\ 4851903 O6O2884 898 **E** INTERNATIONAL STANDARD ISO 10303-46 > First edition 1994-12-15 # Industrial automation systems and integration — Product data representation and exchange — # **Part 46:** Integrated generic resources: Visual presentation Systèmes d'automatisation industrielle et intégration — Représentation et échange de données de produits — Partie 46: Ressources génériques intégrées: Présentation visuelle Reference number ISO 10303-46:1994(E) | C | ontents | | Page | |---|-------------|--|------| | 1 | scope | | 1 | | 2 | Normative | references | 2 | | 3 | Definitions | and abbreviations | 3 | | J | | ns defined in ISO 10303-1 | | | | | ns defined in this part of ISO 10303 | | | | 3.2.1 | annotation | | | | 3.2.2 | displayable product information | | | | 3.2.3 | layer | | | | 3.2.4 | picture | 3 | | | 3.2.5 | presentation information | | | | 3.2.6 | realistic presentation of properties | 4 | | | 3.2.7 | state variable | | | | 3.2.8 | symbol | | | | 3.2.9 | symbolic presentation of properties | | | | 3.2.10 | synthetic camera model | | | | 3.2.11 | visualization | 4 | | | 3.3 Abb | reviations | 4 | | 4 | Presentatio | n organization | 5 | | | | $\operatorname{oduction}$ | 6 | | | 4.2 Fund | damental concepts and assumptions | | | | 4.2.1 | Presentation hierarchy | | | | 4.2.2 | Camera model and projection | | | | 4.2.3 | Layers | | | | 4.2.4 | Association of presentation with a product model | 12 | | | 4.3 Pres | sentation organization schema type definitions | 12 | | | 4.3.1 | presentation_size_assignment_select | | | | 4.3.2 | area_or_view | | | | 4.3.3 | central_or_parallel | | | | 4.3.4 | layered_item | | | | 4.3.5 | presentation_representation_select | 13 | © ISO 1994 All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher. International Organization for Standardization Case Postale 56 • CH-1211 Genève 20 • Switzerland Printed in Switzerland # 4851903 0602886 660 📟 # ©iso # ISO 10303-46:1994(E) | 4.4 Pres | entation organization schema entity definitions: presentation hierarchy 14 | |-------------------------|--| | 4.4.1 | presentation_set | | 4.4.2 | presentation_representation | | 4.4.3 | presentation_area | | 4.4.4 | area_in_set 16 | | 4.4.5 | presentation_view | | 4.4.6 | area_dependent_annotation_representation | | 4.4.7 | product_data_representation_view | | 4.4.8 | view_dependent_annotation_representation | | 4.4.9 | presentation_size | | 4.4.10 | background_colour | | 4.4.11 | presentation_representation_relationship | | 4.4.12 | graphical_transformation | | | sentation organization schema entity definitions: camera model and | | | ection | | 4.5.1 | camera_model | | 4.5.2 | camera_model_d2 | | 4.5.3 | camera_model_d2_shape_clipping | | 4.5.4 | camera_model_d3 | | 4.5.5 | view_volume | | 4.5.6 | camera_model_d3_with_hlhsr 30 | | 4.5.7 | camera_model_d3_multi_clipping | | 4.5.8 | camera_model_with_light_sources | | 4.5.9 | light_source | | 4.5.9 $4.5.10$ | | | 4.5.10 $4.5.11$ | | | 4.5.11 $4.5.12$ | | | $\frac{4.5.12}{4.5.13}$ | light_source_positional | | 4.5.13 $4.5.14$ | light_source_spot | | | camera_image | | 4.5.15 | camera_usage | | | sentation organization schema entity definitions: layers | | 4.6.1 | presentation_layer_assignment | | 4.6.2 | representation_item_dependent_layer_assignment | | 4.6.3 | presentation_layer_usage | | | sentation organization schema entity definitions: association of | | _ | sentation and product model | | 4.7.1 | presented_item_representation | | 4.7.2 | presented_item | | | sentation organization schema rule definitions | | 4.8.1 | symbol_representation_rule | | | sentation organization schema function definitions | | 4.9.1 | acyclic_presentation_representation_relationship | | Presentatio | on definition | | | roduction | | | damental concepts and assumptions | | 9.2 Fun | demiction concepts and assumptions | 5 | IS | SO 10303-46 | 6:1994(E) | ©iso | |----|------------------|--|------| | | ** 0 D | 1.6.44 | 43 | | | | sentation definition schema type definitions | | | | 5.3.1 | text_delineation | | | | 5.3.2 | defined_symbol_select | | | | 5.3.3 | text_or_character | | | | 5.3.4 | text_alignment | | | | 5.3.5 | defined_glyph_select | | | | 5.3.6 | text_path | | | | | sentation definition schema entity definitions: annotation primitives | | | | 5.4.1 | annotation_fill_area | | | | 5.4.2 | defined_symbol | | | | 5.4.3 | defined_table | | | | 5.4.4 | symbol_target | | | | 5.4.5 | pre_defined_symbol | | | | 5.4.6 | externally_defined_symbol | . 49 | | | 5.4.7 | annotation_symbol | . 50 | | | 5.4.8 | annotation_table | . 50 | | | 5.4.9 | symbol_representation_map | . 52 | | | 5.4.10 | symbol_representation | . 52 | | | 5.4.11 | symbol_representation_with_blanking_box | | | | 5.4.12 | table_representation | | | | 5.4.13 | table_record_representation | | | | 5.4.14 | table_record_field_representation | | | | 5.4.15 | table_record_field_representation_with_clipping_box | | | | 5.4.16 | symbol_representation_relationship | | | | 5.4.17 | table_representation_relationship | | | | 5.4.18 | annotation_text | | | | 5.4.19 | annotation_text_with_extent | | | | 5.4.20 | annotation_text_with_delineation | | | | 5.4.20 $5.4.21$ | annotation_text_with_blanking_box | | | | 5.4.21 $5.4.22$ | annotation_text_with_associated_curves | | | | 5.4.22 $5.4.23$ | text_string_representation | | | | 5.4.23
5.4.24 | annotation_text_character | | | | 5.4.24 $5.4.25$ | defined_character_glyph | | | | = | externally_defined_character_glyph | | | | 5.4.26 | • | | | ĺ | 5.4.27 | pre_defined_character_glyph | | | Į. | 5.4.28 | | | | 1 | 5.4.29 | text_literal_with_extent | | | Ì | 5.4.30 | text_literal_with_delineation | | | É | 5.4.31 | text_literal_with_blanking_box | | | ij | 5.4.32 | text_literal_with_associated_curves | | | i | 5.4.33 | composite_text | | | | 5.4.34 | composite_text_with_extent | | | | 5.4.35 | composite_text_with_delineation | | | | 5.4.36 | composite_text_with_blanking_box | | | | 5.4.37 | $composite_text_with_associated_curves \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $ | | | | 5.5 Pres | sentation definition schema entity definitions: annotation occurrences | . 65 | ## ■ 4851903 0602888 433 ■ | C |)ISO | ISO 10303-46:1994(E) | |---|--------------|--| | | 5.5.1 | annotation_occurrence | | | 5.5.2 | annotation_point_occurrence | | | 5.5.3 | annotation_curve_occurrence | | | 5.5.4 | | | | 5.5.5 | annotation_fill_area_occurrence | | | 5.5.6 | annotation_symbol_occurrence | | | 5.5.7 | annotation_table_occurrence | | | 5.5.8 | annotation_occurrence_relationship | | | 5.5.9 | table_text_relationship | | | | | | | 5.6.1 | 14 | | | 5.6.2 | | | | 5.6.3 | | | | 0.0.0 | held_in_table | | 6 | Presentation | n appearance | | | 6.1 Intr | oduction | | | 6.2 Fun | damental concepts and assumptions | | | 6.2.1 | Assignment of presentation style | | | 6.2.2 | Types of presentation styles | | | 6.2.3 | Approximation tolerances | | | 6.2.4 | Occlusion and invisibility | | | 6.3 Pres | sentation appearance schema type definitions | | | 6.3.1 | style_context_select | | | 6.3.2 | presentation_style_select | | | 6.3.3 | null_style | | | 6.3.4 | marker_select | | | 6.3.5 | marker_type | | | 6.3.6 | size_select | | | 6.3.7 | curve_font_or_scaled_curve_font_select | | | 6.3.8 | curve_style_font_select | | | 6.3.9 | squared_or_rounded | | | 6.3.10 | fill_style_select | | | 6.3.11 | fill_area_style_tile_shape_select | | | 6.3.12 | curve_or_annotation_curve_occurrence | | | 6.3.13 | surface_side | | | 6.3.14 | surface_side_style_select | | | 6.3.15 | surface_style_element_select | | | 6.3.16 | curve_or_render | | | 6.3.17 | shading_curve_method | | | 6.3.18 | direction_count_select | | | 6.3.19 | u_direction_count | | | 6.3.20 | 11 | | | 6.3.21 | 1 1: 0 | | | 6.3.22 | | | | 0.0.22 | rendering_properties_select | 89 89 6.3.23 6.3.24 | ISO | 10303-40 | 6:1994(E) | ©iso | |-----|----------|---|------| | | | | 90 | | | 6.3.25 | box_characteristic_select | | | | 6.3.26 | box_height | | | | 6.3.27 | box_width | | | | 6.3.28 | box_slant_angle | | | | 6.3.29 | box_rotate_angle | 90 | | | 6.3.30 | character_spacing_select | | | | 6.3.31 | symbol_style_select | | | | 6.3.32 | tolerance_select | | | | 6.3.33 | approximation_method | 92 | | | 6.3.34 | tolerance_deviation_select | 93 | | | 6.3.35 | curve_tolerance_deviation | 94 | | | 6.3.36 | surface_tolerance_deviation | 94 | | | 6.3.37 | product_or_presentation_space | 94 | | | 6.3.38 | tolerance_parameter_select | | | | 6.3.39 | curve_tolerance_parameter | | | | 6.3.40 | surface_tolerance_parameter | | | | 6.3.41 | hiding_or_blanking_select | | | | 6.3.42 | invisibility_context | | | | 6.3.42 | invisible_item | | | c | | sentation appearance schema entity definitions: style assignment | | | O | | • | | | | 6.4.1 | styled_item | | | | 6.4.2 | over_riding_styled_item | | | | 6.4.3 | context_dependent_over_riding_styled_item | | | | 6.4.4 | presentation_style_assignment | | | | 6.4.5 | presentation_style_by_context | | | | 6.4.6 | pre_defined_presentation_style | | | | 6.4.7 | externally_defined_style | 100 | | 6 | 5.5 Pres | sentation appearance schema entity definitions: presentation styles for | | | | poir | nts | 100 | | | 6.5.1 | point_style | 100 | | | 6.5.2 | pre_defined_marker | 101 | | | 6.5.3 | pre_defined_size | | | 6 | .6 Pres | sentation appearance schema entity definitions: presentation styles for | | | | | ves | 101 | | | 6.6.1 | curve_style | | | | 6.6.2 |
curve_style_with_ends_and_corners | | | | 6.6.3 | curve_style_with_extension | | | | 6.6.4 | pre_defined_curve_font | | | | 6.6.5 | externally_defined_curve_font | | | | 6.6.6 | • | | | | | curve_style_font | | | | 6.6.7 | curve_style_font_pattern | | | | 6.6.8 | curve_style_wide | | | | 6.6.9 | curve_style_curve_pattern_set | | | | 6.6.10 | curve_style_curve_pattern | | | | 6.6.11 | curve_style_font_and_scaling | 106 | # ©iso # ISO 10303-46:1994(E) | 6.7 | Prese | ntation appearance schema entity definitions: presentation styles for fill | | |-------------|------------|--|-------| | | areas | | . 107 | | 6.7 | 7.1 | fill_area_style | . 107 | | 6.7 | 7.2 | fill_area_style_colour | . 107 | | 6.7 | 7.3 | pre_defined_hatch_style | . 108 | | 6.7 | 7.4 | externally_defined_hatch_style | . 108 | | 6.7 | 7.5 | fill_area_style_hatching | . 108 | | 6.7 | 7.6 | pre_defined_tile_style | . 109 | | 6.7 | | externally_defined_tile_style | | | 6.7 | | fill_area_style_tiles | | | 6.7 | 7.9 | fill_area_style_tile_curve_with_style | . 110 | | 6.7 | | fill_area_style_tile_coloured_region | | | 6.7 | | fill_area_style_tile_symbol_with_style | | | | | pre_defined_tile | | | | | externally_defined_tile | | | | | one_direction_repeat_factor | | | | | two_direction_repeat_factor | | | 6.8 | | entation appearance schema entity definitions: presentation styles for | . 110 | | 0. 0 | | ces | 114 | | 6.8 | | surface_style_usage | | | | 8.2 | pre_defined_surface_side_style | | | | 8.3 | surface_side_style | | | | 8.4 | surface_style_fill_area | | | | 8.5 | surface_style_boundary | | | | 8.6 | curve_style_rendering | | | | 8.7 | surface_rendering_properties | | | | 8.8 | 9 | | | | | surface_style_silhouette | | | | 8.9 | surface_style_segmentation_curve | | | | 8.10 | surface_style_control_grid | | | | 8.11 | surface_style_parameter_line | | | | 8.12 | surface_style_rendering | | | | 8.13 | surface_style_rendering_with_properties | | | | 8.14 | surface_style_reflectance_ambient | | | | 8.15 | surface_style_reflectance_ambient_diffuse | | | | 8.16 | surface_style_reflectance_ambient_diffuse_specular | | | | 8.17 | surface_style_transparent | . 120 | | 6.9 | | entation appearance schema entity definitions: presentation styles for | 404 | | | text | | | | | 9.1 | text_style | | | | 9.2 | character_glyph_style_stroke | | | | 9.3 | character_glyph_style_outline | | | | 9.4 | $character_glyph_style_outline_with_characteristics \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $ | | | | 9.5 | text_style_for_defined_font | | | | 9.6 | text_style_with_justification | | | | 9.7 | text_style_with_box_characteristics | | | 6. | 9.8 | text_style_with_spacing | . 123 | # ■ 4851903 0602891 T28 ■ | IS | O 10303-40 | β:1994(E) | ©iso | |----|------------|--|-------| | | 6.9.9 | pre_defined_character_spacing | 124 | | 4 | 6.9.10 | text_style_with_mirror | 124 | | Ì | 6.10 Pre | sentation appearance schema entity definitions: presentation styles for | | | Í | svm | ibols | 124 | | Ì | 6.10.1 | symbol_style | 124 | | | 6.10.2 | symbol_element_style | 125 | | | 6.10.3 | symbol_colour | 126 | | | 6.11 Pre | sentation appearance schema entity definitions: approximation tolerances | . 126 | | | 6.11.1 | approximation_tolerance | 126 | | | 6.11.2 | approximation_tolerance_deviation | 126 | | | 6.11.3 | approximation_tolerance_parameter | 127 | | | 6.12 Pre | sentation appearance schema entity definitions: occlusion and visibility | 128 | | | 6.12.1 | occlusion_precedence | 128 | | | 6.12.2 | invisibility | 128 | | | 6.12.3 | context_dependent_invisibility | 129 | | | 6.13 Pres | sentation appearance schema function definitions | 129 | | | 6.13.1 | acyclic_occlusion_precedence | 129 | | 7 | | on resource schema | | | | | oduction | | | | 7.2 Pre | sentation resource schema type definitions | | | | 7.2.1 | staircase_or_linear | | | | 7.2.2 | presentable_text | | | | 7.2.3 | font_select | | | | 7.3 Pre | sentation resource schema entity definitions | 133 | | | 7.3.1 | character_glyph_symbol | 133 | | | 7.3.2 | character_glyph_symbol_stroke | 134 | | | 7.3.3 | character_glyph_symbol_outline | | | | 7.3.4 | character_glyph_font_usage | | | | 7.3.5 | text_font | | | | 7.3.6 | text_font_family | | | | 7.3.7 | text_font_in_family | 137 | | | 7.3.8 | externally_defined_text_font | 137 | | | 7.3.9 | pre_defined_text_font | | | | 7.3.10 | colour | | | | 7.3.11 | colour_specification | 138 | | | 7.3.12 | colour_rgb | 138 | | | 7.3.13 | colour_associated | | | | 7.3.14 | colour_association_table | | | | 7.3.15 | state_variable_with_colour | | | | 7.3.16 | pre_defined_colour | | | | 7.3.17 | planar_extent | | | | 7.3.18 | planar_box | 141 | | | 7.3.19 | presentation_scaled_placement | 142 | Annexes | ©1S | 0 | ISO | 10303-46:1994(E) | |--------------|--|-------|------------------| | A | Short names of entities | | 143 | | | Information object registration | | | | C | Computer-interpretable listings | | 152 | | | Technical discussions | | 153 | | \mathbf{E} | EXPRESS-G diagrams | | 156 | | \mathbf{F} | Bibliography | | 199 | | Inde | x | | 200 | | Fig | ures | | | | 1 | Presentation hierarchy | | 7 | | 2 | Example of a presentation hierarchy | | 8 | | 3 | Mapping the presentation hierarchy to instances of entities | | 10 | | 4 | Association of presentation_view and presentation_area using m | apped | l_item 11 | | 5 | Graphical transformation | | 23 | | 6 | Camera model d2 | | 25 | | 7 | View volume, projection type CENTRAL | | 27 | | 8 | View volume, projection type PARALLEL | | 28 | | 9 | Light source directional | | 32 | | 10 | Light source positional | | 33 | | 11 | Light source spot | | 34 | | 12 | Examples of text delineation | | 44 | | 13 | Examples of text alignment | | 45 | | 14 | Filling of annotation fill areas | | 47 | | 15 | Examples of annotation symbols | | 51 | | 16 | Squared or rounded | | 84 | # ■ 4851903 O602893 8TO ■ | ISO | 10303-46:1994(E) | so | |------|--|-----| | 17 | Box slant and rotate angle | 91 | | 18 | Chordal deviation and length | 93 | | 19 | Curve style with extension | 103 | | 20 | Curve style curve pattern | 106 | | 21 | Fill area style hatching | 109 | | 22 | One direction repeat factor | 112 | | 23 | Two direction repeat factor | | | 24 | Text style with mirror | 125 | | 25 | Character glyph symbols | 135 | | E.1 | presentation_organisation_schema - EXPRESS-G diagram 1 of 7 | 157 | | E.2 | presentation_organisation_schema - EXPRESS-G diagram 2 of 7 | 158 | | E.3 | presentation_organisation_schema - EXPRESS-G diagram 3 of 7 | 159 | | E.4 | presentation_organisation_schema - EXPRESS-G diagram 4 of 7 | 160 | | E.5 | presentation_organisation_schema - EXPRESS-G diagram 5 of 7 | 161 | | E.6 | presentation_organisation_schema - EXPRESS-G diagram 6 of 7 | 162 | | E.7 | presentation_organisation_schema - EXPRESS-G diagram 7 of 7 | 163 | | E.8 | presentation_definition_schema - EXPRESS-G diagram 1 of 9 | 164 | | E.9 | presentation_definition_schema - EXPRESS-G diagram 2 of 9 | 165 | | E.10 | presentation_definition_schema - EXPRESS-G diagram 3 of 9 | 166 | | E.11 | presentation_definition_schema - EXPRESS-G diagram 4 of 9 | 167 | | E.12 | 2 presentation_definition_schema – EXPRESS-G diagram 5 of 9 | 168 | | E.13 | presentation_definition_schema - EXPRESS-G diagram 6 of 9 | 169 | | E.14 | presentation_definition_schema – EXPRESS–G diagram 7 of 9 | 170 | | E.15 | presentation_definition_schema – EXPRESS–G diagram 8 of 9 | 171 | | E.16 | presentation_definition_schema – EXPRESS–G diagram 9 of 9 | 172 | | E.17 | presentation_appearance_schema - EXPRESS-G diagram 1 of 21 | 173 | | E.18 | presentation_appearance_schema - EXPRESS-G diagram 2 of 21 | 174 | | E.19 | presentation_appearance_schema - EXPRESS-G diagram 3 of 21 | 175 | | E.20 | presentation_appearance_schema - EXPRESS-G diagram 4 of 21 | 176 | | E.21 | presentation_appearance_schema – EXPRESS–G diagram 5 of 21 $\dots \dots \dots$ | 177 | | E.22 | presentation_appearance_schema - EXPRESS-G diagram 6 of 21 | 178 | | E.23 | presentation_appearance_schema - EXPRESS-G diagram 7 of 21 | 179 | # **4851903 0602894 737** | ©iso | ISO 10303-46:1994(E) | |--|----------------------| | E.24 presentation_appearance_schema - EXPRESS-G diagram 8 of 2 | 1 180 | | E.25 presentation_appearance_schema – EXPRESS-G diagram 9 of 2 | 1 181 | | E.26 presentation_appearance_schema - EXPRESS-G diagram 10 of | 21 182 | | E.27 presentation_appearance_schema - EXPRESS-G diagram 11 of | 21 183 | | E.28 presentation_appearance_schema - EXPRESS-G diagram 12 of | 21 184 | | E.29 presentation_appearance_schema - EXPRESS-G diagram 13 of | 21 185 | | E.30 presentation_appearance_schema - EXPRESS-G diagram 14 of | 21 186 | | E.31 presentation_appearance_schema - EXPRESS-G diagram 15 of | 21 187 | | E.32 presentation_appearance_schema - EXPRESS-G diagram 16 of | 21 188 | | E.33 presentation_appearance_schema - EXPRESS-G diagram 17 of | 21 189 | | E.34 presentation_appearance_schema - EXPRESS-G diagram 18 of | 21 190 | | E.35 presentation_appearance_schema - EXPRESS-G diagram 19 of | 21 191 | | E.36 presentation_appearance_schema - EXPRESS-G diagram 20 of | 21 192 | | E.37 presentation_appearance_schema - EXPRESS-G diagram 21 of | 21 193 | | E.38 presentation_resource_schema – EXPRESS–G diagram 1 of 5 . | 194 | | E.39 presentation_resource_schema – EXPRESS–G diagram 2 of 5 . | 195 | | E.40 presentation_resource_schema – EXPRESS–G diagram 3 of 5 . | 196 | | E.41 presentation_resource_schema – EXPRESS–G diagram 4 of 5 . | 197 | | $E.42$ presentation_resource_schema – $EXPRESS-G$ diagram 5 of 5 . | 198 | | Tables | | | A.1 Short names of entities | 143
| | D.1 PHIGS PLUS annex E: Variable definition and their sources. | | ©iso ## **Foreword** The International Organization for Standardization (ISO) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. Draft International Standards adopted by technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75% of the member bodies casting a vote. International Standard ISO 10303-46 was prepared by Technical Committee ISO/TC 184, Industrial automation systems and integration, Subcommittee SC4, Industrial data and global manufacturing programming languages. ISO 10303 consists of the following parts under the general title Industrial automation systems and integration – Product data representation and exchange: - Part 1, Overview and fundamental principles; - Part 11, Description methods: The EXPRESS language reference manual; - Part 21, Implementation methods: Clear text encoding of the exchange structure; - Part 22, Implementation methods: Standard data access interface specification; - Part 31, Conformance testing methodology and framework: General concepts; - Part 32, Conformance testing methodology and framework: Requirements on testing laboratories and clients; - Part 41, Integrated generic resources: Fundamentals of product description and support; - Part 42, Integrated generic resources: Geometric and topological representation; - Part 43, Integrated generic resources: Representation structures; - Part 44, Integrated generic resources: Product structure configuration; - Part 45, Integrated generic resources: Materials; - Part 46, Integrated generic resources: Visual presentation; - Part 47, Integrated generic resources: Shape variation tolerances; - Part 49, Integrated generic resources: Process structure and properties; xii ©iso ISO 10303-46:1994(E) - Part 101, Integrated application resources: Draughting; - Part 104, Integrated application resources: Finite element analysis; - Part 105, Integrated application resources: Kinematics; - Part 201, Application protocol: Explicit draughting; - Part 202, Application protocol: Associative draughting; - Part 203, Application protocol: Configuration controlled design; - Part 207, Application protocol: Sheet metal die planning and design; - Part 210, Application protocol: Printed circuit assembly product design data; - Part 213, Application protocol: Numerical control process plans for machined parts. The structure of this International Standard is described in ISO 10303-1. The numbering of the parts of this International Standard reflects its structure: - Part 11 specifies the description methods; - Parts 21 and 22 specify the implementation methods; - Parts 31 and 32 specify the conformance testing methodology and framework; - Parts 41 to 49 specify the integrated generic resources; - Parts 101 to 105 specify the integrated application resources; - Parts 201 to 213 specify the application protocols. Should further parts be published, they will follow the same numbering pattern. Annexes A and B form an integral part of this part of ISO 10303. Annexes C, D, E and F are for information only. #### Diskette Users should note that this part of ISO 10303 comprises a diskette: - the short names of entities given in annex A are also included on the diskette; - the EXPRESS listings (annex C) are provided on the diskette only; - a method to enable users to report errors in the documentation is given. Full details are provided in the file. xiii © ISO # Introduction ISO 10303 is an International Standard for the computer-interpretable representation and exchange of product data. The objective is to provide a neutral mechanism capable of describing product data throughout the life cycle of a product independent from any particular system. The nature of this description makes it suitable not only for neutral file exchange, but also as a basis for implementing and sharing product databases and archiving. This International Standard is organized as a series of parts, each published separately. The parts of ISO 10303 fall into one of the following series: description methods, integrated resources, application protocols, abstract test suites, implementation methods, and conformance testing. The series are described in ISO 10303-1. This part of ISO 10303 is a member of the integrated resources series. Major subdivisions of this International Standard are: - Presentation organization - Presentation definition - Presentation appearance - Presentation resources This part of ISO 10303 specifies the integrated resources for the visualization of displayable properties of products. The information given in all four schemas of this part together is sufficient to describe in detail how product information shall be visualized by a receiving system. The presentation information contained in this part can be used only in conjunction with product information suitable for display. Presentation information as contained in this part cannot be displayed by itself without reference to product information. The presentation organization schema describes the hierarchical and partially recursive structure of the presentation sets, areas and views in which images of the product information are displayed. It also explains how the components of the product information image and its annotation are organized as displayable objects and how these are placed into the context of presentations. This schema also accounts for the definition of the projective process for geometry by means of a camera model and for the specification of lighting and shading models. The presentation definition schema serves to define how the individual geometric and non-geometric components of the product information are selected, assembled into presentation groups, and associated with presentation styles. The presentation appearance schema defines the appearance attributes that can be chosen to describe the desired visual appearance of the displayable elements of the product information by enumerating the available graphical presentation styles. The presentation resource schema provides basic graphical capabilities such as text font definition, symbol definition, and colour definition. The visual presentation characteristics described in this part are often associated with information from other generic resource parts, especially with geometric and topological representations xiv ©iso ISO 10303-46:1994(E) (ISO 10303-42). The Application Protocols determine which resource parts are used together. Applications which make use of the generic resources in this part provide both the product information to be visually presented and the semantic meaning of the presentation. Possible applications include rendered views of product shape, results of scientific visualization, technical drawings, diagrams, charts, and graphics for technical publications. #### Relation to graphics standards The integrated resources specified in this part of ISO 10303 support the visual presentation of the properties of products. The generation of visual images using data specified by these integrated resources requires the use of an appropriate display system. This part of ISO 10303 specifies the input data to such systems, together with the necessary structures and constraints that relate presentation data to other aspects of product data. Many display systems conform to existing ISO standards for computer graphics, such as GKS-3D (ISO/IEC 8805) and PHIGS/PHIGS PLUS (ISO/IEC 9592). This part of ISO 10303 takes into account the concepts and terminology of these standards. Input data specified by this part of ISO 10303 is therefore intended to be suitable for further processing by displays conforming to graphics standards. ## INTERNATIONAL STANDARD ©ISO ISO 10303-46:1994(E) Industrial automation systems and integration — Product data representation and exchange — Part 46: Integrated generic resources: Visual presentation # 1 scope This part of ISO 10303 specifies the integrated resources for the visualization of displayable product information. Presentation data as provided in this part are combined with product data and are exchanged together between systems with the aim that the receiving system can construct one or several pictures of the product information suitable for human perception. This part specifies the generic resources required to describe the desired visual appearance of product information in its picture. The actual generation of the picture from the product information and its presentation data is left to the receiving system. The actual depiction may deviate from this target because of limitations in the capabilities of graphics systems. Product information can be visualized in two ways, either by realistic, life-like images according to the rules of projective geometry and light propagation and reflection, or by symbolic presentations that conform with draughting standards and conventions. This part supports both types of presentations. The two types of visualization processes require different kinds of graphical transformations and these may be combined in the same picture. The following are within the scope of this part of ISO 10303: - Association between product data defined by other parts of ISO 10303 and presentation data; - Support of graphics functionality in compliance with current ISO graphics standards; - Definition of presentation style attributes for
realistic and symbolic visualizations of geometric and non-geometric displayable elements in the product information; - Control of approximation tolerances for geometric presentation elements; - Methods for defining the appearance of characters and symbols in fonts; - Support of externally defined character fonts and symbols; - Image control by a layer mechanism; - Nesting of presentation areas. The following are outside the scope of this part of ISO 10303: ©iso - Definition of product information; - Exchange of purely graphical information without any relationship to product information; - Definition of the contents of character font and symbol libraries. ## 2 Normative references The following standards contain provisions which, through reference in this text, constitute provisions of this part of ISO 10303. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agreements based on this part of ISO 10303 are encouraged to investigate the possibility of applying the most recent editions of the standards indicated below. Members of IEC and ISO maintain registers of currently valid International Standards. ISO 10303-1:1994, Industrial automation systems and integration — Product data representation and exchange — Part 1: Overview and fundamental principles. ISO 10303-11:1994, Industrial automation systems and integration — Product data representation and exchange — Part 11: Description methods: The EXPRESS language reference manual. ISO 10303-41:1994, Industrial automation systems and integration — Product data representation and exchange — Part 41: Integrated generic resources: Fundamentals of product description and support. ISO 10303-42:1994, Industrial automation systems and integration — Product data representation and exchange — Part 42: Integrated generic resources: Geometric and topological representation. ISO 10303-43:1994, Industrial automation systems and integration — Product data representation and exchange — Part 43: Integrated generic resources: Representation structures. ISO/IEC 8824-1:—¹⁾, Information technology — Open systems interconnection — Abstract sysnatz notation one (ASN.1) — Part 1: Specification of basic notation. ¹⁾To be published. ## © iso ## 3 Definitions and abbreviations ## 3.1 Terms defined in ISO 10303-1 This part of ISO 10303 makes use of the following terms defined in ISO 10303-1. - application - data - data exchange - generic resource - information - integrated resource - presentation - product - product data - product information - structure # 3.2 Terms defined in this part of ISO 10303 For the purpose of this part of ISO 10303, the following definitions apply. - 3.2.1 annotation: text and/or symbology used for the purpose of communicating product information. - **3.2.2 displayable product information:** facts, concepts, or instructions about a product that are displayed through the visualization process. - EXAMPLE 1 Displayable information of a product are properties such as shape, dimensions and tolerances, and material. - **3.2.3 layer:** a collection of displayable items for the purpose of controlling visibility and presentation style. - **3.2.4 picture:** a two-dimensional graphical presentation of product properties for human perception. ©iso - 3.2.5 presentation information: the information necessary to create a presentation of product information through visualization. Presentation information is meaningful only if it is associated with product information. - 3.2.6 realistic presentation of properties: a type of visualization that makes use of physical laws and mathematical principles to produce lifelike images. Realistic presentation makes use of perspective transformations, reflectance calculations, shading transparency, and colour definitions. - 3.2.7 state variable: a variable which represents a quantity, e.g. temperature. - 3.2.8 symbol: a mark or characters that are interpreted as the conventional sign of some object, idea, function, or process. - 3.2.9 symbolic presentation of properties: a type of visualization that makes use of engineering conventions and practices to produce annotation. - **3.2.10 synthetic camera model:** a model which describes the process of mapping product shape to two dimensions. The model uses an abstraction of the process used by a camera to create a photo. - 3.2.11 visualization: a process by which displayable product information and presentation information are used to produce a picture. ## 3.3 Abbreviations For the purpose of this part of ISO 10303, the following abbreviations apply. | CIE | Commission Internationale de l'Eclairage. Used to refer to the CIE universal | |-----|--| | | colour definition system. | | HLS | H110 | Lightness | Saturation | colour space. | |-----|------|-----------|-------------------|---------------| | пыл | nue. | LIPHURSS. | Jaluralion | corour space. | HSV Hue, Saturation, Value colour space. RGB Red, Green, Blue colour space. © ISO # 4 Presentation organization The following EXPRESS declaration begins the **presentation_organization_schema** and identifies the necessary external references. ``` EXPRESS specification: *) SCHEMA presentation_organization_schema; REFERENCE FROM presentation_resource_schema (colour, planar_box, presentation_scaled_placement); REFERENCE FROM geometry_schema (axis2_placement_2d, axis2_placement_3d, cartesian_point, curve, direction, dot_product, geometric_representation_context, geometric_representation_item, plane); REFERENCE FROM representation_schema (item_defined_transformation, item_in_context, mapped_item, representation, representation_item, representation_map, representation_relationship, representation_relationship_with_transformation); REFERENCE FROM measure_schema (length_measure, positive_plane_angle_measure); REFERENCE FROM support_resource_schema (identifier, label, text, bag_to_set); ``` © ISO #### NOTES 1 - The schemas referenced above can be found in the following parts of ISO 10303: | $presentation_resource_schema$ | Clause 7 of this part of ISO 10303 | |----------------------------------|------------------------------------| | geometry_schema | ISO 10303-42 | | representation_schema | ISO 10303-43 | | measure_schema | ISO 10303-41 | | support_resource_schema | ISO 10303-41 | 2 - The EXPRESS-G diagrams for this schema may be found in Annex E of this part of ISO 10303. ## 4.1 Introduction The presentation_organization_schema provides a structure for the management of a picture and the components of a picture. It also specifies the relationship between the properties of a product and their representation in a picture. The components of a picture may be related to each other, either as an association between two components that are otherwise independent, or, as one component is an element of the definition of another. These relationships allow complex structures of pictures and components to be created. The components of a picture may be organized within a hierarchy built of presentation sets, presentation areas, area dependent annotation representations, presentation views, view dependent annotation representations, and product data representation views. The hierarchy consists of the following four levels: #### Level 1: presentation set: A presentation set is a collection of independent pictures that are concerned with the same subject. Examples of presentation sets are a collection of drawing sheets or a collection of the images of several display screens. A presentation set is composed of one or many presentation areas. #### Level 2: presentation area: A presentation area is a generalization of a display that represents a single area on a display screen or device. A presentation area contains any number of presentation areas, presentation views, and area—dependent annotation representations. ## Level 3: presentation view: A presentation view is a two-dimensional presentation of product shape, which includes any annotation that is associated with that view. A presentation ©ISO ISO 10303-46:1994(E) Figure 1 - Presentation hierarchy view contains any number of product data representation views and view-dependent annotation representations. area dependent annotation representation: An area dependent annotation representation is all annotation associated with a presentation area. #### Level 4: product data representation view: A product data representation view is a two-dimensional presentation of product shape, which includes any annotation associated with the product shape. view-dependent annotation representation: A view-dependent annotation representation is the annotation associated with a presentation view. An actual presentation hierarchy may contain more levels than described above. A single presentation area may itself be composed of several presentation areas. A presentation hierarchy may also contain less levels than described above, because some of the components making up the hierarchy are not required. NOTE - Figures 1 and 2 illustrate the relationships between the levels of the presentation hierarchy. ©ISO Figure 2 - Example of a presentation hierarchy © ISO ISO 10303-46:1994(E) # 4.2 Fundamental concepts and assumptions # 4.2.1 Presentation hierarchy Within the presentation hierarchy, only a presentation area contains sufficient information to allow the unambiguous generation of a picture using a suitable output device such as a computer screen, printer, or plotter. Other elements in the hierarchy do not provide the necessary placement information for proper positioning on a display device. Presentation views or other lower-level components are displayable only when related directly or indirectly to a presentation area. The **presentation_organization_schema** describes the presentation hierarchy through representation of the different elements of the hierarchy and the relationships between them.
NOTE 1 - The concepts of representation and of relationships between representations are described in ISO 10303-43. Each element of the presentation hierarchy is described using the **presentation_representation** entity, a subtype of **representation**. Subtypes of the **presentation_representation** entity describe different elements within the hierarchy. NOTE 2 - The representation entity is defined in ISO 10303-43. The context of each element of the presentation hierarchy is described using the **geometric_-representation_context** entity; this is constrained to be two dimensional. NOTE 3 - The geometric_representation_context entity is defined in ISO 10303-42. The contents of each element of the presentation hierarchy are described by the set of items of each presentation_representation. The items are either two-dimensional geometry or annotation that are to be presented in the element, or the results of including other elements. Some elements of the hierarchy are constrained with respect to their contents, or to the relationships that they may play with other elements. Specific semantics are associated with these constraints; for example, the **product_data_representation_view** entity describes an element of the hierarchy that only includes the results of projecting three-dimensional geometry or annotation. The topmost level of the presentation hierarchy is represented by the entities **presentation_set**, **presentation_area**, and **area_in_set**. The **area_in_set** entity supports many-to-many relationships between presentation sets and presentation areas. Other elements of the presentation hierarchy are related to each other using either the presentation_representation_relationship entity, or the mapped_item and representation_map entities. NOTE 4 - The mapped_item and representation_map entities are defined in ISO 10303-43. An association between two elements of the hierarchy which are independently defined is described using the **presentation_representation_relationship** entity. This describes the relationship between two instances of the **presentation_representation** entity; in this relationship, one **presentation_representation** is denoted as the parent, the other as the child. The description of a transformation is included in the relationship; this transformation is the geometric relationship between the items of the parent presentation_representation and those of the child presentation_representation. EXAMPLE 2 - To define a hierarchy which consists of a single presentation_area, two presentation_views and a single area_dependent_annotation_representation, three instances of presentation_representation_relationship are required as shown in figure 3. Figure 3 – Mapping the presentation hierarchy to instances of entities An association between two elements of the hierarchy, where one participates in the definition of the other, is described using the mapped_item and representation_map entities. Such an association is described by an instance of the mapped_item entity. This instance is included as one of the items of the presentation_representation that contains the other. The second presentation_representation is referenced as the mapped_representation of a representation_map, that is specified as the mapping_source of the mapped_item. The transformation that describes the geometric relationship between the items of the two presentation_representations is described by the mapping_target of the mapped_item and the mapping_origin of the representation_map. EXAMPLE 3 - To include a presentation wiew within a presentation area requires one instance of mapped item, one instance of representation map, and two instances of axis2-placement 2d that act as the origin and the target for the mapping, as shown in figure 4. NOTE 5 - The axis2_placement_2d entity is defined in ISO 10303-42. © ISO Figure 4 – Association of presentation_view and presentation_area using mapped_item # 4.2.2 Camera model and projection Each level of the presentation hierarchy consists only of two-dimensional geometry or annotation. A three-dimensional synthetic camera model must be specified to associate a presentation with a three-dimensional product shape or planar annotation in three-dimensional space. This model specifies how the projection of three-dimensional geometry and annotation to two dimensions shall be executed by the displaying system. The three-dimensional synthetic camera model is defined in analogy to the graphics standards GKS-3D and PHIGS. More details about the synthetic camera model can be found in [6], [7] and in computer graphics literature, e.g., in [11] or [12]. For draughting requirements, a two-dimensional camera model is also supported. This two-dimensional model performs scaling and translation in two-dimensional space. The product_data_representation_view is the only component of the presentation hierarchy which may consist of two-dimensional projections of associated three-dimensional product shape or of annotation in three-dimensional space. Because this part of ISO 10303 does not define the projected picture, but all information necessary to compute the projection, only a placeholder for that picture is part of the product_data_representation_view. This placeholder is called camera_image and refers to the camera model and the two- or three-dimensional product shape elements or annotation. To allow more realistic presentations of three-dimensional objects, hidden line and hidden surface removal, as well as light sources, can be specified for a three-dimensional camera model. ©iso # **4.2.3** Layers A layer is a collection of product shape elements, annotation elements, or components of the presentation hierarchy grouped for the purpose of controlling visibility and style. The set of all items associated with a layer can be defined as visible or invisible within a component of the presentation hierarchy. A single item can be associated with several layers and a single layer can be used in several components of the presentation hierarchy. For an item which is associated with several layers, a different presentation style can be assigned to each layer. A layer is defined by a presentation_layer_assignment. The visibility and style assignment of a given layer within a component of the presentation hierarchy is specified by a presentation_layer_usage. # 4.2.4 Association of presentation with a product model This part of ISO 10303 allows the association of presentation information with the product information which is presented. This association is achieved through the use of a presented_item_representation. This entity relates the item which is presented with the presentation of that item. The presented_item shall be specialized by Application Protocols. EXAMPLE 4 - Presented items are the body design of a car, the layout of an electronic chip, or the architecture of a building. # 4.3 Presentation organization schema type definitions # 4.3.1 presentation_size_assignment_select The presentation_size_assignment_select type specifies the objects to which a size may be assigned. #### EXPRESS specification: ``` *) TYPE presentation_size_assignment_select = SELECT (presentation_view, presentation_area, area_in_set); END_TYPE; (* ``` ## 4.3.2 area_or_view The area_or_view type indicates the things that may be assigned a background colour. #### EXPRESS specification: ``` *) TYPE area_or_view = SELECT (presentation_area, presentation_view); END_TYPE; /+ ``` 12 ©ISO ISO 10303-46:1994(E) # 4.3.3 central_or_parallel A central_or_parallel indicates the type of perspective transformation that is used by the camera_model. The types are either a parallel projection onto the viewing plane or a central projection from the projection_point to the viewing plane. See figures 7 and 8. ## EXPRESS specification: ``` *) TYPE central_or_parallel = ENUMERATION OF (central, parallel); END_TYPE; (* ``` ## Enumerated item definitions: central: the projection is made along lines emanating from a projection_point and intersecting with the view_window. parallel: the projection is made parallel to the line from a projection_point to the geometric centre of the view_window. # 4.3.4 layered_item The layered_item specifies items to be grouped into layers by a presentation_layer_assigment. #### EXPRESS specification: ``` *) TYPE layered_item = SELECT (presentation_representation, representation_item); END_TYPE; (* ``` #### Informal propositions: IP1: A representation_item that is assigned to a layer shall be a styled_item, or shall be defined by one or more styled_item. # 4.3.5 presentation_representation_select A presentation_representation_select is used to allow presented_item_representation to associate a presentation with the item being presented. #### EXPRESS specification: ``` *) TYPE presentation_representation_select = SELECT (presentation_representation, presentation_set); END_TYPE; (* ``` (C)ISO ## Presentation organization schema entity definitions: pre-4.4 sentation hierarchy #### presentation_set 4.4.1 The presentation_set is a collection of presentation_areas. #### EXPRESS specification: ``` *) ENTITY presentation_set; areas : SET [1:?] OF area_in_set FOR in_set; END_ENTITY; ``` ## Attribute definitions: areas: the set of presentation_area entities which make up the presentation_set. #### presentation_representation 4.4.2 A presentation_representation represents the definition of the picture to be generated by a system which displays the presentation information. The picture refers to an object which may consist of two-dimensional geometry, three-dimensional geometry, and annotation. The reference to geometry and annotation is made indirectly by building a hierarchy of presentation representations. Lower levels of this hierarchy are constrained to contain only geometry or annotation. NOTE 1 - For the description of the presentation hierarchy see 4.1. ### EXPRESS specification: ``` *) ENTITY presentation_representation
SUBTYPE OF (representation); WHERE WR1: SELF\representation. coordinate_space_dimension = 2; WR2: 'GEOMETRY_SCHEMA.GEOMETRIC_REPRESENTATION_CONTEXT' IN TYPEOF (SELF\representation.context_of_items); END_ENTITY; ``` ## Formal propositions: **WR1:** The picture shall have a dimensionality of 2. WR2: A presentation_representation shall have a geometric context. ©iso #### NOTES - 2 When presenting a three-dimensional object, a two-dimensional projection of that three-dimensional object is used. A **presentation representation** is a picture that represents things after they have been projected. - 3 The actual projected geometry does not exist in this part of ISO 10303. Instead, the **presentation_representation** stands for the projected geometry, and the information needed to create the projection is also included in the model. # 4.4.3 presentation_area The presentation_area represents a picture that can contain other pictures and can itself be contained in another picture which is also a presentation_area. The size of the presentation_area is defined by the presentation_size entity. Every presentation_area is either given a size directly by its use in a presentation_size entity, or indirectly by its use in area_in_set entities. Clipping of a picture based on the presentation_area size is executed by the system that creates an actual display based on the presentation information. If a presentation_area is contained within another presentation_area, then the boundaries of the containing presentation_area are also used to clip the contained presentation_area. A background colour may be specified through the use of a presentation_area in the background_colour entity. Only one background_colour entity shall use any presentation_area. #### EXPRESS specification: #### Formal propositions: WR1: A presentation_area shall be contained in a presentation_set through participation in area_in_set.area, where the area_in_set participates in presentation_size.unit, or, non-exclusively, a presentation_area shall get its size directly from a presentation_size. #### Informal propositions: IP1: Any presentation_representation shall be presented in the context of a tree which has as its root a presentation_area. IP2: The size of a presentation_area shall not be specified more than once. ©iso NOTE - Constraints on the usage of this entity are found in the rules of presentation_representation_relationship. ## 4.4.4 area_in_set An area_in_set specifies the participation of a presentation_area in a presentation_set. A presentation_area may participate in many presentation_sets; a presentation_set includes at least one presentation_area. #### EXPRESS specification: ``` *) ENTITY area_in_set; area : presentation_area; in_set : presentation_set; END_ENTITY; (* ``` #### Attribute definitions: area: the presentation_area that participates in the specified presentation_set. in_set: the presentation_set in which the specified presentation_area participates. # 4.4.5 presentation_view A presentation_view is a picture that may contain other pictures and may itself be contained in a picture. It does not represent a complete picture and shall not be displayed without being placed in a presentation_area. The size of a presentation_view may be defined by its reference from a presentation_size entity. Clipping based on the presentation_view size is executed by the system that creates an actual display based on the presentation information. If a presentation_view size is not defined, then clipping is executed solely based on the size of the presentation_area in which the presentation_view is contained. A background colour may be specified through the use of the background_colour entity. #### EXPRESS specification: ``` *) ENTITY presentation_view SUBTYPE OF (presentation_representation); END_ENTITY; (* ``` NOTE - Constraints on the usage of this entity are found in the rules of **presentation_representation_relationship**. # 4.4.6 area_dependent_annotation_representation An area_dependent_annotation_representation is a picture that may be contained in the picture of a presentation_area. The picture it represents is made up of those of its items which 16 © ISO ISO 10303-46:1994(E) are annotation_occurrence entities. An area_dependent_annotation_representation may be related only to a presentation_area. ## EXPRESS specification: ``` *) ENTITY area_dependent_annotation_representation SUBTYPE OF (presentation_representation); WHERE WR1: SIZEOF (QUERY (item <* SELF\representation.items | NOT (SIZEOF (['PRESENTATION_DEFINITION_SCHEMA.' + 'ANNOTATION_OCCURRENCE', 'GEOMETRY_SCHEMA.AXIS2_PLACEMENT'] * TYPEOF(item)) = 1))) = 0; WR2: SIZEOF (QUERY (item <* SELF\representation.items | ('PRESENTATION_DEFINITION_SCHEMA.ANNOTATION_OCCURRENCE' IN TYPEOF (item)))) >= 1; END_ENTITY; (* ``` ## Formal propositions: WR1: The only kinds of representation_items that shall be in the set of items in an area_dependent_annotation_representation are annotation_occurrence or axis2_placement entities. WR2: At least one of the items in an area_dependent_annotation_representation shall be an annotation_occurrence. #### Informal propositions: IP1: When an area_dependent_annotation_representation is presented, it shall be contained in a presentation_area. NOTE - Constraints on the usage of this entity are found in the rules of presentation_representation_relationship. # 4.4.7 product_data_representation_view A product_data_representation_view is a picture that consists of two-dimensional projections of geometry, annotation, or both. It may contain other pictures, and may be contained in a picture. It does not represent a complete picture and shall not be displayed without being placed in a presentation_view. ## EXPRESS specification: 17 ©ISO ## Formal propositions: WR1: The items in a product_data_representation_view shall be either camera_images or axis2_placements. WR2: At least one of the items in a product_data_representation_view shall be a camera_image. # Informal propositions: IP1: When a product_data_representation_view is presented, it shall be contained in a presentation_view. NOTE - Constraints on the usage of this entity are found in the rules of presentation_representation_relationship. # 4.4.8 view_dependent_annotation_representation A view_dependent_annotation_representation is a picture that may be contained in the picture of a presentation_view. The picture that it represents contains only items which are annotation_occurrence entities. A view_dependent_annotation_representation may be related only to a presentation_view. ## EXPRESS specification: © ISO ISO 10303-46:1994(E) ## Formal propositions: WR1: The only kinds of representation_items that shall be in the set of items in a view_dependent_annotation_representation are annotation_occurrence or axis2_placement entities. WR2: At least one of the items in a view_dependent_annotation_representation shall be an annotation_occurrence. ## Informal propositions: IP1: When a view_dependent_annotation_representation is presented, it shall be contained in a presentation_view. NOTE - Constraints on the usage of this entity are found in the rules of **presentation_representation_relationship**. # 4.4.9 presentation_size A presentation_size is used to define the size of a **presentation_area** or **presentation_view**. The size for a **presentation_area** may be assigned directly or may be assigned dependent on a **presentation_set** which contains a **presentation_area**. This allows the assignment of different sizes to a single **presentation_area** for each **presentation_set** which contains the area. ## EXPRESS specification: ``` *) ENTITY presentation_size; unit : presentation_size_assignment_select; size : planar_box; WHERE WR1: (('PRESENTATION_ORGANIZATION_SCHEMA.PRESENTATION_REPRESENTATION' IN TYPEOF (SELF.unit)) AND item_in_context (SELF.size, SELF.unit\representation.context_of_items)) OR (('PRESENTATION_ORGANIZATION_SCHEMA.AREA_IN_SET' IN TYPEOF (SELF.unit)) AND (SIZEOF (QUERY (ais <* SELF.unit\area_in_set.in_set.areas | NOT item_in_context (SELF.size, ais.area\representation. context_of_items))) = 0)); END_ENTITY: (* ``` ## Attribute definitions: unit: a presentation_view, presentation_area, or an area_in_set as it relates a presentation_area with a presentation_set. size: a planar_box which describes the size of a unit. ©iso ## Formal propositions: WR1: If the unit is a presentation_representation, the planar_box shall be an item in a representation which has the same context as the unit. If the unit is an area_in_set the planar_box shall be an item in the context of each area belonging to the set. # 4.4.10 background_colour A background_colour is the colour used for the background of a presentation area or view. ## EXPRESS specification: ``` *) ENTITY background_colour SUBTYPE OF (colour); presentation : area_or_view; UNIQUE UR1: presentation; END_ENTITY; (* ``` ### Attribute definitions: presentation: a presentation_area or presentation_view for which this background colour is specified. #### Formal propositions: UR1: Only one background colour may be specified for any presentation_area or presentation_view. # 4.4.11 presentation_representation_relationship A presentation_representation_relationship is a relationship between presentation_representation entities. The relationship is directed, meaning that the child representation (rep_2) is transformed into the parent representation (rep_1), and no meaning is intended for the inverse transformation. The presentation_representation_relationship restricts the relationships between certain presentation_representations to ensure that presentation_representation entities are arranged in a hierarchy as described in clause 4.1. #### EXPRESS specification: ``` #) ENTITY presentation_representation_relationship SUBTYPE OF (representation_relationship_with_transformation); WHERE WR1: 'PRESENTATION_DEFINITION_SCHEMA.PRESENTATION_REPRESENTATION' IN TYPEOF
(SELF\representation_relationship.rep_1); WR2: 'PRESENTATION_DEFINITION_SCHEMA.PRESENTATION_REPRESENTATION' IN TYPEOF (SELF\representation_relationship.rep_2); WR3: acyclic_presentation_representation_relationship (SELF, [SELF\representation_relationship.rep_2]); WR4: NOT (('PRESENTATION_ORGANIZATION_SCHEMA.PRESENTATION_AREA' IN TYPEOF (SELF\representation_relationship.rep_1)) ``` 20 © ISO ``` AND NOT (SIZEOF (['PRESENTATION_ORGANIZATION_SCHEMA.' + 'PRODUCT_DATA_REPRESENTATION_VIEW', 'PRESENTATION_ORGANIZATION_SCHEMA.' + 'VIEW_DEPENDENT_ANNOTATION_REPRESENTATION'] * TYPEOF (SELF\representation_relationship.rep_2)) = 0)); WR5: NOT (('PRESENTATION_ORGANIZATION_SCHEMA.PRESENTATION_VIEW' IN TYPEOF (SELF\representation_relationship.rep_1)) AND NOT (SIZEOF (['PRESENTATION_ORGANIZATION_SCHEMA.' + 'PRESENTATION_AREA', 'PRESENTATION_ORGANIZATION_SCHEMA.' + 'PRESENTATION_VIEW', 'PRESENTATION_ORGANIZATION_SCHEMA.' + 'AREA_DEPENDENT_ANNOTATION_REPRESENTATION'] * TYPEOF (SELF\representation_relationship.rep_2))=0)); WR6: (NOT ('PRESENTATION_ORGANIZATION_SCHEMA.PRESENTATION_VIEW' IN TYPEOF(SELF\representation_relationship.rep_2))) ('PRESENTATION_ORGANIZATION_SCHEMA.PRESENTATION_AREA'IN TYPEOF(SELF\representation_relationship.rep_1)); WR7: (NOT ('PRESENTATION_ORGANIZATION_SCHEMA.' + 'PRODUCT_DATA_REPRESENTATION_VIEW' IN (TYPEOF(SELF\representation_relationship.rep_1) + TYPEOF(SELF\representation_relationship.rep_2)))) ('PRESENTATION_ORGANIZATION_SCHEMA.PRESENTATION_VIEW' IN TYPEOF(SELF\representation_relationship.rep_1)) AND ('PRESENTATION_ORGANIZATION_SCHEMA.PRODUCT_DATA_REPRESENTATION_VIEW' IN TYPEOF(SELF\representation_relationship.rep_2)); WR8: 'PRESENTATION_ORGANIZATION_SCHEMA.GRAPHICAL_TRANSFORMATION' IN TYPEOF(SELF\representation_relationship_with_transformation. transformation_operator); END_ENTITY; ``` #### Attribute definitions: SELF\representation_relationship.rep_1: the presentation_representation that plays the role of a parent in a tree of presentation_representations. SELF\representation_relationship.rep_2: the presentation_representation that plays the role of a child in a tree of presentation_representations. #### Formal propositions: WR1: rep_1 shall be a presentation_representation. WR2: rep_2 shall be a presentation_representation. WR3: A presentation_representation_relationship shall not participate in a tree of presentation_representations where the root of the tree is also a leaf of its own tree. © ISO WR4: Pictures represented by product_data_representation_view or view_dependent_annotation_representation shall not be related to a picture represented by a presentation_area. WR5: Pictures represented by presentation_area, presentation_view, or area_dependent_annotation_representation shall not be related to a picture represented by a presentation_view. WR6: The picture represented by a presentation_view may only be related to the picture represented by a presentation_area. WR7: A product_data_representation_view shall only participate in a presentation_representation_relationship, if the rep_1 is a presentation_view. WR8: Pictures that are related to other pictures relate to those pictures by graphical-transformations. # 4.4.12 graphical_transformation A graphical_transformation is a transformation which allows arbitrary two-dimensional positioning, rotation, and uniform scaling. It is used by presentation_representation_relationship to define the transformation between related presentation_representations. The transformation is defined as follows. The transform_item_1.location is transformed into the transform_item_2.placement.location. Additionally the x axis defined by transform_item_1.p[1] is mapped to the x axis transform_item_2.placement.p[1]. A similar mapping is performed for the y axes transform_item_1.p[2] and transform_item_2.placement.p[2]. Finally the scaling specified by transform_item_2.scaling is applied. NOTE 1 - Figure 5 shows the mechanism of graphical_transformation. # EXPRESS specification: #### Attribute definitions: SELF\item_defined_transformation.transform_item_1: an axis2_placement_2d specifying the starting point of the transformation. SELF\item_defined_transformation.transform_item_2: a presentation_scaled_placement specifying the ending point of the transformation. ©ISO ISO 10303-46:1994(E) Figure 5 - Graphical transformation # Formal propositions: WR1: The tranform_item_1 attribute of a graphical_transformation shall be an axis2_placement_2d. WR2: The tranform_item_2 attribute of a graphical_transformation shall be a presentation_scaled_placement. NOTE 2 - The attributes tranform_item_1 and tranform_item_2 are defined in ISO 10303-43. # 4.5 Presentation organization schema entity definitions: camera model and projection # 4.5.1 camera_model A camera_model contains the information needed to create a projection or mapping from a representation to a picture of that representation. © ISO ```) > 0; WR2: SIZEOF(USEDIN(SELF,'PRESENTATION_APPEARANCE_SCHEMA.'+ 'STYLED_ITEM.ITEM')) = 0; END_ENTITY; (* ``` Formal propositions: WR1: A camera_model shall specify the projection for at least one representation. WR2: A camera_model shall not be referenced by a styled_item entity. # 4.5.2 camera_model_d2 A camera_model_d2 contains the information needed to create a two-dimensional mapping from a representation to a picture of that representation. # EXPRESS specification: ``` *) ENTITY camera_model_d2 SUBTYPE OF (camera_model); view_window : planar_box; view_window_clipping : BOOLEAN; WHERE WR1: SELF\geometric_representation_item.dim = 2; END_ENTITY; (* ``` #### Attribute definitions: view_window: the rectangular boundaries in the coordinate space of the representation that is being projected into the product_data_representation_view. A translation and possibly non-uniform scaling are applied to the view_window so, that the edges of the view_window coincide with the edges of the mapping_target of the camera_image. view_window_clipping: the determination of whether or not clipping is performed against the view_window. A value of TRUE indicates that clipping against the view_window is performed. A value of FALSE indicates that no clipping against the view_window is performed. #### NOTES - 1 If view_window_clipping has a value of FALSE, the two-dimensional projection may extend beyond the boundaries of the mapping_target specified by the camera_image. - 2 Clipping is performed prior to projection. ## Formal propositions: WR1: A camera_model_d2 shall be two-dimensional. NOTE 3 - The mechanism of the camera_model_d2 is shown in figure 6. © ISO ISO 10303-46:1994(E) Figure 6 - Camera model d2 # 4.5.3 camera_model_d2_shape_clipping A camera_model_d2_shape_clipping is a camera_model_d2 with additional clipping specified for the mapped representation. ## EXPRESS specification: ``` *) ENTITY camera_model_d2_shape_clipping SUBTYPE OF (camera_model_d2); shape_clipping : curve; END_ENTITY; (* ``` ## Attribute definitions: **shape_clipping:** a closed curve indicating a clipping region for the representation which is projected. NOTE - If view_window_clipping has a value of TRUE, the representation which is projected is clipped against both the view_window and the region specified by shape_clipping. ## Informal propositions: IP1: The curve specified for shape_clipping shall be closed and not self-intersecting. ## 4.5.4 camera_model_d3 A camera_model_d3 contains the information needed to create the projection from a three-dimensional representation to a two-dimensional picture of that representation. See 4.5.5 for details of the projection. ©ISO # EXPRESS specification: ## Attribute definitions: view_reference_system: an intermediate three-dimensional coordinate space in the coordinate space of the representation being projected. perspective_of_volume: the information needed to determine how to project the geometry of the representation. The perspective_of_volume is defined in the intermediate three-dimensional coordinate space of the view_reference_system. # Formal propositions: WR1: the rectangle indicated by the view_window of the perspective_of_volume is in the same plane as the x and y axis of the axis2_placement indicated by the view_reference_system. WR2: A camera_model_d3 is three-dimensional. # 4.5.5 view_volume A view_volume is defined in the view_reference_system of the camera model which uses the volume. It defines a volume that is projected onto the viewport of the product_data_representation_view. This volume is either a truncated pyramid or a parallelepiped. The contents of this volume are projected onto the rectangle defined by the view_window which is then mapped onto the viewport. If the type of projection is **parallel**, the projection is made parallel to the line from the **projection_point** to the geometric centre of the **view_window**, and the **view_volume** is a parallelepiped. If the type of projection is **central**, the projection is made along lines emanating from a **projection_point** and intersecting with the **view_window**, and the **view_volume** is a truncated pyramid. See figure 8 for the definition of the parallelepiped and figure 7 for the definition of the truncated pyramid. ©iso ISO 10303-46:1994(E) # EXPRESS specification: ``` *) ENTITY view_volume; projection_type : central_or_parallel; projection_point : cartesian_point; view_plane_distance : length_measure; front_plane_distance : length_measure; front_plane_clipping : BOOLEAN; back_plane_distance : length_measure; : BOOLEAN; back_plane_clipping view_volume_sides_clipping : BOOLEAN; view_window : planar_box; END_ENTITY; (* ``` #### Attribute definitions: projection_type: the indication of whether the projection is central or parallel. projection_point: the centre of the projection, i.e., the location from which the items are viewed. For a parallel projection, this point indicates a line from itself to the geometric centre of the view_window. For a central projection, this point is the apex of the truncated
pyramid. Figure 7 - View volume, projection type CENTRAL ©iso Figure 8 - View volume, projection type PARALLEL ©iso ISO 10303-46:1994(E) view_plane_distance: a distance along the z axis of the axis2_placement indicated by the view_reference_system. This distance positions the origin of the view_window. front_plane_distance: a signed distance along the z axis of the axis2_placement indicated by the view_reference_system. This distance specifies a plane parallel to the view_window plane. It is the distance to either the top of the truncated pyramid or the front of the parallelepiped, depending on the type of projection. front_plane_clipping: the indication of whether or not to clip the geometry of the projected representation against the plane represented by the front_plane_distance. A value of TRUE indicates that clipping is performed; a value of FALSE indicates that clipping is not performed. NOTE 1 - If front_plane_clipping has a value of FALSE, objects behind the projection point may be visible. Behind in this sense means in the opposite direction from the projection point than the view plane. back_plane_distance: a distance along the z axis of the axis2_placement indicated by the view_reference_system attribute. This distance specifies a plane parallel to the view_window plane. It is either the bottom of the truncated pyramid or the back of the parallelepiped, depending on the type of projection. back_plane_clipping: the indication of whether or not to clip the geometry of the projected representation against the plane represented by the back_plane_distance. A value of TRUE indicates that clipping is performed; a value of FALSE indicates that clipping is not performed. view_volume_sides_clipping: the indication of whether or not to clip the geometry of the projected representation against the planes which are the sides of the volume defined by the view_volume. A value of TRUE indicates that clipping is performed; a value of FALSE indicates that clipping is not performed. NOTE 2 - If view_volume_sides_clipping has a value of FALSE, the two-dimensional projection may extend beyond the boundaries of the viewport specified by the camera_image. view_window: a rectangle on the view_plane. The representation is mapped to this rectangle which is then mapped to the viewport of a camera_image. ## Informal propositions: IP1: The plane represented by the **front_plane_distance** shall be closer to the **projection_point** than the plane represented by the **back_plane_distance**. IP2: The rectangle indicated by the view_window attribute shall be in the view plane. IP3: The projection_point shall not lie in the view plane. © ISO # 4.5.6 camera_model_d3_with_hlhsr A camera_model_d3_with_hlhsr is a camera_model_d3 that indicates whether hidden line and hidden surface removal shall be performed. ## EXPRESS specification: ``` *) ENTITY camera_model_d3_with_hlhsr SUBTYPE OF (camera_model_d3); hidden_line_surface_removal : BOOLEAN; END_ENTITY; (* ``` #### Attribute definitions: hidden_line_surface_removal: an indication of whether hidden lines and hidden surfaces shall be removed while projecting a three-dimensional representation. A value of TRUE indicates that hidden lines and hidden surfaces shall be removed during projection. A value of FALSE indicates that hidden lines and hidden surfaces shall not be removed during projection. # 4.5.7 camera_model_d3_multi_clipping A camera_model_d3_multi_clipping contains the information needed to create a projection from a representation to a picture of that representation using planes in the coordinate space of the projected representation to clip the geometry of the representation prior to projection. ## EXPRESS specification: ``` *) ENTITY camera_model_d3_multi_clipping SUBTYPE OF (camera_model_d3); shape_clipping : SET [1:?] OF plane; END_ENTITY; (* ``` #### Attribute definitions: **shape_clipping:** The planes that bound the clipping region. Each plane defines an acceptance region, which is the infinite halfspace defined by the plane and its positive normal. The clipping region is defined as the intersection of all acceptance regions. #### NOTES - 1 The clipping region defined by shape_clipping may be infinite. - 2 Clipping is performed prior to projection. # 4.5.8 camera_model_with_light_sources A camera_model_with_light_sources contains the information needed to create a projection from a representation to a picture of that representation with additional information about the light sources to be used for shading. © ISO ``` EXPRESS specification: ``` ``` *) ENTITY camera_model_with_light_sources SUBTYPE OF (camera_model_d3); sources : SET [1:?] OF light_source; END_ENTITY; (* ``` ## Attribute definitions: sources: a set of light_sources which define the lighting model of the representation being projected. # 4.5.9 light_source A light_source affects the display of surfaces. Lighting is applied on a surface by surface basis, i.e., no interactions between surfaces are defined. # EXPRESS specification: #### Attribute definitions: light_colour: the colour of the light to be used for shading. ## Formal propositions: WR: A light_source shall not be referenced by a styled_item entity. # 4.5.10 light_source_ambient A light_source_ambient affects a surface independent of the orientation and position of the surface. ``` *) ENTITY light_source_ambient SUBTYPE OF (light_source); END_ENTITY; (* ``` © ISO # 4.5.11 light_source_directional A light_source_directional affects a surface based on its orientation but independent of the position of the surface. All the rays of light are parallel to the direction. NOTE - Figure 9 shows the definition of light_source_directional. # EXPRESS specification: ``` *) ENTITY light_source_directional SUBTYPE OF (light_source); orientation : direction; END_ENTITY; (* ``` ## Attribute definitions: orientation: the direction of the light_source in the coordinate space of the representation being projected. Figure 9 - Light source directional # 4.5.12 light_source_positional A light_source_positional affects a surface based on the orientation and position of the surface. NOTE 1 - Figure 10 shows the definition of light_source_positional. # EXPRESS specification: ©iso ISO 10303-46:1994(E) ## Attribute definitions: position: the position of the light_source in the coordinate space of the representation being projected. constant_attenuation: the value of attenuation in the reflectance equation that is constant. distance_attenuation: the value of attenuation in the reflectance equation that is proportional to the distance from the light_source. NOTE 2 - Examples of reflectance equations can be found in Annex D of this part of ISO 10303. Figure 10 - Light source positional # 4.5.13 light_source_spot A light_source_spot affects a surface based on the position and direction of the surface and the cone of influence of the light source. The cone of influence is determined by the position, orientation, and spread_angle of the light_source_spot. Only those parts of an object that lie within the cone of influence will be affected by a light_source_spot. NOTE 1 - Figure 11 shows the definition of light_source_spot. ``` *) ENTITY light_source_spot SUBTYPE OF (light_source); position : cartesian_point; orientation : direction; concentration_exponent : REAL; constant_attenuation : REAL; distance_attenuation : REAL; spread_angle : positive_plane_angle_measure; ``` (C)ISO Figure 11 - Light source spot # END_ENTITY; (* ## Attribute definitions: position: the position of the light_source in the coordinate space of the representation being projected. orientation: The direction of the axis of the cone of influence of the light_source specified in the coordinate space of the representation being projected. concentration_exponent: the exponent on the cosine of the angle between the line that starts at the position of the spot light_source and is in the direction of the orientation of the spot light_source and a line that starts at the position of the spot light_source and goes through a point on the surface being shaded. The positions on the surface involved in the reflectance equation are determined by the surface_style_rendering_with_properties. constant_attenuation: the value of the attenuation in the reflectance equation that is constant. distance_attenuation: the value of the attenuation in the reflectance equation that is proportional to the distance from the light_source. spread_angle: one half of the apex angle of the cone of influence. #### Informal propositions: IP1: The spread angle shall not be greater than 180 degrees. NOTE 2 - Examples of reflectance equations can be found in Annex D of this part of ISO 10303. # 4.5.14 camera_image A camera_image is the result of projecting two- or three-dimensional geometry where the projection transformation is the mapping of the camera_model to the viewport. ©iso ISO 10303-46:1994(E) ``` *) ENTITY camera_image SUBTYPE OF (mapped_item); WHERE WR1: 'PRESENTATION_ORGANIZATION_SCHEMA.CAMERA_USAGE' IN TYPEOF (SELF\mapped_item.mapping_source); WR2: 'PRESENTATION_RESOURCE_SCHEMA.PLANAR_BOX' IN TYPEOF (SELF\mapped_item.mapping_target); WR3: 'GEOMETRY_SCHEMA.GEOMETRIC_REPRESENTATION_ITEM' IN TYPEOF (SELF); END_ENTITY; (* ``` #### Attribute definitions: SELF\mapped_item.mapping_source: a camera_usage which is the representation that is projected plus the camera_model which is the source part of the projection mapping. SELF\mapped_item.mapping_target: a planar_box onto which the view window associated with a two- or three-dimensional camera_model is projected. ## Formal propositions: WR1: The source of the mapping shall be a camera_usage. WR2: The target of the mapping shall be an axis2_placement. WR3: The camera_image shall be a geometric_representation_item. # 4.5.15 camera_usage A camera_usage is the association between two- or three-dimensional representation, and the origin for the mapping. The camera_model is the source part of the
projection mapping. # EXPRESS specification: ## Attribute definitions: SELF\representation_map.mapping_origin: the camera_model which is the source part of the projection mapping. ©iso # Formal propositions: WR1: The mapped_representation shall not be a presentation_representation. WR2: The origin of the camera_usage shall be camera_model. # 4.6 Presentation organization schema entity definitions: layers # 4.6.1 presentation_layer_assignment A presentation_layer_assignment assigns an identifier to a set of presentation_representations or representation_items. This set contains the pictures, or elements of pictures, that are assigned to a layer. A representation_item that is assigned to a layer shall be a styled_item, or shall be defined by one or more styled_items. In the case of a presentation_representation, the assignment also associates the layer identifier with each styled representation_item that is contained in or referenced by that presentation_representation, unless this assignment is over-ridden by a representation_item_dependent_layer_assignment. In the case of a representation_item, the assignment also associates the layer identifier with each styled representation_item that is referenced directly or indirectly by that item, unless this assignment is over-ridden by a representation_item_dependent_layer_assignment. NOTE - This assignment is for the purpose of determining visibility and style in a picture represented by a presentation representation through the use of the presentation layer usage entity. ## EXPRESS specification: ``` *) ENTITY presentation_layer_assignment; name : label; description : text; assigned_items : SET [1:?] OF layered_item; END_ENTITY; (* ``` ### Attribute definitions: name: the word, or group of words, by which the layer defined by the presentation_layer_assignment is referred to. description: text that relates the nature of the presentation_layer_assignment. assigned_items: the set of items assigned to the layer defined by the presentation_layer_assignment. # 4.6.2 representation_item_dependent_layer_assignment A representation_item_dependent_layer_assignment is a presentation_layer_assignment that assigns a layer to a presentation_representation or a styled representation_item only as it participates in the definition of a representation_item. This assignment over—rides ©iso ISO 10303-46:1994(E) any layer assignment for the presentation_representation or styled representation_item through its participation in the definition of the representation_item. EXAMPLE 5 — In a draughting application, a dimension consists of several occurrences of curves and text. The dimension is assigned to layer 'DIMENSION', while the text that presents the value of the dimension is assigned to layer 'DIMENSION VALUE'. To indicate that the dimension is assigned to layer 'DIMENSION', a presentation_layer_assignment includes the dimension as a member of the assigned_items set. To indicate that the text is on layer 'DIMENSION VALUE', a representation_item_dependent_layer_assignment includes the text as a member of the assigned_items set, and specifies the dimension as the context for the assignment. ## EXPRESS specification: ``` *) ENTITY representation_item_dependent_layer_assignment SUBTYPE OF (presentation_layer_assignment); item_context : representation_item; END_ENTITY; (* ``` # Attribute definitions: item_context: a representation_item that defines the context for the assignment of the assigned_items to the layer. # Informal propositions: IP1: The assigned_items shall participate in the definition of the item_context. # 4.6.3 presentation_layer_usage A presentation_layer_usage relates a presentation_layer_assignment to a presentation_representation in order to provide a context for the assignment of style and visibility to items assigned to a layer. Many presentation_representations may be related to a single presentation_layer_assignment; a single presentation_representation may be related to many presentation_layer_assignments. NOTE – This allows many different pictures to be assigned to the same layer, and also allows a picture to be assigned to many layers. #### EXPRESS specification: ``` *) ENTITY presentation_layer_usage; assignment : presentation_layer_assignment; presentation : presentation_representation; UNIQUE UR1: assignment, presentation; END_ENTITY; (* ``` #### Attribute definitions: assignment: the layer to be presented in the **presentation_representation** referenced by the **presentation** attribute. ©ISO presentation: the presentation_representation that contains the presentation of the layer referenced by the assignment attribute. # Formal propositions: UR1: The pair (assignment, presentation) shall be unique. A layer shall not be presented in a picture more than once. # 4.7 Presentation organization schema entity definitions: association of presentation and product model # 4.7.1 presented_item_representation A presented_item_representation is the association of presentation_representation or presentation_set with the item for which it is a picture. NOTE - This allows a many-to-many relationship between the representation and presentation. ## EXPRESS specification: ``` *) ENTITY presented_item_representation; presentation : presentation_representation_select; item : presented_item; END_ENTITY; (* ``` # Attribute definitions: presentation: a presentation_representation or a presentation_set. item: the item which is presented in the picture. # 4.7.2 presented_item A presented item is the identification of the subject of a picture. The specification of the subject of a picture is provided in an Application Protocol. EXAMPLE 6 – In an Application Protocol, the properties associated with a specific product definition are presented. The Application Protocol completes the **presented_item** construct to relate the presentation to the **product_definition**. ## EXPRESS specification: ``` *) ENTITY presented_item ABSTRACT SUPERTYPE; END_ENTITY; (* ``` © ISO # 4.8 Presentation organization schema rule definitions # 4.8.1 symbol_representation_rule The symbol_representation_rule ensures that a presentation_representation_relation-ship, which relates two symbol_representations, is a symbol_representation_relation-ship. ``` EXPRESS specification: ``` Formal propositions: WR1: presentation_representation_relationships which are not symbol_representation_relationships cannot relate symbol_representations. # 4.9 Presentation organization schema function definitions # 4.9.1 acyclic_presentation_representation_relationship The acyclic_presentation_representation_relationship function checks whether the graph defined by a presentation_representation_relationship, the related presentation_representation, and all presentation_representation_relationships referring to the related presentation_representation is acyclic. The function returns TRUE if the graph is acyclic; and FALSE if it is cyclic. ``` *) FUNCTION acyclic_presentation_representation_relationship (relation : presentation_representation_relationship; children : SET OF presentation_representation) : BOOLEAN; LOCAL x : SET OF presentation_representation_relationship; i : INTEGER; local_children : SET OF presentation_representation; END_LOCAL; ``` ``` ISO 10303-46:1994(E) ``` ©ISO ``` REPEAT i:=1 TO HIINDEX(children); IF relation\representation_relationship.rep_1 :=: children[i] THEN RETURN(FALSE); END_IF; END_REPEAT; x := USEDIN (relation\representation_relationship.rep_1, 'REPRESENTATION_SCHEMA.'+ 'REPRESENTATION_RELATIONSHIP.REP_2'); local_children := children + relation\representation_relationship.rep_1; IF SIZEOF (x) > 0 THEN REPEAT i:=1 TO HIINDEX (x); IF NOT acyclic_presentation_representation_relationship (x[i], local_children) THEN RETURN (FALSE); END_IF; END_REPEAT; END_IF; RETURN (TRUE); END_FUNCTION; ``` # Argument definitions: relation: the presentation_representation_relationship which is tested. This is input to the function. children: the presentation_representations referenced by relation. This is input to the function. On initial input this set contains as its only element the rep_2 of the relation. # EXPRESS specification: ``` *) END_SCHEMA; -- presentation_organization_schema (* ``` # 5 Presentation definition The following EXPRESS declaration begins the presentation_definition_schema and identifies the necessary external references. ©ISO ISO 10303-46:1994(E) ``` REFERENCE FROM geometry_schema (axis2_placement, curve, geometric_representation_item, point); REFERENCE FROM measure_schema (positive_ratio_measure); REFERENCE FROM presentation_appearance_schema (styled_item); REFERENCE FROM presentation_resource_schema (character_glyph_symbol, planar_box, planar_extent, font_select, presentable_text, text_font); REFERENCE FROM representation_schema (item_in_context, mapped_item, representation, representation_item, representation_map, representation_relationship, representation_relationship_with_transformation, using_representations); REFERENCE FROM support_resource_schema (label, text); (* NOTES 1 - The schemas referenced above can be found in the following parts of ISO 10303: external_reference_schema ISO 10303-41 geometry_schema ISO 10303-42 presentation_appearance_schema Clause 6 of this part of ISO 10303 ``` 2 - The EXPRESS-G diagrams for this schema may be found in Annex E of this part of ISO 10303. presentation_resource_schema representation_schema ISO 10303-43 Clause 7 of this part of ISO 10303 (c)ISO # 5.1 Introduction The **presentation_definition_schema** provides the structure for the definition of annotation and assignment of style properties to annotation primitives. Annotation in this part of ISO 10303 is always planar, but may be located in three-dimensional space. # 5.2 Fundamental concepts and assumptions Annotation primitives are the elements from which symbolic presentations are constructed. The annotation primitives defined in this schema include annotation points, curves, fill areas, texts,
symbols, and tables. An annotation point is a point which is presented using a **point_style**. For more information on **point_style** see clause 6. The presentation appearance schema does not define a special entity for annotation points because the **point** entity defined in ISO 10303-42 is sufficient for annotation purposes. An annotation curve is a planar curve which is presented using a **curve_style**. For more information on **curve_style** see clause 6. The presentation appearance schema does not define a special entity for annotation curves, because the **curve** entity defined in ISO 10303-42 is sufficient for annotation purposes. Annotation text is a collection of characters, character strings, collection of strings, and more complex collections of strings and characters. Annotation text is defined by the annotation_text entity which uses the concept of mapped_item. For more information on mapped_item see ISO 10303-43. The annotation_text entity positions and orients a collection of characters, simple character strings, collection of strings, and more complex collections of strings and characters, which is defined in a text_string_representation. Several annotation_text entities can reference the same text_string_representation. A text_string_representation itself is a set of annotation_text, defined_character_glyph, annotation_text_character, text_literal, or composite_text entities. This structure allows the recursive construction of an annotation_text. Characters may be pre-defined, externally defined, or may be defined within a conforming exchange using concepts of this part of ISO 10303. In the last case, the annotation_text_character entity refers to the character_glyph_symbol entity. This entity contains the geometric representation of a character. The text_literal allows the specification of a text string as part of an annotation_text. A complex collection that may be placed and styled as a whole can be defined by the composite_text entity. Specializations of annotation_text allow additionally the specification of blanking boxes, surrounding curves, delineations, or extent rectangles for that text. An annotation_text is presented using a text_style. For more information on text_style see clause 6. An annotation symbol is a pre-defined symbol, an externally defined symbol, or a collection of representation_items which make up a graphical symbol. An annotation symbol is defined either by the defined_symbol entity or by the annotation_symbol entity. The defined_symbol entity scales, positions, and orients an implicit description of a symbol. The annotation_symbol uses the concept of mapped_item. For more information on mapped_item see ISO 10303-43. The annotation_symbol entity scales, positions, and orients a a collection of representation_items which are defined in a symbol_representation. Several annotation_symbol entities can reference the same symbol_representation. The representation_items (c) ISO which make up a symbol can be elements of geometry (see ISO 10303-42), annotation primitives, or annotation occurrences. This structure allows the recursive construction of symbols. Moreover, a symbol_representation itself can be built of several symbol_representations. Such a hierarchy is defined by establishing a relationship between two symbol_representations. A relationship is established by instantiating an entity of type symbol_representation_relationship which refers to a pair of representations. One of these representations is called rep_1, the other one is called rep_2, and the relationship is directed from the parent (rep_1) to the child (rep_2). The relationship specifies additionally a transformation. This transformation shall be executed to transform elements in the rep_2 to the coordinate system of the rep_1. A single symbol_representation is then the collection of all representation_items in that representation plus all symbol_representations which are nodes in the relationship tree associated with that representation. Symbols are presented using symbol_style, which is a collection of presentation styles. For more information on symbol_style see clause 6. An annotation table is a special type of annotation_symbol which represents a table. An annotation table is defined by the annotation_table entity which uses the concept of mapped_item. For more information on mapped_item see ISO 10303-43. The annotation_table entity scales, positions, and orients a table which is defined in a table_representation. Several annotation_table entities can reference the same table_representation. A table_representation can be built of table_record_representations which itself can be made of several table_record_field_representations. A table_record_representation usually corresponds to a column or row of a table, while a table_record_field_representation corresponds to a single cell of a table. Nevertheless, more complex structures can be built because table_record_field_representations may be built of other table_record_field_representations. The hierarchy making up a table_representation is built by relating the components by a table_representation_relationship which is a specialization of symbol_representation_relationship. The annotation_table defines only an empty table. To put text into a table, annotation_text occurrences are defined individually in such a way that they are placed in a table. The table_text_relationship can be used to associate such text with a specific field of a table. Annotation primitives can occur only in conjunction with a style assignment. An annotation primitive, together with its style, is called an annotation_occurrence. For each type of primitive a special annotation_occurrence is defined which restricts the presentation style to appropriate types. The annotation_occurrence_relationship allows the definition of a relationship between two annotation_occurrences. The table_text_relationship associates an annotation_text_occurrence with a table_record_field_representation of an annotation table. # 5.3 Presentation definition schema type definitions # 5.3.1 text_delineation The text_delineation type is provided to control the delineation of text. NOTE - Application protocols may specify legal values of text_delineation and associate precise meaning with those values. ©ISO ``` EXPRESS specification: ``` ``` *) TYPE text_delineation = label; END_TYPE; (* ``` EXAMPLE 7 - An application protocol may specify that the only permitted values of this type are 'underline' and 'overline', and associate these with the delineation of text as shown in figure 12. Overlined Text # **Underlined Text** Figure 12 - Examples of text delineation # 5.3.2 defined_symbol_select The defined_symbol_select specifies the implicit description of a defined_symbol. # EXPRESS specification: ``` *) TYPE defined_symbol_select = SELECT (pre_defined_symbol, externally_defined_symbol); END_TYPE; (* ``` # 5.3.3 text_or_character The text_or_character specifies the items which can be used in an annotation_text or a composite_text. # EXPRESS specification: ``` *) TYPE text_or_character = SELECT (annotation_text, annotation_text_character, defined_character_glyph, composite_text, text_literal); END_TYPE; (* ``` # 5.3.4 text_alignment The text_alignment is provided to control the alignment of text. © ISO ISO 10303-46:1994(E) NOTE - Application protocols shall specify legal values of the text_alignment and shall associate precise meaning with those values. ## EXPRESS specification: ``` *) TYPE text_alignment = label; END_TYPE; (* ``` EXAMPLE 8 - An Application Protocol may specify that the only permitted values of this type are 'left', 'centre' and 'right', and associate these to the positioning of text with respect to alignment points as shown in figure 13. Figure 13 - Examples of text alignment # 5.3.5 defined_glyph_select The defined_glyph_select is a selection between a pre_defined_character_glyph and an externally_defined_character_glyph. ## EXPRESS specification: ``` *) TYPE defined_glyph_select = SELECT (pre_defined_character_glyph, externally_defined_character_glyph); END_TYPE; (* ``` # 5.3.6 text_path The text_path specifies the direction of the location of the next text character relative to the current character. The next text character can appear to the left of the current character, to the right of the current character, above the current character, or below the current character. ©ISO # EXPRESS specification: ``` *) TYPE text_path = ENUMERATION OF (left, right, up, down); END_TYPE; (* ``` # Enumerated item definitions: left: The next character is placed to the left of the current character. right: The next character is placed to the right of the current character. up: The next character is placed above the current character. down: The next character is placed below the current character. # 5.4 Presentation definition schema entity definitions: annotation primitives # 5.4.1 annotation_fill_area An annotation_fill_area is a set of curves that may be filled with hatching, shading, colour, or tiling. The annotation_fill_area is described by boundaries which consist of non-intersecting, non-self-intersecting closed curves. These curves form the boundary of planar areas to be filled according to the style for the annotation_fill_area. The filling is defined by the following rules: - A curve that is not surrounded by any other curve is a border between an unfilled area on the outside and a filled area on the inside. ``` NOTE 1 - see figure 14a. ``` - A curve surrounds an unfilled area if it is surrounded by another curve whose inside is a filled area. ``` NOTE 2 - see figure 14b. ``` - If a third curve is placed inside of the second curve this curve surrounds a filled area. ``` NOTE 3 - see figure 14c. ``` - For each additional curve the procedure is applied in the same manner. ©iso ISO 10303-46:1994(E) a) filled curve 2 b) unfilled curve 1 filled curve 2 unfilled c) curve 1 Figure 14 - Filling of
annotation fill areas curve 3 ©iso # EXPRESS specification: ``` *) ENTITY annotation_fill_area SUBTYPE OF (geometric_representation_item); boundaries : SET [1:?] OF curve; END_ENTITY; (* ``` # Attribute definitions: boundaries: a set of curves that define the boundaries of the fill area. # Informal propositions: IP1: All the curves in the set boundaries shall be closed and planar. IP2: If there are two or more curves in the set boundaries, all of these curves shall be coplanar, and no two curves shall intersect each other. # 5.4.2 defined_symbol A defined_symbol is a symbol that has an implicit definition, either through a pre_defined_symbol or an externally_defined_symbol. # EXPRESS specification: ``` *) ENTITY defined_symbol SUBTYPE OF(geometric_representation_item); definition : defined_symbol_select; target : symbol_target; END_ENTITY; (* ``` ## Attribute definitions: definition: an implicit description of a symbol, either pre-defined or externally defined. target: a description of the scaling, placement, and orientation of the defined_symbol. # 5.4.3 defined_table A defined_table is a defined_symbol that specifies an implicit definition of a table. ``` *) ENTITY defined_table SUBTYPE OF(defined_symbol); END_ENTITY; (* ``` ©ISO ISO 10303-46:1994(E) # 5.4.4 symbol_target A symbol_target is the target of the transformation which determines the location and orientation of a symbol_representation used as an annotation_symbol, or the target of a defined_symbol. It consists of an oriented position and a scaling in x and y. # EXPRESS specification: ``` *) ENTITY symbol_target SUBTYPE OF (geometric_representation_item); placement : axis2_placement; x_scale : positive_ratio_measure; y_scale : positive_ratio_measure; END_ENTITY; (* ``` ## Attribute definitions: placement: The location and orientation of a symbol_representation or of a defined_symbol used as an annotation_symbol. x_scale: The scale applied to the x coordinates of the symbol_representation or of the defined_symbol. y_scale: The scale applied to the y coordinates of the symbol_representation or of the defined_symbol. # 5.4.5 pre_defined_symbol A pre_defined_symbol allows a conforming exchange to define an application—specific symbol. The actual symbol shall be defined by an Application Protocol. ## EXPRESS specification: ``` *) ENTITY pre_defined_symbol SUBTYPE OF (pre_defined_item); END_ENTITY; (* ``` # 5.4.6 externally_defined_symbol An externally_defined_symbol is an externally_defined_item that makes an external reference to a symbol. ``` *) ENTITY externally_defined_symbol SUBTYPE OF (externally_defined_item); END_ENTITY; (* ``` © ISO # 5.4.7 annotation_symbol An annotation_symbol is the mapping of a symbol_representation as a geometric_representation_-item to present that symbol_representation as part of a picture. NOTE - Figure 15 shows examples of annotation symbols. ``` EXPRESS specification: ``` ``` *) ENTITY annotation_symbol SUBTYPE OF(mapped_item); WHERE WR1: 'PRESENTATION_DEFINITION_SCHEMA.SYMBOL_REPRESENTATION_MAP' IN TYPEOF (SELF\mapped_item.mapping_source); WR2: 'PRESENTATION_DEFINITION_SCHEMA.SYMBOL_TARGET' IN TYPEOF (SELF\mapped_item.mapping_target); WR3: 'GEOMETRY_SCHEMA.GEOMETRIC_REPRESENTATION_ITEM' IN TYPEOF (SELF); END_ENTITY; (* ``` ### Attribute definitions: SELF\mapped_item.mapping_source: a symbol_representation_map which maps the symbol_representation SELF\mapped_item.mapping_target: a symbol_target indicating where the symbol is to be placed. # Formal propositions: WR1: The mapping_source shall be a symbol_representation_map. WR2: The mapping_target shall be a symbol_target. WR3: An instance of annotation_symbol shall also be an instance of geometric_representation_-item. # 5.4.8 annotation_table An annotation_table is the mapping of a table_representation to present the table_representation as part of a picture. # EXPRESS specification: ©1SO ISO 10303-46:1994(E) Figure 15 - Examples of annotation symbols ©iso Formal propositions: WR1: The representation that is mapped shall be a table_representation. # 5.4.9 symbol_representation_map The symbol_representation_map is a representation_map which maps a symbol_representation to an annotation_symbol. # EXPRESS specification: ``` *) ENTITY symbol_representation_map SUBTYPE OF (representation_map); WHERE WR1: 'PRESENTATION_DEFINITION_SCHEMA.SYMBOL_REPRESENTATION' IN TYPEOF (SELF\representation_map.mapped_representation); WR2: 'GEOMETRY_SCHEMA.AXIS2_PLACEMENT' IN TYPEOF (SELF\representation_map.mapping_origin); END_ENTITY; (* ``` ## Attribute definitions: SELF\representation_map.mapped_representation: the symbol_representation to be included in an annotation_symbol. SELF\representation_map.mapping_origin: an axis2_placement defining the origin of the mapping. Formal propositions: WR1: The mapped_representation shall be a symbol_representation. WR2: The mapping_origin shall be an axis2_placement. # 5.4.10 symbol_representation A symbol_representation is a kind of representation used in the assembly of a symbol. It allows also the definition of annotation_tables which are a specialization of annotation_symbols. Symbol_representations may only be related to each other using symbol_representation_relationships. # EXPRESS specification: ``` *) ENTITY symbol_representation SUBTYPE OF (representation); END_ENTITY; (* ``` ©ISO # 5.4.11 symbol_representation_with_blanking_box The symbol_representation_with_blanking_box is a symbol_representation that includes a box which blanks out all other elements in the box. ## EXPRESS specification: ``` *) ENTITY symbol_representation_with_blanking_box SUBTYPE OF (symbol_representation); blanking : planar_box; WHERE WR1: item_in_context (SELF.blanking, SELF\representation.context_of_items); END_ENTITY; (* ``` #### Attribute definitions: blanking: a box which blanks out any element in the box with exception of the symbol itself. ## Formal propositions: WR1: The blanking box shall be in the context SELF.context_of_items. # 5.4.12 table_representation A table_representation is a kind of symbol used for creating tables. Table_representations may only be related with table_representation_relationship entities. If a table_representation plays the role of rep_1 in a table_representation_relationship, only a table_record_representation may play the role of rep_2. # EXPRESS specification: ``` *) ENTITY table_representation SUBTYPE OF (symbol_representation); END_ENTITY; (* ``` # 5.4.13 table_record_representation A table_record_representation is a kind of symbol used for creating records within tables. Table_record_representations may only be related by table_representation_relationships. If a table_record_representation plays the role of rep_1 in a table_representation_relationship, only a table_record_field_representation may play the role of rep_2. #### EXPRESS specification: © ISO Formal propositions: WR1: Either a table_record_representation shall be used as a rep_2 in a table_representation_relationship, or it shall be mapped into a table_representation. # 5.4.14 table_record_field_representation A table_record_field_representation is a kind of symbol used for creating fields within records of a table. Table_record_field_representations may only be related by table_representation_relationship entities. If a table_record_field_representation plays the role of rep_1 in a table_representation_relationship, only a table_record_field_representation may play the role of rep_2. ``` EXPRESS specification: ``` #### Formal propositions: WR1: Either a table_record_field_representation shall be used as a rep_2 in a table_representation_relationship, or it shall be mapped into a table_record_representation. # 5.4.15 table_record_field_representation_with_clipping_box A table_record_field_representation_with_clipping_box is a table_record_field_representation which includes a clipping box to blank out all elements outside of the box. ## EXPRESS specification: ``` *) ENTITY table_record_field_representation_with_clipping_box SUBTYPE OF (table_record_field_representation); ``` ©ISO ISO 10303-46:1994(E) ## Attribute definitions: clipping_box: a planar_box that defines the boundary for clipping the contents of the table_record_field_representation. # Formal propositions: WR1: The clipping_box shall be in the same context as the table_record_field_representation_with_clipping_box. # 5.4.16 symbol_representation_relationship A symbol_representation_relationship is a kind of representation_relationship_with_transformation used to relate symbol_representations. # EXPRESS specification: # Attribute definitions: SELF\representation_relationship.rep_1: a symbol_representation that plays the role of a parent (root) in a tree of symbol_representations. SELF\representation_relationship.rep_2: a symbol_representation that plays the role of a child (leaf) in a tree of symbol_representations. #### Formal propositions: WR1: A symbol_representation_relationship shall not participate in a tree of symbol_representations where the root of the tree is also a leaf of its own tree. WR2: The rep_1 attribute of a symbol_representation_relationship shall be a symbol_representation. ©iso WR2: The rep_2 attribute of a symbol_representation_relationship shall be asymbol_representation. NOTE - The attributes rep_1 and rep_2 are defined in ISO 10303-43. # 5.4.17 table_representation_relationship The table_representation_relationship is a kind of symbol_representation_relationship used to relate table_representations, table_record_representations, and table_record_field_representations. ``` EXPRESS specification: ``` ``` *) ENTITY table_representation_relationship SUBTYPE OF (symbol_representation_relationship); WR1: NOT ('PRESENTATION_DEFINITION_SCHEMA.TABLE_RECORD_REPRESENTATION' IN TYPEOF (SELF\representation_relationship.rep_1)) XOR ('PRESENTATION_DEFINITION_SCHEMA.TABLE_RECORD_FIELD_REPRESENTATION' IN TYPEOF (SELF\representation_relationship.rep_2)); WR2: NOT
('PRESENTATION_DEFINITION_SCHEMA.TABLE_REPRESENTATION' IN TYPEOF (SELF\representation_relationship.rep_1)) XOR ('PRESENTATION_DEFINITION_SCHEMA.TABLE_RECORD_REPRESENTATION' IN TYPEOF (SELF\representation_relationship.rep_2)); WR3: NOT ('PRESENTATION_DEFINITION_SCHEMA.TABLE_RECORD_FIELD_REPRESENTATION' IN TYPEOF (SELF\representation_relationship.rep_1)) ('PRESENTATION_DEFINITION_SCHEMA.TABLE_RECORD_FIELD_REPRESENTATION' IN TYPEOF (SELF\representation_relationship.rep_2)); END_ENTITY; ``` # Formal propositions: WR1: If a table_record_representation plays the role of SELF\representation_relation-ship.rep_1, then a table_record_field_representation shall play the role of SELF\representation_relationship.rep_2. WR2: If a table_representation plays the role of SELF\representation_relationship.rep_1, then a table_record_representation shall play the role of SELF\representation_relationship.rep_2. WR3: If a table_record_field_representation plays the role of SELF\representation_-relationship.rep_1, then a table_record_field_representation shall play the role of SELF\representation relationship.rep_2. ©iso ISO 10303-46:1994(E) ## 5.4.18 annotation_text An annotation_text is the mapping of a a text_string_representation which contains annotation_text_character, text_literal, composite_text, or annotation_text entities as a geometric_representation_item to present that text_string_representation as part of a picture. This structure allows an annotation_text to be a simple string of characters, a collection of strings, or a more complex collection of strings and characters. ## EXPRESS specification: #### Attribute definitions: SELF\mapped_item.mapping_source: a representation_map which maps the text_string_representation that supplies text, characters, or text_literal_symbols for the annotation_text. SELF\mapped_item.mapping_target: an axis2_placement which positions and orients the annotation_text_map. #### Formal propositions: WR1: The mapping_target shall be an axis2_placement. WR2: The mapped_representation shall be a text_string_representation. WR3: An instance of annotation_text shall also be an instance of geometric_representation_item. # 5.4.19 annotation_text_with_extent An annotation_text_with_extent is an annotation_text whose extent is explicitly specified. ``` *) ENTITY annotation_text_with_extent SUBTYPE OF (annotation_text); extent : planar_extent; END_ENTITY; (* ``` ©ISO ### Attribute definitions: extent: the extent of the annotation_text in x and y directions of the local coordinate system defined by the placement attribute. # 5.4.20 annotation_text_with_delineation The annotation_text_with_delineation is an annotation_text that specifies the delineation of the text. The type of delineation and its effect on the appearance of the text is specified in an Application Protocol. # EXPRESS specification: ``` *) ENTITY annotation_text_with_delineation SUBTYPE OF (annotation_text); delineation : text_delineation; END_ENTITY; (* ``` ### Attribute definitions: delineation: the specification of the delineation to be applied to the text. # 5.4.21 annotation_text_with_blanking_box An annotation_text_with_blanking_box is an annotation_text that contains a blanking box # EXPRESS specification: ``` *) ENTITY annotation_text_with_blanking_box SUBTYPE OF (annotation_text); blanking : planar_box; END_ENTITY; (* ``` # Attribute definitions: blanking: a planar_box that defines a rectangular area within which only the annotation_text is presented. # 5.4.22 annotation_text_with_associated_curves An annotation_text_with_associated_curves is an annotation_text that contains one ore more curves. ### EXPRESS specification: ``` *) ENTITY annotation_text_with_associated_curves SUBTYPE OF (annotation_text); associated_curves : SET[1:?] of curve; END_ENTITY; ``` © ISO (* Attribute definitions: associated_curves: a set of curves associated with the annotation_text. NOTE - If the curves associated with an annotation_text_with_associated_curves are to be presented, then they may be assigned style by annotation_curve_occurrence. # 5.4.23 text_string_representation A text_string_representation is a representation which has a collection of text strings and characters to be mapped to an annotation_text entity. # EXPRESS specification: ``` *) ENTITY text_string_representation SUBTYPE OF (representation); WHERE WR1: SIZEOF (QUERY (item <* SELF\representation.items | SIZEOF (['PRESENTATION_DEFINITION_SCHEMA.TEXT_LITERAL', 'PRESENTATION_DEFINITION_SCHEMA.ANNOTATION_TEXT', 'PRESENTATION_DEFINITION_SCHEMA.ANNOTATION_TEXT_CHARACTER', 'PRESENTATION_DEFINITION_SCHEMA.DEFINED_CHARACTER_GLYPH', 'PRESENTATION_DEFINITION_SCHEMA.COMPOSITE_TEXT', 'GEOMETRY_SCHEMA.AXIS2_PLACEMENT'] * TYPEOF (item)) = 0)) = 0; WR2: SIZEOF (QUERY (item <* SELF\representation.items | NOT (SIZEOF (['PRESENTATION_DEFINITION_SCHEMA.TEXT_LITERAL', 'PRESENTATION_DEFINITION_SCHEMA.ANNOTATION_TEXT', 'PRESENTATION_DEFINITION_SCHEMA.ANNOTATION_TEXT_CHARACTER', 'PRESENTATION_DEFINITION_SCHEMA.DEFINED_CHARACTER_GLYPH', 'PRESENTATION_DEFINITION_SCHEMA.COMPOSITE_TEXT'] * TYPEOF (item)) = 0))) >= 1; WR3: SIZEOF (QUERY (a2p <* QUERY (item <* SELF\representation.items | 'GEOMETRY_SCHEMA.AXIS2_PLACEMENT' IN TYPEOF (item)) | NOT ((SIZEOF (QUERY (at <* QUERY (item <* SELF\representation.items | 'PRESENTATION_DEFINITION_SCHEMA.' + 'ANNOTATION_TEXT' IN TYPEOF (item)) (at\mapped_item.mapping_target :=: a2p))) >= 1) OR (SIZEOF (QUERY (atc <* QUERY (item <* SELF\representation.items | 'PRESENTATION_DEFINITION_SCHEMA.' + 'ANNOTATION_TEXT_CHARACTER' IN TYPEOF (item)) | ``` © ISO ``` (atc\mapped_item.mapping_target :=: a2p))) >= 1)))) = 0; END_ENTITY; (* ``` Attribute definitions: SELF\representation.items: an items set redefined to be the set of strings and the placement. ### Formal propositions: WR1: Each item in the text_string_representation shall be an annotation_text, an annotation_text_character, a text_literal, a composite_text, or an axis2_placement. WR2: The text_string_representation shall contain one or more annotation_text, annotation_text_character, text_literal, or composite_text. WR3: Each axis2_placement shall be the mapping_target of an annotation_text or an annotation_text_character in the text_string_representation. # 5.4.24 annotation_text_character An annotation_text_character is a mapped_item which has a character as its mapping_source. That character is a glyph that exists within a conforming exchange. ### EXPRESS specification: # Attribute definitions: alignment: the specification of the point by which the character is located. **SELF\mapped_item.mapping_source:** the character glyph that exists within a conforming exchange. SELF\mapped_item.mapping_target: an axis2_placement which is the target of the mapping transformation. # Formal propositions: WR1: The source of the annotation_text_character shall be a character_glyph_symbol. © ISO ISO 10303-46:1994(E) WR2: The target of the annotation_text_character shall be an axis2_placement. WR3: The annotation_text_character shall be a geometric_representation_item. # 5.4.25 defined_character_glyph A defined_character_glyph is a character glyph that has an implicit definition, either through a pre_defined_character_glyph or an externally_defined_character_glyph. # EXPRESS specification: ``` *) ENTITY defined_character_glyph SUBTYPE OF(geometric_representation_item); definition : defined_glyph_select; placement : axis2_placement; END_ENTITY; (* ``` ### Attribute definitions: definition: an implicit description of a character glyph, either pre-defined or externally defined. placement: a description of the placement and orientation of the character glyph. # 5.4.26 externally_defined_character_glyph An externally_defined_character_glyph is an externally_defined_item that makes an external reference to a character glyph. # EXPRESS specification: ``` *) ENTITY externally_defined_character_glyph SUBTYPE OF (externally_defined_item); END_ENTITY; (* ``` # ${\bf 5.4.27} \quad {\bf pre_defined_character_glyph}$ A pre_defined_character_glyph allows a conforming exchange to define an application—specific character glyph. The actual character glyph shall be defined by an Application Protocol. # EXPRESS specification: ``` *) ENTITY pre_defined_character_glyph SUBTYPE OF (pre_defined_item); END_ENTITY; (* ``` ©ISO # 5.4.28 text_literal A text_literal is a definition of a text string using a string literal. # EXPRESS specification: ``` *) ENTITY text_literal SUBTYPE OF (geometric_representation_item); literal : presentable_text; placement : axis2_placement; alignment : text_alignment; path : text_path; font : font_select; END_ENTITY; (* ``` ### Attribute definitions: literal: the text literal to be presented. placement: an axis2_placement which determines the position and orientation of the presented string. The y axis is taken as reference direction for box_rotate_angle and box_slant_angle. NOTE - If both box_rotation_angle and box_slant_angle are zero the baseline of each character box is parallel to the x axis and the upright direction of each character box is parallel to the y axis. See figure 17. alignment: the alignment of the text literal relative to its position. path: the writing direction of the text literal. font: the pre-defined or externally defined font which shall be used for presenting the text-literal. # 5.4.29 text_literal_with_extent A text_literal_with_extent is a text_literal whose extent is explicitly specified. # EXPRESS specification: ``` *) ENTITY text_literal_with_extent SUBTYPE OF (text_literal); extent : planar_extent; END_ENTITY; (* ``` # Attribute definitions: extent: the extent in x and y direction of the text_literal_symbol. ©ISO # 5.4.30 text_literal_with_delineation A text_literal_with_delineation is a text_literal that specifies the delineation of the text. The type of delineation and its effect on the appearance of the text is specified in an Application Protocol. # EXPRESS specification: ``` *) ENTITY
text_literal_with_delineation SUBTYPE OF (text_literal); delineation : text_delineation; END_ENTITY; (* ``` # Attribute definitions: delineation: the specification of the delineation to be applied to the text. # 5.4.31 text_literal_with_blanking_box An text_literal_with_blanking_box is a text_literal that contains a blanking box. ### EXPRESS specification: ``` *) ENTITY text_literal_with_blanking_box SUBTYPE OF (text_literal); blanking : planar_box; END_ENTITY; (* ``` # Attribute definitions: **blanking:** a **planar_box** that defines a rectangular area within which only the **text_literal** is presented. # 5.4.32 text_literal_with_associated_curves A text_literal_with_associated_curves is a text_literal that contains one ore more curves. ### EXPRESS specification: ``` *) ENTITY text_literal_with_associated_curves SUBTYPE OF (text_literal); associated_curves : SET[1:?] of curve; END_ENTITY; (* ``` ### Attribute definitions: associated_curves: a set of curves associated with the text_literal. NOTE - If the curves associated with a text_literal_with_associated_curves are to be presented, then they may be assigned style by annotation_curve_occurrence. © ISO # 5.4.33 composite_text A composite_text is a collection of text_literal, annotation_text, annotation_text_character, defined_character_glyph, or other composite_text that may be placed and styled as a collection. # EXPRESS specification: ``` *) ENTITY composite_text SUBTYPE OF (geometric_representation_item); collected_text : SET[2:?] of text_or_character; WHERE WR1: acyclic_composite_text(SELF, SELF.collected_text); END_ENTITY; (* ``` # Attribute definitions: collected_text: the set of text_literal, annotation_text, annotation_text_character, or other composite_text that may be placed and styled as a collection. ### Formal propositions: WR1: A composite text shall not participate in its own definition. # 5.4.34 composite_text_with_extent A composite_text_with_extent is a composite_text whose extent is explicitly specified. ### EXPRESS specification: ``` *) ENTITY composite_text_with_extent SUBTYPE OF (composite_text); extent : planar_extent; END_ENTITY; (* ``` ### Attribute definitions: extent: the extent in x and y directions of the composite_text_with_extent. # 5.4.35 composite_text_with_delineation A composite_text_with_delineation is a composite_text that specifies the delineation of the text. The type of delineation and its effect on the appearance of the text is specified in an Application Protocol. # EXPRESS specification: ``` *) ENTITY composite_text_with_delineation SUBTYPE OF (composite_text); delineation : text_delineation; END_ENTITY; ``` © iso ISO 10303-46:1994(E) (* ### Attribute definitions: delineation: the specification of the delineation to be applied to the text. # 5.4.36 composite_text_with_blanking_box An composite_text_with_blanking_box is a composite_text that contains a blanking box. ### EXPRESS specification: ``` *) ENTITY composite_text_with_blanking_box SUBTYPE OF (composite_text); blanking : planar_box; END_ENTITY; (* ``` ### Attribute definitions: blanking: a planar_box that defines a rectangular area within which only the composite_text is presented. # 5.4.37 composite_text_with_associated_curves A composite_text_with_associated_curves is a composite_text that contains one ore more curves. ### EXPRESS specification: ``` *) ENTITY composite_text_with_associated_curves SUBTYPE OF (composite_text); associated_curves : SET[1:?] of curve; END_ENTITY; (* ``` ### Attribute definitions: associated_curves: a set of curves associated with the composite_text. NOTE - If the curves associated with a composite_curve_with_associated_curves are to be presented, then they may be assigned style by annotation_curve_occurrence. # 5.5 Presentation definition schema entity definitions: annotation occurrences # 5.5.1 annotation_occurrence An annotation_occurrence defines occurrences of annotation by combining two-dimensional geometry or annotation elements with style for presentation purposes. See clause 6 for more detail about assigning style. Annotation_occurrences shall be used only in representations (c)ISO which are defined for annotation purposes, i.e., area_dependent_annotation_representation, view_dependent_annotation_representation, curve_style_curve_pattern, fill_area_style_tile_curve_with_style, or fill_area_style_tile_coloured_region. ``` EXPRESS specification: ``` Formal propositions: WR1: A annotation_occurrence shall be a geometric_representation_item. # 5.5.2 annotation_point_occurrence An annotation_point_occurrence is a point with a style assignment. ``` EXPRESS specification: ``` ``` *) ENTITY annotation_point_occurrence SUBTYPE OF (annotation_occurrence); WHERE WR1: 'GEOMETRY_SCHEMA.POINT' IN TYPEOF (SELF\styled_item.item); END_ENTITY; (* ``` Formal propositions: WR1: The styled item shall be a point. # 5.5.3 annotation_curve_occurrence An annotation_curve_occurrence is a curve with a style assignment. ``` EXPRESS specification: ``` ``` *) ENTITY annotation_curve_occurrence SUBTYPE OF (annotation_occurrence); WHERE WR1: 'GEOMETRY_SCHEMA.CURVE' IN TYPEOF (SELF\styled_item.item); END_ENTITY; (* ``` © ISO ISO 10303-46:1994(E) # Formal propositions: WR1: The styled item shall be a curve. # 5.5.4 annotation_fill_area_occurrence An annotation_fill_area_occurrence is the assignment of a style to an annotation_fill_area; it includes the specification of the point to be used as the starting point of the fill_area. ### EXPRESS specification: ### Attribute definitions: fill_style_target: the point that specifies the starting location for the fill_area_style assigned to the annotation_fill_area_occurrence. ### Formal propositions: WR1: The styled item shall be an annotation_fill_area. # 5.5.5 annotation_text_occurrence An annotation_text_occurrence is a text_literal, annotation_text, annotation_text_character, defined_character_glyph, or composite_text with a style assignment. ### EXPRESS specification: ### Formal propositions: WR1: The item to which style is assigned shall be the type of at least one of text_literal, annotation_text_character, defined_character_glyph, or composite_text. ©iso # 5.5.6 annotation_symbol_occurrence An annotation_symbol_occurrence is an annotation_symbol with a style assignment or a defined_symbol with a style assignment. # EXPRESS specification: # Formal propositions: WR1: The styled item shall be an annotation_symbol or a defined_symbol. # 5.5.7 annotation_table_occurrence An annotation_table_occurrence is an annotation_table with a style assignment or a defined_table with a style assignment. # EXPRESS specification: WR1: The styled item shall be an annotation_table or a defined_table. # 5.5.8 annotation_occurrence_relationship An annotation_occurrence_relationship is the association of two annotation_occurrences. # EXPRESS specification: Formal propositions: ``` *) ENTITY annotation_occurrence_relationship; name : label; description : text; relating_annotation_occurrence : annotation_occurrence; ``` ©iso ISO 10303-46:1994(E) ``` related_annotation_occurrence : annotation_occurrence; END_ENTITY; (* ``` ### Attribute definitions: name: the word, or group of words, by which the annotation_occurrence_relationship is referred to. description: text that relates the nature of the annotation_occurrence_relationship. relating_annotation_occurrence: the first of two annotation_occurrences which are related. related_annotation_occurrence: the second of two annotation_occurrences which are related. NOTE - There is no significance to the ordering of the two related annotation occurrences. The use of the different attribute names serves only to distinguish the names. # 5.5.9 table_text_relationship A table_text_relationship establishes a relationship between a field in an annotation_table_occurrence and an annotation_text_occurrence. It is used to include text in a field of a table. ``` EXPRESS specification: ``` ``` *) ENTITY table_text_relationship SUBTYPE OF (annotation_occurrence_relationship); field : table_record_field_representation; WHERE WR1: 'PRESENTATION_DEFINITION_SCHEMA.ANNOTATION_TABLE_OCCURRENCE' IN TYPEOF (SELF\annotation_occurrence_relationship. relating_annotation_occurrence); WR2: 'PRESENTATION_DEFINITION_SCHEMA.ANNOTATION_TABLE' IN TYPEOF (SELF\annotation_occurrence_relationship. relating_annotation_occurrence\styled_item.item); WR3: 'PRESENTATION_DEFINITION_SCHEMA.ANNOTATION_TEXT_OCCURRENCE' IN TYPEOF (SELF\annotation_occurrence_relationship. related_annotation_occurrence); WR4: field_in_table (SELF.field, SELF\annotation_occurrence_relationship. relating_annotation_occurrence); END_ENTITY; ``` Attribute definitions: field: the particular field in the table in which the text is positioned. SELF\annotation_occurrence_relationship.relating_annotation_occurrence: the annotation_table_occurrence in which text is positioned. © ISO SELF\annotation_occurrence_relationship.related_annotation_occurrence: the annotation_text_occurrence positioned in the table. # Formal propositions: WR1: The relating_annotation_occurrence shall be an annotation_table_occurrence. WR2: The relating_annotation_occurrence shall present an annotation_table. WR3: The related_annotation_occurrence shall be an annotation_text_occurrence. WR4: The field shall be a field in the table in which the text is positioned. # 5.6 Presentation definition schema function definitions # 5.6.1 acyclic_composite_text The acyclic_composite_text function examines a composite_text instance to see if it participates in its own definition. It returns TRUE if the composite_text instance is acyclic (does not participate in its own definition) and FALSE if it is cyclic (does participate in its own definition). The function first checks to see if it is among its own collected_text set, and returns FALSE if it is. Next, it creates a local set of all instances of composite_text in its own collected_text set. It then adds to this set all of the instances of
composite_text that are referenced by the text_string_representation used by the representation_map used by any annotation_text in its own collected_text set. This local set is added to the set of instances already examined. If the set of instances already examined does not increase in size, then all possibilities have been examined and the function returns TRUE. Otherwise, the function is then called recursively to check further. # EXPRESS specification: ``` *) FUNCTION acyclic_composite_text(start_composite : composite_text; child_text : SET [1:?] OF text_or_character) : LOGICAL; LOCAL i : INTEGER; local_composite_text : SET [0:?] OF composite_text; local_annotation_text : SET [0:?] OF annotation_text; local_children : SET [0:?] OF text_or_character; END_LOCAL; local_composite_text := QUERY (child <* child_text |</pre> ('PRESENTATION_DEFINITION_SCHEMA.COMPOSITE_TEXT' IN TYPEOF (child))); IF (SIZEOF (local_composite_text) > 0) THEN REPEAT i := 1 TO HIINDEX (local_composite_text); IF (start_composite :=: local_composite_text[i]) THEN RETURN (FALSE); ``` ©ISO ``` END_IF; END REPEAT: END_IF; local_children := child_text; IF (SIZEOF (local_composite_text)) > 0 THEN REPEAT i := 1 TO HIINDEX (local_composite_text); local_children := local_children + local_composite_text[i].collected_text; END_REPEAT; END_IF; local_annotation_text := QUERY (child <* child_text |</pre> ('PRESENTATION_DEFINITION_SCHEMA.ANNOTATION_TEXT' IN TYPEOF (child))); IF (SIZEOF (local_annotation_text) > 0) THEN REPEAT i := 1 TO HIINDEX (local_annotation_text); local children := local children + QUERY (item <* local_annotation_text[i] \mapped_item. mapping_source.mapped_representation.items | SIZEOF(['PRESENTATION_DEFINITION_SCHEMA.ANNOTATION_TEXT', 'PRESENTATION_DEFINITION_SCHEMA.COMPOSITE_TEXT'] * TYPEOF(item)) > 0); END_REPEAT; END_IF; IF (local_children :<>: child_text) THEN RETURN (acyclic_composite_text (start_composite, local_children)); RETURN (TRUE); END_IF; END_FUNCTION; ``` ### Argument definitions: start_composite: the composite_text which is tested. This is input to the function. child_text: the text_or_characters referenced by start_composite. This is input to the function. On initial input this set contains as its only element the collected_text of the start_composite. # 5.6.2 acyclic_symbol_representation_relationship The acyclic_symbol_representation_relationship function determines if a symbol_representation is used in the tree of symbol_representation_relationships that defines this symbol_representation. It returns TRUE if it is not acyclic, and FALSE if there is. EXPRESS specification: ©ISO ``` FUNCTION acyclic_symbol_representation_relationship (relation : symbol_representation_relationship; children : SET OF symbol_representation) : BOOLEAN; LOCAL ``` ``` x : SET OF symbol_representation_relationship; i : INTEGER; local_children : SET OF symbol_representation; END_LOCAL; REPEAT i:=1 TO HIINDEX(children); IF relation\representation_relationship.rep_1 :=: children[i] THEN RETURN (FALSE); END_IF; END_REPEAT; x := USEDIN (relation\representation_relationship.rep_1, 'REPRESENTATION_SCHEMA.'+ 'REPRESENTATION_RELATIONSHIP.'+ 'REP_2'); local_children := children + relation\representation_relationship.rep_1; IF SIZEOF (x) > 0 THEN REPEAT i:=1 TO HIINDEX (x); IF NOT acyclic_symbol_representation_relationship(x[i] , local_children) THEN RETURN (FALSE); END_IF; END_REPEAT; END_IF; RETURN (TRUE); ``` # Argument definitions: END_FUNCTION; relation: the symbol_representation_relationship which is tested. This is input to the function. children: the symbol_representations referenced by relation. This is input to the function. On initial input this set contains as only element the rep_2 of the relation. # 5.6.3 field_in_table The field_in_table function is a function that examines a table_record_field_representation and an annotation_table_occurrence, and returns the value TRUE if the field is in the table, and FALSE if the field is not in the table. The function first finds the table_representation that the annotation_table_occurrence maps. It then finds all the table_record_representations which are either related to the © ISO ISO 10303-46:1994(E) table_representation_entity by a symbol_representation_relationship or are included in the table_representation through a mapped_item. Finally, it returns FALSE if there are no table_record_representation entities which relate to the field by a symbol_representation_relationship or include the field through a mapped_item, and returns TRUE otherwise. # EXPRESS specification: ``` *) FUNCTION field_in_table (field : table_record_field_representation; table : annotation_table_occurrence): BOOLEAN: LOCAL i : INTEGER: table_rep : table_representation; symbol_rep_rel_set : SET [1:?] OF symbol_representation_relationship; mapped_item_set : SET [1:?] OF mapped_item; table_record_rep_set : SET [1:?] OF table_record_representation := []; END_LOCAL; table_rep := table\styled_item.item\mapped_item.mapping_source. mapped_representation; mapped_item_set := QUERY(item <* table_rep.items |</pre> ('REPRESENTATION_SCHEMA.MAPPED_ITEM' IN TYPEOF(item)) AND ('PRESENTATION_DEFINITIONS_SCHEMA.'+ 'TABLE_RECORD_REPRESENTATION' IN TYPEOF(item\mapped_item.mapping_source. mapped_representation))); REPEAT i := 1 TO HIINDEX(mapped_item_set); table_record_rep_set := table_record_rep_set + mapped_item_set[i].mapping_source.mapped_representation; END_REPEAT; symbol_rep_rel_set := USEDIN(table_rep. 'REPRESENTATION_SCHEMA.'+ 'REPRESENTATION_RELATIONSHIP.REP_1'); REPEAT i := 1 TO HIINDEX(symbol_rep_rel_set); table_record_rep_set := table_record_rep_set + symbol_rep_rel_set[i]\representation_relationship.rep_2; END_REPEAT; IF SIZEOF(QUERY(table_record_rep <* table_record_rep_set |</pre> (SIZEOF(QUERY(symbol_rep_rel <* USEDIN(table_record_rep, 'PRESENTATION_DEFINITION_SCHEMA.'+ 'SYMBOL_REPRESENTATION_RELATIONSHIP') | symbol_rep_rel\representation_relationship.rep_2 :=: field)) > 0) OR (SIZEOF(QUERY(item <* table_record_rep.items | ('REPRESENTATION_SCHEMA.MAPPED_ITEM' IN ``` © ISO Argument definitions: field: the table record field which shall be in the table. This is input to the function. table: the annotation table which shall contain the field. This is input to the function. # EXPRESS specification: ``` *) END_SCHEMA; -- presentation_definition_schema (* ``` # 6 Presentation appearance The following EXPRESS declaration begins the **presentation_appearance_schema** and identifies the necessary external references. # EXPRESS specification: ``` *) SCHEMA presentation_appearance_schema; REFERENCE FROM external_reference_schema (externally_defined_item, pre_defined_item); REFERENCE FROM geometry_schema (axis2_placement, cartesian_point, geometric_representation_item, point, vector): REFERENCE FROM measure_schema (descriptive_measure, length_measure, measure_with_unit, plane_angle_measure, ``` ©ISO ISO 10303-46:1994(E) ``` positive_length_measure, ratio_measure, positive_ratio_measure); REFERENCE FROM presentation_organization_schema (area_dependent_annotation_representation, presentation_area, presentation_layer_assignment, presentation_layer_usage, presentation_representation, presentation_set, presentation_view, product_data_representation_view, view_dependent_annotation_representation); REFERENCE FROM presentation_definition_schema (annotation_curve_occurrence, annotation_fill_area, annotation_symbol_occurrence, annotation_text_with_delineation, symbol_representation_with_blanking_box); REFERENCE FROM presentation_resource_schema (character_glyph_symbol_outline, character_glyph_symbol_stroke, colour); REFERENCE FROM representation_schema (mapped_item, representation, representation_item, representation_map, using_representations); REFERENCE FROM support_resource_schema (label); (* NOTES ``` 1 - The schemas referenced above can be found in the following parts of ISO 10303: | external_reference_schema | ISO 10303-41 | |----------------------------------|-----------------------------------| | geometry_schema | ISO 10303-42 | | management_resources_schema | ISO 10303-41 | | measure_schema | ISO 10303-41 | | presentation_organization_schema | Clause 4 of this part of ISO 1030 | © iso presentation_definition_schema Clause 5 of this part of ISO 10303 presentation_resource_schema Clause 7 of this part of ISO 10303 representation_schema ISO 10303-43 support_resource_schema ISO 10303-41 2 - The EXPRESS-G diagrams for this schema may be found in annex E of this part of ISO 10303. # 6.1 Introduction The subject of the presentation_appearance_schema is the specification of the intended graphical appearance of a presented picture. The presentation_appearance_schema also defines the mechanism which allows the appropriate association of these appearance attributes with annotation_occurrences in the context of a presentation_representation. Thus, the context of the presentation_representation can be used to determine the appearance of different kinds of elements in the picture. # 6.2 Fundamental concepts and assumptions # 6.2.1 Assignment of presentation style The presentation_appearance_schema allows the association of appearance attributes with selected annotation primitives and with product shape elements. In this part of ISO 10303, presentation style can be assigned to any representation_item. A style assignment is made by instantiating a styled_item which refers to a representation_item together with its presentation_style_assignment. A presentation_style_assignment itself is a collection of different presentation styles such as point style, curve style, or text style. Styling an unstyled representation_item produces a new representation_item which has presentation style assigned. The presentation_style_assignment of a styled_item affects the appearance of the referenced representation_item as well as the appearance of all representation_items referenced directly or indirectly by that item. Only those representation_items are affected
which are not already styled. This means styling a styled representation_item has no effect, styling a partially styled representation_item affects only the appearance of the unstyled parts, and styling an unstyled representation_item affects the appearance of the whole item. Only styled representation_items may be presented. Whether they are actually presented depends on several other facts, like layer invisibility and invisibility, hidden line and surface removal, as well as clipping. This part of ISO 10303 does not make any statement about the effect if style conflicts occurs. A style conflict occurs, for example, when a representation_item is used by several styled_items. A presentation_style_assignment is used to assign style to a representation_item independently from any presentation context. A subtype of presentation_style_assignment, the presentation_style_by_context, allows the assignment of style for a specific presentation context. A presentation context can be any presentation_set, representation, or representation. ©ISO tion_item. In the last case, a style can be assigned to an item as a whole, and a different style can be assigned to a part of that item. A style assignment can be over-riden by an **over_riding_styled_item**. A subtype of **over_riding_styled_item**, the **context_dependent_over_riding_styled_item**, allows the over-riding of a style for a specific presentation context. # 6.2.2 Types of presentation styles For each annotation primitive defined in the presentation_definition_schema, a special group of styles exist. These groups are point styles, curve styles, fill area styles, surface styles, text styles, and symbol styles. This part of ISO 10303 does not restrict style assignment to product shape elements. For example, it allows the assignment of surface style to a point. However, only appropriate styles affect the appearance of the product shape element; i.e., surface styles only affect surfaces, fill area styles and curve styles only affect curves, and point styles only affect points, curves, and surfaces. For high-level product shape elements such as solid models, the using Application Protocol has to specify which styles affect the appearance of these elements. Nevertheless, the style assignment for annotation primitives is more restrictive. Details on these restrictions can be found in clause 5 subtypes of annotation_occurrence. Presentation styles can be specified using the resources of this schema, can be externally defined, or can be pre-defined by Application Protocols. The presentation styles defined in this schema include the following. Point styles provide the resources to specify the visual appearance of points. They allow the specification of the marker symbol, marker size, and colour to be used for presenting points. Point styles can be specified by the entity **point_style**. Curve styles provide the resources to specify the visual appearance of curves. They allow the specification of curve fonts, curve width, appearance of curve ends and corners, colour or patterns for filling visible curve segments. A curve font specifies whether a curve shall be drawn using solid, dashed, or dotted lines. The presentation_appearance_schema allows the specification of arbitrary patterns for curve fonts and the usage of externally defined or pre-defined curve fonts. The entities used for the definition of curve fonts are externally_defined_curve_font, pre_defined_curve_font, curve_style_font_pattern, and curve_style_font_and_scaling. The curve width can be specified as measure or pre-defined size. Curve ends and corners may be drawn squared or rounded, and extension or shortage can be specified for curve ends. The entities supporting this structure are curve_style_with_ends_and_corners and curve_style_with_extension. curve_style_wide allows the specification of a fill area style which is used for filling visible curve segments. This has been included to meet draughting requirements for the presentation of curves. The curve_style_rendering controls the rendering of curves on a surface and is described together with surface styles. Fill area styles provide the resources to specify the visual appearance of annotation fill areas. They allow the specification of a solid colour, hatches, or tiling patterns. The fill-area_style_colour can be used to specify a solid colour that is used for presenting a fill area. The hatching patterns can be composed of sets of parallel lines with arbitrary angle. Alternatively, hatching patterns may be externally defined or pre-defined. The entities for hatches are fill_area_style_hatching, pre_defined_hatch_style, externally_defined_hatch_style, and ©ISO one_direction_repeat_factor. The tiling patterns can be made of curves, coloured regions, or symbols. Alternatively, tiling pattern may be externally defined or pre-defined. Tiling patterns are repeated in two directions which are specified by arbitrary vectors. The entities for the definition of tiling patterns are pre_defined_tile_style, externally_defined_tile_style, fill_area_style_tile_curve_with_style, fill_area_style_tile_coloured_region, fill_area_style_tile_symbol_with_style, pre_defined_tile, externally_defined_tile, and two_direction_repeat_factor. Surface styles provide the resources to specify the visual appearance of surfaces. Separate surface styles may be applied to each side of a surface, or the same surface styles can be used for both sides. The surface style usage specifies a surface side style for one or both sides of a surface. Entities for the assignment of style to sides of a surface are surface_style_usage and surface_side_style. A surface side style may be any combination of fill area style, boundary style, silhouette style, segmentation curve style, control grid style, parameter line style, or rendering style. A fill area style specifies a solid colour, hatches, or a tiling pattern for filling the side of a surface. A boundary style specifies a curve style or a rendering method and properties for presenting the boundary curves of a surface. If no boundary style is specified, the boundary curves shall not be presented. A silhouette style specifies a curve style or a rendering method and properties for presenting the silhouette curves of a surface. If no silhouette style is specified, silhouette curves shall not be presented. A segmentation curve style specifies a curve style or a rendering method and properties for presenting the segmentation curves of a surface. This style affects only surfaces which are divided into segments such as B-spline surfaces. If no segmentation curve style is specified, segmentation curves shall not be presented. A control grid style specifies a curve style or a rendering method and properties for presenting the mesh of control points which are used for the definition of a surface. This style affects only surfaces which are defined over a mesh of control points, such as B-spline surfaces. If no control grid style is specified, the control grid shall not be presented. A parameter line style specifies a curve style or a rendering method and properties for presenting iso-parameter lines of a surface. The number of parameter lines in each parameter direction has to be specified for this style. If no parameter line style is specified, the parameter lines shall not be presented. The entities defining these surface styles are surface_fill_area, surface_style_boundary, surface_style_silhouette, surface_style_segmentation_curve, surface_style_control_grid, and surface_style_parameter_line. The entities curve_style_rendering and surface_rendering_properties specify the rendering method and properties for curves on a surface. A rendering style specifies the method which shall be used for rendering the surface. If this style is specified, surface rendering using reflectance calculations is performed for presenting the surface. For this style, a colour shall be specified for the surface. Additional rendering properties including transparency and ambient, diffuse, and specular reflectance coefficients can optionally be specified. The entities for rendering styles are surface_style_rendering, surface_style_rendering_with_properties, sur- face_style_transparent, surface_style_reflectance_ambient, surface_style_reflectance_ambient_diffuse, and surface_style_reflectance_ambient_diffuse_specular. Besides those styles listed above, surface styles may also be pre-defined. Text styles provide the resources to specify the visual appearance of annotation text. Text justification, box characteristics, character spacing, and mirror axis affect the appearance of the whole text, while character glyph style affects the appearance of the individual characters or symbols which make up the text. Text justification specifies how the text is aligned. The supported types of alignment are specified by Application Protocols. The box characteristics specify the geometry of the character box. The character box is a parallelogram for which the width, height, slant angle, and rotation angle may be specified. Text spacing defines the spacing which shall be included between adjacent character boxes of a string, in addition to the spacing included in the font definition. Text mirroring specifies a mirror axis which shall be used for mirroring the text. Mirroring shall be performed after all remaining text styles have been applied. The entities supporting the definition of these text styles are text_style, text_style_with_spacing, text_style_with_mirror, text_style_with_justification, and text_style_with_box_characteristics. A character glyph style may be a outline style, stroke style, or only a text colour. An outline style is a curve style that is used for presenting the outlines which make up a character glyph. Optionally, a fill area style for filling the outlines may be specified. An outline style affects only character glyphs which are defined by outlines. A stroke style is a curve
style that is used for presenting the strokes which make up a character glyph. A stroke style affects only character glyphs which are defined by strokes. For pre-defined and externally defined fonts, only a colour shall be specified. The entities supporting the definition of these character glyph styles are character_glyph_style_stroke, character_glyph_style_outline, character_glyph_style_outline_with_characteristics, and text_style_for_defined_font. Symbol styles provide the resources to specify the visual appearance of annotation symbols. A symbol style is an arbitrary collection of point styles, curve styles, fill area styles, surface styles, and text styles. The entities supporting the definition of these symbol styles are symbol_style, symbol_element_style, and symbol_colour. # 6.2.3 Approximation tolerances Approximation tolerances specify the allowable tolerances between the shape of the presented elements and their mathematically exact position and shape. Approximation tolerances apply to curves and surfaces and can be specified in parameter space, product shape space, or presentation area space. The space in which the tolerances are specified depends on the approximation method used. For the chordal deviation and chordal length approximation methods, the tolerance can be specified in product—shape or presentation—area space. For the parameter approximation method, the tolerance shall be specified in parameter space. # 6.2.4 Occlusion and invisibility The presentation_appearance_schema provides resources to specify the intended appearance of items which hide each other because they overlap in two-dimensional space. Those items include the elements of the presentation hierarchy which are defined in clause 4 in this part of ISO 10303, annotation_fill_areas, annotation texts with delineations, character glyphs, and ©ISO symbols. For this purpose, an occlusion_precedence can be specified for any two of these items. In addition, the **presentation_appearance_schema** provides resources to specify the invisibility of **styled_items** or layers. # 6.3 Presentation appearance schema type definitions # 6.3.1 style_context_select The style_context_select selects between the entities which can be a context for the assignment or over-riding of presentation style. # EXPRESS specification: ``` *) TYPE style_context_select = SELECT (representation, representation_item, presentation_set); END_TYPE; (* ``` # 6.3.2 presentation_style_select The presentation_style_select is used by a presentation_style_assignment to associate style with a representation_item. A different style is provided for each kind of representation_item to be styled. # EXPRESS specification: ``` *) TYPE presentation_style_select = SELECT (pre_defined_presentation_style, point_style, curve_style, surface_style_usage, symbol_style, fill_area_style, text_style, approximation_tolerance, externally_defined_style, null_style); END_TYPE; (* ``` # 6.3.3 null_style The null_style specifies that no specific style is assigned directly to an item that is to be presented. The style or styles to be used in presenting the item are specified within the definition of the item. If no styles are specified within the definition, then the item shall not be presented. © ISO ISO 10303-46:1994(E) EXAMPLE 9 - A symbol is defined using two annotation_curve_occurrences, which are styled such that one is red and the other is blue. If an instance of the symbol is assigned null_style, it will be presented using the colours specified in the definition. ### EXPRESS specification: ``` *) TYPE null_style = ENUMERATION OF (null); END_TYPE; (* ``` Enumerated item definitions: null: the representation_item to which the style is applied shall be presented using the style or styles contained in its definition, if any. # 6.3.4 marker_select The marker_select is a selection of a specific marker or a pre-defined marker used for the presentation of points. # EXPRESS specification: ``` *) TYPE marker_select = SELECT (marker_type, pre_defined_marker); END_TYPE; (* ``` # 6.3.5 marker_type The marker_type specifies the form for the presentation of points. ### EXPRESS specification: ``` *) TYPE marker_type = ENUMERATION OF (dot, x, plus, asterisk, ring, square, triangle); END_TYPE; (* Enumerated item definitions: dot: points are presented as dots (·). x: points are presented as diagonal crosses (×). ``` **plus:** points are presented as plus signs (+). ``` ISO 10303-46:1994(E) ``` ©iso ``` asterisk: points are presented as asterisks (*). ring: points are presented as circles (○). square: points are presented as squares (□). triangle: points are presented as triangles (△). ``` # 6.3.6 size_select The size_select is used to specify the size of marker symbols or the width of curves. # EXPRESS specification: ``` *) TYPE size_select = SELECT (positive_length_measure, measure_with_unit, descriptive_measure, pre_defined_size); END_TYPE; (* ``` # 6.3.7 curve_font_or_scaled_curve_font_select The curve_font_or_scaled_curve_font_select is a selection of a curve_style_font_select or a curve_style_font_and_scaling. It is used to specify the font for presenting a curve. # EXPRESS specification: ``` *) TYPE curve_font_or_scaled_curve_font_select = SELECT (curve_style_font_select, curve_style_font_and_scaling); END_TYPE; (* ``` # 6.3.8 curve_style_font_select The curve_style_font_select is a selection of a curve_style_font, a pre_defined_curve_font, or an externally_defined_curve_font. It is used to specify an unscaled font for presenting a curve. ### EXPRESS specification: ``` *) TYPE curve_style_font_select = SELECT (curve_style_font, pre_defined_curve_font, externally_defined_curve_font); END_TYPE; /* ``` ©iso # 6.3.9 squared_or_rounded The squared_or_rounded type specifies the appearance of curves at their corners or ends. ``` NOTE - See figure 16 EXPRESS specification: *) TYPE squared_or_rounded = ENUMERATION OF (squared, rounded); END_TYPE; (* ``` Enumerated item definitions: squared: the curve is squared off at its end points and corners. rounded: a filled semi-circular arc with diameter equal to the curve width is drawn around the curve's end points and corners. # 6.3.10 fill_style_select The fill_style_select is a selection between different fill styles. # EXPRESS specification: ``` *) TYPE fill_style_select = SELECT (fill_area_style_colour, pre_defined_tile_style, externally_defined_tile_style, fill_area_style_tiles, pre_defined_hatch_style, externally_defined_hatch_style, fill_area_style_hatching); END_TYPE; (* ``` # 6.3.11 fill_area_style_tile_shape_select The fill_area_style_tile_shape_select is used for the definition of fill_area_style_tiles. It selects between different shapes and sources of tiles. ### EXPRESS specification: ``` *) TYPE fill_area_style_tile_shape_select = SELECT (fill_area_style_tile_curve_with_style, fill_area_style_tile_coloured_region, fill_area_style_tile_symbol_with_style, pre_defined_tile, externally_defined_tile); END_TYPE; ``` © ISO Figure 16 - Squared or rounded (* # 6.3.12 curve_or_annotation_curve_occurrence The curve_or_annotation_curve_occurrence provides a curve or an annotation_curve_occurrence for defining the boundary of a fill_area_style_tile_coloured_region. # EXPRESS specification: ``` *) TYPE curve_or_annotation_curve_occurrence = SELECT (curve, annotation_curve_occurrence); END_TYPE; (* ``` ©ISO # 6.3.13 surface_side The surface_side is used by surface_style_usage to specify the sides of a surface to which a surface style is applied. ### EXPRESS specification: ``` *) TYPE surface_side = ENUMERATION OF (positive, negative, both); END_TYPE; (* ``` ### Enumerated item definitions: positive: the side of a surface which is in the same direction as the surface normal. negative: the side of a surface which is in the opposite direction than the surface normal. both: both sides. # 6.3.14 surface_side_style_select The surface_side_style_select is a selection of a surface_side_style or a pre_defined_surface_side_style. ### EXPRESS specification: ``` *) TYPE surface_side_style_select = SELECT (surface_side_style, pre_defined_surface_side_style); END_TYPE; (* ``` # 6.3.15 surface_style_element_select The surface_style_element_select is a selection of the different surface styles to use in the presentation of the side of a surface. ### EXPRESS specification: ``` *) TYPE surface_style_element_select = SELECT (surface_style_fill_area, surface_style_boundary, surface_style_silhouette, surface_style_segmentation_curve, surface_style_control_grid, surface_style_parameter_line, surface_style_rendering); END_TYPE; (* ``` (c)ISO # 6.3.16 curve_or_render The curve_or_render select type is used in the definition of several surface styles to control the appearance of curves on a surface. ### EXPRESS specification: ``` *) TYPE curve_or_render = SELECT (curve_style, curve_style_rendering); END_TYPE; (* ``` # 6.3.17 shading_curve_method The **shading_curve_method** specifies the method which shall be used for the shading of curves. Shading of curves (approximated by polylines) is the colouring of the line segments according to colour values at certain points of the curve. ### EXPRESS specification: ``` *) TYPE shading_curve_method = ENUMERATION OF (constant_colour, linear_colour); END_TYPE; (* ``` # Enumerated item definitions: constant_colour: if the curve has a colour association table and is approximated by i polyline segments, the colour state at the segment boundaries shall be interpolated in this table according to the state variable value at each boundary. The i-th polyline segment shall then be shaded in constant colour according to the colour state at the i-th segment start. linear_colour: if the curve has a colour association table and is approximated by i polyline segments, the colour state at the segment boundaries shall be interpolated in this table according to the state variable value at each boundary. The i-th polyline segment shall then be shaded in linearly
interpolated colour according to the colour states at both segment boundaries. # 6.3.18 direction_count_select The direction_count_select is a selection between a u_direction_count and a v_direction_count for use in presenting parameter lines of a surface. ### EXPRESS specification: ``` *) TYPE direction_count_select = SELECT (u_direction_count, v_direction_count); END_TYPE; (* ``` ©1SO # 6.3.19 u_direction_count The **u_direction_count** is a positive integer indicating the number of parameter curves in the u direction of a parametric surface. # EXPRESS specification: ``` *) TYPE u_direction_count = INTEGER; WHERE WR1: SELF > 1; END_TYPE; (* ``` # Formal propositions: WR1: The u direction count shall be greater than 1. # 6.3.20 v_direction_count The v_direction_count is a positive integer indicating the number of parameter curves in the v direction of a parametric surface. # EXPRESS specification: ``` *) TYPE v_direction_count = INTEGER; WHERE WR1: SELF > 1; END_TYPE; (* ``` ### Formal propositions: WR1: The v direction count shall be greater than 1. # 6.3.21 shading_surface_method The **shading_surface_method** specifies the method which shall be used for the shading of surfaces. ### NOTES - 1 The descriptions of the different types of surface shading show that in some cases the method involves interpolating results from the lighting, and in other case it involves performing the reflectance calculation after interpolation. For this reason, the shading method may be thought of as selecting a location in a display system's graphics pipeline where interpolation takes place. - 2 The results of the shading methods should produce the effects according to the enumerated item definitions. One particular case where the effects are difficult to define is when the silhouette of a surface intersects itself or another silhouette of the same surface. In this case, the effect is implementation-dependent. - 3 The shading methods correspond to those provided by PHIGS PLUS (see annexes F and D). ©iso ### EXPRESS specification: ``` *) TYPE shading_surface_method = ENUMERATION OF (constant_shading, colour_shading, dot_shading, normal_shading); END_TYPE; (* ``` ### Enumerated item definitions: constant_shading: a reflectance calculation is performed for each facet of the approximated surface to produce one reflected colour per facet. The point on the facet used in the calculation is implementation—dependent. The colour used in the reflectance calculation is the surface_colour specified in the relevant surface_style_rendering entity. colour_shading: a reflectance calculation is performed at each vertex of each facet of the approximated product shape, using the surface_colour and the surface normals in the vertices. The resulting reflected colours are interpolated linearly across each facet. dot_shading: any dot products needed by the reflectance equation are calculated from surface normals at a set of positions on the surface. These dot products are interpolated linearly across the surface. The reflectance calculation is performed at each interpolated position of the surface to produce a reflected colour based on the interpolated dot products and the surface_colour of the relevant surface_style_rendering entity. normal_shading: the surface normals are interpolated linearly across the surface. The reflectance calculation is performed at each interpolated position of the surface to produce a reflected colour based on the interpolated surface normal and the surface_colour of the relevant surface_style_rendering entity. If the **surface_colour** is specified through a **colour_specification**, the interpolation of colours shall be performed in the colour model of that specification. Otherwise the interpolation may be performed in an arbitrary model. ### NOTES - 4 The result of colour interpolation depends on the colour model in which interpolation is performed. - 5 Examples of colour models are RGB, HSV, HLS. - 6 More information about colour models and colour interpolation can be found in [12], pp. 611-620. # 6.3.22 rendering_properties_select The rendering_properties_select is a selection between two kinds of properties for a surface: reflectance and transparency. (c)ISO ISO 10303-46:1994(E) # EXPRESS specification: ``` *) TYPE rendering_properties_select = SELECT (surface_style_reflectance_ambient, surface_style_transparent); END_TYPE; (* ``` # 6.3.23 character_style_select The character_style_select is a selection between a character_glyph_style_stroke, a character_glyph_style_outline, or a text_style_for_defined_font. # EXPRESS specification: ``` *) TYPE character_style_select = SELECT (character_glyph_style_stroke, character_glyph_style_outline, text_style_for_defined_font); END_TYPE; (* ``` # 6.3.24 text_justification The text_justification type is provided to control the justification of text. NOTE - Application Protocols shall specify legal values of the text_justification and shall associate precise meaning to these values. # EXPRESS specification: ``` *) TYPE text_justification = label; END_TYPE; (* ``` # 6.3.25 box_characteristic_select The box_characteristic_select is a selection between box_height, box_width, box_slant_angle and box_rotate_angle. ### EXPRESS specification: ``` *) TYPE box_characteristic_select = SELECT (box_height, box_width, box_slant_angle, box_rotate_angle); END_TYPE; (* ``` ©ISO # 6.3.26 box_height The box_height is a height scaling factor used in the definition of a character glyph. # EXPRESS specification: ``` *) TYPE box_height = positive_ratio_measure; END_TYPE; (* ``` # 6.3.27 box_width The box_width is a width scaling factor used in the definition of a character glyph. # EXPRESS specification: ``` *) TYPE box_width = positive_ratio_measure; END_TYPE; (* ``` # 6.3.28 box_slant_angle A box_slant_angle is an angle which indicates that the box for a character glyph shall be presented as a parallelogram, with the angle being between the character up line and an axis perpendicular to the character base line. NOTE - Figure 17 shows the definition of box.slant_angle. # EXPRESS specification: ``` *) TYPE box_slant_angle = plane_angle_measure; END_TYPE; (* Informal propositions: ``` IP1: The box_slant_angle shall be between 0 and 90 degree. # 6.3.29 box_rotate_angle The **box_rotate_angle** is an angle which indicates that the box for a character glyph shall be presented at an angle to the baseline of the text string within which the glyph occurs, the angle being that between the baseline of the glyph and an axis perpendicular to the baseline of the text string. NOTE - Figure 17 shows the definition of box_rotate_angle. ### EXPRESS specification: ``` *) TYPE box_rotate_angle = plane_angle_measure; END_TYPE; (* ``` Figure 17 - Box slant and rotate angle # 6.3.30 character_spacing_select The character_spacing_select is a selection between a length_measure, a ratio_measure, a measure_with_unit, a descriptive_measure, and a pre_defined_character_spacing. It is used to specify the method of spacing between adjacent characters in a text string. ### EXPRESS specification: ``` *) TYPE character_spacing_select = SELECT (length_measure, ratio_measure, measure_with_unit, descriptive_measure, pre_defined_character_spacing); END_TYPE; (* ``` # 6.3.31 symbol_style_select The **symbol_style_select** is a selection between a **symbol_element_style** and a **symbol_colour**. It is used to specify the style to be applied to elements of a symbol, or the colour to be applied to an entire symbol. # EXPRESS specification: ``` *) TYPE symbol_style_select= SELECT (symbol_element_style, symbol_colour); ``` ©ISO ``` END_TYPE; (* ISSUE? ``` # 6.3.32 tolerance_select The tolerance_select is used by the approximation_tolerance to select either an approximation_tolerance_deviation or an approximation_tolerance_parameter. # EXPRESS specification: ``` *) TYPE tolerance_select = SELECT (approximation_tolerance_deviation, approximation_tolerance_parameter); END_TYPE; (* ``` # 6.3.33 approximation_method The approximation_method is used to enumerate two possible methods for the tessellation of curves and surfaces with line segments or meshes of planar polygons. # EXPRESS specification: ``` *) TYPE approximation_method = ENUMERATION OF (chordal_deviation, chordal_length); END_TYPE; (* ``` ### Enumerated item definitions: chordal_deviation: curves are approximated in a way that the distance between the curve and the line segment does not exceed a given deviation value. Surfaces are approximated in a way that the distance between the surface and the polygon does not exceed a given deviation value. The distance is measured in the normal direction to the line segment or the planar polygon. The chordal_deviation is measured either in product shape space units or presentation_area units as specified by an approximation_tolerance_deviation. chordal_length: curves are approximated in a way that the resulting line segments have uniform length. Surfaces are approximated in a way that the edges of the resulting planar polygons have uniform length. The chordal_length is measured either in product shape space units or presentation_area units as specified by an approximation_tolerance_deviation. NOTE - Figure 18 shows the definition of chordal_deviation and chordal_length. ©ISO ISO 10303-46:1994(E) # =<a > line segment a -approximation tolerance Figure 18 - Chordal deviation and length # 6.3.34 tolerance_deviation_select chordal_devitation The tolerance_deviation_select is used by an approximation_tolerance_deviation to select either a curve_tolerance_deviation or a surface_tolerance_deviation. # EXPRESS specification: ``` *) TYPE tolerance_deviation_select = SELECT (curve_tolerance_deviation, surface_tolerance_deviation); END_TYPE; (* ``` ©iso ### 6.3.35 curve_tolerance_deviation The **curve_tolerance_deviation** specifies an approximation tolerance for a curve by providing a deviation value. ### EXPRESS specification: ``` *) TYPE
curve_tolerance_deviation = positive_length_measure; END_TYPE; (* ``` ### 6.3.36 surface_tolerance_deviation The surface_tolerance_deviation specifies an approximation tolerance for a surface by providing a deviation value. ### EXPRESS specification: ``` *) TYPE surface_tolerance_deviation = positive_length_measure; END_TYPE; (* ``` ### 6.3.37 product_or_presentation_space The product_or_presentation_space is used by an approximation_tolerance_deviation to specify the space in which the tolerance values are defined. ### EXPRESS specification: ``` *) TYPE product_or_presentation_space = ENUMERATION OF (product_shape_space, presentation_area_space); END_TYPE; (* ``` ### Enumerated item definitions: product_shape_space: the definition space of the product shape item to be presented. presentation_area_space: the coordinate space in which the presentation_area is founded. # 6.3.38 tolerance_parameter_select The tolerance_parameter_select is used by an approximation_tolerance_parameter to select either a curve_tolerance_parameter or a surface_tolerance_parameter. ### EXPRESS specification: ``` *) TYPE tolerance_parameter_select = SELECT (curve_tolerance_parameter, ``` ``` © iso ``` ``` surface_tolerance_parameter); END_TYPE; (* ``` ### 6.3.39 curve_tolerance_parameter The **curve_tolerance_parameter** specifies an approximation tolerance for curves in parameter space units. ### EXPRESS specification: ``` *) TYPE curve_tolerance_parameter = REAL; END_TYPE; (* ``` ### 6.3.40 surface_tolerance_parameter The **surface_tolerance_parameter** specifies an approximation tolerance for surfaces in parameter space units. ### EXPRESS specification: ``` *) TYPE surface_tolerance_parameter = REAL; END_TYPE; (* ``` # 6.3.41 hiding_or_blanking_select The hiding_or_blanking_select selects the entities which can hide or blank other entities in a presentation. ``` *) TYPE hiding_or_blanking_select = SELECT (presentation_area, presentation_view, product_data_representation_view, annotation_fill_area, area_dependent_annotation_representation, view_dependent_annotation_representation, annotation_text_with_delineation, character_glyph_symbol_stroke, character_glyph_symbol_outline, symbol_representation_with_blanking_box); END_TYPE; (* ``` © ISO ### 6.3.42 invisibility_context The invisibility_context type selects the context in which elements of a picture may be denoted as invisible. ### EXPRESS specification: ``` *) TYPE invisibility_context= SELECT (presentation_layer_usage, presentation_representation, presentation_set); END_TYPE; ``` ### 6.3.43 invisible_item The invisible_item type selects elements of a picture that may be denoted as invisible. ### EXPRESS specification: ``` *) TYPE invisible_item = SELECT (styled_item, presentation_layer_assignment, presentation_representation); END_TYPE; (* ``` # 6.4 Presentation appearance schema entity definitions: style assignment # 6.4.1 styled_item A styled_item is a representation_item with associated presentation style. ### EXPRESS specification: ©ISO ISO 10303-46:1994(E) Attribute definitions: styles: the styles assigned to the item. item: the item to which styles are assigned. Formal propositions: WR1: The set styles shall contain only one style or all members of the set shall be presentation_style_by_context entities. NOTE – This is to ensure that there are no style conflicts; more than one style may be specified only when the context in which each style applies is given. ### 6.4.2 over_riding_styled_item A over_riding_styled_item is a styled_item where the style assignment takes precedence over another assigned style. The precedence happens when the over_ridden_style styled_item and the over_riding_styled_item are both included, directly or indirectly, in the same presentation. EXAMPLE 10 - A circle instance is used by a geometric_curve_set which is an item in a representation. A styled_item instance is an item in the same representation. That styled_item has the geometric_curve_set as its item, and a presentation_style_assignment with a curve_style which has a colour of blue. An instance of over_riding_styled_item is also an item in the same representation. That over_riding_styled_item has the circle instance as its item, the styled_item instance as its over_ridden_style, and a presentation_style_assignment with a curve_style which has a colour of red. The red colour for the circle takes precedence over the blue colour of the geometric_curve_set for a presentation of the geometric_curve_set. #### EXPRESS specification: ``` *) ENTITY over_riding_styled_item SUBTYPE OF (styled_item); over_ridden_style : styled_item; END_ENTITY; (* ``` ### Attribute definitions: over_ridden_style: the styled_item that will have its style overridden. # 6.4.3 context_dependent_over_riding_styled_item A context_dependent_over_riding_styled_item is an over_riding_styled_item where the style assignment takes precedence over another assigned style based on a representation, representation_item, or combination of representation and representation_item in which the item being styled is used. EXAMPLE 11 - A circle instance is used by geometric_curve_set instance 1 which is an item in representation instance 1. In this example the instance of circle represents the head of a screw in a door hinge. A styled_item instance is an item in representation instance 1. That styled_item has the geometric_curve_set as its item, and a presentation_style_assignment with a curve_style which has a colour of blue. The representation instance 1 is included in representation (c)ISO instance 2 through the use of representation map instance 1 and mapped_item instance 1, as one hinge on a door. The representation instance 1 is included in a different location in representation instance 2 through representation map 2 and mapped_item instance 2 as a second hinge. An instance of context_dependent_over_riding_styled_item is also an item in representation instance 2. That context_dependent_over_riding_styled_item has the circle instance as its item, the styled_item instance as its over_ridden_style, a presentation_style_assignment with a curve_style which has a colour of red, and a style_context of mapped_item instance 1. The red color for the circle takes precedence over the blue color of the geometric_curve_set for a representation of the geometric_curve_set as it is included in the presentation through mapped_item instance 1. A presentation of representation instance 2 would have the geometric_curve_set presented in two different places, the first having a red screw head and all the other curves blue, the second having all the curves blue. ### EXPRESS specification: ### Attribute definitions: style_context: a set of one or two contexts for the overriding of the overridden style. #### Formal propositions: WR1: There shall be no more than one representation and one representation_item in the style_context set. # 6.4.4 presentation_style_assignment A presentation_style_assignment is a set of styles which are assigned to a representation_item for the purpose of presenting the item. Style definitions have an effect only on the appearance of an element of a special type. Surface style has only an effect on surfaces. Fill area style and curve style have only an effect on curves and surfaces. Point style has an effect on points, curves, and surfaces. Text style has only an effect on the appearance of annotation text. Symbol style has only an effect on symbols. EXAMPLE 12 - If a line is given a style which is a curve style, it shall appear. If a line is given both curve and point style, both the curve and its related cartesian points shall appear. #### EXPRESS specification: ``` *) ENTITY presentation_style_assignment; ``` ISO 10303-46:1994(E) ``` styles : SET [1:?] OF presentation_style_select; WHERE WR1: SIZEOF (QUERY (style1 <* SELF.styles | NOT (SIZEOF (QUERY (style2 <* (SELF.styles - style1) | NOT ((TYPEOF (style1) <> TYPEOF (style2)) OR (SIZEOF (['PRESENTATION_APPEARANCE_SCHEMA.' + 'SURFACE_STYLE_USAGE', 'PRESENTATION_APPEARANCE_SCHEMA.'+ 'EXTERNALLY_DEFINED_STYLE'] * TYPEOF (style1)) = 1)))) = 0))) = 0; WR2: SIZEOF (QUERY (style1 <* SELF.styles | 'PRESENTATION_APPEARANCE_SCHEMA.SURFACE_STYLE USAGE' IN TYPEOF(style1))) <= 2: END_ENTITY; (* ``` ### Attribute definitions: styles: the set of presentation styles that are assigned to a representation_item. ### Formal propositions: WR1: The same style shall not appear more than once in the set of styles, except for externally_defined_style and surface_style_usage. WR2: surface_style_usage shall not occur more than twice in the set of styles. ### Informal propositions: IP1: Externally defined styles shall not conflict with other styles in the same presentation_style_assignment entity, including other externally defined styles. NOTE – For one style to conflict with the other, it specifies a different style for the same characteristic, such as colour or width. For example, one style might say blue, the other green, and both be applied to the same entity. **IP2:** Each style type is unique. IP3: If there are two instances of surface_style_usage in the set of styles, each shall specify the style for opposite sides of the surface being styled. ## 6.4.5 presentation_style_by_context A presentation_style_by_context is a presentation_style_assignment which is assigned to a representation_item and is applicable only in a specified presentation context. ``` *) ENTITY presentation_style_by_context SUBTYPE OF (presentation_style_assignment); ``` ©ISO ``` style_context : style_context_select; END_ENTITY; (* ``` #### Attribute definitions: style_context: the presentation context in which a style is assigned to a representation_item. ### 6.4.6 pre_defined_presentation_style A pre_defined_presentation_style may be used to fix certain application—specific aspects of appearance attributes defined in this schema. NOTE - Application Resources or Application Protocols specify the use of this entity. ### EXPRESS
specification: ``` *) ENTITY pre_defined_presentation_style SUBTYPE OF (pre_defined_item); END_ENTITY; (* ``` ### 6.4.7 externally_defined_style An externally_defined_style is an external reference to a presentation style. ### EXPRESS specification: ``` *) ENTITY externally_defined_style SUBTYPE OF (externally_defined_item); END_ENTITY; (* ``` # 6.5 Presentation appearance schema entity definitions: presentation styles for points # 6.5.1 point_style A point_style specifies the visual appearance of points. ### EXPRESS specification: Attribute definitions: ISO 10303-46:1994(E) name: the word, or group of words, by which the point_style is referred to. marker: the kind of marker which shall be used to present a point. marker_size: the size in presentation_area units used for drawing the marker. marker_colour: the colour to be applied to the marker. ### 6.5.2 pre_defined_marker A pre_defined_marker may be used to define an application-specific marker symbol. NOTE - Application Resources or Application Protocols specify the use of this entity. ### EXPRESS specification: ``` *) ENTITY pre_defined_marker SUBTYPE OF (pre_defined_item); END_ENTITY; (* ``` ### 6.5.3 pre_defined_size A pre_defined_size may be used to define an application-specific size for markers. NOTE - Application Resources or Application Protocols specify the use of this entity. ### EXPRESS specification: ``` *) ENTITY pre_defined_size SUBTYPE OF (pre_defined_item); END_ENTITY; (* ``` # 6.6 Presentation appearance schema entity definitions: presentation styles for curves # 6.6.1 curve_style A curve_style specifies the visual appearance of a curve. ### EXPRESS specification: ©ISO ### Attribute definitions: name: the word, or group of words, by which the curve_style is referred to. curve_font: the curve_style_font, scaled curve_style_font, pre_defined_curve_font, scaled pre_defined_curve_font, externally_defined_curve_font, or scaled externally_defined_curve_font which is used to present a curve. curve_width: the width of the visible part of the presented curve in presentation_area units. curve_colour: the colour of the visible part of the curve. # 6.6.2 curve_style_with_ends_and_corners A curve_style which specifies the visual appearance of the ends and corners of a curve. ### EXPRESS specification: ``` *) ENTITY curve_style_with_ends_and_corners SUBTYPE OF (curve_style); curve_ends : squared_or_rounded; curve_corners : squared_or_rounded; END_ENTITY; (* ``` #### Attribute definitions: curve_ends: an indication of how to present the ends of a curve. curve_corners: an indication of how to present the corners of a curve. # 6.6.3 curve_style_with_extension A curve_style_with_extensions is a curve_style that indicates how the curve ends shall appear when presented, either extended or shortened. ### EXPRESS specification: ``` *) ENTITY curve_style_with_extension SUBTYPE OF (curve_style); curve_extensions : length_measure; END_ENTITY; (* ``` ### Attribute definitions: curve_extensions: a length_measure indicating how to lengthen or shorten the ends of a curve. If the length_measure is positive, the curve shall be extended at both ends in a tangential direction by the specified length in presentation_area units. If the length_measure is negative, the curve shall be shortened by the absolute value of the specified length in presentation_area units. ISO 10303-46:1994(E) NOTE - See figure 19. curve ends: rounded Figure 19 - Curve style with extension # 6.6.4 pre_defined_curve_font A pre_defined_curve_font may be used to define application-specific curve fonts. NOTE - Application Resources or Application Protocols specify the use of this entity. EXPRESS specification: ``` *) ENTITY pre_defined_curve_font SUBTYPE OF (pre_defined_item); END_ENTITY; (* ``` # ${\bf 6.6.5} \quad {\bf externally_defined_curve_font}$ An externally_defined_curve_font makes an external reference to a curve font. EXPRESS specification: © ISO ``` *) ENTITY externally_defined_curve_font SUBTYPE OF (externally_defined_item); END_ENTITY; (* ``` ### 6.6.6 curve_style_font A curve_style_font combines several curve_style_font_patterns into a pattern. The resulting pattern is repeated along the curve. ### EXPRESS specification: #### Attribute definitions: name: the word, or group of words, by which the curve_style_font is referred to. pattern_list: a list of curve_style_font_patterns that contains the patterns used for drawing curves. The patterns are applied in the order in which they occur in the list. ### Informal propositions: IP1: The curve starts always with a complete pattern. IP2: The font pattern is clipped off at the end of the curve and may therefore be incomplete. ### 6.6.7 curve_style_font_pattern A curve_style_font_pattern is a pair of visible and invisible curve segment lengths measured in presentation_area units. ### EXPRESS specification: ``` *) ENTITY curve_style_font_pattern; visible_segment_length : positive_length_measure; invisible_segment_length : positive_length_measure; END_ENTITY; (* ``` ### Attribute definitions: visible_segment_length: the length of the visible segment in the pattern definition measured in presentation_area units. invisible_segment_length: the length of the invisible segment in the pattern definition measured in presentation_area units. ISO 10303-46:1994(E) ### 6.6.8 curve_style_wide A curve_style_wide defines a style for filling the visible curve segments. The curve_style used for styling the tile curves or hatch lines is also applied to the boundary of the curve segments. ### EXPRESS specification: ``` *) ENTITY curve_style_wide SUBTYPE OF (curve_style_font); interior_style : fill_area_style; END_ENTITY; (* ``` #### Attribute definitions: interior_style: the style for filling the visible curve segments with tiles or hatches. ## 6.6.9 curve_style_curve_pattern_set A curve_style_curve_pattern_set defines a style for filling the visible curve segments with a set of repetitive patterns. This pattern_set is repeated along the visible curve segments. ### EXPRESS specification: #### Attribute definitions: pattern_set: the repetitive pattern_set consists of a set of curve_style_curve_patterns. #### Informal propositions: **IP1:** The curve starts always with a complete pattern. IP2: The curve pattern is clipped off at the end of the curve and may therefore be incomplete. # 6.6.10 curve_style_curve_pattern A curve_style_curve_pattern specifies a curve pattern which is used in the curve_style_curve_pattern_set. The curve_style_curve_pattern is defined in a local pattern definition coordinate system, which will be placed along the visible segments of the derived curve. The projected curve tangent is the x axis and the normal to the projected curve is the y axis of the local pattern definition coordinate system. NOTE - Figure 20 shows the definition of curve_style_curve_pattern. © ISO Figure 20 - Curve style curve pattern ``` *) ENTITY curve_style_curve_pattern SUBTYPE OF (geometric_representation_item); pattern : annotation_curve_occurrence; pattern_length : positive_length_measure; END_ENTITY; (* ``` ### Attribute definitions: pattern: the repetitive pattern for filling the curve. The pattern is defined as an annotation_curve_occurrence and is therefore itself associated with a presentation_style. pattern_length: the length of the pattern in presentation_area units. # 6.6.11 curve_style_font_and_scaling A curve_style_font_and_scaling is used to apply scale to the specified curve_style_font. ### EXPRESS specification: ### Attribute definitions: name: the word, or group of words, by which the curve_style_font_and_scaling is referred to. curve_font: the curve_font to be scaled. (c)ISO curve_font_scaling: the scale factor. # 6.7 Presentation appearance schema entity definitions: presentation styles for fill areas ### 6.7.1 fill_area_style A style for filling visible curve segments, annotation fill areas, or surfaces with tiles or hatching. EXPRESS specification: ``` *) ENTITY fill_area_style; name : label; fill_styles : SET [1:?] OF fill_style_select; WHERE WR1: SIZEOF(QUERY(fill_style <* SELF.fill_styles | 'PRESENTATION_APPEARANCE_SCHEMA.'+ 'FILL_AREA_STYLE_COLOUR' IN TYPEOF(fill_style))) <= 1; END_ENTITY; (* ``` #### Attribute definitions: name: the word, or group of words, by which the fill_area_style is referred to. fill_styles: the set of fill area styles to use in presenting visible curve segments, annotation fill areas, or surfaces. ### Formal propositions: WR1: There shall be not more than one fill_area_style_colour in the fill_styles set. ### 6.7.2 fill_area_style_colour A fill_area_style_colour defines a colour to be used for solid fill of visible curve segments, annotation fill areas, or surfaces. ### EXPRESS specification: #### Attribute definitions: name: the word, or group of words, by which the fill_area_style_colour is referred to. fill_colour: the colour to be used for filling the area. ©ISO ### 6.7.3 pre_defined_hatch_style A pre_defined_hatch_style is a hatching style provided for Application Protocols to define an application—specific single or multiple hatching style. NOTE - Application Resources or Application Protocols specify the use of this entity. ### EXPRESS specification: ``` *) ENTITY pre_defined_hatch_style SUBTYPE OF (pre_defined_item, geometric_representation_item); END_ENTITY; (* ``` ### 6.7.4 externally_defined_hatch_style A externally_defined_hatch_style makes an external reference to a hatching style. ### EXPRESS specification: ``` *) ENTITY externally_defined_hatch_style SUBTYPE OF (externally_defined_item, geometric_representation_item); END_ENTITY; (* ``` # 6.7.5 fill_area_style_hatching A fill_area_style_hatching defines a styled pattern of curves for hatching visible curve segments, annotation fill areas, or surfaces. #### EXPRESS specification: ``` *) ENTITY fill_area_style_hatching SUBTYPE OF (geometric_representation_item); hatch_line_appearance : curve_style; start_of_next_hatch_line : one_direction_repeat_factor;
point_of_reference_hatch_line : cartesian_point; pattern_start : cartesian_point; hatch_line_angle : plane_angle_measure; END_ENTITY; (* ``` ### Attribute definitions: hatch_line_appearance: the curve_style of the hatching lines. Any curve_style pattern shall start at the origin of each hatch line. The origin of the reference hatch line is specified by pattern_start. The origin of any other hatch line is determined by adding a multiple of start_of_next_hatch_line to pattern_start. start_of_next_hatch_line: the displacement between adjacent hatch lines, specified as a vector. ©1SO ISO 10303-46:1994(E) point_of_reference_hatch_line: the origin for mapping the fill_area_style_hatching onto a curve, annotation fill area, or surface. pattern_start: the start point for the curve_style of the reference_hatch_line. hatch_line_angle: the angle determining the direction of the parallel hatching lines. NOTE - Figure 21 shows the definition of fill_area_style_hatching. Figure 21 - Fill area style hatching # 6.7.6 pre_defined_tile_style A pre_defined_tile_style is a tile style provided for Application Protocols to define an application—specific tile style. NOTE - Application Resources or Application Protocols specify the use of this entity. ``` *) ENTITY pre_defined_tile_style SUBTYPE OF (pre_defined_item, geometric_representation_item); ``` ``` ISO 10303-46:1994(E) ``` ©ISO ``` END_ENTITY; (* ``` # 6.7.7 externally_defined_tile_style An externally_defined_tile_style makes an external reference to a tiling style. ### EXPRESS specification: ``` *) ENTITY externally_defined_tile_style SUBTYPE OF (externally_defined_item, geometric_representation_item); END_ENTITY; (* ``` ### 6.7.8 fill_area_style_tiles A fill_area_style_tiles defines a two-dimensional tile to be used for the filling of annotation fill areas or other closed regions. The content of a tile is defined by the tiles set, and the placement of each tile is determined by the tiling_pattern which indicates how to place tiles next to each other. Tiles or parts of tiles outside the annotation fill area or closed region shall be clipped at the boundaries of the area or region. ### EXPRESS specification: ``` *) ENTITY fill_area_style_tiles SUBTYPE OF (geometric_representation_item); tiling_pattern : two_direction_repeat_factor; tiles : SET [1:?] OF fill_area_style_tile_shape_select; tiling_scale : positive_ratio_measure; END_ENTITY; (* ``` #### Attribute definitions: tiling_pattern: the two_direction_repeat_factor defining the shape and relative positioning of the tiles. tiles: the set of constituents of the tile. tiling_scale: the scaling factor applied to each tile as it is placed in the annotation_fill_area. # 6.7.9 fill_area_style_tile_curve_with_style A fill_area_style_tile_curve_with_style contains a styled curve which acts as a constituent in a fill_area_style_tiles. #### EXPRESS specification: ``` *) ENTITY fill_area_style_tile_curve_with_style SUBTYPE OF (geometric_representation_item); ``` ©ISO ISO 10303-46:1994(E) ``` styled_curve : annotation_curve_occurrence; END_ENTITY; (* ``` ### Attribute definitions: styled_curve: the two-dimensional styled curve defined in the local coordinate system of a fill area tile. ## 6.7.10 fill_area_style_tile_coloured_region A fill_area_style_tile_coloured_region is a closed curve that is filled with a colour and acts as a constituent in a fill_area_style_tiles. ### EXPRESS specification: ``` *) ENTITY fill_area_style_tile_coloured_region SUBTYPE OF (geometric_representation_item); closed_curve : curve_or_annotation_curve_occurrence; region_colour : colour; END_ENTITY; (* ``` #### Attribute definitions: **closed_curve:** the closed curve which defines a coloured region. The referenced curve may also be associated with style. region_colour: the colour of that region which is defined by the interior of the closed curve. ### Informal propositions: **IP1:** The **closed_curve** shall be closed and not self-intersecting. # 6.7.11 fill_area_style_tile_symbol_with_style A fill_area_style_tile_symbol_with_style is a symbol which acts as a constituent in a fill_area_style_tiles. ### EXPRESS specification: ``` *) ENTITY fill_area_style_tile_symbol_with_style SUBTYPE OF (geometric_representation_item); symbol : annotation_symbol_occurrence; END_ENTITY; (* ``` #### Attribute definitions: symbol: a styled annotation symbol. ### 6.7.12 pre_defined_tile A pre_defined_tile may be used to define an application-specific tile. ©iso NOTE - Application Resources or Application Protocols specify the use of this entity. ### EXPRESS specification: ``` *) ENTITY pre_defined_tile SUBTYPE OF (pre_defined_item); END_ENTITY; (* ``` # 6.7.13 externally_defined_tile An externally_defined_tile is a tile that is defined by reference to some external source. ### EXPRESS specification: ``` *) ENTITY externally_defined_tile SUBTYPE OF (externally_defined_item); END_ENTITY; (* ``` # 6.7.14 one_direction_repeat_factor A one_direction_repeat_factor is a vector used in a fill_area_style_hatching for determining the origin of a repeated hatch line relative to the origin of the previous hatch line. Given the initial position I of any hatch line, the one_direction_repeat_factor R determines two new positions according to the expression: $$I + k \cdot R \qquad \qquad k = -1, 1$$ NOTE - Figure 22 shows the positions defined by a one_direction_repeat_factor. Figure 22 - One direction repeat factor ### EXPRESS specification: ``` *) ENTITY one_direction_repeat_factor SUBTYPE OF (geometric_representation_item); repeat_factor : vector; ``` ISO 10303-46:1994(E) END_ENTITY; (* ### Attribute definitions: repeat_factor: the vector which specifies the relative positioning of hatch lines. # 6.7.15 two_direction_repeat_factor A two_direction_repeat_factor combines two vectors which are used in a fill_area_style_tiles for determining the shape and relative location of tiles. Given the initial position I of any tile, the two_direction_repeat_factor $R = (R_1, R_2)$ determines eight new positions according to the expression: $$I + k_1 \cdot R_1 + k_2 \cdot R_2$$ $k_1, k_2 = -1, 0, 1, k_1^2 + k_2^2 \neq 0$ NOTE - Figure 23 shows the positions defined by a two_direction_repeat_factor. Figure 23 - Two direction repeat factor ©ISO ``` *) ENTITY two_direction_repeat_factor SUBTYPE OF (one_direction_repeat_factor); second_repeat_factor : vector; END_ENTITY; (* ``` ### Attribute definitions: **second_repeat_factor:** the vector which specifies the relative positioning of tiles in the second direction. # 6.8 Presentation appearance schema entity definitions: presentation styles for surfaces ### 6.8.1 surface_style_usage A surface_style_usage is the application of a surface_side_style_select to the positive side, negative side, or both sides of a surface. ### EXPRESS specification: ``` *) ENTITY surface_style_usage; side : surface_side; style : surface_side_style_select; END_ENTITY; (* ``` ### Attribute definitions: side: the indication of which side of the surface to apply the style. style: the style which shall be applied to the surface. # 6.8.2 pre_defined_surface_side_style A pre_defined_surface_side_style may be used to define application-specific surface_side_styles. NOTE - Application Resources or Application Protocols specify the use of this entity. ### EXPRESS specification: ``` *) ENTITY pre_defined_surface_side_style SUBTYPE OF (pre_defined_item); END_ENTITY; (* ``` # 6.8.3 surface_side_style A surface_side_style is a collection of surface styles used in the presentation of the side of a ISO 10303-46:1994(E) surface. ### EXPRESS specification: #### Attribute definitions: name: the word, or group of words, by which the surface_side_style is referred to. styles: a collection of different surface styles. Formal propositions: WR1: All of the styles shall be of different types. ### 6.8.4 surface_style_fill_area A surface_style_fill_area is the surface style that presents a surface by mapping a fill area onto the surface. ### EXPRESS specification: ``` *) ENTITY surface_style_fill_area; fill_area : fill_area_style; END_ENTITY; (* ``` #### Attribute definitions: fill_area_style associated with the two-dimensional parameter space of a surface that will be mapped onto the surface itself. # 6.8.5 surface_style_boundary A surface_style_boundary is the surface style that is applied to the boundary curves of a surface. ### EXPRESS specification: ``` *) ENTITY surface_style_boundary; style_of_boundary : curve_or_render; END_ENTITY; (* ``` (c)ISO ### Attribute definitions: style_of_boundary: the style for the boundary curves of a surface. ### 6.8.6 curve_style_rendering A curve_style_rendering allows the visualization of curves on a surface by application of rendering techniques. ### EXPRESS specification: ``` *) ENTITY curve_style_rendering; rendering_method : shading_curve_method; rendering_properties : surface_rendering_properties; END_ENTITY; (* ``` #### Attribute definitions: rendering_method: specifies the method which shall be used for interpolating colours along curves on a surface. rendering_properties: specifies the rendering properties of the surface which contains the curves. ### 6.8.7 surface_rendering_properties Surface_rendering_properties define those properties of a surface which are required to compute a realistic visualization of surfaces by use of rendering techniques. #### EXPRESS specification: ``` *) ENTITY surface_rendering_properties; rendered_colour : colour; END_ENTITY; (* ``` #### Attribute definitions: rendered_colour: the presentation colour of a surface for use during the rendering process. # 6.8.8 surface_style_silhouette A surface_style_silhouette is the surface style that is applied to the silhouette curves of a surface. #### EXPRESS specification: ``` *) ENTITY surface_style_silhouette; style_of_silhouette : curve_or_render; END_ENTITY; (* ``` ©ISO ISO 10303-46:1994(E) ### Attribute definitions: style_of_silhouette: the style for the silhouette curves within a
surface. ### 6.8.9 surface_style_segmentation_curve A surface_style_segmentation_curve is the surface style that is applied to the curves on the segment borders of a surface. ### EXPRESS specification: ``` *) ENTITY surface_style_segmentation_curve; style_of_segmentation_curve : curve_or_render; END_ENTITY; (* ``` ### Attribute definitions: style_of_segmentation_curve: the style for the segmentation curves of a surface. NOTE - This style has only an effect on surfaces which have segmentation curves. These surfaces include the following types: - B-spline surfaces; - rectangular trimmed surfaces, curve bounded surfaces, rectangular composite surfaces, surface patches, offset surfaces, and surface replicas which refer to a B-spline surface as basis or parent surface. # 6.8.10 surface_style_control_grid A surface_style_control_grid is the surface style that is applied to the mesh of control points which are used for definition of surfaces. #### EXPRESS specification: ``` *) ENTITY surface_style_control_grid; style_of_control_grid : curve_or_render; END_ENTITY; (* ``` #### Attribute definitions: style_of_control_grid: the style for the control grid of a surface. NOTE - This style has only an effect on surfaces which are defined over a mesh of control points. These surfaces include the following types: - B-spline surfaces; - rectangular trimmed surfaces, curve bounded surfaces, rectangular composite surfaces, surface patches, offset surfaces, and surface replicas which refer to a B-spline surface as basis or parent surface. ©iso # 6.8.11 surface_style_parameter_line A surface_style_parameter_line is the surface style that is applied to the iso-parameter lines on a surface. ### EXPRESS specification: ### Attribute definitions: style_of_parameter_lines: the style for the iso-parameter curves of a surface. direction_counts: a set of u_direction_count and v_direction_count indicating the number of iso-parameter curves in the u and v directions. ### Formal propositions: WR1: If there are two members of the direction_counts set, they shall not be of the same type. # 6.8.12 surface_style_rendering A surface_style_rendering allows the realistic visualization of surfaces by use of rendering techniques. The effect of the reflectance calculation shall be as if the calculation is performed in the coordinate-system in which the camera_model is founded. ### EXPRESS specification: ``` *) ENTITY surface_style_rendering; rendering_method : shading_surface_method; surface_colour : colour; END_ENTITY; (* ``` ### Attribute definitions: rendering_method: the method for interpolating colours across surfaces. surface_colour: the colour used to render the surface. # 6.8.13 surface_style_rendering_with_properties A surface_style_rendering_with_properties allows the realistic visualization of surfaces with ISO 10303-46:1994(E) properties which determine transparency and reflection characteristics. ### EXPRESS specification: #### Attribute definitions: properties: the collection of rendering properties for a surface. ### Formal propositions: WR1: All of the properties shall be of different types. ## 6.8.14 surface_style_reflectance_ambient A surface_style_reflectance_ambient specifies the ambient part of the reflectance behaviour of a surface. ### NOTES - 1 The reflectance calculation is conceptually applied at one or more points on a surface being lit and shaded and produces a colour at such points. Input to the reflectance calculation includes the position at which the reflectance equation is to be applied, the surface normal, the surface colour at that position, the light sources, and the three-dimensional camera model. - 2 Suggested reflectance equations can be found in Annex D. #### EXPRESS specification: ``` *) ENTITY surface_style_reflectance_ambient; ambient_reflectance : REAL; END_ENTITY; (* ``` #### Attribute definitions: ambient_reflectance: the reflectance coefficient for the ambient part of the reflectance equation. # 6.8.15 surface_style_reflectance_ambient_diffuse A surface_style_reflectance_ambient_diffuse specifies the diffuse part of the reflectance behaviour of a surface. NOTE - Suggested reflectance equations can be found in Annex D. ©ISO ### EXPRESS specification: ``` *) ENTITY surface_style_reflectance_ambient_diffuse SUBTYPE OF (surface_style_reflectance_ambient); diffuse_reflectance : REAL; END_ENTITY; (* ``` #### Attribute definitions: diffuse_reflectance: the reflectance coefficient for the diffuse part of the reflectance equation. ### 6.8.16 surface_style_reflectance_ambient_diffuse_specular The surface_style_reflectance_ambient_diffuse_specular specifies the specular part of the reflectance behaviour of a surface. NOTE - Suggested reflectance equations can be found in Annex D. ### EXPRESS specification: ``` *) ENTITY surface_style_reflectance_ambient_diffuse_specular SUBTYPE OF (surface_style_reflectance_ambient_diffuse); specular_reflectance : REAL; specular_exponent : REAL; specular_colour : colour; END_ENTITY; (* ``` #### Attribute definitions: **specular_reflectance:** the reflectance coefficient for the specular part of the reflectance equation. specular_exponent: the exponent for the specular part of the reflectance equation. specular_colour: the colour for the specular part of the reflectance equation. # 6.8.17 surface_style_transparent A surface_style_transparent is the surface rendering property that specifies the degree of transparency of a surface. #### EXPRESS specification: ``` *) ENTITY surface_style_transparent; transparency : REAL; WHERE WR1: {0.0 <= transparency <= 1.0}; END_ENTITY; (*</pre> ``` Attribute definitions: ©ISO ISO 10303-46:1994(E) transparency: the degree of transparency indicated by the percentage of light traversing the surface. ### Formal propositions: WR1: The transparency shall be between 0.0 and 1.0. # 6.9 Presentation appearance schema entity definitions: presentation styles for text ### 6.9.1 text_style A text_style specifies the presentation style for annotation text. ### EXPRESS specification: ``` *) ENTITY text_style; name : label; character_appearance : character_style_select; END_ENTITY; (* ``` ### Attribute definitions: name: the word, or group of words, by which the text_style is referred to. character_appearance: the character style to be used for presenting the text. # 6.9.2 character_glyph_style_stroke A character_glyph_style_stroke is a character glyph style for text that is made up of curves rather than closed regions. #### EXPRESS specification: ``` *) ENTITY character_glyph_style_stroke; stroke_style : curve_style; END_ENTITY; (* ``` #### Attribute definitions: stroke_style: the curve_style applied to the curves which define a character_glyph_symbol_stroke. # 6.9.3 character_glyph_style_outline A character_glyph_style_outline is a character glyph style for text that is made up of closed regions rather than curves. ©iso ``` *) ENTITY character_glyph_style_outline; outline_style : curve_style; END_ENTITY; (* ``` #### Attribute definitions: outline_style: the curve_style applied to the curves which define a character_glyph_symbol_outline. # 6.9.4 character_glyph_style_outline_with_characteristics A character_glyph_style_outline_with_characteristics is a character_glyph_style_outline with additional characteristics to be applied to the regions of the character_glyph_style_outline. ### EXPRESS specification: ``` *) ENTITY character_glyph_style_outline_with_characteristics SUBTYPE OF (character_glyph_style_outline); characteristics : fill_area_style; END_ENTITY; (* ``` ### Attribute definitions: characteristics: the characteristics about the regions of the character glyph. # 6.9.5 text_style_for_defined_font A text_style_for_defined_font is a character glyph style for pre-defined or externally defined text fonts. ### EXPRESS specification: ``` *) ENTITY text_style_for_defined_font; text_colour : colour; END_ENTITY; (* ``` ### Attribute definitions: text_colour: the colour to be used for presenting the text. # 6.9.6 text_style_with_justification A text_style_with_justification is a text_style that specifies the justification of text. ## EXPRESS specification: ``` #) ENTITY text_style_with_justification SUBTYPE OF (text_style); ``` ©ISO ISO 10303-46:1994(E) ``` justification : text_justification; END_ENTITY; (* ``` Attribute definitions: justification: the method of text justification in a line. ### 6.9.7 text_style_with_box_characteristics A text_style_with_box_characteristics is a text_style that specifies the characteristics of the character boxes within the text. ### EXPRESS specification: #### Attribute definitions: characteristics: the characteristics of the character boxes. These characteristics determine height, width, rotation angle, and slant angle of the character boxes. #### Formal propositions: WR1: The characteristics shall be of different types. # 6.9.8 text_style_with_spacing A text_style_with_spacing is a text_style that has a spacing defined for the characters. ### EXPRESS specification: ``` *) ENTITY text_style_with_spacing SUBTYPE OF (text_style); character_spacing : character_spacing_select; END_ENTITY; (* ``` ### Attribute definitions: character_spacing: the distance between the character boxes of adjacent characters. © ISO # 6.9.9 pre_defined_character_spacing A pre_defined_character_spacing is a character spacing for the definition of an application—specific character spacing. NOTE - Application Resources or Application Protocols specify the use of this entity. ### EXPRESS specification: ``` *) ENTITY pre_defined_character_spacing SUBTYPE OF (pre_defined_item); END_ENTITY; (* ``` ### 6.9.10 text_style_with_mirror A text_style_with_mirror is a text_style that has a mirroring axis defined for the characters. NOTE - Figure 24 shows the definition of text_style_with_mirror. ### EXPRESS specification: ``` *) ENTITY text_style_with_mirror SUBTYPE OF (text_style); mirror_placement : axis2_placement; END_ENTITY; /* ``` ### Attribute definitions:
mirror_placement: the placement and orientation of the mirror axis. The mirror axis passes through the location of the axis2_placement and is parallel to the x axis defined by the axis2_placement. # 6.10 Presentation appearance schema entity definitions: presentation styles for symbols # 6.10.1 symbol_style A symbol_style is the presentation_style that specifies the visual appearance of annotation_symbols. The style is specified as one or more styles for the constituents of the symbol, or as a colour to be used in presenting the entire symbol. #### EXPRESS specification: #### Attribute definitions: ISO 10303-46:1994(E) Figure 24 - Text style with mirror name: the word, or group of words, by which the symbol_style is referred to. style_of_symbol: the symbol_element_style or symbol_colour that specifies the visual appearance of a symbol. # 6.10.2 symbol_element_style A symbol_element_style is the presentation style that specifies the visual appearance of the constituent parts of annotation_symbols. ### EXPRESS specification: ### Attribute definitions: style_of_symbol: the presentation_style_assignment for the constituent parts of a symbol. ### Formal propositions: ©ISO WR1: There shall be no symbol_style in the style_of_symbol. WR2: The style_of_symbol shall not be dependent on a context. # 6.10.3 symbol_colour A symbol_colour is the presentation_style that specifies the colour of annotation_symbols. ### EXPRESS specification: ``` *) ENTITY symbol_colour; colour_of_symbol : colour; END_ENTITY; (* ``` ### Attribute definitions: colour_of_symbol: the colour for the symbol. # 6.11 Presentation appearance schema entity definitions: approximation tolerances # 6.11.1 approximation_tolerance An approximation_tolerance serves the visualization requirements of every displayable element. It specifies the position and shape tolerance of the presented elements in the picture with respect to their mathematically exact projected position and shape. #### EXPRESS specification: ``` *) ENTITY approximation_tolerance; tolerance : tolerance_select; END_ENTITY; (* ``` #### Attribute definitions: tolerance: the tolerances to be used for approximating curves and surfaces. NOTE - If no approximation_tolerance is specified, the accuracy of rendering is implementation-dependent. # 6.11.2 approximation_tolerance_deviation An approximation_tolerance_deviation specifies a deviation measurement for the approximation of curves and surfaces. The deviation value can be specified in product-shape or presentation—area space. ©ISO ISO 10303-46:1994(E) ### Attribute definitions: tessellation_type: the selected approximation_method which determines the kind of tessellation with which curves and surfaces are approximated by graphical primitives. tolerances: the set of tolerances which specify the maximum allowable deviation for the approximation of curves and surfaces. definition_space: the coordinate space in which the tolerances are specified. The tolerances can be specified in the definition space of the curve or surface to which the tolerances are applied or in the definition space of the **presentation_area** which contains the curve or surface. ### Formal propositions: WR1: If there are two members of the tolerances set, they shall not be of the same type. # 6.11.3 approximation_tolerance_parameter An approximation_tolerance_parameter specifies an approximation tolerance for curves and surfaces in parameter space units. ### **EXPRESS** specification: #### Attribute definitions: tolerances: the set of tolerances used for approximating curves and surfaces. Curves and surfaces are approximated in such a way that uniform steps in parameter space are taken as the basis of the approximation. The specified lengths are measured in parameter space units. #### Formal propositions: WR1: If there are two members of the tolerances set, they shall not be of the same type. © ISO # 6.12 Presentation appearance schema entity definitions: occlusion and visibility ### 6.12.1 occlusion_precedence An **occlusion_precedence** is a relationship between two entities that can hide or blank out other entities. This relationship establishes which one is to hide or blank out the other if they should overlap in a presentation. This relationship is transitive. If entity A hides entity B, and entity B hides entity C, then entity A also hides entity C. This relationship only applies if the two entities are in the same representation. NOTE - If two such entities overlap and do not participate in an occlusion-precedence relationship, which entity has precedence is up to the particular implementation which presents it. ### EXPRESS specification: ``` *) ENTITY occlusion_precedence; higher_precedence : hiding_or_blanking_select; lower_precedence : hiding_or_blanking_select; occlusion_context : representation; WHERE WR1: acyclic_occlusion_precedence (SELF, [SELF.lower_precedence]); END_ENTITY; (* ``` #### Attribute definitions: higher_precedence: the entity which can blank or hide the lower_precedence entity. lower_precedence: the entity which can be blanked or hidden by the higher_precedence entity. occlusion_context: the representation in which the precedence has meaning. #### Formal propositions: WR1: An occlusion_precedence entity shall not participate in a tree of hiding_or_blanking_select entities where the root of the tree is also a leaf of its own tree. # 6.12.2 invisibility invisibility specifies that a collection of one or more styled_items, elements assigned to a layer by presentation_style_assignment, or elements of a presentation_representation shall not be presented. ### EXPRESS specification: ``` *) ENTITY invisibility; invisible_items : SET [1:?] OF invisible_item; END_ENTITY; ``` ISO 10303-46:1994(E) (* #### Attribute definitions: items: a set of styled_items, presentation_layer_assignments, or presentation_representations that are denoted as being invisible. ### 6.12.3 context_dependent_invisibility A context_dependent_invisibility is an invisibility that is applied in the context of a picture or a layer. The elements specified as invisible are invisible only in the context of the identified presentation_set, presentation_representation, or presentation_layer_usage. EXAMPLE 13 – a symbol is included as an item in two separate views, but is to be presented in only the first view. context_dependent_invisibility is used to specify that the symbol is not visibible in the second view, by specifying this view as the context for the invisibility. ### EXPRESS specification: ``` *) ENTITY context_dependent_invisibility SUBTYPE OF (invisibility); presentation_context : invisibility_context; END_ENTITY; (* ``` #### Attribute definitions: presentation_context: the presentation_set, presentation_representation, or presentation_layer_usage that provides the context for the specification of invisibility. # 6.13 Presentation appearance schema function definitions # 6.13.1 acyclic_occlusion_precedence The acyclic_occlusion_precedence function is a function which checks to see if there is any tree containing a set of hiding_or_blanking_select and a given occlusion_precedence which has a hiding_or_blanking_select which is both a root and a leaf of the same subtree. It returns TRUE if there is no such subtree, and FALSE if there is. ``` FUNCTION acyclic_occlusion_precedence (relation : occlusion_precedence; set_of_lower : SET OF hiding_or_blanking_select) : BOOLEAN; LOCAL x : SET OF occlusion_precedence; i : INTEGER; local_set_of_lower : SET OF hiding_or_blanking_select; END_LOCAL; REPEAT i:=1 TO HIINDEX(set_of_lower); IF relation.higher_precedence :=: set_of_lower[i] THEN RETURN(FALSE); ``` ©iso ``` END_IF; END_REPEAT; x := USEDIN (relation.higher_precedence, 'PRESENTATION_APPEARANCE_SCHEMA.'+ 'OCCLUSION_PRECEDENCE.LOWER_PRECEDENCE'); local_set_of_lower := set_of_lower + relation.higher_precedence; IF SIZEOF (x) > 0 THEN REPEAT i:=1 TO HIINDEX (x); If NOT acyclic_occlusion_precedence(x[i] , local_set_of_lower) THEN RETURN (FALSE); END_IF; END_REPEAT; END_IF; RETURN (TRUE); END_FUNCTION; (* ``` Argument definitions: relation: the occlusion_precedence which is tested. This is input to the function. set_of_lower: the set of items that are referenced directly or indirectly by lower_precedence of the relation. This argument is input to the function. On initial input this set contains as its only element the lower_precedence item of the relation. #### EXPRESS specification: ``` *) END_SCHEMA; -- presentation_appearance_schema (* ``` © ISO ISO 10303-46:1994(E) ## 7 Presentation resource schema The following EXPRESS declaration begins the **presentation_resource_schema** and identifies the necessary external references. ``` EXPRESS specification: *) SCHEMA presentation_resource_schema; REFERENCE FROM external_reference_schema (externally_defined_item, pre_defined_item); REFERENCE FROM geometry_schema (axis2_placement, curve, geometric_representation_item REFERENCE FROM measure_schema (length_measure, positive_length_measure, positive_ratio_measure, ratio_measure); REFERENCE FROM presentation_definition_schema (annotation_fill_area, symbol_representation); REFERENCE FROM representation_schema (item_in_context, representation); REFERENCE FROM support_resource_schema (identifier, label, text); (* NOTES ``` 1 - The schemas referenced above can be found in the following parts of ISO 10303: | $external_reference_schema$ | ISO 10303-41 | |-------------------------------|--------------| | geometry_schema | ISO 10303-42 | | management_resources_schema | ISO 10303-41 | | measure_schema | ISO 10303-41 | ©iso presentation_definition_schema Clause 5 of this part of ISO 10303 representation_schema ISO 10303-43 support_resource_schema ISO 10303-41 2 - The EXPRESS-G diagrams for this schema may be found in Annex E of this part of ISO 10303. #### 7.1 Introduction The subject of the presentation_resource_schema is the specification of basic resources for presentation. There are three types of
information specified in the presentation_resource_schema: - text font resources; - colour definition resources; - geometric resources. This schema specifies the resources necessary for construction of character fonts and annotation symbol fonts. The character fonts and annotation symbol fonts are defined within a local coordinate system. The characters and annotation symbols may be scaled and transformed depending on application usage. There are two types of colour definition resources. The first is a direct colour specification based on the RGB colour model. The second makes use of a colour mapping table to associate a colour with a state variable along a continuous scale. Geometric resources are geometric elements used in this part of ISO 10303 to support miscellaneous aspects of picture construction. ## 7.2 Presentation resource schema type definitions #### 7.2.1 staircase_or_linear The staircase_or_linear type specifies the interpolation method for colours in a colour_association_table. #### EXPRESS specification: ``` *) TYPE staircase_or_linear = ENUMERATION OF (staircase, linear); END_TYPE; (* ``` #### Enumerated item definitions: staircase: The colours are interpolated using a staircase function. linear: The colours are interpolated linearly. ISO 10303-46:1994(E) #### 7.2.2 presentable_text A presentable_text is any string which can be presented. #### EXPRESS specification: ``` *) TYPE presentable_text = STRING; END_TYPE; (* ``` Informal propositions: IP1: The string shall not contain any control characters. EXAMPLE 14 - IP1 prohibits linefeed and carriage return characters in presentable_text. #### 7.2.3 font_select The font_select is used for the definition of text_literals and character_glyph_symbols. It selects between different sources for text fonts. #### EXPRESS specification: ``` *) TYPE font_select = SELECT (pre_defined_text_font, externally_defined_text_font); END_TYPE; (* ``` ## 7.3 Presentation resource schema entity definitions ## 7.3.1 character_glyph_symbol A character_glyph_symbol contains the geometric representation of a character. #### EXPRESS specification: ©iso #### Attribute definitions: character_box: a rectangular box defining the extent of a character glyph. The character_box can be slanted by the text_style to produce slanted character glyphs. baseline_ratio: the location of the baseline of the character glyph relative to the character_box. When character glyphs are composed to form a text literal, the baselines of adjacent glyphs are aligned. The character baseline is parallel to the x axis of the character_box. The specified value indicates the distance between the x axis of the character_box and the baseline as ratio of box_height. NOTE - x axis and extent of the character box are defined by planar_extent, clause 7.3.17. EXAMPLE 15 - A baseline_ratio of 0.0 specifies that the baseline of the character glyph and x axis are identical. A baseline_ratio of 0.5 specifies that the baseline of the character glyph divides the character_box in the middle of its height. box_height: the height of the character_box. #### Formal propositions: WR1: The baseline_ratio ranges between 0.0 and 1.0. WR2: The character_box shall be in the context of the text_symbol. WR2: The box_height shall be a positive_length_measure. NOTE - Figure 25 illustrates the types and definition of character glyph symbols. ## 7.3.2 character_glyph_symbol_stroke A character_glyph_symbol_stroke is a character_glyph_symbol where the geometry of the glyph is described by a set of curves. #### EXPRESS specification: ``` *) ENTITY character_glyph_symbol_stroke SUBTYPE OF (character_glyph_symbol); strokes : SET [1:?] OF curve; WHERE WR1: SELF.strokes <= SELF\representation.items; END_ENTITY; (*</pre> ``` #### Attribute definitions: strokes: the set of curves that define the geometry of the character glyph. #### Formal propositions: WR1: All the curves making up the character glyph shall be contained in the set of items. ISO 10303-46:1994(E) Figure 25 - Character glyph symbols ## 7.3.3 character_glyph_symbol_outline A character_glyph_symbol_outline is a character_glyph_symbol where the geometry of the glyph is described by a set of annotation_fill_areas. #### EXPRESS specification: ``` *) ENTITY character_glyph_symbol_outline SUBTYPE OF (character_glyph_symbol); outlines : SET [1:?] OF annotation_fill_area; WHERE WR1: SELF.outlines <= SELF\representation.items; END_ENTITY; (*</pre> ``` #### Attribute definitions: outlines: the set of annotation_fill_areas that define the geometry of the character glyph. #### Formal propositions: WR1: All the fill areas making up the character glyph shall be contained in the set of items. (c) ISO ### 7.3.4 character_glyph_font_usage A character_glyph_font_usage specifies the participation of a character_glyph_symbol in a text_font. #### EXPRESS specification: ``` *) ENTITY character_glyph_font_usage; character : character_glyph_symbol; font : text_font; END_ENTITY; (* ``` #### Attribute definitions: character: the character_glyph_symbol that is part of the font. font: the text_font to which the character_glyph_symbol is assigned. #### 7.3.5 text_font A text_font is the identification of a specific character font. #### EXPRESS specification: ``` *) ENTITY text_font; id : identifier; name : label; description : text; INVERSE glyphs : SET [1:?] OF character_glyph_font_usage FOR font; END_ENTITY; (* ``` #### Attribute definitions: id: the identification of the text_font. name: the word, or group of words, by which the text_font is referred to. description: text that relates the nature of the text_font. glyphs: the set of character_glyph_font_usages that identify the character_glyph_symbols that participate in the text_font. EXAMPLE 16 - Examples for character fonts are Courier 12, Times 10, Helvetica Bold 14, 0815, ABC. ## 7.3.6 text_font_family A text_font_family is the identification of a related collection of text_fonts. #### EXPRESS specification: © ISO ISO 10303-46:1994(E) #### Attribute definitions: id: the identification of the text_font_family. name: the word, or group of words, by which the text_font_family is referred to. description: text that relates the nature of the text_font_family. fonts: the set of text_font_in_familys that identify the text_fonts that participate in the text_font_family. ### 7.3.7 text_font_in_family A text_font_in_family specifies the participation of a text_font in a text_font_family. #### EXPRESS specification: ``` *) ENTITY text_font_in_family; font : text_font; family : text_font_family; END_ENTITY; (* ``` #### Attribute definitions: font: the text_font that is part of the family. family: the text_font_family to which the text_font is assigned. EXAMPLE 17 - Some font families are Courier and Helvetica. Fonts in these families include Courier 12, Helvetica Bold 14, respectively. ## 7.3.8 externally_defined_text_font An externally_defined_text_font is an external reference to a text font. #### EXPRESS specification: ``` *) ENTITY externally_defined_text_font SUBTYPE OF (externally_defined_item); END_ENTITY; (* ``` ©ISO ## 7.3.9 pre_defined_text_font A pre_defined_text_font is a text font provided for the definition of an application-specific font. NOTE - Application Resources or Application Protocols specify the use of this entity. #### EXPRESS specification: ``` *) ENTITY pre_defined_text_font SUBTYPE OF (pre_defined_item); END_ENTITY; (* ``` #### 7.3.10 colour A colour defines a basic appearance property of an element with respect to the light reflected by it. #### EXPRESS specification: ``` *) ENTITY colour; END_ENTITY; (* ``` ## 7.3.11 colour_specification A colour_specification contains a colour definition which refers directly to a specific colour space. EXAMPLE 18 - Colour spaces are RGB, HLS, HSV, and CIE. More details about these colour spaces can be found in [12]. NOTE - Only RGB colours are supported by this part of ISO 10303. This entity provides for later extension. #### EXPRESS specification: ``` *) ENTITY colour_specification SUBTYPE OF (colour); name : label; END_ENTITY; (* ``` #### Attribute definitions: name: the word, or group of words, by which the colour_specification is referred to. ## 7.3.12 colour_rgb A colour_rgb defines a colour by specifying the intensity of red, green, and blue. ### EXPRESS specification: © ISO ISO 10303-46:1994(E) ``` *) ENTITY colour_rgb SUBTYPE OF (colour_specification); red : REAL; green : REAL; blue : REAL; WHERE WR1: {0.0 <= red <= 1.0}; WR2: {0.0 <= green <= 1.0}; WR3: {0.0 <= blue <= 1.0}; END_ENTITY; (* ``` #### Attribute definitions: red: the intensity of the red colour component. green: the intensity of the green colour component. blue: the intensity of the blue colour component. #### Formal propositions: WR1: The intensity of the red colour component shall be between 0.0 and 1.0. WR2: The intensity of the green component shall be between 0.0 and 1.0. WR3: The intensity of the blue component shall be between 0.0 and 1.0. #### 7.3.13 colour_associated The colour_associated entity defines a colour for the visualization of one-dimensional state variables to achieve a rendered picture. The colour at specific positions of a curve or surface is derived from the values of the state variables and the colour_association_table. The positions for which the colours are derived depend on the shading_curve_method or the shading_surface_method assigned to the curve or surface, respectively. The derived colours are interpolated according to the shading method appearance attribute. #### **NOTES** - 1 State variables are often used to specify physical quantities. - 2 The interpolation of colours across curves and surfaces is described in 6.3.17 and 6.3.21. #### EXPRESS specification: ``` *) ENTITY colour_associated SUBTYPE OF (colour); name : colour; variable_to_be_shown : SET [1:?] OF REAL; mapping : colour_association_table; END_ENTITY; (* ``` ©iso #### Attribute definitions: name: the word, or group of words, by
which the colour_asscociated is referred to. variable_to_be_shown: the set of state variables are the one-dimensional values to be visualized by colours. mapping: the colour_association_table used to derive the colour. #### 7.3.14 colour_association_table A colour_association_table defines the mapping of a one-dimensional state variable space into a colour space. The **colour_association_table** contains state variable values that are associated with a colour. When the value of a state variable is between two fixed state variable values, the colour shall be calculated by either staircase or linear interpolation. #### EXPRESS specification: ``` *) ENTITY colour_association_table; discrete_states_with_colours : LIST [1:?] OF state_variable_with_colour; interpolation_type : staircase_or_linear; END_ENTITY; (* ``` #### Attribute definitions: discrete_states_with_colours: a list of one-dimensional state variable values that are associated with colour. interpolation_type: the method of interpolation to be used. #### 7.3.15 state_variable_with_colour A state_variable_with_colour associates a single fixed state variable with a colour_specification. #### EXPRESS specification: ``` *) ENTITY state_variable_with_colour; state_variable : REAL; associated_colour : colour_specification; END_ENTITY; (* ``` #### Attribute definitions: state_variable: the value of a one-dimensional state_variable. EXAMPLE 19 - Physical state variables are temperature and stress components. ISO 10303-46:1994(E) associated_colour: the colour_specification associated with the state_variable. ## 7.3.16 pre_defined_colour A pre_defined_colour is provided to allow an application-specific colour definition. NOTE - Application Resources or Application Protocols specify the use of this entity. The predefined_colour entity further enables Application Resources or Application Protocols to fix colour values or components of colour values for their particular uses. #### EXPRESS specification: ``` *) ENTITY pre_defined_colour SUBTYPE OF (pre_defined_item, colour); END_ENTITY; (* ``` ### 7.3.17 planar_extent A planar_extent specifies an extent in both directions of a two-dimensional coordinate system. #### EXPRESS specification: ``` *) ENTITY planar_extent SUBTYPE OF (geometric_representation_item); size_in_x : length_measure; size_in_y : length_measure; END_ENTITY; (* Attribute definitions: size_in_x: the extent in the x axis direction. ``` size_in_y: the extent in the y axis direction. ## 7.3.18 planar_box A planar_box specifies an arbitrary rectangular box and its location in a two-dimensional cartesian coordinate system. #### EXPRESS specification: ``` *) ENTITY planar_box SUBTYPE OF (planar_extent); placement: axis2_placement; END_ENTITY; (* ``` #### Attribute definitions: placement: the position and orientation of the bottom-left corner of the box. The attributes of the supertype define the length of the sides of the box along the positive x and y axes. ©ISO ## 7.3.19 presentation_scaled_placement The presentation_scaled_placement is a geometric_representation_item provided to support the definition of graphical_transformations. NOTE - graphical_transformation is defined in 4.4.12. ``` EXPRESS specification: ``` ``` *) ENTITY presentation_scaled_placement SUBTYPE OF (geometric_representation_item); placement : axis2_placement; scaling : positive_ratio_measure; END_ENTITY; (* ``` #### Attribute definitions: placement: a placement used to define rotation and translation. scaling: the scaling that is part of the transformation. #### EXPRESS specification: ``` *) END_SCHEMA; -- presentation_resource_schema (* ``` ©iso ISO 10303-46:1994(E) ### Annex A (normative) ## Short names of entities Table A.1 provides the short names of entities specified in this part of ISO 10303. Requirements on the use of short names are found in the implementation methods included in ISO 10303. Table A.1 - Short names of entities | Entity names | Short names | |--|-------------| | ANNOTATION_CURVE_OCCURRENCE | ANCROC | | ANNOTATION_FILL_AREA | ANFLAR | | ANNOTATION_FILL_AREA_OCCURRENCE | AFAO | | ANNOTATION_OCCURRENCE | ANNOCC | | ANNOTATION_OCCURRENCE_RELATIONSHIP | ANOCRL | | ANNOTATION_POINT_OCCURRENCE | ANPNOC | | ANNOTATION_SYMBOL | ANNSYM | | ANNOTATION_SYMBOL_OCCURRENCE | ANSYOC | | ANNOTATION_TABLE | ANNTBL | | ANNOTATION_TABLE_OCCURRENCE | ANTBOC | | ANNOTATION_TEXT | ANNTXT | | ANNOTATION_TEXT_CHARACTER | ANTXCH | | ANNOTATION_TEXT_OCCURRENCE | ANTXOC | | ANNOTATION_TEXT_WITH_ASSOCIATED_CURVES | ATWAC | | ANNOTATION_TEXT_WITH_BLANKING_BOX | ATWBB | | ANNOTATION_TEXT_WITH_DELINEATION | ATWD | | ANNOTATION_TEXT_WITH_EXTENT | ATWE | | APPROXIMATION_TOLERANCE | APPTLR | | APPROXIMATION_TOLERANCE_DEVIATION | APTLDV | | APPROXIMATION_TOLERANCE_PARAMETER | APTLPR | ©iso | Entity names | Short names | |--|-------------| | AREA_DEPENDENT_ANNOTATION_REPRESENTATION | ADAR | | AREA_IN_SET | ARINST | | BACKGROUND_COLOUR | BCKCLR | | CAMERA_IMAGE | CMRIMG | | CAMERA_MODEL | CMRMDL | | CAMERA_MODEL_D2 | CMMDD2 | | CAMERA_MODEL_D2_SHAPE_CLIPPING | CMDSC | | CAMERA_MODEL_D3 | CMMDD3 | | CAMERA_MODEL_D3_MULTI_CLIPPING | CMDMC | | CAMERA_MODEL_D3_WITH_HLHSR | CMDWH | | CAMERA_MODEL_WITH_LIGHT_SOURCES | CMWLS | | CAMERA_USAGE | CMRUSG | | CHARACTER_GLYPH_FONT_USAGE | CGFU | | CHARACTER_GLYPH_STYLE_OUTLINE | CGO | | CHARACTER_GLYPH_STYLE_OUTLINE_WITH_CHARACTERISTICS | CGSOWC | | CHARACTER_GLYPH_STYLE_STROKE | CGS | | CHARACTER_GLYPH_SYMBOL | CHGLSY | | CHARACTER_GLYPH_SYMBOL_OUTLINE | CGSO | | CHARACTER_GLYPH_SYMBOL_STROKE | CGSS | | COLOUR | COLOUR | | COLOUR_ASSOCIATED | CLRASS | | COLOUR_ASSOCIATION_TABLE | CLASTB | | COLOUR_RGB | CLRRGB | | COLOUR_SPECIFICATION | CLRSPC | | COMPOSITE_TEXT | CMPTXT | | COMPOSITE_TEXT_WITH_ASSOCIATED_CURVES | CTWAC | | COMPOSITE_TEXT_WITH_BLANKING_BOX | CTWBB | ©iso ISO 10303-46:1994(E) | Entity names | Short names | |---|-------------| | COMPOSITE_TEXT_WITH_DELINEATION | CTWD | | COMPOSITE_TEXT_WITH_EXTENT | CTWE | | CONTEXT_DEPENDENT_INVISIBILITY | CNDPIN | | CONTEXT_DEPENDENT_OVER_RIDING_STYLED_ITEM | CDORSI | | CURVE_STYLE | CRVSTY | | CURVE_STYLE_CURVE_PATTERN | CSCP | | CURVE_STYLE_CURVE_PATTERN_SET | CSCPS | | CURVE_STYLE_FONT | CRSTFN | | CURVE_STYLE_FONT_AND_SCALING | CSFAS | | CURVE_STYLE_FONT_PATTERN | CSFP | | CURVE_STYLE_RENDERING | CRSTRN | | CURVE_STYLE_WIDE | CRSTWD | | CURVE_STYLE_WITH_ENDS_AND_CORNERS | CSWEAC | | CURVE_STYLE_WITH_EXTENSION | CSWE | | DEFINED_CHARACTER_GLYPH | DFCHGL | | DEFINED_SYMBOL | DFNSYM | | DEFINED_TABLE | DFNTBL | | EXTERNALLY_DEFINED_CHARACTER_GLYPH | EDCG | | EXTERNALLY_DEFINED_CURVE_FONT | EDCF | | EXTERNALLY_DEFINED_HATCH_STYLE | EDHS | | EXTERNALLY_DEFINED_STYLE | EXDFST | | EXTERNALLY_DEFINED_SYMBOL | EXDFSY | | EXTERNALLY_DEFINED_TEXT_FONT | EDTF | | EXTERNALLY_DEFINED_TILE | EXDFTL | | EXTERNALLY_DEFINED_TILE_STYLE | EDTS | | FILL_AREA_STYLE | FLARST | | FILL_AREA_STYLE_COLOUR | FASC | ©ISO | Entity names | Short names | |--|-------------| | FILL_AREA_STYLE_HATCHING | FASH | | FILL_AREA_STYLE_TILES | FAST | | FILL_AREA_STYLE_TILE_COLOURED_REGION | FASTCR | | FILL_AREA_STYLE_TILE_CURVE_WITH_STYLE | FASTCW | | FILL_AREA_STYLE_TILE_SYMBOL_WITH_STYLE | FASTSW | | GRAPHICAL_TRANSFORMATION | GRPTRN | | INVISIBILITY | INVSBL | | LIGHT_SOURCE | LGHSRC | | LIGHT_SOURCE_AMBIENT | LGSRAM | | LIGHT_SOURCE_DIRECTIONAL | LGSRDR | | LIGHT_SOURCE_POSITIONAL | LGSRPS | | LIGHT_SOURCE_SPOT | LGSRSP | | OCCLUSION_PRECEDENCE | OCCPRC | | ONE_DIRECTION_REPEAT_FACTOR | ODRF | | OVER_RIDING_STYLED_ITEM | ORSI | | PLANAR_BOX | PLNBX | | PLANAR_EXTENT | PLNEXT | | POINT_STYLE | PNTSTY | | PRESENTATION_AREA | PRSAR | | PRESENTATION_LAYER_ASSIGNMENT | PRLYAS | | PRESENTATION_LAYER_USAGE | PRLYUS | | PRESENTATION_REPRESENTATION | PRSRPR | | PRESENTATION_REPRESENTATION_RELATIONSHIP | PRRPRL | | PRESENTATION_SCALED_PLACEMENT | PRSCPL | | PRESENTATION_SET | PRSST | | PRESENTATION_SIZE | PRSSZ | | PRESENTATION_STYLE_ASSIGNMENT | PRSTAS | | Entity names | Short names | |--|-------------| | PRESENTATION_STYLE_BY_CONTEXT | PSBC | | PRESENTATION_VIEW | PRSVW | | PRESENTED_ITEM | PRSITM | | PRESENTED_ITEM_REPRESENTATION | PRITRP | | PRE_DEFINED_CHARACTER_GLYPH | PDCG | | PRE_DEFINED_CHARACTER_SPACING | PDCS | | PRE_DEFINED_COLOUR | PRDFCL | | PRE_DEFINED_CURVE_FONT | PDCF | | PRE_DEFINED_HATCH_STYLE | PDHS | | PRE_DEFINED_MARKER | PRDFMR | | PRE_DEFINED_PRESENTATION_STYLE | PDPS | | PRE_DEFINED_SIZE | PRDFSZ | | PRE_DEFINED_SURFACE_SIDE_STYLE | PDSSS | | PRE_DEFINED_SYMBOL | PRDFSY | | PRE_DEFINED_TEXT_FONT | PDTF | | PRE_DEFINED_TILE | PRDFTL | | PRE_DEFINED_TILE_STYLE | PDTS | | PRODUCT_DATA_REPRESENTATION_VIEW | PDRV | | REPRESENTATION_ITEM_DEPENDENT_LAYER_ASSIGNMENT | RIDLA | | STATE_VARIABLE_WITH_COLOUR | SVWC | | STYLED_ITEM | STYITM | | SURFACE_RENDERING_PROPERTIES | SRRNPR | | SURFACE_SIDE_STYLE | SRSDST | | SURFACE_STYLE_BOUNDARY | SRSTBN | | SURFACE_STYLE_CONTROL_GRID | SSCG | | SURFACE_STYLE_FILL_AREA | SSFA | | SURFACE_STYLE_PARAMETER_LINE | SSPL | ©ISO | Entity names | Short names | |---|-------------| | SURFACE_STYLE_REFLECTANCE_AMBIENT | SSRA | | SURFACE_STYLE_REFLECTANCE_AMBIENT_DIFFUSE | SSRAD | | SURFACE_STYLE_REFLECTANCE_AMBIENT_DIFFUSE_SPECULAR | SSRADS | | SURFACE_STYLE_RENDERING | SRSTRN | | SURFACE_STYLE_RENDERING_WITH_PROPERTIES | SSRWP | | SURFACE_STYLE_SEGMENTATION_CURVE | SSSC | | SURFACE_STYLE_SILHOUETTE | SRSTSL | | SURFACE_STYLE_TRANSPARENT | SRSTTR | | SURFACE_STYLE_USAGE | SRSTUS | | SYMBOL_COLOUR | SYMCLR | | SYMBOL_ELEMENT_STYLE | SYELST | | SYMBOL_REPRESENTATION | SYMRPR | | SYMBOL_REPRESENTATION_MAP | SYRPMP | | SYMBOL_REPRESENTATION_RELATIONSHIP | SYRPRL | | SYMBOL_REPRESENTATION_WITH_BLANKING_BOX | SRWBB | | SYMBOL_STYLE | SYMSTY | |
SYMBOL_TARGET | SYMTRG | | TABLE_RECORD_FIELD_REPRESENTATION | TRFR | | TABLE_RECORD_FIELD_REPRESENTATION_WITH_CLIPPING_BOX | TRFRWC | | TABLE_RECORD_REPRESENTATION | TBRCRP | | TABLE_REPRESENTATION | TBLRPR | | TABLE_REPRESENTATION_RELATIONSHIP | TBRPRL | | TABLE_TEXT_RELATIONSHIP | TBTXRL | | TEXT_FONT | TXTFNT | | TEXT_FONT_FAMILY | TXFNFM | | TEXT_FONT_IN_FAMILY | TFIF | | TEXT_LITERAL | TXTLTR | ©iso ISO 10303-46:1994(E) ## Table A.1 (concluded) | Entity names | Short names | |--|-------------| | TEXT_LITERAL_WITH_ASSOCIATED_CURVES | TLWAC | | TEXT_LITERAL_WITH_BLANKING_BOX | TLWBB | | TEXT_LITERAL_WITH_DELINEATION | TLWD | | TEXT_LITERAL_WITH_EXTENT | TLWE | | TEXT_STRING_REPRESENTATION | TXSTRP | | TEXT_STYLE | TXTSTY | | TEXT_STYLE_FOR_DEFINED_FONT | TSFDF | | TEXT_STYLE_WITH_BOX_CHARACTERISTICS | TSWBC | | TEXT_STYLE_WITH_JUSTIFICATION | TSWJ | | TEXT_STYLE_WITH_MIRROR | TSWM | | TEXT_STYLE_WITH_SPACING | TSWS | | TWO_DIRECTION_REPEAT_FACTOR | TDRF | | VIEW_DEPENDENT_ANNOTATION_REPRESENTATION | VDAR | | VIEW_VOLUME | VWVLM | ©ISO #### Annex B (normative) ## Information object registration ## **B.1** Document identification In order to provide for unambiguous identification of an information object in an open system, the object identifier { iso standard 10303 part(46) version(1) } is assigned to this part of ISO 10303. The meaning of this value is defined in ISO 8824-1, and is described in ISO 10303-1. #### **B.2** Schema identification ## B.2.1 presentation_organisation_schema identification In order to provide for unambiguous identification of the presentation_organisation_schema in an open system, the object identifier { iso standard 10303 part(46) version(1) object(1) presentation-organisation-schema(1) } is assigned to the presentation-organisation-schema schema (see clause 4). The meaning of this value is defined in ISO 8824-1, and is described in ISO 10303-1. ## B.2.2 presentation_definition_schema identification In order to provide for unambiguous identification of the presentation_definition_schema in an open system, the object identifier { iso standard 10303 part(46) version(1) object(1) presentation-definition-schema(2) } is assigned to the presentation_definition_schema schema (see clause 5). The meaning of this value is defined in ISO 8824-1, and is described in ISO 10303-1. ## B.2.3 presentation_appearance_schema identification In order to provide for unambiguous identification of the presentation_appearance_schema in an open system, the object identifier { iso standard 10303 part(46) version(1) object(1) presentation-appearance-schema(3) } is assigned to the presentation-appearance-schema schema (see clause 6). The meaning of this value is defined in ISO 8824-1, and is described in ISO 10303-1. ISO 10303-46:1994(E) ## B.2.4 presentation_resource_schema identification In order to provide for unambiguous identification of the presentation_resource_schema in an open system, the object identifier $\{ \text{ iso standard } 10303 \; \operatorname{part}(46) \; \operatorname{version}(1) \; \operatorname{object}(1) \; \operatorname{presentation-resource-schema}(4) \; \}$ is assigned to the presentation_resource_schema schema (see clause 7). The meaning of this value is defined in ISO 8824-1, and is described in ISO 10303-1. ©iso # Annex C (informative) ## Computer-interpretable listings This annex provides a listing of the short names and a listing of the EXPRESS specified in this part of ISO 10303. No text or annotation is included. This annex is provided only in computer-interpretable form. NOTE – The information provided on this diskette is informative; the normative text is that contained in the body of this part of ISO 10303. ©iso ISO 10303-46:1994(E) ## Annex D (informative) ## Technical discussions ## D.1 Symbols used in reflectance equations Table D.1 is taken from ISO/IEC 9592-4, Annex E. Table D.1 - PHIGS PLUS annex E: Variable definition and their sources | Symbol | Description | Data Type | Source | |--|---|------------------------|--------| | $ec{L}_d$ | light source definition | $3\times$ R | (1) | | L_c | light source colour | COLRV | (1) | | $egin{array}{c} L_c \ ec{L}_p \end{array}$ | light source position | $3\times R$ | (1) | | L_e | light source concentration exponent | \mathbf{R} | (1) | | C_1, C_2 | attenuation coefficients | \mathbf{R} | (1) | | A_s | spread angle | \mathbf{R} | (1) | | $egin{array}{c} L_a \ ec{O}_p \end{array}$ | light attenuation | R | (2) | | $ec{O}_p$ | object position | $3\times R$ | (3) | | O_d | object diffuse colour | COLRV | (4) | | O_s | object specular colour | COLRV | (5) | | O_e | object specular exponent | \mathbf{R} | (5) | | K_a | ambient reflection coefficient | \mathbf{R} | (5) | | K_d | diffuse reflection coefficient | \mathbf{R} | (5) | | K_s | specular reflection coefficient | \mathbf{R} | (5) | | $ec{V}_e$ | unit vector from object to eye point | $3\times R$ | (2) | | $egin{array}{c} ec{V}_e \ ec{V}_r \ ec{V}_l \ ec{V}_n \end{array}$ | unit reflection vector from object | $3\times R$ | (2) | | $ec{V}_l$ | unit vector from object to light source | $3\times R$ | (2) | | $ec{V}_n$ | unit normal vector to object | NORM | (3) | | C_a | ambient contribution from light source | COLRV | (2) | | C_d | diffuse contribution from light source | COLRV | (2) | | C_{s} | specular contribution from light source | COLRV | (2) | #### Source legend: - 1: light source representation - 2: calculated - 3: explicit or derived from object geometry - 4: colour table, direct colour, vertex colour, back interior colour - 5: surface or back area properties ©iso ## D.2 Suggested reflectance equations The following equations are taken from ISO/IEC 9592-4. Annex E: The result of the reflectance equation evaluated at the point on a primitive is a single colour that is the sum of the individual components, $C_a + C_d + C_s$, of all the currently active light sources: $$\sum_{i=1}^{N} (C_{a_i} + C_{d_i} + C_{s_i}); N = \text{total number of the light sources}$$ For ambient light sources $$C_a = K_a L_c O_d$$ $$C_d = 0$$ $$C_s = 0$$ For directional light sources $$\begin{split} C_a &= 0 \\ C_d &= K_d L_c O_d (\vec{V}_n \cdot \vec{V}_l) \\ C_s &= K_s O_s L_c (\vec{V}_e \cdot \vec{V}_r)^{O_e} \end{split}$$ For positional light sources $$C_a = 0$$ $$C_d = K_d O_d L_c (\vec{V}_n \cdot \vec{V}_l) L_a$$ $$C_s = K_s O_s L_c (\vec{V}_e \cdot \vec{V}_r)^{O_e} L_a$$ For one spot light source (Contributions from one spot light sources will be zero if \vec{V}_l is outside the cone of influence of the light source.) $$C_{a} = 0$$ $$C_{d} = K_{d}O_{d}L_{c}(\vec{V}_{n} \cdot \vec{V}_{l})(\vec{L}_{d} \cdot (-\vec{V}_{l}))^{L_{e}}L_{a}$$ $$C_{s} = K_{s}O_{s}L_{c}(\vec{V}_{e} \cdot \vec{V}_{r})^{O_{e}}(\vec{L}_{d} \cdot (-\vec{V}_{l}))^{L_{e}}L_{a}$$ ISO 10303-46:1994(E) Light attenuation may be calculated as follows: $$L_a = \frac{1}{C_1 + C_2 ||\vec{O}_p - \vec{L}_p||}$$ Light reflection vector may be calculated as follows: $$\vec{V}_r = 2(\vec{V}_n \cdot \vec{V}_l)\vec{V}_n - \vec{V}_l$$ In all cases, a dot product resulting in a negative value will be replaced by 0. ©iso ## Annex E (informative) ## **EXPRESS-G** diagrams Figures E.1 through E.42 correspond to the *EXPRESS* listing given in annex A. The figures use the *EXPRESS-G* graphical notation for the *EXPRESS* language. *EXPRESS-G* is defined in annex D of ISO 10303-11. Figure E.1 - presentation_organisation_schema - EXPRESS-G diagram 1 of 7 Figure E.2 – presentation_organisation_schema – EXPRESS-G diagram 2 of 7 Figure E.3 - presentation_organisation_schema - EXPRESS-G diagram 3 of 7 Figure E.4 – presentation_organisation_schema – EXPRESS-G diagram 4 of 7 Figure E.5 - presentation_organisation_schema - EXPRESS-G diagram 5 of 7 Figure E.6 - presentation_organisation_schema - EXPRESS-G diagram 6 of 7 Figure E.7 - presentation_organisation_schema - EXPRESS-G diagram 7 of 7 Figure E.8 - presentation_definition_schema - EXPRESS-G diagram 1 of 9 Figure E.9 - presentation_definition_schema - EXPRESS-G diagram 2 of 9 ©ISO Figure E.10 - presentation_definition_schema - EXPRESS-G diagram 3 of 9 Figure E.11 - presentation_definition_schema - EXPRESS-G diagram 4 of 9 Figure E.12 - presentation_definition_schema - EXPRESS-G diagram 5 of 9 Figure E.13 - presentation_definition_schema - EXPRESS-G diagram 6 of 9 Figure E.14 - presentation_definition_schema - EXPRESS-G diagram 7 of 9 Figure E.15 - presentation_definition_schema - EXPRESS-G diagram 8 of 9 Figure E.16 - presentation_definition_schema - EXPRESS-G diagram 9 of 9 Figure E.17 - presentation_appearance_schema - EXPRESS-G diagram 1 of 21 Figure E.18 – presentation_appearance_schema – EXPRESS-G diagram 2 of 21 Figure E.19 – presentation_appearance_schema – EXPRESS–G diagram 3 of 21 Figure E.20 - presentation_appearance_schema - EXPRESS-G diagram 4 of 21 Figure E.21 – presentation_appearance_schema – EXPRESS-G diagram 5 of 21 Figure E.22 – presentation_appearance_schema – EXPRESS-G diagram 6 of 21 Figure E.23 - presentation_appearance_schema - EXPRESS-G diagram 7 of 21 Figure E.24 - presentation_appearance_schema - EXPRESS-G diagram 8 of 21 Figure E.25 – presentation_appearance_schema – EXPRESS-G diagram 9 of 21 Figure E.26 – presentation_appearance_schema – EXPRESS-G diagram 10 of 21 182 Figure E.27 – presentation_appearance_schema – EXPRESS-G diagram 11 of 21 Figure E.28 - presentation_appearance_schema - EXPRESS-G diagram 12 of 21 Figure E.29 - presentation_appearance_schema - EXPRESS-G diagram 13 of 21 Figure E.30 – presentation_appearance_schema – EXPRESS-G diagram 14 of 21 Figure E.31 - presentation_appearance_schema - EXPRESS-G diagram 15 of 21 Figure E.32 - presentation_appearance_schema - EXPRESS-G diagram 16 of 21 Figure E.33 - presentation_appearance_schema - EXPRESS-G
diagram 17 of 21 ISO 10303-46:1994 (E) ©ISO Figure E.34 – presentation_appearance_schema – EXPRESS-G diagram 18 of 21 Figure E.35 - presentation_appearance_schema - EXPRESS-G diagram 19 of 21 Figure E.36 - presentation_appearance_schema - EXPRESS-G diagram 20 of 21 Figure E.37 - presentation_appearance_schema - EXPRESS-G diagram 21 of 21 Figure E.38 - presentation_resource_schema - EXPRESS-G diagram 1 of 5 Figure E.39 – presentation_resource_schema – EXPRESS–G diagram 2 of 5 Figure E.40 - presentation_resource_schema - EXPRESS-G diagram 3 of 5 Figure E.41 - presentation_resource_schema - EXPRESS-G diagram 4 of 5 Figure E.42 - presentation_resource_schema - EXPRESS-G diagram 5 of 5 © ISO ISO 10303-46:1994(E) # Annex F (informative) #### **Bibliography** - 1. ISO/IEC 646-1991, Information technology ISO 7 bit coded character set for information interchange. - 2. ISO/IEC 9541-1991, Information technology Font information interchange. - 3. ISO 8613, Information processing Text and office systems Open document architecture (ODA) and interchange format. - 4. ISO 10180, Information technology Text communication Standard Page Description Language (SPDL). - 5. ISO 7942-1985, Information processing systems Computer graphics Graphical Kernel System (GKS) functional description. - 6. ISO 8805-1985, Information processing systems Computer graphics Graphical Kernel System for Three Dimensions (GKS-3D) functional description. - 7. ISO/IEC 9592, Information processing systems Computer graphics Programmer's Hierarchical Interactive Graphics System (PHIGS). - 8. ISO/IEC 9592-4-1992, Information processing systems Computer graphics Programmer's Hierarchical Interactive Graphics System Part 4: Plus Lumière und Surfaces, PHIGS PLUS. - 9. ISO 8632-1992, Information technology Computer graphics Metafile for the storage and transfer of picture description information. - 10. US PRO/IPO-100, Digital Representation for Communication of Product Definition Data IGES 5.2. - 11. NEWMAN, WILLIAM M. and SPROULL, ROBERT F., Principles of Interactive Computer Graphics, Mc Graw Hill, 1981, ISBN 0-07-046338-7. - 12. FOLEY, JAMES D. and VAN DAM, ANDRIES, Fundamentals of Interactive Computer Graphics, Addison Wesley, 1984, ISBN 0-201-14468-9. #### ISO 10303-46:1994(E) #### ©ISO ## Index | acyclic_composite_text | 70 | |--|-------------| | acyclic_occlusion_precedence | 129 | | acyclic_presentation_representation_relationship | 39 | | acyclic_symbol_representation_relationship | | | annotation_curve_occurrence | | | annotation_fill_area | | | annotation_fill_area_occurrence | | | annotation_occurrence | | | annotation_occurrence_relationship | | | annotation_point_occurrence | | | annotation_symbol | 50 | | annotation_symbol_occurrence | 68 | | annotation_table | 50 | | annotation_table_occurrence | | | annotation_text | 57 | | annotation_text_character | 60 | | annotation_text_occurrence | 67 | | annotation_text_with_associated_curves | 58 | | annotation_text_with_blanking_box | 58 | | annotation_text_with_delineation | | | annotation_text_with_extent | 57 | | approximation_method | 92 | | approximation_tolerance | 126 | | approximation_tolerance_deviation | 126 | | approximation_tolerance_parameter | $\dots 127$ | | area_dependent_annotation_representation | 16 | | area_in_set | 16 | | area_or_view | | | background_colourbackground_colour | 20 | | box_characteristic_select | 89 | | box_height | | | box_rotate_angle | | | box_slant_angle | 90 | | box_width | 90 | | camera_image | $\dots 34$ | | camera_model | $\dots 23$ | | camera_model_d2 | | | camera_model_d2_shape_clipping | | | ${ m camera_model_d3}$ | | | camera_model_d3_multi_clipping | | | camera_model_d3_with_hlhsr | | | camera_model_with_light_sources | | | camera_usage | | | control or parallol | 13 | ## ISO 10303-46:1994(E) | character_glyph_font_usage | 136 | |--|-----| | character_glyph_style_outline | 121 | | character_glyph_style_outline_with_characteristics | 122 | | character_glyph_style_stroke | 121 | | character_glyph_symbol | 133 | | character_glyph_symbol_outline | 135 | | character_glyph_symbol_stroke | 134 | | character_spacing_select | 91 | | character_style_select | 89 | | colour | 138 | | colour_associated | 139 | | colour_association_table | 140 | | colour_rgb | 138 | | colour_specification | 138 | | composite_text | | | $composite_text_with_associated_curves \ \dots \\$ | 65 | | composite_text_with_blanking_box | 65 | | composite_text_with_delineation | 64 | | composite_text_with_extent | 64 | | context_dependent_invisibility | 129 | | context_dependent_over_riding_styled_item | 97 | | curve_font_or_scaled_curve_font_select | 82 | | curve_or_annotation_curve_occurrence | 84 | | curve_or_render | 86 | | curve_style | 101 | | curve_style_curve_pattern | 105 | | curve_style_curve_pattern_set | 105 | | curve_style_font | | | curve_style_font_and_scaling | 106 | | curve_style_font_pattern | 104 | | curve_style_font_select | 82 | | curve_style_rendering | 116 | | curve_style_wide | 105 | | curve_style_with_ends_and_corners | 102 | | curve_tolerance_deviation | 94 | | curve_tolerance_parameter | 95 | | curve_style_with_extension | 102 | | defined_character_glyph | 61 | | defined_glyph_select | 45 | | defined_symboldefined_symbol | 48 | | defined_symbol_select | 44 | | lefined_table | 48 | | direction_count_select | 86 | | externally_defined_character_glyph | 61 | | externally_defined_curve_font | 103 | | externally_defined_hatch_style | 108 | #### ©ISO ISO 10303-46:1994(E) externally_defined_style100 externally_defined_symbol49 externally_defined_tile_style110 field_in_table72 fill_area_style 107 fill_area_style_tile_curve_with_style110 $fill_area_style_tile_symbol_with_style \ \dots \ 111$ fill_style_select83 hiding_or_blanking_select95 invisibility128 invisibility_context96 invisible_item96 light_source31 light_source_ambient31 light_source_spot33 marker_type81 null_style80 one_direction_repeat_factor112 over_riding_styled_item97 planar_extent141 pre_defined_character_glyph61 pre_defined_character_spacing124 pre_defined_presentation_style100 pre_defined_size101 pre_defined_symbol49 ## ISO 10303-46:1994(E) | pre_defined_text_font | 138 | |--|-----| | pre_defined_tile | 111 | | pre_defined_tile_style | | | presentable_text | 133 | | presentation_area | 15 | | presentation_layer_assignment | 36 | | presentation_layer_usage | 37 | | presentation_representation | 14 | | presentation_representation_relationship | 20 | | presentation_representation_select | | | presentation_scaled_placement | 142 | | presentation_set | 14 | | presentation_size | 19 | | presentation_size_assignment_select | 12 | | presentation_style_assignment | | | presentation_style_by_context | 99 | | presentation_style_select | 80 | | presentation_view | 16 | | presented_item | 38 | | presented_item_representation | 38 | | product_data_representation_view | 17 | | product_or_presentation_space | | | rendering_properties_select | 88 | | representation_item_dependent_layer_assignment | 36 | | shading_curve_method | 86 | | shading_surface_method | 87 | | size_select | 82 | | squared_or_rounded | 83 | | staircase_or_linear | 132 | | state_variable_with_colour | 140 | | style_context_select | 80 | | styled_item | 96 | | surface_rendering_properties | 116 | | surface_side | 85 | | surface_side_style | 114 | | surface_side_style_select | 85 | | surface_style_boundary | 115 | | surface_style_control_grid | 117 | | surface_style_element_select | 85 | | surface_style_fill_area | 115 | | surface_style_parameter_line | 118 | | surface_style_reflectance_ambient | 119 | | surface_style_reflectance_ambient_diffuse | 119 | | surface_style_reflectance_ambient_diffuse_specular | 120 | | surface_style_rendering | 118 | | surface_style_rendering_with_properties | 118 | # ISO 10303-46:1994(E) ©iso | surface_style_segmentation_curve | 117 | |---|------------------| | surface_style_silhouette | 116 | | surface_style_transparent | 120 | | surface_style_usage | 114 | | surface_tolerance_deviation | 94 | | surface_tolerance_parameter | 95 | | symbol_colour | $\dots 126$ | | symbol_element_style | $\dots 125$ | | symbol_representation | $\dots \dots 52$ | | symbol_representation_map | $\dots \dots 52$ | | symbol_representation_relationship | | | symbol_representation_rule | 39 | | symbol_representation_with_blanking_box | 53 | | symbol_style | 124 | | symbol_style_select | 91 | | symbol_target | 49 | | table_record_field_representation | 54 | | table_record_field_representation_with_clipping_box | 54 | | table_record_representation | 53 | | table_representation | 53 | | table_representation_relationship | 56 | | table_text_relationship | 69 | | text_alignment | 44 | | text_delineation | 43 | | text_font | 136 | | text_font_family | 136 | | text_font_in_family | 137 | | text_justification | 89 | | text_literal | 62 | | text_literal_with_associated_curves | 63 | | text_literal_with_blanking_box | 63 | | text_literal_with_delineation | 63 | | text_literal_with_extent | 62 | | text_or_character | 44 | | text_path | 45 | | text_string_representation | 59 | | text_style | 121 | | text_style_for_defined_font | 122 | | text_style_with_box_characteristics | 123 | | text_style_with_justification | 122 | | text_style_with_mirror | 124 | | text_style_with_spacing | 123 | | tolerance_deviation_select | 93 | | tolerance_parameter_select | 94 | | tolerance_select | 92 | | two_direction_repeat_factor | 113 | | ©iso | ISO 10303-46:1994(E) |
--|----------------------| | u_direction_count | 87 | | v_direction_count | | | $view_dependent_annotation_representation \ \dots $ | | | view_volume | 26 | **4851903 0603104 046** ISO 10303-46:1994(E) © ISO #### ICS 25.040.40 **Descriptors:** automation, automation engineering, computer applications, industrial products, data, data representation, data exchange. Price based on 211 pages