This is the same as
the EXPRESS “div” operation.

ef mod i: Enumeration member denoting the integer modulo operation. This is the same as
the EXPRESS “mod” operation.

ef exponentiate i: Enumeration member denoting the integer exponentiation operation im-
plemented using integer multiplication and division.

ef eq i: Enumeration member denoting the integer equality relation.

ef ne i: Enumeration member denoting the integer inequality relation.

ef gt i: Enumeration member denoting the integer greater than relation.

ef lt i: Enumeration member denoting the integer less than relation.

ef ge i: Enumeration member denoting the integer greater than or equal relation.

ef le i: Enumeration member denoting the integer less than or equal relation.

ef abs i: Enumeration member denoting the integer absolute value function.

ef max i: Enumeration member denoting the integer maximum value function.

ef min i: Enumeration member denoting the integer minimum value function.

ef if i: Enumeration member denoting the integer ternary conditional operation (as in the C
programming language).

ef negate r: Enumeration member denoting the real negation operation.

ef reciprocal r: Enumeration member denoting the real reciprocal operation.

ef add r: Enumeration member denoting the real addition operation.

ef subtract r: Enumeration member denoting the real subtraction operation.

ef multiply r: Enumeration member denoting the real multiplication operation.

ef divide r: Enumeration member denoting the real division operation.

ef mod r: Enumeration member denoting the real modulo operation. For real numbers a and
b 6= 0, a mod b ≡ a− ba/bc ∗ b, where bxc is the greatest integer less than or equal to x.

ef exponentiate r: Enumeration member denoting the real exponentiation operation.

ef exponentiate ri: Enumeration member denoting exponentiation operation restricted to re-
als raised to integer powers.

ef eq r: Enumeration member denoting the real equality relation.

ef ne r: Enumeration member denoting the real inequality relation.

ef gt r: Enumeration member denoting the real greater than relation.

ef lt r: Enumeration member denoting the real less than relation.

ef ge r: Enumeration member denoting the real greater than or equal relation.

ef le r: Enumeration member denoting the real less than or equal relation.

27

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ef abs r: Enumeration member denoting the real absolute value function.

ef max r: Enumeration member denoting the real maximum value function.

ef min r: Enumeration member denoting the real minimum value function.

ef acos r: Enumeration member denoting the real inverse cosine function.

ef asin r: Enumeration member denoting the real inverse sine function.

ef atan2 r: Enumeration member denoting the real four-quadrant inverse tangent function. Its
two arguments y and x, which shall not both be zero, determine a point (x, y) in the real plane.
The signed angle θ between the positive x-axis and the ray from the origin through that point,
measured in radians and lying in the range −π < θ ≤ π shall be returned. When the first input,
y, is positive, the output is positive.

ef cos r: Enumeration member denoting the real cosine function.

ef exp r: Enumeration member denoting the real exponential function.

ef ln r: Enumeration member denoting the real natural logarithm function.

ef log2 r: Enumeration member denoting the real logarithm base two function.

ef log10 r: Enumeration member denoting the real logarithm base ten function.

ef sin r: Enumeration member denoting the real sine function.

ef sqrt r: Enumeration member denoting the real square root function.

ef tan r: Enumeration member denoting the real tangent function.

ef if r: Enumeration member denoting the real ternary conditional operation (as in the C pro-
gramming language).

ef form c: Enumeration member denoting the function which forms a complex number from
two reals representing the real and imaginary parts.

ef rpart c: Enumeration member denoting the function which returns the real part of a com-
plex number.

ef ipart c: Enumeration member denoting the function which returns the imaginary part of a
complex number.

ef negate c: Enumeration member denoting the complex negation operation.

ef reciprocal c: Enumeration member denoting the complex reciprocal operation.

ef add c: Enumeration member denoting the complex addition operation.

ef subtract c: Enumeration member denoting the complex subtraction operation.

ef multiply c: Enumeration member denoting the complex multiplication operation.

ef divide c: Enumeration member denoting the complex division operation.

ef exponentiate c: Enumeration member denoting the complex exponentiation operation.

ef exponentiate ci: Enumeration member denoting exponentiation operation restricted to
complexs raised to integer powers.

ef eq c: Enumeration member denoting the complex equality relation.

ef ne c: Enumeration member denoting the complex inequality relation.

ef conjugate c: Enumeration member denoting the complex conjugate operation.

28

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ef abs c: Enumeration member denoting the complex absolute value function.

ef arg c: Enumeration member denoting the complex argument function, which shall be defined
by arg(x + yi) ≡ atan2(y, x).

ef cos c: Enumeration member denoting the complex cosine function.

ef exp c: Enumeration member denoting the complex exponential function.

ef ln c: Enumeration member denoting the complex natural logarithm function.

ef sin c: Enumeration member denoting the complex sine function.

ef sqrt c: Enumeration member denoting the complex square root function producing the
square root with positive real part, or, if the real parts are zero, the root with nonnegative
imaginary part.

ef tan c: Enumeration member denoting the complex tangent function.

ef if c: Enumeration member denoting the complex ternary conditional operation (analogous
to the corresponding real operation).

ef subscript s: Enumeration member denoting the EXPRESS string indexing operation with
one index.

ef eq s: Enumeration member denoting the string equality relation.

ef ne s: Enumeration member denoting the string inequality relation.

ef gt s: Enumeration member denoting the string greater than relation.

ef lt s: Enumeration member denoting the string less than relation.

ef ge s: Enumeration member denoting the string greater than or equal relation.

ef le s: Enumeration member denoting the string less than or equal relation.

ef subsequence s: Enumeration member denoting the EXPRESS string indexing operation
with two indices.

ef concat s: Enumeration member denoting the string concatenation operation.

ef size s: Enumeration member denoting the string size operation.

ef format: Enumeration member denoting the EXPRESS formatting function.

ef value: Enumeration member denoting the EXPRESS string to number conversion function.

ef like: Enumeration member denoting the EXPRESS string pattern matching operation.

ef if s: Enumeration member denoting the string ternary conditional operation (analogous to
the corresponding real operation).

ef subscript b: Enumeration member denoting the EXPRESS binary indexing operation with
one index.

ef eq b: Enumeration member denoting the binary equality relation.

ef ne b: Enumeration member denoting the binary inequality relation.

ef gt b: Enumeration member denoting the binary greater than relation.

ef lt b: Enumeration member denoting the binary less than relation.

ef ge b: Enumeration member denoting the binary greater than or equal relation.

ef le b: Enumeration member denoting the binary less than or equal relation.

29

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ef subsequence b: Enumeration member denoting the EXPRESS binary indexing operation
with two indices.

ef concat b: Enumeration member denoting the binary concatenation operation.

ef size b: Enumeration member denoting the binary size operation.

ef if b: Enumeration member denoting the binary ternary conditional operation (analogous to
the corresponding real operation).

ef subscript t: Enumeration member denoting the tuple indexing operation.

ef eq t: Enumeration member denoting the tuple equality relation.

ef ne t: Enumeration member denoting the tuple inequality relation.

ef concat t: Enumeration member denoting the tuple concatenation operation.

ef size t: Enumeration member denoting the tuple size operation.

ef entuple: Enumeration member denoting the entuple function, that is, the function which
collects its input arguments into an ordered tuple and delivers that tuple as its single output.

ef detuple: Enumeration member denoting the operation returning the all the members of an
ordered tuple as explicit independent outputs.

ef insert: Enumeration member denoting the function version of the EXPRESS insert in list
procedure.

ef remove: Enumeration member denoting the function version of the EXPRESS remove from
list procedure.

ef if t: Enumeration member denoting the tuple ternary conditional operation (analogous to
the corresponding real operation).

ef sum it: Enumeration member denoting the operation which sums the members of an integer
tuple to produce an integer result.

ef product it: Enumeration member denoting the operation which multiplies the members of
an integer tuple to produce an integer result.

ef add it: Enumeration member denoting the integer tuple addition operation.

ef subtract it: Enumeration member denoting the integer tuple subtraction operation.

ef scalar mult it: Enumeration member denoting the integer tuple scalar multiplication op-
eration.

ef dot prod it: Enumeration member denoting the integer tuple dot product operation.

ef sum rt: Enumeration member denoting the operation which sums the members of a real
tuple to produce a real result.

ef product rt: Enumeration member denoting the operation which multiplies the members of
a real tuple to produce a real result.

ef add rt: Enumeration member denoting the real tuple addition operation.

ef subtract rt: Enumeration member denoting the real tuple subtraction operation.

ef scalar mult rt: Enumeration member denoting the real tuple scalar multiplication opera-
tion.

ef dot prod rt: Enumeration member denoting the real tuple dot product operation.

ef norm rt: Enumeration member denoting the real tuple norm operation.

30

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ef sum ct: Enumeration member denoting the operation which sums the members of a complex
tuple to produce a complex number result.

ef product ct: Enumeration member denoting the operation which multiplies the members of
a complex tuple to produce a complex number result.

ef add ct: Enumeration member denoting the complex tuple addition operation.

ef subtract ct: Enumeration member denoting the complex tuple subtraction operation.

ef scalar mult ct: Enumeration member denoting the complex tuple scalar multiplication op-
eration.

ef dot prod ct: Enumeration member denoting the complex tuple dot product operation.

ef norm ct: Enumeration member denoting the complex tuple norm operation.

ef if: Enumeration member denoting the generic ternary conditional operation (analogous to
the corresponding real operation).

ef ensemble: Enumeration member denoting the operation which forms a finite space from
its operands.

ef member of: Enumeration member denoting the operation which tests a mathematical value
for membership in a mathematical space.

4.4.20 open closed

This enumeration type is used to indicate whether real intervals are topologically open or closed
at their endpoints. If the real interval is closed at an endpoint, the endpoint is a member of the
real interval; otherwise, the endpoint is not a member of the real interval.

EXPRESS specification:

*)
TYPE open_closed = ENUMERATION OF
(open,
closed);

END_TYPE;
(*

Enumerated item definitions:

open: Indicator that the real interval is topologically open at the associated endpoint, that is,
that the boundary point is not a member of the interval.

closed: Indicator that the real interval is topologically closed at the associated endpoint, that
is, that the boundary point is a member of the interval.

4.4.21 space constraint type

This enumeration type is used to indicate which of three possible constraints on a mathematical
space is to be used in a given context. The possibilities are that one space is equal to another,
a subspace of another, or a member of another.

31

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

EXPRESS specification:

*)
TYPE space_constraint_type = ENUMERATION OF
(sc_equal,
sc_subspace,
sc_member);

END_TYPE;
(*

Enumerated item definitions:

sc equal: Indicator that the subject space shall be equal to the given argument space.

sc subspace: Indicator that the subject space shall be a subspace, but not necessarily a proper
subspace, of the given argument space.

sc member: Indicator that the subject space shall be member of the given argument space.

4.4.22 repackage options

This enumeration type is used by repackaging function instances to identify repackaging
options for inputs and outputs.

EXPRESS specification:

*)
TYPE repackage_options = ENUMERATION OF
(ro_nochange,
ro_wrap_as_tuple,
ro_unwrap_tuple);

END_TYPE;
(*

Enumerated item definitions:

ro nochange: Indicator that no repackaging is to occur.

ro wrap as tuple: Indicator that multiple values are to be repackaged as a single tuple of
values.

ro unwrap tuple: Indicator that a single tuple value is to be repackaged as multiple values.

4.4.23 extension options

This enumeration type identifies certain common mathematical mechanisms for extending the
exact domain of a function in an unambiguous way to boundary and other technically singular
inputs.

NOTE This type is used by partial derivative function instances to identify which of certain com-
mon extensions to the function determined by the strictest notion of differentiability are to be made.

32

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

EXPRESS specification:

*)
TYPE extension_options = ENUMERATION OF
(eo_none,
eo_cont,
eo_cont_right,
eo_cont_left);

END_TYPE;
(*

Enumerated item definitions:

eo none: Indicator that no extension shall occur.

eo cont: Indicator that extension by continuity shall occur. Wherever an unambiguous value
can be computed which preserves continuity, the function shall be defined there and output that
value.

eo cont right: Indicator that extension by continuity shall occur and, when and where conti-
nuity to the right is meaningful, extension by continuity to the right shall occur.

eo cont left: Indicator that extension by continuity shall occur and, when and where continuity
to the left is meaningful, extension by continuity to the left shall occur.

NOTE Extension by continuity to the right or left is only meaningful in the context of the real numbers.
When extension by continuity occurs, the value produced is necessarily the same as the values produced
by continuity to the right or continuity to the left.

4.4.24 maths enum atom

This select type collects the enumeration types defined in this schema which contain mathemat-
ical values and which are not otherwise included in the type used to represent mathematical
values.

EXPRESS specification:

*)
TYPE maths_enum_atom = SELECT
(elementary_space_enumerators,
ordering_type,
lower_upper,
symmetry_type,
elementary_function_enumerators,
open_closed,
space_constraint_type,
repackage_options,
extension_options);

END_TYPE;
(*

33

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

4.4.25 dotted express identifier

This type of STRING includes the strings which could syntactically be qualified type names or
attribute names in EXPRESS. That is, it includes strings which are composed of one or more
EXPRESS identifiers separated by period characters.

EXPRESS specification:

*)
TYPE dotted_express_identifier = STRING;
WHERE syntax: dotted_identifiers_syntax(SELF);
END_TYPE;
(*

Formal propositions:

syntax: The string shall have the form of a sequence of EXPRESS identifiers separated by full
stops.

4.4.26 express identifier

This type of dotted express identifier includes only the strings which could syntactically be
EXPRESS identifiers. In particular, a value of this type shall begin with a letter and contain
only letters, digits and low lines.

EXPRESS specification:

*)
TYPE express_identifier = dotted_express_identifier;
WHERE syntax: dot_count(SELF) = 0;
END_TYPE;
(*

Formal propositions:

syntax: The string shall begin with a letter and contain only letters, digits, and low lines.

NOTE In order that express identifier be a subtype of dotted express identifier, the rule is ac-
tually defined by requiring the string to be an instance of dotted express identifier which contains no
full stops.

4.4.27 product space

A product space is a selection from among the entity types representing finite Cartesian
product spaces.

34

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

EXPRESS specification:

*)
TYPE product_space = SELECT
(uniform_product_space,
listed_product_space);

END_TYPE;
(*

4.4.28 tuple space

A tuple space is a selection from among the types representing mathematical spaces whose
elements are ordered tuples. This values of this type are those which could occur as domains or
ranges of mathematical functions.

NOTE Specifically, the values of this type represent finite Cartesian products of mathematical spaces,
and certain infinite unions of such Cartesian products. The latter case arises for functions with an
indefinite number of input or output arguments.

EXPRESS specification:

*)
TYPE tuple_space = SELECT
(product_space,
extended_tuple_space);

END_TYPE;
(*

4.4.29 maths space or function

A maths space or function is a selection of either a maths space or a maths function.

NOTE This type describes the two choices for the source of the information for determining the domain
of a constant function, selector function, or parallel composed function.

EXPRESS specification:

*)
TYPE maths_space_or_function = SELECT
(maths_space,
maths_function);

END_TYPE;
(*

4.4.30 real interval

A real interval is a selection from among the entity types representing non-empty, non-trivial,
real intervals.

NOTE The empty interval and the single point interval are not representable by this type. All other
real intervals have a value-unique representation in this type.

35

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

EXPRESS specification:

*)
TYPE real_interval = SELECT
(real_interval_from_min,
real_interval_to_max,
finite_real_interval,
elementary_space);

WHERE
WR1: NOT (’ELEMENTARY_SPACE’ IN stripped_typeof(SELF)) OR

(SELF\elementary_space.space_id = es_reals);
END_TYPE;
(*

Formal propositions:

WR1: If the select value is an elementary space, it is the one representing the space of all
real numbers.

4.5 Mathematical functions schema entity definitions

4.5.1 quantifier expression

This abstract type of multiple arity generic expression distinguishes those expressions which
are quantifier expressions. Certain of the operands of a quantifier expression are restricted to
variables. These variables are said to be bound by the quantifier and their semantics is deter-
mined by the quantifier. The variables which are bound by a quantifier are not available for
substitution operations, that is, they may not be subsequently tied to particular constant values.
The semantics of the quantifier expression depends on all the possible values of each of its bound
variables rather than varying with the association of variables to particular values.

NOTE 1 This type together with entity type bound variable semantics, function free variables -
of and expression is constant generically extend the ISO13584 generic expressions schema to
handle operations which involve logical quantifiers.

NOTE 2 Function has values space identifies which generic expressions pertain to the mathemat-
ical functions schema and, consequently, have associated spaces of possible values given by function
values space of.

EXPRESS specification:

*)
ENTITY quantifier_expression
ABSTRACT SUPERTYPE
SUBTYPE OF (multiple_arity_generic_expression);
variables : LIST [1:?] OF UNIQUE generic_variable;

WHERE
WR1: SIZEOF (QUERY (vrbl <* variables | NOT (vrbl IN

SELF\multiple_arity_generic_expression.operands))) = 0;
WR2: SIZEOF (QUERY (vrbl <* variables | NOT ((schema_prefix +

’BOUND_VARIABLE_SEMANTICS’) IN TYPEOF (vrbl.interpretation.semantics)))) = 0;
END_ENTITY;
(*

36

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

Attribute definitions:

variables: The list of variables bound by the quantifier operation.

Formal propositions:

WR1: The variables listed in attribute variables are among the operands of the operation.

WR2: The variables listed in attribute variables have the semantics of bound variables.

4.5.2 dependent variable definition

This subtype of unary generic expression defines a dependent variable. From the viewpoint
of the formal language of mathematical expressions, a dependent variable is merely an abbre-
viation for a subexpression which is being given special attention because of its significance or
frequency of occurence in other expressions.

NOTE Observe that a dependent variable is not a variable at all! In particular, it is not a logical
variable, may not be quantified, may not be assigned a value (other than that resulting from the defining
expression), and will not appear in lists of used or free variables. It has significance for rendering
operations, which should use the associated name instead of rendering the defining expression when
a reference to the dependent variable definition instance is used in another expression, and it has
significance for computational operations, which may improve efficiency of computation by saving and
reusing its value under appropriate circumstances, but it has no effect on the meaning of the defining
expression as a formal expression.

EXPRESS specification:

*)
ENTITY dependent_variable_definition
SUBTYPE OF (unary_generic_expression);
name : label;
description : text;

END_ENTITY;
(*

Attribute definitions:

SELF\unary generic expression.operand: The expression defining the dependent variable.

name: The label identifying the dependent variable.

description: Descriptive information for the dependent variable or defining expression.

NOTE The description may also include information about the preferred rendering of the dependent
variable or the defining expression in some presentation system such as TeX or XML. Of course, only
certain receiving systems would be able to make use of such information.

4.5.3 bound variable semantics

This type of variable semantics indicates that a variable is a bound variable whose semantics is
determined by the quantifier expression which references the variable in its variables attribute.

37

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

EXPRESS specification:

*)
ENTITY bound_variable_semantics
SUBTYPE OF (variable_semantics);

END_ENTITY;
(*

Informal propositions:

IP1: Only those variables which are listed in the variables attribute of a quantifier expression
may have this semantics.

4.5.4 free variable semantics

This type of variable semantics indicates that a variable has no further semantics beyond
what is implied by its use in an expression. This could occur when the expression itself is the
object of interest.

EXPRESS specification:

*)
ENTITY free_variable_semantics
SUBTYPE OF (variable_semantics);

END_ENTITY;
(*

4.5.5 complex number literal

This type of generic literal represents mathematical complex number constants in expressions.

EXPRESS specification:

*)
ENTITY complex_number_literal
SUBTYPE OF (generic_literal);
real_part : REAL;
imag_part : REAL;

END_ENTITY;
(*

Attribute definitions:

real part: The value of the real part of the complex number which is to be represented by this
literal in expressions.

imag part: The value of the imaginary part of the complex number which is to be represented
by this literal in expressions.

38

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

4.5.6 logical literal

This type of generic literal represents EXPRESS type LOGICAL constants in expressions.

EXPRESS specification:

*)
ENTITY logical_literal
SUBTYPE OF (generic_literal);
lit_value : LOGICAL;

END_ENTITY;
(*

Attribute definitions:

lit value: The EXPRESS value representing the mathematical value which is to be represented
by this literal in expressions.

4.5.7 binary literal

This type of generic literal represents EXPRESS type BINARY constants in expressions.

EXPRESS specification:

*)
ENTITY binary_literal
SUBTYPE OF (generic_literal);
lit_value : BINARY;

END_ENTITY;
(*

Attribute definitions:

lit value: The EXPRESS value representing the mathematical value which is to be represented
by this literal in expressions.

4.5.8 maths enum literal

This type of generic literal reresents mathematical functions schema enumeration item
constants in expressions.

EXPRESS specification:

*)
ENTITY maths_enum_literal
SUBTYPE OF (generic_literal);
lit_value : maths_enum_atom;

END_ENTITY;

39

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

(*

Attribute definitions:

lit value: The EXPRESS value representing the mathematical value which is to be represented
by this literal in expressions.

4.5.9 real tuple literal

This type of generic literal represents tuples of real constants in expressions.

EXPRESS specification:

*)
ENTITY real_tuple_literal
SUBTYPE OF (generic_literal);
lit_value : LIST [1:?] OF REAL;

END_ENTITY;
(*

Attribute definitions:

lit value: The EXPRESS value representing the mathematical value which is to be represented
by this literal in expressions.

4.5.10 integer tuple literal

This type of generic literal represents tuples of integer constants in expressions.

EXPRESS specification:

*)
ENTITY integer_tuple_literal
SUBTYPE OF (generic_literal);
lit_value : LIST [1:?] OF INTEGER;

END_ENTITY;
(*

Attribute definitions:

lit value: The EXPRESS value representing the mathematical value which is to be represented
by this literal in expressions.

4.5.11 atom based literal

This type of generic literal represents recursively constructed tuples of atomic constants
in expressions. The atomic constants in this schema are all the values of EXPRESS sim-

40

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ple types and all the enumeration items of the EXPRESS enumeration types defined in this
schema.

NOTE All the constants represented by the preceding subtypes of generic literal may also be repre-
sented using atom based literal. It is recommended that the simpler subtypes be used where possible
for the sake of readability. It may also be the case that some applications will not need the general
case and not permit its use. Another complication is that an atom based value with a real value
will not be recognized as a real numeric literal and not be usable in real numeric expressions from
ISO13584 expressions schema. The analogous complication exists for single integer, boolean and
string values.

EXPRESS specification:

*)
ENTITY atom_based_literal
SUBTYPE OF (generic_literal);
lit_value : atom_based_value;

END_ENTITY;
(*

Attribute definitions:

lit value: The EXPRESS value representing the mathematical value which is to be represented
by this literal in expressions.

4.5.12 maths tuple literal

This type of generic literal represents ordered tuples of arbitrary mathematical objects in
expressions.

EXPRESS specification:

*)
ENTITY maths_tuple_literal
SUBTYPE OF (generic_literal);
lit_value : LIST OF maths_value;

END_ENTITY;
(*

Attribute definitions:

lit value: The list of EXPRESS values representing the components of the mathematical or-
dered tuple which is to be represented by this literal in expressions.

4.5.13 maths variable

This type of generic variable represents a variable ranging over a given mathematical space
of values.

NOTE The identity of a maths variable is derived from its identity as an entity instance, so the

41

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

presence or absence of a name is irrelevant to its role in any expression. However, for many applications,
a name contains very useful information, especially in rendering the expression for human readers.

EXPRESS specification:

*)
ENTITY maths_variable
SUBTYPE OF (generic_variable);
values_space : maths_space;
name : label;

WHERE
WR1: expression_is_constant(values_space);

END_ENTITY;
(*

Attribute definitions:

values space: The mathematical space of possible values of the variable.

Formal propositions:

WR1: The value of attribute values space shall be a constant expression.

4.5.14 maths real variable

This type of maths variable and real numeric variable makes a convenient representation
for variables ranging over the real numbers.

EXPRESS specification:

*)
ENTITY maths_real_variable
SUBTYPE OF (maths_variable, real_numeric_variable);

WHERE
WR1: subspace_of_es(SELF\maths_variable.values_space,es_reals);

END_ENTITY;
(*

Formal propositions:

WR1: The value of inherited attribute values space is a subspace of the real numbers.

4.5.15 maths integer variable

This type of maths variable and int numeric variable makes a convenient representation
for variables ranging over the integers.

42

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

EXPRESS specification:

*)
ENTITY maths_integer_variable
SUBTYPE OF (maths_variable, int_numeric_variable);

WHERE
WR1: subspace_of_es(SELF\maths_variable.values_space,es_integers);

END_ENTITY;
(*

Formal propositions:

WR1: The value of inherited attribute values space is a subspace of the integers.

4.5.16 maths boolean variable

This type of maths variable and boolean variable makes a convenient representation for
variables ranging over the booleans.

EXPRESS specification:

*)
ENTITY maths_boolean_variable
SUBTYPE OF (maths_variable, boolean_variable);

WHERE
WR1: subspace_of_es(SELF\maths_variable.values_space,es_booleans);

END_ENTITY;
(*

Formal propositions:

WR1: The value of inherited attribute values space is a subspace of the booleans.

4.5.17 maths string variable

This type of maths variable and string variable makes a convenient representation for vari-
ables ranging over strings.

EXPRESS specification:

*)
ENTITY maths_string_variable
SUBTYPE OF (maths_variable, string_variable);

WHERE
WR1: subspace_of_es(SELF\maths_variable.values_space,es_strings);

END_ENTITY;
(*

43

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

Formal propositions:

WR1: The value of inherited attribute values space is a subspace of the strings.

4.5.18 function application

This type of multiple arity generic expression represents a mathematical expression that
specifies the application of a mathematical function to an appropriate set of arguments. Such
a mathematical expression shall denote the first output of evaluation of the function on those
arguments.

NOTE In contrast to common usage, this schema admits the possibility of mathematical functions with
multiple outputs. Such functions are often called “procedures”. If an expression created by applying such
a function to arguments is to be interpreted as having a single denotation, then it is hereby declared to
denote the first of its outputs.

EXPRESS specification:

*)
ENTITY function_application
SUBTYPE OF (multiple_arity_generic_expression);
func : maths_function_select;
arguments : LIST [1:?] OF maths_expression;

DERIVE
SELF\multiple_arity_generic_expression.operands : LIST [2:?] OF generic_expression
:= [convert_to_maths_function(func)] + convert_to_operands(arguments);

WHERE
WR1: function_applicability(func, arguments);

END_ENTITY;
(*

Attribute definitions:

func: The function to be applied.

arguments: The list of arguments to which the function is to be applied.

SELF\multiple arity generic expression.operands: The inherited attribute operands is
derived by prepending the function to the list of arguments.

NOTE For the convenience of users, most of the expression “operations” in this schema use attributes
which are not themselves of type generic expression but are of simpler non-entity types. It is easy to
derive the corresponding generic literal instances from these types. From these instances, it is easy to
derive the inherited operands attribute.

Formal propositions:

WR1: The number of arguments shall match the dimension of the function domain and the
value spaces of the individual arguments shall be compatible with the corresponding function
domain factor spaces.

EXAMPLE To represent the mathematical expression atan2(y, 1), the following instance of function -
application could be constructed:

44

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

LOCAL
vrbl_y : maths_real_variable := make_maths_real_variable(the_reals, ’y’);
atan2_y_1 : function_application := make_function_application(ef_atan2_r,

[vrbl_y, 1.0]);
END_LOCAL;

Two entity instances are constructed. The first creates an instance of generic variable representing a
variable ranging over the real numbers and labeled ’y’. The second creates an instance of generic ex-
pression representing the application of real-valued function atan2 to the list of two arguments consisting
of the variable y and the constant 1.0.

4.5.19 maths space

This abstract supertype includes all the representations for mathematical spaces considered in
this schema.

EXPRESS specification:

*)
ENTITY maths_space
ABSTRACT SUPERTYPE OF (ONEOF (elementary_space,

finite_integer_interval,
integer_interval_from_min,
integer_interval_to_max,
finite_real_interval,
real_interval_from_min,
real_interval_to_max,
cartesian_complex_number_region,
polar_complex_number_region,
finite_space,
uniform_product_space,
listed_product_space,
extended_tuple_space,
function_space))

SUBTYPE OF (generic_expression);
END_ENTITY;
(*

NOTE Most of the entity declarations in the remainder of this clause will have dual inheritance. They
will inherit from either maths space or maths function to acquire their mathematical semantics, and
they will inherit from generic literal, unary generic expression, or multiple arity generic ex-
pression to identify their syntactical role in a mathematical expression. The choice between modelling
something as a complicated constant (inheriting from generic literal) or as a general expression (inher-
iting from unary or multiple arity generic expression has subtle and extensive consequences.

For the applications for which this part of ISO 10303 has been created, there is a strong preference for the
semantic simplicity of modeling complicated constants over the semantic complexity of general expressions
with many free variables and larger numbers of complexly related instances. In particular, all the entity
types representing mathematical spaces are designed to represent specific constant spaces rather than
the indeterminate spaces which would result from the presence of free variables in a mathematical space
expression. Operations on mathematical spaces may be added to this schema if and whan an application
is identified which requires such generality.

45

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

4.5.20 elementary space

This type of maths space and generic literal is used to represent the elementary mathemat-
ical spaces identified by the enumeration type elementary maths space.

EXPRESS specification:

*)
ENTITY elementary_space
SUBTYPE OF (maths_space, generic_literal);
space_id : elementary_space_enumerators;

END_ENTITY;
(*

Attribute definitions:

space id: The enumeration item which identifies the space being represented.

4.5.21 finite integer interval

This type of maths space and generic literal represents mathematical spaces which are non-
empty, finite intervals of integers.

EXPRESS specification:

*)
ENTITY finite_integer_interval
SUBTYPE OF (maths_space, generic_literal);
min : INTEGER;
max : INTEGER;

DERIVE
size : positive_integer := max - min + 1;

WHERE
WR1: min <= max;

END_ENTITY;
(*

Attribute definitions:

min: The least integer in the interval.

max: The largest integer in the interval.

size: The derived number of integers which are members of the interval.

Formal propositions:

WR1: The lower bound shall be less than or equal to the upper bound.

NOTE That generic literal is a supertype of finite integer interval may seem strange at first.

46

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

The reason is as follows: An instance of finite integer interval denotes a unique mathematical space.
Therefore, it may play the role of a constant in the syntax of mathematical expressions. It is not a
“literal” in the ordinary sense, that is, a language token which directly encodes a value, but generic -
literal is the only choice of supertype from generic expressions schema which gives these instances
their proper role as constants in expressions.

4.5.22 integer interval from min

This type of maths space and generic literal represents semi-infinite integer intervals which
contain all integers greater than or equal to a given integer.

EXPRESS specification:

*)
ENTITY integer_interval_from_min
SUBTYPE OF (maths_space, generic_literal);
min : INTEGER;

END_ENTITY;
(*

Attribute definitions:

min: The smallest integer in the interval.

4.5.23 integer interval to max

This type of maths space and generic literal represents semi-infinite integer intervals which
contain all integers less than or equal to a given integer.

EXPRESS specification:

*)
ENTITY integer_interval_to_max
SUBTYPE OF (maths_space, generic_literal);
max : INTEGER;

END_ENTITY;
(*

Attribute definitions:

max: The largest integer in the interval.

EXAMPLE 1 The space of all negative integers may be represented by maths space () || generic -
expression () || simple generic expression () || generic literal () || integer interval to max (-1).

4.5.24 finite real interval

This type of maths space and generic literal represents mathematical spaces which are in-
tervals of the real numbers having finite positive length.

47

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

NOTE The finiteness of these intervals is exhibited in their lengths, not the number of members.

EXPRESS specification:

*)
ENTITY finite_real_interval
SUBTYPE OF (maths_space, generic_literal);
min : REAL;
min_closure : open_closed;
max : REAL;
max_closure : open_closed;

WHERE
WR1: min < max;

END_ENTITY;
(*

Attribute definitions:

min: The lower bound of the interval.

min closure: Indicator for whether the lower bound is excluded (open) or included (closed)
in the interval.

max: The upper bound of the interval.

max closure: Indicator for whether the upper bound is excluded (open) or included (closed)
in the interval.

Formal propositions:

WR1: The lower bound shall be strictly less than the upper bound.

4.5.25 real interval from min

This type of maths space and generic literal represents mathematical spaces which are in-
tervals of real numbers which are bounded below but not bounded above. That is, it represents
intervals which contain all real numbers either greater than, or greater than or equal to, a given
real number.

EXPRESS specification:

*)
ENTITY real_interval_from_min
SUBTYPE OF (maths_space, generic_literal);
min : REAL;
min_closure : open_closed;

END_ENTITY;
(*

48

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

Attribute definitions:

min: The lower bound for the interval.

min closure: Indicator for whether the lower bound is excluded (open) or included (closed)
in the interval.

4.5.26 real interval to max

This type of maths space and generic literal represents mathematical spaces which are in-
tervals of real numbers which are bounded above but not bounded below. That is, it represents
intervals which contain all real numbers either less than, or less than or equal to, a given real
number.

EXPRESS specification:

*)
ENTITY real_interval_to_max
SUBTYPE OF (maths_space, generic_literal);
max : REAL;
max_closure : open_closed;

END_ENTITY;
(*

Attribute definitions:

max: The upper bound for the interval.

max closure: Indicator for whether the upper bound is excluded (open) or included (closed)
in the interval.

4.5.27 cartesian complex number region

This type of maths space and generic literal represents subsets of the complex numbers
defined by restricting the real parts to a specified, non-trivial, real interval and the imaginary
parts to another such interval.

EXPRESS specification:

*)
ENTITY cartesian_complex_number_region
SUBTYPE OF (maths_space, generic_literal);
real_constraint : real_interval;
imag_constraint : real_interval;

WHERE
WR1: min_exists(real_constraint) OR max_exists(real_constraint) OR

min_exists(imag_constraint) OR max_exists(imag_constraint);
END_ENTITY;
(*

49

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

Attribute definitions:

real constraint: The interval to which the real parts of the members shall belong.

imag constraint: The interval to which the imaginary parts of the members shall belong.

Formal propositions:

WR1: This type shall not be used to represent the space of all complex numbers.

4.5.28 polar complex number region

This type of maths space and generic literal represents subsets of the complex numbers
defined by restricting the distance and direction from a designated centre to specified, non-
trivial, real intervals. Direction shall be measured in radians from the ray emanating from the
designated centre parallel to the positive real axis, using values θ in the range −π < θ ≤ π,
and using positive values for directions tending upward. The direction θ of a complex number
from the designated centre shall be deemed to belong to a real interval if either θ or θ + 2π is a
member of the interval.

EXPRESS specification:

*)
ENTITY polar_complex_number_region
SUBTYPE OF (maths_space, generic_literal);
centre : complex_number_literal;
distance_constraint : real_interval;
direction_constraint : finite_real_interval;

WHERE
WR1: min_exists(distance_constraint) AND (real_min(distance_constraint) >= 0.0);
WR2: {-PI <= direction_constraint.min < PI};
WR3: direction_constraint.max - direction_constraint.min <= 2.0*PI;
WR4: (direction_constraint.max - direction_constraint.min < 2.0*PI) OR

(direction_constraint.min_closure = open);
WR5: (direction_constraint.max - direction_constraint.min < 2.0*PI) OR

(direction_constraint.max_closure = open) OR
(direction_constraint.min = -PI);

WR6: (real_min(distance_constraint) > 0.0) OR max_exists(distance_constraint) OR
(direction_constraint.max - direction_constraint.min < 2.0*PI) OR
(direction_constraint.max_closure = open);

END_ENTITY;
(*

Attribute definitions:

centre: The designated centre.

distance constraint: The interval constraining the distances of the members from the centre.

direction constraint: The interval constraining the directions of the members from the centre.

50

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

Formal propositions:

WR1: The real interval defining the distance constraint shall have a greatest lower bound and
it shall be nonnegative.

WR2: The lower bound of the real interval defining the direction constraint shall be greater
than or equal to −π and less than π.

WR3: The length of the interval defining the direction constraint shall be less than or equal to
two π.

WR4: If the length of the interval defining the direction constraint is two π, then the interval
shall be open below.

WR5: If all directions are included, then the interval defining the direction constraint shall
start at −π.

WR6: This type shall not be used to represent the space of all complex numbers.

NOTE 1 Direction is naturally defined only up to an integer multiple of 2π. In order to represent any
arc of directions via a single interval, a little of this inherent redundancy must be permitted and handled.
Thus, the range of possible values for direction constraint.max will be seen to be −π to 3π.

NOTE 2 The effect of rules WR4, WR5, and WR6 is to establish value unique representations for
the complex number regions representable by this type. That is, two entity instances from this part of
ISO 10303 representing regions of complex numbers represent the same mathematical region if and only
if they are value equal as EXPRESS instances.

4.5.29 finite space

This type of maths space and generic literal represents mathematical spaces with a finite
number of members. This includes the space with zero members, also known as the empty set.

EXPRESS specification:

*)
ENTITY finite_space
SUBTYPE OF (maths_space, generic_literal);
members : SET OF maths_value;

WHERE
WR1: VALUE_UNIQUE(members);
WR2: SIZEOF (QUERY (expr <* QUERY (member <* members |

’ISO13584_GENERIC_EXPRESSIONS_SCHEMA.GENERIC_EXPRESSION’ IN TYPEOF (member))
| NOT expression_is_constant(expr))) = 0;

WR3: no_cyclic_space_reference(SELF, []);
END_ENTITY;
(*

Attribute definitions:

members: The set of members belonging to the space represented.

51

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

Formal propositions:

WR1: The members are distinct with respect to value equality.

WR2: All the members which are expressions are constant expressions.

WR3: The graph of maths space references emanating from an instance of finite space
contains no cycles.

Informal propositions:

IP1: The members shall denote distinct mathematical values, for example, the number ”4” and
the expression ”2+2” shall not both be members of the same instance of finite space.

4.5.30 uniform product space

This type of maths space and generic literal represents finite Cartesian product spaces, all
of whose factor spaces are the same. These Cartesian products are commonly written using an
exponential notation. Let B be the space represented by the base attribute and n be the value
of the exponent attribute. Then the space represented by the instance is commonly expressed
as Bn.

NOTE There is a unique, natural isomorphism between the space B and the space B1. It is a very
common practice in mathematics to identify these two spaces via this isomorphism and not distinguish
between elements of B and the corresponding one-tuples in B1. In this schema, this distinction must be
maintained in order to avoid computer processing ambiguity in later applications.

EXPRESS specification:

*)
ENTITY uniform_product_space
SUBTYPE OF (maths_space, generic_literal);
base : maths_space;
exponent : positive_integer;

WHERE
WR1: expression_is_constant(base);
WR2: no_cyclic_space_reference(SELF, []);
WR3: base <> the_empty_space;

END_ENTITY;
(*

Attribute definitions:

base: The maths space to which the components of the ordered tuples belong, that is, the
space which is “multiplied” together exponent times to form the Cartesian product space.

exponent: The number of factors in the Cartesian product, which is also the length of the
ordered tuples belonging to the space being represented.

52

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

Formal propositions:

WR1: The value of base is a constant expression.

WR2: The graph of maths space references emanating from an instance of uniform prod-
uct space contains no cycles.

WR3: The value of base shall not be the empty space.

4.5.31 listed product space

This type of maths space and generic literal represents finite Cartesian product spaces. Its
use is required when the factor spaces are not all the same. Let Si be the space represented
by the ith member of the attribute factors, and let the length of the list be n. The space
represented by the instance is

×n
i=1Si

NOTE The spaces represented by instances of uniform product space are also representable by
instances listed product space. Since redundant representation is inherent in mathematical expressions
and in the possibility of multiple instances of the same entity type representing the same mathematical
object, no advantage was seen in attempting to add rules to prevent it or in forcing use of an inconvenient
representation. Consider representing R64 using an instance of listed product space.

EXPRESS specification:

*)
ENTITY listed_product_space
SUBTYPE OF (maths_space, generic_literal);
factors : LIST OF maths_space;

WHERE
WR1: SIZEOF (QUERY (space <* factors |

NOT (expression_is_constant(space)))) = 0;
WR2: no_cyclic_space_reference(SELF, []);
WR3: NOT (the_empty_space IN factors);

END_ENTITY;
(*

Attribute definitions:

factors: The list of mathematical spaces which are the factors of the finite Cartesian product
space.

Formal propositions:

WR1: The members of factors are all constant expressions.

WR2: The graph of maths space references emanating from an instance of listed product -
space contains no cycles.

WR3: The empty space shall not be a factor space.

53

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

EXAMPLE The mathematical space of all triples such that the first component is an integer, the second
is a real number in the closed interval from minus one to one, and the third is a boolean value:

Z × {x ∈ R| − 1 ≤ x ≤ 1} × {true, false}

where Z represents the set of integers, can be represented by the entity instance:

LOCAL
spc : listed_product_space := make_listed_product_space([the_integers,
the_neg1_one_interval, the_booleans]);

END_LOCAL;

Three constants representing the needed factor spaces are defined in the mathematical functions -
schema and used here to make one new instance representing the desired Cartesian product space.

4.5.32 extended tuple space

This type of maths space and generic literal represents spaces of ordered tuples with a
certain number of initial components belonging to a fixed list of spaces, followed by an arbitrary
number of components from a fixed space. These spaces represent domains of functions with a
fixed list of initial arguments and types followed by an arbitrary number of additional arguments,
all of the same type. The fixed list of initial arguments may be an empty list.

NOTE Among functions with an indefinite number of inputs, this is the only type provided for in this
version of this schema.

The tuple spaces represented by this type can be expressed as infinite unions of finite Cartesian
products of a certain simple form. Let B be the finite Cartesian product space represented by
the value of base and E be the space represented by the value of extender. Then the space
represented by the instance of extended tuple space is

∞
⋃

i=0

B ×a Ei

where the associative Cartesian product operation is being used.

EXPRESS specification:

*)
ENTITY extended_tuple_space
SUBTYPE OF (maths_space, generic_literal);
base : product_space;
extender : maths_space;

WHERE
WR1: expression_is_constant(base) AND

expression_is_constant(extender);
WR2: no_cyclic_space_reference(SELF, []);
WR3: extender <> the_empty_space;

END_ENTITY;
(*

Attribute definitions:

base: The product space describing the common initial component spaces of all the ordered
tuples belonging to this tuple space. When there are no common initial components, the value

54

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

of base will be the zero-tuple space.

extender: The maths space from which the optional additional components come.

Formal propositions:

WR1: The values of base and extender are constant expressions.

WR2: The graph of maths space references emanating from an instance of extended tu-
ple space contains no cycles.

WR3: The value of extender shall not be the empty space.

4.5.33 function space

This type of maths space and generic literal represents mathematical spaces whose members
are all the mathematical functions which satisfy the indicated constraints on their domains and
ranges.

EXPRESS specification:

*)
ENTITY function_space
SUBTYPE OF (maths_space, generic_literal);
domain_constraint : space_constraint_type;
domain_argument : maths_space;
range_constraint : space_constraint_type;
range_argument : maths_space;

WHERE
WR1: expression_is_constant(domain_argument) AND

expression_is_constant(range_argument);
WR2: (domain_argument <> the_empty_space) AND

(range_argument <> the_empty_space);
WR3: (domain_constraint <> sc_member) OR NOT

member_of(the_empty_space,domain_argument);
WR4: (range_constraint <> sc_member) OR NOT

member_of(the_empty_space,range_argument);
WR5: NOT (any_space_satisfies(domain_constraint,domain_argument) AND

any_space_satisfies(range_constraint,range_argument));
END_ENTITY;
(*

Attribute definitions:

domain constraint: The enumeration item identifying the kind of constraint to be imposed
on the function domain.

domain argument: The mathematical space to be used in the constraint identified by do-
main constraint.

range constraint: The enumeration item identifying the kind of constraint to be imposed on
the function range.

range argument: The mathematical space to be used in the constraint identified by range -

55

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

constraint.

Formal propositions:

WR1: The values of domain argument and range argument shall be constant expressions.

WR2: The values of domain argument and range argument shall not represent the empty
space.

WR3: If the domain constraint is sc member, then the empty space shall not be a member
of the domain argument.

WR4: If the range constraint is sc member, then the empty space shall not be a member
of the range argument.

WR5: This type shall not be used to represent the space of all mathematical functions.

NOTE The effect of rules WR2, WR3 and WR4 is to prevent instances of this type from representing
the empty set or the set whose only member is the empty function.

4.5.34 maths function

This abstract supertype is the all-inclusive type for representations of mathematical functions.

The derived domain attribute describes the number and kinds of inputs to which the function
may be applied. The derived range attribute describes the number and kinds of outputs which
the function may produce.

EXPRESS specification:

*)
ENTITY maths_function
ABSTRACT SUPERTYPE OF (ONEOF (finite_function,

constant_function,
selector_function,
elementary_function,
restriction_function,
repackaging_function,
reindexed_array_function,
series_composed_function,
parallel_composed_function,
explicit_table_function,
homogeneous_linear_function,
general_linear_function,
b_spline_basis,
b_spline_function,
rationalize_function,
partial_derivative_function,
definite_integral_function,
abstracted_expression_function,
expression_denoted_function,
imported_point_function,
imported_curve_function,
imported_surface_function,
imported_volume_function,

56

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

application_defined_function))
SUBTYPE OF (generic_expression);

DERIVE
domain : tuple_space := derive_function_domain(SELF);
range : tuple_space := derive_function_range(SELF);

END_ENTITY;
(*

Attribute definitions:

domain: The derived tuple space whose members are all the ordered tuples of inputs to which
this function may properly be applied.

range: The derived tuple space whose members are to be considered possible ordered tuples of
outputs of this function. No tuple of outputs of this function other than “?” may fail to be a
member of this space.

NOTE 1 The values of the domain and range attributes constrain the roles that an instance of
maths function may fill in other data structures.

NOTE 2 These derived attributes are the nearest EXPRESS equivalent of the pure virtual member
functions of an object-oriented programming language such as C++.

NOTE 3 Most functions have a single output. However, for reasons of symmetry, and also to permit
the modeling of ”procedures” which return multiple outputs through the use of ”VAR” arguments, the
possibility of multiple outputs is permitted. In fact, the possibility of functions producing an indefinite
number of outputs is permitted. (Consider the scanf() function in the C programming language.)

NOTE 4 See also the note about dual inheritance in 4.5.19.

4.5.35 finite function

This type of maths function and generic literal provides representations for functions spec-
ified by simply collecting all pairs of input and corresponding output values.

The domain and range are derived from the value of pairs by constructing the finite space of
all first members and all second members, respectively.

EXPRESS specification:

*)
ENTITY finite_function
SUBTYPE OF (maths_function, generic_literal);
pairs : SET [1:?] OF LIST [2:2] OF maths_value;

WHERE
WR1: VALUE_UNIQUE(list_selected_components(pairs, 1));

END_ENTITY;
(*

Attribute definitions:

pairs: The complete set of pairs of input and output values.

57

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

Formal propositions:

WR1: No two elements of pairs may have the same first member.

EXAMPLE Suppose one wishes to represent a function mapping the three strings “sin”, “cos”, and
“tan” to the corresponding trigonometric functions. This can be accomplished using an instance of
finite function as follows:

LOCAL
sine_f : elementary_function := make_elementary_function(ef_sin_r);
cosine_f : elementary_function := make_elementary_function(ef_cos_r);
tangent_f : elementary_function := make_elementary_function(ef_tan_r);
translator_f : finite_function := make_finite_function([[’sin’,sine_f],

[’cos’,cosine_f],[’tan’,tangent_f]]);
END_LOCAL;

4.5.36 constant function

This type of maths function and generic literal provides representations for functions pro-
ducing the same output for any input.

The range of a constant function is derived to be the space of one-tuples of the space whose
only element is the object represented by the value of sole output.

The domain of a constant function is derived from the value src of source of domain as
follows:

— If src is a tuple space, src is the function domain.

— Else if src is a maths space, the space of one-tuples from src is the function domain.

— Else src is a maths function and the domain of src is the constant function domain.

NOTE The choice of references from which the domain of a constant function can be derived reflects
the fact that constant functions are usually created to serve some minor role in a larger construct, and
that larger construct usually determines the desired domain for the constant function. In particular,
function domains are often derived rather than explicitly represented, and this mechanism allows a
constant function to “borrow” that derivation from another function.

EXPRESS specification:

*)
ENTITY constant_function
SUBTYPE OF (maths_function, generic_literal);
sole_output : maths_value;
source_of_domain : maths_space_or_function;

WHERE
WR1: no_cyclic_domain_reference(source_of_domain, [SELF]);
WR2: expression_is_constant(domain_from(source_of_domain));

END_ENTITY;
(*

58

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

Attribute definitions:

sole output: The value representing the only valid output produced by this function.

source of domain: The object from which the function domain shall be derived.

Formal propositions:

WR1: The chain of references leading to the function domain shall not contain any cycles.

WR2: The expression obtained for the domain shall not contain free variables, that is, it shall
denote a single, well-defined, mathematical space.

4.5.37 selector function

This type of maths function and generic literal provides representations for functions pro-
ducing an output by selecting one of the inputs or, when there is only one input and it is a
tuple, by selecting one component of that sole input.

The function domain of a selector function is derived from the value src of source of domain
as follows:

— If src is a tuple space, src is the function domain.

— Else if src is a maths space, the space of one-tuples from src is the function domain.

— Else src is a maths function and the domain of src is the selector function domain.

The range of a selector function is derived to be the space of one-tuples of the appropriate
component of the domain.

NOTE The choice of references from which the domain of a selector function can be derived reflects
the fact that selector functions are usually created to serve some minor role in a larger construct, and that
larger construct usually determines the desired domain for the selector function. In particular, function
domains are often derived rather than explicitly represented, and this mechanism allows a selector function
to “borrow” that derivation from another function.

EXPRESS specification:

*)
ENTITY selector_function
SUBTYPE OF (maths_function, generic_literal);
selector : input_selector;
source_of_domain : maths_space_or_function;

WHERE
WR1: no_cyclic_domain_reference(source_of_domain, [SELF]);
WR2: expression_is_constant(domain_from(source_of_domain));

END_ENTITY;
(*

59

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

Attribute definitions:

selector: The value indicating which input or which component of the first input shall be
produced as the output. See 4.4.14.

source of domain: The object from which the function domain shall be derived.

Formal propositions:

WR1: The chain of references leading to the function domain shall not contain any cycles.

WR2: The expression obtained for the domain shall not contain free variables, that is, it shall
denote a single, well-defined, mathematical space.

4.5.38 elementary function

This type of maths function and generic literal provides representations for the elementary
operators, functions and procedures identified by elementary function enumerators items.

The domain and range are derived from the value of func id.

EXPRESS specification:

*)
ENTITY elementary_function
SUBTYPE OF (maths_function, generic_literal);
func_id : elementary_function_enumerators;

END_ENTITY;
(*

Attribute definitions:

func id: The enumeration value identifying the elementary function, procedure or operation
being represented.

4.5.39 restriction function

This type of maths function and unary generic expression represents identity functions
on given mathematical spaces. They may be used to restrict the effective domain or range of
another function by composing them with the other function in an appropriate order.

Restriction functions take a single value from the space indicated by operand as input and
produce the same single value as output. The domain and range are derived accordingly to be
the spaces of all one-tuples from the space identified by the operand value.

EXPRESS specification:

*)
ENTITY restriction_function

60

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

SUBTYPE OF (maths_function, unary_generic_expression);
SELF\unary_generic_expression.operand : maths_space;

END_ENTITY;
(*

Attribute definitions:

SELF\unary generic expression.operand: The inherited operand attribute is constrained
to be an instance of maths space and identifies the mathematical space which will serve as the
domain and the range of the restriction function.

4.5.40 repackaging function

This type of maths function and unary generic expression represents simple variations
of another function differing only in the “packaging” of its inputs or outputs. Specifically, a
function taking multiple inputs can be repackaged to take a single input which is the tuple
of the original inputs, and vice versa. Similarly a function producing multiple outputs can be
repackaged to produce a single output which is the tuple of the original outputs, or vice versa.
Finally, a function producing multiple outputs can be repackaged to be the function producing
just one of those outputs, the others being discarded.

The domain and range are derived from those of the function indicated by operand, with the
indicated changes in packaging.

NOTE Formally, all these manipulations can also be represented as compositions of the original function
with appropriate entuple, detuple, and tuple component selection functions. The repackaging function
makes representation of these common manipulations much easier and more efficient.

The need to perform such manipulations arises from the schema’s need to maintain distinctions which
are not maintained in informal mathematics. Informal mathematics often does not distinguish between
a space X and the space of all one tuples of elements of X, which is X1. Nor does it usually distinguish
carefully between a function taking three real inputs and a function taking one input which is a triple of
reals. See 4.2.6 and 4.2.7.

EXPRESS specification:

*)
ENTITY repackaging_function
SUBTYPE OF (maths_function, unary_generic_expression);
SELF\unary_generic_expression.operand : maths_function;
input_repack : repackage_options;
output_repack : repackage_options;
selected_output : nonnegative_integer;

WHERE
WR1: (input_repack <> ro_wrap_as_tuple) OR

((space_dimension(operand.domain) = 1) AND
((schema_prefix + ’TUPLE_SPACE’) IN TYPEOF (factor1(operand.domain))));

WR2: (output_repack <> ro_unwrap_tuple) OR
((space_dimension(operand.range) = 1) AND

((schema_prefix + ’TUPLE_SPACE’) IN TYPEOF (factor1(operand.range))));
WR3: selected_output <= space_dimension(repackage(

operand.range, output_repack));
END_ENTITY;

61

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

(*

Attribute definitions:

SELF\unary generic expression.operand: The inherited operand attribute is constrained
to be an instance of maths function and identifies the function to be repackaged, herinafter
referred to as the original function.

input repack: The enumeration item indicating the repackaging operation to perform on the
inputs before applying the original function.

output repack: The enumeration item indicating the repackaging operation to perform on the
outputs after applying the original function.

selected output: If positive, the output which is selected from the output of the output -
repack operation to be the sole output of the repackaged function. If zero, the output is that
resulting from output repack.

Formal propositions:

WR1: If the input repackaging option is ro wrap as tuple, then the function to be repackaged
shall take a single input which is a tuple object.

WR2: If the output repackaging option is ro unwrap tuple, then the function to be repack-
aged shall produce a single output which is a tuple object.

WR3: The value of selected output shall be less than or equal to the number of outputs after
the effect of output repack is taken into account.

EXAMPLE 1 In the example of a rationalize function, the function rf takes a one-tuple of real
numbers as its input. If it were desired to represent the corresponding function which takes a single real
number as its input, this could be accomplished using an instance of repackaging function as follows:

LOCAL
rf_variant : repackaging_function := make_repackaging_function(rf, ro_wrap_as_tuple,

ro_nochange, 0);
END_LOCAL;

EXAMPLE 2 Suppose that in the previous example the function rf variant produces a single output
value which is a triple of real numbers. If one wished to represent the function which produced three
outputs, each a real number, one could proceed as follows:

LOCAL
rf_variant2 : repackaging_function := make_repackaging_function(rf, ro_wrap_as_tuple,

ro_unwrap_tuple, 0);
END_LOCAL;

Such a function would be called a procedure in most programming languages. In most programming
languages, it would not be possible to use a procedure in an expression. In this Part, it is permitted, but
the function shall be interpreted as denoting its first output only, the other outputs being irrelevant to
the interpretation of such an expression.

EXAMPLE 3 As a final example, suppose one wished to have the function of the previous example
denote its third output. There are several ways a ”procedure” can be converted into a proper function,
but the simplest is to make use of the selected output attribute of the repackaging function as
follows:

62

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

LOCAL
rf_variant3 : repackaging_function := make_repackaging_function(rf, ro_wrap_as_tuple,

ro_unwrap_tuple, 3);
END_LOCAL;

4.5.41 reindexed array function

This type of maths function and unary generic expression represents the array function
corresponding to to a given array function but having shifted indexing intervals. The indexing for
the array function being represented is specified by giving the starting indices for each subscript.

The domain of the reindexed array function is derived to match that of the value of the
inherited operand attribute except that each finite integer interval component is shifted to
have the indicated starting index.

The range of the reindexed array function is derived to be the same as that of the value of
the inherited operand attribute.

NOTE In most cases, the operand value will be a table function represented using one of the other
subtypes of maths function. The present type serves as a convenient mechanism for representing arrays
whose indices don’t all start at zero or at one.

EXPRESS specification:

*)
ENTITY reindexed_array_function
SUBTYPE OF (maths_function, unary_generic_expression);
SELF\unary_generic_expression.operand : maths_function;
starting_indices : LIST [1:?] OF INTEGER;

WHERE
WR1: function_is_array(SELF\unary_generic_expression.operand);
WR2: SIZEOF(starting_indices) = SIZEOF(shape_of_array(

SELF\unary_generic_expression.operand));
END_ENTITY;
(*

Attribute definitions:

SELF\unary generic expression.operand: The inherited operand value identifies the ar-
ray function to be reindexed.

starting indices: The starting indices in each dimension of the domain of the represented array
function.

Formal propositions:

WR1: The inherited operand value shall be an array function.

WR2: The size of the list of starting indices shall match the number of dimensions of the array
function being reindexed.

EXAMPLE See example 3 in 4.5.53.

63

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

4.5.42 series composed function

This type of maths function and multiple arity generic expression represents the math-
ematical function which is the serial composition of the functions in its inherited operands
attribute. The output of an instance of series composed function is obtained from its in-
put by applying operands[1] to its input, operands[2] to the output from operands[1],
and so on, until the output of the composed function is obtained as the output of the last
member of operands. In mathematical notation, the series composed function F is con-
structed from the list of functions f1, f2, f3, ..., fn indicated by its operands attribute value by
F (x) ≡ fn(...f3(f2(f1(x)))...), where x represents any list of actual inputs.

The domain of the series composed function is derived to be the domain of its first operand
and its range is derived as that of its last operand.

EXPRESS specification:

*)
ENTITY series_composed_function
SUBTYPE OF (maths_function, multiple_arity_generic_expression);
SELF\multiple_arity_generic_expression.operands : LIST [2:?] of maths_function;

WHERE
WR1: composable_sequence(SELF\multiple_arity_generic_expression.operands);

END_ENTITY;
(*

Attribute definitions:

SELF\multiple arity generic expression.operands: The inherited operands attribute is
constrained to be a list of maths function instances and identifies the functions to be composed
and the order of their application.

Formal propositions:

WR1: The outputs of a function in the sequence shall be suitable as inputs to the next function
in the sequence.

4.5.43 parallel composed function

This type of maths function and multiple arity generic expression represents the math-
ematical function which is the composition of a “final” function with a list of “preparatory”
functions supplying its arguments. The output of an instance of parallel composed function
is obtained from its input by applying each of its preparatory functions in parallel to its input,
and applying the final function to the collected outputs of the preparatory functions. In math-
ematical notation, the parallel composed function F is constructed from a final function g
and a list of preparatory functions f1, f2, f3, ..., fn by F (x) ≡ g(f1(x), f2(x), f3(x), ..., fn(x)),
where x represents any list of actual inputs.

The domain of a parallel composed function is derived from the value src of source of -
domain as follows:

64

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

— If src is a tuple space, src is the function domain.

— Else if src is a maths space, the space of one-tuples from src is the function domain.

— Else src is a maths function and the domain of src is the function domain.

The range of the parallel composed function is derived to be the range of the value of its
final function attribute.

EXPRESS specification:

*)
ENTITY parallel_composed_function
SUBTYPE OF (maths_function, multiple_arity_generic_expression);
source_of_domain : maths_space_or_function;
prep_functions : LIST [1:?] OF maths_function;
final_function : maths_function_select;

DERIVE
SELF\multiple_arity_generic_expression.operands : LIST [2:?] of generic_expression

:= convert_to_operands_prcmfn(source_of_domain, prep_functions, final_function);
WHERE

WR1: no_cyclic_domain_reference(source_of_domain, [SELF]);
WR2: expression_is_constant(domain_from(source_of_domain));
WR3: parallel_composed_function_domain_check(domain_from(source_of_domain),

prep_functions);
WR4: parallel_composed_function_composability_check(prep_functions, final_function);

END_ENTITY;
(*

Attribute definitions:

source of domain: The source of the domain of the parallel composed function.

prep functions: The list of preparatory functions.

final function: The final function.

SELF\multiple arity generic expression.operands: The inherited operands attribute is
derived to be a list obtained by concatenating the values of the three explicit attributes in the
given order, generating instances of generic literal as necessary.

Formal propositions:

WR1: The chain of references leading to the function domain shall not contain any cycles.

WR2: The expression obtained for the domain shall not contain free variables, that is, it shall
denote a single, well-defined, mathematical space.

WR3: The domains of all the preparatory functions shall be compatible with the domain of
the function.

WR4: The associative Cartesian product of the ranges of the preparatory functions shall be
compatible with the domain of the final function.

65

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

NOTE 1 Ideally, the domain of a parallel composed function would be derived as the intersection
of the domains of its preparatory functions. Since this is not readily computable from the information
at hand, an explicit domain attribute is provided and it is required that the domains of the preparatory
functions be compatible with it. Recall that in the context of this part of ISO 10303, two spaces are
compatible if they are not known to have empty intersection.

NOTE 2 The reason for using the associative Cartesian product in the WR4 rule is somewhat subtle.
Consider two preparatory functions, each of which produces a single output which is a triple of real
numbers. An appropriate final function must take two inputs, each of which is a triple of real numbers.
The two range spaces are, formally, (R3)1. The Cartesian product of these two spaces is ((R3)1)2, but
the associative Cartesian product is (R3)2, as desired.

EXAMPLE 1 Suppose one has a function srf(u, v) = (x, y, z), represented by an instance "srf" of
maths function and a displacement function disp(u, v) = (dx, dy, dz), defined on the same parametric
domain and represented by another instance "disp" of maths function and one wishes to represent the
sum of these functions, sum(u, v) = srf(u, v)+disp(u, v). An instance of parallel composed function
represents the sum as follows:

LOCAL
sum : parallel_composed_function := make_parallel_composed_function(

srf, [srf, disp], ef_add_rt);
END_LOCAL;

Observe that the nominal input and output variables used in the informal mathematical description played
no essential role and need not be represented. That is, knowing that srf and disp are functions with the
same domain and compatible ranges is sufficient to permit the representation of sum ≡ srf + disp.

EXAMPLE 2 A more challenging example is to represent movsrf(u, v, t) ≡ srf(u, v) + 2 · t · disp(u, v).
The problem is that the natural domains of the component functions differ. One solution is to replace
the natural components with equivalent functions which are defined on the required common domain.
Define input selection functions selu(u, v, t) ≡ (u), selv(u, v, t) ≡ (v), and selt(u, v, t) ≡ (t), and the
constant function con2(u, v, t) ≡ (2.0). Then movsrf ≡ srf(selu, selv)+ con2 · selt · disp(selu, selv), can
be represented using five instances of parallel composed function as follows.

LOCAL
comdom : tuple_space := assoc_product_space(srf\maths_function.domain, the_reals);
selu : selector_function := make_selector_function(1, comdom);
selv : selector_function := make_selector_function(2, comdom);
selt : selector_function := make_selector_function(3, comdom);
con2 : constant_function := make_constant_function(2.0, comdom);
altsrf : parallel_composed_function := make_parallel_composed_function(

comdom, [selu, selv], srf);
altdisp : parallel_composed_function := make_parallel_composed_function(

comdom, [selu, selv], disp);
two_t : parallel_composed_function := make_parallel_composed_function(

comdom, [con2, selt], ef_multiply_r);
prod : parallel_composed_function := make_parallel_composed_function(

comdom, [two_t, altdisp], ef_scalar_mult_rt);
movsrf : parallel_composed_function := make_parallel_composed_function(

comdom, [altsrf, prod], ef_add_rt);
END_LOCAL;

EXAMPLE 3 If the variables u, v and t in the preceding example actually have significance to the
application, then an alternate representation containing explicit instances representing these variables
might be preferred. Such a representation could be constructed as follows.

LOCAL
udom : maths_space := factor1(srf.domain);

66

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

vdom : maths_space := factor_space(srf.domain, 2);
sem : bound_variable_semantics := bound_variable_semantics() ||

variable_semantics();
u : maths_real_variable := make_maths_real_variable(udom, ’u’);
u_env : environment := make_environment(u, sem);
v : maths_real_variable := make_maths_real_variable(vdom, ’v’);
v_env : environment := make_environment(v, sem);
t : maths_real_variable := make_maths_real_variable(the_reals, ’t’);
t_env : environment := make_environment(t, sem);
two : real_literal := make_real_literal(2.0);
srfuv : function_application := make_function_application(srf, [u,v]);
dispuv : function_application := make_function_application(disp, [u,v]);
two_t : mult_expression := make_mult_expression([two,t]);
prod : function_application := make_function_application(ef_scalar_mult_rt,

[two_t, dispuv]);
expr : function_application := make_function_application(ef_add_rt, [srfuv, prod]);
movsrf : abstracted_expression_function := make_abstracted_expression_function(

[expr, u, v, t]);
END_LOCAL;

If the expression srf(u, v) + 2 · t · disp(u, v) is the object of communication and not the function
movsrf(u, v, t), then the construction of the instance representing the function can be omitted and
sem replaced by one to three instances of variable semantics, as appropriate, to describe the three
variables as free variables and add whatever semantics may be necessary.

EXAMPLE 4 Define a function F by cases as

F (x) ≡
{

G(x), for x εA;
H(x), otherwise.

}

Assume x ranges over some superspace D of A and that D, A, G, and H are represented by entity
instances named by the corresponding lowercase letters. Then F is represented by

LOCAL
selx : selector_function := make_selector_function(1, d);
cona : constant_function := make_constant_function(a, d);
xina : parallel_composed_function := make_parallel_composed_function(d,

[selx, cona], ef_member_of);
f : parallel_composed_function := make_parallel_composed_function(d,

[xina, g, h], ef_if);
END_LOCAL;

4.5.44 explicit table function

This type of maths function is a supertype carrying some common attributes of a family
of types explicitly representing table functions. See 4.2.9. A table function is functionally
equivalent to a multi-dimensional array, all of whose subscript ranges start with the same value,
which is either zero or one.

NOTE 1 Matrices, tensors, grids and meshes of all types are typically represented by, or composed
mainly of, instances of explicit table function.

NOTE 2 Whenever the individual subscript ranges of a multi-dimensional array are nominal, that is, the
relative positions of elements matter, but the integers used as subscripts are otherwise irrelevant, a table
function is an appropriate representation. If ordinal position numbering is customary in an application
area, all subscript ranges will start at one. If numbering relative to the first position is customary in an
application area, all subscript ranges will start at zero. Since both are widely used, both are supported.

NOTE 3 Representations for mathematical table functions may also occur as instances of series -

67

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

composed function, parallel composed function and many other types. Such instances are implicit
table functions and will be recognized by the function function is table.

EXPRESS specification:

*)
ENTITY explicit_table_function
ABSTRACT SUPERTYPE OF (ONEOF (listed_real_data,

listed_integer_data,
listed_logical_data,
listed_string_data,
listed_complex_number_data,
listed_data,
externally_listed_data,
linearized_table_function,
basic_sparse_matrix))

SUBTYPE OF (maths_function);
index_base : zero_or_one;
shape : LIST [1:?] OF positive_integer;

END_ENTITY;
(*

Attribute definitions:

index base: Indicator whether to start all subscript ranges from zero or from one.

shape: The sizes of the individual subscript ranges.

4.5.45 listed real data

This type of explicit table function and generic literal represents mathematical functions
which take a single integer as input and output the real number at a corresponding position in
a list. The corresponding position is defined to be the input value plus one minus the value of
self\explicit table function.index base.

These functions take a single integer from the interval from index base to index base +
SIZEOF(values) - 1 as input and produce a single real number as output.

NOTE This class of functions is functionally equivalent to one-dimensional tables of reals.

EXPRESS specification:

*)
ENTITY listed_real_data
SUBTYPE OF (explicit_table_function, generic_literal);
values : LIST [1:?] OF REAL;

DERIVE
self\explicit_table_function.shape : LIST [1:?] OF positive_integer :=

[SIZEOF (values)];
END_ENTITY;
(*

68

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

Attribute definitions:

values: The list containing the output values of the function in order.

self\explicit table function.shape: The inherited shape attribute is derived to be the one-
element list containing the number of values.

4.5.46 listed integer data

This type of explicit table function and generic literal represents mathematical functions
which take a single integer as input and output the integer at a corresponding position in a
list. The corresponding position is defined to be the input value plus one minus the value of
self\explicit table function.index base.

These functions take a single integer from the interval from index base to index base +
SIZEOF(values) - 1 as input and produce a single integer as output.

NOTE This class of functions is functionally equivalent to one-dimensional tables of integers.

EXPRESS specification:

*)
ENTITY listed_integer_data
SUBTYPE OF (explicit_table_function, generic_literal);
values : LIST [1:?] OF INTEGER;

DERIVE
self\explicit_table_function.shape : LIST [1:?] OF positive_integer :=

[SIZEOF (values)];
END_ENTITY;
(*

Attribute definitions:

values: The list containing the output values of the function in order.

self\explicit table function.shape: The inherited shape attribute is derived to be the one-
element list containing the number of values.

EXAMPLE The following 24 integer values will be used as the underlying data set for a number of
examples of table and array functions:

LOCAL
rawdata : listed_integer_data := make_listed_integer_data(1,

[111,211,311, 121,221,321, 131,231,331, 141,241,341,
112,212,312, 122,222,322, 132,232,332, 142,242,342]);

END_LOCAL;

4.5.47 listed logical data

This type of explicit table function and generic literal represents mathematical functions
which take a single integer as input and output the EXPRESS logical value at a corresponding
position in a list. The corresponding position is defined to be the input value plus one minus
the value of self\explicit table function.index base.

69

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

These functions take a single integer from the interval from index base to index base +
SIZEOF(values) - 1 as input and produce a single EXPRESS logical value as output.

NOTE This class of functions is functionally equivalent to one-dimensional tables of EXPRESS logical
values.

EXPRESS specification:

*)
ENTITY listed_logical_data
SUBTYPE OF(explicit_table_function, generic_literal);
values : LIST [1:?] OF LOGICAL;

DERIVE
self\explicit_table_function.shape : LIST [1:?] OF positive_integer :=

[SIZEOF (values)];
END_ENTITY;
(*

Attribute definitions:

values: The list containing the output values of the function in order.

self\explicit table function.shape: The inherited shape attribute is derived to be the one-
element list containing the number of values.

4.5.48 listed string data

This type of explicit table function and generic literal represents mathematical functions
which take a single integer as input and output the string at a corresponding position in a
list. The corresponding position is defined to be the input value plus one minus the value of
self\explicit table function.index base.

These functions take a single integer from the interval from index base to index base +
SIZEOF(values) - 1 as input and produce a single string value as output.

NOTE This class of functions is functionally equivalent to one-dimensional tables of strings.

EXPRESS specification:

*)
ENTITY listed_string_data
SUBTYPE OF (explicit_table_function, generic_literal);
values : LIST [1:?] OF STRING;

DERIVE
self\explicit_table_function.shape : LIST [1:?] OF positive_integer :=

[SIZEOF (values)];
END_ENTITY;
(*

70

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

Attribute definitions:

values: The list containing the output values of the function in order.

self\explicit table function.shape: The inherited shape attribute is derived to be the one-
element list containing the number of values.

4.5.49 listed complex number data

This type of explicit table function and generic literal represents mathematical functions
which take a single integer as input and output the complex number formed from two real
numbers at a corresponding pair of consecutive positions in a list. Let the input value be j and
the value of self\explicit table function.index base be b. Then the first of the corresponding
pair of consecutive positions in the list is 2(j − b) + 1.

These functions take a single integer from the interval from index base to index base +
SIZEOF(values)/2 - 1 as input and produce a single complex number as output.

NOTE This class of functions is functionally equivalent to one-dimensional tables of complex numbers.

EXPRESS specification:

*)
ENTITY listed_complex_number_data
SUBTYPE OF (explicit_table_function, generic_literal);
values : LIST [2:?] OF REAL;

DERIVE
self\explicit_table_function.shape : LIST [1:?] OF positive_integer :=

[SIZEOF (values)/2];
WHERE

WR1: NOT ODD (SIZEOF (values));
END_ENTITY;
(*

Attribute definitions:

values: The list containing the alternating real and imaginary parts of the output values of the
function in order.

self\explicit table function.shape: The inherited shape attribute is derived to be the one-
element list containing the number of values divided by two.

Formal propositions:

WR1: The size of the values list shall be even.

EXAMPLE Represent the one-dimensional table function of the four complex numbers: 2+3i,−4, i, e−
πi, indexed from zero.

LOCAL
cx4 : listed_complex_number_data := make_listed_complex_number_data(0,

[2.0, 3.0, -4.0, 0.0, 0.0, 1.0, CONST_E, PI]);

71

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

END_LOCAL;

4.5.50 listed data

This type of explicit table function and generic literal represents mathematical functions
which take a single integer as input and output the maths value at a corresponding position
in a list. The corresponding position is defined to be the input value plus one minus the value
of self\explicit table function.index base.

These functions take a single integer from the interval from index base to index base +
SIZEOF(values) - 1 as input and produce a single EXPRESS maths value as output. The
inherited range attribute is derived to be the space of one-tuples from value range.

NOTE This class of functions is functionally equivalent to one-dimensional tables of maths values.

EXPRESS specification:

*)
ENTITY listed_data
SUBTYPE OF (explicit_table_function, generic_literal);
values : LIST [1:?] OF maths_value;
value_range : maths_space;

DERIVE
SELF\explicit_table_function.shape : LIST [1:?] OF positive_integer :=
[SIZEOF (values)];

WHERE
WR1: expression_is_constant(value_range);
WR2: SIZEOF (QUERY (val <* values | NOT (member_of(val, value_range)))) = 0;

END_ENTITY;
(*

Attribute definitions:

values: The list containing the output values of the function in order.

value range: An instance of maths space containing all the values in values.

SELF\explicit table function.shape: The inherited shape attribute is derived to be the one-
element list containing the number of values.

Formal propositions:

WR1: The value of value range shall be a constant expression.

WR2: The members of values shall all belong to the space value range.

4.5.51 externally listed data

This type of explicit table function, generic literal and externally defined item repre-
sents mathematical functions which take a single integer as input and output the maths value
at a corresponding position in some external, list-like, data source. The attributes inherited
from externally defined item shall be used to identify the external data source. The nature

72

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

of the allowable external data sources, their identification, access, or exchange, and the precise
definition of the correspondence between the input integer and values from the data source are
not specified in this part of ISO 10303.

These functions take a single integer from the interval from index base to index base +
shape[1] - 1 as input and produce a single EXPRESS maths value belonging to value -
range as output.

NOTE This class of functions is functionally equivalent to one-dimensional tables of maths values.
One application of this type is for the case where the list of values is so large that embedding it in an
exchange file is impractical. In such cases, the data values may be exchanged in a separate file in an
especially efficient format, or maintained in a central respository which is only accessed as needed over
a network. It is expected that the correspondence to a list-like structure will usually be obvious and
implicit.

EXPRESS specification:

*)
ENTITY externally_listed_data
SUBTYPE OF (explicit_table_function, generic_literal, externally_defined_item);
value_range : maths_space;

WHERE
WR1: expression_is_constant(value_range);

END_ENTITY;
(*

Attribute definitions:

value range: An instance of maths space containing all the values from the external data
source which may appear as function outputs.

Formal propositions:

WR1: The value of value range shall be a constant expression, that is, it shall denote one
specific mathematical space.

4.5.52 linearized table function

This type of explicit table function and unary generic expression is a supertype carrying
the common attributes of a family of entity types which make use of a one-dimensional array
function to implement a many-dimensional table function. The common attributes supply the
one-dimensional array function and an integer in the domain of the array function which is
associated with a “first” or “base” position to be used by the table.

All the subtypes of this type represent classes of mathematical functions which take a single
integer tuple as input and produce a single output value belonging to the sole factor space of the
range of the one-dimensional array function. The output may actually be obtained by evaluating
the one-dimensional array function or by using a default value specified in some other attribute
of the subtype instance.

NOTE 1 This approach provides an efficient representation for cases where symmetry or sparsity exists

73

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

in the data or when many views (indexings) of all or parts of the same data set are required. In the
former class of cases, source typically contains many fewer data values than the number of subscript
tuples in the domain of the table. In the latter class of cases, source typically contains many more data
values than are required for any one table, but many tables use the same source instance.

NOTE 2 In the most common usage, the source attribute will be an instance of one of the listed . . . -
data types. In the second most common usage, the source attribute will be an instance of series or
parallel composed function.

EXPRESS specification:

*)
ENTITY linearized_table_function
SUPERTYPE OF (ONEOF (standard_table_function,

regular_table_function,
triangular_matrix,
symmetric_matrix,
banded_matrix))

SUBTYPE OF (explicit_table_function, unary_generic_expression);
SELF\unary_generic_expression.operand : maths_function;
first : integer;

DERIVE
source : maths_function := SELF\unary_generic_expression.operand;

WHERE
WR1: function_is_1d_array(source);
WR2: member_of(first, source.domain);

END_ENTITY;
(*

Attribute definitions:

SELF\unary generic expression.operand: The inherited operand attribute is constrained
to be a math function and provides the actual output value of the table function for non-
defaulted cases.

first: The integer to be used as input to the function source to obtain the output value cor-
responding to the ”first” subscript tuple, that is, the one created by using all zeros or all ones,
depending on the inherited index base attribute.

source: The short, convenient synonym for the inherited operand attribute. This is the source
for independent individual values from which the output is produced. The indexing function
used is determined by the subtype.

Formal propositions:

WR1: The value of source represents a one-dimensional array function.

WR2: The integer to be used to obtain the entry of the first position in the table shall be a
member of the domain of source.

74

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

4.5.53 standard table function

This type of linearized table function represents dense arrays of any dimension whose el-
ements have been linearly ordered in one of two standard ways. A dense array is one whose
structure supports an independent value for every subscript tuple in its domain. The two stan-
dard linear orderings for multi-dimensional arrays are described under the ordering type type
declaration.

The value associated with an input subscript tuple [j1, j2, . . . , jn] is computed as follows: Let
L be the function represented by the value of SELF\linearized table function.source, f be
the value of SELF\linearized table function.first, si be the members of SELF\explicit -
table function.shape, and b be the value of SELF\explicit table function.index base.
Compute pi as follows: If ordering is by rows, let pi ≡

∏

k>i sk; otherwise, let pi ≡
∏

k<i sk.
The table value for [j1, j2, . . . , jn] is L(f +

∑n
i=1(ji − b) · pi).

EXPRESS specification:

*)
ENTITY standard_table_function
SUBTYPE OF (linearized_table_function);
order : ordering_type;

WHERE
WR1: extremal_position_check(SELF);

END_ENTITY;
(*

Attribute definitions:

order: Indicator for whether the linear ordering of the multi-dimensional array is the natural
ordering (by rows) or the FORTRAN ordering (by columns).

Formal propositions:

WR1: The lowest and highest linear positions that can be computed by the indexing algorithm
for valid subscript tuples shall lie in the domain of SELF\linearized table function.source.

EXAMPLE 1 The 3× 4× 2 array whose first and second planes are:

111 121 131 141 | 112 122 132 142
211 221 231 241 | 212 222 232 242
311 321 331 341 | 312 322 332 342

and whose indices all start from one, can be represented by

LOCAL
tbl342 : standard_table_function := make_standard_table_function(1, [3,4,2],

rawdata, 1, by_columns);
END_LOCAL;

The instance rawdata is constructed in the example in 4.5.46. The first argument to make standard ta-
ble function supplies the index base attribute inherited from explicit table function. The second
argument supplies the shape attribute inherited from explicit table function. The third argument

75

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

supplies the operand attribute inherited from unary generic expression but which is also redefined
in linearized table function and, additionally, derived as the inherited source attribute. The fourth
argument supplies the first attribute inherited from linearized table function. Finally, the fifth argu-
ment supplies the order attribute of standard table function.

EXAMPLE 2 The 4× 3 matrix

112 212 312
122 222 322
132 232 332
142 242 342

which is the transpose of the second plane of the previous table may be represented by an instance of
standard table function as follows:

LOCAL
tbl43 : standard_table_function := make_standard_table_function(1, [4,3],
rawdata, 13, by_rows);

END_LOCAL;

EXAMPLE 3 The 3×4×2 array whose data is the same as that in Example 1, but whose index ranges
are [-1:1], [1:4], and [13:14] can be represented by reindexing the standard table function as follows:

LOCAL
ary342 : reindexed_array_function := make_reindexed_array_function(tbl342,

[-1,1,13]);
END_LOCAL;

4.5.54 regular table function

This type of linearized table function represents dense arrays of any dimension in which the
difference in the linear positions corresponding to two subscript tuples can be computed as the
inner product of the vector difference of the tuples with a constant tuple.

The value associated with an input subscript tuple [j1, j2, . . . , jn] is computed as follows: Let
L be the function represented by the value of SELF\linearized table function.source, f be
the value of SELF\linearized table function.first, pi be the members of increments, and b
be the value of SELF\explicit table function.index base. The table value for [j1, j2, . . . , jn]
is L(f +

∑n
i=1(ji − b) · pi).

NOTE 1 All slices and subarrays of a standard table function are representable as regular table functions
using the same data array (that is, the same source attribute value).

NOTE 2 Both standard orderings are special cases of regular order.

NOTE 3 A table obtained by permuting the subscripts of a table in regular order may be expressed as
a table in regular order using the same SELF\linearized table function.source attribute value (that
is, without repeating and reordering the list of entries).

NOTE 4 A table obtained by fixing some of the subscript coordinates and/or shrinking the subscript
intervals for some of the subscript coordinates of a table in regular order may be expressed as a table
in regular order using the same SELF\linearized table function.source attribute value (i.e without
selecting the designated entries and forming a new list or array).

NOTE 5 A table obtained by inverting the order of some of the subscript coordinates may be expressed
as a table in regular order using the same (inherited) source attribute value.

76

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

EXPRESS specification:

*)
ENTITY regular_table_function
SUBTYPE OF (linearized_table_function);
increments : LIST [1:?] OF INTEGER;

WHERE
WR1: SIZEOF (increments) = SIZEOF (self\explicit_table_function.shape);
WR2: extremal_position_check(self);

END_ENTITY;
(*

Attribute definitions:

increments: The constant tuple that expresses the delta in linear position for a unit increment
in the corresponding subscript coordinate. May include negative or zero values.

Formal propositions:

WR1: The size of the increments tuple shall be the same as the subscript space dimension.

WR2: The lowest and highest linear positions that can be computed by regular indexing for
valid subscript tuples shall lie in the domain of SELF\linearized table function.source.

EXAMPLE 1 The 3 × 2 × 2 array obtained by taking the middle columns of the first example under
standard table function:

121 131 | 122 132
221 231 | 222 232
321 331 | 322 332

and whose indices all start from one, can be represented by

LOCAL
tbl322 : regular_table_function := make_regular_table_function(1, [3,2,2],

rawdata, 4, [1,3,12]);
END_LOCAL;

The instance rawdata is constructed in the example in 4.5.46. The critical regularity in the locations of
the table entries in instance ”rawdata” is that in changing the first index by one, the location changes
by one, in changing the second index by one, the location changes by three, and, in changing the third
index by one, the location changes by twelve. This regularity is captured by the value supplied for the
increments attribute.

EXAMPLE 2 The 2× 2 submatrix of the preceding table obtained by fixing the first index at the value
three is:

[

321 331
322 332

]

and it can be represented by

LOCAL
tbl22 : regular_table_function := make_regular_table_function(1, [2,2],
rawdata, 6, [3,12]);

END_LOCAL;

EXAMPLE 3 The 2× 3× 2 table obtained by permuting the first two indices of the table in Example

77

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

1 is:
[

121 221 321 | 122 222 322
131 231 331 | 132 232 332

]

and it can be represented by

LOCAL
tbl232 : regular_table_function := make_regular_table_function(1, [2,3,2],

rawdata, 4, [3,1,12]);
END_LOCAL;

4.5.55 triangular matrix

This type of linearized table function represents triangular matrices in a compact manner.

EXPRESS specification:

*)
ENTITY triangular_matrix
SUBTYPE OF (linearized_table_function);
default_entry : maths_value;
lo_up : lower_upper;
order : ordering_type;

WHERE
WR1: SIZEOF (SELF\explicit_table_function.shape) = 2;
WR2: member_of(default_entry, SELF\maths_function.range);

END_ENTITY;
(*

Attribute definitions:

default entry: The special output value used for positions not in the selected lower or upper
triangle.

lo up: Indicator for whether the lower or the upper triangle contains the non-default values.

order: Indicator for whether the linear order of the positions in the selected triangle is by rows
or by columns.

Formal propositions:

WR1: The table is two-dimensional.

WR2: The default entry is a member of the function range.

4.5.56 strict triangular matrix

This type of triangular matrix represents triangular matrices with a constant main diag-
onal, which may be the same or different from the constant value SELF\triangular ma-
trix.default entry used in the opposite triangle.

78

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

EXPRESS specification:

*)
ENTITY strict_triangular_matrix
SUBTYPE OF (triangular_matrix);
main_diagonal_value : maths_value;

END_ENTITY;
(*

Attribute definitions:

main diagonal value: The constant value for all entries on the main diagonal.

EXAMPLE The matrix

1.0 0.0 0.0
0.7 1.0 0.0
0.3 0.5 1.0

could be constructed in EXPRESS as:

LOCAL
rdata : listed_real_data := make_listed_real_data(0, [0.7,0.3,0.5]);
matrix : strict_triangular_matrix := make_strict_triangular_matrix

(1, [3,3], rdata, 0, 0.0, lower, by_rows, 1.0);
END_LOCAL;

The arguments to make strict triangular matrix correspond to the explicit attributes as follows:
index base and shape in explicit table function, operand in unary generic expression, first in
linearized table function, default entry, lo up, and ordering in triangular matrix, and main -
diagonal value in strict triangular matrix.

4.5.57 symmetric matrix

This type of linearized table function represents several kinds of matrices possessing symme-
try about the main diagonal based on an involution of the underlying element space. A matrix
is symmetric if the entry for position [j, k] is always the involute of the entry for position [k, j]
and vice versa. In the simplest case, the involution is the identity mapping and the entries in
corresponding positions are the same. The other cases represented are skew-symmetry based
on negation of numbers as the involution, Hermitian symmetry based on conjugation of com-
plex numbers as the involution, and skew-Hermitian symmetry based on the negative conjugate
involution of the complex numbers.

The value of triangle indicates which “half” of the matrix is represented directly by the values
from SELF\linearized table function.source. The other “half” of the matrix is computed
from the indicated half by using the involution. In the case of a skew-symmetric matrix, the
main diagonal is necessarily zero, so the indicated triangle is the strict one not including that
diagonal.

The value of order indicates the order in which values are indexed in SELF\linearized -
table function.source

79

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

EXPRESS specification:

*)
ENTITY symmetric_matrix
SUBTYPE OF (linearized_table_function);
symmetry : symmetry_type;
triangle : lower_upper;
order : ordering_type;

WHERE
WR1: SIZEOF (SELF\explicit_table_function.shape) = 2;
WR2: SELF\explicit_table_function.shape[1] =

SELF\explicit_table_function.shape[2];
WR3: NOT (symmetry = skew) OR (

(space_dimension(SELF\linearized_table_function.source.range) = 1) AND
subspace_of_es(factor1(SELF\linearized_table_function.source.range),
es_numbers));

WR4: NOT ((symmetry = hermitian) OR (symmetry = skew_hermitian)) OR (
(space_dimension(SELF\linearized_table_function.source.range) = 1) AND
subspace_of_es(factor1(SELF\linearized_table_function.source.range),
es_complex_numbers));

END_ENTITY;
(*

Attribute definitions:

symmetry: Indicates the kind of symmetry present in the matrix.

triangle: Indicates whether the values for the upper triangle or the lower triangle of the matrix
are provided by the inherited SELF\linearized table function.source attribute.

order: Indicator for whether the values from SELF\linearized table function.source are
ordered by rows or by columns.

Formal propositions:

WR1: The table is two-dimensional.

WR2: The number of rows shall be equal to the number of columns.

WR3: If the matrix is skew-symmetric, the output shall be single numbers.

WR4: If the matrix is Hermitian or skew-Hermitian, the output shall be single complex num-
bers.

4.5.58 symmetric banded matrix

This type of symmetric matrix represents symmetric banded matrices. A symmetric banded
matrix is one which is both symmetric and banded.

NOTE Subtyping only from symmetric matrix and not banded matrix avoids extraneous attributes
(below) and duplication of attributes (order).

80

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

EXPRESS specification:

*)
ENTITY symmetric_banded_matrix
SUBTYPE OF (symmetric_matrix);
default_entry : maths_value;
above : nonnegative_integer;

WHERE
WR1: member_of(default_entry,

factor1(SELF\linearized_table_function.source.range));
END_ENTITY;
(*

Attribute definitions:

default entry: The constant output value for all positions [j, k] for which |k − j| > above in
the indicated upper or lower triangle of the symmetric matrix, that is, positions outside the
band in the indicated triangle. The output value for the positions positions outside the band in
the other triangle is determined by the kind of symmetry indicated by symmetry.

above: The number of diagonals above or below the main diagonal which may contain non-
default entries supplied by SELF\linearized table function.source.

Formal propositions:

WR1: The default value is a member of the range of the inherited source function.

4.5.59 banded matrix

This type of linearized table function represents banded matrices. A banded matrix is one
in which the non-default values all lie in a relatively small number of consecutive diagonals.

EXPRESS specification:

*)
ENTITY banded_matrix
SUBTYPE OF (linearized_table_function);
default_entry : maths_value;
below : integer;
above : integer;
order : ordering_type;

WHERE
WR1: SIZEOF (self\explicit_table_function.shape) = 2;
WR2: -below <= above;
WR3: member_of(default_entry,

factor1(SELF\linearized_table_function.source.range));
END_ENTITY;
(*

81

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

Attribute definitions:

default entry: The constant output value for all positions [j, k] for which j − k > below or
k − j > above, that is, all positions outside the band.

below: The number of diagonals below the main diagonal which may contain non-default en-
tries.

above: The number of diagonals above the main diagonal which may contain non-default en-
tries.

order: Indicator for whether the values from SELF\linearized table function.source are
ordered by rows or by columns.

Formal propositions:

WR1: The table is two-dimensional.

WR2: At least one diagonal shall have non-default entries.

WR3: The default value is a member of the range of the inherited source function.

NOTE Negative values are allowed for the attributes below and above. A banded matrix in which all
the non-default entries are in the first diagonal above the main diagonal can be represented efficiently
using the value -1 for below and +1 for above.

EXAMPLE Consider the 1000×1000 real matrix indexed from zero with 2−n on its main diagonal, the
constant minus one on the diagonal above the main diagonal, and zeroes elsewhere. To represent this
matrix using an instance of banded matrix, one must first represent the non-default values in by row
or by column order. The values in by rows order are

20,−1, 2−1,−1, 2−2,−1, 2−3,−1, ...

Assuming the sequence is indexed by n starting from zero, the function expressing this sequence is

f(n) ≡
{

2−n/2, if n mod 2 = 0
−1, otherwise

}

.

Such a function may be represented by a tree of instances of parallel composed function as follows:

LOCAL
intsge0 : integer_interval_from_min := make_integer_interval_from_min(0);
sel1 : selector_function := make_selector_function(1, intsge0);
coni2 : constant_function := make_constant_function(2, intsge0);
nmod2 : parallel_composed_function := make_parallel_composed_function(

intsge0, [sel1, coni2], ef_mod_i);
coni0 : constant_function := make_constant_function(0, intsge0);
nmod2eq0 : parallel_composed_function := make_parallel_composed_function(

intsge0, [nmod2, coni0], ef_eq_i);
nover2 : parallel_composed_function := make_parallel_composed_function(
intsge0, [sel1, coni2], ef_divide_i);

negnover2 : parallel_composed_function := make_parallel_composed_function(
intsge0, [nover2], ef_negate_i);

conr2 : constant_function := make_constant_function(2.0, intsge0);
powerof2 : parallel_composed_function := make_parallel_composed_function(

intsge0, [conr2, negnover2], ef_exponentiate_ri);
conrneg1 : constant_function := make_constant_function(-1.0, intsge0);
fn : parallel_composed_function := make_parallel_composed_function(

intsge0, [nmod2eq0, powerof2, conrneg1], ef_if_r);

82

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

bandmat : banded_matrix := make_banded_matrix(0, [1000,1000], fn, 0, 0.0,
0, 1, by_rows);

END_LOCAL;

Observe that this matrix has one million entries, 1999 of them non-zero, but its structure is sufficiently
simple that it can be represented by just thirteen instances in twenty lines.

4.5.60 basic sparse matrix

This type of explicit table function and multiple arity generic expression represents
sparse matrices. A sparse matrix is one in which most entries are a single constant value.
The representation lists the non-defaulted positions and their corresponding entries, ordered
and indexed in a manner which supports efficient searching.

To evaluate the sparse matrix for the position [j, k] when order is by rows, 1) evaluate index
at position j to obtain mlo, 2) evaluate index at position (j +1) to obtain mhi, 3) search loc at
positions mlo <= m < mhi looking for the entry k, 4) if evaluation of loc at position m returns
k, then evaluate val at position m to obtain the sparse matrix entry for position [j, k], otherwise,
5) (k not an entry in loc in the computed interval), the sparse matrix entry for position [j, k] is
default entry. If the order is by columns, the roles of j and k are reversed.

The input to the function represented by a basic sparse matrix is a single ordered pair of
integers and the output is a single value from the range of val.

NOTE Other, more specialized representations for sparse matrices may be required for certain appli-
cations in the future. They may take advantage of additional structure that may exist in the matrices
used by these applications.

EXPRESS specification:

*)
ENTITY basic_sparse_matrix
SUBTYPE OF (explicit_table_function, multiple_arity_generic_expression);
SELF\multiple_arity_generic_expression.operands : LIST [3:3] OF maths_function;
default_entry : maths_value;
order : ordering_type;

DERIVE
index : maths_function := SELF\multiple_arity_generic_expression.operands[1];
loc : maths_function := SELF\multiple_arity_generic_expression.operands[2];
val : maths_function := SELF\multiple_arity_generic_expression.operands[3];

WHERE
WR1: function_is_1d_table(index);
WR2: function_is_1d_table(loc);
WR3: function_is_1d_table(val);
WR4: check_sparse_index_domain(index.domain, index_base, shape, order);
WR5: check_sparse_index_to_loc(index.range, loc.domain);
WR6: loc.domain = val.domain;
WR7: check_sparse_loc_range(loc.range, index_base, shape, order);
WR8: member_of(default_entry, val.range);

END_ENTITY;
(*

83

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

Attribute definitions:

SELF\multiple arity generic expression.operands: The inherited operands attribute is
constrained to be a list of three instances of maths function.

default entry: The constant output value for all positions not specifically identified as having
a non-default value.

order: Indicator for whether the non-default output values are ordered by rows or by columns.

index: Function providing starting locations in loc and val for the non-default pairs in each
row (if order = by rows) or column (if order = by columns). Derived to be the same as
the first operand.

loc: Function providing the column indices of the non-default positions (if order = by rows)
or the row indices of the non-default positions (if order = by columns) in the order determined
for the non-default positions by order. Derived to be the same as the second operand.

val: Function providing the output values for the non-default positions in one-to-one correspon-
dence with loc. Derived to be the same as the third operand.

Formal propositions:

WR1: The value of index is a one-dimensional table function.

WR2: The value of loc is a one-dimensional table function.

WR3: The value of val is a one-dimensional table function.

WR4: If order is by rows, then the domain of index is the space of row positions of the
matrix plus an extra row, and if order is by columns, then the domain of index is the space
of column positions of the matrix plus an extra column.

WR5: The outputs from index shall be members of the domain of the loc function extended
by one integer.

WR6: The domain of the loc function shall be the same as the domain of the val function.

WR7: If order is by rows then the outputs from loc shall be column positions of the matrix,
and if order is by columns then the outputs from loc shall be row positions.

WR8: The default value shall be a member of the range of val.

EXAMPLE The matrix

0.0 2.1 3.6 0.0 0.0 0.0
5.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 −7.1 0.0 0.0 0.0
0.0 0.0 0.0 −8.5 2.3 1.0
0.0 2.0 0.0 0.0 0.0 0.0

could be represented as an instance of basic sparse matrix via

LOCAL
index : listed_integer_data := make_listed_integer_data(1, [1,3,4,5,8,9]);
loc : listed_integer_data := make_listed_integer_data(1, [2,3,1,3,4,5,6,2]);
val : listed_real_data := make_listed_real_data(1,

[2.1,3.6,5.0,-7.1,-8.5,2.3,1.0,2.0]);
sparse : basic_sparse_matrix := make_basic_sparse_matrix(1, [5,6],

[index, loc, val], 0.0, by_rows);
END_LOCAL;

84

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

The ”val” instance lists the non-defaulted entries in the order encountered when traversing the matrix by
rows. The ”loc” instance lists the column locations of the non-defaulted entries. The ”index” instance
lists the locations in the ”val” and ”loc” lists of the first non-defaulted entry in each row. The arguments
to make basic sparse matrix correspond to the explicit attributes as follows: index base and shape
in explicit table function, operands in multiple arity generic expression which is redefined in
basic sparse matrix, and default entry and order in basic sparse matrix.

4.5.61 homogeneous linear function

This type of maths function and unary generic expression provides compact representa-
tions for multidimensional homogeneous linear functions. Such mathematical functions preserve
the vector space operations of vector addition and scalar multiplication, here applied to number
tuples without prejudice as to what they might or might not represent. Such functions are
completely defined by a matrix and a rule for how the matrix and the input tuple are to be
“matrix-multiplied”. The matrix multiplication to be used is indicated by identifying which of
the two matrix indices is to be summed over. When the first index is the summation index, the
effect is that of multiplying the input tuple considered as a row vector by the matrix on the
right. When the second index is the summation index, the effect is that of multiplying the input
tuple considered as a column vector by the matrix on the left.

The functions represented by this type are conceived as taking a single tuple as input and
producing a single tuple as output.

NOTE 1 The indication of summation indices generalizes more easily to other contexts.

NOTE 2 The matrix of coefficients may be given by any two-dimensional table function. In particular,
it might be an instance of standard table function, regular table function, triangular matrix,
sparse matrix, parallel composed function, or many other types. The critical characteristics iden-
tifying a two-dimensional table function have to do with its domain and range and not with how its
algorithm is specified.

EXPRESS specification:

*)
ENTITY homogeneous_linear_function
SUBTYPE OF (maths_function, unary_generic_expression);
SELF\unary_generic_expression.operand : maths_function;
sum_index : one_or_two;

DERIVE
mat : maths_function := SELF\unary_generic_expression.operand;

WHERE
WR1: function_is_2d_table(mat);
WR2: (space_dimension(mat.range) = 1) AND

subspace_of_es(factor1(mat.range),es_numbers);
END_ENTITY;
(*

Attribute definitions:

SELF\unary generic expression.operand: The inherited operand attribute is constrained
to be a maths function.

sum index: The ordinal indicating which subscript index of the matrix appears as the sum-

85

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

mation index.

mat: The function giving the matrix of coefficients of the homogeneous linear function. Derived
to be the same as the inherited operand value.

Formal propositions:

WR1: : The function providing the matrix of coefficients is a two-dimensional table function.

WR2: The range space of mat shall be one-tuples of a subspace of the space of all numbers.
In other words, the matrix shall be numeric.

4.5.62 general linear function

This type of maths function and unary generic expression provides compact representa-
tions for multidimensional general linear functions. Like the homogeneous linear function, such
a function is completely determined by a matrix of coefficients, in this case including an extra
column or row (depending on the summation index) for the constant terms. Conceptually, the
representation is accomplished by composing the canonical mapping from ordinary coordinates
to homogeneous coordinates with a homogeneous linear mapping in the space of homogeneous
coordinates.

In other words, the “translation vector” is included in the matrix as an extra row if using sum -
index = 1 or an extra column if using sum index = 2, and the input tuple has a one appended
to it before the “matrix multiplication” is carried out.

The functions represented by this type are conceived as taking a single tuple as input and
producing a single tuple as output.

NOTE 1 General linear functions include all the “rigid motions” such as translation, rotation, and
reflection, as well as “nonrigid motions” such as rescaling, projecting and shearing.

NOTE 2 General linear functions are precisely those functions which preserve affine subspaces of a
real space, that is, they map lines to lines, planes to planes, and n-dimensional “flat” subspaces to
n-dimensional “flat’ subspaces for any positive integer n.

EXPRESS specification:

*)
ENTITY general_linear_function
SUBTYPE OF (maths_function, unary_generic_expression);
SELF\unary_generic_expression.operand : maths_function;
sum_index : one_or_two;

DERIVE
mat : maths_function := SELF\unary_generic_expression.operand;

WHERE
WR1: function_is_2d_table(mat);
WR2: (space_dimension(mat.range) = 1) AND

subspace_of_es(factor1(mat.range),es_numbers);
END_ENTITY;
(*

86

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

Attribute definitions:

SELF\unary generic expression.operand: The inherited operand attribute is constrained
to be a maths function.

sum index: The subscript index of the matrix which appears in the summation.

mat: The function giving the matrix of coefficients of the general linear function. Derived to
be the same as the inherited operand value.

Formal propositions:

WR1: : The function providing the matrix of coefficients is a two-dimensional table function.

WR2: The range space of mat shall be one-tuples of a subspace of the space of all numbers.
In other words, the matrix shall be numeric.

EXAMPLE The general linear function F(x) ≡ Ax + b, where

A =

0.0 2.1 3.6 0.0 0.0
5.0 0.0 0.0 0.0 0.0
0.0 0.0 −7.1 0.0 0.0
0.0 0.0 0.0 −8.5 2.3
0.0 2.0 0.0 0.0 0.0

and b =

0.0
0.0
0.0
1.0
0.0

could be represented as an instance of general linear function via

LOCAL
axplusb : general_linear_function := make_general_linear_function(sparse, 2);

END_LOCAL;

Observe that the matrix described in the example of basic sparse matrix is matrix A with b adjoined
as an additional column.

4.5.63 b spline basis

This type of maths function and generic literal defines a tuple of B-spline basis functions,
usually for use with one of the input variables of a B-spline function.

The function represented by an instance of this type takes a single real number as input and
produces a real tuple of length num basis as output.

EXPRESS specification:

*)
ENTITY b_spline_basis
SUBTYPE OF (maths_function, generic_literal);
degree : nonnegative_integer;
repeated_knots : LIST [2:?] OF REAL;

DERIVE
order : positive_integer := degree + 1;
num_basis : positive_integer := SIZEOF (repeated_knots) - order;

WHERE
WR1: num_basis >= order;
WR2: nondecreasing(repeated_knots);

87

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

WR3: repeated_knots[order] < repeated_knots[num_basis+1];
END_ENTITY;
(*

Attribute definitions:

degree: The degree of the basis functions as piecewise polynomials.

repeated knots: The knot sequence which determines the basis functions.

order: The order of the B-spline representation. Equivalently, the number of degrees of freedom
in the polynomials making up the basis functions. Equivalently, one more than the degree of
the polynomials making up the basis functions.

num basis: The number of basis functions.

Formal propositions:

WR1: The computed number of basis functions in a B-spline basis shall be greater than or
equal to the order.

WR2: The knots shall be arranged in non-decreasing order.

WR3: The parametric domain is an interval of positive length.

NOTE 1 order is more directly useful than degree in most computations. Similarly, the knot sequence
is what is directly used by the evaluation algorithms, rather than the breakpoints and multiplicities.

NOTE 2 Note that no bound is placed on the number of times a knot is repeated. This makes the
communication of general B-spline functions robust under truncation of precision. However, it requires
more care than is customary to properly handle such “B-splines with coalesced knots”.

4.5.64 b spline function

This type of maths function and unary generic expression represents tensor product B-
spline functions with arbitrary numbers of input and output variables. Depending on the di-
mension of the coefficient table, the outputs are real numbers, real tuples, or multi-dimensional
real table functions.

EXPRESS specification:

*)
ENTITY b_spline_function
SUBTYPE OF (maths_function, unary_generic_expression);
SELF\unary_generic_expression.operand : maths_function;
basis : LIST [1:?] OF b_spline_basis;

DERIVE
coef : maths_function := SELF\unary_generic_expression.operand;

WHERE
WR1: function_is_table(coef);
WR2: (space_dimension(coef.range) = 1) AND

(number_superspace_of(factor1(coef.range)) = the_reals);
WR3: SIZEOF (basis) <=

SIZEOF (shape_of_array(coef));

88

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

WR4: compare_basis_and_coef(basis, coef);
END_ENTITY;
(*

Attribute definitions:

SELF\unary generic expression.operand: The inherited operand attribute is constrained
to be a maths function.

basis: The list of entities defining the B-spline basis functions for each input variable.

coef: The multi-dimensional table function providing the coefficients for each combination of a
tensor product of basis functions and an elementary output variable. Derived to be the same as
the inherited operand attribute.

Formal propositions:

WR1: The function providing the coefficients is a table function.

WR2: The coefficient array function is real-valued.

WR3: The size of the basis list is less than or equal to the dimension of the coefficient table.

WR4: The numbers of basis functions in the list of B-spline bases match one-for-one with the
initial values of the coefficient table shape tuple.

EXAMPLE The following constructs an instance of b spline function which describes a piecewise
quadratic curve in a four dimensional mathematical space.

LOCAL
basis : b_spline_basis := make_b_spline_basis(2, [0.00,0.00,0.00,0.25,0.25,

0.50,0.50,0.75,0.75,1.00,1.00,1.00]);
rt2 : REAL := SQRT(2.0);
rrt2 : REAL := 1.0 / SQRT(2.0);
rawcoef : listed_real_data := make_listed_real_data(0,
[1.0, rrt2, 0.0,-rrt2, -1.0,-rrt2, 0.0, rrt2, 1.0,

0.0, rrt2, 1.0, rrt2, 0.0,-rrt2, -1.0,-rrt2, 0.0,
2.0, rt2, 2.0, rt2, 2.0, rt2, 2.0, rt2, 2.0,
1.0, rrt2, 1.0, rrt2, 1.0, rrt2, 1.0, rrt2, 1.0]);

coef : standard_table_function := make_standard_table_function(0, [9,4],
rawcoef, 0, by_columns);

crv4d : b_spline_function := make_b_spline_function(coef, [basis]);
END_LOCAL;

4.5.65 rationalize function

This type of maths function and unary generic expression represents mathematical func-
tions resulting from a composition of a number-tuple producing function with a canonical map-
ping from homogeneous coordinates to ordinary coordinates. The canonical mapping creates
output tuples by taking the ratios of all but the last component of the input tuple with the last
component. Where a last component has a zero value, the rationalize function is undefined.

The functions represented by this type take a single number tuple as input and produce a single
number tuple as output. The type of the numbers is derived to be the same as the type of the
numbers produced by fun.

89

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

NOTE The main inspiration for this type is to provide a compact representation for rational B-spline
functions. Most B-spline functions produced by applications are not rational, and the algorithms for
working with such non-rational B-spline functions are much simpler than for rational functions. On
the other hand, the operation which converts a non-rational function in homogeneous coordinates to a
rational function in ordinary coordinates is applicable to any kind of function. Thus, the separation of the
non-rational B-splines from the rational makes possible both a simplification and also a generalization.

Rational B-spline functions can be represented by instantiating a rationalize function with a fun
attribute value set to a b spline function which corresponds very simply with the desired rational
B-spline function. Numerator coefficients Xij , Yij , Zij and denominator (or weights) coefficients Wij ,
become spline coefficients XijWij , YijWij , ZijWij , and Wij in a non-rational spline.

EXPRESS specification:

*)
ENTITY rationalize_function
SUBTYPE OF (maths_function, unary_generic_expression);
SELF\unary_generic_expression.operand : maths_function;

DERIVE
fun : maths_function := SELF\unary_generic_expression.operand;

WHERE
WR1: (space_dimension(fun.domain) = 1) AND (space_dimension(fun.range) = 1);
WR2: number_tuple_subspace_check(factor1(fun.range));
WR3: space_dimension(factor1(fun.range)) > 1;

END_ENTITY;
(*

Attribute definitions:

SELF\unary generic expression.operand: The inherited operand attribute is constrained
to be a maths function.

fun: The function whose output tuples are treated as homogeneous coordinates and from which
the rationalized function is constructed. Derived to be the same as the inherited operand
attribute.

Formal propositions:

WR1: The value of attribute fun is a function taking one input and producing one output.

WR2: The outputs of fun shall be number tuples.

WR3: The size of the tuples output by fun shall be greater than one.

EXAMPLE The four-dimensional B-spline curve represented by the instance ”crv4d” of b spline -
function in the preceding example can be used to form a rational B-spline representation of the unit
circle in the plane z = 2 using an instance of rationalize function as follows:

LOCAL
circ : rationalize_function := make_rationalize_function(crv4d);

END_LOCAL;

This usage causes the last coordinate of ”crv4d” to be used as the weights or denominator of the rational
function.

90

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

4.5.66 partial derivative function

This type of maths function and unary generic expression represents a specified partial
derviative of another function. Which partial derivative is represented shall be specified by
indicating the sequence of partial derivative operators using values of type input selector
corresponding to the implicit input variables. If the domain is one-tuples of a tuple space,
the implicit input variables correspond to the components of that tuple space. Otherwise, the
implicit input variables correspond to the components of the domain. See /crefinp:sel.

The domain of the partial derivative function is derived to be the same as that of the function
being differentiated.

The range of the partial derviative function is derived from that of the function being differ-
entiated by removing any restrictions to subsets of the real or complex numbers, but retaining
the tuple structure and number types of the outputs, tuple components, tuple subcomponents,
and so forth.

The extension of the exact domain of a partial derivative function to include boundary and other
problematic inputs shall be specified by the value of the attribute extension.

NOTE 1 The strictest definition of derivative requires that the function being differentiated be defined
on an open set containing the point at which the derivative is being evaluated. This implies that the
derivative is never defined at boundaries of the domain. More commonly, the derivative is extended to
all points at which continuity of the derivative can be preserved. In the case of the real numbers, one
can also define left- and right-sided derivatives which may be defined at places the strict (two-sided)
derivative is not. The extension attribute requires specification of which of these common extensions to
the strictest notion of derivative is to be represented.

NOTE 2 Partial derivatives only exist mathematically for certain functions. At a minimum, the outputs
must be real or complex numbers or (possibly nested) tuples thereof and the inputs corresponding to
members of d variables must be real or complex numbers. The space is continuum and partial -
derivative check functions verify these minimal requirements.

EXPRESS specification:

*)
ENTITY partial_derivative_function
SUBTYPE OF (maths_function, unary_generic_expression);
SELF\unary_generic_expression.operand : maths_function;
d_variables : LIST [1:?] OF input_selector;
extension : extension_options;

DERIVE
derivand : maths_function := SELF\unary_generic_expression.operand;

WHERE
WR1: space_is_continuum (derivand.range);
WR2: partial_derivative_check (derivand.domain, d_variables);

END_ENTITY;
(*

Attribute definitions:

SELF\unary generic expression.operand: The inherited operand attribute is constrained
to be a maths function.

91

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

d variables: The list of partial derivative operations to be applied to derivand, indicated by
values of type input selector corresponding to implicit input variables. The order of the partial
differentiation operations is the order implied by the list.

extension: Enumeration value indicating the policy to be followed in evaluating this instance
at boundary and other problematic inputs.

derivand: The function whose partial derivative is to be represented. Derived to be the same
as the inherited operand attribute.

Formal propositions:

WR1: The ultimate components of the outputs of derivand shall be real or complex numbers
and any packaging into nested tuples shall have a fixed structure. Equivalently, the range of
derivand shall be a cartesian product of subspaces of the reals or the complex numbers or
cartesian products of such subspaces nested to arbitrary finite depths.

WR2: The members of d variables shall correspond to implicit input variables of derivand
and the inputs corresponding to them shall be real or complex numbers.

EXAMPLE Represent the second partial derivative of the function f(x, y) ≡ xy2, differentiated first
with respect to y and then x. That is, represent

∂2f
∂x∂y

.

LOCAL
r2 : uniform_product_space := make_uniform_product_space(the_reals,2);
sel1 : selector_function := make_selector_function(1,r2);
sel2 : selector_function := make_selector_function(2,r2);
f : parallel_composed_function := make_parallel_composed_function(r2,
[sel1,sel2,sel2], ef_multiply_r);

d2f_dxdy : partial_derivative_function := make_partial_derivative_function(
f, [2,1], eo_cont);

END_LOCAL;

Technically, the preceding example represented f(x, y) ≡ xyy. It would take two additional entity
instances to represent xy2 exactly as written. See also essentially the same example below, but represented
using a partial derivative expression instance.

4.5.67 partial derivative expression

This type of unary generic expression represents a specified partial derviative of another
expression. Which partial derivative is represented shall be specified by indicating the list of
variables for which the process of partial differentiation is to be carried out.

The extension of the exact domain of a partial differentiation process to accept boundary and
other problematic value assignments to relevant variables shall be specified by the value of the
attribute extension.

EXPRESS specification:

*)
ENTITY partial_derivative_expression

92

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

SUBTYPE OF (unary_generic_expression);
d_variables : LIST [1:?] OF maths_variable;
extension : extension_options;

DERIVE
derivand : generic_expression := SELF\unary_generic_expression.operand;

WHERE
WR1: has_values_space (derivand);
WR2: space_is_continuum (values_space_of (derivand));
WR3: SIZEOF (QUERY (vbl <* d_variables | (NOT subspace_of (values_space_of (vbl),

the_reals)) AND (NOT subspace_of (values_space_of (vbl), the_complex_numbers))
)) = 0;

END_ENTITY;
(*

Attribute definitions:

d variables: The list of partial differentiation variables. The order of the partial differentiation
processes is the order implied by the list.

extension: Enumeration value indicating the policy to be followed in evaluating this expression
when boundary or other problematic inputs are assigned to the variables.

derivand: The expression to be differentiated. Derived to be the inherited SELF\unary -
generic expression.operand.

Formal propositions:

WR1: The expression to be differentiated shall have a values space.

WR2: The values space of the expression to be differentiated shall be a continuum, that is,
consist of real or complex numbers or nested tuples thereof in a static structure.

WR3: The differentiation variables shall range over real or complex numbers.

NOTE 1 Although partial derivative expression is theoretically redundant after defining partial -
derivative function, the formation of an equivalent expression using abstracted expression func-
tion, partial derivative function, function application, and expression denoted function is too
complex to be practical. The situation is similar in using partial derivative expression to define par-
tial derivative function. Hence, both entity types are defined.

NOTE 2 The common notations for the differentiation process conceal some complex and subtle mat-
ters. Of special concern here is the role of the differentiation variables in the expression. Upon careful
examination, it will be found that each differentiation variable becomes bound (by lambda abstraction),
two new corresponding variables are introduced (in forming the divided difference expression) and one of
those is bound again (in taking the limit as it goes to zero). Consequently, the partial derivative ex-
pression does not really contain the same variables as the expression being differentiated, it contains new
variables in one-to-one correspondence to those variables and customarily given the same names. This
situation has serious implications for any system computing with these expressions, but can be ignored
in the static environment of data exchange. Notice that this issue does not arise for partial deriva-
tive function because there are no objects explicitly representing variables and any implicit variables
are entirely local to individual function objects.

EXAMPLE Represent the second partial derivative of the expression xyy, differentiated first with re-
spect to y and then x. That is, represent

∂2

∂x∂y
(xyy).

93

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

LOCAL
sem : free_variable_semantics := free_variable_semantics() || variable_semantics();
var_x : maths_real_variable := make_maths_real_variable(the_reals, ’x’);
env_x : environment := make_environment(var_x, sem);
var_y : maths_real_variable := make_maths_real_variable(the_reals, ’y’);
env_y : environment := make_environment(var_y, sem);
xyy : mult_expression := make_mult_expression([var_x, var_y, var_y]);
d2_dxdy_xyy : partial_derivative_expression := make_partial_derivative_expression(

xyy, [var_y,var_x], eo_cont);
END_LOCAL;

See also this same example represented using a partial derivative function.

4.5.68 definite integral function

This type of maths function and unary generic expression represents functions defined
by a definite integral of another function over a real interval. It includes the special cases of
intervals of integration unbounded at either or both ends.

The finite bounds of the interval of integration are new initial inputs to the represented function
and the remaining inputs are inherited, in the same order, from the integrand function, except
that the input corresponding to the variable of integration is omitted.

The represented function has the same number of outputs, of the same real or complex types,
and with the same packaging, as the integrand function.

The domains of any new inputs are derived to be the same as the domain of the variable of
integration. The range is derived to have the same structure as that of the integrand function,
but any restrictions to subsets of the real or complex numbers are replaced by the corresponding
spaces of all real numbers and all complex numbers.

EXPRESS specification:

*)
ENTITY definite_integral_function
SUBTYPE OF (maths_function, unary_generic_expression);
SELF\unary_generic_expression.operand : maths_function;
variable_of_integration : input_selector;
lower_limit_neg_infinity : BOOLEAN;
upper_limit_pos_infinity : BOOLEAN;

DERIVE
integrand : maths_function := SELF\unary_generic_expression.operand;

WHERE
WR1: space_is_continuum (integrand.range);
WR2: definite_integral_check (integrand.domain, variable_of_integration,
lower_limit_neg_infinity, upper_limit_pos_infinity);

END_ENTITY;
(*

Attribute definitions:

SELF\unary generic expression.operand: The inherited operand attribute is constrained
to be a maths function.

94

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

variable of integration: The value of type input selector corresponding to the variable of
integration in the implicit list of input variables of the integrand. See 4.4.14.

lower limit neg infinity: Indicator for whether the lower limit of the interval of integration
is negative infinity, or a new input.

upper limit pos infinity: Indicator for whether the upper limit of the interval of integration
is positive infinity, or a new input.

integrand: The function whose integral is to be represented. Derived to be the same as the
inherited operand attribute.

Formal propositions:

WR1: The range of the integrand function shall be a continuum, that is, consist of real or
complex numbers or nested tuples thereof in a static structure.

WR2: There shall be an input of type real corresponding to the variable of integration, if the
lower limit of integration is negative infinity, then the domain of the variable of integration shall
be unbounded below, and if the upper limit of integration is positive infinity, then the domain
of the variable of integration shall be unbounded above.

EXAMPLE Represent the definite integral of the function f(x, y) ≡ xyy with respect to y from one to
any given value z. That is, represent

F (z, x) ≡
∫ z

1
f(x, y)dy.

See the example following partial derivative function for the construction of the instance representing
the function f .

LOCAL
igrlf : definite_integral_function := make_definite_integral_function(

f, 2, false, false);
END_LOCAL;

4.5.69 definite integral expression

This type of quantifier expression represents a definite integral of another expression over a
real interval. It includes the special cases of intervals of integration unbounded at either or both
ends.

The finite bounds of the interval of integration are operands to the integral expression, when-
ever their existence is indicated by the values of the attributes lower limit neg infinity and
upper limit pos infinity. When both bounds are present, the lower limit is the third operand
and the upper limit is the fourth.

EXPRESS specification:

*)
ENTITY definite_integral_expression
SUBTYPE OF (quantifier_expression);
lower_limit_neg_infinity : BOOLEAN;
upper_limit_pos_infinity : BOOLEAN;

DERIVE

95

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

integrand : generic_expression
:= SELF\multiple_arity_generic_expression.operands[1];

variable_of_integration : maths_variable
:= SELF\multiple_arity_generic_expression.operands[2];

SELF\quantifier_expression.variables : LIST [1:1] OF UNIQUE generic_variable
:= [variable_of_integration];

WHERE
WR1: has_values_space (integrand);
WR2: space_is_continuum (values_space_of (integrand));
WR3: definite_integral_expr_check (SELF\multiple_arity_generic_expression.operands,

lower_limit_neg_infinity, upper_limit_pos_infinity);
END_ENTITY;
(*

Attribute definitions:

lower limit neg infinity: Indicator for whether the lower limit of the interval of integration
is negative infinity, or an operand.

upper limit pos infinity: Indicator for whether the upper limit of the interval of integration
is positive infinity, or an operand.

integrand: The expression to be integrated. Derived to be the first operand in the list inherited
from supertype multiple arity generic expression.

variable of integration: The variable of integration. Derived to be the second operand in the
list inherited from supertype multiple arity generic expression.

SELF\quantifier expression.variables: The inherited variables attribute is constrained to
be the singleton list of the variable of integration.

Formal propositions:

WR1: The expression to be integrated shall have a values space.

WR2: The values space of the expression to be integrated shall be a continuum, that is, consist
of real or complex numbers or nested tuples thereof in a static structure.

WR3: The number of operands shall be two plus the number of FALSE values among lower -
limit neg infinity and upper limit pos infinity, the values space of the variable of integra-
tion shall be a subspace of the real numbers, and the values spaces of the third and fourth
operands, when present, shall be compatible with the values space of the variable of integration.

NOTE 1 Although definite integral expression is theoretically redundant after defining definite -
integral function, the formation of an equivalent expression using abstracted expression function,
definite integral function, function application, and expression denoted function requires too
many instances to be practical. The situation is similar in using definite integral expression to define
definite integral function. Hence, both entity types are defined.

NOTE 2 Introduction of a new type named extended reals was considered and rejected. Ultimately,
it introduced more complexities than simplifications.

EXAMPLE Represent the definite integral of the expression xyy with respect to y from 1 to z. That
is, represent

∫ z

1
xyydy.

96

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

Contrast the example following partial derivative expression with the example below. Most of the
construction must be redone to reflect the change in the semantics of y from free variable to bound
variable.

LOCAL
semb : variable_semantics := bound_variable_semantics() || variable_semantics();
var_yb : maths_real_variable := make_maths_real_variable(the_reals, ’y’);
env_yb : environment := make_environment(var_yb, semb);
xyyb : mult_expression := make_mult_expression([var_x, var_yb, var_yb]);
con_1 : real_literal := make_real_literal(1.0);
var_z : maths_real_variable := make_maths_real_variable(the_reals, ’y’);
env_z : environment := make_environment(var_z, sem);
igrl_xyy : definite_integral_expression := make_definite_integral_expression(
[xyyb, var_yb, con_1, var_z], false, false);

END_LOCAL;

4.5.70 abstracted expression function

This type of maths function and quantifier expression defines a mathematical function by
function abstraction from an expression. A list of variables is identified as corresponding to
the inputs of the function. These variables become bound variables in the resulting expression,
which now denotes a function. That is, the variables identified as function inputs may not be
assigned values or any semantics other than that they are placeholders for inputs to a function.
This operation corresponds to “lambda quantification” in the Lambda Calculus formalism.

The domain of an instance of abstracted expression function is derived to be the Cartesian
product of the value spaces of its variables, in that order. The range is derived to be the value
space of its expr. The value space of any mathematical expression is computed by function
value space of.

EXPRESS specification:

*)
ENTITY abstracted_expression_function
SUBTYPE OF (maths_function, quantifier_expression);

DERIVE
SELF\quantifier_expression.variables : LIST [1:?] OF UNIQUE generic_variable :=
remove_first(SELF\multiple_arity_generic_expression.operands);

expr : generic_expression := SELF\multiple_arity_generic_expression.operands[1];
WHERE

WR1: SIZEOF (QUERY (operand <*
SELF\multiple_arity_generic_expression.operands | NOT (
has_values_space(operand)))) = 0;

END_ENTITY;
(*

Attribute definitions:

SELF\quantifier expression.variables: The list of variables, in order, which are to be treated
as inputs for the constructed function.

expr: The generic expression to which function abstraction is to be applied in order to construct
a function.

97

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

Formal propositions:

WR1: All the operands of instances of this type shall be mathematical expressions, as defined
by function has values space.

NOTE Normally, the variables listed in variables are free variables in expr and become bound by this
operation. However, it is not required that the variables appear in the expression at all.

EXAMPLE Consider the informal mathematical definition:

Let f(x) = c, where x is a real number and c is the string ‘what?’.

This function can be represented as an abstracted expression function as follows:

LOCAL
c : string_literal := make_string_literal(’what?’);
x : maths_variable := make_maths_real_variable(the_reals, ’x’);
f : abstracted_expression_function := make_abstracted_expression_function([c, x]);

END_LOCAL;

4.5.71 expression denoted function

This type of maths function and unary generic expression recognizes an expression which
denotes a mathematical function as an instance of maths function. Such an expression could
arise, for example, as an instance of function application. Suitable expressions are identified
by the output of the values space of function being a function space.

The domain and range of an instance of expression denoted function are derived from the
domain argument and range argument attributes of the function space produced by val-
ues space of (expr).

EXPRESS specification:

*)
ENTITY expression_denoted_function
SUBTYPE OF (maths_function, unary_generic_expression);

DERIVE
expr : generic_expression := SELF\unary_generic_expression.operand;

WHERE
WR1: (schema_prefix + ’FUNCTION_SPACE’) IN TYPEOF (values_space_of(expr));

END_ENTITY;
(*

Attribute definitions:

expr: The expression which is to be recognized as denoting a function.

Formal propositions:

WR1: The expression shall, in fact, denote a function.

98

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

EXAMPLE Consider the informal mathematical definition for the one-parameter family F of rotation
matrices in the plane:

F (θ) =
[

cos(θ) −sin(θ)
sin(θ) cos(θ)

]

In order to recognize the expression F (π/6) as an instance which could be used as the matrix-valued
operand attribute of, say, a homogeneous linear function, it must first be recognized as an instance
of maths function. As constructed, the instance representing F (π/6) is an instance of function -
application. The entity type function application cannot be a subtype of maths function because
many of its instances do not represent mathematical functions. Instead, the nature of this particular
instance of function application is recognized by wrapping it as an expression denoted function
instance as follows:

LOCAL
theta : maths_real_variable := make_maths_real_variable(the_reals, ’theta’);
cos_expr : cos_expression := make_cos_expression(theta);
sin_expr : sin_expression := make_sin_expression(theta);
neg_sin_expr : unary_minus_expression := make_unary_minus_expression(sin_expr);
source : listed_data :=

make_listed_data(1, [cos_expr, neg_sin_expr, sin_expr, cos_expr], the_reals);
matrix : standard_table_function :=

make_standard_table_function(1, [2,2], source, 1, by_rows);
big_f : abstracted_expression_function :=

make_abstracted_expression_function([matrix, theta]);
pi_over_6 : real_literal := make_real_literal(pi/6.0);
big_f_of_pi_over_6 : function_application :=

make_function_application(big_f, [pi_over_6]);
big_f_of_pi_over_6_matrix : expression_denoted_function :=

make_expression_denoted_function(big_f_of_pi_over_6);
END_LOCAL;

Recall that make type name is a function which constructs an instance of type name from the list of
arguments corresponding to the attributes which would appear in an ISO-10303-21 format file for an
instance of that type, with two modifications: the arguments corresponding to asterisks (derived at-
tributes) are omitted, and the arguments corresponding to ‘$’ signs (omitted attributes) are replaced
with the indeterminate value (‘?’).

4.5.72 imported point function

This type of maths function and generic literal represents the constant function correspond-
ing to a point instance from the geometry schema. It enables instances of point to partici-
pate in the construction of other instances of maths function.

The domain of an instance of imported point function is the space (R0)1. This implies that
the function takes a single input which is an element of the space R0. The only element of the
space R0 is the zero-tuple of real numbers, which is represented in EXPRESS by the empty list
of reals.

EXPRESS specification:

*)
ENTITY imported_point_function
SUBTYPE OF (maths_function, generic_literal);
geometry : point;

END_ENTITY;
(*

99

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

Attribute definitions:

geometry: The geometric point whose corresponding constant function is represented.

4.5.73 imported curve function

This type of maths function and generic literal represents the parametric function defined
for a curve instance from the geometry schema. It permits non-geometric data to be associ-
ated with the curve using the curve’s parametrization.

The range of an imported curve function is derived to be either (R2)1 or (R3)1 depending
on the geometric dimension of the curve.

EXPRESS specification:

*)
ENTITY imported_curve_function
SUBTYPE OF (maths_function, generic_literal);
geometry : curve;
parametric_domain : tuple_space;

WHERE
WR1: expression_is_constant(parametric_domain);

END_ENTITY;
(*

Attribute definitions:

geometry: The geometric curve whose parametric function is represented.

parametric domain: The domain of the curve’s parametric function.

Formal propositions:

WR1: The value of parametric domain is a constant expression.

Informal propositions:

IP1: The value of parametric domain represents the domain of the parametric function of
the geometry.

4.5.74 imported surface function

This type of maths function and generic literal represents the parametric function defined
for a surface instance from the geometry schema. It permits non-geometric data to be
associated with the surface using the surface’s parametrization.

The range of an imported surface function is derived to be (R3)1.

100

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

EXPRESS specification:

*)
ENTITY imported_surface_function
SUBTYPE OF (maths_function, generic_literal);
geometry : surface;
parametric_domain : tuple_space;

WHERE
WR1: expression_is_constant(parametric_domain);

END_ENTITY;
(*

Attribute definitions:

geometry: The geometric surface whose parametric function is represented.

parametric domain: The domain of the surface’s parametric function.

Formal propositions:

WR1: The value of parametric domain is a constant expression.

Informal propositions:

IP1: The value of parametric domain represents the domain of the parametric function of
the geometry.

4.5.75 imported volume function

This type of maths function and generic literal represents the parametric function defined
for a volume instance from the geometry schema. It permits non-geometric data to be
associated with the volume using the volume’s parametrization.

The range of an imported surface function is derived to be (R3)1.

EXPRESS specification:

*)
ENTITY imported_volume_function
SUBTYPE OF (maths_function, generic_literal);
geometry : volume;
parametric_domain : tuple_space;

WHERE
WR1: expression_is_constant(parametric_domain);

END_ENTITY;
(*

101

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

Attribute definitions:

geometry: The geometric volume whose parametric function is represented.

parametric domain: The domain of the volume’s parametric function.

Formal propositions:

WR1: The value of parametric domain is a constant expression.

Informal propositions:

IP1: The value of parametric domain represents the domain of the parametric function of
the geometry.

4.5.76 application defined function

This type of maths function provides for extending the schema with representations for addi-
tional types of mathematical functions.

NOTE 1 Extensions may be accomplished by defining subtypes of application defined function. In
this case, the name chosen for the subtype shall identify the class of mathematical functions which are
to be represented. Any parameters necessary to identify particular members of the class can be included
by specializing the type of the parameters attribute or by adding rules to restrict the types or values of
particular members of the list. Types defined in some other schema cannot be directly accommodated,
but, in so far as they are constructed from aggregates of simple types, equivalent data can be stored
without requiring additional attributes in a subtype declaration. In the case that no parameters are
required, the empty list can be specified as the value of parameters.

NOTE 2 In order to integrate application-defined functions with the rest of this schema, it is required
that each instance provide its domain and range spaces. This may be accomplished either by explicitly
providing values for the two attributes, or by deriving appropriate values from other information as part
of defining a subtype.

NOTE 3 In order to integrate application-defined functions with the expressions structure inherited
from ISO13584 generic expressions, it is necessary that an introduced subtype also explicitly subtype
itself from one of the first or second tier subtypes of generic expression, and, if subtyped from other
than simple generic expression, either derive the inherited operand(s) attribute or explicitly provide
its value.

NOTE 4 All instantiable subtypes of maths function defined in this schema are associated with well-
defined mathematical algorithms for obtaining outputs from inputs. The differences in results on different
systems should be small. However, it is quite possible to use the application-defined function mechanism
to create representations for functions which are mathematically well-defined, but for which no computa-
tionally reliable algorithm is known. For example, consider the minimum distance function on the images
of two parametric surfaces. Each implementor will produce some approximation of the mathematical
function, but no standard algorithm exists. Application developers must carefully consider the meaning
and consequences of exchanging an instance representing such a function.

EXPRESS specification:

*)
ENTITY application_defined_function

102

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

SUBTYPE OF (maths_function);
explicit_domain : tuple_space;
explicit_range : tuple_space;
parameters : LIST OF maths_value;

WHERE
WR1: expression_is_constant(explicit_domain);
WR2: expression_is_constant(explicit_range);

END_ENTITY;
(*

Attribute definitions:

explicit domain: The value to be used as the domain of the function.

explicit range: The value to be used as the range of the function.

parameters: The parameters, if any, defining the function. When no parameters are required,
the empty list shall be used.

Formal propositions:

WR1: The domain shall be a constant expression.

WR2: The range shall be a constant expression.

NOTE 5 The expressions defining the domains and ranges of all functions defined in this schema are
prevented from containing variables and thereby denoting indeterminate spaces. This technical restriction
does not interfere with the contemplated applications and makes it practical to implement more of the
semantic rules in Express. Some future edition of this part of ISO 10303 may choose to relax these
requirements.

Informal propositions:

IP1: The total information associated with an instance of application defined function shall
be sufficient to uniquely identify a mathematical function.

IP2: The space supplied as the domain of the function shall be compatible with the actual
mathematical domain of the function.

IP3: The space supplied as the range of the function shall represent a superspace of the actual
mathematical range of the function.

NOTE 6 The total information associated with an instance includes its actual subtype, the values of its
attributes, and any instances of mathematical description referencing it via the described attribute.

4.5.77 mathematical description

This type relates a maths expression and a description or definition of the same mathematical
object or expression by a string in an identified language or identified encoding of an identified
language.

NOTE 1 A value of type maths expression may be an instance of maths space or an instance of
maths function or an instance of generic expression or a simple data value. The most likely use of the
mathematical description entity, however, is to define an instance of application defined function

103

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

using a language other than EXPRESS.

NOTE 2 Examples of appropriate languages are computer programming languages and the Mathemat-
ical Markup Language (MathML).

MathML is being developed by the HTML–Math Working Group of the World-Wide Web Consortium
(W3C). A list of current W3C Technical Reports can be found at <http://www.w3.org/TR>. The edition
examined during the development of this part of ISO 10303 is listed in the Bibliography as [2]. The latest
edition at the time of final editing of this part of ISO 10303 was [3]. The work of the OpenMath Society
at <http://www.openmath.org> may also be of interest in this context.

NOTE 3 An application protocol or application module may constrain the allowable languages or lan-
guage encodings and specify the labels to be used for each.

NOTE 4 Languages using a different character set than that used by Express, such as MathML’s use
of UNICODE, require special care. In some cases, it may be necessary or desirable to specify a special
encoding of conflicting or missing elements into an Express string value.

EXPRESS specification:

*)
ENTITY mathematical_description;
described : maths_expression;
describing : STRING;
encoding : label;

END_ENTITY;
(*

Attribute definitions:

described: The mathematical object or expression being described.

describing: The description, as an Express string value.

encoding: The identification of the language or encoding used in making the description.

Informal propositions:

IP1: The value of attribute describing shall be a valid instance of the language or encoding
identified by the value of attribute encoding.

IP2: In so far as the value of the attribute described is already defined in this part of ISO 10303,
the meaning of the value of describing shall be consistent with it.

4.6 Mathematical functions schema function definitions

4.6.1 all members of es

This function determines whether all members of a list of maths values are members of an
elementary space identified by a value of elementary space enumerators.

NOTE This function is used by the subspace of es function.

104

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

EXPRESS specification:

*)
FUNCTION all_members_of_es(sv : SET OF maths_value;

es : elementary_space_enumerators) : LOGICAL;
CONSTANT
base_types : SET OF STRING := [’NUMBER’,’COMPLEX_NUMBER_LITERAL’,’REAL’,

’INTEGER’,’LOGICAL’,’BOOLEAN’,’STRING’,’BINARY’,’MATHS_SPACE’,
’MATHS_FUNCTION’,’LIST’,’ELEMENTARY_SPACE_ENUMERATORS’,’ORDERING_TYPE’,
’LOWER_UPPER’,’SYMMETRY_TYPE’,’ELEMENTARY_FUNCTION_ENUMERATORS’,
’OPEN_CLOSED’,’SPACE_CONSTRAINT_TYPE’,’REPACKAGE_OPTIONS’,
’EXTENSION_OPTIONS’];

END_CONSTANT;
LOCAL

v : maths_value;
key_type : STRING := ’’;
types : SET OF STRING;
ge : generic_expression;
cum : LOGICAL := TRUE;
vspc : maths_space;

END_LOCAL;
IF NOT EXISTS (sv) OR NOT EXISTS (es) THEN RETURN (FALSE); END_IF;
CASE es OF
es_numbers : key_type := ’NUMBER’;
es_complex_numbers : key_type := ’COMPLEX_NUMBER_LITERAL’;
es_reals : key_type := ’REAL’;
es_integers : key_type := ’INTEGER’;
es_logicals : key_type := ’LOGICAL’;
es_booleans : key_type := ’BOOLEAN’;
es_strings : key_type := ’STRING’;
es_binarys : key_type := ’BINARY’;
es_maths_spaces : key_type := ’MATHS_SPACE’;
es_maths_functions : key_type := ’MATHS_FUNCTION’;
es_generics : RETURN (TRUE);
END_CASE;
REPEAT i := 1 TO SIZEOF (sv);

IF NOT EXISTS (sv[i]) THEN RETURN (FALSE); END_IF;
v := simplify_maths_value(sv[i]);
types := stripped_typeof(v);
IF key_type IN types THEN SKIP; END_IF;
IF (es = es_numbers) AND (’COMPLEX_NUMBER_LITERAL’ IN types) THEN SKIP; END_IF;
IF SIZEOF (base_types * types) > 0 THEN RETURN (FALSE); END_IF;
-- Must be a generic_expression which doesn’t simplify and which is not a
-- complex_number_literal, maths_space, or maths_function.
ge := v;
IF has_values_space(ge) THEN

vspc := values_space_of(ge);
IF NOT subspace_of_es(vspc,es) THEN
IF NOT compatible_spaces(vspc,make_elementary_space(es)) THEN

RETURN (FALSE);
END_IF;
cum := UNKNOWN;

END_IF;
ELSE

cum := UNKNOWN;
END_IF;
IF cum = FALSE THEN RETURN (FALSE); END_IF;

END_REPEAT;
RETURN (cum);

105

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

END_FUNCTION; -- all_members_of_es
(*

Argument definitions:

lv: (input) The list of maths values.

es: (input) The enumberation value identifying the elementary space.

return: (output) A LOGICAL value which is TRUE if all members of the list can be determined
to belong to the indicated elementary space, FALSE if at least one member can be determined
not to belong, and UNKNOWN, otherwise.

4.6.2 any space satisfies

This function determines whether a pair consisting of a value of space constraint type and
a value of maths space describe a constraint that is satisfied by all mathematical spaces.

NOTE This function is used in connection with function space instances.

EXPRESS specification:

*)
FUNCTION any_space_satisfies(sc : space_constraint_type;

spc : maths_space) : BOOLEAN;
LOCAL

spc_id : elementary_space_enumerators;
END_LOCAL;
IF (sc = sc_equal) OR NOT (’ELEMENTARY_SPACE’ IN stripped_typeof(spc)) THEN

RETURN (FALSE);
END_IF;
spc_id := spc\elementary_space.space_id;
IF sc = sc_subspace THEN

RETURN (bool(spc_id = es_generics));
END_IF;
IF sc = sc_member THEN
RETURN (bool((spc_id = es_generics) OR (spc_id = es_maths_spaces)));

END_IF;
-- Should be unreachable.
RETURN (?);

END_FUNCTION; -- any_space_satisfies
(*

Argument definitions:

sc: (input) The value of space constraint type.

spc: (input) The maths space.

return: (output) The BOOLEAN value indicating whether any mathematical space satisfies
the implied constraint or not.

106

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

4.6.3 assoc product space

This function returns an instance of tuple space representing the associative cartesian product
of its two tuple space arguments.

EXPRESS specification:

*)
FUNCTION assoc_product_space(ts1, ts2 : tuple_space) : tuple_space;
LOCAL

types1 : SET OF STRING := stripped_typeof (ts1);
types2 : SET OF STRING := stripped_typeof (ts2);
up1, up2 : uniform_product_space := make_uniform_product_space(the_reals,1);
lp1, lp2, lps : listed_product_space := the_zero_tuple_space;
et1, et2, ets : extended_tuple_space := the_tuples;
use_up1, use_up2, use_lp1, use_lp2 : BOOLEAN;
factors : LIST OF maths_space := [];
tspace : tuple_space;

END_LOCAL;
-- Identify type of first operand
IF ’UNIFORM_PRODUCT_SPACE’ IN types1 THEN

up1 := ts1; use_up1 := true; use_lp1 := false;
ELSE

IF ’LISTED_PRODUCT_SPACE’ IN types1 THEN
lp1 := ts1; use_up1 := false; use_lp1 := true;

ELSE
IF NOT (’EXTENDED_TUPLE_SPACE’ IN types1) THEN

-- Unreachable when this function was written.
RETURN (?);

END_IF;
et1 := ts1; use_up1 := false; use_lp1 := false;

END_IF;
END_IF;
-- Identify type of second operand
IF ’UNIFORM_PRODUCT_SPACE’ IN types2 THEN

up2 := ts2; use_up2 := true; use_lp2 := false;
ELSE

IF ’LISTED_PRODUCT_SPACE’ IN types2 THEN
lp2 := ts2; use_up2 := false; use_lp2 := true;

ELSE
IF NOT (’EXTENDED_TUPLE_SPACE’ IN types2) THEN

-- Unreachable when this function was written.
RETURN (?);

END_IF;
et2 := ts2; use_up2 := false; use_lp2 := false;

END_IF;
END_IF;
-- Construction for each combination of cases
IF use_up1 THEN

IF use_up2 THEN
IF up1.base = up2.base THEN

tspace := make_uniform_product_space(up1.base, up1.exponent + up2.exponent);
ELSE

factors := [up1.base : up1.exponent, up2.base : up2.exponent];
tspace := make_listed_product_space(factors);

END_IF;
ELSE

107

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

IF use_lp2 THEN
-- Avoid compiler confusion by breaking into two lines.
factors := [up1.base : up1.exponent];
factors := factors + lp2.factors;
tspace := make_listed_product_space(factors);

ELSE
tspace := assoc_product_space(up1, et2.base);
tspace := make_extended_tuple_space(tspace, et2.extender);

END_IF;
END_IF;

ELSE
IF use_lp1 THEN

IF use_up2 THEN
-- Avoid compiler confusion by breaking into two lines.
factors := [up2.base : up2.exponent];
factors := lp1.factors + factors;
tspace := make_listed_product_space(factors);

ELSE
IF use_lp2 THEN

tspace := make_listed_product_space(lp1.factors + lp2.factors);
ELSE

tspace := assoc_product_space(lp1, et2.base);
tspace := make_extended_tuple_space(tspace, et2.extender);

END_IF;
END_IF;

ELSE
IF use_up2 THEN

IF et1.extender = up2.base THEN
tspace := assoc_product_space(et1.base, up2);
tspace := make_extended_tuple_space(tspace, et1.extender);

ELSE
-- No subtype is available to represent this cartesian product.
RETURN (?);

END_IF;
ELSE
IF use_lp2 THEN

factors := lp2.factors;
REPEAT i := 1 TO SIZEOF (factors);

IF et1.extender <> factors[i] THEN
-- No subtype available to represent this cartesian product.
RETURN (?);

END_IF;
END_REPEAT;
tspace := assoc_product_space(et1.base, lp2);
tspace := make_extended_tuple_space(tspace, et1.extender);

ELSE
IF et1.extender = et2.extender THEN

-- Next line may assign indeterminate (?) to tspace.
tspace := assoc_product_space(et1, et2.base);

ELSE
-- No subtype available to represent this cartesian product.
RETURN (?);

END_IF;
END_IF;

END_IF;
END_IF;

END_IF;
RETURN (tspace);

END_FUNCTION; -- assoc_product_space

108

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

(*

Argument definitions:

sp1: (input) The first tuple space operand.

sp2: (input) The second tuple space operand.

return: (output) An instance of tuple space representing the associative cartesian product of
the two operands.

4.6.4 atan2

This function computes the direction angle to the point in the plane defined by its two real
arguments. Values returned lie in the range −π < r ≤ π. The direction angle is the signed radian
measure of the angle between the positive x-axis and the ray emanating from the origin and
passing through the point. Points on the positive y-axis have direction angle π/2. In accordance
with tradition, the y-coordinate of the point is the first argument, and the x-coordinate is the
second. This function returns the indeterminate value when the point is the origin.

NOTE This is the traditional “atan2” function. Unlike the traditional “atan” (“arc tangent” or “inverse
tangent”) function, it takes two arguments and distinguishes among all four quadrants. The argument
order probably derived from thinking of it as an extension of “atan(y/x)”. The EXPRESS atan function
is a peculiar hybrid of the traditional “atan” and “atan2” functions.

EXPRESS specification:

*)
FUNCTION atan2(y, x : REAL) : REAL;
LOCAL

r : REAL;
END_LOCAL;
IF (y = 0.0) AND (x = 0.0) THEN RETURN (?); END_IF;
r := atan(y,x);
IF x < 0.0 THEN

IF y < 0.0 THEN r := r - PI;
ELSE r := r + PI; END_IF;

END_IF;
RETURN (r);

END_FUNCTION; -- atan2
(*

Argument definitions:

y: (input) The y coordinate of the point.

x: (input) The x coordinate of the point

return: (output) The direction angle to the point.

109

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

4.6.5 bool

This function converts Express LOGICAL values into BOOLEAN values by turning any value
which is not TRUE into FALSE.

EXPRESS specification:

*)
FUNCTION bool(lgcl: LOGICAL) : BOOLEAN;
IF NOT EXISTS (lgcl) THEN RETURN (FALSE); END_IF;
IF lgcl <> TRUE THEN RETURN (FALSE); END_IF;
RETURN (TRUE);

END_FUNCTION; -- bool
(*

Argument definitions:

lgcl: (input) The logical value.

return: (output) The boolean value TRUE when the input is TRUE and FALSE, otherwise.

4.6.6 check sparse index domain

This function verifies that the domain of the index function in an instance of basic sparse -
matrix is consistent with the other attributes.

EXPRESS specification:

*)
FUNCTION check_sparse_index_domain(idxdom : tuple_space;

base : zero_or_one;
shape : LIST [1:?] OF positive_integer;
order : ordering_type) : BOOLEAN;

LOCAL
mthspc : maths_space;
interval : finite_integer_interval;
i : INTEGER;

END_LOCAL;
mthspc := factor1(idxdom);
-- A consequence of WR1 of basic_sparse_matrix is that here we need only
-- consider the case that mthspc is a finite integer interval and is the only
-- factor space of idxdom.
interval := mthspc;
IF order = by_rows THEN i := 1; ELSE i := 2; END_IF;
RETURN (bool((interval.min <= base) AND (interval.max >= base + shape[i])));
-- The index function is evaluated at (base+shape[i]) when determining the
-- upper search bound for entries of the last row or column, respectively.

END_FUNCTION; -- check_sparse_index_domain;
(*

110

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

Argument definitions:

idxdom: (input) The domain of the basic sparse matrix index function.

base: (input) The index base of the basic sparse matrix.

shape: (input) The shape of the basic sparse matrix.

order: (input) The ordering of the basic sparse matrix.

return: (output) The boolean value indicating whether the domain of the index function is
consistent with the other attributes.

4.6.7 check sparse loc range

This function verifies that the range of the location function in an instance of basic sparse -
matrix is consistent with the other attributes.

EXPRESS specification:

*)
FUNCTION check_sparse_loc_range(locrng : tuple_space;

base : zero_or_one;
shape : LIST [1:?] OF positive_integer;
order : ordering_type) : BOOLEAN;

LOCAL
mthspc : maths_space;
interval : finite_integer_interval;
i : INTEGER;

END_LOCAL;
IF space_dimension(locrng) <> 1 THEN RETURN (FALSE); END_IF;
mthspc := factor1(locrng);
IF NOT ((schema_prefix + ’FINITE_INTEGER_INTERVAL’) IN TYPEOF (mthspc)) THEN

RETURN (FALSE);
END_IF;
interval := mthspc;
IF order = by_rows THEN i := 2; ELSE i := 1; END_IF;
RETURN (bool((interval.min >= base) AND (interval.max <= base + shape[i] - 1)));

END_FUNCTION; -- check_sparse_loc_range;
(*

Argument definitions:

locrng: (input) The range of the basic sparse matrix location function.

base: (input) The index base of the basic sparse matrix.

shape: (input) The shape of the basic sparse matrix.

order: (input) The ordering of the basic sparse matrix.

return: (output) The boolean value indicating whether the range of the location function is
consistent with the other attributes.

111

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

4.6.8 check sparse index to loc

This function is used in WR5 in basic sparse matrix to verify the compatibility of two of
its operands. The test is whether the integer range interval of the function used as the value
of attribute index lies within the integer domain interval of the function used as the value of
attribute loc, except perhaps at its maximum value. This function assumes automatic repack-
aging between integers and one-tuples of integers will be performed as needed in any evaluator
for basic sparse matrix.

NOTE This rather special requirement follows from the evaluation algorithm for basic sparse matrix.

EXPRESS specification:

*)
FUNCTION check_sparse_index_to_loc(index_range, loc_domain : tuple_space) : BOOLEAN;
LOCAL

temp : maths_space;
idx_rng_itvl, loc_dmn_itvl : finite_integer_interval;

END_LOCAL;
temp := factor1 (index_range);
IF (schema_prefix + ’TUPLE_SPACE’) IN TYPEOF (temp) THEN

temp := factor1 (temp);
END_IF;
IF NOT ((schema_prefix + ’FINITE_INTEGER_INTERVAL’) IN TYPEOF (temp)) THEN

RETURN (FALSE);
END_IF;
idx_rng_itvl := temp;
temp := factor1 (loc_domain);
IF (schema_prefix + ’TUPLE_SPACE’) IN TYPEOF (temp) THEN

temp := factor1 (temp);
END_IF;
IF NOT ((schema_prefix + ’FINITE_INTEGER_INTERVAL’) IN TYPEOF (temp)) THEN

RETURN (FALSE);
END_IF;
loc_dmn_itvl := temp;
RETURN (bool((loc_dmn_itvl.min <= idx_rng_itvl.min) AND

(idx_rng_itvl.max <= loc_dmn_itvl.max+1)));
END_FUNCTION; -- check_sparse_index_to_loc
(*

Argument definitions:

index range: (input) The range space of the function serving as the value of the index at-
tribute of an instance of basic sparse matrix.

loc domain: (input) The domain space of the function serving as the value of the loc attribute
of an instance of basic sparse matrix.

return: (output) A BOOLEAN value indicating whether the two spaces are suitable for these
uses in an instance of basic sparse matrix.

112

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

4.6.9 compare basis and coef

This function verifies the consistency of the basis and coef attributes in a b spline function
instance. In particular, it verifies theat the dimension of the coefficient table is at least as great
as the number of B-spline bases and that the numbers of basis functions in each B-spline basis
entity matches the numbers of subscripts in the corresponding dimension of the coefficient table.

EXPRESS specification:

*)
FUNCTION compare_basis_and_coef(basis : LIST [1:?] OF b_spline_basis;

coef : maths_function) : BOOLEAN;
LOCAL

shape : LIST OF positive_integer;
END_LOCAL;
IF NOT EXISTS (basis) OR NOT EXISTS (coef) THEN RETURN (FALSE); END_IF;
shape := shape_of_array(coef);
IF NOT EXISTS (shape) THEN RETURN (FALSE); END_IF;
IF SIZEOF (shape) < SIZEOF (basis) THEN RETURN (FALSE); END_IF;
REPEAT i := 1 TO SIZEOF (basis);

IF (basis[i].num_basis = shape[i]) <> TRUE THEN RETURN (FALSE); END_IF;
END_REPEAT;
RETURN (TRUE);

END_FUNCTION; -- compare_basis_and_coef
(*

Argument definitions:

basis: (input) The list of B-spline bases.

coef: (input) The table function containing the B-spline coefficients.

return: (output) A BOOLEAN value which is TRUE if the numbers of basis functions in the
input B-spline bases and the numbers of subscripts in the corresponding dimensions of the
coefficient table all match.

4.6.10 compare list and value

This function compares a list and a value, and returns TRUE only if the comparison is TRUE
between every list member and the given value. In every other case, the function returns
FALSE.

NOTE This function is used by selection function and selection insertion function.

EXPRESS specification:

*)
FUNCTION compare_list_and_value(lv : LIST OF GENERIC:G;

op : elementary_function_enumerators;
v : GENERIC:G) : BOOLEAN;

IF NOT EXISTS (lv) OR NOT EXISTS (op) OR NOT EXISTS (v) THEN

113

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

RETURN (FALSE);
END_IF;
REPEAT i := 1 TO SIZEOF (lv);

IF NOT compare_values(lv[i], op, v) THEN
RETURN (FALSE);

END_IF;
END_REPEAT;
RETURN (TRUE);

END_FUNCTION; -- compare_list_and_value
(*

Argument definitions:

lv: (input) The list of values to use in the comparison.

op: (input) The comparison operation to use using only the range from ef eq i to ef le i from
elementary function enumerators.

v: The value to use in the comparison.

return: (output) A BOOLEAN value which is TRUE if every member of the input list stands
in the indicated relation to the given value v.

4.6.11 compare values

This function compares two values in accordance with the indicated comparison operator, and
returns TRUE only if the comparison is true. In every other case, the function returns FALSE.

EXPRESS specification:

*)
FUNCTION compare_values(v1 : GENERIC:G;

op : elementary_function_enumerators;
v2 : GENERIC:G) : BOOLEAN;

-- This algorithm assumes a comparison between "incompatible" types will
-- produce the indeterminate value (or UNKNOWN?).
LOCAL

logl : LOGICAL := UNKNOWN;
END_LOCAL;
IF NOT EXISTS (v1) OR NOT EXISTS (op) OR NOT EXISTS (v2) THEN

RETURN (FALSE);
END_IF;
CASE op OF
ef_eq_i : logl := (v1 = v2);
ef_ne_i : logl := (v1 <> v2);
ef_gt_i : logl := (v1 > v2);
ef_lt_i : logl := (v1 < v2);
ef_ge_i : logl := (v1 >= v2);
ef_le_i : logl := (v1 <= v2);
END_CASE;
IF EXISTS (logl) THEN
IF logl = TRUE THEN RETURN (TRUE); END_IF;

END_IF;
RETURN (FALSE);

END_FUNCTION; -- compare_values
(*

114

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

Argument definitions:

v1: (input) The first value to use in the comparison.

op: (input) The comparison operation to use.

v2: (input) The second value to use in the comparison.

return: (output) A BOOLEAN value which is TRUE if the comparison between the values v1
and v2 indicated by op is true.

4.6.12 compatible complex number regions

This function defines whether two instances of maths space which happen to be complex
number subsets are compatible or not. See compatible spaces.

EXPRESS specification:

*)
FUNCTION compatible_complex_number_regions(sp1, sp2 : maths_space) : BOOLEAN;
LOCAL

typenames : SET OF string := stripped_typeof (sp1);
crgn1, crgn2 : cartesian_complex_number_region;
prgn1, prgn2, prgn1c2, prgn2c1 : polar_complex_number_region;
sp1_is_crgn, sp2_is_crgn : BOOLEAN;

END_LOCAL;
IF ’CARTESIAN_COMPLEX_NUMBER_REGION’ IN typenames THEN

sp1_is_crgn := TRUE;
crgn1 := sp1;

ELSE
IF ’POLAR_COMPLEX_NUMBER_REGION’ IN typenames THEN

sp1_is_crgn := FALSE;
prgn1 := sp1;

ELSE
-- Improper usage: Default response is to assume compatibility.
RETURN (TRUE);

END_IF;
END_IF;
typenames := stripped_typeof (sp2);
IF ’CARTESIAN_COMPLEX_NUMBER_REGION’ IN typenames THEN
sp2_is_crgn := TRUE;
crgn2 := sp2;

ELSE
IF ’POLAR_COMPLEX_NUMBER_REGION’ IN typenames THEN

sp2_is_crgn := FALSE;
prgn2 := sp2;

ELSE
-- Improper usage: Default response is to assume compatibility.
RETURN (TRUE);

END_IF;
END_IF;
IF sp1_is_crgn AND sp2_is_crgn THEN

-- two cartesian regions
RETURN (compatible_intervals(crgn1.real_constraint, crgn2.real_constraint)

AND compatible_intervals(crgn1.imag_constraint, crgn2.imag_constraint));
END_IF;
IF NOT sp1_is_crgn AND NOT sp2_is_crgn AND

115

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

(prgn1.centre.real_part = prgn2.centre.real_part) AND
(prgn1.centre.imag_part = prgn2.centre.imag_part) THEN
-- two polar regions with common centre
IF NOT compatible_intervals(prgn1.distance_constraint,

prgn2.distance_constraint) THEN
RETURN (FALSE);

END_IF;
IF compatible_intervals(prgn1.direction_constraint,

prgn2.direction_constraint) THEN
RETURN (TRUE);

END_IF;
-- Deal with direction ambiguity by 2 pi.
IF (prgn1.direction_constraint.max > PI) AND (prgn2.direction_constraint.max < PI)

THEN
RETURN (compatible_intervals(prgn2.direction_constraint,

make_finite_real_interval(-PI,open,prgn1.direction_constraint.max-2.0*PI,
prgn1.direction_constraint.max_closure)));

END_IF;
IF (prgn2.direction_constraint.max > PI) AND (prgn1.direction_constraint.max < PI)

THEN
RETURN (compatible_intervals(prgn1.direction_constraint,

make_finite_real_interval(-PI,open,prgn2.direction_constraint.max-2.0*PI,
prgn2.direction_constraint.max_closure)));

END_IF;
RETURN (FALSE);

END_IF;
-- Make do with imperfect tests for remaining cases.
IF sp1_is_crgn AND NOT sp2_is_crgn THEN

crgn2 := enclose_pregion_in_cregion(prgn2);
prgn1 := enclose_cregion_in_pregion(crgn1,prgn2.centre);
RETURN (compatible_complex_number_regions(crgn1,crgn2)

AND compatible_complex_number_regions(prgn1,prgn2));
END_IF;
IF NOT sp1_is_crgn AND sp2_is_crgn THEN

crgn1 := enclose_pregion_in_cregion(prgn1);
prgn2 := enclose_cregion_in_pregion(crgn2,prgn1.centre);
RETURN (compatible_complex_number_regions(crgn1,crgn2)

AND compatible_complex_number_regions(prgn1,prgn2));
END_IF;
-- Two polar regions with different centres
prgn1c2 := enclose_pregion_in_pregion(prgn1,prgn2.centre);
prgn2c1 := enclose_pregion_in_pregion(prgn2,prgn1.centre);
RETURN (compatible_complex_number_regions(prgn1,prgn2c1)
AND compatible_complex_number_regions(prgn1c2,prgn2));

END_FUNCTION; -- compatible_complex_number_regions
(*

Argument definitions:

sp1: (input) The first space.

sp2: (input) The second space.

return: (output) A BOOLEAN value of FALSE is returned if it is determined that the inter-
section of the two spaces is empty. Otherwise, TRUE is returned.

NOTE One can construct regions which the preceding function reports as compatible, but which, in
fact, have empty intersection. This is acceptable. The consequence is merely that some valid instances

116

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

have no practical use.

4.6.13 compatible es values

This function ascertains whether two elementary space enumerators values identify two
compatible spaces. For the purposes of this part of ISO 10303, the integers, the real numbers,
and the complex numbers shall be treated as disjoint spaces whose union is the space of all
numbers.

NOTE The Express language considers the INTEGER type to be a specialization of the REAL type. This
is inconsistent with all programming languages and with most of mathematics. The normal mathematical
relationship is that there is a natural isomorphism between the integers and a unique subset of the real
numbers, but they are not identical. The usual conversions between integers and reals are applications
of this isomorphism and its inverse.

EXPRESS specification:

*)
FUNCTION compatible_es_values(esval1, esval2 : elementary_space_enumerators) : BOOLEAN;
LOCAL

esval1_is_numeric, esval2_is_numeric : LOGICAL;
END_LOCAL;
IF (esval1 = esval2) OR (esval1 = es_generics) OR (esval2 = es_generics) THEN
RETURN (TRUE);

END_IF;
esval1_is_numeric := (esval1 >= es_numbers) AND (esval1 <= es_integers);
esval2_is_numeric := (esval2 >= es_numbers) AND (esval2 <= es_integers);
IF (esval1_is_numeric AND (esval2 = es_numbers)) OR

(esval2_is_numeric AND (esval1 = es_numbers)) THEN
RETURN (TRUE);

END_IF;
IF esval1_is_numeric XOR esval2_is_numeric THEN

RETURN (FALSE);
END_IF;
IF ((esval1 = es_logicals) AND (esval2 = es_booleans)) OR

((esval1 = es_booleans) AND (esval2 = es_logicals)) THEN
RETURN (TRUE);

END_IF;
-- All other cases are incompatible
RETURN (FALSE);

END_FUNCTION; -- compatible_es_values
(*

Argument definitions:

esval1: (input) The first elementary space enumerators value.

esval2: (input) The second elementary space enumerators value.

return: (output) A BOOLEAN value of FALSE is returned if it is determined that the inter-
section of the spaces identified by the values is empty. Otherwise, TRUE is returned.

117

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

4.6.14 compatible intervals

This function determines whether two instances of maths space which happen to be both
integer intervals or both real intervals are compatible or not. See compatible spaces.

EXPRESS specification:

*)
FUNCTION compatible_intervals(sp1, sp2 : maths_space) : BOOLEAN;
LOCAL

amin, amax : REAL;
END_LOCAL;
IF min_exists(sp1) AND max_exists(sp2) THEN
amin := real_min(sp1); amax := real_max(sp2);
IF amin > amax THEN RETURN (FALSE); END_IF;
IF amin = amax THEN

RETURN (min_included(sp1) AND max_included(sp2));
END_IF;

END_IF;
IF min_exists(sp2) AND max_exists(sp1) THEN
amin := real_min(sp2); amax := real_max(sp1);
IF amin > amax THEN RETURN (FALSE); END_IF;
IF amin = amax THEN
RETURN (min_included(sp2) AND max_included(sp1));

END_IF;
END_IF;
RETURN (TRUE);

END_FUNCTION; -- compatible_intervals
(*

Argument definitions:

sp1: (input) The first space.

sp2: (input) The second space.

return: (output) A BOOLEAN value of FALSE is returned if it is determined that the inter-
section of the two spaces is empty. Otherwise, TRUE is returned.

4.6.15 compatible spaces

This function defines whether two instances of maths space are compatible. Two spaces are
regarded as compatible if it is not “obvious” that their intersection is empty.

NOTE As more and more subtypes of maths space are added to this schema it will become more
and more difficult to ascertain whether the intersection of two of them is empty. Since this function is
used only to eliminate nonsensical instances, it is sufficient to rule out the obvious cases and permit the
non-obvious cases to be valid as instances, although, perhaps, still useless as objects.

EXPRESS specification:

*)
FUNCTION compatible_spaces(sp1, sp2 : maths_space) : BOOLEAN;

118

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

LOCAL
types1 : SET OF STRING := stripped_typeof (sp1);
types2 : SET OF STRING := stripped_typeof (sp2);
lgcl : LOGICAL := UNKNOWN;
m, n : INTEGER;
s1, s2 : maths_space;

END_LOCAL;
IF ’FINITE_SPACE’ IN types1 THEN

REPEAT i := 1 TO SIZEOF (sp1\finite_space.members);
lgcl := member_of(sp1\finite_space.members[i], sp2);
IF lgcl <> FALSE THEN

RETURN (TRUE);
END_IF;

END_REPEAT;
RETURN (FALSE);

END_IF;
IF ’FINITE_SPACE’ IN types2 THEN
REPEAT i := 1 TO SIZEOF (sp2\finite_space.members);

lgcl := member_of(sp2\finite_space.members[i], sp1);
IF lgcl <> FALSE THEN

RETURN (TRUE);
END_IF;

END_REPEAT;
RETURN (FALSE);

END_IF;
IF ’ELEMENTARY_SPACE’ IN types1 THEN

IF sp1\elementary_space.space_id = es_generics THEN
RETURN (TRUE);

END_IF;
IF ’ELEMENTARY_SPACE’ IN types2 THEN

RETURN (compatible_es_values(sp1\elementary_space.space_id,
sp2\elementary_space.space_id));

END_IF;
IF (’FINITE_INTEGER_INTERVAL’ IN types2) OR
(’INTEGER_INTERVAL_FROM_MIN’ IN types2) OR
(’INTEGER_INTERVAL_TO_MAX’ IN types2) THEN
RETURN (compatible_es_values(sp1\elementary_space.space_id, es_integers));

END_IF;
IF (’FINITE_REAL_INTERVAL’ IN types2) OR
(’REAL_INTERVAL_FROM_MIN’ IN types2) OR
(’REAL_INTERVAL_TO_MAX’ IN types2) THEN
RETURN (compatible_es_values(sp1\elementary_space.space_id, es_reals));

END_IF;
IF (’CARTESIAN_COMPLEX_NUMBER_REGION’ IN types2) OR
(’POLAR_COMPLEX_NUMBER_REGION’ IN types2) THEN
RETURN (compatible_es_values(sp1\elementary_space.space_id, es_complex_numbers));

END_IF;
IF ’TUPLE_SPACE’ IN types2 THEN

RETURN (FALSE);
END_IF;
IF ’FUNCTION_SPACE’ IN types2 THEN

RETURN (bool(sp1\elementary_space.space_id = es_maths_functions));
END_IF;
-- Should be unreachable.
RETURN (TRUE);

END_IF;
IF ’ELEMENTARY_SPACE’ IN types2 THEN
IF sp2\elementary_space.space_id = es_generics THEN

RETURN (TRUE);

119

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

END_IF;
IF (’FINITE_INTEGER_INTERVAL’ IN types1) OR

(’INTEGER_INTERVAL_FROM_MIN’ IN types1) OR
(’INTEGER_INTERVAL_TO_MAX’ IN types1) THEN
RETURN (compatible_es_values(sp2\elementary_space.space_id, es_integers));

END_IF;
IF (’FINITE_REAL_INTERVAL’ IN types1) OR
(’REAL_INTERVAL_FROM_MIN’ IN types1) OR
(’REAL_INTERVAL_TO_MAX’ IN types1) THEN
RETURN (compatible_es_values(sp2\elementary_space.space_id, es_reals));

END_IF;
IF (’CARTESIAN_COMPLEX_NUMBER_REGION’ IN types1) OR

(’POLAR_COMPLEX_NUMBER_REGION’ IN types1) THEN
RETURN (compatible_es_values(sp2\elementary_space.space_id, es_complex_numbers));

END_IF;
IF ’TUPLE_SPACE’ IN types1 THEN

RETURN (FALSE);
END_IF;
IF ’FUNCTION_SPACE’ IN types1 THEN

RETURN (bool(sp2\elementary_space.space_id = es_maths_functions));
END_IF;
-- Should be unreachable.
RETURN (TRUE);

END_IF;
IF subspace_of_es(sp1,es_integers) THEN -- Note that sp1 finite already handled.

IF subspace_of_es(sp2,es_integers) THEN -- Note that sp2 finite already handled.
RETURN (compatible_intervals(sp1,sp2));

END_IF;
RETURN (FALSE);

END_IF;
IF subspace_of_es(sp2,es_integers) THEN

RETURN (FALSE);
END_IF;
IF subspace_of_es(sp1,es_reals) THEN -- Note that sp1 finite already handled.

IF subspace_of_es(sp2,es_reals) THEN -- Note that sp2 finite already handled.
RETURN (compatible_intervals(sp1,sp2));

END_IF;
RETURN (FALSE);

END_IF;
IF subspace_of_es(sp2,es_reals) THEN
RETURN (FALSE);

END_IF;
IF subspace_of_es(sp1,es_complex_numbers) THEN -- Note sp1 finite already handled.
IF subspace_of_es(sp2,es_complex_numbers) THEN -- Note sp2 finite already handled.

RETURN (compatible_complex_number_regions(sp1,sp2));
END_IF;
RETURN (FALSE);

END_IF;
IF subspace_of_es(sp2,es_complex_numbers) THEN

RETURN (FALSE);
END_IF;
IF ’UNIFORM_PRODUCT_SPACE’ IN types1 THEN

IF ’UNIFORM_PRODUCT_SPACE’ IN types2 THEN
IF sp1\uniform_product_space.exponent <> sp2\uniform_product_space.exponent THEN

RETURN (FALSE);
END_IF;
RETURN (compatible_spaces(sp1\uniform_product_space.base,
sp2\uniform_product_space.base));

END_IF;

120

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

IF ’LISTED_PRODUCT_SPACE’ IN types2 THEN
n := SIZEOF (sp2\listed_product_space.factors);
IF sp1\uniform_product_space.exponent <> n THEN

RETURN (FALSE);
END_IF;
REPEAT i := 1 TO n;

IF NOT compatible_spaces(sp1\uniform_product_space.base,
sp2\listed_product_space.factors[i]) THEN
RETURN (FALSE);

END_IF;
END_REPEAT;
RETURN (TRUE);

END_IF;
IF ’EXTENDED_TUPLE_SPACE’ IN types2 THEN

m := sp1\uniform_product_space.exponent;
n := space_dimension(sp2\extended_tuple_space.base);
IF m < n THEN

RETURN (FALSE);
END_IF;
IF m = n THEN

RETURN (compatible_spaces(sp1, sp2\extended_tuple_space.base));
END_IF;
RETURN (compatible_spaces(sp1, assoc_product_space(
sp2\extended_tuple_space.base, make_uniform_product_space(
sp2\extended_tuple_space.extender, m - n))));

END_IF;
IF ’FUNCTION_SPACE’ IN types2 THEN

RETURN (FALSE);
END_IF;
-- Should be unreachable.
RETURN (TRUE);

END_IF;
IF ’LISTED_PRODUCT_SPACE’ IN types1 THEN

n := SIZEOF (sp1\listed_product_space.factors);
IF ’UNIFORM_PRODUCT_SPACE’ IN types2 THEN

IF n <> sp2\uniform_product_space.exponent THEN
RETURN (FALSE);

END_IF;
REPEAT i := 1 TO n;
IF NOT compatible_spaces(sp2\uniform_product_space.base,

sp1\listed_product_space.factors[i]) THEN
RETURN (FALSE);

END_IF;
END_REPEAT;
RETURN (TRUE);

END_IF;
IF ’LISTED_PRODUCT_SPACE’ IN types2 THEN

IF n <> SIZEOF (sp2\listed_product_space.factors) THEN
RETURN (FALSE);

END_IF;
REPEAT i := 1 TO n;

IF NOT compatible_spaces(sp1\listed_product_space.factors[i],
sp2\listed_product_space.factors[i]) THEN
RETURN (FALSE);

END_IF;
END_REPEAT;
RETURN (TRUE);

END_IF;
IF ’EXTENDED_TUPLE_SPACE’ IN types2 THEN

121

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

m := space_dimension(sp2\extended_tuple_space.base);
IF n < m THEN

RETURN (FALSE);
END_IF;
IF n = m THEN

RETURN (compatible_spaces(sp1, sp2\extended_tuple_space.base));
END_IF;
RETURN (compatible_spaces(sp1, assoc_product_space(

sp2\extended_tuple_space.base, make_uniform_product_space(
sp2\extended_tuple_space.extender, n - m))));

END_IF;
IF (schema_prefix + ’FUNCTION_SPACE’) IN types2 THEN

RETURN (FALSE);
END_IF;
-- Should be unreachable.
RETURN (TRUE);

END_IF;
IF ’EXTENDED_TUPLE_SPACE’ IN types1 THEN
IF (’UNIFORM_PRODUCT_SPACE’ IN types2) OR

(’LISTED_PRODUCT_SPACE’ IN types2) THEN
RETURN (compatible_spaces(sp2, sp1));

END_IF;
IF ’EXTENDED_TUPLE_SPACE’ IN types2 THEN

IF NOT compatible_spaces(sp1\extended_tuple_space.extender,
sp2\extended_tuple_space.extender) THEN
RETURN (FALSE);

END_IF;
n := space_dimension(sp1\extended_tuple_space.base);
m := space_dimension(sp2\extended_tuple_space.base);
IF n < m THEN

RETURN (compatible_spaces(assoc_product_space(sp1\extended_tuple_space.base,
make_uniform_product_space(sp1\extended_tuple_space.extender, m - n)),
sp2\extended_tuple_space.base));

END_IF;
IF n = m THEN

RETURN (compatible_spaces(sp1\extended_tuple_space.base,
sp2\extended_tuple_space.base));

END_IF;
IF n > m THEN
RETURN (compatible_spaces(sp1\extended_tuple_space.base,

assoc_product_space(sp2\extended_tuple_space.base,
make_uniform_product_space(sp2\extended_tuple_space.extender, n - m))));

END_IF;
END_IF;
IF ’FUNCTION_SPACE’ IN types2 THEN

RETURN (FALSE);
END_IF;
-- Should be unreachable.
RETURN (TRUE);

END_IF;
IF ’FUNCTION_SPACE’ IN types1 THEN

IF ’FUNCTION_SPACE’ IN types2 THEN
s1 := sp1\function_space.domain_argument;
s2 := sp2\function_space.domain_argument;
CASE sp1\function_space.domain_constraint OF
sc_equal : BEGIN
CASE sp2\function_space.domain_constraint OF
sc_equal : lgcl := subspace_of(s1, s2) AND subspace_of(s2, s1);
sc_subspace : lgcl := subspace_of(s1, s2);

122

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

sc_member : lgcl := member_of(s1, s2);
END_CASE;
END;

sc_subspace :BEGIN
CASE sp2\function_space.domain_constraint OF
sc_equal : lgcl := subspace_of(s2, s1);
sc_subspace : lgcl := compatible_spaces(s1, s2);
sc_member : lgcl := UNKNOWN;
END_CASE;
END;

sc_member :BEGIN
CASE sp2\function_space.domain_constraint OF
sc_equal : lgcl := member_of(s2, s1);
sc_subspace : lgcl := UNKNOWN;
sc_member : lgcl := compatible_spaces(s1, s2);
END_CASE;
END;

END_CASE;
IF lgcl = FALSE THEN

RETURN (FALSE);
END_IF;
s1 := sp1\function_space.range_argument;
s2 := sp2\function_space.range_argument;
CASE sp1\function_space.range_constraint OF
sc_equal : BEGIN

CASE sp2\function_space.range_constraint OF
sc_equal : lgcl := subspace_of(s1, s2) AND subspace_of(s2, s1);
sc_subspace : lgcl := subspace_of(s1, s2);
sc_member : lgcl := member_of(s1, s2);
END_CASE;
END;

sc_subspace :BEGIN
CASE sp2\function_space.range_constraint OF
sc_equal : lgcl := subspace_of(s2, s1);
sc_subspace : lgcl := compatible_spaces(s1, s2);
sc_member : lgcl := UNKNOWN;
END_CASE;
END;

sc_member :BEGIN
CASE sp2\function_space.range_constraint OF
sc_equal : lgcl := member_of(s2, s1);
sc_subspace : lgcl := UNKNOWN;
sc_member : lgcl := compatible_spaces(s1, s2);
END_CASE;
END;

END_CASE;
IF lgcl = FALSE THEN

RETURN (FALSE);
END_IF;
RETURN (TRUE);

END_IF;
-- Should be unreachable.
RETURN (TRUE);

END_IF;
-- Should be unreachable.
RETURN (TRUE);

END_FUNCTION; -- compatible_spaces
(*

123

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

Argument definitions:

sp1: (input) The first space.

sp2: (input) The second space.

return: (output) A BOOLEAN value of FALSE is returned if it is determined that the inter-
section of the two spaces is empty. Otherwise, TRUE is returned.

4.6.16 composable sequence

This function checks the suitability of forming a functional composition of a list of mathematical
functions by verifying that the range of each one other than the last is compatible with the
domain of the next one.

NOTE Two spaces are compatible if their intersection is not known to be empty. It does no harm to
the schema if this test fails to detect some cases where the intersection is, in fact, empty. Such a function
will have an actual domain which is empty, which will make it quite useless for any practical purpose.
Erring in the other direction would prevent the exchange of functions which might have a practical use.

EXPRESS specification:

*)
FUNCTION composable_sequence(operands : LIST [2:?] OF maths_function) : BOOLEAN;
REPEAT i := 1 TO SIZEOF (operands) - 1;

IF NOT compatible_spaces (operands[i].range, operands[i+1].domain) THEN
RETURN (FALSE);

END_IF;
END_REPEAT;
RETURN (TRUE);

END_FUNCTION; -- composable_sequence
(*

Argument definitions:

operands: (input) The list of maths function instances to be checked for composability.

return: (output) A BOOLEAN value signifying whether the list is composable.

4.6.17 convert to literal

This function constructs an instance of generic literal given a value of maths atom.

EXPRESS specification:

*)
FUNCTION convert_to_literal(val : maths_atom) : generic_literal;
LOCAL

types : SET OF STRING := TYPEOF (val);
END_LOCAL;
IF ’INTEGER’ IN types THEN RETURN (make_int_literal (val)); END_IF;
IF ’REAL’ IN types THEN RETURN (make_real_literal (val)); END_IF;

124

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

IF ’BOOLEAN’ IN types THEN RETURN (make_boolean_literal (val)); END_IF;
IF ’STRING’ IN types THEN RETURN (make_string_literal (val)); END_IF;
IF ’LOGICAL’ IN types THEN RETURN (make_logical_literal (val)); END_IF;
IF ’BINARY’ IN types THEN RETURN (make_binary_literal (val)); END_IF;
IF (schema_prefix + ’MATHS_ENUM_ATOM’) IN types THEN

RETURN (make_maths_enum_literal (val));
END_IF;
-- Should be unreachable
RETURN (?);

END_FUNCTION; -- convert_to_literal
(*

Argument definitions:

val: (input) The maths atom value for which a literal is to be constructed.

return: (output) The constructed complex entity instance of some subtype of generic literal
representing the input value.

4.6.18 convert to maths function

This function constructs a maths function instance for any value of type maths function -
select which isn’t already of that type.

EXPRESS specification:

*)
FUNCTION convert_to_maths_function(func : maths_function_select) : maths_function;
LOCAL

efenum : elementary_function_enumerators;
mthfun : maths_function;

END_LOCAL;
IF (schema_prefix + ’MATHS_FUNCTION’) IN TYPEOF (func) THEN

mthfun := func;
ELSE

efenum := func;
mthfun := make_elementary_function (efenum);

END_IF;
RETURN (mthfun);

END_FUNCTION; -- convert_to_maths_function
(*

Argument definitions:

func: (input) The value of type maths function select to be converted.

return: (output) An equivalent instance of maths function.

4.6.19 convert to maths value

This function returns a maths value equivalent to any generic value which can be represented
as a maths value, and the indeterminate value, otherwise.

125

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

EXPRESS specification:

*)
FUNCTION convert_to_maths_value(val : GENERIC:G) : maths_value;
LOCAL

types : SET OF STRING := TYPEOF (val);
ival : maths_integer;
rval : maths_real;
nval : maths_number;
tfval : maths_boolean;
lval : maths_logical;
sval : maths_string;
bval : maths_binary;
tval : maths_tuple := the_empty_maths_tuple;
mval : maths_value;

END_LOCAL;
IF (schema_prefix + ’MATHS_VALUE’) IN types THEN RETURN (val); END_IF;
IF ’INTEGER’ IN types THEN ival := val; RETURN (ival); END_IF;
IF ’REAL’ IN types THEN rval := val; RETURN (rval); END_IF;
IF ’NUMBER’ IN types THEN nval := val; RETURN (nval); END_IF;
IF ’BOOLEAN’ IN types THEN tfval := val; RETURN (tfval); END_IF;
IF ’LOGICAL’ IN types THEN lval := val; RETURN (lval); END_IF;
IF ’STRING’ IN types THEN sval := val; RETURN (sval); END_IF;
IF ’BINARY’ IN types THEN bval := val; RETURN (bval); END_IF;
IF ’LIST’ IN types THEN

REPEAT i := 1 TO SIZEOF (val);
mval := convert_to_maths_value (val[i]);
IF NOT EXISTS (mval) THEN RETURN (?); END_IF;
INSERT (tval, mval, i-1);

END_REPEAT;
RETURN (tval);

END_IF;
RETURN (?);

END_FUNCTION; -- convert_to_maths_value
(*

Argument definitions:

val: (input) The arbitrary value to be converted.

return: (output) An equivalent value of type maths value.

4.6.20 convert to operand

This function creates a generic expression corresponding to an arbitrary maths value. This
amounts to creating instances of generic literal for those values which are not already instances
of generic expression.

EXPRESS specification:

*)
FUNCTION convert_to_operand(val : maths_value) : generic_expression;
LOCAL

types : SET OF STRING := stripped_typeof (val);

126

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

END_LOCAL;
-- Use intermediate variables of appropriate declared types to help the compilers.
IF ’GENERIC_EXPRESSION’ IN types THEN RETURN (val); END_IF;
IF ’MATHS_ATOM’ IN types THEN RETURN (convert_to_literal (val)); END_IF;
IF ’ATOM_BASED_VALUE’ IN types THEN RETURN (make_atom_based_literal(val)); END_IF;
IF ’MATHS_TUPLE’ IN types THEN RETURN (make_maths_tuple_literal(val)); END_IF;
-- Should be unreachable
RETURN (?);

END_FUNCTION; -- convert_to_operand
(*

Argument definitions:

val: (input) The arbitrary value which is to be converted into a generic expression.

return: (output) The generic expression corresponding to the input.

4.6.21 convert to operands

This function creates a list of generic expressions corresponding to an arbitrary aggregate of
maths value. The formation of subsidiary maths tuple values is translated into function
applications of the tuple-forming elementary function, the values which are elementary EX-
PRESS values are translated into appropriate literals, and those values which are already generic
expressions are translated into themselves. The order of the operands in the list corresponds to
the indexing order of the input aggregate.

EXPRESS specification:

*)
FUNCTION convert_to_operands(values : AGGREGATE OF maths_value)

: LIST OF generic_expression;
LOCAL

operands : LIST OF generic_expression := [];
loc : INTEGER := 0;

END_LOCAL;
IF NOT EXISTS (values) THEN RETURN (?); END_IF;
REPEAT i := LOINDEX (values) TO HIINDEX (values);

INSERT (operands, convert_to_operand (values[i]), loc);
loc := loc + 1;

END_REPEAT;
RETURN (operands);

END_FUNCTION; -- convert_to_operands
(*

Argument definitions:

values: (input) The aggregate of arbitrary values which are to be converted into a list of generic
expressions.

return: (output) The list of generic expressions corresponding to the input.

127

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

4.6.22 convert to operands prcmfn

This function constructs a value for the inherited operands attribute of an instance of paral-
lel composed function from its explicit attributes.

EXPRESS specification:

*)
FUNCTION convert_to_operands_prcmfn(srcdom : maths_space_or_function;

prepfun : LIST OF maths_function;
finfun : maths_function_select)

: LIST [2:?] OF generic_expression;
LOCAL

operands : LIST OF generic_expression := [];
END_LOCAL;
INSERT (operands, srcdom, 0);
REPEAT i := 1 TO SIZEOF (prepfun);
INSERT (operands, prepfun[i], i);

END_REPEAT;
INSERT (operands, convert_to_maths_function (finfun), SIZEOF (prepfun)+1);
RETURN (operands);

END_FUNCTION; -- convert_to_operands_prcmfn
(*

Argument definitions:

srcdom: (input) The value of the source of domain attribute.

prepfun: (input) The value of the prep functions attribute.

finfun: (input) The value of the final function attribute.

return: (output) The value to be used for the inherited operands attribute.

4.6.23 definite integral check

This function verifies whether or not its arguments are consistent with certain requirements for
the existence of a mathematical integral. Specifically, it verifies that the value identifying the
implicit variable of integration is within range, that the corresponding space of possible input
values is a real interval, that, if the lower limit of integration is negative infinity, then the real
interval is unbounded below, and that, if the upper limit of integration is positive infinity, then
the real interval is unbounded above.

EXPRESS specification:

*)
FUNCTION definite_integral_check(domain : tuple_space;

vrblint : input_selector;
lowerinf : BOOLEAN;
upperinf : BOOLEAN) : BOOLEAN;

LOCAL
domn : tuple_space := domain;
fspc : maths_space;

128

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

dim : nonnegative_integer;
k : positive_integer;

END_LOCAL;
IF (space_dimension (domain) = 1) AND ((schema_prefix + ’TUPLE_SPACE’) IN

TYPEOF (factor1 (domain))) THEN
domn := factor1 (domain);

END_IF;
dim := space_dimension (domn);
k := vrblint;
IF k > dim THEN RETURN (FALSE); END_IF;
fspc := factor_space (domn, k);
IF NOT ((schema_prefix + ’REAL_INTERVAL’) IN TYPEOF (fspc)) THEN

RETURN (FALSE);
END_IF;
IF lowerinf AND min_exists (fspc) THEN RETURN (FALSE); END_IF;
IF upperinf AND max_exists (fspc) THEN RETURN (FALSE); END_IF;
RETURN (TRUE);

END_FUNCTION; -- definite_integral_check
(*

Argument definitions:

domain: (input) The domain of the integrand function.

vrblint: (input) The index of the implicit variable of integration.

lowerinf: (input) Indicator for whether the lower limit of integration is negative infinity or a
real number.

upperinf: (input) Indicator for whether the upper limit of integration is positive infinity or a
real number.

return: (output) A BOOLEAN value indicating whether or not the four arguments are consis-
tent with the existence of a mathematical integral.

4.6.24 definite integral expr check

This function verifies whether or not its arguments are consistent with certain requirements for
the existence of a mathematical integral. Specifically, it verifies that the number of operands is
two plus one for the lower limit of integration if lowerinf is FALSE plus one for the upper limit
of integration if upperinf is FALSE, that the second operand is a variable whose values space
is a real interval, that the real interval is unbounded below if lowerinf is TRUE, that the real
interval is unbounded above if upperinf is TRUE, and that the values spaces of the third and
fourth operands, when present, are compatible with the real interval.

EXPRESS specification:

*)
FUNCTION definite_integral_expr_check(operands : LIST [2:?] OF generic_expression;

lowerinf : BOOLEAN;
upperinf : BOOLEAN) : BOOLEAN;

LOCAL
nops : INTEGER := 2;
vspc : maths_space;
dim : nonnegative_integer;

129

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

k : positive_integer;
bspc : maths_space;

END_LOCAL;
IF NOT lowerinf THEN nops := nops + 1; END_IF;
IF NOT upperinf THEN nops := nops + 1; END_IF;
IF SIZEOF (operands) <> nops THEN RETURN (FALSE); END_IF;
IF NOT (’GENERIC_VARIABLE’ IN stripped_typeof(operands[2])) THEN
RETURN (FALSE);

END_IF;
IF NOT has_values_space (operands[2]) THEN RETURN (FALSE); END_IF;
vspc := values_space_of (operands[2]);
IF NOT (’REAL_INTERVAL’ IN stripped_typeof(vspc)) THEN RETURN (FALSE); END_IF;
IF lowerinf THEN

IF min_exists (vspc) THEN RETURN (FALSE); END_IF;
k := 3;

ELSE
IF NOT has_values_space (operands[3]) THEN RETURN (FALSE); END_IF;
bspc := values_space_of (operands[3]);
IF NOT compatible_spaces (bspc, vspc) THEN RETURN (FALSE); END_IF;
k := 4;

END_IF;
IF upperinf THEN

IF max_exists (vspc) THEN RETURN (FALSE); END_IF;
ELSE
IF NOT has_values_space (operands[k]) THEN RETURN (FALSE); END_IF;
bspc := values_space_of (operands[k]);
IF NOT compatible_spaces (bspc, vspc) THEN RETURN (FALSE); END_IF;

END_IF;
RETURN (TRUE);

END_FUNCTION; -- definite_integral_expr_check
(*

Argument definitions:

operands: (input) The list of operands for a proposed instance of definite integral expres-
sion.

lowerinf: (input) Indicator for whether the lower limit of integration is negative infinity or an
operand.

upperinf: (input) Indicator for whether the upper limit of integration is positive infinity or an
operand.

return: (output) A BOOLEAN value indicating whether or not the three arguments are con-
sistent with the existence of a mathematical integral.

4.6.25 derive definite integral domain

This function constructs a value for the inherited domain attribute of an instance of definite in-
tegral function. It prefixes zero, one or two copies of the domain of the variable of integration
to the domain of the integrand minus the factor space corresponding to the variable of integra-
tion. The number of prefixed factors matches the number of finite bounds of the integral. The
packaging is chosen to match that of the integrand function.

130

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

EXPRESS specification:

*)
FUNCTION derive_definite_integral_domain(igrl : definite_integral_function)

: tuple_space;

-- Internal utility function:
FUNCTION process_product_space(spc : product_space;

idx, prefix : INTEGER;
vdomn : maths_space) : product_space;

LOCAL
uspc : uniform_product_space;
expnt : INTEGER;
factors : LIST OF maths_space;

END_LOCAL;
IF (schema_prefix + ’UNIFORM_PRODUCT_SPACE’) IN TYPEOF (spc) THEN

uspc := spc;
expnt := uspc.exponent + prefix;
IF idx <= uspc.exponent THEN expnt := expnt - 1; END_IF;
IF expnt = 0 THEN
RETURN (make_listed_product_space([]));

ELSE
RETURN (make_uniform_product_space(uspc.base,expnt));

END_IF;
ELSE

factors := spc\listed_product_space.factors;
IF idx <= SIZEOF (factors) THEN REMOVE (factors, idx); END_IF;
IF prefix > 0 THEN
INSERT (factors, vdomn, 0);
IF prefix > 1 THEN INSERT (factors, vdomn, 0); END_IF;

END_IF;
RETURN (make_listed_product_space(factors));

END_IF;
END_FUNCTION; -- process_product_space

-- Resume body of derive_definite_integral_domain function
LOCAL

idomn : tuple_space := igrl.integrand.domain;
types : SET OF STRING := TYPEOF (idomn);
idx : INTEGER := igrl.variable_of_integration;
tupled : BOOLEAN := bool(((space_dimension(idomn) = 1) AND

((schema_prefix + ’TUPLE_SPACE’) IN types)));
prefix : INTEGER := 0;
espc : extended_tuple_space;
vdomn : maths_space;

END_LOCAL;
IF tupled THEN
idomn := factor1(idomn);
types := TYPEOF (idomn);

END_IF;
IF igrl.lower_limit_neg_infinity THEN prefix := prefix + 1; END_IF;
IF igrl.upper_limit_pos_infinity THEN prefix := prefix + 1; END_IF;
vdomn := factor_space(idomn,idx);
IF (schema_prefix + ’EXTENDED_TUPLE_SPACE’) IN types THEN

espc := idomn;
idomn := make_extended_tuple_space(process_product_space(espc.base,idx,

prefix,vdomn),espc.extender);
ELSE

idomn := process_product_space(idomn,idx,prefix,vdomn);

131

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

END_IF;
IF tupled THEN RETURN (one_tuples_of(idomn));
ELSE RETURN (idomn); END_IF;

END_FUNCTION; -- derive_definite_integral_domain
(*

Argument definitions:

igrl: (input) The instance of definite integral function whose domain is to be derived.

return: (output) The function domain of the input instance.

4.6.26 derive elementary function domain

This function constructs a value for the inherited domain attribute of an instance of ele-
mentary function from the corresponding elementary function enumerators enumeration
item value.

EXPRESS specification:

*)
FUNCTION derive_elementary_function_domain(ef_val : elementary_function_enumerators)

: tuple_space;
IF NOT EXISTS (ef_val) THEN RETURN (?); END_IF;
CASE ef_val OF
ef_and : RETURN (make_extended_tuple_space (the_zero_tuple_space, the_logicals));
ef_or : RETURN (make_extended_tuple_space (the_zero_tuple_space, the_logicals));
ef_not : RETURN (make_uniform_product_space (the_logicals, 1));
ef_xor : RETURN (make_uniform_product_space (the_logicals, 2));
ef_negate_i : RETURN (make_uniform_product_space (the_integers, 1));
ef_add_i : RETURN (the_integer_tuples);
ef_subtract_i : RETURN (make_uniform_product_space (the_integers, 2));
ef_multiply_i : RETURN (the_integer_tuples);
ef_divide_i : RETURN (make_uniform_product_space (the_integers, 2));
ef_mod_i : RETURN (make_uniform_product_space (the_integers, 2));
ef_exponentiate_i : RETURN (make_uniform_product_space (the_integers, 2));
ef_eq_i : RETURN (make_uniform_product_space (the_integers, 2));
ef_ne_i : RETURN (make_uniform_product_space (the_integers, 2));
ef_gt_i : RETURN (make_uniform_product_space (the_integers, 2));
ef_lt_i : RETURN (make_uniform_product_space (the_integers, 2));
ef_ge_i : RETURN (make_uniform_product_space (the_integers, 2));
ef_le_i : RETURN (make_uniform_product_space (the_integers, 2));
ef_abs_i : RETURN (make_uniform_product_space (the_integers, 1));
ef_if_i : RETURN (make_listed_product_space ([the_logicals, the_integers,

the_integers]));
ef_negate_r : RETURN (make_uniform_product_space (the_reals, 1));
ef_reciprocal_r : RETURN (make_uniform_product_space (the_reals, 1));
ef_add_r : RETURN (the_real_tuples);
ef_subtract_r : RETURN (make_uniform_product_space (the_reals, 2));
ef_multiply_r : RETURN (the_real_tuples);
ef_divide_r : RETURN (make_uniform_product_space (the_reals, 2));
ef_mod_r : RETURN (make_uniform_product_space (the_reals, 2));
ef_exponentiate_r : RETURN (make_listed_product_space ([the_nonnegative_reals,

the_reals]));
ef_exponentiate_ri : RETURN (make_listed_product_space ([the_reals, the_integers]));

132

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ef_eq_r : RETURN (make_uniform_product_space (the_reals, 2));
ef_ne_r : RETURN (make_uniform_product_space (the_reals, 2));
ef_gt_r : RETURN (make_uniform_product_space (the_reals, 2));
ef_lt_r : RETURN (make_uniform_product_space (the_reals, 2));
ef_ge_r : RETURN (make_uniform_product_space (the_reals, 2));
ef_le_r : RETURN (make_uniform_product_space (the_reals, 2));
ef_abs_r : RETURN (make_uniform_product_space (the_reals, 1));
ef_acos_r : RETURN (make_uniform_product_space (the_neg1_one_interval, 1));
ef_asin_r : RETURN (make_uniform_product_space (the_neg1_one_interval, 1));
ef_atan2_r : RETURN (make_uniform_product_space (the_reals, 2));
ef_cos_r : RETURN (make_uniform_product_space (the_reals, 1));
ef_exp_r : RETURN (make_uniform_product_space (the_reals, 1));
ef_ln_r : RETURN (make_uniform_product_space (the_nonnegative_reals, 1));
ef_log2_r : RETURN (make_uniform_product_space (the_nonnegative_reals, 1));
ef_log10_r : RETURN (make_uniform_product_space (the_nonnegative_reals, 1));
ef_sin_r : RETURN (make_uniform_product_space (the_reals, 1));
ef_sqrt_r : RETURN (make_uniform_product_space (the_nonnegative_reals, 1));
ef_tan_r : RETURN (make_uniform_product_space (the_reals, 1));
ef_if_r : RETURN (make_listed_product_space ([the_logicals, the_reals, the_reals]));
ef_negate_c : RETURN (make_uniform_product_space (the_complex_numbers, 1));
ef_reciprocal_c : RETURN (make_uniform_product_space (the_complex_numbers, 1));
ef_add_c : RETURN (the_complex_tuples);
ef_subtract_c : RETURN (make_uniform_product_space (the_complex_numbers, 2));
ef_multiply_c : RETURN (the_complex_tuples);
ef_divide_c : RETURN (make_uniform_product_space (the_complex_numbers, 2));
ef_exponentiate_c : RETURN (make_uniform_product_space (the_complex_numbers, 2));
ef_exponentiate_ci : RETURN (make_listed_product_space ([the_complex_numbers,

the_integers]));
ef_eq_c : RETURN (make_uniform_product_space (the_complex_numbers, 2));
ef_ne_c : RETURN (make_uniform_product_space (the_complex_numbers, 2));
ef_conjugate_c : RETURN (make_uniform_product_space (the_complex_numbers, 1));
ef_abs_c : RETURN (make_uniform_product_space (the_complex_numbers, 1));
ef_arg_c : RETURN (make_uniform_product_space (the_complex_numbers, 1));
ef_cos_c : RETURN (make_uniform_product_space (the_complex_numbers, 1));
ef_exp_c : RETURN (make_uniform_product_space (the_complex_numbers, 1));
ef_ln_c : RETURN (make_uniform_product_space (the_complex_numbers, 1));
ef_sin_c : RETURN (make_uniform_product_space (the_complex_numbers, 1));
ef_sqrt_c : RETURN (make_uniform_product_space (the_complex_numbers, 1));
ef_tan_c : RETURN (make_uniform_product_space (the_complex_numbers, 1));
ef_if_c : RETURN (make_listed_product_space ([the_logicals, the_complex_numbers,

the_complex_numbers]));
ef_subscript_s : RETURN (make_listed_product_space ([the_strings, the_integers]));
ef_eq_s : RETURN (make_uniform_product_space (the_strings, 2));
ef_ne_s : RETURN (make_uniform_product_space (the_strings, 2));
ef_gt_s : RETURN (make_uniform_product_space (the_strings, 2));
ef_lt_s : RETURN (make_uniform_product_space (the_strings, 2));
ef_ge_s : RETURN (make_uniform_product_space (the_strings, 2));
ef_le_s : RETURN (make_uniform_product_space (the_strings, 2));
ef_subsequence_s : RETURN (make_listed_product_space ([the_strings, the_integers,

the_integers]));
ef_concat_s : RETURN (make_extended_tuple_space (the_zero_tuple_space, the_strings));
ef_size_s : RETURN (make_uniform_product_space (the_strings, 1));
ef_format : RETURN (make_listed_product_space ([the_numbers, the_strings]));
ef_value : RETURN (make_uniform_product_space (the_strings, 1));
ef_like : RETURN (make_uniform_product_space (the_strings, 2));
ef_if_s : RETURN (make_listed_product_space ([the_logicals, the_strings,
the_strings]));

ef_subscript_b : RETURN (make_listed_product_space ([the_binarys, the_integers]));
ef_eq_b : RETURN (make_uniform_product_space (the_binarys, 2));

133

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ef_ne_b : RETURN (make_uniform_product_space (the_binarys, 2));
ef_gt_b : RETURN (make_uniform_product_space (the_binarys, 2));
ef_lt_b : RETURN (make_uniform_product_space (the_binarys, 2));
ef_ge_b : RETURN (make_uniform_product_space (the_binarys, 2));
ef_le_b : RETURN (make_uniform_product_space (the_binarys, 2));
ef_subsequence_b : RETURN (make_listed_product_space ([the_binarys, the_integers,

the_integers]));
ef_concat_b : RETURN (make_extended_tuple_space (the_zero_tuple_space, the_binarys));
ef_size_b : RETURN (make_uniform_product_space (the_binarys, 1));
ef_if_b : RETURN (make_listed_product_space ([the_logicals, the_binarys,

the_binarys]));
ef_subscript_t : RETURN (make_listed_product_space ([the_tuples, the_integers]));
ef_eq_t : RETURN (make_uniform_product_space (the_tuples, 2));
ef_ne_t : RETURN (make_uniform_product_space (the_tuples, 2));
ef_concat_t : RETURN (make_extended_tuple_space (the_zero_tuple_space, the_tuples));
ef_size_t : RETURN (make_uniform_product_space (the_tuples, 1));
ef_entuple : RETURN (the_tuples);
ef_detuple : RETURN (make_uniform_product_space (the_generics, 1));
ef_insert : RETURN (make_listed_product_space ([the_tuples, the_generics,
the_integers]));

ef_remove : RETURN (make_listed_product_space ([the_tuples, the_integers]));
ef_if_t : RETURN (make_listed_product_space ([the_logicals, the_tuples,

the_tuples]));
ef_sum_it : RETURN (make_uniform_product_space (the_integer_tuples, 1));
ef_product_it : RETURN (make_uniform_product_space (the_integer_tuples, 1));
ef_add_it : RETURN (make_extended_tuple_space (the_integer_tuples,

the_integer_tuples));
ef_subtract_it : RETURN (make_uniform_product_space (the_integer_tuples, 2));
ef_scalar_mult_it : RETURN (make_listed_product_space ([the_integers,

the_integer_tuples]));
ef_dot_prod_it : RETURN (make_uniform_product_space (the_integer_tuples, 2));
ef_sum_rt : RETURN (make_uniform_product_space (the_real_tuples, 1));
ef_product_rt : RETURN (make_uniform_product_space (the_real_tuples, 1));
ef_add_rt : RETURN (make_extended_tuple_space (the_real_tuples, the_real_tuples));
ef_subtract_rt : RETURN (make_uniform_product_space (the_real_tuples, 2));
ef_scalar_mult_rt : RETURN (make_listed_product_space ([the_reals,

the_real_tuples]));
ef_dot_prod_rt : RETURN (make_uniform_product_space (the_real_tuples, 2));
ef_norm_rt : RETURN (make_uniform_product_space (the_real_tuples, 1));
ef_sum_ct : RETURN (make_uniform_product_space (the_complex_tuples, 1));
ef_product_ct : RETURN (make_uniform_product_space (the_complex_tuples, 1));
ef_add_ct : RETURN (make_extended_tuple_space (the_complex_tuples,

the_complex_tuples));
ef_subtract_ct : RETURN (make_uniform_product_space (the_complex_tuples, 2));
ef_scalar_mult_ct : RETURN (make_listed_product_space ([the_complex_numbers,

the_complex_tuples]));
ef_dot_prod_ct : RETURN (make_uniform_product_space (the_complex_tuples, 2));
ef_norm_ct : RETURN (make_uniform_product_space (the_complex_tuples, 1));
ef_if : RETURN (make_listed_product_space ([the_logicals, the_generics,
the_generics]));

ef_ensemble : RETURN (the_tuples);
ef_member_of : RETURN (make_listed_product_space ([the_generics, the_maths_spaces]));
OTHERWISE : RETURN (?);
END_CASE;

END_FUNCTION; -- derive_elementary_function_domain
(*

134

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

Argument definitions:

ef val: (input) The enumeration value from elementary function enumerators identifying
the elementary function whose comain space is to be constructed.

return: (output) The constructed domain space.

4.6.27 derive elementary function range

This function constructs a value for the inherited range attribute of an instance of elementary -
function from the corresponding elementary function enumerators enumeration item value.

EXPRESS specification:

*)
FUNCTION derive_elementary_function_range(ef_val : elementary_function_enumerators)

: tuple_space;
IF NOT EXISTS (ef_val) THEN RETURN (?); END_IF;
CASE ef_val OF
ef_and : RETURN (make_uniform_product_space (the_logicals, 1));
ef_or : RETURN (make_uniform_product_space (the_logicals, 1));
ef_not : RETURN (make_uniform_product_space (the_logicals, 1));
ef_xor : RETURN (make_uniform_product_space (the_logicals, 2));
ef_negate_i : RETURN (make_uniform_product_space (the_integers, 1));
ef_add_i : RETURN (make_uniform_product_space (the_integers, 1));
ef_subtract_i : RETURN (make_uniform_product_space (the_integers, 1));
ef_multiply_i : RETURN (make_uniform_product_space (the_integers, 1));
ef_divide_i : RETURN (make_uniform_product_space (the_integers, 1));
ef_mod_i : RETURN (make_uniform_product_space (the_integers, 1));
ef_exponentiate_i : RETURN (make_uniform_product_space (the_integers, 1));
ef_eq_i : RETURN (make_uniform_product_space (the_logicals, 1));
ef_ne_i : RETURN (make_uniform_product_space (the_logicals, 1));
ef_gt_i : RETURN (make_uniform_product_space (the_logicals, 1));
ef_lt_i : RETURN (make_uniform_product_space (the_logicals, 1));
ef_ge_i : RETURN (make_uniform_product_space (the_logicals, 1));
ef_le_i : RETURN (make_uniform_product_space (the_logicals, 1));
ef_abs_i : RETURN (make_uniform_product_space (the_integers, 1));
ef_if_i : RETURN (make_uniform_product_space (the_integers, 1));
ef_negate_r : RETURN (make_uniform_product_space (the_reals, 1));
ef_reciprocal_r : RETURN (make_uniform_product_space (the_reals, 1));
ef_add_r : RETURN (make_uniform_product_space (the_reals, 1));
ef_subtract_r : RETURN (make_uniform_product_space (the_reals, 1));
ef_multiply_r : RETURN (make_uniform_product_space (the_reals, 1));
ef_divide_r : RETURN (make_uniform_product_space (the_reals, 1));
ef_mod_r : RETURN (make_uniform_product_space (the_reals, 1));
ef_exponentiate_r : RETURN (make_uniform_product_space (the_reals, 1));
ef_exponentiate_ri : RETURN (make_uniform_product_space (the_reals, 1));
ef_eq_r : RETURN (make_uniform_product_space (the_logicals, 1));
ef_ne_r : RETURN (make_uniform_product_space (the_logicals, 1));
ef_gt_r : RETURN (make_uniform_product_space (the_logicals, 1));
ef_lt_r : RETURN (make_uniform_product_space (the_logicals, 1));
ef_ge_r : RETURN (make_uniform_product_space (the_logicals, 1));
ef_le_r : RETURN (make_uniform_product_space (the_logicals, 1));
ef_abs_r : RETURN (make_uniform_product_space (the_nonnegative_reals, 1));
ef_acos_r : RETURN (make_uniform_product_space (the_zero_pi_interval, 1));

135

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ef_asin_r : RETURN (make_uniform_product_space (the_neghalfpi_halfpi_interval, 1));
ef_atan2_r : RETURN (make_uniform_product_space (the_negpi_pi_interval, 1));
ef_cos_r : RETURN (make_uniform_product_space (the_neg1_one_interval, 1));
ef_exp_r : RETURN (make_uniform_product_space (the_nonnegative_reals, 1));
ef_ln_r : RETURN (make_uniform_product_space (the_reals, 1));
ef_log2_r : RETURN (make_uniform_product_space (the_reals, 1));
ef_log10_r : RETURN (make_uniform_product_space (the_reals, 1));
ef_sin_r : RETURN (make_uniform_product_space (the_neg1_one_interval, 1));
ef_sqrt_r : RETURN (make_uniform_product_space (the_nonnegative_reals, 1));
ef_tan_r : RETURN (make_uniform_product_space (the_reals, 1));
ef_if_r : RETURN (make_uniform_product_space (the_reals, 1));
ef_negate_c : RETURN (make_uniform_product_space (the_complex_numbers, 1));
ef_reciprocal_c : RETURN (make_uniform_product_space (the_complex_numbers, 1));
ef_add_c : RETURN (make_uniform_product_space (the_complex_numbers, 1));
ef_subtract_c : RETURN (make_uniform_product_space (the_complex_numbers, 1));
ef_multiply_c : RETURN (make_uniform_product_space (the_complex_numbers, 1));
ef_divide_c : RETURN (make_uniform_product_space (the_complex_numbers, 1));
ef_exponentiate_c : RETURN (make_uniform_product_space (the_complex_numbers, 1));
ef_exponentiate_ci : RETURN (make_uniform_product_space (the_complex_numbers, 1));
ef_eq_c : RETURN (make_uniform_product_space (the_logicals, 1));
ef_ne_c : RETURN (make_uniform_product_space (the_logicals, 1));
ef_conjugate_c : RETURN (make_uniform_product_space (the_complex_numbers, 1));
ef_abs_c : RETURN (make_uniform_product_space (the_nonnegative_reals, 1));
ef_arg_c : RETURN (make_uniform_product_space (the_negpi_pi_interval, 1));
ef_cos_c : RETURN (make_uniform_product_space (the_complex_numbers, 1));
ef_exp_c : RETURN (make_uniform_product_space (the_complex_numbers, 1));
ef_ln_c : RETURN (make_uniform_product_space (the_complex_numbers, 1));
ef_sin_c : RETURN (make_uniform_product_space (the_complex_numbers, 1));
ef_sqrt_c : RETURN (make_uniform_product_space (the_complex_numbers, 1));
ef_tan_c : RETURN (make_uniform_product_space (the_complex_numbers, 1));
ef_if_c : RETURN (make_uniform_product_space (the_complex_numbers, 1));
ef_subscript_s : RETURN (make_uniform_product_space (the_strings, 1));
ef_eq_s : RETURN (make_uniform_product_space (the_logicals, 1));
ef_ne_s : RETURN (make_uniform_product_space (the_logicals, 1));
ef_gt_s : RETURN (make_uniform_product_space (the_logicals, 1));
ef_lt_s : RETURN (make_uniform_product_space (the_logicals, 1));
ef_ge_s : RETURN (make_uniform_product_space (the_logicals, 1));
ef_le_s : RETURN (make_uniform_product_space (the_logicals, 1));
ef_subsequence_s : RETURN (make_uniform_product_space (the_strings, 1));
ef_concat_s : RETURN (make_uniform_product_space (the_strings, 1));
ef_size_s : RETURN (make_uniform_product_space (the_integers, 1));
ef_format : RETURN (make_uniform_product_space (the_strings, 1));
ef_value : RETURN (make_uniform_product_space (the_reals, 1));
ef_like : RETURN (make_uniform_product_space (the_booleans, 1));
ef_if_s : RETURN (make_uniform_product_space (the_strings, 1));
ef_subscript_b : RETURN (make_uniform_product_space (the_binarys, 1));
ef_eq_b : RETURN (make_uniform_product_space (the_logicals, 1));
ef_ne_b : RETURN (make_uniform_product_space (the_logicals, 1));
ef_gt_b : RETURN (make_uniform_product_space (the_logicals, 1));
ef_lt_b : RETURN (make_uniform_product_space (the_logicals, 1));
ef_ge_b : RETURN (make_uniform_product_space (the_logicals, 1));
ef_le_b : RETURN (make_uniform_product_space (the_logicals, 1));
ef_subsequence_b : RETURN (make_uniform_product_space (the_binarys, 1));
ef_concat_b : RETURN (make_uniform_product_space (the_binarys, 1));
ef_size_b : RETURN (make_uniform_product_space (the_integers, 1));
ef_if_b : RETURN (make_uniform_product_space (the_binarys, 1));
ef_subscript_t : RETURN (make_uniform_product_space (the_generics, 1));
ef_eq_t : RETURN (make_uniform_product_space (the_logicals, 1));
ef_ne_t : RETURN (make_uniform_product_space (the_logicals, 1));

136

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ef_concat_t : RETURN (make_uniform_product_space (the_tuples, 1));
ef_size_t : RETURN (make_uniform_product_space (the_integers, 1));
ef_entuple : RETURN (make_uniform_product_space (the_tuples, 1));
ef_detuple : RETURN (the_tuples);
ef_insert : RETURN (make_uniform_product_space (the_tuples, 1));
ef_remove : RETURN (make_uniform_product_space (the_tuples, 1));
ef_if_t : RETURN (make_uniform_product_space (the_tuples, 1));
ef_sum_it : RETURN (make_uniform_product_space (the_integers, 1));
ef_product_it : RETURN (make_uniform_product_space (the_integers, 1));
ef_add_it : RETURN (make_uniform_product_space (the_integer_tuples, 1));
ef_subtract_it : RETURN (make_uniform_product_space (the_integer_tuples, 1));
ef_scalar_mult_it : RETURN (make_uniform_product_space (the_integer_tuples, 1));
ef_dot_prod_it : RETURN (make_uniform_product_space (the_integers, 1));
ef_sum_rt : RETURN (make_uniform_product_space (the_reals, 1));
ef_product_rt : RETURN (make_uniform_product_space (the_reals, 1));
ef_add_rt : RETURN (make_uniform_product_space (the_real_tuples, 1));
ef_subtract_rt : RETURN (make_uniform_product_space (the_real_tuples, 1));
ef_scalar_mult_rt : RETURN (make_uniform_product_space (the_real_tuples, 1));
ef_dot_prod_rt : RETURN (make_uniform_product_space (the_reals, 1));
ef_norm_rt : RETURN (make_uniform_product_space (the_reals, 1));
ef_sum_ct : RETURN (make_uniform_product_space (the_complex_numbers, 1));
ef_product_ct : RETURN (make_uniform_product_space (the_complex_numbers, 1));
ef_add_ct : RETURN (make_uniform_product_space (the_complex_tuples, 1));
ef_subtract_ct : RETURN (make_uniform_product_space (the_complex_tuples, 1));
ef_scalar_mult_ct : RETURN (make_uniform_product_space (the_complex_tuples, 1));
ef_dot_prod_ct : RETURN (make_uniform_product_space (the_complex_numbers, 1));
ef_norm_ct : RETURN (make_uniform_product_space (the_nonnegative_reals, 1));
ef_if : RETURN (make_uniform_product_space (the_generics, 1));
ef_ensemble : RETURN (make_uniform_product_space (the_maths_spaces, 1));
ef_member_of : RETURN (make_uniform_product_space (the_logicals, 1));
OTHERWISE : RETURN (?);
END_CASE;

END_FUNCTION; -- derive_elementary_function_range
(*

Argument definitions:

ef val: (input) The enumeration value from elementary function enumerators identifying
the elementary function whose range space is to be constructed.

return: (output) The constructed range space.

4.6.28 derive finite function domain

This function returns an instance of tuple space representing the domain of the finite func-
tion to whose pairs attribute it is applied.

EXPRESS specification:

*)
FUNCTION derive_finite_function_domain(pairs : SET [1:?] OF LIST [2:2] OF maths_value)

: tuple_space;
LOCAL

result : SET OF maths_value := [];
END_LOCAL;

137

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

-- An ambiguity in ISO 10303-11:1994 pages 99-101 leaves the result of the following
-- three lines ambiguous in those cases where an operand is simultaneously a member
-- of the base type and the aggregate type.
-- REPEAT i := 1 TO SIZEOF (pairs);
-- result := result + pairs[i][1];
-- END_REPEAT;
-- The next line unions an empty set and the desired list to get the desired set.

result := result + list_selected_components (pairs, 1);
RETURN (one_tuples_of (make_finite_space (result)));

END_FUNCTION; -- derive_finite_function_domain
(*

Argument definitions:

pairs: (input) The set of ordered pairs defining the function.

return: (output) An instance of tuple space representing the domain of the function.

4.6.29 derive finite function range

This function returns an instance of tuple space representing the range of the finite function
to whose pairs attribute it is applied.

EXPRESS specification:

*)
FUNCTION derive_finite_function_range(pairs : SET [1:?] OF LIST [2:2] OF maths_value)

: tuple_space;
LOCAL

result : SET OF maths_value := [];
END_LOCAL;

-- An ambiguity in ISO 10303-11:1994 pages 99-101 leaves the result of the following
-- three lines ambiguous in those cases where an operand is simultaneously a member
-- of the base type and the aggregate type.
-- REPEAT i := 1 TO SIZEOF (pairs);
-- result := result + pairs[i][2];
-- END_REPEAT;
-- The next line unions an empty set and the desired list to get the desired set.

result := result + list_selected_components (pairs, 2);
RETURN (one_tuples_of (make_finite_space (result)));

END_FUNCTION; -- derive_finite_function_range
(*

Argument definitions:

pairs: (input) The set of ordered pairs defining the function.

return: (output) An instance of tuple space representing the range of the function.

4.6.30 derive function domain

This function returns an instance of tuple space representing the domain of the maths -
function to which it is applied.

138

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

EXPRESS specification:

*)
FUNCTION derive_function_domain(func : maths_function) : tuple_space;
LOCAL

typenames : SET OF STRING := stripped_typeof(func);
tspace : tuple_space := make_listed_product_space ([]);
shape : LIST OF positive_integer;
sidxs : LIST OF INTEGER := [0];
itvl : finite_integer_interval;
factors : LIST OF finite_integer_interval := [];
is_uniform : BOOLEAN := TRUE;

END_LOCAL;
IF ’FINITE_FUNCTION’ IN typenames THEN
RETURN (derive_finite_function_domain (func\finite_function.pairs));

END_IF;
IF ’CONSTANT_FUNCTION’ IN typenames THEN
RETURN (domain_from (func\constant_function.source_of_domain));

END_IF;
IF ’SELECTOR_FUNCTION’ IN typenames THEN

RETURN (domain_from (func\selector_function.source_of_domain));
END_IF;
IF ’ELEMENTARY_FUNCTION’ IN typenames THEN
RETURN (derive_elementary_function_domain (func\elementary_function.func_id));

END_IF;
IF ’RESTRICTION_FUNCTION’ IN typenames THEN
RETURN (one_tuples_of (func\restriction_function.operand));

END_IF;
IF ’REPACKAGING_FUNCTION’ IN typenames THEN
IF func\repackaging_function.input_repack = ro_nochange THEN

RETURN (func\repackaging_function.operand.domain);
END_IF;
IF func\repackaging_function.input_repack = ro_wrap_as_tuple THEN

RETURN (factor1 (func\repackaging_function.operand.domain));
END_IF;
IF func\repackaging_function.input_repack = ro_unwrap_tuple THEN

RETURN (one_tuples_of (func\repackaging_function.operand.domain));
END_IF;
-- Unreachable, as there is no other possible value for input_repack.
RETURN (?);

END_IF;
IF ’REINDEXED_ARRAY_FUNCTION’ IN typenames THEN
shape := shape_of_array(func\unary_generic_expression.operand);
sidxs := func\reindexed_array_function.starting_indices;
REPEAT i := 1 TO SIZEOF (shape);

itvl := make_finite_integer_interval (sidxs[i], sidxs[i]+shape[i]-1);
INSERT (factors, itvl, i-1);
IF shape[i] <> shape[1] THEN is_uniform := FALSE; END_IF;

END_REPEAT;
IF is_uniform THEN
RETURN (make_uniform_product_space (factors[1], SIZEOF (shape)));

END_IF;
RETURN (make_listed_product_space (factors));

END_IF;
IF ’SERIES_COMPOSED_FUNCTION’ IN typenames THEN

RETURN (func\series_composed_function.operands[1].domain);
END_IF;
IF ’PARALLEL_COMPOSED_FUNCTION’ IN typenames THEN

RETURN (domain_from (func\parallel_composed_function.source_of_domain));

139

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

END_IF;
IF ’EXPLICIT_TABLE_FUNCTION’ IN typenames THEN

shape := func\explicit_table_function.shape;
sidxs[1] := func\explicit_table_function.index_base;
REPEAT i := 1 TO SIZEOF (shape);

itvl := make_finite_integer_interval (sidxs[1], sidxs[1]+shape[i]-1);
INSERT (factors, itvl, i-1);
IF shape[i] <> shape[1] THEN is_uniform := FALSE; END_IF;

END_REPEAT;
IF is_uniform THEN

RETURN (make_uniform_product_space (factors[1], SIZEOF (shape)));
END_IF;
RETURN (make_listed_product_space (factors));

END_IF;
IF ’HOMOGENEOUS_LINEAR_FUNCTION’ IN typenames THEN
RETURN (one_tuples_of (make_uniform_product_space

(factor1 (func\homogeneous_linear_function.mat.range),
func\homogeneous_linear_function.mat\explicit_table_function.shape
[func\homogeneous_linear_function.sum_index])));

END_IF;
IF ’GENERAL_LINEAR_FUNCTION’ IN typenames THEN

RETURN (one_tuples_of (make_uniform_product_space
(factor1 (func\general_linear_function.mat.range),
func\general_linear_function.mat\explicit_table_function.shape
[func\general_linear_function.sum_index] - 1)));

END_IF;
IF ’B_SPLINE_BASIS’ IN typenames THEN

RETURN (one_tuples_of (make_finite_real_interval
(func\b_spline_basis.repeated_knots[func\b_spline_basis.order], closed,
func\b_spline_basis.repeated_knots[func\b_spline_basis.num_basis+1], closed)));

END_IF;
IF ’B_SPLINE_FUNCTION’ IN typenames THEN
REPEAT i := 1 TO SIZEOF (func\b_spline_function.basis);

tspace := assoc_product_space (tspace, func\b_spline_function.basis[i].domain);
END_REPEAT;
RETURN (one_tuples_of (tspace));

END_IF;
IF ’RATIONALIZE_FUNCTION’ IN typenames THEN

RETURN (func\rationalize_function.fun.domain);
END_IF;
IF ’PARTIAL_DERIVATIVE_FUNCTION’ IN typenames THEN

RETURN (func\partial_derivative_function.derivand.domain);
END_IF;
IF ’DEFINITE_INTEGRAL_FUNCTION’ IN typenames THEN

RETURN (derive_definite_integral_domain(func));
END_IF;
IF ’ABSTRACTED_EXPRESSION_FUNCTION’ IN typenames THEN

REPEAT i := 1 TO SIZEOF (func\abstracted_expression_function.variables);
tspace := assoc_product_space (tspace, one_tuples_of (values_space_of

(func\abstracted_expression_function.variables[i])));
END_REPEAT;
RETURN (tspace);

END_IF;
IF ’EXPRESSION_DENOTED_FUNCTION’ IN typenames THEN

RETURN (values_space_of (func\expression_denoted_function.expr)\function_space.
domain_argument);

END_IF;
IF ’IMPORTED_POINT_FUNCTION’ IN typenames THEN

RETURN (one_tuples_of (make_listed_product_space ([])));

140

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

END_IF;
IF ’IMPORTED_CURVE_FUNCTION’ IN typenames THEN

RETURN (func\imported_curve_function.parametric_domain);
END_IF;
IF ’IMPORTED_SURFACE_FUNCTION’ IN typenames THEN

RETURN (func\imported_surface_function.parametric_domain);
END_IF;
IF ’IMPORTED_VOLUME_FUNCTION’ IN typenames THEN

RETURN (func\imported_volume_function.parametric_domain);
END_IF;
IF ’APPLICATION_DEFINED_FUNCTION’ IN typenames THEN

RETURN (func\application_defined_function.explicit_domain);
END_IF;
-- Unreachable, as no other subtypes of maths_function are permissible without
-- first modifying this function to account for them.
RETURN (?);

END_FUNCTION; -- derive_function_domain
(*

Argument definitions:

func: (input) The function whose domain is to be derived.

return: (output) An instance of tuple space representing the domain of the function.

4.6.31 derive function range

This function returns an instance of tuple space representing the range of the maths function
to which it is applied.

EXPRESS specification:

*)
FUNCTION derive_function_range(func : maths_function) : tuple_space;
LOCAL

typenames : SET OF STRING := stripped_typeof(func);
tspace : tuple_space := make_listed_product_space ([]);
m, n : nonnegative_integer := 0;

END_LOCAL;
IF ’FINITE_FUNCTION’ IN typenames THEN

RETURN (derive_finite_function_range (func\finite_function.pairs));
END_IF;
IF ’CONSTANT_FUNCTION’ IN typenames THEN

RETURN (one_tuples_of (make_finite_space ([func\constant_function.sole_output])));
END_IF;
IF ’SELECTOR_FUNCTION’ IN typenames THEN

tspace := func.domain;
IF (space_dimension(tspace) = 1) AND ((schema_prefix + ’TUPLE_SPACE’) IN

TYPEOF (tspace)) THEN
tspace := factor1 (tspace);

END_IF;
RETURN (one_tuples_of (factor_space (tspace, func\selector_function.selector)));

END_IF;
IF ’ELEMENTARY_FUNCTION’ IN typenames THEN

RETURN (derive_elementary_function_range (func\elementary_function.func_id));

141

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

END_IF;
IF ’RESTRICTION_FUNCTION’ IN typenames THEN

RETURN (one_tuples_of (func\restriction_function.operand));
END_IF;
IF ’REPACKAGING_FUNCTION’ IN typenames THEN

tspace := func\repackaging_function.operand.range;
IF func\repackaging_function.output_repack = ro_wrap_as_tuple THEN

tspace := one_tuples_of (tspace);
END_IF;
IF func\repackaging_function.output_repack = ro_unwrap_tuple THEN
tspace := factor1 (tspace);

END_IF;
IF func\repackaging_function.selected_output > 0 THEN

tspace := one_tuples_of (factor_space (tspace,
func\repackaging_function.selected_output));

END_IF;
RETURN (tspace);

END_IF;
IF ’REINDEXED_ARRAY_FUNCTION’ IN typenames THEN

RETURN (func\unary_generic_expression.operand\maths_function.range);
END_IF;
IF ’SERIES_COMPOSED_FUNCTION’ IN typenames THEN

RETURN (func\series_composed_function.operands[SIZEOF
(func\series_composed_function.operands)].range);

END_IF;
IF ’PARALLEL_COMPOSED_FUNCTION’ IN typenames THEN

RETURN (func\parallel_composed_function.final_function.range);
END_IF;
IF ’EXPLICIT_TABLE_FUNCTION’ IN typenames THEN

IF ’LISTED_REAL_DATA’ IN typenames THEN
RETURN (one_tuples_of (the_reals));

END_IF;
IF ’LISTED_INTEGER_DATA’ IN typenames THEN

RETURN (one_tuples_of (the_integers));
END_IF;
IF ’LISTED_LOGICAL_DATA’ IN typenames THEN
RETURN (one_tuples_of (the_logicals));

END_IF;
IF ’LISTED_STRING_DATA’ IN typenames THEN

RETURN (one_tuples_of (the_strings));
END_IF;
IF ’LISTED_COMPLEX_NUMBER_DATA’ IN typenames THEN
RETURN (one_tuples_of (the_complex_numbers));

END_IF;
IF ’LISTED_DATA’ IN typenames THEN
RETURN (one_tuples_of (func\listed_data.value_range));

END_IF;
IF ’EXTERNALLY_LISTED_DATA’ IN typenames THEN
RETURN (one_tuples_of (func\externally_listed_data.value_range));

END_IF;
IF ’LINEARIZED_TABLE_FUNCTION’ IN typenames THEN

RETURN (func\linearized_table_function.source.range);
END_IF;
IF ’BASIC_SPARSE_MATRIX’ IN typenames THEN

RETURN (func\basic_sparse_matrix.val.range);
END_IF;
-- Unreachable, as no other subtypes of explicit_table_function are permissible
-- without first modifying this function to account for them.
RETURN (?);

142

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

END_IF;
IF ’HOMOGENEOUS_LINEAR_FUNCTION’ IN typenames THEN

RETURN (one_tuples_of (make_uniform_product_space
(factor1 (func\homogeneous_linear_function.mat.range),
func\homogeneous_linear_function.mat\explicit_table_function.shape
[3 - func\homogeneous_linear_function.sum_index])));

END_IF;
IF ’GENERAL_LINEAR_FUNCTION’ IN typenames THEN

RETURN (one_tuples_of (make_uniform_product_space
(factor1 (func\general_linear_function.mat.range),
func\general_linear_function.mat\explicit_table_function.shape
[3 - func\general_linear_function.sum_index])));

END_IF;
IF ’B_SPLINE_BASIS’ IN typenames THEN

RETURN (one_tuples_of (make_uniform_product_space (the_reals,
func\b_spline_basis.num_basis)));

END_IF;
IF ’B_SPLINE_FUNCTION’ IN typenames THEN
tspace := factor1 (func\b_spline_function.coef.domain);
m := SIZEOF (func\b_spline_function.basis);
n := space_dimension (tspace);
IF m = n THEN

RETURN (one_tuples_of (the_reals));
END_IF;
IF m = n - 1 THEN

RETURN (one_tuples_of (make_uniform_product_space (the_reals,
factor_space (tspace, n)\finite_integer_interval.size)));

END_IF;
tspace := extract_factors (tspace, m+1, n);
RETURN (one_tuples_of (make_function_space (sc_equal, tspace, sc_subspace,

number_superspace_of (func\b_spline_function.coef.range))));
END_IF;
IF ’RATIONALIZE_FUNCTION’ IN typenames THEN

tspace := factor1 (func\rationalize_function.fun.range);
n := space_dimension (tspace);
RETURN (one_tuples_of (make_uniform_product_space (number_superspace_of (

factor1 (tspace)), n-1)));
END_IF;
IF ’PARTIAL_DERIVATIVE_FUNCTION’ IN typenames THEN
RETURN (drop_numeric_constraints (

func\partial_derivative_function.derivand.range));
END_IF;
IF ’DEFINITE_INTEGRAL_FUNCTION’ IN typenames THEN

RETURN (drop_numeric_constraints (
func\definite_integral_function.integrand.range));

END_IF;
IF ’ABSTRACTED_EXPRESSION_FUNCTION’ IN typenames THEN

RETURN (one_tuples_of(values_space_of(func\abstracted_expression_function.expr)));
END_IF;
IF ’EXPRESSION_DENOTED_FUNCTION’ IN typenames THEN
RETURN (values_space_of (func\expression_denoted_function.expr)\function_space.

range_argument);
END_IF;
IF ’IMPORTED_POINT_FUNCTION’ IN typenames THEN

RETURN (one_tuples_of (make_uniform_product_space (the_reals,
dimension_of (func\imported_point_function.geometry))));

END_IF;
IF ’IMPORTED_CURVE_FUNCTION’ IN typenames THEN
RETURN (one_tuples_of (make_uniform_product_space (the_reals,

143

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

dimension_of (func\imported_curve_function.geometry))));
END_IF;
IF ’IMPORTED_SURFACE_FUNCTION’ IN typenames THEN
RETURN (one_tuples_of (make_uniform_product_space (the_reals,

dimension_of (func\imported_surface_function.geometry))));
END_IF;
IF ’IMPORTED_VOLUME_FUNCTION’ IN typenames THEN

RETURN (one_tuples_of (make_uniform_product_space (the_reals,
dimension_of (func\imported_volume_function.geometry))));

END_IF;
IF ’APPLICATION_DEFINED_FUNCTION’ IN typenames THEN

RETURN (func\application_defined_function.explicit_range);
END_IF;
-- Unreachable, as no other subtypes of maths_function are permissible without
-- first modifying this function to account for them.
RETURN (?);

END_FUNCTION; -- derive_function_range
(*

Argument definitions:

func: (input) The function whose range is to be derived.

return: (output) An instance of tuple space representing the range of the function.

4.6.32 domain from

This function returns the domain from the source of domain attribute used by constant -
function, selector function and parallel composed function instances.

EXPRESS specification:

*)
FUNCTION domain_from(ref : maths_space_or_function) : tuple_space;
LOCAL

typenames : SET OF STRING := stripped_typeof(ref);
func : maths_function;

END_LOCAL;
IF NOT EXISTS (ref) THEN RETURN (?); END_IF;
IF ’TUPLE_SPACE’ IN typenames THEN RETURN (ref); END_IF;
IF ’MATHS_SPACE’ IN typenames THEN RETURN (one_tuples_of (ref)); END_IF;
func := ref;
IF ’CONSTANT_FUNCTION’ IN typenames THEN

RETURN (domain_from (func\constant_function.source_of_domain));
END_IF;
IF ’SELECTOR_FUNCTION’ IN typenames THEN

RETURN (domain_from (func\selector_function.source_of_domain));
END_IF;
IF ’PARALLEL_COMPOSED_FUNCTION’ IN typenames THEN
RETURN (domain_from (func\parallel_composed_function.source_of_domain));

END_IF;
RETURN (func.domain);

END_FUNCTION; -- domain_from
(*

144

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

Argument definitions:

ref: (input) The source of the domain.

return: (output) The domain indicated by the source.

4.6.33 dot count

This function scans its input string and returns the number of ’.’ characters which it contains.

EXPRESS specification:

*)
FUNCTION dot_count(str : STRING) : INTEGER;
LOCAL

n : INTEGER := 0;
END_LOCAL;
REPEAT i := 1 TO LENGTH (str);
IF str[i] = ’.’ THEN n := n + 1; END_IF;

END_REPEAT;
RETURN (n);

END_FUNCTION; -- dot_count
(*

Argument definitions:

str: (input) The string whose ’.’ characters are to be counted.

return: (output) The number of dot characters in the input string.

4.6.34 dotted identifiers syntax

This function determines whether or not a string has the syntax of an EXPRESS identifier
or qualified identifier. That is, whether or not it is syntactically a sequence of one or more
EXPRESS identifiers separated by periods (also known as full stops).

EXPRESS specification:

*)
FUNCTION dotted_identifiers_syntax(str : STRING) : BOOLEAN;
LOCAL

k : positive_integer;
m : positive_integer;

END_LOCAL;
IF NOT EXISTS (str) THEN RETURN (FALSE); END_IF;
k := parse_express_identifier (str, 1);
IF k = 1 THEN RETURN (FALSE); END_IF;
REPEAT WHILE k <= LENGTH (str);

IF (str[k] <> ’.’) OR (k = LENGTH (str)) THEN RETURN (FALSE); END_IF;
m := parse_express_identifier (str, k+1);
IF m = k + 1 THEN RETURN (FALSE); END_IF;
k := m;

145

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

END_REPEAT;
RETURN (TRUE);

END_FUNCTION; -- dotted_identifiers_syntax
(*

Argument definitions:

str: (input) The string to be tested.

return: (output) A BOOLEAN value which is TRUE if the input string value is syntactically
a sequence of identifiers separated by periods.

4.6.35 drop numeric constraints

This function returns a maths space corresponding in structure and component type to its input
space, but with any numeric space component replaced by its corresponding unconstrained
elementary space. This process is carried out recursively on the components of spaces which are
tuple spaces.

NOTE This function is used to derive the function range for instances of partial derivative function
and definite integral function.

EXPRESS specification:

*)
FUNCTION drop_numeric_constraints(spc : maths_space) : maths_space;
LOCAL

typenames : SET OF STRING := stripped_typeof(spc);
tspc : listed_product_space;
factors : LIST OF maths_space := [];
xspc : extended_tuple_space;

END_LOCAL;
IF ’UNIFORM_PRODUCT_SPACE’ IN typenames THEN

RETURN (make_uniform_product_space (drop_numeric_constraints (
spc\uniform_product_space.base), spc\uniform_product_space.exponent));

END_IF;
IF ’LISTED_PRODUCT_SPACE’ IN typenames THEN

tspc := spc;
REPEAT i := 1 TO SIZEOF (tspc.factors);

INSERT (factors, drop_numeric_constraints (tspc.factors[i]), i-1);
END_REPEAT;
RETURN (make_listed_product_space (factors));

END_IF;
IF ’EXTENDED_TUPLE_SPACE’ IN typenames THEN
xspc := spc;
RETURN (make_extended_tuple_space (drop_numeric_constraints (xspc.base),

drop_numeric_constraints (xspc.extender)));
END_IF;
IF subspace_of_es (spc, es_numbers) THEN

RETURN (number_superspace_of (spc));
END_IF;
RETURN (spc);

END_FUNCTION; -- drop_numeric_constraints
(*

146

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

Argument definitions:

spc: (input) The tuple space from which numeric constraints are to be dropped.

return: (output) The tuple space corresponding to spc with its numeric constraints removed.

4.6.36 enclose cregion in pregion

This function constructs the smallest instance of polar complex number region with given
centre which contains a given instance of cartesian complex number region, if such an
instance exists. It returns the indeterminate value if no such instance exists.

NOTE The indeterminate value is returned if either input is indeterminate or both the given centre is
inside the given region and also the given region has infinite extent.

EXPRESS specification:

*)
FUNCTION enclose_cregion_in_pregion(crgn : cartesian_complex_number_region;

centre : complex_number_literal)
: polar_complex_number_region;

-- Find equivalent direction in range -PI < a <= PI.
FUNCTION angle(a : REAL) : REAL;

REPEAT WHILE a > PI; a := a - 2.0*PI; END_REPEAT;
REPEAT WHILE a <= -PI; a := a + 2.0*PI; END_REPEAT;
RETURN (a);

END_FUNCTION;
-- Determine whether a real is strictly within a real interval
FUNCTION strictly_in(z : REAL;

zitv : real_interval) : LOGICAL;
RETURN ((NOT min_exists(zitv) OR (z > real_min(zitv))) AND

(NOT max_exists(zitv) OR (z < real_max(zitv))));
END_FUNCTION;
-- Include direction in minmax collection
PROCEDURE angle_minmax(ab, a : REAL;

a_in : BOOLEAN;
VAR amin, amax : REAL;
VAR amin_in, amax_in : BOOLEAN);

a := angle(a - ab);
IF amin = a THEN amin_in := amin_in OR a_in; END_IF;
IF amin > a THEN amin := a; amin_in := a_in; END_IF;
IF amax = a THEN amax_in := amax_in OR a_in; END_IF;
IF amax < a THEN amax := a; amax_in := a_in; END_IF;

END_PROCEDURE;
-- Include distance in max collection
PROCEDURE range_max(r : REAL;

incl : BOOLEAN;
VAR rmax : REAL;
VAR rmax_in : BOOLEAN);

IF rmax = r THEN rmax_in := rmax_in OR incl; END_IF;
IF rmax < r THEN rmax := r; rmax_in := incl; END_IF;

END_PROCEDURE;
-- Include distance in min collection
PROCEDURE range_min(r : REAL;

incl : BOOLEAN;
VAR rmin : REAL;

147

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

VAR rmin_in : BOOLEAN);
IF rmin = r THEN rmin_in := rmin_in OR incl; END_IF;
IF (rmin < 0.0) OR (rmin > r) THEN rmin := r; rmin_in := incl; END_IF;

END_PROCEDURE;
LOCAL

xitv, yitv : real_interval;
is_xmin, is_xmax, is_ymin, is_ymax : BOOLEAN;
xmin, xmax, ymin, ymax, xc, yc : REAL := 0.0;
xmin_in, xmax_in, ymin_in, ymax_in : BOOLEAN := FALSE;
rmin, rmax : REAL := -1.0;
amin : REAL := 4.0;
amax : REAL := -4.0;
rmax_exists, outside : BOOLEAN := TRUE;
rmin_in, rmax_in, amin_in, amax_in : BOOLEAN := FALSE;
ab, a, r : REAL := 0.0;
incl : BOOLEAN;
ritv : real_interval;
aitv : finite_real_interval;
minclo, maxclo : open_closed := open;

END_LOCAL;
IF NOT EXISTS (crgn) OR NOT EXISTS (centre) THEN RETURN (?); END_IF;
-- Extract elementary input information
xitv := crgn.real_constraint;
yitv := crgn.imag_constraint;
xc := centre.real_part;
yc := centre.imag_part;
is_xmin := min_exists(xitv);
is_xmax := max_exists(xitv);
is_ymin := min_exists(yitv);
is_ymax := max_exists(yitv);
IF is_xmin THEN xmin := real_min(xitv); xmin_in := min_included(xitv); END_IF;
IF is_xmax THEN xmax := real_max(xitv); xmax_in := max_included(xitv); END_IF;
IF is_ymin THEN ymin := real_min(yitv); ymin_in := min_included(yitv); END_IF;
IF is_ymax THEN ymax := real_max(yitv); ymax_in := max_included(yitv); END_IF;
rmax_exists := is_xmin AND is_xmax AND is_ymin AND is_ymax;
-- Identify base direction with respect to which all relevant directions lie
-- within +/- 0.5*PI, or that the centre lies properly inside crgn.
IF is_xmin AND (xc <= xmin) THEN ab := 0.0;
ELSE IF is_ymin AND (yc <= ymin) THEN ab := 0.5*PI;
ELSE IF is_ymax AND (yc >= ymax) THEN ab := -0.5*PI;
ELSE IF is_xmax AND (xc >= xmax) THEN ab := PI;
ELSE outside := FALSE;
END_IF; END_IF; END_IF; END_IF;
IF NOT outside AND NOT rmax_exists THEN

RETURN (?); -- No enclosing polar region exists (requires whole plane)
END_IF;
-- Identify any closest point on a side but not a corner.
IF is_xmin AND (xc <= xmin) AND strictly_in(yc,yitv) THEN

rmin := xmin - xc; rmin_in := xmin_in;
ELSE IF is_ymin AND (yc <= ymin) AND strictly_in(xc,xitv) THEN

rmin := ymin - yc; rmin_in := ymin_in;
ELSE IF is_ymax AND (yc >= ymax) AND strictly_in(xc,xitv) THEN

rmin := yc - ymax; rmin_in := ymax_in;
ELSE IF is_xmax AND (xc >= xmax) AND strictly_in(yc,yitv) THEN

rmin := xc - xmax; rmin_in := xmax_in;
END_IF; END_IF; END_IF; END_IF;
IF is_xmin THEN

IF is_ymin THEN -- Consider lower left corner
r := SQRT((xmin-xc)**2 + (ymin-yc)**2);

148

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

incl := xmin_in AND ymin_in;
IF rmax_exists THEN range_max(r,incl,rmax,rmax_in); END_IF;
IF outside THEN

IF r > 0.0 THEN
range_min(r,incl,rmin,rmin_in);
a := angle(atan2(ymin-yc,xmin-xc) - ab);
IF xc = xmin THEN incl := xmin_in; END_IF;
IF yc = ymin THEN incl := ymin_in; END_IF;
angle_minmax(ab,a,incl,amin,amax,amin_in,amax_in);

ELSE -- Centre at lower left corner
rmin := 0.0; rmin_in := xmin_in AND ymin_in;
amin := angle(0.0-ab); amin_in := ymin_in;
amax := angle(0.5*PI-ab); amax_in := xmin_in;

END_IF;
END_IF;

ELSE IF xc <= xmin THEN -- Consider points near (xmin, -infinity)
angle_minmax(ab,-0.5*PI,(xc=xmin) AND xmin_in,amin,amax,amin_in,amax_in);

END_IF; END_IF;
IF NOT is_ymax AND (xc <= xmin) THEN -- Consider points near (xmin, +infinity)

angle_minmax(ab,0.5*PI,(xc=xmin) AND xmin_in,amin,amax,amin_in,amax_in);
END_IF;

END_IF;
IF is_ymin THEN

IF is_xmax THEN -- Consider lower right corner
r := SQRT((xmax-xc)**2 + (ymin-yc)**2);
incl := xmax_in AND ymin_in;
IF rmax_exists THEN range_max(r,incl,rmax,rmax_in); END_IF;
IF outside THEN

IF r > 0.0 THEN
range_min(r,incl,rmin,rmin_in);
a := angle(atan2(ymin-yc,xmax-xc) - ab);
IF xc = xmax THEN incl := xmax_in; END_IF;
IF yc = ymin THEN incl := ymin_in; END_IF;
angle_minmax(ab,a,incl,amin,amax,amin_in,amax_in);

ELSE -- Centre at lower right corner
rmin := 0.0; rmin_in := xmax_in AND ymin_in;
amin := angle(0.5*PI-ab); amin_in := ymin_in;
amax := angle(PI-ab); amax_in := xmax_in;

END_IF;
END_IF;

ELSE IF yc <= ymin THEN -- Consider points near (+infinity, ymin)
angle_minmax(ab,0.0,(yc=ymin) AND ymin_in,amin,amax,amin_in,amax_in);

END_IF; END_IF;
IF NOT is_xmin AND (yc <= ymin) THEN -- Consider points near (-infinity, ymin)

angle_minmax(ab,PI,(yc=ymin) AND ymin_in,amin,amax,amin_in,amax_in);
END_IF;

END_IF;
IF is_xmax THEN
IF is_ymax THEN -- Consider upper right corner

r := SQRT((xmax-xc)**2 + (ymax-yc)**2);
incl := xmax_in AND ymax_in;
IF rmax_exists THEN range_max(r,incl,rmax,rmax_in); END_IF;
IF outside THEN

IF r > 0.0 THEN
range_min(r,incl,rmin,rmin_in);
a := angle(atan2(ymax-yc,xmax-xc) - ab);
IF xc = xmax THEN incl := xmax_in; END_IF;
IF yc = ymax THEN incl := ymax_in; END_IF;
angle_minmax(ab,a,incl,amin,amax,amin_in,amax_in);

149

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ELSE -- Centre at lower left corner
rmin := 0.0; rmin_in := xmax_in AND ymax_in;
amin := angle(-PI-ab); amin_in := ymax_in;
amax := angle(-0.5*PI-ab); amax_in := xmax_in;

END_IF;
END_IF;

ELSE IF xc >= xmax THEN -- Consider points near (xmax, +infinity)
angle_minmax(ab,0.5*PI,(xc=xmax) AND xmax_in,amin,amax,amin_in,amax_in);

END_IF; END_IF;
IF NOT is_ymin AND (xc >= xmax) THEN -- Consider points near (xmax, -infinity)

angle_minmax(ab,-0.5*PI,(xc=xmax) AND xmax_in,amin,amax,amin_in,amax_in);
END_IF;

END_IF;
IF is_ymax THEN

IF is_xmin THEN -- Consider upper left corner
r := SQRT((xmin-xc)**2 + (ymax-yc)**2);
incl := xmin_in AND ymax_in;
IF rmax_exists THEN range_max(r,incl,rmax,rmax_in); END_IF;
IF outside THEN
IF r > 0.0 THEN

range_min(r,incl,rmin,rmin_in);
a := angle(atan2(ymax-yc,xmin-xc) - ab);
IF xc = xmin THEN incl := xmin_in; END_IF;
IF yc = ymax THEN incl := ymax_in; END_IF;
angle_minmax(ab,a,incl,amin,amax,amin_in,amax_in);

ELSE -- Centre at lower right corner
rmin := 0.0; rmin_in := xmin_in AND ymax_in;
amin := angle(0.5*PI-ab); amin_in := ymax_in;
amax := angle(PI-ab); amax_in := xmin_in;

END_IF;
END_IF;

ELSE IF yc >= ymax THEN -- Consider points near (-infinity, ymax)
angle_minmax(ab,PI,(yc=ymax) AND ymax_in,amin,amax,amin_in,amax_in);

END_IF; END_IF;
IF NOT is_xmax AND (yc >= ymax) THEN -- Consider points near (+infinity, ymax)

angle_minmax(ab,0.0,(yc=ymax) AND ymax_in,amin,amax,amin_in,amax_in);
END_IF;

END_IF;
IF outside THEN -- Change direction origin from ab back to zero

amin := angle(amin+ab);
IF amin = PI THEN amin := -PI; END_IF;
amax := angle(amax+ab);
IF amax <= amin THEN amax := amax + 2.0*PI; END_IF;

ELSE
amin := -PI; amin_in := FALSE;
amax := PI; amax_in := FALSE;

END_IF;
IF amin_in THEN minclo := closed; END_IF;
IF amax_in THEN maxclo := closed; END_IF;
aitv := make_finite_real_interval(amin,minclo,amax,maxclo);
minclo := open;
IF rmin_in THEN minclo := closed; END_IF;
IF rmax_exists THEN

maxclo := open;
IF rmax_in THEN maxclo := closed; END_IF;
ritv := make_finite_real_interval(rmin,minclo,rmax,maxclo);

ELSE
ritv := make_real_interval_from_min(rmin,minclo);

END_IF;

150

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

RETURN (make_polar_complex_number_region(centre,ritv,aitv));
END_FUNCTION; -- enclose_cregion_in_pregion
(*

Argument definitions:

crgn: (input) The cartesian complex number region to be enclosed.

centre: (input) The centre to be used for the enclosing region.

return: (output) The smallest polar complex region with the given centre enclosing the input
region, if any such region exists.

4.6.37 enclose pregion in cregion

This function constructs the smallest instance of cartesian complex number region which
contains a given instance of polar complex number region, if such an instance exists. It
returns the indeterminate value if no such instance exists.

NOTE The indeterminate value is returned if the input is indeterminate or the input region extends
arbitrarily far in all four cartesian directions.

EXPRESS specification:

*)
FUNCTION enclose_pregion_in_cregion(prgn : polar_complex_number_region)

: cartesian_complex_number_region;
PROCEDURE nearest_good_direction(acart : REAL;

aitv : finite_real_interval;
VAR a : REAL;
VAR a_in : BOOLEAN);

a := acart; a_in := TRUE;
IF a < aitv.min THEN

-- a+2.0*PI > aitv.min automatically!
IF a+2.0*PI < aitv.max THEN RETURN; END_IF;
IF a+2.0*PI = aitv.max THEN a_in := max_included(aitv); RETURN; END_IF;

ELSE IF a = aitv.min THEN a_in := min_included(aitv); RETURN;
ELSE IF a < aitv.max THEN RETURN;
ELSE IF a = aitv.max THEN a_in := max_included(aitv); RETURN;
END_IF; END_IF; END_IF; END_IF;
IF COS(acart - aitv.max) >= COS(acart - aitv.min) THEN

a := aitv.max; a_in := max_included(aitv);
ELSE

a := aitv.min; a_in := min_included(aitv);
END_IF;

END_PROCEDURE;
LOCAL

xc, yc, xmin, xmax, ymin, ymax : REAL := 0.0;
ritv, xitv, yitv : real_interval;
aitv : finite_real_interval;
xmin_exists, xmax_exists, ymin_exists, ymax_exists : BOOLEAN;
xmin_in, xmax_in, ymin_in, ymax_in : BOOLEAN := FALSE;
a, r : REAL := 0.0;
a_in : BOOLEAN := FALSE;
min_clo, max_clo : open_closed := open;

151

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

END_LOCAL;
IF NOT EXISTS (prgn) THEN RETURN (?); END_IF;
-- Extract elementary input data
xc := prgn.centre.real_part;
yc := prgn.centre.imag_part;
ritv := prgn.distance_constraint;
aitv := prgn.direction_constraint;
-- Determine xmin data
nearest_good_direction(PI,aitv,a,a_in);
IF COS(a) >= 0.0 THEN

xmin_exists := TRUE;
xmin := xc + real_min(ritv)*COS(a);
xmin_in := a_in AND (min_included(ritv) OR (COS(a) = 0.0));

ELSE
IF max_exists(ritv) THEN
xmin_exists := TRUE;
xmin := xc + real_max(ritv)*COS(a);
xmin_in := a_in AND max_included(ritv);

ELSE
xmin_exists := FALSE;

END_IF;
END_IF;
-- Determine xmax data
nearest_good_direction(0.0,aitv,a,a_in);
IF COS(a) <= 0.0 THEN
xmax_exists := TRUE;
xmax := xc + real_min(ritv)*COS(a);
xmax_in := a_in AND (min_included(ritv) OR (COS(a) = 0.0));

ELSE
IF max_exists(ritv) THEN

xmax_exists := TRUE;
xmax := xc + real_max(ritv)*COS(a);
xmax_in := a_in AND max_included(ritv);

ELSE
xmax_exists := FALSE;

END_IF;
END_IF;
-- Determine ymin data
nearest_good_direction(-0.5*PI,aitv,a,a_in);
IF SIN(a) >= 0.0 THEN

ymin_exists := TRUE;
ymin := yc + real_min(ritv)*SIN(a);
ymin_in := a_in AND (min_included(ritv) OR (SIN(a) = 0.0));

ELSE
IF max_exists(ritv) THEN

ymin_exists := TRUE;
ymin := yc + real_max(ritv)*SIN(a);
ymin_in := a_in AND max_included(ritv);

ELSE
ymin_exists := FALSE;

END_IF;
END_IF;
-- Determine ymax data
nearest_good_direction(0.5*PI,aitv,a,a_in);
IF SIN(a) <= 0.0 THEN

ymax_exists := TRUE;
ymax := yc + real_min(ritv)*SIN(a);
ymax_in := a_in AND (min_included(ritv) OR (SIN(a) = 0.0));

ELSE

152

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

IF max_exists(ritv) THEN
ymax_exists := TRUE;
ymax := yc + real_max(ritv)*SIN(a);
ymax_in := a_in AND max_included(ritv);

ELSE
ymax_exists := FALSE;

END_IF;
END_IF;
-- Construct result
IF NOT (xmin_exists OR xmax_exists OR ymin_exists OR ymax_exists) THEN

RETURN (?); -- No finite boundaries exist
END_IF;
-- Construct real_constraint
IF xmin_exists THEN
IF xmin_in THEN min_clo := closed; ELSE min_clo := open; END_IF;
IF xmax_exists THEN

IF xmax_in THEN max_clo := closed; ELSE max_clo := open; END_IF;
xitv := make_finite_real_interval(xmin,min_clo,xmax,max_clo);

ELSE
xitv := make_real_interval_from_min(xmin,min_clo);

END_IF;
ELSE

IF xmax_exists THEN
IF xmax_in THEN max_clo := closed; ELSE max_clo := open; END_IF;
xitv := make_real_interval_to_max(xmax,max_clo);

ELSE
xitv := the_reals;

END_IF;
END_IF;
-- Construct imag_constraint
IF ymin_exists THEN

IF ymin_in THEN min_clo := closed; ELSE min_clo := open; END_IF;
IF ymax_exists THEN
IF ymax_in THEN max_clo := closed; ELSE max_clo := open; END_IF;
yitv := make_finite_real_interval(ymin,min_clo,ymax,max_clo);

ELSE
yitv := make_real_interval_from_min(ymin,min_clo);

END_IF;
ELSE

IF ymax_exists THEN
IF ymax_in THEN max_clo := closed; ELSE max_clo := open; END_IF;
yitv := make_real_interval_to_max(ymax,max_clo);

ELSE
yitv := the_reals;

END_IF;
END_IF;
-- Construct cartesian region
RETURN (make_cartesian_complex_number_region(xitv,yitv));

END_FUNCTION; -- enclose_pregion_in_cregion
(*

Argument definitions:

prgn: (input) The polar complex number region to be enclosed.

return: (output) The smallest cartesian complex region enclosing the input region, if any such
region exists.

153

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

4.6.38 enclose pregion in pregion

This function constructs the smallest instance of polar complex number region with given
centre which contains a given instance of polar complex number region, if such an instance
exists. It returns the indeterminate value if no such instance exists.

NOTE The indeterminate value is returned if either input is indeterminate or both the given centre is
inside the given region and also the given region has infinite extent.

EXPRESS specification:

*)
FUNCTION enclose_pregion_in_pregion(prgn : polar_complex_number_region;

centre : complex_number_literal)
: polar_complex_number_region;

-- Find equivalent direction in range -PI < a <= PI.
FUNCTION angle(a : REAL) : REAL;

REPEAT WHILE a > PI; a := a - 2.0*PI; END_REPEAT;
REPEAT WHILE a <= -PI; a := a + 2.0*PI; END_REPEAT;
RETURN (a);

END_FUNCTION;
-- Find proper limits for direction interval
PROCEDURE angle_range(VAR amin, amax : REAL);
amin := angle(amin);
IF amin = PI THEN amin := -PI; END_IF;
amax := angle(amax);
IF amax <= amin THEN amax := amax + 2.0*PI; END_IF;

END_PROCEDURE;
-- Determine whether a direction is strictly within a direction interval
FUNCTION strictly_in(a : REAL;

aitv : finite_real_interval) : LOGICAL;
a := angle(a);
RETURN ({aitv.min < a < aitv.max} OR {aitv.min < a+2.0*PI < aitv.max});

END_FUNCTION;
-- Find min and max and related inclusion booleans among four candidates,
-- using a base direction chosen to ensure the algebraic comparisons are valid.
PROCEDURE find_aminmax(ab,a0,a1,a2,a3 : REAL;

in0,in1,in2,in3 : BOOLEAN;
VAR amin,amax : REAL;
VAR amin_in,amax_in : BOOLEAN);

LOCAL
a : REAL;

END_LOCAL;
amin := angle(a0-ab); amin_in := in0;
amax := amin; amax_in := in0;
a := angle(a1-ab);
IF a = amin THEN amin_in := amin_in OR in1; END_IF;
IF a < amin THEN amin := a; amin_in := in1; END_IF;
IF a = amax THEN amax_in := amax_in OR in1; END_IF;
IF a > amax THEN amax := a; amax_in := in1; END_IF;
a := angle(a2-ab);
IF a = amin THEN amin_in := amin_in OR in2; END_IF;
IF a < amin THEN amin := a; amin_in := in2; END_IF;
IF a = amax THEN amax_in := amax_in OR in2; END_IF;
IF a > amax THEN amax := a; amax_in := in2; END_IF;
a := angle(a3-ab);
IF a = amin THEN amin_in := amin_in OR in3; END_IF;

154

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

IF a < amin THEN amin := a; amin_in := in3; END_IF;
IF a = amax THEN amax_in := amax_in OR in3; END_IF;
IF a > amax THEN amax := a; amax_in := in3; END_IF;
amin := amin+ab;
amax := amax+ab;
angle_range(amin,amax);

END_PROCEDURE;

LOCAL
ritp, ritv : real_interval;
aitp, aitv : finite_real_interval;
xp, yp, xc, yc, rmax, rmin, amin, amax, rc, acp, apc : REAL := 0.0;
rmax_in, rmin_in, amin_in, amax_in : BOOLEAN := FALSE;
rmxp, rmnp, x, y, r, a, ab, r0, a0, r1, a1, r2, a2, r3, a3 : REAL := 0.0;
in0, in1, in2, in3, inn : BOOLEAN := FALSE;
minclo, maxclo : open_closed := open;

END_LOCAL;
-- Extract elementary input information
IF NOT EXISTS (prgn) OR NOT EXISTS (centre) THEN RETURN (?); END_IF;
xp := prgn.centre.real_part;
yp := prgn.centre.imag_part;
ritp := prgn.distance_constraint;
aitp := prgn.direction_constraint;
xc := centre.real_part;
yc := centre.imag_part;
IF (xc = xp) AND (yc = yp) THEN RETURN (prgn); END_IF;
rc := SQRT((xp-xc)**2 + (yp-yc)**2);
acp := atan2(yp-yc,xp-xc);
apc := atan2(yc-yp,xc-xp);
rmnp := real_min(ritp);
-- Analyse cases by existence of max distance and direction limits
IF max_exists(ritp) THEN

rmxp := real_max(ritp);
IF aitp.max - aitp.min = 2.0*PI THEN

-- annulus or disk, with or without slot or puncture
inn := NOT max_included(aitp); -- slot exists;
a := angle(aitp.min); -- slot direction
rmax := rc+rmxp; rmax_in := max_included(ritp);
IF inn AND (acp = a) THEN rmax_in := FALSE; END_IF;
IF rc > rmxp THEN

a0 := ASIN(rmxp/rc);
amin := angle(acp-a0); amin_in := max_included(ritp);
IF amin = PI THEN amin := -PI; END_IF;
amax := angle(acp+a0); amax_in := amin_in;
IF amax < amin THEN amax := amax + 2.0*PI; END_IF;
rmin := rc-rmxp; rmin_in := amin_in;
IF inn THEN

-- slotted case
IF apc = a THEN rmin_in := FALSE; END_IF;
IF angle(amin+0.5*PI) = a THEN amin_in := FALSE; END_IF;
IF angle(amax-0.5*PI) = a THEN amax_in := FALSE; END_IF;

END_IF;
ELSE IF rc = rmxp THEN

amin := angle(acp-0.5*PI); amin_in := FALSE;
IF amin = PI THEN amin := -PI; END_IF;
amax := angle(acp+0.5*PI); amax_in := FALSE;
IF amax < amin THEN amax := amax + 2.0*PI; END_IF;
rmin := 0.0; rmin_in := max_included(ritp);
IF inn AND (apc = a) THEN rmin_in := FALSE; END_IF;

155

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ELSE IF rc > rmnp THEN
IF inn AND (apc = a) THEN -- in the slot

rmin := 0.0; rmin_in := FALSE;
amin := aitp.min; amin_in := FALSE;
amax := aitp.max; amax_in := FALSE;

ELSE
rmin := 0.0; rmin_in := TRUE;
amin := -PI; amin_in := FALSE;
amax := PI; amax_in := TRUE;

END_IF;
ELSE

rmin := rmnp-rc; rmin_in := min_included(ritp);
amin := -PI; amin_in := FALSE;
amax := PI; amax_in := TRUE;
IF inn THEN -- Special cases when aligned with slot
IF apc = a THEN

rmin_in := FALSE;
amin := aitp.min; amin_in := FALSE;
amax := aitp.max; amax_in := FALSE;

ELSE IF acp = a THEN
amin := aitp.min; amin_in := FALSE;
amax := aitp.max; amax_in := FALSE;

END_IF; END_IF;
END_IF;

END_IF; END_IF; END_IF;
ELSE -- direction range < 2*PI

-- Compute data for corners with respect to xc,yc
x := xp + rmxp*cos(aitp.min) - xc;
y := yp + rmxp*sin(aitp.min) - yc;
r0 := SQRT(x**2 + y**2);
in0 := max_included(ritp) AND min_included(aitp);
IF r0 <> 0.0 THEN a0 := atan2(y,x); END_IF;
x := xp + rmxp*cos(aitp.max) - xc;
y := yp + rmxp*sin(aitp.max) - yc;
r1 := SQRT(x**2 + y**2);
in1 := max_included(ritp) AND max_included(aitp);
IF r1 <> 0.0 THEN a1 := atan2(y,x); END_IF;
x := xp + rmnp*cos(aitp.max) - xc;
y := yp + rmnp*sin(aitp.max) - yc;
r2 := SQRT(x**2 + y**2);
in2 := min_included(ritp) AND max_included(aitp);
IF r2 <> 0.0 THEN a2 := atan2(y,x); ELSE a2 := a1; in2 := in1; END_IF;
IF r1 = 0.0 THEN a1 := a2; in1 := in2; END_IF;
x := xp + rmnp*cos(aitp.min) - xc;
y := yp + rmnp*sin(aitp.min) - yc;
r3 := SQRT(x**2 + y**2);
in3 := min_included(ritp) AND min_included(aitp);
IF r3 <> 0.0 THEN a3 := atan2(y,x); ELSE a3 := a0; in3 := in0; END_IF;
IF r0 = 0.0 THEN a0 := a3; in0 := in3; END_IF;
IF rmnp = 0.0 THEN in2 := min_included(ritp); in3 := in2; END_IF;
IF (apc = angle(aitp.min)) OR (acp = angle(aitp.min)) THEN

in0 := min_included(aitp);
in3 := in0;

ELSE IF (apc = angle(aitp.max)) OR (acp = angle(aitp.max)) THEN
in1 := max_included(aitp);
in2 := in1;

END_IF; END_IF;
-- Find rmax
IF strictly_in(acp,aitp) THEN

156

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

rmax := rc+rmxp; rmax_in := max_included(ritp);
ELSE

rmax := r0; rmax_in := in0;
IF rmax = r1 THEN rmax_in := rmax_in OR in1; END_IF;
IF rmax < r1 THEN rmax := r1; rmax_in := in1; END_IF;
IF rmax = r2 THEN rmax_in := rmax_in OR in2; END_IF;
IF rmax < r2 THEN rmax := r2; rmax_in := in2; END_IF;
IF rmax = r3 THEN rmax_in := rmax_in OR in3; END_IF;
IF rmax < r3 THEN rmax := r3; rmax_in := in3; END_IF;

END_IF;
-- Find rmin
IF strictly_in(apc,aitp) THEN

IF rc >= rmxp THEN
rmin := rc-rmxp; rmin_in := max_included(ritp);

ELSE IF rc <= rmnp THEN
rmin := rmnp-rc; rmin_in := min_included(ritp);

ELSE
rmin := 0.0; rmin_in := TRUE;

END_IF; END_IF;
ELSE

rmin := r0; rmin_in := in0;
a := apc-aitp.min;
r := rc*COS(a);
IF {rmnp < r < rmxp} THEN -- use nearest point on line segment
rmin := rc*SIN(ABS(a)); rmin_in := min_included(aitp);

END_IF;
a := apc-aitp.max;
r := rc*COS(a);
IF {rmnp < r < rmxp} THEN -- try nearest point on line segment
r := rc*SIN(ABS(a)); inn := max_included(aitp);
IF r = rmin THEN rmin_in := rmin_in OR inn; END_IF;
IF r < rmin THEN rmin := r; rmin_in := inn; END_IF;

END_IF;
IF r1 = rmin THEN rmin_in := rmin_in OR in1; END_IF;
IF r1 < rmin THEN rmin := r1; rmin_in := in1; END_IF;
IF r2 = rmin THEN rmin_in := rmin_in OR in2; END_IF;
IF r2 < rmin THEN rmin := r2; rmin_in := in2; END_IF;
IF r3 = rmin THEN rmin_in := rmin_in OR in3; END_IF;
IF r3 < rmin THEN rmin := r3; rmin_in := in3; END_IF;

END_IF;
-- Find amin and amax, initially with respect to base direction ab.
IF rc >= rmxp THEN -- outside outer circle

ab := acp;
find_aminmax(ab,a0,a1,a2,a3,in0,in1,in2,in3,amin,amax,amin_in,amax_in);
a := ACOS(rmxp/rc);
IF strictly_in(apc-a,aitp) THEN

amin := ab-ASIN(rmxp/rc); amin_in := max_included(ritp);
END_IF;
IF strictly_in(apc+a,aitp) THEN

amax := ab+ASIN(rmxp/rc); amax_in := max_included(ritp);
END_IF;
angle_range(amin,amax);

ELSE IF rc > rmnp THEN
ab := angle(0.5*(aitp.min+aitp.max)); -- reference direction
find_aminmax(ab,a0,a1,a2,a3,in0,in1,in2,in3,amin,amax,amin_in,amax_in);

ELSE
-- Using base direction midway in prgn, compute all directions using
-- values which ensure a3 < a2 and a0 < a1 algebraically.
ab := angle(0.5*(aitp.min+aitp.max)); -- reference direction

157

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

a0 := angle(a0-ab);
a1 := angle(a1-ab);
a2 := angle(a2-ab);
a3 := angle(a3-ab);
IF a3 > a2 THEN a2 := a2 + 2.0*PI; END_IF;
IF a0 > a1 THEN a0 := a0 + 2.0*PI; END_IF;
IF a3 < a0 THEN amin := a3; amin_in := in3;
ELSE amin := a0; amin_in := in0; END_IF;
IF a2 > a1 THEN amax := a2; amax_in := in2;
ELSE amax := a1; amax_in := in1; END_IF;
IF (amax - amin > 2.0*PI) OR

((amax - amin = 2.0*PI) AND (amin_in OR amax_in)) THEN
-- Cannot see out
amin := -PI; amin_in := FALSE;
amax := PI; amax_in := TRUE;

ELSE
amin := amin + ab;
amax := amax + ab;
angle_range(amin,amax);

END_IF;
END_IF; END_IF;

END_IF;
IF rmin_in THEN minclo := closed; END_IF;
IF rmax_in THEN maxclo := closed; END_IF;
ritv := make_finite_real_interval(rmin,minclo,rmax,maxclo);

ELSE -- Not max_exists(ritp)
IF (rc > rmnp) AND strictly_in(apc,aitp) THEN

RETURN (?); -- No pregion exists. (Would require whole plane.)
END_IF;
IF aitp.max - aitp.min = 2.0*PI THEN

-- complement of disk, with or without slot
a := angle(aitp.min); -- slot direction
IF rc > rmnp THEN -- already excluded if not aligned with slot

IF max_included(aitp) THEN
RETURN (?); -- No pregion exists. (Would require whole plane.)

END_IF;
rmin := 0.0; rmin_in := FALSE;
amin := aitp.min; amin_in := FALSE;
amax := aitp.max; amax_in := FALSE;

ELSE
rmin := rmnp-rc; rmin_in := min_included(ritp);
amin := -PI; amin_in := FALSE;
amax := PI; amax_in := TRUE;
IF NOT max_included(aitp) THEN -- Special cases when aligned with slot
IF apc = a THEN

rmin_in := FALSE;
amin := aitp.min; amin_in := FALSE;
amax := aitp.max; amax_in := FALSE;

ELSE IF acp = a THEN
amin := aitp.min; amin_in := FALSE;
amax := aitp.max; amax_in := FALSE;

END_IF; END_IF;
END_IF;

END_IF;
ELSE -- direction range < 2*PI
-- Compute data for corners with respect to xc,yc (two at infinity)
a0 := angle(aitp.min);
in0 := FALSE;
a1 := angle(aitp.max);

158

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

in1 := FALSE;
x := xp + rmnp*cos(aitp.max) - xc;
y := yp + rmnp*sin(aitp.max) - yc;
r2 := SQRT(x**2 + y**2);
in2 := min_included(ritp) AND max_included(aitp);
IF r2 <> 0.0 THEN a2 := atan2(y,x); ELSE a2 := a1; in2 := in1; END_IF;
x := xp + rmnp*cos(aitp.min) - xc;
y := yp + rmnp*sin(aitp.min) - yc;
r3 := SQRT(x**2 + y**2);
in3 := min_included(ritp) AND min_included(aitp);
IF r3 <> 0.0 THEN a3 := atan2(y,x); ELSE a3 := a0; in3 := in0; END_IF;
IF rmnp = 0.0 THEN in2 := min_included(ritp); in3 := in2; END_IF;
IF (apc = angle(aitp.min)) OR (acp = angle(aitp.min)) THEN

in0 := min_included(aitp);
in3 := in0;

ELSE IF (apc = angle(aitp.max)) OR (acp = angle(aitp.max)) THEN
in1 := max_included(aitp);
in2 := in1;

END_IF; END_IF;
-- Find rmin
IF strictly_in(apc,aitp) THEN

rmin := rmnp-rc; rmin_in := min_included(ritp);
ELSE

rmin := r2; rmin_in := in2;
a := apc-aitp.min;
r := rc*COS(a);
IF rmnp < r THEN -- use nearest point on aitp.min ray

rmin := rc*SIN(ABS(a)); rmin_in := min_included(aitp);
END_IF;
a := apc-aitp.max;
r := rc*COS(a);
IF rmnp < r THEN -- try nearest point on aitp.max ray

r := rc*SIN(ABS(a)); inn := max_included(aitp);
IF r = rmin THEN rmin_in := rmin_in OR inn; END_IF;
IF r < rmin THEN rmin := r; rmin_in := inn; END_IF;

END_IF;
IF r3 = rmin THEN rmin_in := rmin_in OR in3; END_IF;
IF r3 < rmin THEN rmin := r3; rmin_in := in3; END_IF;

END_IF;
-- Find amin and amax
ab := angle(0.5*(aitp.min+aitp.max)); -- reference direction
IF rc > rmnp THEN
find_aminmax(ab,a0,a1,a2,a3,in0,in1,in2,in3,amin,amax,amin_in,amax_in);

ELSE
-- Using base direction midway in prgn, compute all directions using
-- values which ensure a3 < a2 and a0 < a1 algebraically.
a0 := angle(a0-ab);
a1 := angle(a1-ab);
a2 := angle(a2-ab);
a3 := angle(a3-ab);
IF a3 > a2 THEN a2 := a2 + 2.0*PI; END_IF;
IF a0 > a1 THEN a0 := a0 + 2.0*PI; END_IF;
IF a3 < a0 THEN amin := a3; amin_in := in3;
ELSE amin := a0; amin_in := in0; END_IF;
IF a2 > a1 THEN amax := a2; amax_in := in2;
ELSE amax := a1; amax_in := in1; END_IF;
IF (amax - amin > 2.0*PI) OR
((amax - amin = 2.0*PI) AND (amin_in OR amax_in)) THEN
-- Cannot see out

159

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

amin := -PI; amin_in := FALSE;
amax := PI; amax_in := TRUE;
IF (rmin = 0.0) AND rmin_in THEN

RETURN (?); -- No pregion exists. (Would require whole plane.)
END_IF;

ELSE
amin := amin + ab;
amax := amax + ab;
angle_range(amin,amax);

END_IF;
END_IF;

END_IF;
IF rmin_in THEN minclo := closed; END_IF;
ritv := make_real_interval_from_min(rmin,minclo);

END_IF;
minclo := open; maxclo := open;
IF amin_in THEN minclo := closed; END_IF;
IF amax_in THEN maxclo := closed; END_IF;
aitv := make_finite_real_interval(amin,minclo,amax,maxclo);
-- Construct polar region
RETURN (make_polar_complex_number_region(centre,ritv,aitv));

END_FUNCTION; -- enclose_pregion_in_pregion
(*

Argument definitions:

prgn: (input) The polar complex number region to be enclosed.

centre: (input) The centre to be used for the enclosing region.

return: (output) The smallest polar complex region with the given centre enclosing the input
region, if any such region exists.

4.6.39 equal cregion pregion

This function tests whether or not an instance of cartesian complex number region de-
scribes the same subspace of the complex numbers as an instance of polar complex num-
ber region.

NOTE The only cases where two such instances can be the same is if they describe quadrants or half
spaces whose boundaries parallel the axes.

EXPRESS specification:

*)
FUNCTION equal_cregion_pregion(crgn : cartesian_complex_number_region;

prgn : polar_complex_number_region) : LOGICAL;
LOCAL

arng, amin, xc, yc : REAL;
aitv, xitv, yitv : real_interval;
c_in : BOOLEAN;

END_LOCAL;
IF NOT EXISTS (crgn) OR NOT EXISTS (prgn) THEN RETURN (FALSE); END_IF;
IF max_exists(prgn.distance_constraint) THEN RETURN (FALSE); END_IF;
IF real_min(prgn.distance_constraint) <> 0.0 THEN RETURN (FALSE); END_IF;

160

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

c_in := min_included(prgn.distance_constraint);
aitv := prgn.direction_constraint;
amin := aitv.min;
arng := aitv.max - amin;
xc := prgn.centre.real_part;
yc := prgn.centre.imag_part;
xitv := crgn.real_constraint;
yitv := crgn.imag_constraint;
IF arng = 0.5*PI THEN

IF amin = 0.0 THEN -- quadrant to upper right
RETURN (NOT max_exists(xitv) AND NOT max_exists(yitv) AND min_exists(xitv)
AND min_exists(yitv) AND (real_min(xitv) = xc) AND (real_min(yitv) = yc)
AND ((c_in AND min_included(aitv) AND max_included(aitv)

AND min_included(xitv) AND min_included(yitv))
OR (NOT c_in AND NOT min_included(aitv) AND max_included(aitv)

AND min_included(xitv) AND NOT min_included(yitv))
OR (NOT c_in AND min_included(aitv) AND NOT max_included(aitv)

AND NOT min_included(xitv) AND min_included(yitv))
OR (NOT c_in AND NOT min_included(aitv) AND NOT max_included(aitv)

AND NOT min_included(xitv) AND NOT min_included(yitv))));
END_IF;
IF amin = 0.5*PI THEN -- quadrant to upper left
RETURN (max_exists(xitv) AND NOT max_exists(yitv) AND NOT min_exists(xitv)

AND min_exists(yitv) AND (real_max(xitv) = xc) AND (real_min(yitv) = yc)
AND ((c_in AND min_included(aitv) AND max_included(aitv)

AND max_included(xitv) AND min_included(yitv))
OR (NOT c_in AND NOT min_included(aitv) AND max_included(aitv)

AND max_included(xitv) AND NOT min_included(yitv))
OR (NOT c_in AND min_included(aitv) AND NOT max_included(aitv)

AND NOT max_included(xitv) AND min_included(yitv))
OR (NOT c_in AND NOT min_included(aitv) AND NOT max_included(aitv)

AND NOT max_included(xitv) AND NOT min_included(yitv))));
END_IF;
IF amin = -PI THEN -- quadrant to lower left

RETURN (max_exists(xitv) AND max_exists(yitv) AND NOT min_exists(xitv)
AND NOT min_exists(yitv) AND (real_max(xitv) = xc) AND (real_max(yitv) = yc)
AND ((c_in AND min_included(aitv) AND max_included(aitv)

AND max_included(xitv) AND max_included(yitv))
OR (NOT c_in AND NOT min_included(aitv) AND max_included(aitv)

AND max_included(xitv) AND NOT max_included(yitv))
OR (NOT c_in AND min_included(aitv) AND NOT max_included(aitv)

AND NOT max_included(xitv) AND max_included(yitv))
OR (NOT c_in AND NOT min_included(aitv) AND NOT max_included(aitv)

AND NOT max_included(xitv) AND NOT max_included(yitv))));
END_IF;
IF amin = -0.5*PI THEN -- quadrant to lower right
RETURN (NOT max_exists(xitv) AND max_exists(yitv) AND min_exists(xitv)

AND NOT min_exists(yitv) AND (real_min(xitv) = xc) AND (real_max(yitv) = yc)
AND ((c_in AND min_included(aitv) AND max_included(aitv)

AND min_included(xitv) AND max_included(yitv))
OR (NOT c_in AND NOT min_included(aitv) AND max_included(aitv)

AND min_included(xitv) AND NOT max_included(yitv))
OR (NOT c_in AND min_included(aitv) AND NOT max_included(aitv)

AND NOT min_included(xitv) AND max_included(yitv))
OR (NOT c_in AND NOT min_included(aitv) AND NOT max_included(aitv)

AND NOT min_included(xitv) AND NOT max_included(yitv))));
END_IF;

END_IF;
IF arng = PI THEN

161

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

IF amin = 0.0 THEN -- upper half space
RETURN (NOT max_exists(xitv) AND NOT max_exists(yitv) AND NOT min_exists(xitv)

AND min_exists(yitv) AND (real_min(yitv) = yc)
AND ((c_in AND min_included(aitv) AND max_included(aitv)

AND min_included(yitv))
OR (NOT c_in AND NOT min_included(aitv) AND NOT max_included(aitv)

AND NOT min_included(yitv))));
END_IF;
IF amin = 0.5*PI THEN -- left half space

RETURN (max_exists(xitv) AND NOT max_exists(yitv) AND NOT min_exists(xitv)
AND NOT min_exists(yitv) AND (real_max(xitv) = xc)
AND ((c_in AND min_included(aitv) AND max_included(aitv)

AND max_included(xitv))
OR (NOT c_in AND NOT min_included(aitv) AND NOT max_included(aitv)

AND NOT max_included(xitv))));
END_IF;
IF amin = -PI THEN -- lower half space

RETURN (NOT max_exists(xitv) AND max_exists(yitv) AND NOT min_exists(xitv)
AND NOT min_exists(yitv) AND (real_max(yitv) = yc)
AND ((c_in AND min_included(aitv) AND max_included(aitv)

AND max_included(yitv))
OR (NOT c_in AND NOT min_included(aitv) AND NOT max_included(aitv)

AND NOT max_included(yitv))));
END_IF;
IF amin = -0.5*PI THEN -- right half space

RETURN (NOT max_exists(xitv) AND NOT max_exists(yitv) AND min_exists(xitv)
AND NOT min_exists(yitv) AND (real_min(xitv) = xc)
AND ((c_in AND min_included(aitv) AND max_included(aitv)

AND min_included(xitv))
OR (NOT c_in AND NOT min_included(aitv) AND NOT max_included(aitv)

AND NOT min_included(xitv))));
END_IF;

END_IF;
RETURN (FALSE);

END_FUNCTION; -- equal_cregion_pregion
(*

Argument definitions:

crgn: (input) A cartesian complex number region.

prgn: (input) A polar complex number region.

return: (output) TRUE if the complex number regions are the same, FALSE if the regions
are known to be different, or UNKNOWN if it is not easily decidable from the information at
hand.

4.6.40 equal maths functions

This function performs a value equality test on the mathematical objects represented by the two
maths function arguments. The value UNKNOWN is returned if the information available
is insufficient to decide.

NOTE This function is most likely to be decisive if the inputs have already been simplified by function
simplify maths functions.

162

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

EXPRESS specification:

*)
FUNCTION equal_maths_functions(fun1, fun2 : maths_function) : LOGICAL;
LOCAL

cum : LOGICAL;
END_LOCAL;
IF fun1 = fun2 THEN RETURN (TRUE); END_IF;
cum := equal_maths_spaces(fun1.domain,fun2.domain);
IF cum = FALSE THEN RETURN (FALSE); END_IF;
cum := cum AND equal_maths_spaces(fun1.range,fun2.range);
IF cum = FALSE THEN RETURN (FALSE); END_IF;
-- A lot of further analysis is possible, but not required.
RETURN (UNKNOWN);

END_FUNCTION; -- equal_maths_functions
(*

Argument definitions:

fun1: (input) The first maths function.

fun2: (input) The second maths function.

return: (output) TRUE if the mathematical objects represented are the same, FALSE if
the objects are known to be different, or UNKNOWN if it is not easily decidable from the
information at hand.

4.6.41 equal maths spaces

This function performs a value equality test on the mathematical objects represented by the two
maths space arguments. The value UNKNOWN is returned if the information available is
insufficient to decide.

NOTE This function is most likely to be decisive if the inputs have already been simplified by function
simplify maths spaces.

EXPRESS specification:

*)
FUNCTION equal_maths_spaces(spc1, spc2 : maths_space) : LOGICAL;
LOCAL

spc1types : SET OF STRING := stripped_typeof(spc1);
spc2types : SET OF STRING := stripped_typeof(spc2);
set1, set2 : SET OF maths_value;
cum : LOGICAL := TRUE;
base : maths_space;
expnt : INTEGER;
factors : LIST OF maths_space;
factors2 : LIST OF maths_space;
fs1, fs2 : function_space;
cum2 : LOGICAL;

END_LOCAL;
IF spc1 = spc2 THEN RETURN (TRUE); END_IF;
-- Consider cases where it is not yet certain that spc1 <> spc2.

163

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

IF ’FINITE_SPACE’ IN spc1types THEN
set1 := spc1\finite_space.members;
IF ’FINITE_SPACE’ IN spc2types THEN

-- Members may have different but equivalent representations and in
-- different orders. May also have disguised repeats in same set of members.
set2 := spc2\finite_space.members;
REPEAT i := 1 TO SIZEOF (set1);

cum := cum AND member_of (set1[i], spc2);
IF cum = FALSE THEN RETURN (FALSE); END_IF;

END_REPEAT;
IF cum = TRUE THEN

REPEAT i := 1 TO SIZEOF (set2);
cum := cum AND member_of (set2[i], spc1);
IF cum = FALSE THEN RETURN (FALSE); END_IF;

END_REPEAT;
END_IF;
RETURN (cum);

END_IF;
IF ’FINITE_INTEGER_INTERVAL’ IN spc2types THEN

set2 := [];
REPEAT i := spc2\finite_integer_interval.min TO spc2\finite_integer_interval.max;

set2 := set2 + [i];
END_REPEAT;
RETURN (equal_maths_spaces(spc1,make_finite_space(set2)));

END_IF;
END_IF;
IF (’FINITE_INTEGER_INTERVAL’ IN spc1types) AND (’FINITE_SPACE’ IN spc2types) THEN

set1 := [];
REPEAT i := spc1\finite_integer_interval.min TO spc1\finite_integer_interval.max;

set1 := set1 + [i];
END_REPEAT;
RETURN (equal_maths_spaces(make_finite_space(set1),spc2));

END_IF;
IF (’CARTESIAN_COMPLEX_NUMBER_REGION’ IN spc1types) AND

(’POLAR_COMPLEX_NUMBER_REGION’ IN spc2types) THEN
-- Quadrants and half spaces have two representations
RETURN (equal_cregion_pregion(spc1,spc2));

END_IF;
IF (’POLAR_COMPLEX_NUMBER_REGION’ IN spc1types) AND

(’CARTESIAN_COMPLEX_NUMBER_REGION’ IN spc2types) THEN
-- Quadrants and half spaces have two representations
RETURN (equal_cregion_pregion(spc2,spc1));

END_IF;
IF ’UNIFORM_PRODUCT_SPACE’ IN spc1types THEN

base := spc1\uniform_product_space.base;
expnt := spc1\uniform_product_space.exponent;
IF ’UNIFORM_PRODUCT_SPACE’ IN spc2types THEN

IF expnt <> spc2\uniform_product_space.exponent THEN RETURN (FALSE); END_IF;
RETURN (equal_maths_spaces(base,spc2\uniform_product_space.base));

END_IF;
IF ’LISTED_PRODUCT_SPACE’ IN spc2types THEN

factors := spc2\listed_product_space.factors;
IF expnt <> SIZEOF (factors) THEN RETURN (FALSE); END_IF;
REPEAT i := 1 TO SIZEOF (factors);

cum := cum AND equal_maths_spaces(base,factors[i]);
IF cum = FALSE THEN RETURN (FALSE); END_IF;

END_REPEAT;
RETURN (cum);

END_IF;

164

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

END_IF;
IF ’LISTED_PRODUCT_SPACE’ IN spc1types THEN

factors := spc1\listed_product_space.factors;
IF ’UNIFORM_PRODUCT_SPACE’ IN spc2types THEN

IF spc2\uniform_product_space.exponent <> SIZEOF (factors) THEN
RETURN (FALSE);

END_IF;
base := spc2\uniform_product_space.base;
REPEAT i := 1 TO SIZEOF (factors);

cum := cum AND equal_maths_spaces(base,factors[i]);
IF cum = FALSE THEN RETURN (FALSE); END_IF;

END_REPEAT;
RETURN (cum);

END_IF;
IF ’LISTED_PRODUCT_SPACE’ IN spc2types THEN

factors2 := spc2\listed_product_space.factors;
IF SIZEOF (factors) <> SIZEOF (factors2) THEN RETURN (FALSE); END_IF;
REPEAT i := 1 TO SIZEOF (factors);
cum := cum AND equal_maths_spaces(factors[i],factors2[i]);
IF cum = FALSE THEN RETURN (FALSE); END_IF;

END_REPEAT;
RETURN (cum);

END_IF;
END_IF;
IF (’EXTENDED_TUPLE_SPACE’ IN spc1types) AND

(’EXTENDED_TUPLE_SPACE’ IN spc2types) THEN
RETURN (equal_maths_spaces(spc1\extended_tuple_space.extender,

spc2\extended_tuple_space.extender) AND equal_maths_spaces(
spc1\extended_tuple_space.base, spc2\extended_tuple_space.base));

END_IF;
IF (’FUNCTION_SPACE’ IN spc1types) AND

(’FUNCTION_SPACE’ IN spc2types) THEN
fs1 := spc1;
fs2 := spc2;
IF fs1.domain_constraint <> fs2.domain_constraint THEN

IF (fs1.domain_constraint = sc_equal) OR (fs2.domain_constraint = sc_equal) THEN
RETURN (FALSE);

END_IF;
IF (fs1.domain_constraint <> sc_subspace) THEN

fs1 := spc2;
fs2 := spc1;

END_IF;
IF (fs1.domain_constraint <> sc_subspace) OR

(fs2.domain_constraint <> sc_member) THEN
-- Safety check. Should be unreachable.
RETURN (UNKNOWN);

END_IF;
IF any_space_satisfies(fs1.domain_constraint,fs1.domain_argument) <>

any_space_satisfies(fs2.domain_constraint,fs2.domain_argument) THEN
RETURN (FALSE);

END_IF;
IF NOT (’FINITE_SPACE’ IN stripped_typeof(fs2.domain_argument)) THEN
RETURN (FALSE);

END_IF;
IF SIZEOF ([’FINITE_SPACE’,’FINITE_INTEGER_INTERVAL’] *

stripped_typeof(fs1.domain_argument)) = 0 THEN
RETURN (FALSE);

END_IF;
-- Remaining cases too complex.

165

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

RETURN (UNKNOWN);
END_IF;
cum := equal_maths_spaces(fs1.domain_argument,fs2.domain_argument);
IF cum = FALSE THEN RETURN (FALSE); END_IF;
IF fs1.range_constraint <> fs2.range_constraint THEN

IF (fs1.range_constraint = sc_equal) OR (fs2.range_constraint = sc_equal) THEN
RETURN (FALSE);

END_IF;
IF (fs1.range_constraint <> sc_subspace) THEN

fs1 := spc2;
fs2 := spc1;

END_IF;
IF (fs1.range_constraint <> sc_subspace) OR
(fs2.range_constraint <> sc_member) THEN
-- Safety check. Should be unreachable.
RETURN (UNKNOWN);

END_IF;
IF any_space_satisfies(fs1.range_constraint,fs1.range_argument) <>

any_space_satisfies(fs2.range_constraint,fs2.range_argument) THEN
RETURN (FALSE);

END_IF;
IF NOT (’FINITE_SPACE’ IN stripped_typeof(fs2.range_argument)) THEN

RETURN (FALSE);
END_IF;
IF SIZEOF ([’FINITE_SPACE’,’FINITE_INTEGER_INTERVAL’] *

stripped_typeof(fs1.range_argument)) = 0 THEN
RETURN (FALSE);

END_IF;
-- Remaining cases too complex.
RETURN (UNKNOWN);

END_IF;
cum := cum AND equal_maths_spaces(fs1.range_argument,fs2.range_argument);
RETURN (cum);

END_IF;
RETURN (FALSE);

END_FUNCTION; -- equal_maths_spaces
(*

Argument definitions:

spc1: (input) The first maths space.

spc2: (input) The second maths space.

return: (output) TRUE if the mathematical objects represented are the same, FALSE if
the objects are known to be different, or UNKNOWN if it is not easily decidable from the
information at hand.

4.6.42 equal maths values

This function performs a value equality test on the mathematical objects represented by the two
maths value arguments. The value UNKNOWN is returned if the information available is
insufficient to decide.

NOTE This function is most likely to be decisive if the inputs have already been simplified by function
simplify maths value.

166

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

EXPRESS specification:

*)
FUNCTION equal_maths_values(val1, val2 : maths_value) : LOGICAL;
FUNCTION mem_of_vs(val1, val2 : maths_value) : LOGICAL;

IF NOT has_values_space(val2) THEN RETURN (UNKNOWN); END_IF;
IF NOT member_of(val1,values_space_of(val2)) THEN RETURN (FALSE); END_IF;
RETURN (UNKNOWN);

END_FUNCTION; -- mem_of_vs
LOCAL

types1, types2 : SET OF STRING;
list1, list2 : LIST OF maths_value;
cum : LOGICAL := TRUE;

END_LOCAL;
IF NOT EXISTS (val1) OR NOT EXISTS (val2) THEN RETURN (FALSE); END_IF;
IF val1 = val2 THEN RETURN (TRUE); END_IF;
types1 := stripped_typeof (val1);
types2 := stripped_typeof (val2);
IF (’MATHS_ATOM’ IN types1) OR (’COMPLEX_NUMBER_LITERAL’ IN types1) THEN
IF ’MATHS_ATOM’ IN types2 THEN RETURN (FALSE); END_IF;
IF ’COMPLEX_NUMBER_LITERAL’ IN types2 THEN RETURN (FALSE); END_IF;
IF ’LIST’ IN types2 THEN RETURN (FALSE); END_IF;
IF ’MATHS_SPACE’ IN types2 THEN RETURN (FALSE); END_IF;
IF ’MATHS_FUNCTION’ IN types2 THEN RETURN (FALSE); END_IF;
IF ’GENERIC_EXPRESSION’ IN types2 THEN RETURN (mem_of_vs(val1,val2)); END_IF;
RETURN (UNKNOWN);

END_IF;
IF (’MATHS_ATOM’ IN types2) OR (’COMPLEX_NUMBER_LITERAL’ IN types2) THEN
RETURN (equal_maths_values(val2,val1));

END_IF;
IF ’LIST’ IN types1 THEN

IF ’LIST’ IN types2 THEN
list1 := val1;
list2 := val2;
IF SIZEOF (list1) <> SIZEOF (list2) THEN RETURN (FALSE); END_IF;
REPEAT i := 1 TO SIZEOF (list1);

cum := cum AND equal_maths_values (list1[i], list2[i]);
IF cum = FALSE THEN RETURN (FALSE); END_IF;

END_REPEAT;
RETURN (cum);

END_IF;
IF ’MATHS_SPACE’ IN types2 THEN RETURN (FALSE); END_IF;
IF ’MATHS_FUNCTION’ IN types2 THEN RETURN (FALSE); END_IF;
IF ’GENERIC_EXPRESSION’ IN types2 THEN RETURN (mem_of_vs(val1,val2)); END_IF;
RETURN (UNKNOWN);

END_IF;
IF ’LIST’ IN types2 THEN RETURN (equal_maths_values(val2,val1)); END_IF;
IF ’MATHS_SPACE’ IN types1 THEN

IF ’MATHS_SPACE’ IN types2 THEN
RETURN (equal_maths_spaces(val1,val2));

END_IF;
IF ’MATHS_FUNCTION’ IN types2 THEN RETURN (FALSE); END_IF;
IF ’GENERIC_EXPRESSION’ IN types2 THEN RETURN (mem_of_vs(val1,val2)); END_IF;
RETURN (UNKNOWN);

END_IF;
IF ’MATHS_SPACE’ IN types2 THEN RETURN (equal_maths_values(val2,val1)); END_IF;
IF ’MATHS_FUNCTION’ IN types1 THEN
IF ’MATHS_FUNCTION’ IN types2 THEN

RETURN (equal_maths_functions(val1,val2));

167

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

END_IF;
IF ’GENERIC_EXPRESSION’ IN types2 THEN RETURN (mem_of_vs(val1,val2)); END_IF;
RETURN (UNKNOWN);

END_IF;
IF ’MATHS_FUNCTION’ IN types2 THEN RETURN (equal_maths_values(val2,val1)); END_IF;
IF (’GENERIC_EXPRESSION’ IN types1) AND (’GENERIC_EXPRESSION’ IN types2) THEN

IF NOT has_values_space(val1) OR NOT has_values_space(val2) THEN
RETURN (UNKNOWN);

END_IF;
IF NOT compatible_spaces(values_space_of(val1),values_space_of(val2)) THEN

RETURN (FALSE);
END_IF;

END_IF;
RETURN (UNKNOWN);

END_FUNCTION; -- equal_maths_values
(*

Argument definitions:

val1: (input) The first maths value.

val2: (input) The second maths value.

return: (output) TRUE if the mathematical objects represented are the same, FALSE if
the objects are known to be different, or UNKNOWN if it is not easily decidable from the
information at hand.

4.6.43 es subspace of es

This function determines whether an elsementary space is a subspace of another elementary
space, both identified by values of elementary space enumerators.

EXPRESS specification:

*)
FUNCTION es_subspace_of_es(es1, es2 : elementary_space_enumerators) : BOOLEAN;
IF NOT EXISTS (es1) OR NOT EXISTS (es2) THEN RETURN (FALSE); END_IF;
IF es1 = es2 THEN RETURN (TRUE); END_IF;
IF es2 = es_generics THEN RETURN (TRUE); END_IF;
IF (es1 = es_booleans) AND (es2 = es_logicals) THEN RETURN (TRUE); END_IF;
IF (es2 = es_numbers) AND ((es1 = es_complex_numbers) OR (es1 = es_reals) OR

(es1 = es_integers)) THEN RETURN (TRUE); END_IF;
RETURN (FALSE);

END_FUNCTION; -- es_subspace_of_es
(*

Argument definitions:

es1: (input) The enumeration value identifying the first elementary space.

es2: (input) The enumeration value identifying the second elementary space.

return: (output) A BOOLEAN value which is TRUE if the first space is a subspace of the
second space, and FALSE, otherwise.

168

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

4.6.44 expression is constant

This function determines whether an instance of generic expression is a constant expression,
that is, denotes a single object. A constant expression is identified by the fact that it contains
no free variables.

EXPRESS specification:

*)
FUNCTION expression_is_constant(expr : generic_expression) : BOOLEAN;
RETURN (bool(SIZEOF (free_variables_of (expr)) = 0));

END_FUNCTION; -- expression_is_constant
(*

Argument definitions:

expr: (input) The expression to be tested.

return: (output) The BOOLEAN indication of whether or not the expression is constant.

4.6.45 extract factors

This function forms a tuple space from a sequence of consecutive factors of another tuple space.

EXPRESS specification:

*)
FUNCTION extract_factors(tspace : tuple_space;

m, n : INTEGER) : tuple_space;
LOCAL
tsp : tuple_space := the_zero_tuple_space;

END_LOCAL;
REPEAT i := m TO n;

tsp := assoc_product_space (tsp, factor_space (tspace, i));
END_REPEAT;
RETURN (tsp);

END_FUNCTION; -- extract_factors
(*

Argument definitions:

tspace: (input) The tuple space from which factor spaces are to be extracted.

m: (input) The index of the first factor space to be extracted.

n: (input) The index of the last factor space to be extracted.

return: (output) The tuple space formed by taking the mth to nth factors from tspace.

169

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

4.6.46 extremal position check

This function verifies that the extreme locations for instances of standard table function
and regular table function lie wihin the domain of the simple array function which actually
supplies the values.

EXPRESS specification:

*)
FUNCTION extremal_position_check(fun : linearized_table_function) : BOOLEAN;
LOCAL

source_domain : maths_space;
source_interval : finite_integer_interval;
index : INTEGER := 1;
base : INTEGER;
shape : LIST OF positive_integer;
ndim : positive_integer;
slo, shi : INTEGER;
sublo : LIST OF INTEGER := [];
subhi : LIST OF INTEGER := [];

END_LOCAL;
IF NOT EXISTS (fun) THEN RETURN (FALSE); END_IF;
source_domain := factor1 (fun.source.domain);
IF (schema_prefix + ’TUPLE_SPACE’) IN TYPEOF (source_domain) THEN
source_domain := factor1 (source_domain);

END_IF;
IF NOT ((schema_prefix + ’FINITE_INTEGER_INTERVAL’) IN TYPEOF (source_domain)) THEN

RETURN (FALSE);
END_IF;
source_interval := source_domain;
base := fun\explicit_table_function.index_base;
shape := fun\explicit_table_function.shape;
IF (schema_prefix + ’STANDARD_TABLE_FUNCTION’) IN TYPEOF (fun) THEN
REPEAT j := 1 TO SIZEOF (shape);

index := index * shape[j];
END_REPEAT;
index := fun.first + index - 1;
RETURN (bool({source_interval.min <= index <= source_interval.max}));

END_IF;
IF (schema_prefix + ’REGULAR_TABLE_FUNCTION’) IN TYPEOF (fun) THEN

ndim := SIZEOF (fun\explicit_table_function.shape);
REPEAT j:= 1 TO ndim;

slo := base;
shi := base + shape[j] - 1;
IF fun\regular_table_function.increments[j] >= 0 THEN
INSERT (sublo, slo, j-1);
INSERT (subhi, shi, j-1);

ELSE
INSERT (sublo, shi, j-1);
INSERT (subhi, slo, j-1);

END_IF;
END_REPEAT;
index := regular_indexing (sublo, base, shape,

fun\regular_table_function.increments, fun.first);
IF NOT ({source_interval.min <= index <= source_interval.max}) THEN

RETURN (FALSE);
END_IF;

170

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

index := regular_indexing (subhi, base, shape,
fun\regular_table_function.increments, fun.first);

IF NOT ({source_interval.min <= index <= source_interval.max}) THEN
RETURN (FALSE);

END_IF;
RETURN (TRUE);

END_IF;
RETURN (FALSE);

END_FUNCTION; -- extremal_position_check
(*

Argument definitions:

fun: (input) The instance of linearized table function to be checked.

return: (output) A BOOLEAN value which is TRUE if the extremal possible positions com-
puted for a standard or regular table function lie within the domain of the associated values
function.

4.6.47 factor1

This function returns the first factor space of a tuple space.

EXPRESS specification:

*)
FUNCTION factor1(tspace : tuple_space) : maths_space;
LOCAL

typenames : SET OF STRING := TYPEOF (tspace);
END_LOCAL;
IF (schema_prefix + ’UNIFORM_PRODUCT_SPACE’) IN typenames THEN
RETURN (tspace\uniform_product_space.base);

END_IF;
IF (schema_prefix + ’LISTED_PRODUCT_SPACE’) IN typenames THEN

RETURN (tspace\listed_product_space.factors[1]);
-- This path could return the indeterminate value if the list is empty.
-- This is the correct result for this case.

END_IF;
IF (schema_prefix + ’EXTENDED_TUPLE_SPACE’) IN typenames THEN
RETURN (factor1 (tspace\extended_tuple_space.base));

END_IF;
-- Should not be reachable.
RETURN (?);

END_FUNCTION; -- factor1
(*

Argument definitions:

tspace: (input) The input tuple space.

return: (output) The first factor space of the input tuple space.

171

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

4.6.48 factor space

This function returns the selected factor space of a tuple space. If the selection index is out of
range, the indeterminate value (?) is returned

EXPRESS specification:

*)
FUNCTION factor_space(tspace : tuple_space;

idx : positive_integer) : maths_space;
LOCAL
typenames : SET OF STRING := TYPEOF (tspace);

END_LOCAL;
IF (schema_prefix + ’UNIFORM_PRODUCT_SPACE’) IN typenames THEN

IF idx <= tspace\uniform_product_space.exponent THEN
RETURN (tspace\uniform_product_space.base);

END_IF;
RETURN (?);

END_IF;
IF (schema_prefix + ’LISTED_PRODUCT_SPACE’) IN typenames THEN
IF idx <= SIZEOF (tspace\listed_product_space.factors) THEN

RETURN (tspace\listed_product_space.factors[idx]);
END_IF;
RETURN (?);

END_IF;
IF (schema_prefix + ’EXTENDED_TUPLE_SPACE’) IN typenames THEN

IF idx <= space_dimension (tspace\extended_tuple_space.base) THEN
RETURN (factor_space (tspace\extended_tuple_space.base, idx));

END_IF;
RETURN (tspace\extended_tuple_space.extender);

END_IF;
-- Should not be reachable.
RETURN (?);

END_FUNCTION; -- factor_space
(*

Argument definitions:

tspace: (input) The input tuple space.

idx: (input) The index of the factor space to select.

return: (output) The selected factor space of the input tuple space.

4.6.49 free variables of

This function returns the set of free variables present in a generic expression instance. It is
similar to the ISO13584 generic expressions schema.used variables function except that
variables bound by instances of quantifier expression are removed.

EXPRESS specification:

*)

172

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

FUNCTION free_variables_of(expr : generic_expression) : SET OF generic_variable;
LOCAL

typenames : SET OF STRING := stripped_typeof(expr);
result : SET OF generic_variable := [];
exprs : LIST OF generic_expression := [];

END_LOCAL;
IF ’GENERIC_LITERAL’ IN typenames THEN

RETURN (result);
END_IF;
IF ’GENERIC_VARIABLE’ IN typenames THEN

result := result + expr;
RETURN (result);

END_IF;
IF ’QUANTIFIER_EXPRESSION’ IN typenames THEN

exprs := QUERY (ge <* expr\multiple_arity_generic_expression.operands |
NOT (ge IN expr\quantifier_expression.variables));

REPEAT i := 1 TO SIZEOF (exprs);
result := result + free_variables_of (exprs[i]);

END_REPEAT;
REPEAT i := 1 TO SIZEOF (expr\quantifier_expression.variables);
result := result - expr\quantifier_expression.variables[i];

END_REPEAT;
RETURN (result);

END_IF;
IF ’UNARY_GENERIC_EXPRESSION’ IN typenames THEN

RETURN (free_variables_of (expr\unary_generic_expression.operand));
END_IF;
IF ’BINARY_GENERIC_EXPRESSION’ IN typenames THEN

result := free_variables_of (expr\binary_generic_expression.operands[1]);
RETURN (result + free_variables_of (expr\binary_generic_expression.operands[2]));

END_IF;
IF ’MULTIPLE_ARITY_GENERIC_EXPRESSION’ IN typenames THEN

REPEAT i := 1 TO SIZEOF (expr\multiple_arity_generic_expression.operands);
result := result + free_variables_of (

expr\multiple_arity_generic_expression.operands[i]);
END_REPEAT;
RETURN (result);

END_IF;
-- In this case the subtype shall not contain any variable (see IP1 in
-- generic_expression).
RETURN (result);

END_FUNCTION; -- free_variables_of
(*

Argument definitions:

expr: (input) The expression from which the free variables are to be extracted.

return: (output) The set of free variables in the expression.

4.6.50 function applicability

This function verifies that the domain space of a function and the arguments to which the
function are being applied are compatible. This means that the number of arguments is suitable
and that the value space of each expression being supplied as an argument is not known to have
empty intersection with the corresponding factor space of the function domain.

173

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

NOTE Observe that satisfying the function applicability test does not guarantee that the actual ar-
guments are in the function domain. The purpose of this test is to rule out the obviously ridiculous
cases.

EXPRESS specification:

*)
FUNCTION function_applicability(func : maths_function_select;

arguments : LIST [1:?] OF maths_value) : BOOLEAN;
LOCAL

domain : tuple_space := convert_to_maths_function(func).domain;
domain_types : SET OF STRING := TYPEOF (domain);
narg : positive_integer := SIZEOF (arguments);
arg : generic_expression;

END_LOCAL;
IF (schema_prefix + ’PRODUCT_SPACE’) IN domain_types THEN

IF space_dimension (domain) <> narg THEN RETURN (FALSE); END_IF;
ELSE

IF (schema_prefix + ’EXTENDED_TUPLE_SPACE’) IN domain_types THEN
IF space_dimension (domain) > narg THEN RETURN (FALSE); END_IF;

ELSE
RETURN (FALSE); -- Should be unreachable

END_IF;
END_IF;
REPEAT i := 1 TO narg;

arg := convert_to_operand (arguments[i]);
IF NOT has_values_space (arg) THEN RETURN (FALSE); END_IF;
IF NOT compatible_spaces (factor_space (domain, i), values_space_of (arg)) THEN

RETURN (FALSE);
END_IF;

END_REPEAT;
RETURN (TRUE);

END_FUNCTION; -- function_applicability
(*

Argument definitions:

func: (input) The function as a value of type maths function select.

arguments: (input) The arguments to the function.

return: (output) A BOOLEAN value of FALSE is returned if the domain is known to be incom-
patible with the argument list in number or component space. Otherwise, TRUE is returned.

4.6.51 function is 1d array

This function determines whether or not its argument is a one-dimensional array function. That
is, whether the sole input to func is an integer from a finite integer interval or a one-tuple of
integers from a finite integer interval.

NOTE The acceptance of these two options reflects an assumption of automatic repackaging as needed
in the uses of the argument.

174

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

EXPRESS specification:

*)
FUNCTION function_is_1d_array(func : maths_function) : BOOLEAN;
LOCAL

temp : maths_space;
END_LOCAL;
IF NOT EXISTS (func) THEN RETURN (FALSE); END_IF;
IF space_dimension (func.domain) <> 1 THEN RETURN (FALSE); END_IF;
temp := factor1 (func.domain);
IF (schema_prefix + ’PRODUCT_SPACE’) IN TYPEOF (temp) THEN

IF space_dimension (temp) <> 1 THEN RETURN (FALSE); END_IF;
temp := factor1 (temp);

END_IF;
IF (schema_prefix + ’FINITE_INTEGER_INTERVAL’) IN TYPEOF (temp) THEN
RETURN (TRUE);

END_IF;
RETURN (FALSE);

END_FUNCTION; -- function_is_1d_array
(*

Argument definitions:

func: (input) The maths function instance to be tested.

return: (output) A BOOLEAN value which is TRUE if the input is a one-dimensional array
function, and FALSE, otherwise.

4.6.52 function is 1d table

This function determines whether or not its argument is a one-dimensional table function. That
is, whether the sole input to func is an integer from a finite integer interval starting at zero or
one, or a one-tuple of integers from a finite integer interval starting at zero or one.

NOTE The acceptance of these two options reflects an assumption of automatic repackaging as needed
in the uses of the argument.

EXPRESS specification:

*)
FUNCTION function_is_1d_table(func : maths_function) : BOOLEAN;
LOCAL

temp : maths_space;
itvl : finite_integer_interval;

END_LOCAL;
IF NOT EXISTS (func) THEN RETURN (FALSE); END_IF;
IF space_dimension (func.domain) <> 1 THEN RETURN (FALSE); END_IF;
temp := factor1 (func.domain);
IF (schema_prefix + ’PRODUCT_SPACE’) IN TYPEOF (temp) THEN

IF space_dimension (temp) <> 1 THEN RETURN (FALSE); END_IF;
temp := factor1 (temp);

END_IF;
IF (schema_prefix + ’FINITE_INTEGER_INTERVAL’) IN TYPEOF (temp) THEN

itvl := temp;

175

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

RETURN (bool((itvl.min = 0) OR (itvl.min = 1)));
END_IF;
RETURN (FALSE);

END_FUNCTION; -- function_is_1d_table
(*

Argument definitions:

func: (input) The maths function instance to be tested.

return: (output) A BOOLEAN value which is TRUE if the input is a one-dimensional table
function, and FALSE, otherwise.

4.6.53 function is 2d table

This function determines whether or not its argument is a two-dimensional table function. That
is, whether the sole input to func is a pair of integers from a two-dimensional subscript space.

EXPRESS specification:

*)
FUNCTION function_is_2d_table(func : maths_function) : BOOLEAN;
LOCAL

temp : maths_space;
pspace : product_space;
itvl1, itvl2 : finite_integer_interval;

END_LOCAL;
IF NOT EXISTS (func) THEN RETURN (FALSE); END_IF;
IF space_dimension (func.domain) <> 1 THEN RETURN (FALSE); END_IF;
temp := factor1 (func.domain);
IF NOT (’PRODUCT_SPACE’ IN stripped_typeof(temp)) THEN RETURN (FALSE); END_IF;
pspace := temp;
IF space_dimension (pspace) <> 2 THEN RETURN (FALSE); END_IF;
temp := factor1 (pspace);
IF NOT (’FINITE_INTEGER_INTERVAL’ IN stripped_typeof(temp)) THEN

RETURN (FALSE);
END_IF;
itvl1 := temp;
temp := factor_space (pspace, 2);
IF NOT (’FINITE_INTEGER_INTERVAL’ IN stripped_typeof(temp)) THEN

RETURN (FALSE);
END_IF;
itvl2 := temp;
RETURN (bool((itvl1.min = itvl2.min) AND ((itvl1.min = 0) OR (itvl1.min = 1))));

END_FUNCTION; -- function_is_2d_table
(*

Argument definitions:

func: (input) The maths function instance to be tested.

return: (output) A BOOLEAN value which is TRUE if the input is a two-dimensional table
function, and FALSE, otherwise.

176

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

4.6.54 function is array

This function determines whether an instance of maths function is an array function. In other
words, it determines whether the input to the function is a fixed number of integers whose tuple
belongs to a subscript space, or a single object which is a tuple of integers from a subscript
space. A subscript space is a finite cartesian product of finite integer intervals all of which start
at zero or all of which start at one.

NOTE Acceptance of both types of input packaging implies that any necessary repackaging is done
automatically where these functions are used.

EXPRESS specification:

*)
FUNCTION function_is_array(func : maths_function) : BOOLEAN;
LOCAL

tspace : tuple_space;
temp : maths_space;

END_LOCAL;
IF NOT EXISTS (func) THEN RETURN (FALSE); END_IF;
tspace := func.domain;
IF (space_dimension (tspace) = 1) AND ((schema_prefix + ’TUPLE_SPACE’) IN
TYPEOF (factor1 (tspace))) THEN
tspace := factor1 (tspace);

END_IF;
IF NOT ((schema_prefix + ’PRODUCT_SPACE’) IN TYPEOF (tspace)) THEN

RETURN (FALSE);
END_IF;
REPEAT i := 1 TO space_dimension (tspace);
temp := factor_space (tspace, i);
IF NOT ((schema_prefix + ’FINITE_INTEGER_INTERVAL’) IN TYPEOF (temp)) THEN

RETURN (FALSE);
END_IF;

END_REPEAT;
RETURN (TRUE);

END_FUNCTION; -- function_is_array
(*

Argument definitions:

func: (input) The instance of maths function to be tested.

return: (output) A BOOLEAN value which is TRUE if the function is an array function.

4.6.55 function is table

This function determines whether an instance of maths function is a table function. In other
words, it determines whether the input to the function is a fixed number of integers whose tuple
belongs to a subscript space, or a single object which is a tuple of integers from a subscript
space. A subscript space is a finite cartesian product of finite integer intervals all of which start
at zero or all of which start at one.

NOTE Acceptance of both types of input packaging implies that any necessary repackaging is done
automatically where these functions are used.

177

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

EXPRESS specification:

*)
FUNCTION function_is_table(func : maths_function) : BOOLEAN;
LOCAL

tspace : tuple_space;
temp : maths_space;
base : INTEGER;

END_LOCAL;
IF NOT EXISTS (func) THEN RETURN (FALSE); END_IF;
tspace := func.domain;
IF (space_dimension (tspace) = 1) AND ((schema_prefix + ’TUPLE_SPACE’) IN

TYPEOF (factor1 (tspace))) THEN
tspace := factor1 (tspace);

END_IF;
IF NOT ((schema_prefix + ’PRODUCT_SPACE’) IN TYPEOF (tspace)) THEN

RETURN (FALSE);
END_IF;
temp := factor1 (tspace);
IF NOT ((schema_prefix + ’FINITE_INTEGER_INTERVAL’) IN TYPEOF (temp)) THEN

RETURN (FALSE);
END_IF;
base := temp\finite_integer_interval.min;
IF (base <> 0) AND (base <> 1) THEN

RETURN (FALSE);
END_IF;
REPEAT i := 2 TO space_dimension (tspace);

temp := factor_space (tspace, i);
IF NOT ((schema_prefix + ’FINITE_INTEGER_INTERVAL’) IN TYPEOF (temp)) THEN

RETURN (FALSE);
END_IF;
IF temp\finite_integer_interval.min <> base THEN RETURN (FALSE); END_IF;

END_REPEAT;
RETURN (TRUE);

END_FUNCTION; -- function_is_table
(*

Argument definitions:

func: (input) The instance of maths function to be tested.

return: (output) A BOOLEAN value which is TRUE if the function is a table function.

4.6.56 has values space

This function determines whether a generic expression instance is one which the mathemat-
ical functions schema can work with. In particular, it identifies the expressions for which the
function values space of can produce an output.

EXPRESS specification:

*)
FUNCTION has_values_space(expr : generic_expression) : BOOLEAN;
LOCAL

178

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

typenames : SET OF STRING := stripped_typeof (expr);
END_LOCAL;
IF ’EXPRESSION’ IN typenames THEN

RETURN (bool((’NUMERIC_EXPRESSION’ IN typenames) OR
(’STRING_EXPRESSION’ IN typenames) OR
(’BOOLEAN_EXPRESSION’ IN typenames)));

END_IF;
IF ’MATHS_FUNCTION’ IN typenames THEN

RETURN (TRUE);
END_IF;
IF ’FUNCTION_APPLICATION’ IN typenames THEN
RETURN (TRUE);

END_IF;
IF ’MATHS_SPACE’ IN typenames THEN

RETURN (TRUE);
END_IF;
IF ’MATHS_VARIABLE’ IN typenames THEN

RETURN (TRUE);
END_IF;
IF ’DEPENDENT_VARIABLE_DEFINITION’ IN typenames THEN

RETURN (has_values_space (expr\unary_generic_expression.operand));
END_IF;
IF ’COMPLEX_NUMBER_LITERAL’ IN typenames THEN

RETURN (TRUE);
END_IF;
IF ’LOGICAL_LITERAL’ IN typenames THEN

RETURN (TRUE);
END_IF;
IF ’BINARY_LITERAL’ IN typenames THEN
RETURN (TRUE);

END_IF;
IF ’MATHS_ENUM_LITERAL’ IN typenames THEN

RETURN (TRUE);
END_IF;
IF ’REAL_TUPLE_LITERAL’ IN typenames THEN

RETURN (TRUE);
END_IF;
IF ’INTEGER_TUPLE_LITERAL’ IN typenames THEN

RETURN (TRUE);
END_IF;
IF ’ATOM_BASED_LITERAL’ IN typenames THEN

RETURN (TRUE);
END_IF;
IF ’MATHS_TUPLE_LITERAL’ IN typenames THEN

RETURN (TRUE);
END_IF;
IF ’PARTIAL_DERIVATIVE_EXPRESSION’ IN typenames THEN
RETURN (TRUE);

END_IF;
IF ’DEFINITE_INTEGRAL_EXPRESSION’ IN typenames THEN

RETURN (TRUE);
END_IF;
RETURN (FALSE);

END_FUNCTION; -- has_values_space
(*

179

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

Argument definitions:

expr: (input) The expression to be tested.

return: (output) The BOOLEAN indication of whether or not the expression is recognized as
a mathematical expression.

4.6.57 list selected components

This function constructs the list of selected components from an aggregate of maths tu-
ple.

NOTE This function is used in derivations and rules associated with the finite function entity type.

EXPRESS specification:

*)
FUNCTION list_selected_components(aggr : AGGREGATE OF LIST OF maths_value;

k : positive_integer) : LIST OF maths_value;
LOCAL

result : LIST OF maths_value := [];
j : INTEGER := 0;

END_LOCAL;
REPEAT i := LOINDEX (aggr) TO HIINDEX (aggr);

IF k <= SIZEOF (aggr[i]) THEN
INSERT (result, aggr[i][k], j);
j := j + 1;

END_IF;
END_REPEAT;
RETURN (result);

END_FUNCTION; -- list_selected_components
(*

Argument definitions:

aggr: (input) The aggregate of tuples from which the selected components are to be extracted
and listed.

k: (input) The ordinal position selected.

return: (output) The constructed list of selected components.

4.6.58 make abstracted expression function

This function constructs an instance of abstracted expression function given the necessary
values for its explicit attributes.

EXPRESS specification:

*)
FUNCTION make_abstracted_expression_function(

operands : LIST [2:?] OF generic_expression)

180

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

: abstracted_expression_function;
RETURN (abstracted_expression_function()

|| maths_function()
|| generic_expression()

|| quantifier_expression (remove_first (operands)) -- derived
|| multiple_arity_generic_expression (operands));

END_FUNCTION; -- make_abstracted_expression_function
(*

Argument definitions:

operands: (input) The list of operands, of which the first is the expression being abstracted to
create the function and the rest are the variables, in order, to be treated as function inputs.

return: (output) The constructed complex entity instance of type abstracted expression -
function.

4.6.59 make atom based literal

This function constructs an instance of atom based literal given the necessary values for its
explicit attributes.

EXPRESS specification:

*)
FUNCTION make_atom_based_literal(lit_value : atom_based_value) : atom_based_literal;
RETURN (atom_based_literal (lit_value)

|| generic_literal()
|| simple_generic_expression()

|| generic_expression());
END_FUNCTION; -- make_atom_based_literal
(*

Argument definitions:

lit value: (input) The value for which a literal is to be constructed.

return: (output) The constructed complex entity instance of atom based literal.

4.6.60 make b spline basis

This function constructs an instance of b spline basis given the necessary values for its explicit
attributes.

EXPRESS specification:

*)
FUNCTION make_b_spline_basis(degree : nonnegative_integer;

repeated_knots : LIST [2:?] OF REAL) : b_spline_basis;
RETURN (b_spline_basis (degree, repeated_knots)

|| maths_function()

181

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

|| generic_expression()
|| generic_literal()

|| simple_generic_expression());
END_FUNCTION; -- make_b_spline_basis
(*

Argument definitions:

degree: (input) The degree of the B-spline basis functions.

repeated knots: (input) The knot sequence for the basis functions.

return: (output) The constructed complex entity instance of b spline basis.

4.6.61 make b spline function

This function constructs an instance of b spline function given the necessary values for its
explicit attributes.

EXPRESS specification:

*)
FUNCTION make_b_spline_function(coef : maths_function;

bases : LIST [1:?] OF b_spline_basis)
: b_spline_function;

RETURN (b_spline_function (bases)
|| maths_function()
|| generic_expression()

|| unary_generic_expression (coef));
END_FUNCTION; -- make_b_spline_function
(*

Argument definitions:

coef: (input) The coefficient table for the B-spline function.

bases: (input) The list of B-spline bases for the function.

return: (output) The constructed complex entity instance of b spline function.

4.6.62 make banded matrix

This function constructs an instance of banded matrix given the necessary values for its
explicit attributes.

EXPRESS specification:

*)
FUNCTION make_banded_matrix(index_base : zero_or_one;

shape : LIST [1:?] OF positive_integer;
source : maths_function;
first : INTEGER;

182

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

default_entry : maths_value;
below : INTEGER;
above : INTEGER;
order : ordering_type) : banded_matrix;

RETURN (banded_matrix (default_entry, below, above, order)
|| linearized_table_function (first)

|| explicit_table_function (index_base, shape)
|| maths_function()

|| generic_expression()
|| unary_generic_expression (source));

END_FUNCTION; -- make_banded_matrix
(*

Argument definitions:

index base: (input) The base for the indices of the banded matrix.

shape: (input) The shape of the matrix as a list of positive integers.

source: (input) The 1D table function providing the non-default entries of the matrix.

first: (input) The location of the first matrix entry in source.

default entry: (input) The value to use for all defaulted entries.

below: (input) The number of non-default diagonals below the main diagonal.

above: (input) The number of non-default diagonals above the main diagonal.

order: (input) The order of the entries in source.

return: (output) The constructed complex entity instance of banded matrix.

4.6.63 make basic sparse matrix

This function constructs an instance of basic sparse matrix given the necessary values for its
explicit attributes.

EXPRESS specification:

*)
FUNCTION make_basic_sparse_matrix(index_base : zero_or_one;

shape : LIST [1:?] OF positive_integer;
operands : LIST [3:3] OF maths_function;
default_entry : maths_value;
order : ordering_type)

: basic_sparse_matrix;
RETURN (basic_sparse_matrix (default_entry, order)

|| explicit_table_function (index_base, shape)
|| maths_function()

|| generic_expression()
|| multiple_arity_generic_expression (operands));

END_FUNCTION; -- make_basic_sparse_matrix
(*

183

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

Argument definitions:

index base: (input) The base for the indices of the sparse matrix.

shape: (input) The shape of the matrix as a list of positive integers.

operands: (input) The list of three 1D table functions providing the non-default entries of the
matrix.

default entry: (input) The value to use for all defaulted entries.

order: (input) The order of the entries encoded in operands.

return: (output) The constructed complex entity instance of basic sparse matrix.

4.6.64 make binary literal

This function constructs an instance of binary literal given the necessary values for its explicit
attributes.

EXPRESS specification:

*)
FUNCTION make_binary_literal(lit_value : BINARY) : binary_literal;
RETURN (binary_literal (lit_value)

|| generic_literal()
|| simple_generic_expression()

|| generic_expression());
END_FUNCTION; -- make_binary_literal
(*

Argument definitions:

lit value: (input) The value for which a literal is to be constructed.

return: (output) The constructed complex entity instance of binary literal.

4.6.65 make boolean literal

This function constructs an instance of boolean literal given the necessary values for its explicit
attributes.

EXPRESS specification:

*)
FUNCTION make_boolean_literal(lit_value : BOOLEAN) : boolean_literal;
RETURN (boolean_literal (lit_value)

|| simple_boolean_expression()
|| boolean_expression()

|| expression()
|| generic_expression()

|| simple_generic_expression()
|| generic_literal());

184

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

END_FUNCTION; -- make_boolean_literal
(*

Argument definitions:

lit value: (input) The value for which a literal is to be constructed.

return: (output) The constructed complex entity instance of boolean literal.

4.6.66 make cartesian complex number region

This function constructs an instance of cartesian complex number region given the neces-
sary values for its explicit attributes.

EXPRESS specification:

*)
FUNCTION make_cartesian_complex_number_region(real_constraint : real_interval;

imag_constraint : real_interval)
: cartesian_complex_number_region;

RETURN (cartesian_complex_number_region (real_constraint, imag_constraint)
|| maths_space()

|| generic_expression()
|| generic_literal()
|| simple_generic_expression());

END_FUNCTION; -- make_cartesian_complex_number_region
(*

Argument definitions:

real constraint: (input) The interval constraining the real parts.

imag constraint: (input) The interval constraining the imaginary parts.

return: (output) The constructed complex entity instance of cartesian complex number -
region.

4.6.67 make complex number literal

This function constructs an instance of complex number literal given the necessary values
for its explicit attributes.

EXPRESS specification:

*)
FUNCTION make_complex_number_literal(rpart, ipart : REAL) : complex_number_literal;
RETURN (complex_number_literal (rpart, ipart)

|| generic_literal()
|| simple_generic_expression()

|| generic_expression());
END_FUNCTION; -- make_complex_number_literal

185

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

(*

Argument definitions:

rpart: (input) The real part of the complex number.

ipart: (input) The imaginary part of the complex number.

return: (output) The constructed complex entity instance of complex number literal.

4.6.68 make constant function

This function constructs an instance of constant function given the necessary values for its
explicit attributes.

EXPRESS specification:

*)
FUNCTION make_constant_function(sole_value : maths_value;

src_of_domn : maths_space_or_function)
: constant_function;

RETURN (constant_function (sole_value, src_of_domn)
|| maths_function()
|| generic_expression()

|| generic_literal()
|| simple_generic_expression());

END_FUNCTION; -- make_constant_function
(*

Argument definitions:

sole value: (input) The value of the sole output of the constant function.

src of domn: (input) The source of the domain for the constant function.

return: (output) The constructed complex entity instance of constant function.

4.6.69 make cos expression

This function constructs an instance of cos expression given the necessary values for its explicit
attributes.

EXPRESS specification:

*)
FUNCTION make_cos_expression(operand : numeric_expression) : cos_expression;
RETURN (cos_expression()

|| unary_numeric_call_expression()
|| unary_numeric_expression()

|| numeric_expression()
|| expression()

|| generic_expression()

186

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

|| unary_generic_expression (operand));
END_FUNCTION; -- make_cos_expression
(*

Argument definitions:

operand: (input) The operand to which the cosine function is to be applied.

return: (output) The constructed complex entity instance of cos expression.

4.6.70 make definite integral expression

This function constructs an instance of definite integral expression given the necessary val-
ues for its explicit attributes.

EXPRESS specification:

*)
FUNCTION make_definite_integral_expression(

operands : LIST [2:4] OF generic_expression;
loinf, upinf : BOOLEAN)

: definite_integral_expression;
RETURN (definite_integral_expression (loinf, upinf)

|| quantifier_expression ([operands[2]])
|| multiple_arity_generic_expression (operands)

|| generic_expression());
END_FUNCTION; -- make_definite_integral_expression
(*

Argument definitions:

operands: (input) The two to four generic expressions representing the integrand expression,
the variable of integration, and the finite lower and upper limits of integration when their
presence is indicated.

loinf: (input) The BOOLEAN indicating whether the lower limit of integration is negative
infinity, or present as an operand.

upinf: (input) The BOOLEAN indicating whether the upper limit of integration is positive
infinity, or present as an operand.

return: (output) The constructed complex entity instance of definite integral expression.

4.6.71 make definite integral function

This function constructs an instance of definite integral function given the necessary values
for its explicit attributes.

EXPRESS specification:

*)

187

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

FUNCTION make_definite_integral_function(integrand : maths_function;
varintg : input_selector;
loinf, upinf : BOOLEAN)

: definite_integral_function;
RETURN (definite_integral_function (varintg, loinf, upinf)

|| maths_function()
|| generic_expression()

|| unary_generic_expression (integrand));
END_FUNCTION; -- make_definite_integral_function
(*

Argument definitions:

integrand: (input) The function to be integrated.

varintg: (input) The integer identifying the variable of integration.

loinf: (input) The BOOLEAN indicating whether the lower limit of integration is negative
infinity. or an input.

upinf: (input) The BOOLEAN indicating whether the upper limit of integration is positive
infinity, or an input.

return: (output) The constructed complex entity instance of definite integral function.

4.6.72 make elementary function

This function constructs an instance of elementary function given the necessary values for
its explicit attributes.

EXPRESS specification:

*)
FUNCTION make_elementary_function(func_id : elementary_function_enumerators)

: elementary_function;
RETURN (elementary_function (func_id)

|| maths_function()
|| generic_expression()

|| generic_literal()
|| simple_generic_expression());

END_FUNCTION; -- make_elementary_function
(*

Argument definitions:

func id: (input) The enumeration value which identifies the function.

return: (output) The constructed complex entity instance of elementary function.

4.6.73 make elementary space

This function constructs an instance of elementary space given the necessary values for its
explicit attributes.

188

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

EXPRESS specification:

*)
FUNCTION make_elementary_space(space_id : elementary_space_enumerators)

: elementary_space;
RETURN (elementary_space (space_id)

|| maths_space()
|| generic_expression()

|| generic_literal()
|| simple_generic_expression());

END_FUNCTION; -- make_elementary_space
(*

Argument definitions:

space id: (input) The enumeration value identifying the elementary space.

return: (output) The constructed complex entity instance of elementary space.

4.6.74 make environment

This function constructs an instance of environment given the necessary values for its explicit
attributes.

EXPRESS specification:

*)
FUNCTION make_environment(varbl : generic_variable;

sem : variable_semantics) : environment;
RETURN (environment (varbl, sem));

END_FUNCTION; -- make_environment
(*

Argument definitions:

varbl: (input) The variable to which semantics are to be associated.

src of domn: (input) The semantics to which a variable is to be associated.

return: (output) The constructed entity instance of environment.

4.6.75 make expression denoted function

This function constructs an instance of expression denoted function given the necessary
values for its explicit attributes.

EXPRESS specification:

*)
FUNCTION make_expression_denoted_function(expression : generic_expression)

: expression_denoted_function;

189

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

RETURN (expression_denoted_function()
|| maths_function()

|| generic_expression()
|| unary_generic_expression (expression));

END_FUNCTION; -- make_expression_denoted_function
(*

Argument definitions:

functions: (input) The expression which denotes the function, that is, the expression whose
value is being recognized as a mathematical function even though its type, as constructed, is
not maths function.

return: (output) The constructed complex entity instance of expression denoted function.

4.6.76 make extended tuple space

This function constructs an instance of extended tuple space given the necessary values for
its explicit attributes.

EXPRESS specification:

*)
FUNCTION make_extended_tuple_space(base : product_space;

extender : maths_space) : extended_tuple_space;
RETURN (extended_tuple_space (base, extender)

|| maths_space ()
|| generic_expression()

|| generic_literal ()
|| simple_generic_expression());

END_FUNCTION; -- make_extended_tuple_space
(*

Argument definitions:

factors: (input) The factor spaces for the product space.

return: (output) The constructed complex entity instance of extended tuple space.

4.6.77 make finite function

This function constructs an instance of finite function given the necessary values for its explicit
attributes.

EXPRESS specification:

*)
FUNCTION make_finite_function(pairs : SET [1:?] OF LIST [2:2] OF maths_value)

: finite_function;
RETURN (finite_function (pairs)

|| maths_function()

190

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

|| generic_expression()
|| generic_literal()

|| simple_generic_expression());
END_FUNCTION; -- make_finite_function
(*

Argument definitions:

pairs: (input) The set of ordered pairs which defines the function.

return: (output) The constructed complex entity instance of finite function.

4.6.78 make finite integer interval

This function constructs an instance of finite integer interval given the necessary values for
its explicit attributes.

EXPRESS specification:

*)
FUNCTION make_finite_integer_interval(min : INTEGER;

max : INTEGER) : finite_integer_interval;
RETURN (finite_integer_interval (min, max)

|| maths_space()
|| generic_expression()

|| generic_literal()
|| simple_generic_expression());

END_FUNCTION; -- make_finite_integer_interval
(*

Argument definitions:

min: (input) The least integer in the interval.

max: (input) The largest integer in the interval.

return: (output) The constructed complex entity instance of finite integer interval.

4.6.79 make finite real interval

This function constructs an instance of finite real interval given the necessary values for its
explicit attributes.

EXPRESS specification:

*)
FUNCTION make_finite_real_interval(min : REAL;

minclo : open_closed;
max : REAL;
maxclo : open_closed) : finite_real_interval;

RETURN (finite_real_interval (min, minclo, max, maxclo)

191

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

|| maths_space()
|| generic_expression()

|| generic_literal()
|| simple_generic_expression());

END_FUNCTION; -- make_finite_real_interval
(*

Argument definitions:

min: (input) The greatest lower bound for this interval.

minclo: (input) The indicator for whether the interval is closed or open at the lower end.

max: (input) The least upper bound for this interval.

maxclo: (input) The indicator for whether the interval is closed or open at the upper end.

return: (output) The constructed complex entity instance of real interval from min.

4.6.80 make finite space

This function constructs an instance of finite space given the necessary values for its explicit
attributes.

EXPRESS specification:

*)
FUNCTION make_finite_space(members : SET OF maths_value) : finite_space;
RETURN (finite_space (members)

|| maths_space()
|| generic_expression()

|| generic_literal()
|| simple_generic_expression());

END_FUNCTION; -- make_finite_space
(*

Argument definitions:

members: (input) The set of members of the space to be constructed.

return: (output) The constructed complex entity instance of finite space.

4.6.81 make function application

This function constructs an instance of function application given the necessary values for
its explicit attributes.

EXPRESS specification:

*)
FUNCTION make_function_application(afunction : maths_function_select;

arguments : LIST [1:?] OF maths_value)

192

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

: function_application;
RETURN (function_application (afunction, arguments)

|| multiple_arity_generic_expression (convert_to_maths_function (afunction) +
convert_to_operands (arguments)) -- derived
|| generic_expression());

END_FUNCTION; -- make_function_application
(*

Argument definitions:

afunction: (input) The function to be applied.

arguments: (input) The list of arguments to which the function is to be applied.

return: (output) The constructed complex entity instance of function application.

4.6.82 make function space

This function constructs an instance of function space given the necessary values for its explicit
attributes.

EXPRESS specification:

*)
FUNCTION make_function_space(domain_constraint : space_constraint_type;

domain_argument : maths_space;
range_constraint : space_constraint_type;
range_argument : maths_space) : function_space;

RETURN (function_space (domain_constraint, domain_argument, range_constraint,
range_argument)
|| maths_space()

|| generic_expression()
|| generic_literal()
|| simple_generic_expression());

END_FUNCTION; -- make_function_space
(*

Argument definitions:

domain constraint: (input) The enumeration value identifying the relationship of a member’s
domain space to the domain argument.

domain argument: (input) The space used in the domain constraint.

range constraint: (input) The enumeration value identifying the relationship of a member’s
range space to the range argument.

range argument: (input) The space used in the range constraint.

return: (output) The constructed complex entity instance of function space.

193

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

4.6.83 make general linear function

This function constructs an instance of general linear function given the necessary values for
its explicit attributes.

EXPRESS specification:

*)
FUNCTION make_general_linear_function(mat : maths_function;

sum_index : one_or_two)
: general_linear_function;

RETURN (general_linear_function (sum_index)
|| maths_function()

|| generic_expression()
|| unary_generic_expression (mat));

END_FUNCTION; -- make_general_linear_function
(*

Argument definitions:

mat: (input) The 2D table function providing the coefficients.

sum index: (input) Whether to sum on the first or second index.

return: (output) The constructed complex entity instance of general linear function.

4.6.84 make int literal

This function constructs an instance of int literal given the necessary values for its explicit
attributes.

EXPRESS specification:

*)
FUNCTION make_int_literal(lit_value : INTEGER) : int_literal;
RETURN (int_literal ()

|| literal_number(lit_value)
|| simple_numeric_expression()

|| numeric_expression()
|| expression()

|| generic_expression()
|| simple_generic_expression()

|| generic_literal());
END_FUNCTION; -- make_int_literal
(*

Argument definitions:

lit value: (input) The value for which a literal is to be constructed.

return: (output) The constructed complex entity instance of int literal.

194

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

4.6.85 make integer interval from min

This function constructs an instance of integer interval from min given the necessary values
for its explicit attributes.

EXPRESS specification:

*)
FUNCTION make_integer_interval_from_min(min : INTEGER)
: integer_interval_from_min;
RETURN (integer_interval_from_min (min)

|| maths_space()
|| generic_expression()

|| generic_literal()
|| simple_generic_expression());

END_FUNCTION; -- make_integer_interval_from_min
(*

Argument definitions:

min: (input) The least integer in the interval.

return: (output) The constructed complex entity instance of integer interval from min.

4.6.86 make listed complex number data

This function constructs an instance of listed complex number data given the necessary
values for its explicit attributes.

EXPRESS specification:

*)
FUNCTION make_listed_complex_number_data(index_base : zero_or_one;

values : LIST [2:?] OF REAL)
: listed_complex_number_data;

RETURN (listed_complex_number_data (values)
|| explicit_table_function (index_base, [SIZEOF (values)/2]) -- 2nd derived

|| maths_function()
|| generic_expression()

|| generic_literal()
|| simple_generic_expression());

END_FUNCTION; -- make_listed_complex_number_data
(*

Argument definitions:

index base: (input) The low index for indexing this table.

values: (input) The list of pairs of real values representing the real and imaginary parts of the
complex numbers to return for successive input values.

return: (output) The constructed complex entity instance of listed complex number data.

195

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

4.6.87 make listed data

This function constructs an instance of listed data given the necessary values for its explicit
attributes.

EXPRESS specification:

*)
FUNCTION make_listed_data(index_base : zero_or_one;

values : LIST [2:?] OF maths_value;
value_range : maths_space) : listed_data;

RETURN (listed_data (values, value_range)
|| explicit_table_function (index_base, [SIZEOF (values)]) -- 2nd derived

|| maths_function()
|| generic_expression()

|| generic_literal()
|| simple_generic_expression());

END_FUNCTION; -- make_listed_data
(*

Argument definitions:

index base: (input) The low index for indexing this table.

values: (input) The list of values to return for successive index values.

value range: (input) The space containing the members of values.

return: (output) The constructed complex entity instance of listed data.

4.6.88 make listed integer data

This function constructs an instance of listed integer data given the necessary values for its
explicit attributes.

EXPRESS specification:

*)
FUNCTION make_listed_integer_data(index_base : zero_or_one;

values : LIST [1:?] OF INTEGER)
: listed_integer_data;

RETURN (listed_integer_data (values)
|| explicit_table_function (index_base, [SIZEOF (values)]) -- 2nd derived

|| maths_function()
|| generic_expression()

|| generic_literal()
|| simple_generic_expression());

END_FUNCTION; -- make_listed_integer_data
(*

196

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

Argument definitions:

index base: (input) The low index for indexing this table.

values: (input) The list of values to return for successive index values.

return: (output) The constructed complex entity instance of listed integer data.

4.6.89 make listed product space

This function constructs an instance of listed product space given the necessary values for
its explicit attributes.

EXPRESS specification:

*)
FUNCTION make_listed_product_space(factors : LIST OF maths_space)

: listed_product_space;
RETURN (listed_product_space (factors)

|| maths_space()
|| generic_expression()

|| generic_literal()
|| simple_generic_expression());

END_FUNCTION; -- make_listed_product_space
(*

Argument definitions:

factors: (input) The factor spaces for the product space.

return: (output) The constructed complex entity instance of listed product space.

4.6.90 make listed real data

This function constructs an instance of listed real data given the necessary values for its
explicit attributes.

EXPRESS specification:

*)
FUNCTION make_listed_real_data(index_base : zero_or_one;

values : LIST [1:?] OF REAL)
: listed_real_data;

RETURN (listed_real_data (values)
|| explicit_table_function (index_base, [SIZEOF (values)]) -- 2nd derived

|| maths_function()
|| generic_expression()

|| generic_literal()
|| simple_generic_expression());

END_FUNCTION; -- make_listed_real_data
(*

197

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

Argument definitions:

index base: (input) The low index for indexing this table.

values: (input) The list of values to return for successive index values.

return: (output) The constructed complex entity instance of listed real data.

4.6.91 make logical literal

This function constructs an instance of logical literal given the necessary values for its explicit
attributes.

EXPRESS specification:

*)
FUNCTION make_logical_literal(lit_value : LOGICAL) : logical_literal;
RETURN (logical_literal (lit_value)

|| generic_literal()
|| simple_generic_expression()

|| generic_expression());
END_FUNCTION; -- make_logical_literal
(*

Argument definitions:

lit value: (input) The value for which a literal is to be constructed.

return: (output) The constructed complex entity instance of logical literal.

4.6.92 make maths enum literal

This function constructs an instance of maths enum literal given the necessary values for its
explicit attributes.

EXPRESS specification:

*)
FUNCTION make_maths_enum_literal(lit_value : maths_enum_atom) : maths_enum_literal;
RETURN (maths_enum_literal (lit_value)

|| generic_literal()
|| simple_generic_expression()

|| generic_expression());
END_FUNCTION; -- make_maths_enum_literal
(*

Argument definitions:

lit value: (input) The value for which a literal is to be constructed.

return: (output) The constructed complex entity instance of maths enum literal.

198

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

4.6.93 make maths real variable

This function constructs an instance of maths real variable given the necessary values for its
explicit attributes.

EXPRESS specification:

*)
FUNCTION make_maths_real_variable(values_space : maths_space;

name : label) : maths_real_variable;
RETURN (maths_real_variable()

|| maths_variable (values_space, name)
|| generic_variable()

|| simple_generic_expression()
|| generic_expression()

|| real_numeric_variable()
|| numeric_variable()
|| variable());

END_FUNCTION; -- make_maths_real_variable
(*

Argument definitions:

values space: (input) The space over which the variable ranges.

name: (input) The name of the variable.

return: (output) The constructed complex entity instance of maths real variable.

4.6.94 make maths tuple literal

This function constructs an instance of maths tuple literal given the necessary values for its
explicit attributes.

EXPRESS specification:

*)
FUNCTION make_maths_tuple_literal(lit_value : LIST OF maths_value)

: maths_tuple_literal;
RETURN (maths_tuple_literal (lit_value)

|| generic_literal()
|| simple_generic_expression()

|| generic_expression());
END_FUNCTION; -- make_maths_tuple_literal
(*

Argument definitions:

lit value: (input) The value for which a literal is to be constructed.

return: (output) The constructed complex entity instance of maths tuple literal.

199

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

4.6.95 make mult expression

This function constructs an instance of mult expression given the necessary values for its
explicit attributes.

EXPRESS specification:

*)
FUNCTION make_mult_expression(operands : LIST [2:?] OF generic_expression)

: mult_expression;
RETURN (mult_expression()

|| multiple_arity_numeric_expression()
|| numeric_expression()

|| expression()
|| generic_expression()

|| multiple_arity_generic_expression (operands));
END_FUNCTION; -- make_mult_expression
(*

Argument definitions:

operands: (input) The operands which are to be multiplied.

return: (output) The constructed complex entity instance of mult expression.

4.6.96 make parallel composed function

This function constructs an instance of parallel composed function given the necessary val-
ues for its explicit attributes.

EXPRESS specification:

*)
FUNCTION make_parallel_composed_function(srcdom : maths_space_or_function;

prepfuncs : LIST [2:?] OF maths_function;
finfunc : maths_function_select)

: parallel_composed_function;
RETURN (parallel_composed_function (srcdom, prepfuncs, finfunc)
|| maths_function()

|| generic_expression()
|| multiple_arity_generic_expression (convert_to_operands_prcmfn (

srcdom, prepfuncs, finfunc))); -- derived
END_FUNCTION; -- make_parallel_composed_function
(*

Argument definitions:

srcdom: (input) The value of the source of domain attribute.

prepfuncs: (input) The list of values for the prep functions attribute.

finfunc: (input) The value of the final function attribute.

200

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

return: (output) The constructed complex entity instance of parallel composed function.

4.6.97 make partial derivative expression

This function constructs an instance of partial derivative expression given the necessary
values for its explicit attributes.

EXPRESS specification:

*)
FUNCTION make_partial_derivative_expression(derivand : generic_expression;

dvars : LIST [1:?] OF maths_variable;
extend : extension_options)

: partial_derivative_expression;
RETURN (partial_derivative_expression (dvars, extend)

|| unary_generic_expression (derivand)
|| generic_expression());

END_FUNCTION; -- make_partial_derivative_expression
(*

Argument definitions:

derivand: (input) The expression to be differentiated.

dvars: (input) The list of differentiation variables.

extend: (input) The enumeration value identifying the extension option.

return: (output) The constructed complex entity instance of partial derivative expression.

4.6.98 make partial derivative function

This function constructs an instance of partial derivative function given the necessary values
for its explicit attributes.

EXPRESS specification:

*)
FUNCTION make_partial_derivative_function(derivand : maths_function;

dvars : LIST [1:?] OF input_selector;
extend : extension_options)

: partial_derivative_function;
RETURN (partial_derivative_function (dvars, extend)

|| maths_function()
|| generic_expression()

|| unary_generic_expression (derivand));
END_FUNCTION; -- make_partial_derivative_function
(*

201

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

Argument definitions:

derivand: (input) The function to be differentiated.

dvars: (input) The list of integers identifying the differentiation variables.

extend: (input) The enumeration value identifying the extension option.

return: (output) The constructed complex entity instance of partial derivative function.

4.6.99 make polar complex number region

This function constructs an instance of polar complex number region given the necessary
values for its explicit attributes.

EXPRESS specification:

*)
FUNCTION make_polar_complex_number_region(centre : complex_number_literal;

dis_constraint : real_interval;
dir_constraint : finite_real_interval)

: polar_complex_number_region;
RETURN (polar_complex_number_region (centre, dis_constraint, dir_constraint)

|| maths_space()
|| generic_expression()

|| generic_literal()
|| simple_generic_expression());

END_FUNCTION; -- make_polar_complex_number_region
(*

Argument definitions:

centre: (input) The centre of the polar region.

dis constraint: (input) The interval of distances from centre in the region.

dir constraint: (input) The interval of directions from centre in the region.

return: (output) The constructed complex entity instance of polar complex number re-
gion.

4.6.100 make rationalize function

This function constructs an instance of rationalize function given the necessary values for its
explicit attributes.

EXPRESS specification:

*)
FUNCTION make_rationalize_function(fun : maths_function) : rationalize_function;
RETURN (rationalize_function()

|| maths_function()
|| generic_expression()

202

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

|| unary_generic_expression (fun));
END_FUNCTION; -- make_rationalize_function
(*

Argument definitions:

fun: (input) The tuple-producing function whose components are used to form the rational
function.

return: (output) The constructed complex entity instance of rationalize function.

4.6.101 make real interval from min

This function constructs an instance of real interval from min given the necessary values for
its explicit attributes.

EXPRESS specification:

*)
FUNCTION make_real_interval_from_min(min : REAL;

minclo : open_closed) : real_interval_from_min;
RETURN (real_interval_from_min (min, minclo)

|| maths_space()
|| generic_expression()

|| generic_literal()
|| simple_generic_expression());

END_FUNCTION; -- make_real_interval_from_min
(*

Argument definitions:

min: (input) The greatest lower bound for this interval.

minclo: (input) The indicator for whether the interval is closed or open at the lower end.

return: (output) The constructed complex entity instance of real interval from min.

4.6.102 make real interval to max

This function constructs an instance of real interval to max given the necessary values for
its explicit attributes.

EXPRESS specification:

*)
FUNCTION make_real_interval_to_max(max : REAL;

maxclo : open_closed) : real_interval_to_max;
RETURN (real_interval_to_max (max, maxclo)

|| maths_space()
|| generic_expression()

|| generic_literal()

203

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

|| simple_generic_expression());
END_FUNCTION; -- make_real_interval_to_max
(*

Argument definitions:

max: (input) The least upper bound for this interval.

maxclo: (input) The indicator for whether the interval is closed or open at the upper end.

return: (output) The constructed complex entity instance of real interval to max.

4.6.103 make real literal

This function constructs an instance of real literal given the necessary values for its explicit
attributes.

EXPRESS specification:

*)
FUNCTION make_real_literal(lit_value : REAL) : real_literal;
RETURN (real_literal ()

|| literal_number(lit_value)
|| simple_numeric_expression()

|| numeric_expression()
|| expression()

|| generic_expression()
|| simple_generic_expression()

|| generic_literal());
END_FUNCTION; -- make_real_literal
(*

Argument definitions:

lit value: (input) The value for which a literal is to be constructed.

return: (output) The constructed complex entity instance of real literal.

4.6.104 make regular table function

This function constructs an instance of regular table function given the necessary values for
its explicit attributes.

EXPRESS specification:

*)
FUNCTION make_regular_table_function(index_base : zero_or_one;

shape : LIST [1:?] OF positive_integer;
operand : maths_function;
first : INTEGER;
increments : LIST [1:?] OF INTEGER)

204

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

: regular_table_function;
RETURN (regular_table_function (increments)

|| linearized_table_function (first)
|| explicit_table_function (index_base, shape)
|| maths_function()

|| generic_expression()
|| unary_generic_expression (operand));

END_FUNCTION; -- make_regular_table_function
(*

Argument definitions:

index base: (input) The low index for indexing this table.

shape: (input) The list of numbers of subscripts in each indexing position.

operand: (input) The one-dimensional array function supplying the table values.

first: (input) The index of the first table entry in the operand array function.

increments: (input) The list of position deltas in operand for each index.

return: (output) The constructed complex entity instance of regular table function.

4.6.105 make reindexed array function

This function constructs an instance of reindexed array function given the necessary values
for its explicit attributes.

EXPRESS specification:

*)
FUNCTION make_reindexed_array_function(func : maths_function;

start_idxs : LIST [1:?] OF INTEGER)
: reindexed_array_function;

RETURN (reindexed_array_function(start_idxs)
|| maths_function()

|| generic_expression()
|| unary_generic_expression (func));

END_FUNCTION; -- make_reindexed_array_function
(*

Argument definitions:

func: (input) The array function to be reindexed.

start idxs: (input) The starting indices for the new array function.

return: (output) The constructed complex entity instance of reindexed array function.

4.6.106 make repackaging function

This function constructs an instance of repackaging function given the necessary values for
its explicit attributes.

205

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

EXPRESS specification:

*)
FUNCTION make_repackaging_function(operand : maths_function;

input_repack : repackage_options;
output_repack : repackage_options;
selected_output : nonnegative_integer)

: repackaging_function;
RETURN (repackaging_function (input_repack, output_repack, selected_output)
|| maths_function()

|| generic_expression()
|| unary_generic_expression (operand));

END_FUNCTION; -- make_repackaging_function
(*

Argument definitions:

operand: (input) The function to be repackaged.

input repack: (input) The repackaging to be done on the input before applying operand.

output repack: (input) The repackaging to be done on the output after applying operand.

selected output: (input) The value for the selected output attribute.

return: (output) The constructed complex entity instance of repackaging function.

4.6.107 make selector function

This function constructs an instance of selector function given the necessary values for its
explicit attributes.

EXPRESS specification:

*)
FUNCTION make_selector_function(selector : input_selector;

src_of_domn : maths_space_or_function)
: selector_function;

RETURN (selector_function (selector, src_of_domn)
|| maths_function()

|| generic_expression()
|| generic_literal()

|| simple_generic_expression());
END_FUNCTION; -- make_selector_function
(*

Argument definitions:

selector: (input) The input to be selected.

src of domn: (input) The source of the domain for the selector function.

return: (output) The constructed complex entity instance of selector function.

206

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

4.6.108 make series composed function

This function constructs an instance of series composed function given the necessary values
for its explicit attributes.

EXPRESS specification:

*)
FUNCTION make_series_composed_function(functions : LIST [2:?] OF maths_function)

: series_composed_function;
RETURN (series_composed_function()

|| maths_function()
|| generic_expression()

|| multiple_arity_generic_expression (functions));
END_FUNCTION; -- make_series_composed_function
(*

Argument definitions:

functions: (input) The list of functions to be composed, in order of application.

return: (output) The constructed complex entity instance of series composed function.

4.6.109 make sin expression

This function constructs an instance of sin expression given the necessary values for its explicit
attributes.

EXPRESS specification:

*)
FUNCTION make_sin_expression(operand : numeric_expression) : sin_expression;
RETURN (sin_expression()

|| unary_numeric_call_expression()
|| unary_numeric_expression()

|| numeric_expression()
|| expression()

|| generic_expression()
|| unary_generic_expression (operand));

END_FUNCTION; -- make_sin_expression
(*

Argument definitions:

operand: (input) The operand to which the sine function is to be applied.

return: (output) The constructed complex entity instance of sin expression.

207

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

4.6.110 make standard table function

This function constructs an instance of standard table function given the necessary values
for its explicit attributes.

EXPRESS specification:

*)
FUNCTION make_standard_table_function(index_base : zero_or_one;

shape : LIST [1:?] OF positive_integer;
operand : maths_function;
first : INTEGER;
order : ordering_type)

: standard_table_function;
RETURN (standard_table_function (order)
|| linearized_table_function (first)

|| explicit_table_function (index_base, shape)
|| maths_function()
|| generic_expression()

|| unary_generic_expression (operand));
END_FUNCTION; -- make_standard_table_function
(*

Argument definitions:

index base: (input) The low index for indexing this table.

shape: (input) The list of numbers of subscripts in each indexing position.

operand: (input) The one-dimensional array function supplying the table values.

first: (input) The index of the first table entry in the operand array function.

order: (input) The standard ordering (by rows or by columns) of the entries in the operand
array function.

return: (output) The constructed complex entity instance of standard table function.

4.6.111 make strict triangular matrix

This function constructs an instance of strict triangular matrix given the necessary values
for its explicit attributes.

EXPRESS specification:

*)
FUNCTION make_strict_triangular_matrix(index_base : zero_or_one;

shape : LIST [1:?] OF positive_integer;
source : maths_function;
first : INTEGER;
default_entry : maths_value;
lo_up : lower_upper;
order : ordering_type;
main_diagonal_value : maths_value)

208

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

: strict_triangular_matrix;
RETURN (strict_triangular_matrix (main_diagonal_value)

|| triangular_matrix (default_entry, lo_up, order)
|| linearized_table_function (first)

|| explicit_table_function (index_base, shape)
|| maths_function()

|| generic_expression()
|| unary_generic_expression (source));

END_FUNCTION; -- make_strict_triangular_matrix
(*

Argument definitions:

index base: (input) The base for the indices of the strict triangular matrix.

shape: (input) The shape of the matrix as a list of positive integers.

source: (input) The 1D table function providing the non-default entries of the matrix.

first: (input) The location of the first matrix entry in source.

default entry: (input) The value to use for defaulted entries.

lo up: (input) Whether the lower or upper triangle contains the non-default entries.

order: (input) The order of the entries in source.

main diagonal value: (input) The value to return for entries on the main diagonal.

return: (output) The constructed complex entity instance of strict triangular matrix.

4.6.112 make string literal

This function constructs an instance of string literal given the necessary values for its explicit
attributes.

EXPRESS specification:

*)
FUNCTION make_string_literal(lit_value : STRING) : string_literal;
RETURN (string_literal (lit_value)

|| simple_string_expression()
|| string_expression()

|| expression()
|| generic_expression()

|| simple_generic_expression()
|| generic_literal());

END_FUNCTION; -- make_string_literal
(*

Argument definitions:

lit value: (input) The value for which a literal is to be constructed.

return: (output) The constructed complex entity instance of string literal.

209

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

4.6.113 make unary minus expression

This function constructs an instance of unary minus expression given the necessary values
for its explicit attributes.

EXPRESS specification:

*)
FUNCTION make_unary_minus_expression(operand : numeric_expression)
: unary_minus_expression;
RETURN (unary_minus_expression()

|| unary_numeric_call_expression()
|| unary_numeric_expression()
|| numeric_expression()

|| expression()
|| generic_expression()

|| unary_generic_expression (operand));
END_FUNCTION; -- make_unary_minus_expression
(*

Argument definitions:

operand: (input) The operand to which the unary negation is to be applied.

return: (output) The constructed complex entity instance of unary minus expression.

4.6.114 make uniform product space

This function constructs an instance of uniform product space given the necessary values for
its explicit attributes.

EXPRESS specification:

*)
FUNCTION make_uniform_product_space(base : maths_space;

exponent : positive_integer)
: uniform_product_space;

RETURN (uniform_product_space (base, exponent)
|| maths_space()

|| generic_expression()
|| generic_literal()

|| simple_generic_expression());
END_FUNCTION; -- make_uniform_product_space
(*

Argument definitions:

base: (input) The space used for all factors of the cartesian product.

exponent: (input) The number of factors to use.

return: (output) The constructed complex entity instance of uniform product space.

210

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

4.6.115 max exists

This function reports whether or not a maximum value exists for an interval. If applied to an
instance of maths space which is not an interval, FALSE is returned.

EXPRESS specification:

*)
FUNCTION max_exists(spc : maths_space) : BOOLEAN;
LOCAL

types : SET OF STRING := TYPEOF (spc);
END_LOCAL;
RETURN (bool(((schema_prefix + ’FINITE_INTEGER_INTERVAL’) IN types) OR
((schema_prefix + ’INTEGER_INTERVAL_TO_MAX’) IN types) OR
((schema_prefix + ’FINITE_REAL_INTERVAL’) IN types) OR
((schema_prefix + ’REAL_INTERVAL_TO_MAX’) IN types)));

END_FUNCTION; -- max_exists
(*

Argument definitions:

spc: (input) The space to be tested.

return: (output) A BOOLEAN value which is TRUE if the space is an interval which has an
upper bound.

4.6.116 max included

This function reports whether or not the least upper bound for an interval is a member of the
interval. If applied to an instance of maths space which is not an interval, or if the interval
has no upper bound, FALSE is returned.

EXPRESS specification:

*)
FUNCTION max_included(spc : maths_space) : BOOLEAN;
LOCAL

types : SET OF STRING := TYPEOF (spc);
END_LOCAL;
IF ((schema_prefix + ’FINITE_INTEGER_INTERVAL’) IN types) OR
((schema_prefix + ’INTEGER_INTERVAL_TO_MAX’) IN types) THEN
RETURN (TRUE);

END_IF;
IF ((schema_prefix + ’FINITE_REAL_INTERVAL’) IN types) THEN
RETURN (bool(spc\finite_real_interval.max_closure = closed));

END_IF;
IF ((schema_prefix + ’REAL_INTERVAL_TO_MAX’) IN types) THEN
RETURN (bool(spc\real_interval_to_max.max_closure = closed));

END_IF;
RETURN (FALSE);

END_FUNCTION; -- max_included
(*

211

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

Argument definitions:

spc: (input) The space to be tested.

return: (output) A BOOLEAN value which is TRUE if the space is an interval which includes
its least upper bound.

4.6.117 member of

This function attempts to determine whether a given mathematical value is a member of a
given mathematical space. Where the information accessible to this function is not sufficient to
determine the matter, UNKNOWN is returned.

NOTE The EXPRESS code below introduces and uses the trivial function fedex solely to avoid an
error in the NIST Fedex compiler. Although technically unnecessary, the extra code is correct and should
have no detectable consequences.

EXPRESS specification:

*)
FUNCTION member_of(val : GENERIC:G;

spc : maths_space) : LOGICAL;

-- Trivial function introduced to avoid NIST Fedex compiler error
FUNCTION fedex(val : AGGREGATE OF GENERIC:X;

i : INTEGER) : GENERIC:X;
RETURN (val[i]);

END_FUNCTION; -- fedex

LOCAL
v : maths_value := simplify_maths_value (convert_to_maths_value (val));
vtypes : SET OF STRING := stripped_typeof (v);
s : maths_space := simplify_maths_space (spc);
stypes : SET OF STRING := stripped_typeof (s);
tmp_int : INTEGER;
tmp_real : REAL;
tmp_cmplx : complex_number_literal;
lgcl, cum : LOGICAL;
vspc, sspc : maths_space;
smem : SET OF maths_value;
factors : LIST OF maths_space;

END_LOCAL;
IF NOT EXISTS (s) THEN

RETURN (FALSE);
END_IF;
IF NOT EXISTS (v) THEN
RETURN (s = the_generics);

END_IF;
IF (’GENERIC_EXPRESSION’ IN vtypes) AND

NOT (’MATHS_SPACE’ IN vtypes) AND
NOT (’MATHS_FUNCTION’ IN vtypes) AND
NOT (’COMPLEX_NUMBER_LITERAL’ IN vtypes) THEN
IF has_values_space (v) THEN
vspc := values_space_of (v);
IF subspace_of (vspc, s) THEN

RETURN (TRUE);

212

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

END_IF;
IF NOT compatible_spaces (vspc, s) THEN

RETURN (FALSE);
END_IF;
RETURN (UNKNOWN);

END_IF;
RETURN (UNKNOWN);

END_IF;
IF ’ELEMENTARY_SPACE’ IN stypes THEN
CASE s\elementary_space.space_id OF
es_numbers : RETURN ((’NUMBER’ IN vtypes) OR

(’COMPLEX_NUMBER_LITERAL’ IN vtypes));
es_complex_numbers : RETURN (’COMPLEX_NUMBER_LITERAL’ IN vtypes);
es_reals : RETURN ((’REAL’ IN vtypes) AND NOT (’INTEGER’ IN vtypes));
es_integers : RETURN (’INTEGER’ IN vtypes);
es_logicals : RETURN (’LOGICAL’ IN vtypes);
es_booleans : RETURN (’BOOLEAN’ IN vtypes);
es_strings : RETURN (’STRING’ IN vtypes);
es_binarys : RETURN (’BINARY’ IN vtypes);
es_maths_spaces : RETURN (’MATHS_SPACE’ IN vtypes);
es_maths_functions : RETURN (’MATHS_FUNCTION’ IN vtypes);
es_generics : RETURN (TRUE);
END_CASE;

END_IF;
IF ’FINITE_INTEGER_INTERVAL’ IN stypes THEN
IF ’INTEGER’ IN vtypes THEN

tmp_int := v;
RETURN ({s\finite_integer_interval.min <= tmp_int <=

s\finite_integer_interval.max});
END_IF;
RETURN (FALSE);

END_IF;
IF ’INTEGER_INTERVAL_FROM_MIN’ IN stypes THEN

IF ’INTEGER’ IN vtypes THEN
tmp_int := v;
RETURN (s\integer_interval_from_min.min <= tmp_int);

END_IF;
RETURN (FALSE);

END_IF;
IF ’INTEGER_INTERVAL_TO_MAX’ IN stypes THEN

IF ’INTEGER’ IN vtypes THEN
tmp_int := v;
RETURN (tmp_int <= s\integer_interval_to_max.max);

END_IF;
RETURN (FALSE);

END_IF;
IF ’FINITE_REAL_INTERVAL’ IN stypes THEN
IF (’REAL’ IN vtypes) AND NOT (’INTEGER’ IN vtypes) THEN

tmp_real := v;
IF s\finite_real_interval.min_closure = closed THEN

IF s\finite_real_interval.max_closure = closed THEN
RETURN ({s\finite_real_interval.min <= tmp_real <=

s\finite_real_interval.max});
ELSE

RETURN ({s\finite_real_interval.min <= tmp_real <
s\finite_real_interval.max});

END_IF;
ELSE

IF s\finite_real_interval.max_closure = closed THEN

213

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

RETURN ({s\finite_real_interval.min < tmp_real <=
s\finite_real_interval.max});

ELSE
RETURN ({s\finite_real_interval.min < tmp_real <

s\finite_real_interval.max});
END_IF;

END_IF;
END_IF;
RETURN (FALSE);

END_IF;
IF ’REAL_INTERVAL_FROM_MIN’ IN stypes THEN

IF (’REAL’ IN vtypes) AND NOT (’INTEGER’ IN vtypes) THEN
tmp_real := v;
IF s\real_interval_from_min.min_closure = closed THEN
RETURN (s\real_interval_from_min.min <= tmp_real);

ELSE
RETURN (s\real_interval_from_min.min < tmp_real);

END_IF;
END_IF;
RETURN (FALSE);

END_IF;
IF ’REAL_INTERVAL_TO_MAX’ IN stypes THEN

IF (’REAL’ IN vtypes) AND NOT (’INTEGER’ IN vtypes) THEN
tmp_real := v;
IF s\real_interval_to_max.max_closure = closed THEN

RETURN (tmp_real <= s\real_interval_to_max.max);
ELSE
RETURN (tmp_real < s\real_interval_to_max.max);

END_IF;
END_IF;
RETURN (FALSE);

END_IF;
IF ’CARTESIAN_COMPLEX_NUMBER_REGION’ IN stypes THEN
IF ’COMPLEX_NUMBER_LITERAL’ IN vtypes THEN

RETURN (member_of(v\complex_number_literal.real_part,
s\cartesian_complex_number_region.real_constraint) AND
member_of(v\complex_number_literal.imag_part,
s\cartesian_complex_number_region.imag_constraint));

END_IF;
RETURN (FALSE);

END_IF;
IF ’POLAR_COMPLEX_NUMBER_REGION’ IN stypes THEN
IF ’COMPLEX_NUMBER_LITERAL’ IN vtypes THEN

tmp_cmplx := v;
tmp_cmplx.real_part := tmp_cmplx.real_part -

s\polar_complex_number_region.centre.real_part;
tmp_cmplx.imag_part := tmp_cmplx.imag_part -
s\polar_complex_number_region.centre.imag_part;

tmp_real := SQRT (tmp_cmplx.real_part**2 + tmp_cmplx.imag_part**2);
IF NOT member_of(tmp_real,

s\polar_complex_number_region.distance_constraint) THEN
RETURN (FALSE);

END_IF;
IF tmp_real = 0.0 THEN
RETURN (TRUE); -- The centre has no direction.

END_IF;
tmp_real := atan2(tmp_cmplx.imag_part,tmp_cmplx.real_part);
RETURN (member_of(tmp_real,

s\polar_complex_number_region.direction_constraint) OR

214

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

member_of(tmp_real + 2.0*PI,
s\polar_complex_number_region.direction_constraint));

END_IF;
RETURN (FALSE);

END_IF;
IF ’FINITE_SPACE’ IN stypes THEN

smem := s\finite_space.members;
cum := FALSE;
REPEAT i := 1 TO SIZEOF (smem);

cum := cum OR equal_maths_values(v,smem[i]);
IF cum = TRUE THEN

RETURN (TRUE);
END_IF;

END_REPEAT;
RETURN (cum);

END_IF;
IF ’UNIFORM_PRODUCT_SPACE’ IN stypes THEN

IF ’LIST’ IN vtypes THEN
IF SIZEOF (v) = s\uniform_product_space.exponent THEN

sspc := s\uniform_product_space.base;
cum := TRUE;
REPEAT i := 1 TO SIZEOF (v);

cum := cum AND member_of(v[i],sspc);
-- cum := cum AND member_of (fedex (v, i), sspc);

-- See note above for explanation of fedex()
IF cum = FALSE THEN

RETURN (FALSE);
END_IF;

END_REPEAT;
RETURN (cum);

END_IF;
END_IF;
RETURN (FALSE);

END_IF;
IF ’LISTED_PRODUCT_SPACE’ IN stypes THEN
IF ’LIST’ IN vtypes THEN

factors := s\listed_product_space.factors;
IF SIZEOF (v) = SIZEOF (factors) THEN

cum := TRUE;
REPEAT i := 1 TO SIZEOF (v);

cum := cum AND member_of(v[i],factors[i]);
-- cum := cum AND member_of (fedex (v, i), factors[i]);

-- See note above for explanation of fedex()
IF cum = FALSE THEN

RETURN (FALSE);
END_IF;

END_REPEAT;
RETURN (cum);

END_IF;
END_IF;
RETURN (FALSE);

END_IF;
IF ’EXTENDED_TUPLE_SPACE’ IN stypes THEN

IF ’LIST’ IN vtypes THEN
sspc := s\extended_tuple_space.base;
tmp_int := space_dimension(sspc);
IF SIZEOF (v) >= tmp_int THEN

cum := TRUE;
REPEAT i := 1 TO tmp_int;

215

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

cum := cum AND member_of(v[i],factor_space(sspc,i));
-- cum := cum AND member_of (fedex (v, i), factor_space (sspc, i));

-- See note above for explanation of fedex()
IF cum = FALSE THEN

RETURN (FALSE);
END_IF;

END_REPEAT;
sspc := s\extended_tuple_space.extender;
REPEAT i := tmp_int+1 TO SIZEOF (v);

cum := cum AND member_of(v[i],sspc);
IF cum = FALSE THEN
RETURN (FALSE);

END_IF;
END_REPEAT;
RETURN (cum);

END_IF;
END_IF;
RETURN (FALSE);

END_IF;
IF ’FUNCTION_SPACE’ IN stypes THEN

IF ’MATHS_FUNCTION’ IN vtypes THEN
vspc := v\maths_function.domain;
sspc := s\function_space.domain_argument;
CASE s\function_space.domain_constraint OF
sc_equal : cum := equal_maths_spaces (vspc, sspc);
sc_subspace : cum := subspace_of (vspc, sspc);
sc_member : cum := member_of (vspc, sspc);
END_CASE;
IF cum = FALSE THEN
RETURN (FALSE);

END_IF;
vspc := v\maths_function.range;
sspc := s\function_space.range_argument;
CASE s\function_space.range_constraint OF
sc_equal : cum := cum AND equal_maths_spaces (vspc, sspc);
sc_subspace : cum := cum AND subspace_of (vspc, sspc);
sc_member : cum := cum AND member_of (vspc, sspc);
END_CASE;
RETURN (cum);

END_IF;
RETURN (FALSE);

END_IF;
-- Should be unreachable
RETURN (UNKNOWN);

END_FUNCTION; -- member_of
(*

Argument definitions:

val: (input) The value to be tested for membership in the space.

spc: (input) The space to be tested for containing the value.

return: (output) A LOGICAL value which is TRUE if the value can be determined to be a
member of the space, FALSE if the value can be determined not to be a member of the space,
and UNKNOWN, otherwise.

216

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

4.6.118 min exists

This function reports whether or not a minimum value exists for an interval. If applied to an
instance of maths space which is not an interval, FALSE is returned.

EXPRESS specification:

*)
FUNCTION min_exists(spc : maths_space) : BOOLEAN;
LOCAL

types : SET OF STRING := TYPEOF (spc);
END_LOCAL;
RETURN (bool(((schema_prefix + ’FINITE_INTEGER_INTERVAL’) IN types) OR
((schema_prefix + ’INTEGER_INTERVAL_FROM_MIN’) IN types) OR
((schema_prefix + ’FINITE_REAL_INTERVAL’) IN types) OR
((schema_prefix + ’REAL_INTERVAL_FROM_MIN’) IN types)));

END_FUNCTION; -- min_exists
(*

Argument definitions:

spc: (input) The space to be tested.

return: (output) A BOOLEAN value which is TRUE if the space is an interval which has an
lower bound.

4.6.119 min included

This function reports whether or not the greatest lower bound for an interval is a member of the
interval. If applied to an instance of maths space which is not an interval, or if the interval
has no lower bound, FALSE is returned.

EXPRESS specification:

*)
FUNCTION min_included(spc : maths_space) : BOOLEAN;
LOCAL

types : SET OF STRING := TYPEOF (spc);
END_LOCAL;
IF ((schema_prefix + ’FINITE_INTEGER_INTERVAL’) IN types) OR
((schema_prefix + ’INTEGER_INTERVAL_FROM_MIN’) IN types) THEN
RETURN (TRUE);

END_IF;
IF ((schema_prefix + ’FINITE_REAL_INTERVAL’) IN types) THEN
RETURN (bool(spc\finite_real_interval.min_closure = closed));

END_IF;
IF ((schema_prefix + ’REAL_INTERVAL_FROM_MIN’) IN types) THEN
RETURN (bool(spc\real_interval_from_min.min_closure = closed));

END_IF;
RETURN (FALSE);

END_FUNCTION; -- min_included
(*

217

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

Argument definitions:

spc: (input) The space to be tested.

return: (output) A BOOLEAN value which is TRUE if the space is an interval which includes
its greatest lower bound.

4.6.120 no cyclic domain reference

This function verifies that the chain of references leading to a source for the domain of certain
instances of maths function terminates and does not lead to an endless loop.

NOTE In normal use, the second argument is initialized with the singleton set of the function whose
source of domain attribute is to be checked. The presence of the second argument enables implemen-
tation by recursion.

EXPRESS specification:

*)
FUNCTION no_cyclic_domain_reference(ref : maths_space_or_function;

used : SET OF maths_function) : BOOLEAN;
LOCAL

typenames : SET OF STRING := TYPEOF (ref);
func : maths_function;

END_LOCAL;
IF (NOT EXISTS (ref)) OR (NOT EXISTS (used)) THEN

RETURN (FALSE);
END_IF;
IF (schema_prefix + ’MATHS_SPACE’) IN typenames THEN

RETURN (TRUE);
END_IF;
func := ref;
IF func IN used THEN

RETURN (FALSE);
END_IF;
IF (schema_prefix + ’CONSTANT_FUNCTION’) IN typenames THEN

RETURN (no_cyclic_domain_reference (func\constant_function.source_of_domain,
used + [func]));

END_IF;
IF (schema_prefix + ’SELECTOR_FUNCTION’) IN typenames THEN
RETURN (no_cyclic_domain_reference (func\selector_function.source_of_domain,

used + [func]));
END_IF;
IF (schema_prefix + ’PARALLEL_COMPOSED_FUNCTION’) IN typenames THEN

RETURN (no_cyclic_domain_reference (
func\parallel_composed_function.source_of_domain, used + [func]));

END_IF;
RETURN (TRUE);

END_FUNCTION; -- no_cyclic_domain_reference
(*

Argument definitions:

ref: (input) The current reference.

218

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

used: (input) The set of maths function instances already referenced.

return: (output) A BOOLEAN value indicating whether the domain reference is proper.

4.6.121 no cyclic space reference

This function returns true if the graph of maths space references generated from its input
maths space contains no cycles and no members of its second argument.

NOTE In normal use, the second argument is initialized with the empty set. The presence of the second
argument enables its implementation by recursion.

EXPRESS specification:

*)
FUNCTION no_cyclic_space_reference(spc : maths_space;

refs : SET OF maths_space) : BOOLEAN;
LOCAL

types : SET OF STRING;
refs_plus : SET OF maths_space;

END_LOCAL;
IF (spc IN refs) THEN

RETURN (FALSE);
END_IF;
types := TYPEOF (spc);
refs_plus := refs + spc;
IF (schema_prefix + ’FINITE_SPACE’) IN types THEN

RETURN (bool(SIZEOF (QUERY (sp <* QUERY (mem <* spc\finite_space.members |
(schema_prefix + ’MATHS_SPACE’) IN TYPEOF (mem)) |
NOT no_cyclic_space_reference (sp, refs_plus))) = 0));

END_IF;
IF (schema_prefix + ’UNIFORM_PRODUCT_SPACE’) IN types THEN

RETURN (no_cyclic_space_reference (spc\uniform_product_space.base, refs_plus));
END_IF;
IF (schema_prefix + ’LISTED_PRODUCT_SPACE’) IN types THEN
RETURN (bool(SIZEOF (QUERY (fac <* spc\listed_product_space.factors |

NOT no_cyclic_space_reference (fac, refs_plus))) = 0));
END_IF;
IF (schema_prefix + ’EXTENDED_TUPLE_SPACE’) IN types THEN

RETURN (no_cyclic_space_reference (spc\extended_tuple_space.base, refs_plus)
AND no_cyclic_space_reference (spc\extended_tuple_space.extender, refs_plus));

END_IF;
-- spc contains no references to other spaces
RETURN (TRUE);

END_FUNCTION; -- no_cyclic_space_reference
(*

Argument definitions:

spc: (input) The space to be tested.

return: (output) A BOOLEAN value which is TRUE if the graph of space references reachable
from the input has no cycles.

219

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

4.6.122 nondecreasing

This function determines whether or not a list of real values is in nondecreasing order.

EXPRESS specification:

*)
FUNCTION nondecreasing(lr : LIST OF REAL) : BOOLEAN;
IF NOT EXISTS (lr) THEN

RETURN (FALSE);
END_IF;
REPEAT j := 2 TO SIZEOF (lr);
IF lr[j] < lr[j-1] THEN

RETURN (FALSE);
END_IF;

END_REPEAT;
RETURN (TRUE);

END_FUNCTION;
(*

Argument definitions:

lr: (input) The list of real values to be tested.

return: (output) A BOOLEAN value which is TRUE if the members of the input list are in
nondecreasing order.

4.6.123 number superspace of

This function returns the elementary numeric space corresponding to the type of the numbers
which are members of the mathematical space represented by a maths space instance. If the
members of the mathematical space are not numbers, the indeterminate value is returned. The
elementary space of all numbers is only returned for a finite space containing more than one
kind of number among its members.

EXPRESS specification:

*)
FUNCTION number_superspace_of(spc : maths_space) : elementary_space;
IF subspace_of_es(spc,es_integers) THEN RETURN (the_integers); END_IF;
IF subspace_of_es(spc,es_reals) THEN RETURN (the_reals); END_IF;
IF subspace_of_es(spc,es_complex_numbers) THEN RETURN (the_complex_numbers); END_IF;
IF subspace_of_es(spc,es_numbers) THEN RETURN (the_numbers); END_IF;
RETURN (?);

END_FUNCTION; -- number_superspace_of
(*

Argument definitions:

spc: (input) The maths space value whose elementary numeric superspace is to be returned.

220

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

return: (output) The elementary space of all numbers of the same type as the members of the
input space, or, if the members are not all numbers, the indeterminate value (?).

4.6.124 number tuple subspace check

This function identifies the maths space values which represent subspaces of the number tuple
spaces. In other words, this function identifies maths space values representing mathematical
spaces whose members are ordered tuples of numbers.

EXPRESS specification:

*)
FUNCTION number_tuple_subspace_check(spc : maths_space) : LOGICAL;
LOCAL

types : SET OF STRING := stripped_typeof(spc);
factors : LIST OF maths_space;
cum : LOGICAL := TRUE;

END_LOCAL;
IF ’UNIFORM_PRODUCT_SPACE’ IN types THEN

RETURN (subspace_of_es(spc\uniform_product_space.base,es_numbers));
END_IF;
IF ’LISTED_PRODUCT_SPACE’ IN types THEN

factors := spc\listed_product_space.factors;
REPEAT i := 1 TO SIZEOF (factors);

cum := cum AND subspace_of_es(factors[i],es_numbers);
END_REPEAT;
RETURN (cum);

END_IF;
IF ’EXTENDED_TUPLE_SPACE’ IN types THEN

cum := subspace_of_es(spc\extended_tuple_space.extender,es_numbers);
cum := cum AND number_tuple_subspace_check(spc\extended_tuple_space.base);
RETURN (cum);

END_IF;
RETURN (FALSE);

END_FUNCTION;
(*

Argument definitions:

spc: (input) The maths space value to be checked.

return: (output) A LOGICAL value which is TRUE if it can be determined that the input
space is one whose members are ordered tuples of numbers, FALSE if it can be determined
the input space contains members which are not ordered tuples of numbers, and UNKNOWN,
otherwise.

4.6.125 one tuples of

This function constructs the space of all one-tuples of elements from any given space.

221

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

EXPRESS specification:

*)
FUNCTION one_tuples_of(spc : maths_space) : tuple_space;
RETURN (make_uniform_product_space (spc, 1));

END_FUNCTION; -- one_tuples_of
(*

Argument definitions:

spc: (input) The space from which the elements used to form one-tuples are taken.

return: (output) The space of one-tuples of elements from the given space.

4.6.126 parallel composed function composability check

This function determines whether or not the associative Cartesian product of the ranges of the
functions listed in its second argument is compatible with the domain of the function in its third
argument.

EXPRESS specification:

*)
FUNCTION parallel_composed_function_composability_check(

funcs : LIST OF maths_function;
final : maths_function_select) : BOOLEAN;

LOCAL
tplsp : tuple_space := the_zero_tuple_space;
finfun : maths_function := convert_to_maths_function (final);

END_LOCAL;
REPEAT i := 1 TO SIZEOF (funcs);

tplsp := assoc_product_space (tplsp, funcs[i].range);
END_REPEAT;
RETURN (compatible_spaces (tplsp, finfun.domain));

END_FUNCTION; -- parallel_composed_function_composability_check
(*

Argument definitions:

funcs: (input) The list of functions whose ranges are to be used.

final: (input) The function whose domain is to be used.

return: (output) The BOOLEAN value signifying whether the associative Cartesian product
of the ranges of functions in funcs are compatible with the domain of final or not.

4.6.127 parallel composed function domain check

This function determines whether or not all the domains of the list of functions in its second
argument are compatible with its first argument.

222

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

EXPRESS specification:

*)
FUNCTION parallel_composed_function_domain_check(

comdom : tuple_space;
funcs : LIST OF maths_function) : BOOLEAN;

REPEAT i := 1 TO SIZEOF (funcs);
IF NOT (compatible_spaces (comdom, funcs[i].domain)) THEN
RETURN (FALSE);

END_IF;
END_REPEAT;
RETURN (TRUE);

END_FUNCTION; -- parallel_composed_function_domain_check
(*

Argument definitions:

comdom: (input) The space with which the function domains are checked for compatibility.

funcs: (input) The list of preparatory functions whose domains are to be checked for compati-
bility with comdom.

return: (output) The BOOLEAN value signifying whether all the domains of the functions in
funcs are compatible with the value of comdom or not.

4.6.128 parse express identifier

This function locates the next position in a given string, starting from a given position, which
cannot belong to a syntactically correct EXPRESS identifier. That is, the substring of the given
string starting with the given position and ending at the position before the returned value of
this function is either a null string, or begins with a letter and contains only letters, digits and
underscores. If the starting position is beyond the end of the string, or does not contain a letter,
the starting position is returned.

EXPRESS specification:

*)
FUNCTION parse_express_identifier(s : STRING;

i : positive_integer) : positive_integer;
LOCAL

k : positive_integer;
END_LOCAL;
k := i;
IF i <= LENGTH (s) THEN

IF (s[i] LIKE ’@’) THEN
REPEAT UNTIL (k > LENGTH (s)) OR

((s[k] <> ’_’) AND NOT (s[k] LIKE ’@’) AND NOT (s[k] LIKE ’#’));
k := k + 1;

END_REPEAT;
END_IF;

END_IF;
RETURN (k);

END_FUNCTION; -- parse_express_identifier
(*

223

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

Argument definitions:

s: (input) The string to be searched.

i: (input) The character position at which to begin the search.

return: (output) The next string position which cannot belong to an EXPRESS identifier.

4.6.129 partial derivative check

This function verifies that its inputs permit a meaningful partial derivative function. Specifically,
it verifies that the members of d vars correspond to components of domain and that those
components are subspaces of the reals or the complex numbers.

EXPRESS specification:

*)
FUNCTION partial_derivative_check(domain : tuple_space;

d_vars : LIST [1:?] OF input_selector) : BOOLEAN;
LOCAL

domn : tuple_space := domain;
fspc : maths_space;
dim : INTEGER;
k : INTEGER;

END_LOCAL;
IF (space_dimension (domain) = 1) AND ((schema_prefix + ’TUPLE_SPACE’) IN

TYPEOF (factor1 (domain))) THEN
domn := factor1 (domain);

END_IF;
dim := space_dimension (domn);
REPEAT i := 1 TO SIZEOF (d_vars);
k := d_vars[i];
IF k > dim THEN

RETURN (FALSE);
END_IF;
fspc := factor_space (domn, k);
IF (NOT subspace_of_es (fspc,es_reals)) AND

(NOT subspace_of_es (fspc,es_complex_numbers)) THEN
RETURN (FALSE);

END_IF;
END_REPEAT;
RETURN (TRUE);

END_FUNCTION; -- partial_derivative_check
(*

Argument definitions:

domain: (input) The domain of the function to be differentiated.

d vars: (input) The values of type input selector corresponding to implicit input variables
with respect to which partial differentiation is to be performed.

return: (output) A BOOLEAN value indicating whether or not the inputs permit a meaningful
partial derivative function.

224

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

4.6.130 real max

This function returns the least upper bound for an interval that has one. If applied to an
instance of maths space which is not an interval, or if the interval has no upper bound, the
indeterminate value is returned.

EXPRESS specification:

*)
FUNCTION real_max(spc : maths_space) : REAL;
LOCAL

types : SET OF STRING := TYPEOF (spc);
END_LOCAL;
IF ((schema_prefix + ’FINITE_INTEGER_INTERVAL’) IN types) THEN
RETURN (spc\finite_integer_interval.max);

END_IF;
IF ((schema_prefix + ’INTEGER_INTERVAL_TO_MAX’) IN types) THEN

RETURN (spc\integer_interval_to_max.max);
END_IF;
IF ((schema_prefix + ’FINITE_REAL_INTERVAL’) IN types) THEN

RETURN (spc\finite_real_interval.max);
END_IF;
IF ((schema_prefix + ’REAL_INTERVAL_TO_MAX’) IN types) THEN
RETURN (spc\real_interval_to_max.max);

END_IF;
RETURN (?);

END_FUNCTION; -- real_max
(*

Argument definitions:

spc: (input) The interval for which the least upper bound is to be obtained.

return: (output) The least upper bound as a real number, if one exists. Otherwise, the inde-
terminate value is returned.

4.6.131 real min

This function returns the greatest lower bound for an interval that has one. If applied to an
instance of maths space which is not an interval, or if the interval has no lower bound, the
indeterminate value is returned.

EXPRESS specification:

*)
FUNCTION real_min(spc : maths_space) : REAL;
LOCAL

types : SET OF STRING := TYPEOF (spc);
END_LOCAL;
IF ((schema_prefix + ’FINITE_INTEGER_INTERVAL’) IN types) THEN
RETURN (spc\finite_integer_interval.min);

END_IF;

225

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

IF ((schema_prefix + ’INTEGER_INTERVAL_FROM_MIN’) IN types) THEN
RETURN (spc\integer_interval_from_min.min);

END_IF;
IF ((schema_prefix + ’FINITE_REAL_INTERVAL’) IN types) THEN
RETURN (spc\finite_real_interval.min);

END_IF;
IF ((schema_prefix + ’REAL_INTERVAL_FROM_MIN’) IN types) THEN
RETURN (spc\real_interval_from_min.min);

END_IF;
RETURN (?);

END_FUNCTION; -- real_min
(*

Argument definitions:

spc: (input) The interval for which the greatest lower bound is to be obtained.

return: (output) The greatest lower bound as a real number, if one exists. Otherwise, the
indeterminate value is returned.

4.6.132 regular indexing

This function computes the single index associated with a subscript tuple in the context of
a subscript range base value, a table shape tuple, the tuple of increments for each subscript
position, and the index of the first element. This function describes the indexing associated
with an instance of regular table function.

EXPRESS specification:

*)
FUNCTION regular_indexing(sub : LIST OF INTEGER;

base : zero_or_one;
shape : LIST [1:?] OF positive_integer;
inc : LIST [1:?] OF INTEGER;
first : INTEGER) : INTEGER;

LOCAL
k : INTEGER;
index : INTEGER;

END_LOCAL;
IF NOT EXISTS (sub) OR NOT EXISTS (base) OR NOT EXISTS (shape) OR

NOT EXISTS (inc) OR NOT EXISTS (first) THEN
RETURN (?);

END_IF;
IF (SIZEOF (sub) <> SIZEOF (inc)) OR (SIZEOF (sub) <> SIZEOF (shape)) THEN

RETURN (?);
END_IF;
index := first;
REPEAT j := 1 TO SIZEOF (sub);
IF NOT EXISTS (sub[j]) OR NOT EXISTS (inc[j]) THEN

RETURN (?);
END_IF;
k := sub[j] - base;
IF NOT ({0 <= k < shape[j]}) THEN

RETURN (?);
END_IF;

226

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

index := index + k*inc[j];
END_REPEAT;
RETURN (index);

END_FUNCTION;
(*

Argument definitions:

sub: (input) The subscript tuple for which a single index is to be computed.

base: (input) The base of the subscript ranges.

shape: (input) The shape of the table.

inc: (input) The increments associated with each subscript position.

first: (input) The index corresponding to the first subscript position.

return: (output) The single index corresponding to the input subscript tuple.

4.6.133 remove first

This function takes any list and returns a copy with the first element, if any, removed.

EXPRESS specification:

*)
FUNCTION remove_first(alist : LIST OF GENERIC:GEN) : LIST OF GENERIC:GEN;
LOCAL

blist : LIST OF GENERIC:GEN := alist;
END_LOCAL;
IF SIZEOF (blist) > 0 THEN
REMOVE (blist, 1);

END_IF;
RETURN (blist);

END_FUNCTION; -- remove_first
(*

Argument definitions:

alist: (input) The input list.

return: (output) A copy of the input list with the first element removed.

4.6.134 repackage

This function transforms the input tuple space in accordance with the repackage option value
specified.

NOTE If called to unwrap a tuple space whose first factor space is not a tuple space, the algorithm
may fail to produce an output of type tuple space. It is assumed that the indeterminate value (?) is
produced instead.

227

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

EXPRESS specification:

*)
FUNCTION repackage(tspace : tuple_space;

repckg : repackage_options) : tuple_space;
CASE repckg OF
ro_nochange : RETURN (tspace);
ro_wrap_as_tuple : RETURN (one_tuples_of (tspace));
ro_unwrap_tuple : RETURN (factor1 (tspace));
OTHERWISE : RETURN (?);
END_CASE;

END_FUNCTION; -- repackage
(*

Argument definitions:

tspace: (input) The input tuple space.

repckg: (input) The repackage option specified.

return: (output) The resulting tuple space.

4.6.135 shape of array

This function returns a tuple of positive integers reflecting the numbers of subscripts in each
indexing position for an array function. If the function is not an array function, the indeterminate
value is returned.

EXPRESS specification:

*)
FUNCTION shape_of_array(func : maths_function) : LIST OF positive_integer;
LOCAL

tspace : tuple_space;
temp : maths_space;
result : LIST OF positive_integer := [];

END_LOCAL;
IF (schema_prefix + ’EXPLICIT_TABLE_FUNCTION’) IN TYPEOF (func) THEN

RETURN (func\explicit_table_function.shape);
END_IF;
tspace := func.domain;
IF (space_dimension (tspace) = 1) AND ((schema_prefix + ’TUPLE_SPACE’) IN

TYPEOF (factor1 (tspace))) THEN
tspace := factor1 (tspace);

END_IF;
REPEAT i := 1 TO space_dimension (tspace);

temp := factor_space (tspace, i);
IF NOT ((schema_prefix + ’FINITE_INTEGER_INTERVAL’) IN TYPEOF (temp)) THEN

RETURN (?);
END_IF;
INSERT (result, temp\finite_integer_interval.size, i-1);

END_REPEAT;
RETURN (result);

END_FUNCTION; -- shape_of_array
(*

228

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

Argument definitions:

func: (input) The input array function.

return: (output) The tuple of positive integers describing the shape of the array function.

4.6.136 simplify function application

This function attempts to simplify a function application expression to obtain a simpler
maths value. When no simpler expression can be identified, the input expression may be
returned unchanged.

EXPRESS specification:

*)
FUNCTION simplify_function_application(expr : function_application) : maths_value;
FUNCTION ctmv(x : GENERIC:G) : maths_value;

RETURN (convert_to_maths_value(x));
END_FUNCTION; -- local abbreviation for convert_to_maths_value function
PROCEDURE parts(c : complex_number_literal;

VAR x, y : REAL);
x := c.real_part; y := c.imag_part;

END_PROCEDURE; -- parts
FUNCTION makec(x, y : REAL) : complex_number_literal;
RETURN (make_complex_number_literal(x,y));

END_FUNCTION; -- local abbreviation for make_complex_number_literal function
FUNCTION good_t(v : maths_value;

tn : STRING) : BOOLEAN;
LOCAL

tpl : LIST OF maths_value;
END_LOCAL;
IF ’LIST’ IN TYPEOF (v) THEN
tpl := v;
REPEAT i := 1 TO SIZEOF (tpl);
IF NOT (tn IN TYPEOF (tpl[i])) THEN RETURN (FALSE); END_IF;

END_REPEAT;
RETURN (TRUE);

END_IF;
RETURN (FALSE);

END_FUNCTION; -- good_t
CONSTANT

cnlit : STRING := schema_prefix + ’COMPLEX_NUMBER_LITERAL’;
END_CONSTANT;
LOCAL

types : SET OF STRING := stripped_typeof(expr.func);
ef_val : elementary_function_enumerators;
is_elementary : BOOLEAN := FALSE;
v, v1, v2, v3 : maths_value;
vlist : LIST OF maths_value := [];
gexpr : generic_expression;
pairs : SET [1:?] OF LIST [2:2] OF maths_value;
boo : BOOLEAN;
lgc, cum : LOGICAL;
j, k, n : INTEGER;
p, q, r, s, t, u : REAL;
str, st2 : STRING;

229

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

bin, bi2 : BINARY;
tpl, tp2 : LIST OF maths_value;
mem :SET OF maths_value := [];

END_LOCAL;
REPEAT i := 1 TO SIZEOF (expr.arguments);

v := simplify_maths_value(expr.arguments[i]);
INSERT (vlist, v, i-1);

END_REPEAT;
IF SIZEOF (vlist) >= 1 THEN v1 := vlist[1]; END_IF;
IF SIZEOF (vlist) >= 2 THEN v2 := vlist[2]; END_IF;
IF SIZEOF (vlist) >= 3 THEN v3 := vlist[3]; END_IF;
IF ’ELEMENTARY_FUNCTION_ENUMERATORS’ IN types THEN

ef_val := expr.func;
is_elementary := TRUE;

END_IF;
IF ’ELEMENTARY_FUNCTION’ IN types THEN

ef_val := expr.func\elementary_function.func_id;
is_elementary := TRUE;

END_IF;
IF is_elementary THEN
CASE ef_val OF
ef_and : BEGIN

cum := TRUE;
REPEAT i := SIZEOF (vlist) TO 1 BY -1;

IF ’LOGICAL’ IN TYPEOF (vlist[i]) THEN
lgc := vlist[i]; cum := cum AND lgc;
IF lgc = FALSE THEN RETURN (ctmv(FALSE)); END_IF;
REMOVE (vlist, i);

END_IF;
END_REPEAT;
IF SIZEOF (vlist) = 0 THEN RETURN (ctmv(cum)); END_IF;
IF cum <> TRUE THEN INSERT (vlist, ctmv(cum), 0); END_IF;
IF SIZEOF (vlist) = 1 THEN RETURN (vlist[1]); END_IF;
END;

ef_or : BEGIN
cum := FALSE;
REPEAT i := SIZEOF (vlist) TO 1 BY -1;

IF ’LOGICAL’ IN TYPEOF (vlist[i]) THEN
lgc := vlist[i]; cum := cum OR lgc;
IF lgc = TRUE THEN RETURN (ctmv(TRUE)); END_IF;
REMOVE (vlist, i);

END_IF;
END_REPEAT;
IF SIZEOF (vlist) = 0 THEN RETURN (ctmv(cum)); END_IF;
IF cum <> FALSE THEN INSERT (vlist, ctmv(cum), 0); END_IF;
IF SIZEOF (vlist) = 1 THEN RETURN (vlist[1]); END_IF;
END;

ef_not :
IF ’LOGICAL’ IN TYPEOF (v1) THEN lgc := v1; RETURN (ctmv(NOT lgc)); END_IF;

ef_xor : BEGIN
IF ’LOGICAL’ IN TYPEOF (v1) THEN

lgc := v1;
IF ’LOGICAL’ IN TYPEOF (v2) THEN cum := v2; RETURN (ctmv(lgc XOR cum));
ELSE IF lgc = FALSE THEN RETURN (ctmv(v2));
ELSE IF lgc = UNKNOWN THEN RETURN (ctmv(UNKNOWN));
ELSE RETURN (make_function_application(ef_not,[v2]));
END_IF; END_IF; END_IF;

ELSE IF ’LOGICAL’ IN TYPEOF (v2) THEN
lgc := v2;

230

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

IF lgc = FALSE THEN RETURN (ctmv(v1));
ELSE IF lgc = UNKNOWN THEN RETURN (ctmv(UNKNOWN));
ELSE RETURN (make_function_application(ef_not,[v1]));
END_IF; END_IF;

END_IF; END_IF;
END;

ef_negate_i :
IF ’INTEGER’ IN TYPEOF (v1) THEN j := v1; RETURN (ctmv(-j)); END_IF;

ef_add_i : BEGIN
j := 0;
REPEAT i := SIZEOF (vlist) TO 1 BY -1;

IF ’INTEGER’ IN TYPEOF (vlist[i]) THEN
k := vlist[i]; j := j + k;
REMOVE (vlist, i);

END_IF;
END_REPEAT;
IF SIZEOF (vlist) = 0 THEN RETURN (ctmv(j)); END_IF;
IF j <> 0 THEN INSERT (vlist, ctmv(j), 0); END_IF;
IF SIZEOF (vlist) = 1 THEN RETURN (vlist[1]); END_IF;
END;

ef_subtract_i :
IF (’INTEGER’ IN TYPEOF (v1)) AND (’INTEGER’ IN TYPEOF (v2)) THEN

j := v1; k := v2; RETURN (ctmv(j - k));
END_IF;

ef_multiply_i : BEGIN
j := 1;
REPEAT i := SIZEOF (vlist) TO 1 BY -1;

IF ’INTEGER’ IN TYPEOF (vlist[i]) THEN
k := vlist[i]; j := j * k;
REMOVE (vlist, i);

END_IF;
END_REPEAT;
IF SIZEOF (vlist) = 0 THEN RETURN (ctmv(j)); END_IF;
IF j <> 1 THEN INSERT (vlist, ctmv(j), 0); END_IF;
IF SIZEOF (vlist) = 1 THEN RETURN (vlist[1]); END_IF;
END;

ef_divide_i :
IF (’INTEGER’ IN TYPEOF (v1)) AND (’INTEGER’ IN TYPEOF (v2)) THEN
j := v1; k := v2; RETURN (ctmv(j DIV k));

END_IF;
ef_mod_i :

IF (’INTEGER’ IN TYPEOF (v1)) AND (’INTEGER’ IN TYPEOF (v2)) THEN
j := v1; k := v2; RETURN (ctmv(j MOD k));

END_IF;
ef_exponentiate_i :

IF (’INTEGER’ IN TYPEOF (v1)) AND (’INTEGER’ IN TYPEOF (v2)) THEN
j := v1; k := v2; n := 1;
REPEAT i := 1 TO ABS(k); n := n * j; END_REPEAT;
IF k < 0 THEN n := 1 DIV n; END_IF;
RETURN (ctmv(n));

END_IF;
ef_eq_i :
IF (’INTEGER’ IN TYPEOF (v1)) AND (’INTEGER’ IN TYPEOF (v2)) THEN

j := v1; k := v2; RETURN (ctmv(j = k));
END_IF;

ef_ne_i :
IF (’INTEGER’ IN TYPEOF (v1)) AND (’INTEGER’ IN TYPEOF (v2)) THEN

j := v1; k := v2; RETURN (ctmv(j <> k));
END_IF;

231

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ef_gt_i :
IF (’INTEGER’ IN TYPEOF (v1)) AND (’INTEGER’ IN TYPEOF (v2)) THEN

j := v1; k := v2; RETURN (ctmv(j > k));
END_IF;

ef_lt_i :
IF (’INTEGER’ IN TYPEOF (v1)) AND (’INTEGER’ IN TYPEOF (v2)) THEN
j := v1; k := v2; RETURN (ctmv(j < k));

END_IF;
ef_ge_i :

IF (’INTEGER’ IN TYPEOF (v1)) AND (’INTEGER’ IN TYPEOF (v2)) THEN
j := v1; k := v2; RETURN (ctmv(j >= k));

END_IF;
ef_le_i :

IF (’INTEGER’ IN TYPEOF (v1)) AND (’INTEGER’ IN TYPEOF (v2)) THEN
j := v1; k := v2; RETURN (ctmv(j <= k));

END_IF;
ef_abs_i :

IF ’INTEGER’ IN TYPEOF (v1) THEN j := v1; RETURN (ctmv(ABS(j))); END_IF;
ef_max_i : BEGIN

boo := FALSE;
REPEAT i := SIZEOF (vlist) TO 1 BY -1;
IF ’INTEGER’ IN TYPEOF (vlist[i]) THEN

IF boo THEN k := vlist[i]; IF k > j THEN j := k; END_IF;
ELSE j := vlist[i]; boo := TRUE; END_IF;
REMOVE (vlist, i);

END_IF;
END_REPEAT;
IF SIZEOF (vlist) = 0 THEN RETURN (ctmv(j)); END_IF;
IF boo THEN INSERT (vlist, ctmv(j), 0); END_IF;
IF SIZEOF (vlist) = 1 THEN RETURN (vlist[1]); END_IF;
END;

ef_min_i : BEGIN
boo := FALSE;
REPEAT i := SIZEOF (vlist) TO 1 BY -1;

IF ’INTEGER’ IN TYPEOF (vlist[i]) THEN
IF boo THEN k := vlist[i]; IF k < j THEN j := k; END_IF;
ELSE j := vlist[i]; boo := TRUE; END_IF;
REMOVE (vlist, i);

END_IF;
END_REPEAT;
IF SIZEOF (vlist) = 0 THEN RETURN (ctmv(j)); END_IF;
IF boo THEN INSERT (vlist, ctmv(j), 0); END_IF;
IF SIZEOF (vlist) = 1 THEN RETURN (vlist[1]); END_IF;
END;

-- ef_if_i : combined with ef_if
ef_negate_r :

IF ’REAL’ IN TYPEOF (v1) THEN r := v1; RETURN (ctmv(-r)); END_IF;
ef_reciprocal_r :

IF ’REAL’ IN TYPEOF (v1) THEN r := v1; RETURN (ctmv(1.0/r)); END_IF;
ef_add_r : BEGIN
r := 0.0;
REPEAT i := SIZEOF (vlist) TO 1 BY -1;

IF ’REAL’ IN TYPEOF (vlist[i]) THEN
s := vlist[i]; r := r + s;
REMOVE (vlist, i);

END_IF;
END_REPEAT;
IF SIZEOF (vlist) = 0 THEN RETURN (ctmv(r)); END_IF;
IF r <> 0.0 THEN INSERT (vlist, ctmv(r), 0); END_IF;

232

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

IF SIZEOF (vlist) = 1 THEN RETURN (vlist[1]); END_IF;
END;

ef_subtract_r :
IF (’REAL’ IN TYPEOF (v1)) AND (’REAL’ IN TYPEOF (v2)) THEN

r := v1; s := v2; RETURN (ctmv(r - s));
END_IF;

ef_multiply_r : BEGIN
r := 1.0;
REPEAT i := SIZEOF (vlist) TO 1 BY -1;

IF ’REAL’ IN TYPEOF (vlist[i]) THEN
s := vlist[i]; r := r * s;
REMOVE (vlist, i);

END_IF;
END_REPEAT;
IF SIZEOF (vlist) = 0 THEN RETURN (ctmv(r)); END_IF;
IF r <> 1.0 THEN INSERT (vlist, ctmv(r), 0); END_IF;
IF SIZEOF (vlist) = 1 THEN RETURN (vlist[1]); END_IF;
END;

ef_divide_r :
IF (’REAL’ IN TYPEOF (v1)) AND (’REAL’ IN TYPEOF (v2)) THEN

r := v1; s := v2; RETURN (ctmv(r / s));
END_IF;

ef_mod_r :
IF (’REAL’ IN TYPEOF (v1)) AND (’REAL’ IN TYPEOF (v2)) THEN

r := v1; s := v2; t := r/s; j := t DIV 1;
IF (t < 0.0) AND (j <> t) THEN j := j - 1; END_IF;
RETURN (ctmv(r - j * s));

END_IF;
ef_exponentiate_r :
IF (’REAL’ IN TYPEOF (v1)) AND (’REAL’ IN TYPEOF (v2)) THEN

r := v1; s := v2; RETURN (ctmv(r ** s));
END_IF;

ef_exponentiate_ri :
IF (’REAL’ IN TYPEOF (v1)) AND (’INTEGER’ IN TYPEOF (v2)) THEN

r := v1; k := v2; t := 1.0;
REPEAT i := 1 TO ABS(k); t := t * r; END_REPEAT;
IF k < 0 THEN t := 1.0/t; END_IF;
RETURN (ctmv(t));

END_IF;
ef_eq_r :

IF (’REAL’ IN TYPEOF (v1)) AND (’REAL’ IN TYPEOF (v2)) THEN
r := v1; s := v2; RETURN (ctmv(r = s));

END_IF;
ef_ne_r :
IF (’REAL’ IN TYPEOF (v1)) AND (’REAL’ IN TYPEOF (v2)) THEN

r := v1; s := v2; RETURN (ctmv(r <> s));
END_IF;

ef_gt_r :
IF (’REAL’ IN TYPEOF (v1)) AND (’REAL’ IN TYPEOF (v2)) THEN

r := v1; s := v2; RETURN (ctmv(r > s));
END_IF;

ef_lt_r :
IF (’REAL’ IN TYPEOF (v1)) AND (’REAL’ IN TYPEOF (v2)) THEN
r := v1; s := v2; RETURN (ctmv(r < s));

END_IF;
ef_ge_r :
IF (’REAL’ IN TYPEOF (v1)) AND (’REAL’ IN TYPEOF (v2)) THEN

r := v1; s := v2; RETURN (ctmv(r >= s));
END_IF;

233

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ef_le_r :
IF (’REAL’ IN TYPEOF (v1)) AND (’REAL’ IN TYPEOF (v2)) THEN

r := v1; s := v2; RETURN (ctmv(r <= s));
END_IF;

ef_abs_r :
IF ’REAL’ IN TYPEOF (v1) THEN r := v1; RETURN (ctmv(ABS(r))); END_IF;

ef_max_r : BEGIN
boo := FALSE;
REPEAT i := SIZEOF (vlist) TO 1 BY -1;

IF ’REAL’ IN TYPEOF (vlist[i]) THEN
IF boo THEN s := vlist[i]; IF s > r THEN r := s; END_IF;
ELSE r := vlist[i]; boo := TRUE; END_IF;
REMOVE (vlist, i);

END_IF;
END_REPEAT;
IF SIZEOF (vlist) = 0 THEN RETURN (ctmv(r)); END_IF;
IF boo THEN INSERT (vlist, ctmv(r), 0); END_IF;
IF SIZEOF (vlist) = 1 THEN RETURN (vlist[1]); END_IF;
END;

ef_min_r : BEGIN
boo := FALSE;
REPEAT i := SIZEOF (vlist) TO 1 BY -1;

IF ’REAL’ IN TYPEOF (vlist[i]) THEN
IF boo THEN s := vlist[i]; IF s < r THEN r := s; END_IF;
ELSE r := vlist[i]; boo := TRUE; END_IF;
REMOVE (vlist, i);

END_IF;
END_REPEAT;
IF SIZEOF (vlist) = 0 THEN RETURN (ctmv(r)); END_IF;
IF boo THEN INSERT (vlist, ctmv(r), 0); END_IF;
IF SIZEOF (vlist) = 1 THEN RETURN (vlist[1]); END_IF;
END;

ef_acos_r :
IF ’REAL’ IN TYPEOF (v1) THEN r := v1; RETURN (ctmv(ACOS(r))); END_IF;

ef_asin_r :
IF ’REAL’ IN TYPEOF (v1) THEN r := v1; RETURN (ctmv(ASIN(r))); END_IF;

ef_atan2_r :
IF (’REAL’ IN TYPEOF (v1)) AND (’REAL’ IN TYPEOF (v2)) THEN

r := v1; s := v2; RETURN (ctmv(atan2(r,s)));
END_IF;

ef_cos_r :
IF ’REAL’ IN TYPEOF (v1) THEN r := v1; RETURN (ctmv(COS(r))); END_IF;

ef_exp_r :
IF ’REAL’ IN TYPEOF (v1) THEN r := v1; RETURN (ctmv(EXP(r))); END_IF;

ef_ln_r :
IF ’REAL’ IN TYPEOF (v1) THEN r := v1; RETURN (ctmv(LOG(r))); END_IF;

ef_log2_r :
IF ’REAL’ IN TYPEOF (v1) THEN r := v1; RETURN (ctmv(LOG2(r))); END_IF;

ef_log10_r :
IF ’REAL’ IN TYPEOF (v1) THEN r := v1; RETURN (ctmv(LOG10(r))); END_IF;

ef_sin_r :
IF ’REAL’ IN TYPEOF (v1) THEN r := v1; RETURN (ctmv(SIN(r))); END_IF;

ef_sqrt_r :
IF ’REAL’ IN TYPEOF (v1) THEN r := v1; RETURN (ctmv(SQRT(r))); END_IF;

ef_tan_r :
IF ’REAL’ IN TYPEOF (v1) THEN r := v1; RETURN (ctmv(TAN(r))); END_IF;

-- ef_if_r : combined with ef_if
ef_form_c :
IF (’REAL’ IN TYPEOF (v1)) AND (’REAL’ IN TYPEOF (v2)) THEN

234

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

r := v1; s := v2; RETURN (makec(r,s));
END_IF;

ef_rpart_c :
IF cnlit IN TYPEOF (v1) THEN

RETURN (ctmv(v1\complex_number_literal.real_part));
END_IF;

ef_ipart_c :
IF cnlit IN TYPEOF (v1) THEN

RETURN (ctmv(v1\complex_number_literal.imag_part));
END_IF;

ef_negate_c :
IF cnlit IN TYPEOF (v1) THEN parts(v1,p,q); RETURN (makec(-p,-q)); END_IF;

ef_reciprocal_c :
IF cnlit IN TYPEOF (v1) THEN

parts(v1,p,q); t := p*p + q*q; RETURN (makec(p/t,-q/t));
END_IF;

ef_add_c : BEGIN
p := 0.0; q := 0.0;
REPEAT i := SIZEOF (vlist) TO 1 BY -1;

IF cnlit IN TYPEOF (vlist[i]) THEN
parts(vlist[i],r,s); p := p + r; q := q + s;
REMOVE (vlist, i);

END_IF;
END_REPEAT;
IF SIZEOF (vlist) = 0 THEN RETURN (makec(p,q)); END_IF;
IF p*p+q*q <> 0.0 THEN INSERT (vlist, makec(p,q), 0); END_IF;
IF SIZEOF (vlist) = 1 THEN RETURN (vlist[1]); END_IF;
END;

ef_subtract_c :
IF (cnlit IN TYPEOF (v1)) AND (cnlit IN TYPEOF (v2)) THEN

parts(v1,p,q); parts(v2,r,s); RETURN (makec(p-r,q-s));
END_IF;

ef_multiply_c : BEGIN
p := 1.0; q := 0.0;
REPEAT i := SIZEOF (vlist) TO 1 BY -1;

IF cnlit IN TYPEOF (vlist[i]) THEN
parts(vlist[i],r,s); p := p*r-q*s; q := p*s+q*r;
REMOVE (vlist, i);

END_IF;
END_REPEAT;
IF SIZEOF (vlist) = 0 THEN RETURN (makec(p,q)); END_IF;
IF (p <> 1.0) OR (q <> 0.0) THEN INSERT (vlist, makec(p,q), 0); END_IF;
IF SIZEOF (vlist) = 1 THEN RETURN (vlist[1]); END_IF;
END;

ef_divide_c :
IF (cnlit IN TYPEOF (v1)) AND (cnlit IN TYPEOF (v2)) THEN

parts(v1,p,q); parts(v2,r,s); t := r*r+s*s;
RETURN (makec((p*r+q*s)/t,(q*r-p*s)/t));

END_IF;
ef_exponentiate_c :

IF (cnlit IN TYPEOF (v1)) AND (cnlit IN TYPEOF (v2)) THEN
parts(v1,p,q); parts(v2,r,s); t := 0.5*LOG(p*p+q*q); u := atan2(q,p);
p := r*t-s*u; q := r*u+s*t; r := EXP(p);
RETURN (makec(r*COS(q),r*SIN(q)));

END_IF;
ef_exponentiate_ci :

IF (cnlit IN TYPEOF (v1)) AND (’INTEGER’ IN TYPEOF (v2)) THEN
parts(v1,p,q); k := v2; r := 1.0; s := 0.0;
REPEAT i := 1 TO ABS(k); r := p*r-q*s; s := p*s+q*r; END_REPEAT;

235

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

IF k < 0 THEN t := r*r+s*s; r := r/t; s := -s/t; END_IF;
RETURN (makec(r,s));

END_IF;
ef_eq_c :

IF (cnlit IN TYPEOF (v1)) AND (cnlit IN TYPEOF (v2)) THEN
parts(v1,p,q); parts(v2,r,s); RETURN (ctmv((p = r) AND (q = s)));

END_IF;
ef_ne_c :

IF (cnlit IN TYPEOF (v1)) AND (cnlit IN TYPEOF (v2)) THEN
parts(v1,p,q); parts(v2,r,s); RETURN (ctmv((p <> r) OR (q <> s)));

END_IF;
ef_conjugate_c :

IF cnlit IN TYPEOF (v1) THEN parts(v1,p,q); RETURN (makec(p,-q)); END_IF;
ef_abs_c :

IF cnlit IN TYPEOF (v1) THEN
parts(v1,p,q); RETURN (ctmv(SQRT(p*p+q*q)));

END_IF;
ef_arg_c :

IF cnlit IN TYPEOF (v1) THEN
parts(v1,p,q); RETURN (ctmv(atan2(q,p)));

END_IF;
ef_cos_c :

IF cnlit IN TYPEOF (v1) THEN
parts(v1,p,q); t := 0.5*EXP(-q); u := 0.5*EXP(q);
RETURN (makec((t+u)*COS(p),(t-u)*SIN(p)));

END_IF;
ef_exp_c :

IF cnlit IN TYPEOF (v1) THEN
parts(v1,p,q); RETURN (makec(EXP(p)*COS(q),EXP(p)*SIN(q)));

END_IF;
ef_ln_c :

IF cnlit IN TYPEOF (v1) THEN
parts(v1,p,q); RETURN (makec(0.5*LOG(p*p+q*q),atan2(q,p)));

END_IF;
ef_sin_c :
IF cnlit IN TYPEOF (v1) THEN

parts(v1,p,q); t := 0.5*EXP(-q); u := 0.5*EXP(q);
RETURN (makec((t+u)*SIN(p),(u-t)*COS(p)));

END_IF;
ef_sqrt_c :

IF cnlit IN TYPEOF (v1) THEN
parts(v1,p,q); t := SQRT(SQRT(p*p+q*q)); u := 0.5*atan2(q,p);
RETURN (makec(t*COS(u),t*SIN(u)));

END_IF;
ef_tan_c :

IF cnlit IN TYPEOF (v1) THEN
parts(v1,p,q); t := EXP(2.0*q) + EXP(-2.0*q) + 2.0*COS(2.0*p);
RETURN (makec(2.0*SIN(2.0*p)/t,(EXP(-2.0*q)-EXP(2.0*q))/t));

END_IF;
-- ef_if_c : combined with ef_if
ef_subscript_s :

IF (’STRING’ IN TYPEOF (v1)) AND (’INTEGER’ IN TYPEOF (v2)) THEN
str := v1; k := v2; RETURN (ctmv(str[k]));

END_IF;
ef_eq_s :

IF (’STRING’ IN TYPEOF (v1)) AND (’STRING’ IN TYPEOF (v2)) THEN
str := v1; st2 := v2; RETURN (ctmv(str = st2));

END_IF;
ef_ne_s :

236

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

IF (’STRING’ IN TYPEOF (v1)) AND (’STRING’ IN TYPEOF (v2)) THEN
str := v1; st2 := v2; RETURN (ctmv(str <> st2));

END_IF;
ef_gt_s :

IF (’STRING’ IN TYPEOF (v1)) AND (’STRING’ IN TYPEOF (v2)) THEN
str := v1; st2 := v2; RETURN (ctmv(str > st2));

END_IF;
ef_lt_s :

IF (’STRING’ IN TYPEOF (v1)) AND (’STRING’ IN TYPEOF (v2)) THEN
str := v1; st2 := v2; RETURN (ctmv(str < st2));

END_IF;
ef_ge_s :

IF (’STRING’ IN TYPEOF (v1)) AND (’STRING’ IN TYPEOF (v2)) THEN
str := v1; st2 := v2; RETURN (ctmv(str >= st2));

END_IF;
ef_le_s :

IF (’STRING’ IN TYPEOF (v1)) AND (’STRING’ IN TYPEOF (v2)) THEN
str := v1; st2 := v2; RETURN (ctmv(str <= st2));

END_IF;
ef_subsequence_s :

IF (’STRING’ IN TYPEOF (v1)) AND (’INTEGER’ IN TYPEOF (v2)) AND
(’INTEGER’ IN TYPEOF (v3)) THEN
str := v1; j := v2; k := v3; RETURN (ctmv(str[j:k]));

END_IF;
ef_concat_s : BEGIN

str := ’’;
REPEAT i := SIZEOF (vlist) TO 1 BY -1;

IF ’STRING’ IN TYPEOF (vlist[i]) THEN
st2 := vlist[i]; str := str + st2;
REMOVE (vlist, i);

ELSE IF str <> ’’ THEN
INSERT (vlist, ctmv(str), i);
str := ’’;

END_IF; END_IF;
END_REPEAT;
IF SIZEOF (vlist) = 0 THEN RETURN (ctmv(str)); END_IF;
IF str <> ’’ THEN INSERT (vlist, ctmv(str), 0); END_IF;
IF SIZEOF (vlist) = 1 THEN RETURN (vlist[1]); END_IF;
END;

ef_size_s :
IF ’STRING’ IN TYPEOF (v1) THEN str:=v1; RETURN (ctmv(LENGTH(str))); END_IF;

ef_format :
IF (’NUMBER’ IN TYPEOF (v1)) AND (’STRING’ IN TYPEOF (v2)) THEN

RETURN (ctmv(FORMAT(v1,v2)));
END_IF;

ef_value :
IF ’STRING’ IN TYPEOF (v1) THEN str:=v1; RETURN (ctmv(VALUE(str))); END_IF;

ef_like :
IF (’STRING’ IN TYPEOF (v1)) AND (’STRING’ IN TYPEOF (v2)) THEN
RETURN (ctmv(v1 LIKE v2));

END_IF;
-- ef_if_s : combined with ef_if
ef_subscript_b :

IF (’BINARY’ IN TYPEOF (v1)) AND (’INTEGER’ IN TYPEOF (v2)) THEN
bin := v1; k := v2; RETURN (ctmv(bin[k]));

END_IF;
ef_eq_b :
IF (’BINARY’ IN TYPEOF (v1)) AND (’BINARY’ IN TYPEOF (v2)) THEN

bin := v1; bi2 := v2; RETURN (ctmv(bin = bi2));

237

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

END_IF;
ef_ne_b :

IF (’BINARY’ IN TYPEOF (v1)) AND (’BINARY’ IN TYPEOF (v2)) THEN
bin := v1; bi2 := v2; RETURN (ctmv(bin <> bi2));

END_IF;
ef_gt_b :

IF (’BINARY’ IN TYPEOF (v1)) AND (’BINARY’ IN TYPEOF (v2)) THEN
bin := v1; bi2 := v2; RETURN (ctmv(bin > bi2));

END_IF;
ef_lt_b :

IF (’BINARY’ IN TYPEOF (v1)) AND (’BINARY’ IN TYPEOF (v2)) THEN
bin := v1; bi2 := v2; RETURN (ctmv(bin < bi2));

END_IF;
ef_ge_b :
IF (’BINARY’ IN TYPEOF (v1)) AND (’BINARY’ IN TYPEOF (v2)) THEN

bin := v1; bi2 := v2; RETURN (ctmv(bin >= bi2));
END_IF;

ef_le_b :
IF (’BINARY’ IN TYPEOF (v1)) AND (’BINARY’ IN TYPEOF (v2)) THEN

bin := v1; bi2 := v2; RETURN (ctmv(bin <= bi2));
END_IF;

ef_subsequence_b :
IF (’BINARY’ IN TYPEOF (v1)) AND (’INTEGER’ IN TYPEOF (v2)) AND
(’INTEGER’ IN TYPEOF (v3)) THEN
bin := v1; j := v2; k := v3; RETURN (ctmv(bin[j:k]));

END_IF;
ef_concat_b : BEGIN
boo := FALSE;
REPEAT i := SIZEOF (vlist) TO 1 BY -1;

IF ’BINARY’ IN TYPEOF (vlist[i]) THEN
IF boo THEN bi2 := vlist[i]; bin := bin + bi2;
ELSE bin := vlist[i]; boo := TRUE; END_IF;
REMOVE (vlist, i);

ELSE IF boo THEN
INSERT (vlist, ctmv(bin), i);
boo := FALSE;

END_IF; END_IF;
END_REPEAT;
IF SIZEOF (vlist) = 0 THEN RETURN (ctmv(bin)); END_IF;
IF boo THEN INSERT (vlist, ctmv(bin), 0); END_IF;
IF SIZEOF (vlist) = 1 THEN RETURN (vlist[1]); END_IF;
END;

ef_size_b :
IF ’BINARY’ IN TYPEOF (v1) THEN bin:=v1; RETURN (ctmv(BLENGTH(bin))); END_IF;

-- ef_if_b : combined with ef_if
ef_subscript_t :

IF (’LIST’ IN TYPEOF (v1)) AND (’INTEGER’ IN TYPEOF (v2)) THEN
tpl := v1; k := v2; RETURN (ctmv(tpl[k]));

END_IF;
ef_eq_t :
IF (’LIST’ IN TYPEOF (v1)) AND (’LIST’ IN TYPEOF (v2)) THEN

lgc := equal_maths_values(v1,v2);
IF lgc <> UNKNOWN THEN RETURN (ctmv(lgc)); END_IF;

END_IF;
ef_ne_t :

IF (’LIST’ IN TYPEOF (v1)) AND (’LIST’ IN TYPEOF (v2)) THEN
lgc := equal_maths_values(v1,v2);
IF lgc <> UNKNOWN THEN RETURN (ctmv(NOT lgc)); END_IF;

END_IF;

238

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ef_concat_t : BEGIN
tpl := [];
REPEAT i := SIZEOF (vlist) TO 1 BY -1;

IF ’STRING’ IN TYPEOF (vlist[i]) THEN
tp2 := vlist[i]; tpl := tpl + tp2;
REMOVE (vlist, i);

ELSE IF SIZEOF (tpl) <> 0 THEN
INSERT (vlist, ctmv(tpl), i);
tpl := [];

END_IF; END_IF;
END_REPEAT;
IF SIZEOF (vlist) = 0 THEN RETURN (ctmv(tpl)); END_IF;
IF SIZEOF (tpl) <> 0 THEN INSERT (vlist, ctmv(tpl), 0); END_IF;
IF SIZEOF (vlist) = 1 THEN RETURN (vlist[1]); END_IF;
END;

ef_size_t :
IF ’LIST’ IN TYPEOF (v1) THEN tpl:=v1; RETURN (ctmv(SIZEOF(tpl))); END_IF;

ef_entuple :
RETURN (ctmv(vlist));

ef_detuple : -- This can have multiple outputs, but the expression only
-- denotes the first.

IF ’LIST’ IN TYPEOF (v1) THEN tpl:=v1; RETURN (ctmv(tpl[1])); END_IF;
ef_insert :

IF (’LIST’ IN TYPEOF (v1)) AND (’INTEGER’ IN TYPEOF (v3)) THEN
tpl := v1; k := v3; INSERT (tpl, v2, k); RETURN (ctmv(tpl));

END_IF;
ef_remove :
IF (’LIST’ IN TYPEOF (v1)) AND (’INTEGER’ IN TYPEOF (v2)) THEN

tpl := v1; k := v2; REMOVE (tpl, k); RETURN (ctmv(tpl));
END_IF;

-- ef_if_t : combined with ef_if
ef_sum_it :

IF good_t(v1,’INTEGER’) THEN
tpl := v1; j := 0;
REPEAT i := 1 TO SIZEOF (tpl); j := j + tpl[i]; END_REPEAT;
RETURN (ctmv(j));

END_IF;
ef_product_it :

IF good_t(v1,’INTEGER’) THEN
tpl := v1; j := 1;
REPEAT i := 1 TO SIZEOF (tpl); j := j * tpl[i]; END_REPEAT;
RETURN (ctmv(j));

END_IF;
ef_add_it : BEGIN
boo := FALSE;
REPEAT i := SIZEOF (vlist) TO 1 BY -1;
IF good_t(vlist[i],’INTEGER’) THEN

IF NOT boo THEN tpl := vlist[i]; boo := TRUE;
ELSE

tp2 := vlist[i];
IF SIZEOF (tpl) <> SIZEOF (tp2) THEN RETURN (?); END_IF;
REPEAT l := 1 TO SIZEOF (tpl); tpl[j] := tpl[j] + tp2[j]; END_REPEAT;

END_IF;
REMOVE (vlist, i);

END_IF;
END_REPEAT;
IF SIZEOF (vlist) = 0 THEN RETURN (ctmv(tpl)); END_IF;
IF boo THEN INSERT (vlist, ctmv(tpl), 0); END_IF;
IF SIZEOF (vlist) = 1 THEN RETURN (vlist[1]); END_IF;

239

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

END;
ef_subtract_it :

IF good_t(v1,’INTEGER’) AND good_t(v2,’INTEGER’) THEN
tpl := v1; tp2 := v2;
IF SIZEOF (tpl) <> SIZEOF (tp2) THEN RETURN (?); END_IF;
REPEAT i := 1 TO SIZEOF (tpl); tpl[i] := tpl[i] - tp2[i]; END_REPEAT;
RETURN (ctmv(tpl));

END_IF;
ef_scalar_mult_it :

IF (’INTEGER’ IN TYPEOF (v1)) AND good_t(v2,’INTEGER’) THEN
j := v1; tpl := v2;
REPEAT i := 1 TO SIZEOF (tpl); tpl[i] := j * tpl[i]; END_REPEAT;
RETURN (ctmv(tpl));

END_IF;
ef_dot_prod_it :

IF good_t(v1,’INTEGER’) AND good_t(v2,’INTEGER’) THEN
tpl := v1; tp2 := v2; j := 0;
IF SIZEOF (tpl) <> SIZEOF (tp2) THEN RETURN (?); END_IF;
REPEAT i := 1 TO SIZEOF (tpl); j := j + tpl[i] * tp2[i]; END_REPEAT;
RETURN (ctmv(j));

END_IF;
ef_sum_rt :
IF good_t(v1,’REAL’) THEN

tpl := v1; r := 0.0;
REPEAT i := 1 TO SIZEOF (tpl); r := r + tpl[i]; END_REPEAT;
RETURN (ctmv(r));

END_IF;
ef_product_rt :

IF good_t(v1,’REAL’) THEN
tpl := v1; r := 1.0;
REPEAT i := 1 TO SIZEOF (tpl); r := r * tpl[i]; END_REPEAT;
RETURN (ctmv(r));

END_IF;
ef_add_rt : BEGIN

boo := FALSE;
REPEAT i := SIZEOF (vlist) TO 1 BY -1;

IF good_t(vlist[i],’REAL’) THEN
IF NOT boo THEN tpl := vlist[i]; boo := TRUE;
ELSE

tp2 := vlist[i];
IF SIZEOF (tpl) <> SIZEOF (tp2) THEN RETURN (?); END_IF;
REPEAT l := 1 TO SIZEOF (tpl); tpl[j] := tpl[j] + tp2[j]; END_REPEAT;

END_IF;
REMOVE (vlist, i);

END_IF;
END_REPEAT;
IF SIZEOF (vlist) = 0 THEN RETURN (ctmv(tpl)); END_IF;
IF boo THEN INSERT (vlist, ctmv(tpl), 0); END_IF;
IF SIZEOF (vlist) = 1 THEN RETURN (vlist[1]); END_IF;
END;

ef_subtract_rt :
IF good_t(v1,’REAL’) AND good_t(v2,’REAL’) THEN

tpl := v1; tp2 := v2;
IF SIZEOF (tpl) <> SIZEOF (tp2) THEN RETURN (?); END_IF;
REPEAT i := 1 TO SIZEOF (tpl); tpl[i] := tpl[i] - tp2[i]; END_REPEAT;
RETURN (ctmv(tpl));

END_IF;
ef_scalar_mult_rt :

IF (’REAL’ IN TYPEOF (v1)) AND good_t(v2,’REAL’) THEN

240

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

r := v1; tpl := v2;
REPEAT i := 1 TO SIZEOF (tpl); tpl[i] := r * tpl[i]; END_REPEAT;
RETURN (ctmv(tpl));

END_IF;
ef_dot_prod_rt :

IF good_t(v1,’REAL’) AND good_t(v2,’REAL’) THEN
tpl := v1; tp2 := v2; r := 0;
IF SIZEOF (tpl) <> SIZEOF (tp2) THEN RETURN (?); END_IF;
REPEAT i := 1 TO SIZEOF (tpl); r := r + tpl[i] * tp2[i]; END_REPEAT;
RETURN (ctmv(r));

END_IF;
ef_norm_rt :

IF good_t(v1,’REAL’) THEN
tpl := v1; r := 0.0;
REPEAT i := 1 TO SIZEOF (tpl); r := r + tpl[i]*tpl[i]; END_REPEAT;
RETURN (ctmv(SQRT(r)));

END_IF;
ef_sum_ct :

IF good_t(v1,cnlit) THEN
tpl := v1; p := 0.0; q := 0.0;
REPEAT i:=1 TO SIZEOF (tpl); parts(tpl[i],r,s); p:=p+r; q:=q+s; END_REPEAT;
RETURN (makec(p,q));

END_IF;
ef_product_ct :

IF good_t(v1,cnlit) THEN
tpl := v1; p := 1.0; q := 0.0;
REPEAT i := 1 TO SIZEOF (tpl);

parts(tpl[i],r,s); p := p*r-q*s; q := p*s+q*r;
END_REPEAT;
RETURN (makec(p,q));

END_IF;
ef_add_ct : BEGIN

boo := FALSE;
REPEAT i := SIZEOF (vlist) TO 1 BY -1;

IF good_t(vlist[i],cnlit) THEN
IF NOT boo THEN tpl := vlist[i]; boo := TRUE;
ELSE

tp2 := vlist[i];
IF SIZEOF (tpl) <> SIZEOF (tp2) THEN RETURN (?); END_IF;
REPEAT l := 1 TO SIZEOF (tpl);

parts(tpl[j],p,q); parts(tp2[j],r,s); tpl[j] := makec(p+r,q+s);
END_REPEAT;

END_IF;
REMOVE (vlist, i);

END_IF;
END_REPEAT;
IF SIZEOF (vlist) = 0 THEN RETURN (ctmv(tpl)); END_IF;
IF boo THEN INSERT (vlist, ctmv(tpl), 0); END_IF;
IF SIZEOF (vlist) = 1 THEN RETURN (vlist[1]); END_IF;
END;

ef_subtract_ct :
IF good_t(v1,cnlit) AND good_t(v2,cnlit) THEN

tpl := v1; tp2 := v2;
IF SIZEOF (tpl) <> SIZEOF (tp2) THEN RETURN (?); END_IF;
REPEAT i := 1 TO SIZEOF (tpl);
parts(tpl[i],p,q); parts(tp2[i],r,s); tpl[i] := makec(p-r,q-s);

END_REPEAT;
RETURN (ctmv(tpl));

END_IF;

241

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ef_scalar_mult_ct :
IF (cnlit IN TYPEOF (v1)) AND good_t(v2,cnlit) THEN

parts(v1,p,q); tpl := v2;
REPEAT i := 1 TO SIZEOF (tpl);
parts(tpl[i],r,s); tpl[i] := makec(p*r-q*s,p*s+q*r);

END_REPEAT;
RETURN (ctmv(tpl));

END_IF;
ef_dot_prod_ct :

IF good_t(v1,cnlit) AND good_t(v2,cnlit) THEN
tpl := v1; tp2 := v2; t := 0.0; u := 0.0;
IF SIZEOF (tpl) <> SIZEOF (tp2) THEN RETURN (?); END_IF;
REPEAT i := 1 TO SIZEOF (tpl);

parts(tpl[i],p,q); parts(tp2[i],r,s); t := t + p*r+q*s; u := u + q*r-p*s;
END_REPEAT;
RETURN (makec(t,u));

END_IF;
ef_norm_ct :

IF good_t(v1,cnlit) THEN
tpl := v1; r := 0.0;
REPEAT i := 1 TO SIZEOF (tpl); parts(tpl[i],p,q); r:=r+p*p+q*q; END_REPEAT;
RETURN (ctmv(SQRT(r)));

END_IF;
ef_if, ef_if_i, ef_if_r, ef_if_c, ef_if_s, ef_if_b, ef_if_t :

IF ’LOGICAL’ IN TYPEOF (v1) THEN
lgc := v1; IF lgc THEN RETURN (v2); ELSE RETURN (v3); END_IF;

END_IF;
ef_ensemble : -- (mem + vlist) effectively converts list to set

RETURN (make_finite_space(mem + vlist));
ef_member_of :

IF (schema_prefix + ’MATHS_SPACE’) IN TYPEOF (v2) THEN
lgc := member_of(v1,v2);
IF lgc <> UNKNOWN THEN RETURN (ctmv(lgc)); END_IF;

END_IF;
END_CASE;
RETURN (make_function_application(expr.func,vlist));

END_IF;
IF ’ABSTRACTED_EXPRESSION_FUNCTION’ IN types THEN
gexpr := substitute(expr.func\abstracted_expression_function.expr,

expr.func\quantifier_expression.variables,vlist);
RETURN (simplify_generic_expression(gexpr));

END_IF;
IF ’FINITE_FUNCTION’ IN types THEN

pairs := expr.func\finite_function.pairs;
REPEAT i := 1 TO SIZEOF (pairs);

IF equal_maths_values(vlist[1],pairs[i][1]) THEN
RETURN (simplify_maths_value(pairs[i][2]));

END_IF;
END_REPEAT;
RETURN (make_function_application(expr.func,vlist));

END_IF;
RETURN (expr);

END_FUNCTION; -- simplify_function_application
(*

Argument definitions:

expr: (input) The function application expression to be simplified.

242

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

return: (output) A maths value denoting the same mathematical object as the input expres-
sion.

4.6.137 simplify generic expression

This function attempts to simplify a generic expression to obtain a simpler maths value.
When no simpler expression can be identified, the input expression is returned unchanged.

EXPRESS specification:

*)
FUNCTION simplify_generic_expression(expr : generic_expression) : maths_value;
FUNCTION restore_unary(expr : unary_generic_expression;

opnd : generic_expression) : generic_expression;
expr.operand := opnd;
RETURN (expr);

END_FUNCTION; -- restore_unary
FUNCTION restore_binary(expr : binary_generic_expression;

opd1, opd2 : generic_expression) : generic_expression;
expr.operands[1] := opd1;
expr.operands[2] := opd2;
RETURN (expr);

END_FUNCTION; -- restore_binary
FUNCTION restore_mulary(expr : multiple_arity_generic_expression;

ops : LIST OF generic_expression) : generic_expression;
expr.operands := ops;
RETURN (expr);

END_FUNCTION; -- restore_mulary
FUNCTION make_number_literal(nmb : NUMBER) : generic_literal;

IF ’INTEGER’ IN TYPEOF (nmb) THEN RETURN (make_int_literal(nmb)); END_IF;
RETURN (make_real_literal(nmb));

END_FUNCTION; -- make_number_literal;
LOCAL

types : SET OF STRING := stripped_typeof (expr);
v1, v2 : maths_value;
vlist : LIST OF maths_value := [];
op1, op2 : generic_expression;
oplist : LIST OF generic_expression := [];
opnds : LIST [2:?] OF generic_expression;
n, m : INTEGER;
finfun : maths_function_select;
boo : BOOLEAN;
str : STRING;
nmb : NUMBER;

END_LOCAL;
-- Unwrap the elementary kinds of literals
IF ’INT_LITERAL’ IN types THEN

RETURN (convert_to_maths_value (expr\int_literal.the_value));
END_IF;
IF ’REAL_LITERAL’ IN types THEN
RETURN (convert_to_maths_value (expr\real_literal.the_value));

END_IF;
IF ’BOOLEAN_LITERAL’ IN types THEN

RETURN (convert_to_maths_value (expr\boolean_literal.the_value));
END_IF;
IF ’STRING_LITERAL’ IN types THEN

243

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

RETURN (convert_to_maths_value (expr\string_literal.the_value));
END_IF;
IF ’COMPLEX_NUMBER_LITERAL’ IN types THEN

RETURN (expr); -- No simpler expression available
END_IF;
IF ’LOGICAL_LITERAL’ IN types THEN

RETURN (convert_to_maths_value (expr\logical_literal.lit_value));
END_IF;
IF ’BINARY_LITERAL’ IN types THEN

RETURN (convert_to_maths_value (expr\binary_literal.lit_value));
END_IF;
IF ’MATHS_ENUM_LITERAL’ IN types THEN

RETURN (expr\maths_enum_literal.lit_value);
END_IF;
IF ’REAL_TUPLE_LITERAL’ IN types THEN

RETURN (convert_to_maths_value (expr\real_tuple_literal.lit_value));
END_IF;
IF ’INTEGER_TUPLE_LITERAL’ IN types THEN

RETURN (convert_to_maths_value (expr\integer_tuple_literal.lit_value));
END_IF;
IF ’ATOM_BASED_LITERAL’ IN types THEN

RETURN (expr\atom_based_literal.lit_value);
END_IF;
IF ’MATHS_TUPLE_LITERAL’ IN types THEN
RETURN (convert_to_maths_value (expr\maths_tuple_literal.lit_value));

END_IF;
-- Simplify one special class of literals
IF ’MATHS_SPACE’ IN types THEN

RETURN (simplify_maths_space(expr));
END_IF;
-- Simplify one special kind of expression
IF ’FUNCTION_APPLICATION’ IN types THEN

RETURN (simplify_function_application(expr));
END_IF;
-- Separate and simplify the operands
IF ’UNARY_GENERIC_EXPRESSION’ IN types THEN

v1 := simplify_generic_expression(expr\unary_generic_expression.operand);
op1 := convert_to_operand(v1);

END_IF;
IF ’BINARY_GENERIC_EXPRESSION’ IN types THEN

v1 := simplify_generic_expression(expr\binary_generic_expression.operands[1]);
op1 := convert_to_operand(v1);
v2 := simplify_generic_expression(expr\binary_generic_expression.operands[2]);
op2 := convert_to_operand(v2);

END_IF;
IF ’MULTIPLE_ARITY_GENERIC_EXPRESSION’ IN types THEN

opnds := expr\multiple_arity_generic_expression.operands;
REPEAT i := 1 TO SIZEOF (opnds);

v1 := simplify_generic_expression(opnds[i]);
INSERT (vlist, v1, i-1);
INSERT (oplist, convert_to_operand(v1), i-1);

END_REPEAT;
END_IF;
-- Simplify the one kind of maths_function which derives its operands.
IF ’PARALLEL_COMPOSED_FUNCTION’ IN types THEN
v1 := vlist[1];
n := SIZEOF (vlist);
finfun := vlist[n];
REMOVE (vlist, n);

244

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

REMOVE (vlist, 1);
RETURN (make_parallel_composed_function(v1,vlist,finfun));

END_IF;
-- Simplify individual kinds of expressions. It is not necessary to cover all cases.
IF (’ABS_EXPRESSION’ IN types) AND (’NUMBER’ IN TYPEOF (v1)) THEN
RETURN (convert_to_maths_value (ABS(v1)));

END_IF;
IF (’ACOS_EXPRESSION’ IN types) AND (’NUMBER’ IN TYPEOF (v1)) THEN

RETURN (convert_to_maths_value (ACOS(v1)));
END_IF;
IF ’AND_EXPRESSION’ IN types THEN

REPEAT i := SIZEOF (vlist) TO 1 BY -1;
IF ’BOOLEAN’ IN TYPEOF (vlist[i]) THEN

boo := vlist[i];
IF NOT boo THEN RETURN (convert_to_maths_value(FALSE)); END_IF;
REMOVE (oplist, i);

END_IF;
END_REPEAT;
IF SIZEOF (oplist) = 0 THEN RETURN (convert_to_maths_value(TRUE)); END_IF;
IF SIZEOF (oplist) = 1 THEN RETURN (oplist[1]); END_IF;

END_IF;
IF (’ASIN_EXPRESSION’ IN types) AND (’NUMBER’ IN TYPEOF (v1)) THEN

RETURN (convert_to_maths_value (ASIN(v1)));
END_IF;
IF (’ATAN_EXPRESSION’ IN types) AND
(’NUMBER’ IN TYPEOF (v1)) AND (’NUMBER’ IN TYPEOF (v2)) THEN
RETURN (convert_to_maths_value (ATAN(v1,v2)));

END_IF;
IF (’COMPARISON_EXPRESSION’ IN types) AND (
((’NUMBER’ IN TYPEOF (v1)) AND (’NUMBER’ IN TYPEOF (v2))) OR
((’STRING’ IN TYPEOF (v1)) AND (’STRING’ IN TYPEOF (v2))) OR
((’BOOLEAN’ IN TYPEOF (v1)) AND (’BOOLEAN’ IN TYPEOF (v2)))) THEN
IF ’COMPARISON_EQUAL’ IN types THEN boo := bool(v1 = v2);
ELSE IF ’COMPARISON_GREATER’ IN types THEN boo := bool(v1 > v2);
ELSE IF ’COMPARISON_GREATER_EQUAL’ IN types THEN boo := bool(v1 >= v2);
ELSE IF ’COMPARISON_LESS’ IN types THEN boo := bool(v1 < v2);
ELSE IF ’COMPARISON_LESS_EQUAL’ IN types THEN boo := bool(v1 <= v2);
ELSE IF ’COMPARISON_NOT_EQUAL’ IN types THEN boo := bool(v1 <> v2);
ELSE IF ’LIKE_EXPRESSION’ IN types THEN boo := bool(v1 LIKE v2);
ELSE RETURN (?); -- Unreachable
END_IF; END_IF; END_IF; END_IF; END_IF; END_IF; END_IF;
RETURN (convert_to_maths_value (boo));

END_IF;
IF ’CONCAT_EXPRESSION’ IN types THEN

str := ’’;
REPEAT i := SIZEOF (vlist) TO 1 BY -1;

IF ’STRING’ IN TYPEOF (vlist[i]) THEN
str := vlist[i] + str;
REMOVE (oplist, i);

ELSE IF LENGTH(str) > 0 THEN
INSERT (oplist, make_string_literal(str), i);
str := ’’;

END_IF; END_IF;
END_REPEAT;
IF SIZEOF (oplist) = 0 THEN RETURN (convert_to_maths_value(str)); END_IF;
IF LENGTH(str) > 0 THEN INSERT (oplist, make_string_literal(str), 0); END_IF;
IF SIZEOF (oplist) = 1 THEN RETURN (oplist[1]); END_IF;

END_IF;
IF (’COS_EXPRESSION’ IN types) AND (’NUMBER’ IN TYPEOF (v1)) THEN

245

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

RETURN (convert_to_maths_value (COS(v1)));
END_IF;
IF (’DIV_EXPRESSION’ IN types) AND

(’NUMBER’ IN TYPEOF (v1)) AND (’NUMBER’ IN TYPEOF (v2)) THEN
RETURN (convert_to_maths_value (v1 DIV v2));

END_IF;
IF ’EQUALS_EXPRESSION’ IN types THEN

opnds := expr\binary_generic_expression.operands;
RETURN (convert_to_maths_value (opnds[1] :=: opnds[2]));

END_IF;
IF (’EXP_EXPRESSION’ IN types) AND (’NUMBER’ IN TYPEOF (v1)) THEN

RETURN (convert_to_maths_value (EXP(v1)));
END_IF;
IF (’FORMAT_EXPRESSION’ IN types) AND

(’NUMBER’ IN TYPEOF (v1)) AND (’STRING’ IN TYPEOF (v2)) THEN
RETURN (convert_to_maths_value (FORMAT(v1,v2)));

END_IF;
IF (’INDEX_EXPRESSION’ IN types) AND

(’STRING’ IN TYPEOF (v1)) AND (’NUMBER’ IN TYPEOF (v2)) THEN
str := v1; n := v2;
RETURN (convert_to_maths_value (str[n]));

END_IF;
IF (’INT_VALUE_EXPRESSION’ IN types) AND (’STRING’ IN TYPEOF (v1)) THEN

RETURN (convert_to_maths_value (VALUE(v1)));
END_IF;
IF ’INTERVAL_EXPRESSION’ IN types THEN
str := ’’;
IF ’NUMBER’ IN TYPEOF (vlist[1]) THEN str := ’NUMBER’; END_IF;
IF ’STRING’ IN TYPEOF (vlist[1]) THEN str := ’STRING’; END_IF;
IF ’BOOLEAN’ IN TYPEOF (vlist[1]) THEN str := ’BOOLEAN’; END_IF;
IF (LENGTH (str) > 0) AND (str IN TYPEOF (vlist[2])) AND

(str IN TYPEOF (vlist[3])) THEN
RETURN (convert_to_maths_value ({vlist[1] <= vlist[2] <= vlist[3]}));

END_IF;
END_IF;
IF (’LENGTH_EXPRESSION’ IN types) AND (’STRING’ IN TYPEOF (v1)) THEN
RETURN (convert_to_maths_value (LENGTH(v1)));

END_IF;
IF (’LOG_EXPRESSION’ IN types) AND (’NUMBER’ IN TYPEOF (v1)) THEN
RETURN (convert_to_maths_value (LOG(v1)));

END_IF;
IF (’LOG10_EXPRESSION’ IN types) AND (’NUMBER’ IN TYPEOF (v1)) THEN

RETURN (convert_to_maths_value (LOG10(v1)));
END_IF;
IF (’LOG2_EXPRESSION’ IN types) AND (’NUMBER’ IN TYPEOF (v1)) THEN

RETURN (convert_to_maths_value (LOG2(v1)));
END_IF;
IF ’MAXIMUM_EXPRESSION’ IN types THEN

boo := FALSE;
REPEAT i := SIZEOF (vlist) TO 1 BY -1;

IF ’NUMBER’ IN TYPEOF (vlist[i]) THEN
IF boo THEN

IF nmb < vlist[i] THEN nmb := vlist[i]; END_IF;
ELSE
nmb := vlist[i]; boo := TRUE;

END_IF;
REMOVE (oplist, i);

END_IF;
END_REPEAT;

246

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

IF SIZEOF (oplist) = 0 THEN RETURN (convert_to_maths_value(nmb)); END_IF;
IF boo THEN INSERT (oplist, make_number_literal(nmb), 0); END_IF;

END_IF;
IF ’MINIMUM_EXPRESSION’ IN types THEN

boo := FALSE;
REPEAT i := SIZEOF (vlist) TO 1 BY -1;

IF ’NUMBER’ IN TYPEOF (vlist[i]) THEN
IF boo THEN

IF nmb > vlist[i] THEN nmb := vlist[i]; END_IF;
ELSE
nmb := vlist[i]; boo := TRUE;

END_IF;
REMOVE (oplist, i);

END_IF;
END_REPEAT;
IF SIZEOF (oplist) = 0 THEN RETURN (convert_to_maths_value(nmb)); END_IF;
IF boo THEN INSERT (oplist, make_number_literal(nmb), 0); END_IF;

END_IF;
IF (’MINUS_EXPRESSION’ IN types) AND
(’NUMBER’ IN TYPEOF (v1)) AND (’NUMBER’ IN TYPEOF (v2)) THEN
RETURN (convert_to_maths_value (v1 - v2));

END_IF;
IF (’MOD_EXPRESSION’ IN types) AND

(’NUMBER’ IN TYPEOF (v1)) AND (’NUMBER’ IN TYPEOF (v2)) THEN
RETURN (convert_to_maths_value (v1 MOD v2));

END_IF;
IF ’MULT_EXPRESSION’ IN types THEN

nmb := 1;
REPEAT i := SIZEOF (vlist) TO 1 BY -1;

IF ’NUMBER’ IN TYPEOF (vlist[i]) THEN
nmb := nmb * vlist[i];
REMOVE (oplist, i);

END_IF;
END_REPEAT;
IF SIZEOF (oplist) = 0 THEN RETURN (convert_to_maths_value(nmb)); END_IF;
IF nmb <> 1 THEN INSERT (oplist, make_number_literal(nmb), 0); END_IF;
IF SIZEOF (oplist) = 1 THEN RETURN (oplist[1]); END_IF;

END_IF;
IF (’NOT_EXPRESSION’ IN types) AND (’BOOLEAN’ IN TYPEOF (v1)) THEN

boo := v1;
RETURN (convert_to_maths_value (NOT(boo)));

END_IF;
IF (’ODD_EXPRESSION’ IN types) AND (’INTEGER’ IN TYPEOF (v1)) THEN

RETURN (convert_to_maths_value (ODD(v1)));
END_IF;
IF ’OR_EXPRESSION’ IN types THEN

REPEAT i := SIZEOF (vlist) TO 1 BY -1;
IF ’BOOLEAN’ IN TYPEOF (vlist[i]) THEN
boo := vlist[i];
IF boo THEN RETURN (convert_to_maths_value(TRUE)); END_IF;
REMOVE (oplist, i);

END_IF;
END_REPEAT;
IF SIZEOF (oplist) = 0 THEN RETURN (convert_to_maths_value(FALSE)); END_IF;
IF SIZEOF (oplist) = 1 THEN RETURN (oplist[1]); END_IF;

END_IF;
IF ’PLUS_EXPRESSION’ IN types THEN

nmb := 0;
REPEAT i := SIZEOF (vlist) TO 1 BY -1;

247

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

IF ’NUMBER’ IN TYPEOF (vlist[i]) THEN
nmb := nmb + vlist[i];
REMOVE (oplist, i);

END_IF;
END_REPEAT;
IF SIZEOF (oplist) = 0 THEN RETURN (convert_to_maths_value(nmb)); END_IF;
IF nmb <> 0 THEN INSERT (oplist, make_number_literal(nmb), 0); END_IF;
IF SIZEOF (oplist) = 1 THEN RETURN (oplist[1]); END_IF;

END_IF;
IF (’POWER_EXPRESSION’ IN types) AND

(’NUMBER’ IN TYPEOF (v1)) AND (’NUMBER’ IN TYPEOF (v2)) THEN
RETURN (convert_to_maths_value (v1 ** v2));

END_IF;
IF (’SIN_EXPRESSION’ IN types) AND (’NUMBER’ IN TYPEOF (v1)) THEN

RETURN (convert_to_maths_value (SIN(v1)));
END_IF;
IF (’SLASH_EXPRESSION’ IN types) AND

(’NUMBER’ IN TYPEOF (v1)) AND (’NUMBER’ IN TYPEOF (v2)) THEN
RETURN (convert_to_maths_value (v1 / v2));

END_IF;
IF (’SQUARE_ROOT_EXPRESSION’ IN types) AND (’NUMBER’ IN TYPEOF (v1)) THEN

RETURN (convert_to_maths_value (SQRT(v1)));
END_IF;
IF (’SUBSTRING_EXPRESSION’ IN types) AND

(’STRING’ IN TYPEOF (vlist[1])) AND (’NUMBER’ IN TYPEOF (vlist[2])) AND
(’NUMBER’ IN TYPEOF (vlist[3])) THEN
str := vlist[1]; n := vlist[2]; m := vlist[3];
RETURN (convert_to_maths_value (str[n:m]));

END_IF;
IF (’TAN_EXPRESSION’ IN types) AND (’NUMBER’ IN TYPEOF (v1)) THEN

RETURN (convert_to_maths_value (TAN(v1)));
END_IF;
IF (’UNARY_MINUS_EXPRESSION’ IN types) AND (’NUMBER’ IN TYPEOF (v1)) THEN

nmb := v1;
RETURN (convert_to_maths_value (-nmb));

END_IF;
IF (’VALUE_EXPRESSION’ IN types) AND (’STRING’ IN TYPEOF (v1)) THEN

RETURN (convert_to_maths_value (VALUE(v1)));
END_IF;
IF (’XOR_EXPRESSION’ IN types) AND

(’BOOLEAN’ IN TYPEOF (v1)) AND (’BOOLEAN’ IN TYPEOF (v2)) THEN
RETURN (convert_to_maths_value (v1 XOR v2));

END_IF;
-- No special simplification defined, return same with simplified operands.
IF ’UNARY_GENERIC_EXPRESSION’ IN types THEN

RETURN (restore_unary(expr,op1));
END_IF;
IF ’BINARY_GENERIC_EXPRESSION’ IN types THEN

RETURN (restore_binary(expr,op1,op2));
END_IF;
IF ’MULTIPLE_ARITY_GENERIC_EXPRESSION’ IN types THEN

RETURN (restore_mulary(expr,oplist));
END_IF;
-- Should be unreachable, but for safety, return unsimplified expression.
RETURN (expr);

END_FUNCTION; -- simplify_generic_expression
(*

248

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

Argument definitions:

expr: (input) The expression to be simplified.

return: (output) A maths value denoting the same mathematical object as the input expres-
sion.

4.6.138 simplify maths space

This function attempts to simplify a maths space to obtain a simpler instance of maths -
space. The only cases where any simplification is possible are those involving finite spaces
whose members are given by expressions which can be simplified. In any case, an instance of
maths space is returned which denotes the same mathematical space as that denoted by the
input.

EXPRESS specification:

*)
FUNCTION simplify_maths_space(spc : maths_space) : maths_space;
LOCAL

stypes : SET OF STRING := stripped_typeof (spc);
sset : SET OF maths_value;
zset : SET OF maths_value := [];
zval : maths_value;
zspc : maths_space;
zallint : BOOLEAN := TRUE;
zint, zmin, zmax : INTEGER;
factors : LIST OF maths_space;
zfactors : LIST OF maths_space := [];
rspc : maths_space;

END_LOCAL;
IF ’FINITE_SPACE’ IN stypes THEN

sset := spc\finite_space.members;
REPEAT i := 1 TO SIZEOF (sset);

zval := simplify_maths_value(sset[i]);
zset := zset + [zval];
IF zallint AND (’INTEGER’ IN TYPEOF (zval)) THEN

zint := zval;
IF i = 1 THEN
zmin := zint;
zmax := zint;

ELSE
IF zint < zmin THEN
zmin := zint;

END_IF;
IF zint > zmax THEN

zmax := zint;
END_IF;

END_IF;
ELSE

zallint := FALSE;
END_IF;

END_REPEAT;
IF zallint AND (SIZEOF(zset) = zmax-zmin+1) THEN

RETURN (make_finite_integer_interval(zmin,zmax));
END_IF;

249

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

RETURN (make_finite_space(zset));
END_IF;
IF ’UNIFORM_PRODUCT_SPACE’ IN stypes THEN

zspc := simplify_maths_space(spc\uniform_product_space.base);
RETURN (make_uniform_product_space(zspc,spc\uniform_product_space.exponent));

END_IF;
IF ’LISTED_PRODUCT_SPACE’ IN stypes THEN

factors := spc\listed_product_space.factors;
REPEAT i := 1 TO SIZEOF (factors);

INSERT (zfactors, simplify_maths_space(factors[i]), i-1);
END_REPEAT;
RETURN (make_listed_product_space(zfactors));

END_IF;
IF ’EXTENDED_TUPLE_SPACE’ IN stypes THEN
zspc := simplify_maths_space(spc\extended_tuple_space.base);
rspc := simplify_maths_space(spc\extended_tuple_space.extender);
RETURN (make_extended_tuple_space(zspc,rspc));

END_IF;
IF ’FUNCTION_SPACE’ IN stypes THEN
zspc := simplify_maths_space(spc\function_space.domain_argument);
rspc := simplify_maths_space(spc\function_space.range_argument);
RETURN (make_function_space(spc\function_space.domain_constraint,zspc,

spc\function_space.range_constraint,rspc));
END_IF;
RETURN (spc);

END_FUNCTION; -- simplify_maths_space
(*

Argument definitions:

spc: (input) The space to be simplified.

return: (output) A maths space denoting the same mathematical object as the input space,
but possibly with a simpler structure.

4.6.139 simplify maths value

This function attempts to simplify a maths value to obtain a simpler instance of maths -
value. The only cases where simplification is possible are those involving generic expressions.
In any case, a maths value is returned which denotes the same mathematical value as that
denoted by the input.

EXPRESS specification:

*)
FUNCTION simplify_maths_value(val : maths_value) : maths_value;
LOCAL

vtypes : SET OF STRING := stripped_typeof(val);
vlist : LIST OF maths_value;
nlist : LIST OF maths_value := [];

END_LOCAL;
IF ’GENERIC_EXPRESSION’ IN vtypes THEN

RETURN (simplify_generic_expression(val));
END_IF;
IF ’LIST’ IN vtypes THEN

250

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

vlist := val;
REPEAT i := 1 TO SIZEOF (vlist);

INSERT (nlist, simplify_maths_value(vlist[i]), i-1);
END_REPEAT;
RETURN (convert_to_maths_value(nlist));

END_IF;
RETURN (val);

END_FUNCTION; -- simplify_maths_value
(*

Argument definitions:

val: (input) The maths value to be simplified.

return: (output) A maths value denoting the same mathematical object as the input value,
but possibly with a simpler structure.

4.6.140 singleton member of

This function returns the single member of a mathematical space which has only one member.
Otherwise, it returns the indeterminate value.

EXPRESS specification:

*)
FUNCTION singleton_member_of(spc : maths_space) : maths_value;
LOCAL

types : SET OF STRING := stripped_typeof (spc);
END_LOCAL;
IF ’FINITE_SPACE’ IN types THEN
IF SIZEOF (spc\finite_space.members) = 1 THEN

RETURN (spc\finite_space.members[1]);
END_IF;
RETURN (?);

END_IF;
IF ’FINITE_INTEGER_INTERVAL’ IN types THEN
IF spc\finite_integer_interval.size = 1 THEN

RETURN (spc\finite_integer_interval.min);
END_IF;
RETURN (?);

END_IF;
RETURN (?);

END_FUNCTION; -- singleton_member_of
(*

Argument definitions:

spc: (input) The space whose sole element is to be returned.

return: (output) The sole member of spc, or else the indeterminate value.

251

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

4.6.141 space dimension

This function returns the dimension of a tuple space. In the case of a product space, the
dimension is the number of factors in the cartesian product, which is equivalent to the length of
its members. In the case of an extended tuple space, the dimension is the minimum length
of any of its members.

NOTE An extended tuple space has no upper limit on the length of its members.

EXPRESS specification:

*)
FUNCTION space_dimension(tspace : tuple_space) : nonnegative_integer;
LOCAL

types : SET OF STRING := TYPEOF (tspace);
END_LOCAL;
IF (schema_prefix + ’UNIFORM_PRODUCT_SPACE’) IN types THEN
RETURN (tspace\uniform_product_space.exponent);

END_IF;
IF (schema_prefix + ’LISTED_PRODUCT_SPACE’) IN types THEN

RETURN (SIZEOF (tspace\listed_product_space.factors));
END_IF;
IF (schema_prefix + ’EXTENDED_TUPLE_SPACE’) IN types THEN

-- In the case of an extended_tuple_space, the minimum dimension is returned.
RETURN (space_dimension (tspace\extended_tuple_space.base));

END_IF;
-- Should be unreachable
RETURN (?);

END_FUNCTION; -- space_dimension
(*

Argument definitions:

tspace: (input) The tuple space whose dimension is to be determined.

return: (output) The dimension of the tuple space.

4.6.142 space is continuum

This function determines whether or not a space is a continuum, that is, whether or not the
space is a subspace of the reals, a subspace of the complex numbers, or a cartesian product of
spaces which are continua.

EXPRESS specification:

*)
FUNCTION space_is_continuum(space : maths_space) : BOOLEAN;
LOCAL

typenames : SET OF STRING := TYPEOF (space);
factors : LIST OF maths_space;

END_LOCAL;
IF NOT EXISTS (space) THEN

252

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

RETURN (FALSE);
END_IF;
IF subspace_of_es(space,es_reals) OR subspace_of_es(space,es_complex_numbers) THEN

RETURN (TRUE);
END_IF;
IF (schema_prefix + ’UNIFORM_PRODUCT_SPACE’) IN typenames THEN

RETURN (space_is_continuum(space\uniform_product_space.base));
END_IF;
IF (schema_prefix + ’LISTED_PRODUCT_SPACE’) IN typenames THEN

factors := space\listed_product_space.factors;
IF SIZEOF(factors) = 0 THEN
RETURN (FALSE);

END_IF;
REPEAT i := 1 TO SIZEOF (factors);

IF NOT space_is_continuum(factors[i]) THEN
RETURN (FALSE);

END_IF;
END_REPEAT;
RETURN (TRUE);

END_IF;
RETURN (FALSE);

END_FUNCTION; -- space_is_continuum
(*

Argument definitions:

space: (input) The space to be tested for being a continuum.

return: (output) A BOOLEAN value indicating whether or not the space is a continuum.

4.6.143 space is singleton

This function determines whether or not its argument represents a mathematical space with a
single member or not.

EXPRESS specification:

*)
FUNCTION space_is_singleton(spc : maths_space) : BOOLEAN;
LOCAL

types : SET OF STRING := stripped_typeof (spc);
END_LOCAL;
IF ’FINITE_SPACE’ IN types THEN
RETURN (bool(SIZEOF (spc\finite_space.members) = 1));

END_IF;
IF ’FINITE_INTEGER_INTERVAL’ IN types THEN

RETURN (bool(spc\finite_integer_interval.size = 1));
END_IF;
RETURN (FALSE);

END_FUNCTION; -- space_is_singleton
(*

253

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

Argument definitions:

spc: (input) The space to be examined.

return: (output) The BOOLEAN value indicating whether the space has a single member or
not.

4.6.144 stripped typeof

This function takes the set of strings produced by the TYPEOF function from its generic
argument and strips schema prefix from each string which begins with that substring.

EXPRESS specification:

*)
FUNCTION stripped_typeof(arg : GENERIC:G) : SET OF STRING;
LOCAL

types : SET OF STRING := TYPEOF (arg);
stypes : SET OF STRING := [];
n : INTEGER := LENGTH (schema_prefix);

END_LOCAL;
REPEAT i := 1 TO SIZEOF (types);

IF types[i][1:n] = schema_prefix THEN
stypes := stypes + [types[i][n+1:LENGTH(types[i])]];

ELSE
stypes := stypes + [types[i]];

END_IF;
END_REPEAT;
RETURN (stypes);

END_FUNCTION; -- stripped_typeof
(*

Argument definitions:

arg: (input) The value whose set of stripped type names is to be produced.

return: (output) The set of strings corresponding to TYPEOF(arg), but with any prefixed
copies of schema prefix removed.

4.6.145 subspace of

This function attempts to determine whether a given mathematical space is a subspace of an-
other mathematical space. Where the information accessible to this function is not sufficient to
determine the matter, UNKNOWN is returned.

EXPRESS specification:

*)
FUNCTION subspace_of(space1, space2 : maths_space) : LOGICAL;
LOCAL

spc1 : maths_space := simplify_maths_space(space1);
spc2 : maths_space := simplify_maths_space(space2);

254

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

types1 : SET OF STRING := stripped_typeof (spc1);
types2 : SET OF STRING := stripped_typeof (spc2);
lgcl, cum : LOGICAL;
es_val : elementary_space_enumerators;
bnd1, bnd2 : REAL;
n : INTEGER;
sp1, sp2 : maths_space;
prgn1, prgn2 : polar_complex_number_region;
aitv : finite_real_interval;

END_LOCAL;
IF NOT EXISTS (spc1) OR NOT EXISTS (spc2) THEN

RETURN (FALSE);
END_IF;
IF spc2 = the_generics THEN

RETURN (TRUE);
END_IF;
IF ’ELEMENTARY_SPACE’ IN types1 THEN

IF NOT (’ELEMENTARY_SPACE’ IN types2) THEN
RETURN (FALSE);

END_IF;
es_val := spc2\elementary_space.space_id;
IF spc1\elementary_space.space_id = es_val THEN

RETURN (TRUE);
END_IF;
-- Note that the cases (spc2=the_generics) and (spc1=spc2) have been handled.
CASE spc1\elementary_space.space_id OF
es_numbers : RETURN (FALSE);
es_complex_numbers : RETURN (es_val = es_numbers);
es_reals : RETURN (es_val = es_numbers);
es_integers : RETURN (es_val = es_numbers);
es_logicals : RETURN (FALSE);
es_booleans : RETURN (es_val = es_logicals);
es_strings : RETURN (FALSE);
es_binarys : RETURN (FALSE);
es_maths_spaces : RETURN (FALSE);
es_maths_functions : RETURN (FALSE);
es_generics : RETURN (FALSE);
END_CASE;
-- Should be unreachable.
RETURN (UNKNOWN);

END_IF;
IF ’FINITE_INTEGER_INTERVAL’ IN types1 THEN

cum := TRUE;
REPEAT i := spc1\finite_integer_interval.min TO spc1\finite_integer_interval.max;

cum := cum AND member_of (i, spc2);
IF cum = FALSE THEN
RETURN (FALSE);

END_IF;
END_REPEAT;
RETURN (cum);

END_IF;
IF ’INTEGER_INTERVAL_FROM_MIN’ IN types1 THEN

IF ’ELEMENTARY_SPACE’ IN types2 THEN
es_val := spc2\elementary_space.space_id;
RETURN ((es_val = es_numbers) OR (es_val = es_integers));

END_IF;
IF ’INTEGER_INTERVAL_FROM_MIN’ IN types2 THEN

RETURN (spc1\integer_interval_from_min.min>=spc2\integer_interval_from_min.min);
END_IF;

255

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

RETURN (FALSE);
END_IF;
IF ’INTEGER_INTERVAL_TO_MAX’ IN types1 THEN

IF ’ELEMENTARY_SPACE’ IN types2 THEN
es_val := spc2\elementary_space.space_id;
RETURN ((es_val = es_numbers) OR (es_val = es_integers));

END_IF;
IF ’INTEGER_INTERVAL_TO_MAX’ IN types2 THEN
RETURN (spc1\integer_interval_to_max.max <= spc2\integer_interval_to_max.max);

END_IF;
RETURN (FALSE);

END_IF;
IF ’FINITE_REAL_INTERVAL’ IN types1 THEN

IF ’ELEMENTARY_SPACE’ IN types2 THEN
es_val := spc2\elementary_space.space_id;
RETURN ((es_val = es_numbers) OR (es_val = es_reals));

END_IF;
IF (’FINITE_REAL_INTERVAL’ IN types2) OR

(’REAL_INTERVAL_FROM_MIN’ IN types2) OR
(’REAL_INTERVAL_TO_MAX’ IN types2) THEN
IF min_exists (spc2) THEN

bnd1 := spc1\finite_real_interval.min;
bnd2 := real_min (spc2);
IF (bnd1 < bnd2) OR ((bnd1 = bnd2) AND min_included (spc1) AND NOT

min_included (spc2)) THEN
RETURN (FALSE);

END_IF;
END_IF;
IF max_exists (spc2) THEN

bnd1 := spc1\finite_real_interval.max;
bnd2 := real_max (spc2);
IF (bnd1 > bnd2) OR ((bnd1 = bnd2) AND max_included (spc1) AND NOT

max_included (spc2)) THEN
RETURN (FALSE);

END_IF;
END_IF;
RETURN (TRUE);

END_IF;
RETURN (FALSE);

END_IF;
IF ’REAL_INTERVAL_FROM_MIN’ IN types1 THEN

IF ’ELEMENTARY_SPACE’ IN types2 THEN
es_val := spc2\elementary_space.space_id;
RETURN ((es_val = es_numbers) OR (es_val = es_reals));

END_IF;
IF ’REAL_INTERVAL_FROM_MIN’ IN types2 THEN
bnd1 := spc1\real_interval_from_min.min;
bnd2 := spc2\real_interval_from_min.min;
RETURN ((bnd2 < bnd1) OR ((bnd2 = bnd1) AND (min_included (spc2) OR

NOT min_included (spc1))));
END_IF;
RETURN (FALSE);

END_IF;
IF ’REAL_INTERVAL_TO_MAX’ IN types1 THEN

IF ’ELEMENTARY_SPACE’ IN types2 THEN
es_val := spc2\elementary_space.space_id;
RETURN ((es_val = es_numbers) OR (es_val = es_reals));

END_IF;
IF ’REAL_INTERVAL_TO_MAX’ IN types2 THEN

256

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

bnd1 := spc1\real_interval_to_max.max;
bnd2 := spc2\real_interval_to_max.max;
RETURN ((bnd2 > bnd1) OR ((bnd2 = bnd1) AND (max_included (spc2) OR

NOT max_included (spc1))));
END_IF;
RETURN (FALSE);

END_IF;
IF ’CARTESIAN_COMPLEX_NUMBER_REGION’ IN types1 THEN

IF ’ELEMENTARY_SPACE’ IN types2 THEN
es_val := spc2\elementary_space.space_id;
RETURN ((es_val = es_numbers) OR (es_val = es_complex_numbers));

END_IF;
IF ’CARTESIAN_COMPLEX_NUMBER_REGION’ IN types2 THEN

RETURN (subspace_of(spc1\cartesian_complex_number_region.real_constraint,
spc2\cartesian_complex_number_region.real_constraint) AND
subspace_of(spc1\cartesian_complex_number_region.imag_constraint,
spc2\cartesian_complex_number_region.imag_constraint));

END_IF;
IF ’POLAR_COMPLEX_NUMBER_REGION’ IN types2 THEN

RETURN (subspace_of(enclose_cregion_in_pregion(spc1,
spc2\polar_complex_number_region.centre),spc2));

END_IF;
RETURN (FALSE);

END_IF;
IF ’POLAR_COMPLEX_NUMBER_REGION’ IN types1 THEN
IF ’ELEMENTARY_SPACE’ IN types2 THEN

es_val := spc2\elementary_space.space_id;
RETURN ((es_val = es_numbers) OR (es_val = es_complex_numbers));

END_IF;
IF ’CARTESIAN_COMPLEX_NUMBER_REGION’ IN types2 THEN
RETURN (subspace_of(enclose_pregion_in_cregion(spc1),spc2));

END_IF;
IF ’POLAR_COMPLEX_NUMBER_REGION’ IN types2 THEN

prgn1 := spc1;
prgn2 := spc2;
IF prgn1.centre = prgn2.centre THEN

IF prgn2.direction_constraint.max > PI THEN
aitv := make_finite_real_interval(-PI,open,prgn2.direction_constraint.max

-2.0*PI,prgn2.direction_constraint.max_closure);
RETURN (subspace_of(prgn1.distance_constraint,prgn2.distance_constraint)

AND (subspace_of(prgn1.direction_constraint,prgn2.direction_constraint)
OR subspace_of(prgn1.direction_constraint,aitv)));

ELSE
RETURN (subspace_of(prgn1.distance_constraint,prgn2.distance_constraint)
AND subspace_of(prgn1.direction_constraint,prgn2.direction_constraint));

END_IF;
END_IF;
RETURN (subspace_of(enclose_pregion_in_pregion(prgn1,prgn2.centre),prgn2));

END_IF;
RETURN (FALSE);

END_IF;
IF ’FINITE_SPACE’ IN types1 THEN

cum := TRUE;
REPEAT i := 1 TO SIZEOF (spc1\finite_space.members);

cum := cum AND member_of (spc1\finite_space.members[i], spc2);
IF cum = FALSE THEN

RETURN (FALSE);
END_IF;

END_REPEAT;

257

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

RETURN (cum);
END_IF;
IF ’PRODUCT_SPACE’ IN types1 THEN

IF ’PRODUCT_SPACE’ IN types2 THEN
IF space_dimension (spc1) = space_dimension (spc2) THEN

cum := TRUE;
REPEAT i := 1 TO space_dimension (spc1);
cum := cum AND subspace_of (factor_space(spc1,i), factor_space(spc2,i));
IF cum = FALSE THEN

RETURN (FALSE);
END_IF;

END_REPEAT;
RETURN (cum);

END_IF;
END_IF;
IF ’EXTENDED_TUPLE_SPACE’ IN types2 THEN

IF space_dimension (spc1) >= space_dimension (spc2) THEN
cum := TRUE;
REPEAT i := 1 TO space_dimension (spc1);

cum := cum AND subspace_of (factor_space(spc1,i), factor_space(spc2,i));
IF cum = FALSE THEN

RETURN (FALSE);
END_IF;

END_REPEAT;
RETURN (cum);

END_IF;
END_IF;
RETURN (FALSE);

END_IF;
IF ’EXTENDED_TUPLE_SPACE’ IN types1 THEN

IF ’EXTENDED_TUPLE_SPACE’ IN types2 THEN
n := space_dimension (spc1);
IF n < space_dimension (spc2) THEN

n := space_dimension (spc2);
END_IF;
cum := TRUE;
REPEAT i := 1 TO n+1;
cum := cum AND subspace_of (factor_space(spc1,i), factor_space(spc2,i));
IF cum = FALSE THEN

RETURN (FALSE);
END_IF;

END_REPEAT;
RETURN (cum);

END_IF;
RETURN (FALSE);

END_IF;
IF ’FUNCTION_SPACE’ IN types1 THEN

IF ’ELEMENTARY_SPACE’ IN types2 THEN
RETURN (spc2\elementary_space.space_id = es_maths_functions);

END_IF;
IF ’FUNCTION_SPACE’ IN types2 THEN

cum := TRUE;
sp1 := spc1\function_space.domain_argument;
sp2 := spc2\function_space.domain_argument;
CASE spc1\function_space.domain_constraint OF
sc_equal : BEGIN
CASE spc2\function_space.domain_constraint OF
sc_equal : cum := cum AND equal_maths_spaces (sp1, sp2);
sc_subspace : cum := cum AND subspace_of (sp1, sp2);

258

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

sc_member : cum := cum AND member_of (sp1, sp2);
END_CASE;
END;

sc_subspace : BEGIN
CASE spc2\function_space.domain_constraint OF
sc_equal : RETURN (FALSE);
sc_subspace : cum := cum AND subspace_of (sp1, sp2);
sc_member : BEGIN

IF NOT member_of (sp1, sp2) THEN
RETURN (FALSE);

END_IF;
cum := UNKNOWN;
END;

END_CASE;
END;

sc_member : BEGIN
CASE spc2\function_space.domain_constraint OF
sc_equal : cum := cum AND space_is_singleton(sp1) AND
equal_maths_spaces(singleton_member_of(sp1),sp2);

sc_subspace : BEGIN
IF NOT member_of (sp2, sp1) THEN

RETURN (FALSE);
END_IF;
cum := UNKNOWN;
END;

sc_member : cum := cum AND (subspace_of (sp1, sp2));
END_CASE;
END;

END_CASE;
IF cum = FALSE THEN

RETURN (FALSE);
END_IF;
sp1 := spc1\function_space.range_argument;
sp2 := spc2\function_space.range_argument;
CASE spc1\function_space.range_constraint OF
sc_equal : BEGIN

CASE spc2\function_space.range_constraint OF
sc_equal : cum := cum AND equal_maths_spaces (sp1, sp2);
sc_subspace : cum := cum AND subspace_of (sp1, sp2);
sc_member : cum := cum AND member_of (sp1, sp2);
END_CASE;
END;

sc_subspace : BEGIN
CASE spc2\function_space.domain_constraint OF
sc_equal : RETURN (FALSE);
sc_subspace : cum := cum AND subspace_of (sp1, sp2);
sc_member : BEGIN

IF NOT member_of (sp1, sp2) THEN
RETURN (FALSE);

END_IF;
cum := UNKNOWN;
END;

END_CASE;
END;

sc_member : BEGIN
CASE spc2\function_space.domain_constraint OF
sc_equal : cum := cum AND space_is_singleton(sp1) AND

equal_maths_spaces(singleton_member_of(sp1),sp2);
sc_subspace : BEGIN

259

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

IF NOT member_of (sp2, sp1) THEN
RETURN (FALSE);

END_IF;
cum := UNKNOWN;
END;

sc_member : cum := cum AND subspace_of (sp1, sp2);
END_CASE;
END;

END_CASE;
RETURN (cum);

END_IF;
RETURN (FALSE);

END_IF;
-- Should be unreachable
RETURN (UNKNOWN);

END_FUNCTION; -- subspace_of
(*

Argument definitions:

space1: (input) The first space.

space2: (input) The second space.

return: (output) A LOGICAL value which is TRUE if the first space can be determined to be
a subspace of the second space, FALSE if the first space can be determined not to be a subspace
of the second space, and UNKNOWN, otherwise.

4.6.146 subspace of es

This function determins whether a maths space is a subspace of an elementary space identified
by a value of elementary space enumerators.

EXPRESS specification:

*)
FUNCTION subspace_of_es(spc : maths_space;

es : elementary_space_enumerators) : LOGICAL;
LOCAL
types : SET OF STRING := stripped_typeof(spc);

END_LOCAL;
IF NOT EXISTS (spc) OR NOT EXISTS (es) THEN RETURN (FALSE); END_IF;
IF ’ELEMENTARY_SPACE’ IN types THEN

RETURN (es_subspace_of_es(spc\elementary_space.space_id,es));
END_IF;
IF ’FINITE_SPACE’ IN types THEN

RETURN (all_members_of_es(spc\finite_space.members,es));
END_IF;
CASE es OF
es_numbers : RETURN (

(’FINITE_INTEGER_INTERVAL’ IN types) OR
(’INTEGER_INTERVAL_FROM_MIN’ IN types) OR
(’INTEGER_INTERVAL_TO_MAX’ IN types) OR
(’FINITE_REAL_INTERVAL’ IN types) OR
(’REAL_INTERVAL_FROM_MIN’ IN types) OR

260

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

(’REAL_INTERVAL_TO_MAX’ IN types) OR
(’CARTESIAN_COMPLEX_NUMBER_REGION’ IN types) OR
(’POLAR_COMPLEX_NUMBER_REGION’ IN types));

es_complex_numbers : RETURN (
(’CARTESIAN_COMPLEX_NUMBER_REGION’ IN types) OR
(’POLAR_COMPLEX_NUMBER_REGION’ IN types));

es_reals : RETURN (
(’FINITE_REAL_INTERVAL’ IN types) OR
(’REAL_INTERVAL_FROM_MIN’ IN types) OR
(’REAL_INTERVAL_TO_MAX’ IN types));

es_integers : RETURN (
(’FINITE_INTEGER_INTERVAL’ IN types) OR
(’INTEGER_INTERVAL_FROM_MIN’ IN types) OR
(’INTEGER_INTERVAL_TO_MAX’ IN types));

es_logicals : RETURN (FALSE);
es_booleans : RETURN (FALSE);
es_strings : RETURN (FALSE);
es_binarys : RETURN (FALSE);
es_maths_spaces : RETURN (FALSE);
es_maths_functions : RETURN (’FUNCTION_SPACE’ IN types);
es_generics : RETURN (TRUE);
END_CASE;
RETURN (UNKNOWN);

END_FUNCTION; -- subspace_of_es
(*

Argument definitions:

spc: (input) The instance of maths space to be tested.

es: (input) The enumeration value identifying the elementary space.

return: (output) A LOGICAL value which is TRUE if the space can be determined to be a
subspace of the elementary space, FALSE if the space can be determined not to be a subspace
of the elementary space, and UNKNOWN, otherwise.

4.6.147 substitute

This function constructs an expression by substituting values for variables in a given expression.
The list of values is substituted for the corresponding variables simultaneously.

NOTE Since the substitution occurs simultaneously, it is possible, for example, to substitute values y
and x for variables x and y in the expression 2x(y − x) and get 2y(x− y).

EXPRESS specification:

*)
FUNCTION substitute(expr : generic_expression;

vars : LIST [1:?] OF generic_variable;
vals : LIST [1:?] OF maths_value) : generic_expression;

LOCAL
types : SET OF STRING := stripped_typeof(expr);
opnds : LIST OF generic_expression;
op1, op2 : generic_expression;
qvars : LIST OF generic_variable;

261

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

srcdom : maths_space_or_function;
prpfun : LIST [1:?] OF maths_function;
finfun : maths_function_select;

END_LOCAL;
IF SIZEOF (vars) <> SIZEOF (vals) THEN RETURN (?); END_IF;
IF ’GENERIC_LITERAL’ IN types THEN RETURN (expr); END_IF;
IF ’GENERIC_VARIABLE’ IN types THEN

REPEAT i := 1 TO SIZEOF (vars);
IF expr :=: vars[i] THEN RETURN (vals[i]); END_IF;

END_REPEAT;
RETURN (expr);

END_IF;
IF ’QUANTIFIER_EXPRESSION’ IN types THEN

qvars := expr\quantifier_expression.variables;
-- Variables subject to a quantifier do not participate in this kind of
-- substitution process.
REPEAT i := SIZEOF (vars) TO 1 BY -1;

IF vars[i] IN qvars THEN
REMOVE (vars, i);
REMOVE (vals, i);

END_IF;
END_REPEAT;
opnds := expr\multiple_arity_generic_expression.operands;
REPEAT i := 1 TO SIZEOF (opnds);

IF NOT (opnds[i] IN qvars) THEN
expr\multiple_arity_generic_expression.operands[i] :=

substitute(opnds[i],vars,vals);
-- This technique will not work on subtypes of quantifier_expression
-- which derive their operands from other attributes!

END_IF;
END_REPEAT;
RETURN (expr); -- operands modified!

END_IF;
IF ’UNARY_GENERIC_EXPRESSION’ IN types THEN

op1 := expr\unary_generic_expression.operand;
expr\unary_generic_expression.operand := substitute(op1, vars, vals);
-- This technique will not work on subtypes of unary_generic_expression
-- which derive their operands from other attributes!

END_IF;
IF ’BINARY_GENERIC_EXPRESSION’ IN types THEN

op1 := expr\binary_generic_expression.operands[1];
expr\binary_generic_expression.operands[1] := substitute(op1, vars, vals);
op2 := expr\binary_generic_expression.operands[2];
expr\binary_generic_expression.operands[2] := substitute(op2, vars, vals);
-- This technique will not work on subtypes of binary_generic_expression
-- which derive their operands from other attributes!

END_IF;
IF ’PARALLEL_COMPOSED_FUNCTION’ IN types THEN

-- Subtype of multiple_arity_generic_expression which derives its operands.
srcdom := expr\parallel_composed_function.source_of_domain;
prpfun := expr\parallel_composed_function.prep_functions;
finfun := expr\parallel_composed_function.final_function;
srcdom := substitute(srcdom,vars,vals);
REPEAT i := 1 TO SIZEOF (prpfun);

prpfun[i] := substitute(prpfun[i],vars,vals);
END_REPEAT;
IF ’MATHS_FUNCTION’ IN stripped_typeof(finfun) THEN
finfun := substitute(finfun,vars,vals);

END_IF;

262

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

RETURN (make_parallel_composed_function(srcdom,prpfun,finfun));
END_IF;
IF ’MULTIPLE_ARITY_GENERIC_EXPRESSION’ IN types THEN

opnds := expr\multiple_arity_generic_expression.operands;
REPEAT i := 1 TO SIZEOF (opnds);

expr\multiple_arity_generic_expression.operands[i] :=
substitute(opnds[i],vars,vals);
-- This technique will not work on subtypes of multiple_arity_generic_
-- expression which derive their operands from other attributes!

END_REPEAT;
END_IF;
RETURN (expr);

END_FUNCTION; -- substitute
(*

Argument definitions:

expr: (input) The expression to be substituted.

vars: (input) The list of variable to be replaced.

vals: (input) The list of mathematical values to substitute for the corresponding variables

return: (output) The expression created by carrying out the substitutions.

4.6.148 values space of

This function produces an instance of maths space representing a mathematical space which
contains all possible values of the mathematical expression given as input. A possible value of
an expression is one which could be the denotation of the expression after some assignment of
legitimate values to the free variables in the expression. If the expression is not recognizable
as a mathematical expression by the function has values space, the indeterminate value is
returned.

Analogously to the range space of a function, the values space of an expression is only a space
containing all the possible values. It may contain many values which are not actual values of
the expression for any assignment of values to free variables.

NOTE The actual value space of an expression is impractical to ascertain in general. The purpose of
this function is that it gives an equivalent of “type” information for mathematical expressions.

EXPRESS specification:

*)
FUNCTION values_space_of(expr : generic_expression) : maths_space;
LOCAL

e_prefix : STRING := ’ISO13584_EXPRESSIONS_SCHEMA.’;
typenames : SET OF STRING := TYPEOF (expr);

END_LOCAL;
IF (schema_prefix + ’MATHS_VARIABLE’) IN typenames THEN

RETURN (expr\maths_variable.values_space);
END_IF;
IF (e_prefix + ’EXPRESSION’) IN typenames THEN

IF (e_prefix + ’NUMERIC_EXPRESSION’) IN typenames THEN
IF expr\numeric_expression.is_int THEN

263

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

IF (e_prefix + ’INT_LITERAL’) IN typenames THEN
RETURN (make_finite_space ([expr\int_literal.the_value]));

ELSE
RETURN (the_integers);

END_IF;
ELSE

IF (e_prefix + ’REAL_LITERAL’) IN typenames THEN
RETURN (make_finite_space ([expr\real_literal.the_value]));

ELSE
RETURN (the_reals);

END_IF;
END_IF;

END_IF;
IF (e_prefix + ’BOOLEAN_EXPRESSION’) IN typenames THEN

IF (e_prefix + ’BOOLEAN_LITERAL’) IN typenames THEN
RETURN (make_finite_space ([expr\boolean_literal.the_value]));

ELSE
RETURN (the_booleans);

END_IF;
END_IF;
IF (e_prefix + ’STRING_EXPRESSION’) IN typenames THEN

IF (e_prefix + ’STRING_LITERAL’) IN typenames THEN
RETURN (make_finite_space ([expr\string_literal.the_value]));

ELSE
RETURN (the_strings);

END_IF;
END_IF;
RETURN (?); -- unknown subtype of expression

END_IF;
IF (schema_prefix + ’MATHS_FUNCTION’) IN typenames THEN

IF expression_is_constant (expr) THEN
RETURN (make_finite_space ([expr]));

ELSE
RETURN (make_function_space (sc_equal, expr\maths_function.domain,

sc_equal, expr\maths_function.range));
END_IF;

END_IF;
IF (schema_prefix + ’FUNCTION_APPLICATION’) IN typenames THEN

RETURN (expr\function_application.func.range);
END_IF;
IF (schema_prefix + ’MATHS_SPACE’) IN typenames THEN

IF expression_is_constant (expr) THEN
RETURN (make_finite_space ([expr]));

ELSE
-- This case cannot occur in this version of the schema.
-- When it becomes possible, the subtypes should be analysed and
-- more finely defined spaces returned.
RETURN (make_elementary_space (es_maths_spaces));

END_IF;
END_IF;
IF (schema_prefix + ’DEPENDENT_VARIABLE_DEFINITION’) IN typenames THEN

RETURN (values_space_of (expr\unary_generic_expression.operand));
END_IF;
IF (schema_prefix + ’COMPLEX_NUMBER_LITERAL’) IN typenames THEN

RETURN (make_finite_space ([expr]));
END_IF;
IF (schema_prefix + ’LOGICAL_LITERAL’) IN typenames THEN

RETURN (make_finite_space ([expr\logical_literal.lit_value]));
END_IF;

264

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

IF (schema_prefix + ’BINARY_LITERAL’) IN typenames THEN
RETURN (make_finite_space ([expr\binary_literal.lit_value]));

END_IF;
IF (schema_prefix + ’MATHS_ENUM_LITERAL’) IN typenames THEN

RETURN (make_finite_space ([expr\maths_enum_literal.lit_value]));
END_IF;
IF (schema_prefix + ’REAL_TUPLE_LITERAL’) IN typenames THEN

RETURN (make_finite_space ([expr\real_tuple_literal.lit_value]));
END_IF;
IF (schema_prefix + ’INTEGER_TUPLE_LITERAL’) IN typenames THEN

RETURN (make_finite_space ([expr\integer_tuple_literal.lit_value]));
END_IF;
IF (schema_prefix + ’ATOM_BASED_LITERAL’) IN typenames THEN

RETURN (make_finite_space ([expr\atom_based_literal.lit_value]));
END_IF;
IF (schema_prefix + ’MATHS_TUPLE_LITERAL’) IN typenames THEN

RETURN (make_finite_space ([expr\maths_tuple_literal.lit_value]));
END_IF;
IF (schema_prefix + ’PARTIAL_DERIVATIVE_EXPRESSION’) IN typenames THEN

RETURN (drop_numeric_constraints (values_space_of (
expr\partial_derivative_expression.derivand)));

END_IF;
IF (schema_prefix + ’DEFINITE_INTEGRAL_EXPRESSION’) IN typenames THEN

RETURN (drop_numeric_constraints (values_space_of (
expr\definite_integral_expression.integrand)));

END_IF;
RETURN (?); -- not recognized as a mathematical expression

END_FUNCTION; -- values_space_of
(*

Argument definitions:

expr: (input) The expression whose value space is to be derived.

return: (output) A space containing all possible values of the expression.

EXPRESS specification:

*)
END_SCHEMA; -- mathematical_functions_schema
(*

265

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

Annex A
(normative)

Short names of entities

Table A.1 provides the short names of entities specified in this part of ISO 10303. Requirements
on the use of short names are found in the implementation methods included in ISO 10303.

Table A.1 – Short names of entities

Entity names Short names

ABSTRACTED EXPRESSION FUNCTION ABEXFN

APPLICATION DEFINED FUNCTION APDFFN

ATOM BASED LITERAL ATBSLT

B SPLINE BASIS BSPBS

B SPLINE FUNCTION BSPFN

BANDED MATRIX BNDMTR

BASIC SPARSE MATRIX BSSPMT

BINARY LITERAL BNRLTR

BOUND VARIABLE SEMANTICS BNVRSM

CARTESIAN COMPLEX NUMBER REGION CCNR

COMPLEX NUMBER LITERAL CMNMLT

CONSTANT FUNCTION CNSFNC

DEFINITE INTEGRAL EXPRESSION DFINEX

DEFINITE INTEGRAL FUNCTION DFINFN

DEPENDENT VARIABLE DEFINITION DPVRDF

ELEMENTARY FUNCTION ELMFNC

ELEMENTARY SPACE ELMSPC

EXPLICIT TABLE FUNCTION EXTBFN

EXPRESSION DENOTED FUNCTION EXDNFN

EXTENDED TUPLE SPACE EXTPSP

EXTERNALLY LISTED DATA EXLSDT

FINITE FUNCTION FNTFNC

FINITE INTEGER INTERVAL FNININ

FINITE REAL INTERVAL FNRLIN

266

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

Table A.1 – (continued)

Entity names Short names

FINITE SPACE FNTSPC

FREE VARIABLE SEMANTICS FRVRSM

FUNCTION APPLICATION FNCAPP

FUNCTION SPACE FNCSPC

GENERAL LINEAR FUNCTION GNLNFN

HOMOGENEOUS LINEAR FUNCTION HMLNFN

IMPORTED CURVE FUNCTION IMCRFN

IMPORTED POINT FUNCTION IMPNFN

IMPORTED SURFACE FUNCTION IMSRFN

IMPORTED VOLUME FUNCTION IMVLFN

INTEGER INTERVAL FROM MIN IIFM

INTEGER INTERVAL TO MAX IITM

INTEGER TUPLE LITERAL INTPLT

LINEARIZED TABLE FUNCTION LNTBFN

LISTED COMPLEX NUMBER DATA LCND

LISTED DATA LSTDT

LISTED INTEGER DATA LSINDT

LISTED LOGICAL DATA LSLGDT

LISTED PRODUCT SPACE LSPRSP

LISTED REAL DATA LSRLDT

LISTED STRING DATA LSSTDT

LOGICAL LITERAL LGCLTR

MATHEMATICAL DESCRIPTION MTHDSC

MATHS BOOLEAN VARIABLE MTBLVR

MATHS ENUM LITERAL MTENLT

MATHS FUNCTION MTH0

MATHS INTEGER VARIABLE MTINVR

MATHS REAL VARIABLE MTRLVR

267

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

Table A.1 – (concluded)

Entity names Short names

MATHS SPACE MTH1

MATHS STRING VARIABLE MTSTVR

MATHS TUPLE LITERAL MTTPLT

MATHS VARIABLE MTHVRB

PARALLEL COMPOSED FUNCTION PRCMFN

PARTIAL DERIVATIVE EXPRESSION PRDREX

PARTIAL DERIVATIVE FUNCTION PRDRFN

POLAR COMPLEX NUMBER REGION PCNR

QUANTIFIER EXPRESSION QNTEXP

RATIONALIZE FUNCTION RTNFNC

REAL INTERVAL FROM MIN RIFM

REAL INTERVAL TO MAX RITM

REAL TUPLE LITERAL RLTPLT

REGULAR TABLE FUNCTION RGTBFN

REINDEXED ARRAY FUNCTION RNARFN

REPACKAGING FUNCTION RPCFNC

RESTRICTION FUNCTION RSTFNC

SELECTOR FUNCTION SLC0

SERIES COMPOSED FUNCTION SRCMFN

STANDARD TABLE FUNCTION STTBFN

STRICT TRIANGULAR MATRIX STTRMT

SYMMETRIC BANDED MATRIX SYBNMT

SYMMETRIC MATRIX SYMMTR

TRIANGULAR MATRIX TRNMTR

UNIFORM PRODUCT SPACE UNPRSP

268

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

Annex B
(normative)

Information object registration

B.1 Document identification

To provide for unambiguous identification of an information object in an open system, the object
identifier

{ iso standard 10303 part(50) version(1) }

is assigned to this part of ISO 10303. The meaning of this value is defined in ISO/IEC 8824-1,
and is described in ISO 10303-1.

B.2 Schema identification

To provide for unambiguous identification of the schema-name in an open information system,
the object identifier

{ iso standard 10303 part(50) version(1) schema(1) mathematical-functions-schema(1) }

is assigned to the mathematical functions schema schema (see clause 4). The meaning of
this value is defined in ISO/IEC 8824-1, and is described in ISO 10303-1.

269

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

Annex C
(informative)

Computer-interpretable listings

This annex references a listing of the EXPRESS entity names and corresponding short names
as specified in this part of ISO 10303. It also references a listing of each EXPRESS schema
specified in this part of ISO 10303, without comments or other explanatory text. These listings
are available in computer-interpretable form and can be found at the following URLs:

Short names: <http://www.mel.nist.gov/div826/subject/apde/snr/>
EXPRESS: <http://www.mel.nist.gov/step/parts/part050/is/>

If there is difficulty accessing these sites contact ISO Central Secretariat or contact the ISO
TC 184/SC4 Secretariat directly at: sc4sec@cme.nist.gov.

NOTE The information provided in computer-interpretable form at the above URLs is informative.
The information that is contained in the body of this part of ISO 10303 is normative.

270

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

Annex D
(informative)

EXPRESS-G diagrams

The diagrams in this annex correspond to the EXPRESS schema specified in this part of
ISO 10303. The diagrams use the EXPRESS-G graphical notation for the EXPRESS language.
EXPRESS-G is defined in annex D of ISO 10303-11.

271

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

�� ��1,1 (7,8,9,10)

ISO13584 generic expressions schema.
generic expression

�
�

�
�

e
�� ��4,2 maths space�� ��6,2 maths function

ISO13584 generic expressions schema.
variable semantics

�
�

�
�e bound variable semanticse free variable semantics

ISO13584 generic expressions schema.
unary generic expression

�
�

�
�e dependent variable

definition
ename edescription�� ��6,7 restriction function�� ��6,8 repackaging function�

�
�
�6,9 reindexed

array function�
�

�
�7,8 linearized

table function�
�

�
�8,4 homogeneous

linear function�
�

�
�8,5 general

linear function�� ��8,7 b spline function�� ��8,8 rationalize function�
�

�
�9,1 partial

derivative function�
�

�
�9,2 partial

derivative expression�
�

�
�9,3 definite

integral function�
�

�
�9,6 expression

denoted function

ISO13584 generic expressions schema.
multiple arity generic expression

�
�

�
�e quantifier expression variables L[1:?]�

�
�
�2,1 generic

variable

�
�

�
�9,4 definite

integral expression�
�

�
�9,5 abstracted

expression functione function application

func �� ��10,5 maths function select

arguments L[1:?] �� ��10,2 maths expression

(DER) operands L[2:?]

e

�� ��6,10 series composed function�� ��8,2 basic sparse matrix�� ��8,3 parallel composed function

Figure D.1 – EXPRESS-G diagram of the mathematical functions schema (1 of 10)

272

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

�� ��2,1 (1,9)

ISO13584 generic expressions schema.
generic variable

�
�

�
�

e

e
�� ��2,2 (9)e
maths variable

ename
values space �� ��4,1 maths space

ISO13584 expressions schema.
real numeric variable

�
�

�
�ee maths real variable

ISO13584 expressions schema.
int numeric variable

�
�

�
�ee maths integer variable

ISO13584 expressions schema.
boolean variable

�
�

�
�ee maths boolean variable

ISO13584 expressions schema.
int string variable

�
�

�
�ee maths string variable

Figure D.2 – EXPRESS-G diagram of the mathematical functions schema (2 of 10)

273

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO13584 generic expressions schema.
generic literal

�
�

�
��� ��3,1 (5)ee complex number literal

ereal part eimag part

e logical literal elit value

e binary literal elit value

e maths enum literal
lit value �� ��10,4 maths enum atome real tuple literal elit value L[1:?]

e integer tuple literal elit value L[1:?]

e atom based literal
lit value �� ��10,3 atom based valuee maths tuple literal lit value L �� ��10,1 maths value�� ��4,3 finite space�� ��4,4 elementary space�� ��4,5 finite integer interval�� ��4,6 integer interval from min�� ��4,7 integer interval to max�� ��4,9 finite real interval�� ��4,10 real interval from min�� ��4,11 real interval to max�� ��5,1 cartesian complex number region�� ��5,2 polar complex number region�� ��5,4 uniform product space�� ��5,5 listed product space�� ��5,6 extended tuple space�� ��5,7 function space�� ��6,3 finite function

�� ��6,4 constant function�� ��6,5 selector function�� ��6,6 elementary function�� ��7,2 listed real data�� ��7,3 listed integer data�� ��7,4 listed logical data�� ��7,5 listed string data�� ��7,6 listed complex number data�� ��7,7 listed data�� ��8,1 externally listed data�� ��8,6 b spline basis�� ��9,7 imported point function�� ��9,8 imported curve function�� ��9,9 imported surface function�� ��9,10 imported volume function

Figure D.3 – EXPRESS-G diagram of the mathematical functions schema (3 of 10)

274

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

�� ��4,1 (2,5,6,7,8,10)e�� ��4,2 (1) e (ABS) maths space

1 e�� ��4,3 (3) e finite space
members S[0:?] �� ��10,1 maths value

e�� ��4,4 (3) e elementary space espace id
elementary space enumeratorse�� ��4,5 (3) e finite integer interval

emin emax e(DER) sizee�� ��4,6 (3) e integer interval from min emin

e�� ��4,7 (3) e integer interval to max emax

�� ��4,12 (5)e
real interval

e

e
e

e

�� ��4,8 (5) ee�� ��4,9 (3) e finite real interval
emin emin closureemax e

max closure

open closed

e�� ��4,10 (3) e real interval from min
emin

e

min closure

e�� ��4,11 (3) e real interval to max
emax

e

max closure

�� ��5,1 cartesian complex number region�� ��5,2 polar complex number region�� ��5,4 uniform product space

�� ��5,5 listed product space�� ��5,6 extended tuple space�� ��5,7 function space

Figure D.4 – EXPRESS-G diagram of the mathematical functions schema (4 of 10)

275

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

�� ��5,1 (3,4) e cartesian complex
number region

real constraint �� ��4,12 real interval
imag constraint

�� ��5,2 (3,4) e polar complex
number region

distance constraint
direction constraint �� ��4,8 finite real interval

centre �� ��3,1 complex number literal�� ��5,3 (6,8,9)e
tuple space

e product space e�� ��5,4 (3,4) e uniform product space

�� ��4,1 maths space

base eexponent

e�� ��5,5 (3,4) e listed product space
factors L[0:?]

e�� ��5,6 (3,4) e extended tuple space

e

base
extender�� ��5,7 (3,4) e function space

edomain constraint erange constraint
domain argument
range argument

space constraint type

Figure D.5 – EXPRESS-G diagram of the mathematical functions schema (5 of 10)

276

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

�� ��6,1 (7,8,9,10)e�� ��6,2 (1) e (ABS) maths function
(DER) domain
(DER) range

�
�

�
�5,3 tuple space

1 e�� ��6,3 (3) e finite function
pairs S[1:?] L[2:2] �� ��10,1 maths valuee�� ��6,4 (3) e constant function
sole output
source of domain

�� ��10,6 maths space or functione�� ��6,5 (3) e selector function
selector e input selector
source of domain

e�� ��6,6 (3) e elementary function efunc id elementary function enumeratorse�� ��6,7 (1) e restriction function (RT) operand �� ��4,1 maths spacee�� ��6,8 (1) e repackaging function

e

(RT) operand einput repack

repackage optionseoutput repack

eoutput select
nonnegative integere�� ��6,9 (1) e reindexed array function

(RT) operand estarting indices L[1:?]e�� ��6,10 (1) e series composed function (RT) operands L[2:?]

�� ��7,1 explicit table function�� ��8,3 parallel composed function�� ��8,4 homogeneous linear function�� ��8,5 general linear function�� ��8,6 b spline basis�� ��8,7 b spline function�� ��8,8 rationalize function�� ��9,1 partial derivative function

�� ��9,3 definite integral function�� ��9,5 abstracted expression function�� ��9,6 expression denoted function�� ��9,7 imported point function�� ��9,8 imported curve function�� ��9,9 imported surface function�� ��9,10 imported volume function�� ��9,11 application defined function

Figure D.6 – EXPRESS-G diagram of the mathematical functions schema (6 of 10)

277

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

(ABS) explicit
table function

�� ��7,1 (6) e index base zero or onee
shape L[1:?]

positive integere
listed real

data

�� ��7,2 (3) ee1

(DER) shape L[1:?]
e

e
values L[1:?]

listed
integer data

�� ��7,3 (3) ee (DER) shape L[1:?]e
values L[1:?]

listed
logical data

�� ��7,4 (3) ee (DER) shape L[1:?]e
values L[1:?]

listed
string data

�� ��7,5 (3) ee (DER) shape L[1:?]e
values L[1:?]

listed complex
number data

�� ��7,6 (3) ee (DER) shape L[1:?]e
values L[2:?]

listed
data

�� ��7,7 (1) ee (DER) shape L[1:?]

values L[1:?]

�� ��10,1 maths value�� ��4,1 maths space
value range

e

�
�

�
�8,1 externally

listed data

�
�

�
�8,2, basic

sparse matrix
(ABS) linearized

table function

�� ��7,8 (1) ee
e

first (RT) operand

(DER) source

�� ��6,1 maths
function

e standard
table function

ordering typeeorder

e
1

regular
table function

eincrements L[1:?]

e triangular
matrix

�� ��10,1 maths valuedefault
entry

e
order

lower upperelo up

strict triangular
matrix

e
main diagonal value

esymmetric
matrix

e symmetry
symmetry type e

order
ordering type e

triangle
lower upper

symmetric
banded matrix

enonnegative
integer eabove�� ��10,1 maths value

default entry

banded
matrix

edefault
entry

ordering type e
order ebeloweabove

Figure D.7 – EXPRESS-G diagram of the mathematical functions schema (7 of 10)

278

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

external reference schema.
externally defined item

�
�

�
��� ��8,1 (3,7)

ee externally
listed data

evalue range
�
�

�
�4,1 maths space�

�
�
�6,1 maths function

�� ��8,2 (1,7) e basic sparse matrix
(RT) operands L[3:3]
(DER) index
(DER) loc
(DER) val
default entry

�� ��10,1 maths valueeorder ordering type�� ��8,3 (1,6) eparallel composed function
(DER) operands L[2:?] �� ��1,1 generic expression

source of domain �� ��10,6 maths space or function
prep functions L[1:?]

final function
�� ��10,5 maths function select

�� ��8,4 (1,6) e homogeneous linear
function

(RT) operand
(DER) mat esum index

one or two�� ��8,5 (1,6) e general linear
function

esum index
(RT) operand
(DER) mat�� ��8,6 (3,6) e b spline basis

edegree nonnegative integererepeated knots L[2:?] e(DER) order e(DER) num basis positive integer�� ��8,7 (1,6) e b spline function

e
basis L[1:?]

(RT) operand
(DER) coef�� ��8,8 (1,6) e rationalize function
(RT) operand
(DER) fun

Figure D.8 – EXPRESS-G diagram of the mathematical functions schema (8 of 10)

279

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

�
�

�
�6,1 maths function

�� ��9,1 (1,6) e partial derivative
function

(RT) operand
(DER) derivand ed variables L[1:?] input selectoreextension

extension options�� ��9,2 (1) e partial derivative
expression

eextension
(DER) derivand
d variables L[1:?] �� ��2,2 maths variable�� ��9,3 (1,6) e definite integral function
(RT) operand evariable of integration input selectorelower limit neg infinity eupper limit pos infinity
(DER) integrand�� ��9,4 (1) edefinite integral expression

elower limit neg infinity eupper limit pos infinity
(DER) integrand
(DER) variable of integration�� ��2,2 maths variable
(RT)(DER) variables L[1:1]�� ��9,5 (1,6) e abstracted expression

function

(DER) variables L[1:?]
�� ��2,1 generic variable

(DER) expr �
�

�
�1,1 generic expression�� ��9,6 (1,6) e expression denoted

function

(DER) expr

�� ��9,7 (3,6) e imported point
function

egeometry geometry schema.point
�� ��

�� ��9,8 (3,6) e imported curve
function

egeometry geometry schema.curve
�� ��

parametric domain �� ��5,3 tuple space�� ��9,9 (3,6) e imported surface
function

egeometry geometry schema.surface
�� ��

parametric domain�� ��9,10 (3,6) e imported volume
function

egeometry geometry schema.volume
�� ��

parametric domain�� ��9,11 (6) e (ABS) application
defined function

explicit domain
explicit range
parameters L�� ��10,1 maths value

mathematical description

�� ��10,2 maths expressiondescribed edescribing eencoding support resource schema.label
�� ��

Figure D.9 – EXPRESS-G diagram of the mathematical functions schema (9 of 10)

280

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

�� ��10,1 (1,3,4,6,7,8,9)

e
maths value

emaths tuplee L[0:?]
e �

�
�
�1,1 generic

expression

�� ��10,2 (1,9)e
maths expression

maths
atom

maths
simple atom

e
maths

enum atom
e

maths number

maths real

maths integer

maths logical

maths boolean

maths string

maths binary

eeeeeee

�� ��10,3 (3)

e
atom based

value

ee e
atom
based
tuple

e e
L[0:?]

�� ��10,4 (3)e

open closed e
ordering type e
lower upper e

symmetry type e

elementary function enumeratorse
elementary space enumeratorse
space constraint typee

repackage optionse
extension optionse

�� ��10,5 (1,8)e
maths function select

e

�� ��6,1 maths function

�� ��10,6 (6,8)e
maths space or function�� ��4,1 maths space

Figure D.10 – EXPRESS-G diagram of the mathematical functions schema (10 of
10)

281

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

Bibliography

[1] ANS US PRO/IPO-100-1996. IGES 5.3, Initial Graphics Exchange Specification, Sep. 1996.

[2] W3C PR-math-19980224, Mathematical Markup Language, W3C Proposed Recommendation
[cited 2001-08-13]. Available from the World Wide Web: < http://www.w3.org/TR/1998/PR-
math-19980224 > .

[3] W3C REC-MathML-19980407; revised 19990707, Mathematical Markup Language (MathML)
1.01 Specification [cited 2001-08-13]. Available from the World Wide Web: < http://www.w3.org
/TR/REC-MathML > .

[4] BARENDREGT, H. P. The Lambda Calculus, Volume 103, Studies in Logic. Amsterdam:
North Holland, 1985.

[5] JAMES, G.; JAMES, R. Mathematics Dictionary, third edition, Princeton: D. Van Nostrand
Co., Inc., 1968.

282

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

Index
abstracted expression function entity . 97
actual function domain definition . 2
actual function range definition . 2
all members of es function . 104
any space satisfies function . 106
application defined function entity . 102
array function definition . 2
assoc product space function . 107
atan2 function . 109
atom based literal entity . 41
atom based tuple type .19
atom based value type . 19
b spline basis entity . 87
b spline function entity . 88
banded matrix entity . 81
basic sparse matrix entity . 83
binary literal entity . 39
bool function .110
bound variable definition . 2
bound variable semantics entity . 37
Cartesian product space definition . 3
cartesian complex number region entity . 49
check sparse index domain function . 110
check sparse index to loc function . 112
check sparse loc range function . 111
compare basis and coef function . 113
compare list and value function . 113
compare values function . 114
compatible spaces definition . 3
compatible complex number regions function . 115
compatible es values function .117
compatible intervals function . 118
compatible spaces function . 118
complex number literal entity . 38
composable sequence function . 124
computable function definition .3
constant function entity . 58
convert to literal function . 124
convert to maths function function . 125
convert to maths value function . 125
convert to operand function . 126
convert to operands function . 127
convert to operands prcmfn function . 128
definite integral check function . 128
definite integral expr check function . 129
definite integral expression entity . 95
definite integral function entity . 94
dependent variable definition entity . 37
derive definite integral domain function . 130
derive elementary function domain function . 132
derive elementary function range function . 135

283

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

derive finite function domain function . 137
derive finite function range function . 138
derive function domain function . 138
derive function range function . 141
domain from function . 144
dot count function . 145
dotted express identifier type . 34
dotted identifiers syntax function .145
drop numeric constraints function . 146
elementary function entity .60
elementary function enumerators type . 26
elementary space entity . 46
elementary space enumerators type . 22
enclose cregion in pregion function . 147
enclose pregion in cregion function . 151
enclose pregion in pregion function . 154
equal cregion pregion function .160
equal maths functions function . 162
equal maths spaces function . 163
equal maths values function . 166
es subspace of es function . 168
explicit table function entity . 68
express identifier type . 34
expression definition . 3
expression denoted function entity .98
expression is constant function . 169
extended tuple space entity .54
extension options type .32
externally listed data entity . 73
extract factors function . 169
extremal position check function . 170
factor1 function . 171
factor space function . 172
finite function entity . 57
finite integer interval entity .46
finite real interval entity .48
finite space entity . 51
free variable definition . 3
free variable semantics entity . 38
free variables of function . 172
function abstraction definition . 3
function application definition . 4
function domain definition . 4
function evaluation definition . 4
function range definition .4
function applicability function . 174
function application entity .44
function is 1d array function . 174
function is 1d table function . 175
function is 2d table function . 176
function is array function . 177
function is table function . 177

284

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

function space entity . 55
general linear function entity . 86
has values space function . 178
homogeneous linear function entity . 85
imported curve function entity . 100
imported point function entity . 99
imported surface function entity .100
imported volume function entity . 101
input selector type . 21
integer interval from min entity . 47
integer interval to max entity .47
integer tuple literal entity . 40
linearized table function entity . 74
list selected components function . 180
listed complex number data entity .71
listed data entity . 72
listed integer data entity . 69
listed logical data entity . 70
listed product space entity . 53
listed real data entity . 68
listed string data entity . 70
logical literal entity .39
lower upper type . 24
make abstracted expression function function .180
make atom based literal function . 181
make b spline basis function .181
make b spline function function . 182
make banded matrix function . 182
make basic sparse matrix function .183
make binary literal function . 184
make boolean literal function .184
make cartesian complex number region function . 185
make complex number literal function . 185
make constant function function .186
make cos expression function . 186
make definite integral expression function . 187
make definite integral function function . 187
make elementary function function . 188
make elementary space function . 188
make environment function .189
make expression denoted function function . 189
make extended tuple space function . 190
make finite function function . 190
make finite integer interval function . 191
make finite real interval function . 191
make finite space function . 192
make function application function . 192
make function space function .193
make general linear function function .194
make int literal function .194
make integer interval from min function . 195
make listed complex number data function . 195

285

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

make listed data function . 196
make listed integer data function . 196
make listed product space function . 197
make listed real data function . 197
make logical literal function . 198
make maths enum literal function . 198
make maths real variable function . 199
make maths tuple literal function . 199
make mult expression function . 200
make parallel composed function function . 200
make partial derivative expression function . 201
make partial derivative function function . 201
make polar complex number region function .202
make rationalize function function .202
make real interval from min function . 203
make real interval to max function . 203
make real literal function .204
make regular table function function . 204
make reindexed array function function . 205
make repackaging function function . 205
make selector function function . 206
make series composed function function . 207
make sin expression function . 207
make standard table function function . 208
make strict triangular matrix function .208
make string literal function .209
make unary minus expression function . 210
make uniform product space function . 210
mathematical function definition .4
mathematical object definition .4
mathematical set definition . 5
mathematical space definition . 5
mathematical value definition .4
mathematical description entity . 104
maths atom type . 19
maths binary type .18
maths boolean type . 18
maths boolean variable entity . 43
maths enum atom type . 33
maths enum literal entity .39
maths expression type . 20
maths function entity . 56
maths function select type .21
maths integer type . 18
maths integer variable entity . 42
maths logical type .18
maths number type . 18
maths real type . 18
maths real variable entity . 42
maths simple atom type . 18
maths space entity . 45
maths space or function type . 35

286

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

maths string type . 18
maths string variable entity . 43
maths tuple type . 20
maths tuple literal entity . 41
maths value type . 20
maths variable entity . 42
matrix definition . 5
max exists function . 211
max included function .211
member of function . 212
min exists function . 217
min included function . 217
no cyclic domain reference function . 218
no cyclic space reference function . 219
nondecreasing function . 220
nonnegative integer type . 17
number superspace of function . 220
number tuple subspace check function . 221
one or two type . 18
one tuples of function . 221
open closed type . 31
ordering type type . 23
parallel composed function entity . 65
parallel composed function composability check function . 222
parallel composed function domain check function . 222
parse express identifier function . 223
partial derivative check function . 224
partial derivative expression entity . 92
partial derivative function entity . 91
polar complex number region entity . 50
positive integer type .17
product space type . 34
quantifier expression entity . 36
rationalize function entity . 90
real interval type . 35
real interval from min entity . 48
real interval to max entity .49
real max function . 225
real min function .225
real tuple literal entity . 40
regular indexing function . 226
regular table function entity . 76
reindexed array function entity . 63
remove first function . 227
repackage function . 227
repackage options type . 32
repackaging function entity . 61
restriction function entity . 60
schema prefix constant . 15
selector function entity . 59
series composed function entity . 64
shape of array function .228

287

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

simplify function application function . 229
simplify generic expression function . 243
simplify maths space function . 249
simplify maths value function . 250
singleton member of function .251
space constraint type type .31
space dimension function . 252
space is continuum function . 252
space is singleton function .253
standard table function entity . 75
strict triangular matrix entity . 78
stripped typeof function . 254
subspace of function .254
subspace of es function . 260
substitute function . 261
symmetric banded matrix entity . 80
symmetric matrix entity . 79
symmetry type type . 24
table function definition . 5
the binarys constant .15
the booleans constant . 15
the complex numbers constant . 15
the complex tuples constant . 16
the empty atom based tuple constant .16
the empty atom based value constant . 16
the empty maths tuple constant . 16
the empty maths value constant . 16
the empty space constant . 15
the generics constant . 15
the integer tuples constant . 16
the integers constant . 15
the logicals constant .15
the maths spaces constant . 15
the neg1 one interval constant . 15
the neghalfpi halfpi interval constant . 15
the negpi pi interval constant .15
the nonnegative reals constant .15
the numbers constant . 15
the real tuples constant . 16
the reals constant . 15
the strings constant . 15
the tuples constant . 16
the zero one interval constant . 15
the zero pi interval constant . 15
the zero tuple space constant . 16
triangular matrix entity . 78
tuple definition . 5
tuple space type .35
uniform product space entity . 52
values space of function . 263
variable definition . 5
zero or one type . 17

288

ISO 10303-50:2002(E)

© ISO 2002 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

ISO 10303-50:2002(E)

ICS 25.040.40
Price based on 288 pages

© ISO 2002 – All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---

