INTERNATIONAL ISO
STANDARD 10303-24

First edition
2001-12-15

Industrial automation systems and
integration — Product data representation
and exchange —

Part 24
Implementation methods: C language
binding of standard data access interface

Systemes d'automatisation industrielle et intégration — Représentation et
échange de données de produits —

Partie 24: Méthode de mise en application: Liant de langage C a l'interface
d'acces aux données normalisées

= Reference numberf
= = ISO 10303-24:2001(E).

©1S0 2001

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

ISO 10303-24:2001(E)

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not
be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this
file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this
area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters
were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event
that a problem relating to it is found, please inform the Central Secretariat at the address given below.

© IS0 2001

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic
or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body
in the country of the requester.

ISO copyright office

Case postale 56 ¢ CH-1211 Geneva 20
Tel. +412274901 11

Fax + 4122749 09 47

E-mail copyright@iso.ch

Web www.iso.ch

Printed in Switzerland

© 1SO 2001 — All rights reserved

H
Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

Contents page
L S0P .. e e e e
2 NOrmative referenCeS 1
3 Terms, definitions, and abbreviations et 2.
3.1 Terms defined in ISO 10303-1 e 2..
3.2 Terms defined in ISO 10303-11ot e e 2..
3.3 Terms defined in ISO 10303-22ot e e 3...
3.4 Other definitionst 3
3.5 Abbreviations 4
4 Overview of the C language late binding of SDAI
4.1 Language bindings 5
4.2 CONfOIMANCE . . . e 5
4.3 Use of late binding functions e, 5.
4.3.1 Invalid parameter values it i e 5....
4.3.2 Errorhandling 5.
4.3.3 Memory managementt e 5.....
4.3.4 The SDAl headerfile e 6..
4.3.5 MaACIOS . .. oot 6
4.4 Naming and typographical conventions 6
5 Constants and data type definitions e
5.1 Standard error codes 7
5.2 EXPRESS CONStANtS oo 7
5.3 EXPRESS datatypesot 7
5.3.1 Bitdatatype 7
5.3.2 EXPRESS simple datatypes e e 8
5.3.3 Enumeration datatype e 9.....
5.3.4 Selectdatatypeo e e 9
5.3.5 Entitydata typeo oo e 10.
5.3.6 Aggregate datatypes e 10. ..
5.4 SDAldatatypes . .o e e e e 10
5.4.1 SDAI primitive datatypes e 0....1
5.4.2 SDAl entity data typesot 11..
5.4.3 eratordatatype e 13.
5.4.4 Non-persistentlistdatatype 13.....
5.4.5 QUEry SOUrCEe datatyPe 13.....
5.4.6 SDAl accesstype datatype e 13
5.5 C late binding-specific datatypes i 13...
5.5.1 Attribute data block datatype 4. ... 1
5.5.2 Aggregate index datatype e 4..... 1
5.5.3 Errorcode datatype e 14. .
5.5.4 Errorhandlerdatatype, 14. ...
5.5.5 Transaction commitmode datatype i 15
5.5.6 NULL identifierdatatype i 5....1
©ISO 2001 — All rights reserved iii

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

| SO 10303-24:2001(E)

I SO 10303-24:2001(E)

6 C late binding functions of the SDAl operations, 15. ..

6.1 ENVironment OPerationsttt
B.1.1 OPEN SESSION . ..ttt e e 16. .
6.1.2 C late binding specific arithmetic operations,
6.1.3 C late binding specific error handling operations
6.1.4 C late binding specific instance operations

6.2 SesSIoN OperationNs 19
6.2.1 ReCOrd @VENtt 19..
6.2.2 Seteventrecording e e 19...
6.2.3 ClOSE SESSION 20.
6.2.4 OPEN IEPOSIOIY ..ottt e 20 ..
6.2.5 Start transaction read-write orread-onlyaccess o ...
6.2.6 Break transaction 22 ..
6.2.7 ENd transaction @CCESSttt t it 22. ...
6.2.8 Create non-persistentlist i, 23....
6.2.9 Delete non-persistentlist 23. ...
6.2.10 SDAIQUETIY . ..t e 24.

6.2.11 C late binding specific recording operations

6.2.12 C late binding specific attribute data block operations
6.3 Repository Operationsttt 29
6.3.1 Create SDAI-model e 29....
6.3.2 Create schema instanCettt e e e 30 ...
6.3.3 CloSE rEPOSItONY . ..ot e e e 31 .
6.4 Schema instance Operations e 31l ...
6.4.1 Delete schemainstance i, 31...
6.4.2 Rename SChema inStanCettt ettt et
6.4.3 Add SDAI-model e e, 33...
6.4.4 Remove SDAI-mModel e e
6.4.5 Validate globalrule e 34..
6.4.6 Validate uniquenessrule 35. ..
6.4.7 Validate instance reference domain i
6.4.8 Validate schemainstance 37. ..
6.4.9 Isvalidation current e 38..
6.4.10 Schema instance operations for convenience
6.5 SDAI-model operationsc i 40.
6.5.1 Delete SDAI-model 40. ...
6.5.2 Rename SDAI-Model
6.5.3 Start SDAI-MOdel aCCESS . .. it e 2...
6.5.4 Promote SDAI-model to read-write acCesso ...
6.5.5 End SDAI-MOdel aCCESSt e
6.5.6 Getentity definition e 44. .
6.5.7 Create entity iNnStanCet e a4. . .
6.5.8 Undochanges e, 45. ..
6.5.9 Save Changes e e, 46. .
6.5.10 SDAI-model operations forconveniencec.iiiiiiinn...
6.6 SCOPE OPEratiONS ittt e i, 48
6.6.1 Add 10 SCOPEottt e e 48 .
B.6.2 1S SCOPE OWNEI . .ot e 49. .
B.6.3 Gl SCOPE ..ttt e e e 49,

iv

Copyright International Organization for Standardization
Provided by IHS under license with ISO

©ISO 2001 — All rights reserved

No reproduction or networking permitted without license from IHS Not for Resale

6.6.4 Remove from SCOPE it e 50. ..
6.6.5 Add to eXport liSt e 51.
6.6.6 Remove from exportlist e Bl....
6.6.7 Scopeddelete e i 52..
6.6.8 Scoped copy in same SDAI-model
6.6.9 Scoped copy to other SDAI-model
6.6.10 Validate scope reference restrictions
6.6.11 Scope operations for CONVENIENCEttt e e e e i
6.7 TYPE OPEIaAtiIONS . .o ittt e e e e e
6.7.1 Get complex entity definition
6.7.2 Issubtype of e waaa B8
6.7.3 Is SDAIlsubtype of e, 59...
6.7.4 Isdomain equivalentwith 59....
6.7.5 Type operations for convenience
6.8 Entity inStance Operations ittt
6.8.1 Getattribute 61
6.8.2 Testattribute 62
6.8.3 Find entity instance SDAI-model
6.8.4 GetinstanCe type it 64. . .
6.8.5 Isinstance Of e e 64
6.8.6 Iskind Of e, 65
6.8.7 Is SDAILKIND Of e 66.
6.8.8 Find entity INnStanCe USErS it e i 67...
6.8.9 Find entity instance usedin 68. . .
6.8.10 Getattribute value bound 9...
6.8.11 Findinstanceroles i A0
6.8.12 Find instance datatypes i e 70. .
6.8.13 Entity instance operations for convenience
6.9 Application instance operationst e 73. ..
6.9.1 Copy application instance in same SDAI-model
6.9.2 Copy application instance to other SDAI-model
6.9.3 Delete application instance 75. ..
6.9.4 Putattribute 75
6.9.5 Unsetattribute value 76. . .
6.9.6 Create aggregate inStancec. ittt e, 77 ..
6.9.7 Create aggregateinstance ADB
6.9.8 Getpersistentlabel 79. ..
6.9.9 Getsessionidentifier 80. ..
6.9.10 GetdesCriplion i e 80 .
6.9.11 Validate whererule o 81 ...
6.9.12 Validate required explicit attributes assigned
6.9.13 Validate inverse attributes 83 ..
6.9.14 Validate explicit attributes references i
6.9.15 Validate aggregates Size it e 85..
6.9.16 Validate aggregates UNIQUENESS i vttt ittt ettt e
6.9.17 Validate array notoptional e 6....
6.9.18 Validate stringwidth 87. ..
6.9.19 Validate binarywidth 88....
6.9.20 Validate real precCision it 89 ...
©ISO 2001 — All rights reserved v

Copyright International Organization for Standardization
Provided by IHS under license with ISO

| SO 10303-24:2001(E)

No reproduction or networking permitted without license from IHS Not for Resale

I SO 10303-24:2001(E)

6.9.21 Application instance operations for conveniencec. .. 90

6.10 Entity instance aggregate operationsc.c.uiiii i Qal.....
6.10.1 Getmember CoOUNt 91.....
6.10.2 IsSmember 92 .

6.10.3 Create iterator 93
6.10.4 Delete iterator 94
6.10.5 BegiNNINg . .. 94

B.10.6 NeXt ... e s 95

6.10.7 Getcurrentmember 95.....
6.10.8 Getvalue bound by iteratort 96
6.10.9 Getlowerbound e a7 . .. :
6.10.10 Getupperbound e, 98....

6.11 Application instance aggregate operations 99
6.11.1 Create aggregate instance as currentmember 99
6.11.2 Putcurrentmember 00....1
6.11.3 Remove current member 100

6.12 Application instance unordered collection operations 101
6.12.1 Add unordered 101 ..
6.12.2 Create aggregate instance unordered, 102
6.12.3 Remove unordered e 03....1

6.13 Entity instance ordered collection operations, 104
6.13.1 Getby indeX e 104 .

6.13.2 ENdo e 105
6.13.3 PreViOUS . ..ottt e e 105
6.13.4 Getvaluebound by index 106

6.14 Application instance ordered collection operations 107
6.14.1 PutbyindeXx e 107 .

6.14.2 Create aggregate instance by index i 108

6.15 Entity instance array operations i i e, 109. ..
6.15.1 Testbyindex 109.

6.15.2 Testcurrentmember 09....1
6.15.3 Getlower iINdeX e 110..
6.15.4 GetUpperindexiiiiii i e e 111 ..

6.16 Application instance array operations i e 2....11
6.16.1 Unsetvalue by index i, 12....1
6.16.2 Unsetvalue currentmember 112
6.16.3 Reindex array i e 113 .

6.16.4 Resetarray indexX 114. ..

6.17 Application instance listoperations i 114 ...
6.17.1 Add before current member 114
6.17.2 Add after current member 115
6.17.3 Add by indeX i, 116..
6.17.4 Create aggregate instance before currentmember 117
6.17.5 Create aggregate instance after currentmember 118
6.17.6 Add aggregate instance by index e 119
6.17.7 Remove by iIndeX i e e e 120. ...

6.18 C late binding specific SELECT TYPE operationso iiiiiinnnnnn. 120
6.18.1 PutADBtype path 121...
6.18.2 Get ADBtypepath 21...1

Vi ©ISO 2001 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

| SO 10303-24:2001(E)

6.18.3 Validate typepath 122 ..
Annex A (normative) Information objectregistration 124
Annex B (informative) The C late binding header include file <sdai.h> 125
X .t
Tables page
Table 1 - SDAI C late binding error indicatorst e 7..
Table 2 - EXPRESS built-in constants e 8..
Table 3 - SDAI primitive data types mapped to C late binding
Table 4 - SDAI entity data types mappedto C late binding
©ISO 2001 — All rights reserved Vii

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

I SO 10303-24:2001(E)

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national stan-
dards bodies (ISO member bodies). The work of preparing International Standards is normally carried
out through ISO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International organi-
zations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO col-
laborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 3.

The main task of technical committees is to prepare International Standards. Draft International
Standards adopted by the technical committees are circulated to the member bodies for voting.
Publication as an International Standard requires approval by at least 75 % of the member bodies
casting a vote.

Attention is drawn to the possibility that some of the elements of this part of ISO 10303 may be the
subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

International Standard 1ISO 10303-24 was prepared by Technical Committee 1SO/TIGdL&4%;al
automation sysens andintegration, Subcommitee SC4, Industrial data.

This International Standard is organized as a series of parts, each published separately. The structure of
this International Standard is described in ISO 10303-1.

Each part of this International Standard is a member of one of the following series: description meth-

ods, implementation methods, conformance testing methodology and framework, integrated generic

resources, integrated application resources, application protocols, abstract test suites, application inter-
preted constructs, and application modules. This part is a member of the implementation methods
series.

A complete list of parts of ISO 10303 is available from the Internet:

<http://www.nist.gov/sc4/editing/step/titles/>

Annex A forms a normative part of this part of ISO 10303. Annex B is for information only.

viii ©ISO 2001 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

| SO 10303-24:2001(E)

Introduction

ISO 10303 is an International Standard for the computer-interpretable representation of product infor-
mation and for the exchange of product data. The objective is to provide a neutral mechanism capable
of describing products throughout their life cycle. This mechanism is suitable not only for neutral file
exchange, but also as a basis for implementing and sharing product databases, and as a basis for
archiving.

This part of ISO 10303 specifies a C programming language late binding of capability specified in ISO
10303-22, the standard data access interface (SDAI). The SDAI defines a data access interface to data
defined using ISO 10303-11 (EXPRESS). The SDAI specifies operations that give the application pro-
grammer the capability to manipulate data through an interface based upon its description in the defin-
ing schema or schemas. This part of ISO 10303 specifies manifestation of that interface in the C
programming language that is independent of the EXPRESS data definitions being manipulated. The
standardization of a data access interface along with data definitions facilitates integration of different
software components from different vendors.

The document is structured corresponding to ISO 10303-22. The major subdivisions in this part of ISO
10303 are:

— Clause 4 is an overview of the C language late binding to the SDAI. It specifies the requirements
common to all C language late binding functions.

— Clause 5 specifies the C language late bindings to the EXPRESS and binding specific constants
and data types.

— Clause 6 specifies the C language late binding functions to the SDAI operations to handle the pro-
gramming environment.

— The specification of the C language late binding functions for the SDAI operations follows the cat-
egories defined in ISO 10303-22 clause 10.

Computer application systems are implemented using computing languages. Since there are many
computing languages, many SDAI language bindings are possible. Additional SDAI language bindings
are specified as other parts of ISO 10303 within the implementation method series.

Implementations of this part of ISO 10303 are not required to support the complete set of capabilities
specified in 1ISO 10303-22. Specific sets of capability are grouped into implementation classes. The
implementation classes against which conformance may be claimed are defined in ISO 10303-22
clause 13.

©ISO 2001 — All rights reserved iX

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

INTERNATIONAL STANDA RD SO 1033-24:2001(E)

Industrial automation systems and integration —
Product data representation and exchange —

Part 24: Implementation methods:

C language binding of standard data access interface

1 Scope

This part of ISO 10303 specifies a C programming language late binding of the capability specified in
ISO 10303-22 - Standard data access interface (SDAI). This binding is a late binding and as such, none
of the constants, data types, and functions depend on the application schema being accessed.

The following are within the scope of this part of ISO 10303:

— access to and manipulation of data types and entities which are specified in ISO 10303-22;
— convenience functions suitable to this language binding;
— late binding requirements specified in ISO 10303-22.

The following are outside the scope of this part of ISO 10303:

— memory arrangement of data structures used by implementations of this part of ISO 10303;
— early binding requirements as specified in ISO 10303-22;

— all items listed as out of scope in ISO 10303-22.

2 Normative references

The following normative documents contain provisions which, through reference in this text, constitute
provisions of this part of ISO 10303. For dated references, subsequent amendments to, or revisions of,
any of these publications do not apply. However, parties to agreements based on this part of ISO 10303
are encouraged to investigate the possibility of applying the most recent editions of the normative doc-
uments indicated below. For undated references, the latest edition of the normative document referred
to applies. Members of ISO and IEC maintain registers of currently valid International Standards.

I SONEC 989:1999, Programmirg languages—C

©ISO 2001 - All rights reserved 1

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

I SO 10303-24:2001(E)

ISO/IEC 8824-1:198, Informationtechnology — Abstract Synthbotation One (ASN.1): Specification
of basic natation

ISO 10303-1:1994Industrial automation systems and integration - Product data representation and
exchange - Part 1. Overview and fundamental principles

ISO 10303-11:1994ndustrial automation systems and integration - Product data representation and
exchange - Part 11: Desaiption mehods: The EXRRESSanguage reference manud

ISO 10303-21:1994ndustrial automation systems and integration - Product data representation and
exchange - Part 21: Implementation methods: Clear text ercoding d the exchange structure

ISO 10303-22:1998ndustrial automation systems and integration - Product data representation and
exchange - Part 22: Implementation methods: Standard data access interface

3 Terms, definitions, and abbreviations

3.1 Terms defined in ISO 10303-1

For the purposes of this part of ISO 10303, the following terms defined in ISO 10303-1 apply.
— application;

— application protocol;

— conformance testing;

— data;

— implementation method;

— information;

— model.

3.2 Terms defined in ISO 10303-11

For the purposes of this part of ISO 10303, the following terms defined in ISO 10303-11 apply.

— complex entity data type;
— data type;

— entity;

2 ©ISO 2001 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

| SO 10303-24:2001(E)

— entity data type;

— entity instance;

— instance.

3.3 Terms defined in ISO 10303-22

For the purposes of this part of ISO 10303, the following terms defined in ISO 10303-22 apply.

— application schema;
— constraint;

— identifier;

— iterator;

— implementation class;
— repository;

— schema instance;

— SDAI language binding;
— SDAI-model;

— session;

— validation.

3.4 Other definitions

For the purposes of this part of ISO 10303, the following definitions apply:

3.4.1
attribute data block
a C structure containing both a value and the data type of the value that is accessed through a handle.

3.4.2

function

a C language late binding specific interpretation of an SDAI operation, a combination of several SDAI
operations or an operation unigue to this binding.

©ISO 2001 — All rights reserved 3

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

I SO 10303-24:2001(E)

3.4.3

function prototype

the definition of a C programming language function in an include file.

3.4.4
handle C type

a function parameter that is a C language pointer type containing the address of a datum or a structured

data.

3.5 Abbreviations

For the purposes this part of ISO 10303, the following abbreviations apply:

aggr
app
attr
ADB
BN
Deq

Enum

Itr

NPL

Rep

RO

RW

SDAI

Trx

Uni

4

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS

Aggregate
Application

Attribute

Attribute Data Block

By name

Domain equivalent

Enumeration

Identifier

Iterator

Non-persistent List

Repository
Read only

Read write

Standard Data Access Interface

Transaction

Uniqueness

Not for Resale

©ISO 2001 — All rights reserved

| SO 10303-24:2001(E)

4 Overview of the C language late binding of SDAI
4.1 Language bindings

ISO 10303-22 specifies operations independently of any programming language. Language bindings of
the operations are developed for programming languages to define the capability required of conform-
ing implementations. Two types of language bindings are identified: late bindings and early bindings.
The concept of language bindings is defined in ISO 10303-22 clause 4. This part of ISO 10303 speci-
fies a C language late binding of the SDAI operations.

This part of ISO 10303 supports all of the functionality defined in ISO 10303-22. There is not a
one-to-one correspondence between the operations described in 1ISO 10303-22 and the functions
defined in this part of ISO 10303. This part of ISO 10303 extends the functionality defined in 1ISO
10303-22 to provide more efficient or convenient operations.

4.2 Conformance

An implementation of this part of ISO 10303 shall conform to an implementation class as specified in
ISO 10303-22 clause 13. The implementation shall support all C language binding functions whose
original specification in ISO 10303-22 contains an operation required by the implementation level and
shall support all convenience functions defined in this part of ISO 10303.

4.3 Use of late binding functions

4.3.1 Invalid parameter values

If a parameter to a C late binding function has an invalid value (such as a value outside the domain of
the function, a pointer outside the address space of the program, or a NULL pointer), the behaviour of
the function is not specified in this part of ISO 10303.

4.3.2 Error handling

In the event an error is detected during the execution of a function, the values of the input parameters,

the state of the implementation, and the application data managed by the implementation shall be

unchanged, except in the event of a fatal underlying system error where the outcome is dependent on
system and implementation design. Whether the output parameters are affected in the event of an error
is left to the implementation.

4.3.3 Memory management

When applicable, functions are strongly typed to return either a designated value or an instance identi-
fier. The function parameters do not include output parameters except where required to return
untyped data in application managed storage. The output parameters aneotgipedto accept arbi-

trarily typed pointers to output buffers for attribute and aggregate member values or ADBs passed from
the implementation to the application program.

©ISO 2001 — All rights reserved 5

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

I SO 10303-24:2001(E)

The SDAI implementation shall be responsible for allocating and deallocating memory for attribute
values of the EXPRESS data types BINARY, ENUMERATION, and STRING, and the application pro-
gram is responsible for the contents of that memory. The SDAI implementation shall allocate memory
in a fashion such that it is large enough for any character or binary string to be read. The value of that
memory shall be unchanged until the next time a character or binary string is read, or until the end of
the session.

If the SDAI implementation supports the computation of EXPRESS DERIVE attributes, the implenta-
tion shall allocate and deallocate memory for the computed value. The value of that memory shall be
unchanged until the next time a DERIVE attribute is read, or until the end of the session.

If the SDAI implementation supports the computation of EXPRESS INVERSE attributes, the implen-
tation shall allocate and deallocate memory for the NPL containing the result. The value of the NPL
shall be unchanged until the next time an INVERSE attribute is read, or until the end of the session.

4.3.4 The SDAI header file

An implementation shall provide a C late binding program header file, nsdaeth , for inclusion

into the application program by the C preprocessor diregtindude <sdai.h> . This header file

shall contain all the declarations of types, constants, and functions defined in this part of ISO 10303.
An example header file is provided in annex B.

4.3.5 Macros

Any SDAI operation may be implemented as a macro defined isdéien header file. Any invoca-
tion of an operation that is implemented as a macro shall expand resulting in each parameter being
evaluated exactly once, fully protected by parentheses where required.

4.4 Naming and typographical conventions

In this part of ISO 10303, C language function, type, and constant names are typeset in a monospace
font to distinguish them from ordinary text.

The prefixsdai is used for all C programming language function, type, and constant names. Case is
used to delimit separate words or parts of identifiers and to differentiate among function, type, and con-
stant names as follows:

— function names are prefixed by a lowercadai and each word in the function name starts with
an uppercase letter;

EXAMPLE 1 sdaiOpenSession for the SDAI Open Session operation.

— type names are prefixed I8dai starting with an uppercase letter s and each word in the type
name starts with an uppercase letter;

EXAMPLE 2 SdaiNamedType for EXPRESS named types.

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

| SO 10303-24:2001(E)

— constant names are prefixed by a lowercage and the constant name is all uppercase letters.

EXAMPLE 3 sdaiRO for read-only.

5 Constants and data type definitions

5.1 Standard error codes

ISO 10303-22 clause 11 defines a set of SDAI error indicators. These error indicators with the addition
of the C language binding specific error indicators defined in Table 1 define the set of error indicators
mapped into C programming language constants to which all implementations shall support access via
the Error Query function (see 6.1.3.1). The constant name is the name of the SDAI error indicator pre-
fixed bysdai .

EXAMPLE sdaiMO_NEXS for SDAI-model does not exist.

The error code constants shall be included irsti@.h header file. The value and type of the error
code constants are not defined in ISO 10303-22 nor in this part of ISO 10303. The error code value and
error base specified need only be supported as attributes of the error event defined in ISO 10303-22:

7.4.7.
Table 1 - SDAI C late binding error indicators
. E_rror Description Error code Error
indicator base
NO_ERR No error Not applicable
AB_NEXS Attribute data block does not exist 2400

5.2 EXPRESS constants

Table 2 specifies the EXPRESS built-in constants represented by C language constants or macros.
These built in constants shall be included indtigi.h header file.

5.3 EXPRESS data types

5.3.1 Bit data type

The C late binding specific data tyfelaiBit is used to build5daiBinary values. The C late
binding data typ&daiBinary represents the EXPRESS BINARY data typdaiBit has two dis-
tinct valuessdaiBITO andsdaiBIT1 . TheSdaiBit type shall be defined as the C late binding
data type:

typedef unsigned char SdaiBit;

©ISO 2001 — All rights reserved 7

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

| SO 10303-24: 2001(E)
Table 2 - EXPRESS built-in constants

EXPRESS C late binding C data type Value
constant name
CONST_E sdaiE double specified in ISO 10303-11 with the
precision not specified in this part
of ISO 10303
Pl sdaiPI double specified in ISO 10303-11 with the
precision not specified in this part
of ISO 10303
FALSE sdaiFALSE int 0
TRUE sdaiTRUE int 1
UNKNOWN sdaiUNKNOWN int 2
BINARY bit 0 sdaiBITO SdaiBit not specified in this part of ISO
10303
BINARY bit 1 sdaiBIT1 SdaiBit not specified in this part of ISO
10303

5.3.2 EXPRESS simple data types

5.3.2.1 EXPRESS INTEGER data type

The EXPRESS INTEGER data type shall be represented by the C late binding data type:

/* C late binding simple data types: */
typedef long Sdailnteger;

5.3.2.2 EXPRESS REAL data type

The EXPRESS REAL data type shall be represented by the C late binding data type:
typedef double SdaiReal;

5.3.2.3 EXPRESS NUMBER data type

The EXPRESS NUMBER data type shall be represented by the C late binding data type:
typedef SdaiReal SdaiNumber;

5.3.2.4 EXPRESS BOOLEAN data type

The EXPRESS BOOLEAN data type shall be represented by the C late binding data type:

typedef int SdaiBoolean;

8 ©ISO 2001 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

| SO 10303-24:2001(E)

SdaiBoolean shall be compatible witbdaiFALSE andsdaiTRUE of typeSdailLogical
5.3.2.5 EXPRESS LOGICAL data type

The EXPRESS LOGICAL data type shall be represented by the C late binding data type:
typedef int Sdailogical,
SdailLogical shall be compatible witedaiFALSE andsdaiTRUE and the boolean operations of

the C programming language. Comparison operations (=,>,<) are supported by a late binding function
(see 6.1.2.1).

5.3.2.6 EXPRESS STRING data type

The EXPRESS STRING data type shall be represented by the C late binding data type:

typedef char *SdaiString;
5.3.2.7 EXPRESS BINARY data type

The EXPRESS BINARY data type shall be represented by the C late binding data type:
typedef SdaiBit *SdaiBinary;

Indexing using[] and automatic conversion betwe8daiBinary and Sdailnteger shall be
supported.

5.3.3 Enumeration data type

The EXPRESS ENUMERATION data type shall be represented by the C late binding data type
SdaiEnum . This data type shall be compatible withar* and implementations shall support pass-
ing enumeration values as lower case C string literals:

/* enumeration data type: */
typedef char *SdaiEnum;

5.3.4 Select data type

The value of an attribute or aggregate member that has as its type domain an EXPRESS SELECT data
type may be required to be represented as an SBlAtt_valueas specified in ISO 10303-22: 9.4.8.

The SDAI select_valueis represented by the C late binding data t3daiADB, an attribute data

block. When the type of the value is not ambiguous, it need not require representatieleets galue

and may be represented by the appropriate C type.

EXAMPLE If the value is an entity instance identifier then it is not necessary to represent it as a
select_value

©ISO 2001 — All rights reserved 9

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

I SO 10303-24:2001(E)

5.3.5 Entity data type

The value of an attribute or aggregate element that is an instance of an EXPRESS ENTITY type is rep-
resented by an implementation specific handle naguzild . The handle serves as the identifier of

the instance. Identifiers are not persistent. Identifiers shall be unique globally over all types of instances
and unchanging within an SDAI session for any particular instance.

[* entity instance identifier type: */
typedef Sdaild Sdailnstance;

Explicit referencing usin@dailnstance need not be supported by an implementation.
5.3.6 Aggregate data types

A generalization of the EXPRESS aggregate data types is represented by data type
aggregate_instancend its subtypes defined in ISO 10303-22 clause 9. The C late binding representa-
tion of any aggregate instance is defined by the instance identifiebt\glnstance and is named
SdaiAggr . Aggregate instance identifiers shall be unique during an SDAI session.

[* aggregate data types: */
typedef Sdailnstance SdaiAggr;

The C late binding aggregate data types form a hierarchy as follows:

typedef SdaiAggr SdaiOrderedAggr;
typedef SdaiAggr SdaiUnorderedAggr;
typedef SdaiOrderedAggr SdaiArray;
typedef SdaiOrderedAggr Sdailist;
typedef SdaiUnorderedAggr SdaiSet;

- typedef SdaiUnorderedAggr SdaiBag;

5.4 SDAI data types

" 1SO 10303-22 specifies many data types in the schemas it defines. These data types are used as param-
eters to the SDAI operations. The mapping of these data types into the C language are specified in this
subclause.

5.4.1 SDAI primitive data types

The SDAI primitive data types of values given for or expected from a particular attribute or aggregate
element are specified in the SDAI parameter data schema (see 1SO 10303-22 clause 9). The SDAI
primitive types are represented in the C language late binding as described in Table 3.

The SDAI primitive type (see ISO 10303-22: 9.3.1) is used to specify an attribute or aggregate element
value. It is represented in the C binding by the tgdaiPrimitiveType . It is an enumeration
defined as:

10 ©ISO 2001 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

| SO 10303-24:2001(E)

Table 3 - SDAI primitive data types mapped to C late binding

SDAI pri;n;gve data C late binding type
binary_value SdaiBinary
boolean_value SdaiBoolean
enumeration_value SdaiEnum
integer_value Sdailnteger
logical value Sdailogical
number_value SdaiNumber
real_value SdaiReal
select_value SdaiADB
string_value SdaiString
entity_instance Sdailnstance
aggregate_instance SdaiAggr

[* attribute type data type: */

typedef enum {
sdaiADB,
sdaiENUM,

sdaiNOTYPE, sdaiNUMBER,

} SdaiPrimitiveType;

sdaiAGGR,

5.4.2 SDAI entity data types

sdaiBINARY, sdaiBOOLEAN,
sdailNSTANCE, sdailNTEGER, sdaiLOGICAL,
sdaiREAL,

sdaiSTRING

References to instances of EXPRESS entity data types managed by the implementation are made in the
C late binding by instance identifiers. ISO 10303-22 defines entity types in the SDAI dictionary
schema, the SDAI session schema, the SDAI population schema, and the SDAI parameter data schema
(see 1ISO 10303-22 clauses 6 through 9). For those entity types that are strongly typed, Table 4 specifies
their representation in the C language late binding. ISO 10303-22 entity types from the SDAI dictio-
nary schema, SDAI session schema and SDAI population schema for which a representation is not
specified explicitly in this part of ISO 10303 are represented by the C bindin§dgiestance

Instances of entity data types managed by the implementation are referenced in the C late binding by
instance identifiers of the tygdailnstance

/* SDAI instance identifier types: */
typedef Sdailnstance SdaiApplnstance;

typedef Sdailnstance SdaiModel,;
typedef Sdailnstance SdaiRep;
typedef Sdailnstance SdaiSession;
typedef Sdailnstance SdaiAttr;

typedef SdaiAttr SdaiExplicitAttr;

©ISO 2001 — All rights reserved 11

Copyright International Organization for Standardization
Provided by IHS under license with ISO

No reproduction or networking permitted without license from IHS Not for Resale

I SO 10303-24:2001(E)

Table 4 - SDAI entity data types mapped to C late binding

SDAI Schema SDAI entity data type C late binding type
Dictionary attribute SdaiAttr
Dictionary defined_type SdaiDefinedType
Dictionary entity_definition SdaiEntity
Dictionary explicit_attribute SdaiExplicitAttr
Dictionary global_rule SdaiGlobalRule
Dictionary named_type SdaiNamedType
Dictionary schema_definition SdaiSchema
Dictionary unigueness_rule SdaiUniRule
Dictionary where_rule SdaiWhereRule
Dictionary global_rule SdaiGlobalRule
Parameter data aggregate_instance SdaiAggr
Parameter data application_instance SdaiApplnstance
Parameter data array_instance SdaiArray
Parameter data bag_instance SdaiBag
Parameter data entity_instance Sdailnstance
Parameter data list_instance SdaiList
Parameter data non_persistent_list_instange SdaiNPL
Parameter data ordered_collection SdaiOrderedAggr
Parameter data set_instance SdaiSet
Parameter data unordered_collection SdaiUnorderedAggr

Population schema_instance SdaiSchemalnstance
Population scope SdaiScope
Population sdai_model SdaiModel
Session sdai_repository SdaiRep
Session sdai_session SdaiSession
Session sdai_transaction SdaiTrx

typedef Sdailnstance SdaiNamedType,;

typedef SdaiNamedType SdaiEntity;

typedef SdaiNamedType SdaiDefinedType;

typedef Sdailnstance SdaiWhereRule;

typedef Sdailnstance SdaiUniRule;

typedef Sdailnstance SdaiGlobalRule;

typedef Sdailnstance SdaiSchema;

12

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS

Not for Resale

©ISO 2001 — All rights reserved

| SO 10303-24:2001(E)

typedef Sdailnstance SdaiScope;
typedef Sdailnstance SdaiSchemalnstance;
typedef Sdailnstance SdaiTrx;

5.4.3 lterator data type

The SDAI iterator data type (see 1SO 10303-22: 9.4.1) providing access to aggregate members is repre-
sented by an implementation specific handle nagdaltrid

/* SDAI iterator identifier type: */
typedef Sdailtrld Sdailterator;

5.4.4 Non-persistent list data type

The SDAI non persistent list instance data type (see ISO 10303-22: 9.4.18) is represented in the C lan-
guage binding aSdaiNPL . NPLs may be accessed by any C late binding function that has a parame-
ter of the typeSdailL.ist

/* Non-persistent list data type: */
typedef SdailList SdaiNPL;

5.4.5 Query source data type

The SDAI query source data type (see 1ISO 10303-22: 9.3.12) is represented in the C language binding
asSdaiQuerySourceType . Itis used to specify the domain over which an SDAI query operation is
executed.

/* Query source data type: */
typedef enum {

sdaiAGGR, sdaiMODEL, sdaiREP, sdaiSCHEMAINSTANCE
} SdaiQuerySourceType;

5.4.6 SDAI access type data type

The SDAI access type data type (see ISO 10303-22: 7.3.1) is represented in the C language binding as
SdaiAccessMode . Itis used to specify the mode when starting access to an SDAI-model or starting

a transaction. It is an enumeration type consisting of two values, representing read-only and read-write
access, and is defined as:

/* access mode data type: */
typedef enum {

sdaiRO, sdaiRW
} SdaiAccessMode;

5.5 C late binding-specific data types

This part of ISO 10303 requires several C data types in addition to those required by 1SO 10303-22.
This subclause defines those additional types.

©ISO 2001 — All rights reserved 13

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

ISO 10303-24:2001(E)
5.5.1 Attribute data block data type

An attribute data block represents a value together with its data type. The ADB d&@dayfpPB is

used in functions when the type of a value is decided only at the instance level, for example, when read-
ing the attribute value of an attribute that may be one of several potential data types. The ADBs are
used for get and put functions of attribute and aggregate leaf element values. The ADBs are also used
to set and read the type path information necessary as the result of some EXPRESS SELECT TYPEs.
As ADB identifiers need not be persistent between SDAI sessions, functions comparing attribute val-
ues or aggregate members represented by ADBs shall only consider the data value and data type in the
comparison.

The C late binding type of the tyf@daiADB is represented by an implementation specific handle
namedSdaiADBId :

- I* C late binding ADB identifier type: */
typedef SdaiADBId SdaiADB;

Access to the contents of an ADB is made using the C language late binding specific ADB and
 SELECT TYPE functions.

5.5.2 Aggregate index data type

The data typé&daiAggrindex is used to represent aggregation indices. The C late binding type of
SdaiAggrindex is represented by an implementation specific handle n&uaidndexId

[* aggregate index data type: */
typedef Sdailndexld SdaiAggrindex;

5.5.3 Error code data type

The data typ&daiErrorCode is used to represent the C late binding error constants (see 5.1). The
C late binding type oBdaiErrorCode s represented by a handle nanseihiErrorid

/* error code data type: */
typedef SdaiErrorld SdaiErrorCode;

5.5.4 Error handler data type

SdaiErrorHandler is the type of all error handling functions specified by the application to be
used by the implementation upon error detection. These functions shall accept a single
SdaiErrorCode parameter. The prototype is defined as:

[* error handler data type: */
typedef void (*SdaiErrorHandler)(SdaiErrorCode);

14 ©ISO 2001 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

| SO 10303-24:2001(E)

5.5.5 Transaction commit mode data type

SdaiCommitMode is used to specify whether the most recent effect of changes made during a partic-
ular transaction is to be committed or not. The transaction commit mode data type shall be mapped as
an enumeration type defined as:

[* transaction commit mode data type: */
typedef enum {

sdaiABORT, sdaiCOMMIT
} SdaiCommitMode;

5.5.6 NULL identifier data type

The sdaiNullld instance signifies the NULL identifier that may be compared with other instance
identifiers to determine whether they have a valid value or not.

/* NULL identifier data type: */
typedef Sdaild SdaiNullld;

6 C late binding functions of the SDAI operations

This clause defines the C late binding functions for the operations defined in ISO 10303-22. For opera-
tions specified in ISO 10303-22, the clause headings are the operation name as specified in ISO 10303-
22. For operations defined in this part of ISO 10303, the clause headings are based upon the C function
names but avoid abbreviations and specify a more complete name for the function. Each function is
defined by the following as required:

— a description of the task performed by the function. For functions based on operations defined in
ISO 10303-22, this description is incomplete in that the complete text describing the operation inf
ISO 10303-22 is not duplicated in this part of ISO 10303. Within this description, the operation
name is based upon the C function name rather than the SDAI operation name; :

— Prototype: /* the ANSI-C style function prototypes of the SDAI operations */;
— Input: the parameters required to be specified prior to the execution of the function;

— Output: the parameters made available to the application after the successful execution of the
function;

— Return: the function value made available to the application after the successful execution of the
function;

— Possible error indicators: the error code constant values that maySsaikerorCode return
of the Error Query function after the unsuccessful execution of a C binding function;

©ISO 2001 — All rights reserved 15

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

I SO 10303-24:2001(E)

— Original specification in ISO 10303-22: the clause containing the specification of the operation(s)
in ISO 10303-22 upon which the function is based. If not specified, the function is a convenience
function defined in this part of ISO 10303.

Certain functions need as an input some object that defines part of the operational environment, such as
a repository. The object, as all instances, is identified by its instance identifier; however, an alternative
function is provided that uses the name of the object as the input parameter. The name of such a func-
tion is to appen®Nto the name of the other function that performs the same operation using instance
identifier as an input. For input or output parameters to a BN function that specify an EXPRESS identi-
fier, the implementation need only support lower case letters (see ISO 10303-22: 6.3.6).

6.1 Environment operations

6.1.1 Open session

The Open Session function shall initiate the SDAI implementation and start a new SDAI session.
Prototype:

SdaiSession sdaiOpenSession (void);

Return:

In normal condition: Session instance identifier.
In error condition: NULL identifier.

Possible error indicators:

sdaiSS_OPN Session open.
sdaiSS_NAVL SDAI not available.
sdaiSY_ERR Underlying system error.

Original specification in ISO 10303-22:

10.3.1

6.1.2 C late binding specific arithmetic operations

6.1.2.1 Logical compare

The Logical Compare function shall test for the ordering of two values according to the ordering of the
values of the EXPRESS LOGICAL data type.

Prototype:

int sdaiLogicalCompare (SdaiLogical valuel, SdaiLogical value2);

16 ©ISO 2001 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

| SO 10303-24:2001(E)

Input:

valuel: SdailLogical
value2: SdailLogical
Return:

In normal condition: +1 if valuel is greater than value2; 0 if valuel is equal to value2; -1 if valuel is
less than value2.

6.1.3 C late binding specific error handling operations

This subclause defines the functions for the purpose of handling the error resulting from the unsuccess-
ful execution of a function. Error handling shall be managed via a default system error handling func-
tion, special error handling functions and the Error Query function. A last in, first out error handler
stack shall be supported by implementations of this part of ISO 10303. Error handling functions are
added to this stack by the Set Error Handler function and are removed from the stack by the Restore
Error Handler function. If the error handler stack is empty, the default system error handling function
shall be automatically invoked in the event an error occurs. If the error handler stack is not empty, the
error handling function at the top of the stack shall be automatically invoked in the event an error
occurs.

6.1.3.1 Error query

The Error Query function shall return the error code resulting from the C binding function that most
recently executed unsuccessfully. After returning the error code, subsequent executions of the Error
Query function shall returadaiNO_ERR until another C language binding function executes unsuc-
cessfully. Prior to executing the Open Session function, the Error Query function shall return
sdaiSS_NOPN.

Prototype:

SdaiErrorCode sdaiErrorQuery (void);

Return:

Standard error code: The error code of the most recent function that executed unsuccessfully.

Possible error indicators:

sdaiSS_NOPN Session is not open.
6.1.3.2 Set error handler

The Set Error Handler function shall place the specified error handling function on the last in, first out
error handler stack. This function shall accept the error code as the only parameter and may be exe-
cuted before the Open Session function, during an SDAI session, and after the Close Session function.
The system default error handler may be placed on the stack by specifying a NULL function. Multiple

©ISO 2001 — All rights reserved 17

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

I SO 10303-24:2001(E)

error handling functions may be placed on the stack. The most recently added error handling function
is at the top of the stack and shall automatically be invoked when an error condition occurs.

Prototype:
void sdaiSetErrorHandler (SdaiErrorHandler function);

Possible error indicators:

sdaiSY_ERR Underlying system error.
6.1.3.3 Restore error handler

The Restore Error Handler function shall remove the most recently added error handling function from

the top of the last in, first out error handler stack. The next most recently added error handling function

is left at the top of the error handler stack. This function has no effect if the error handler stack is

empty.

Prototype:

SdaiErrorHandler sdaiRestoreErrorHandler (void);

Return:

If the stack was not empty: a pointer to the top error handling function before removing it from the
error handler stack.

If the stack was empty: a NULL pointer.

Possible error indicators:

sdaiSY_ERR Underlying system error.

6.1.4 C late binding specific instance operations

6.1.4.1 Is equal
The Is Equal function shall test whether the two specified SDAI identifiers are identical.

Prototype:

SdaiBoolean sdailsEqual (Sdailnstance instancel,
Sdailnstance instance?2);

Input:
instancel: The first identifier in the comparison.
instance2: The second identifier in the comparison.

18 ©ISO 2001 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

| SO 10303-24:2001(E)

Return:

In normal condition: sdaiTRUE if instancel and instance2 are equalaiFALSE if instancel
and instance?2 are not equal.

6.2 Session operations

6.2.1 Record event
The Record Event function shall append an event to the SDAI session events record.

Prototype:

void sdaiRecordEvent (SdaiSession session, SdaiString functionName,
SdaiErrorCode error, SdaiString description);

Input:

session: The identifier of the session in which the event takes place.
functionName: An identifier for the function with which the event is associated.
error: Error code for the error event.

description: Description of the error event.

Possible error indicators:

sdaiSS_NOPN Session is not open.
sdaiER_NSET Event recording not set.
sdaiFN_NAVL Function not available.
sdaiSY_ERR Underlying system error.

Original specification in ISO 10303-22:

10.4.1
6.2.2 Set event recording

The Set Event Recording function shall either activate event recording or inhibit event recording for the
specified SDAI session.

Prototype:

SdaiBoolean sdaiSetEventRecording (SdaiSession session,
SdaiBoolean setRec);

Input:

session: The identifier of the session for which to activate or inhibit event recording.

©ISO 2001 — All rights reserved 19

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

I SO 10303-24:2001(E)

setRec: sdaiTRUE to activate event recordinggdaiFALSE to inhibit event record-
ing.

Return:

In normal condition: sdaiTRUE event recording is set as requested.
In error condition: sdaiFALSE if event recording is not supported at all.

Possible error indicators:

sdaiSS_NOPN Session is not open.
sdaiFN_NAVL Function not available.
sdaiSY_ERR Underlying system error.

Original specification in ISO 10303-22:

10.4.2 and 10.4.3
6.2.3 Close session
The Close Session function shall terminate the specified SDAI session. Subsequent invocations of

Error Query shall returadaiSS_NOPN until the Open Session function executes successfully. After
invoking this function, subsequent C late binding functions need no longer execute successfully.

Prototype:

void sdaiCloseSession (SdaiSession session);

Input:

session: The identifier of the session to be closed.

Possible error indicators:

sdaiSS_NOPN Session is not open.
sdaiSY_ERR Underlying system error.

Original specification in ISO 10303-22:

10.4.4
6.2.4 Open repository
The Open Repository function shall make the repository and its contents available to the session.

Prototype:

SdaiRep sdaiOpenRepository (SdaiSession session,
SdaiRep repository);

20 ©ISO 2001 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

| SO 10303-24:2001(E)

SdaiRep sdaiOpenRepositoryBN (SdaiSession session,
SdaiString repositoryName);

Input:

session: Identifier of the session in which repository is to be opened.
repository: Identifier of the repository.

repositoryName: Name of the repository.

Return:

In normal condition: Repository instance identifier.
In error condition: NULL identifier.

Possible error indicators:

sdaiSS_NOPN Session is not open.
sdaiRP_NEXS Repository does not exist.
sdaiRP_NAVL Repository not available.
sdaiRP_OPN Repository open.
sdaiSY_ERR Underlying system error.

Original specification in ISO 10303-22:

10.4.5
6.2.5 Start transaction read-write or read-only access

The Start Trx function shall a initiate a transaction with either a read-write or read-only access mode
for subsequent functions.

Prototype:

SdaiTrx sdaiStartTrx (SdaiSession session, SdaiAccessMode mode);

Input:

session: Identifier of the session whose transaction is to be started.

mode: Access mode of the transaction to be stastslRW for read-write access,
sdaiRO for read-only access.

Return:

In normal condition: Identifier of the started transaction.
In error condition: NULL identifier.

Possible error indicators:

sdaiSS_NOPN Session is not open.

©ISO 2001 — All rights reserved 21

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

I SO 10303-24:2001(E)

sdaiTR_EXS Transaction exists.
sdaiFN_NAVL Function not available.
sdaiSY_ERR Underlying system error.

Original specification in ISO 10303-22:

10.4.6 and 10.4.7
6.2.6 Break transaction

The Break Trx function shall commit or abort changes made during a transaction. When the specified
mode issdaiABORT, this function shall abort changes made since the most recent Start Trx function -
where the Start Trx mode was specifiedsdaiRW or since the most recent Break Trx where the
Break Trx mode was specified adaiCommit . When the specified mode $laiCOMMIT, this

function shall commit changes made since the most recent Start Trx function where the Start Trx mode
was specified asdaiRW or since the most recent Break Trx where the Break Trx mode was specified
assdaiCommit .

Prototype:

void sdaiBreakTrx (SdaiTrx transaction, SdaiCommitMode mode);

Input:
transaction: Identifier of the active read-write access transaction.
mode: Commit mode, can bedaiABORT, orsdaiCOMMIT.

Possible error indicators:

sdaiSS_NOPN Session is not open.
sdaiTR_NEXS Transaction does not exist.
sdaiTR_EAB Transaction ended abnormally.
sdaiTR_NAVL Transaction not available.
sdaiFN_NAVL Function not available.
sdaiSY_ERR Underlying system error.

Original specification in ISO 10303-22:

10.4.8 and 10.4.9
6.2.7 End transaction access

The End Trx function shall terminate the specified transaction and either commit or abort all changes
made since the most recent Start Transaction or Break Transaction function.

Prototype:

void sdaiEndTrx (SdaiTrx transaction, SdaiCommitMode mode);

22 ©ISO 2001 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

| SO 10303-24:2001(E)

Input:
transaction: Identifier of the active read-write access transaction.
mode: Commit mode: eithedaiABORT, orsdaiCOMMIT.

Possible error indicators:

sdaiSS_NOPN Session is not open.
sdaiTR_NEXS Transaction does not exist.
sdaiTR_EAB Transaction ended abnormally.
sdaiTR_NAVL Transaction not available.
sdaiFN_NAVL Function not available.
sdaiSY_ERR Underlying system error.

Original specification in ISO 10303-22:

10.4.10 and 10.4.11
6.2.8 Create non-persistent list

The Create NPL function shall create a non-bounded, non-persistent list. NPLs shall be accessible by
any C late binding function that has a parameter of the $glaélist . An implementation of this

part of ISO 10303 need not support the assignment of the identifier of a non-persistent list to an
attribute of an entity instance or as an aggregate member.

Prototype:
SdaiNPL sdaiCreateNPL (void);
Return:

In normal condition: Identifier of the newly created NPL.
In error condition: NULL identifier.

Possible error indicators:

sdaiSS_NOPN Session is not open.
sdaiSY_ERR Underlying system error.

Original specification in ISO 10303-22:

10.4.12
6.2.9 Delete non-persistent list

The Delete NPL function shall remove the specified non-persistent list from the SDAI session.

©ISO 2001 — All rights reserved 23

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

I SO 10303-24:2001(E)

Prototype:

void sdaiDeleteNPL (SdaiNPL list);

Input:

list:

Identifier of a non-persistent list.

Possible error indicators:

sdaiSS_NOPN Session is not open.
sdaiAl_NEXS Aggregate instance does not exist.
sdaiSY_ERR Underlying system error.

Original specification in ISO 10303-22:

10.4.13
6.2.10 SDAI query

The Query function shall determine those entity instances from the source domain that meet the speci-
fied criteria and append them to the specified pre-existing result NPL. The criteria valid for this func-
tion are limited to a subset of EXPRESS expressions.

Prototype:

Sdailnteger sdaiQuery (SdaiQuerySourceType sourceType,
SdaiString criteria, Sdailnstance instance,
SdaiNPL result, ...);

Input:

sourceType: Type of the domain to be analyzed, with one of the following argument values:
sdaiAGGR, sdaiMODEL, sdaiREP , orsdaiSCHEMAINSTANCE

criteria: The logical expression that defines the criteria to be evaluated.

instance: The value for SELF in the case where the attribute being queried is a reference
to an entity data type.

result: Identifier of a pre-existing NPL to which the instance identifiers for those
entity instances are appended meeting the specified criteria.
Handle matching or convertible to the sourceType given as a function parame-
ter with the specified late binding type.

- Return:

In normal condition: Number of entity instances meeting the specified criteria.
- In error condition: -1

24 ©ISO 2001 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

Possible error indicators:

sdaiSS_NOPN
sdaiRP_NOPN
sdaiAl_NEXS
sdaiRP_NEXS
sdaiMO_NEXS
sdaiSI_NEXS
sdaiEl_NEXS
sdaiEl_NVLD
sdaiVA_NVLD
sdaiOP_NVLD
sdaiAT_NVLD
sdaiVT_NVLD
sdaiFN_NAVL
sdaiSY_ERR

Session is not open.
Repository is not open.

Aggregate instance does not exist.

Repository does not exist.
SDAI-model does not exist.
Schema instance does not exist.
Entity instance does not exist.
Entity instance invalid.

Value invalid.

Operator invalid.

Attribute invalid.

Value type invalid.

Function not available.
Underlying system error.

Original specification in ISO 10303-22:

10.4.14

6.2.11 C late binding specific recording operations

6.2.11.1 Is recording on

| SO 10303-24:2001(E)

The Is Recording On function shall indicate whether the session event recording is active or inhibited.

Prototype:

Sdailogical sdailsRecordingOn (SdaiSession session);

Input:

session:

Return:

In normal condition:

In error condition:

The identifier of the session test for event recording being active.

sdaiTRUE if session.recording_activds TRUE; sdaiFALSE if session.

recording_activeis FALSE.
sdaiUNKNOWN

Possible error indicators:

sdaiSS_NOPN
sdaiFN_NAVL
sdaiSY_ERR

Session is not open.
Function not available.
Underlying system error.

©ISO 2001 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS

Not for Resale

25

I SO 10303-24:2001(E)

6.2.12 C late binding specific attribute data block operations

6.2.12.1 Create ADB

The Create ADB function shall create an ADB and may set the type and value in the ADB. The Create
Empty ADB function does not set the type and value in the newly created ADB. ADBs shall not con-
tain other ADBs as values.

Prototype:
SdaiADB sdaiCreateADB (SdaiPrimitiveType valueType, ...);

SdaiADB sdaiCreateEmptyADB (void);

Input:

valueType: One of the following values:sdailNTEGER, sdaiREAL,
sdaiBOOLEAN, sdailLOGICAL, sdaiSTRING, sdaiBINARY,
sdaiENUM, sdaiINSTANCE, orsdaiAGGR.
Value of Sdailnteger , SdaiReal , SdaiBoolean , SdailLogical
type, or handle matching or convertible to the valueType, and given as a func-
tion parameter with the specified C late binding type.

Return:

These functions shall return an ADB identifier.

Possible error indicators:

sdaiSS_NOPN Session is not open.
sdaiVT_NVLD Value type invalid.
sdaiSY_ERR Underlying system error.

6.2.12.2 Get ADB value

The Get ADB Value function shall get, and may convert, the value from the ADB. The type of the value
to return shall be specified using the valueType parameter.

Prototype:
void *sdaiGetADBValue (SdaiADB block, SdaiPrimitiveType valueType,
void *value);
Input;
block: Attribute data block containing the value to be returned.

26 ©ISO 2001 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

valueType:

value:
Output:
value:

Return:

| SO 10303-24:2001(E)

One of the following argument valusstaiINTEGER, sdaiREAL,
sdaiNUMBER, sdaiBOOLEAN, sdaiLOGICAL, sdaiSTRING,
sdaiBINARY, sdaiENUM, sdailNSTANCE, orsdaiAGGR.
Handle matching, or convertible to, the valueType.

The handle filled with the primitive or identifier value returned from the ADB.

This function shall return the value argument filled with the primitive or identifier value returned from

the ADB.

Possible error indicators:

sdaiSS_NOPN
sdaiAB_NEXS
sdaiVT_NVLD
sdaiVA_NSET
sdaiSY_ERR

Session is not open.
ADB does not exist.
Value type invalid.

Value not set.
Underlying system error.

6.2.12.3 Put ADB value

The Put ADB Value function shall set the type and value in the ADB. ADBs shall not contain other

ADBSs as values.

Prototype:

void sdaiPutADBValue (SdaiADB block,

Input:

block:
valueType:

SdaiPrimitiveType valueType, ...);

Attribute data block to be set.

One of the following argument valusstaiiNTEGER, sdaiREAL,
sdaiBOOLEAN, sdaiLOGICAL, sdaiSTRING, sdaiBINARY,

sdailENUM, sdailINSTANCE, orsdaiAGGR.

Value of Sdailnteger , SdaiReal , SdaiBoolean , SdailLogical

type, or handle matching or convertible to the value type, and given as a func-
tion parameter with the specified C late binding type.

Possible error indicators:

sdaiSS_NOPN
sdaiAB_NEXS
sdaivVT_NVLD
sdaiSY_ERR

Session is not open.
ADB does not exist.
Value type invalid.
Underlying system error.

©ISO 2001 — All rights reserved 27

Copyright International Organization for Standardization
Provided by IHS under license with ISO

No reproduction or networking permitted without license from IHS

Not for Resale

I SO 10303-24:2001(E)
6.2.12.4 Get ADB type

The Get ADB Type function shall return the type of the value in the ADB.

Prototype:

SdaiPrimitiveType sdaiGetADBType (SdaiADB block);

Input:

block: Attribute data block containing the type to be returned.
Return:

In normal condition: The type of the primitive, or identifier value in the ADB block. The function
shall returnsdaiNOTYPE in case the ADB is empty. This function may
return the following values if the ADB is not emptgdailNTEGER,
sdaiREAL, sdaiBOOLEAN, sdaiLOGICAL, sdaiSTRING,
sdaiBINARY, sdaiENUM, sdailNSTANCE , orsdaiAGGR.

In error condition: The value aidaiNOTYPE is returned.

Possible error indicators:

sdaiSS_NOPN Session is not open.
sdaiAB_NEXS ADB does not exist.
sdaiVA_NSET Optional value unset.
sdaiSY_ERR Underlying system error.

6.2.12.5 Unset ADB

The Unset ADB function shall unset the type and value of the specified ADB. After invoking the Unset
ADB function and before another type is set in the ADB, the Get ADB type function shall return
sdaiNOTYPE. After invoking the Unset ADB function and before another value is set in the ADB, the

Get ADB value function shall return tedaiVA_NSET error.

Prototype:

void sdaiUnsetADB (SdaiADB block);

Input:

block: Attribute data block whose value and type is to be unset.

Possible error indicators:

sdaiSS_NOPN Session is not open.
sdaiAB_NEXS ADB does not exist.
sdaiSY_ERR Underlying system error.

28 ©ISO 2001 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

| SO 10303-24:2001(E)
6.2.12.6 Delete ADB
The Delete ADB function shall delete the specified ADB.

Prototype:

void sdaiDeleteADB (SdaiADB block);

Input:

block: Attribute data block to be deleted.

Possible error indicators:

sdaiSS_NOPN Session is not open.
sdaiAB_NEXS ADB does not exist.
sdaiSY_ERR Underlying system error.

6.3 Repository operations

6.3.1 Create SDAI-model

The Create Model function shall create a new SDAI-model based upon the specified schema in the
specified repository.

Prototype:

SdaiModel sdaiCreateModel (SdaiRep repository, SdaiString modelName,
SdaiSchema schema);

SdaiModel sdaiCreateModelBN (SdaiRep repository,
SdaiString modelName,
SdaiString schemaName);

Input:

repository: The identifier of the repository in which the SDAI-model is to be created.
modelName: The name, unique within the repository, of the new SDAI-model.
schema: The identifier of the schema upon which the SDAI-model is to be based.
schemaName: The schema identified by its name instead of its identifier.

Return:

In normal condition: Identifier of the newly created SDAI-model.
In error condition: NULL identifier.

©ISO 2001 — All rights reserved 29

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

I SO 10303-24:2001(E)

Possible error indicators:

sdaiSS_NOPN Session is not open.
sdaiRP_NEXS Repository does not exist.
sdaiRP_NOPN Repository is not open.
sdaiTR_NRW Transaction not read-write.
sdaiTR_NAVL Transaction currently not available.
sdaiTR_EAB Transaction ended abnormally.
sdaiMO_DUP SDAI-model duplicate.
sdaiSD_NDEF Schema definition not defined.
sdaiSY_ERR Underlying system error.

Original specification in ISO 10303-22:

10.5.1
6.3.2 Create schema instance

The Create Schema Instance function shall create a schema instance based upon the specified schema
in the specified repository.

Prototype:

SdaiSchemalnstance sdaiCreateSchemalnstance (
SdaiString schemalnstanceName, SdaiSchema schema,
SdaiRep repository);

SdaiSchemalnstance sdaiCreateSchemalnstanceBN (
SdaiString schemalnstanceName, SdaiString schemaName,
SdaiRep repository);

Input:

schemalnstanceName: The name, unique within the repository, of the schema instance to be created.

schema: Identifier of the schema upon which the newly created schema instance is to
be based.

schemaName: Name of the schema upon which the newly created schema instance is based.

repository: Identifier of the repository that shall contain the newly created schema
instance.

Return:

In normal condition: Identifier of the newly created schema instance.
In error condition: NULL identifier.

Possible error indicators:

sdaiSS_NOPN Session is not open.
sdaiRP_NEXS Repository does not exist.

30 ©ISO 2001 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

| SO 10303-24:2001(E)

sdaiRP_NOPN Repository is not open.
sdaiTR_NRW Transaction not read-write.
sdaiTR_NAVL Transaction currently not available.
sdaiTR_EAB Transaction ended abnormally.
sdaiS|_DUP Schema instance duplicate.
sdaiVT_NVLD Name value type is invalid.
sdaiSD_NDEF Schema definition not defined.
sdaiSY_ERR Underlying system error.

Original specification in ISO 10303-22:

10.5.2

6.3.3 Close repository

The Close Repository function shall close the specified repository.

Prototype:

void sdaiCloseRepository (SdaiRep repository);

Input:

repository:

The repository to be closed.

Possible error indicators:

sdaiSS_NOPN Session is not open.
sdaiRP_NEXS Repository does not exist.
sdaiRP_NOPN Repository is not open.
sdaiTR_RW Transaction read-write.
sdaiSY_ERR Underlying system error.

Original specification in ISO 10303-22:

10.5.3

6.4 Schema instance operations

6.4.1 Delete schema instance
The Delete Schema Instance function shall delete the specified schema instance.

Prototype:

void sdaiDeleteSchemalnstance (SdaiSchemalnstance schemalnstance);

©ISO 2001 — All rights reserved 31

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

I SO 10303-24:2001(E)

void sdaiDeleteSchemalnstanceBN (SdaiString schemalnstanceName,
SdaiRep repository);

Input:

schemalnstance: Identifier of the schema instance to be deleted.

schemalnstanceName: The name, unique within the repository, of the schema instance to be deleted.
repository: Identifier of the repository that contains the schema instance to delete.

Possible error indicators:

sdaiSS_NOPN Session is not open.

sdaiSI_NEXS Schema instance does not exist.
sdaiRP_NOPN Repository is not open.
sdaiRP_NEXS Repository does not exist.
sdaiTR_NRW Transaction not read-write.
sdaiTR_NAVL Transaction currently not available.
sdaiTR_EAB Transaction ended abnormally.
sdaiVT_NVLD Name value type is invalid.
sdaiSY_ERR Underlying system error.

Original specification in ISO 10303-22:

10.6.1
6.4.2 Rename schema instance
The Rename Schema Instance function shall assign a new name to the specified schema instance.

Prototype:

void sdaiRenameSchemalnstance (SdaiSchemalnstance schemalnst,
SdaiString schemalnstName);

void sdaiRenameSchemalnstanceBN (SdaiString schemalnstOldName,
SdaiRep repository, SdaiString schemalnstName);

Input:

schemalnst: Identifier of the schema instance to be renamed.

schemalnstOldName: The name, unique within the repository, of the schema instance to be renamed.
repository: Identifier of the repository that contains the schema instance to rename.
schemalnstName: New name for the schema instance.

Possible error indicators:

sdaiSS_NOPN Session is not open.
sdaiSI_DUP Schema instance duplicate.
sdaiSI_NEXS Schema instance does not exist.

32 ©ISO 2001 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

| SO 10303-24:2001(E)

sdaiRP_NOPN Repository is not open.
sdaiRP_NEXS Repository does not exist.
sdaiVT_NVLD Name value type is invalid.
sdaiTR_NRW Transaction not read-write.
sdaiTR_NAVL Transaction currently not available.
sdaiTR_EAB Transaction ended abnormally.
sdaiSY_ERR Underlying system error.

Original specification in ISO 10303-22:

10.6.2
6.4.3 Add SDAI-model

The Add Model function shall associate an SDAI-model with the specified schema instance.

Prototype:

void sdaiAddModel (SdaiSchemalnstance schemalnstance,
SdaiModel model);

void sdaiAddModelBN (SdaiSchemalnstance schemalnstance,
SdaiRep repository, SdaiString modelName);

Input:

schemalnstance: Identifier of the schema instance with which the SDAI-model is to be associ-
ated.

model; Identifier of the SDAI-model that is to be associated with the schema instance.

repository: The identifier of the repository in which the SDAI-model exists.

modelName: The name, unique within the repository, of the SDAI-model to be added.

Possible error indicators:

sdaiSS_NOPN
sdaiSI_NEXS
sdaiRP_NOPN
sdaiRP_NEXS
sdaiTR_NRW
sdaiTR_NAVL
sdaiTR_EAB
sdaiMO_NEXS
sdaiMO_NDEQ
sdaiVT_NVLD
sdaiFN_NAVL
sdaiSY_ERR

Session is not open.

Schema instance does not exist.
Repository is not open.

Repository does not exist.
Transaction not read-write.
Transaction currently not available.
Transaction ended abnormally.
SDAI-model does not exist.

SDAI-model not domain equivalent.

Name value type is invalid.
Function not available.
Underlying system error.

©ISO 2001 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS

Not for Resale

33

I SO 10303-24:2001(E)

Original specification in ISO 10303-22:

10.6.3
6.4.4 Remove SDAI-model

The Remove Model function shall remove the association of an SDAI-model with a schema instance.

Prototype:

void sdaiRemoveModel (SdaiSchemalnstance schemalnstance,
SdaiModel model);

void sdaiRemoveModelBN (SdaiSchemalnstance schemalnstance,
SdaiRep repository, SdaiString modelName);

Input:

schemalnstance: Identifier of the schema instance with which the SDAI-model will no longer
be associated.

model: Identifier of the SDAI-model that is to be removed from the schema instance.

repository: The identifier of the repository in which the SDAI-model exists.

modelName: The name, unique within the repository, of the SDAI-model to be removed.

Possible error indicators:

sdaiSS_NOPN Session is not open.
sdaiSI_NEXS Schema instance does not exist.
sdaiRP_NOPN Repository is not open.
sdaiRP_NEXS Repository does not exist.
sdaiTR_NRW Transaction not read-write.
sdaiTR_NAVL Transaction currently not available.
sdaiTR_EAB Transaction ended abnormally.
sdaiMO_NEXS SDAI-model does not exist.
sdaiMO_NVLD SDAI-model invalid.
sdaiVT_NVLD Name value type is invalid.
sdaiSY_ERR Underlying system error.

Original specification in ISO 10303-22:

10.6.4
6.4.5 Validate global rule

The Validate Global Rule function shall determine whether the specified global rule is satisfied by the
specified schema instance.

34 ©ISO 2001 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

| SO 10303-24:2001(E)

Prototype:

SdailLogical sdaiValidateGlobalRule (
SdaiSchemalnstance schemalnstance,
SdaiGlobalRule rule, SdaiNPL list);

Sdailogical sdaiValidateGlobalRuleBN (
SdaiSchemalnstance schemalnstance,
SdaiString ruleName, SdaiNPL list);

Input:
schemalnstance: Identifier of the schema instance bounding the validation of the global rule.
rule: Identifier of the global rule to be validated.
ruleName: Name of the global rule to be validated.
list: The identifier of a pre-existing NPL to which tBdailnstance identifiers

of those instances are appended that do not conform to the validation.
Return:

In normal condition: sdaiTRUE if the global rule is satisfiedsdaiFALSE if the global rule is
violated;sdaiUNKNOWNTf the global rule is not implemented.
In error condition: sdaiUNKNOWN

Possible error indicators:

sdaiSS_NOPN Session is not open.
sdaiRU_NDEF Rule not defined.

sdaiSI_NEXS Schema instance does not exist.
sdaiAl_NEXS Aggregate instance does not exist.
sdaiED_NVLD Entity definition invalid.
sdaiRP_NOPN Repository is not open.
sdaiTR_NAVL Transaction currently not available.
sdaiTR_EAB Transaction ended abnormally.
sdaiEX_NSUP Expression evaluation not supported.
sdaiFN_NAVL Function not available.
sdaiSY_ERR Underlying system error.

Original specification in ISO 10303-22

10.6.5
6.4.6 Validate unigueness rule
The Validate Uniqueness function shall determine whether the specified uniqueness rule is satisfied by

the specified schema instance. In the case of attribute values represented by ADBs, the data value and
data type shall be compared, not the ADB identifier.

©ISO 2001 — All rights reserved 35

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

I SO 10303-24:2001(E)

Prototype:

SdailLogical sdaiValidateUniqueness (
SdaiSchemalnstance schemalnstance,
SdaiUniRule uniRule, SdaiNPL list);

Sdailogical sdaiValidateUniquenessBN (
SdaiSchemalnstance schemalnstance,
SdaiString entityName,
SdaiString uniRuleName, SdaiNPL list);

Input:

schemalnstance:
uniRule:
entityName:
uniRuleName:
list:

Return:

In normal condition:

In error condition:

Identifier of the schema instance bounding the validation of the uniqueness
rule.
Identifier of the uniqueness rule to be validated.
Name of the entity in the schema containing the uniqueness rule.
Name of the uniqueness rule in the named entity.
The identifier of a pre-existing NPL to which tBdailnstance identifiers
of those instances are appended that do not conform to the validation.

sdaiTRUE if uniqueness rule is satisfiesidaiFALSE if uniqueness rule is
unsatisfiedsdaiUNKNOWNTf indeterminate.
sdaiUNKNOWN

Possible error indicators:

sdaiSS_NOPN
sdaiRU_NDEF
sdaiSI_NEXS
sdaiAl_NEXS
sdaiRP_NOPN
sdaiTR_NAVL
sdaiTR_EAB
sdailEX_NSUP
sdaiFN_NAVL
sdaiSY_ERR

Session is not open.

Rule not defined.

Schema instance does not exist.
Aggregate instance does not exist.
Repository is not open.

Transaction currently not available.
Transaction ended abnormally.
Expression evaluation not supported.
Function not available.

Underlying system error.

Original specification in ISO 10303-22:

10.6.6

6.4.7 Validate instance reference domain

The Validate Reference Domain function shall determine whether all entity-valued attributes in the
specified application instance refer to entity instances within SDAI-models in the specified schema

instance.

36

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS

©ISO 2001 — All rights reserved

Not for Resale

| SO 10303-24:2001(E)

Prototype:

SdailLogical sdaiValidateReferenceDomain (
SdaiSchemalnstance schemalnstance,
SdaiApplnstance applnstance, SdaiNPL list);

Input:

schemalnstance: Identifier of the schema instance bounding the validation.

applnstance: Identifier of the application instance whose references are to be tested.

list: The identifier of a pre-existing NPL to which tiselaiAttr identifiers of
those attributes are appended that do not conform to the validation.

Return:

In normal condition: sdaiTRUE if all the reference attributes of the application instance are to
entity instances in the correct schema instasdaiFALSE if any assigned
reference is not bounded by the given schema instadai)NKNOWNf any
required explicit attribute values are unset that could reference an entity
instance.

In error condition: sdaiUNKNOWN

Possible error indicators:

sdaiSS_NOPN Session is not open.

sdaiEl_NEXS Entity instance does not exist.
sdaiSI_NEXS Schema instance does not exist.
sdaiAl_NEXS Aggregate instance does not exist.
sdaiRP_NOPN Repository is not open.
sdaiTR_NAVL Transaction currently not available.
sdaiTR_EAB Transaction ended abnormally.
sdaiFN_NAVL Function not available.
sdaiSY_ERR Underlying system error.

Original specification in ISO 10303-22:

10.6.7
6.4.8 Validate schema instance

The Validate Schema Instance function shall determine whether the schema instance conforms to all
constraints specified within the schema upon which the schema instance is based. This operation
updates the validation information, including the level of expression evaluation the implementation
supports, maintained within the schema instance.

Prototype:

SdailLogical sdaiValidateSchemalnstance (
SdaiSchemalnstance schemalnstance);

~ @ISO 2001 - All rights reserved 37

Copyright Internationaf Crganization for Standardization
Provided by IHS under:license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

SO 10303-24:2001(E)

Input:

schemalnstance: Identifier of the schema instance bounding the test.

Return:

In normal condition: sdaiTRUE if all validated constraints are bounded in the schema instance;
sdaiFALSE if any validated constraint is not bounded by the given schema
instancesdaiUNKNOWNf the result cannot be determined.

In error condition: sdaiUNKNOWN

Possible error indicators:

-sdaiSS_NOPN Session is not open.
‘sdaiSI_NEXS Schema instance does not exist.
'sdaiRP_NOPN Repository is not open.
~sdaiTR_NRW Transaction not read-write.
“sdaiTR_NAVL Transaction currently not available.
sdaiTR_EAB Transaction ended abnormally.
sdaiFN_NAVL Function not available.
sdaiSY_ERR Underlying system error.

Original specification in ISO 10303-22:

10.5.8
6.4.9 Is validation current

The Is Validation Current function shall determine whether changes have occurred to the specified
schema instance or any associated SDAI-model since the most recent invocation of the Validate
Schema Instance function.

Prototype:

SdaiBoolean sdailsValidationCurrent (
SdaiSchemalnstance schemalnstance);

Input:

schemalnstance: Identifier of the schema instance bounding the test.
Return:

In normal condition: sdaiTRUE if the schema instance validation result is currently set to
sdaiTRUE and also even valiggdaiFALSE if the schema instance valida-
tion result is not set tedaiTRUE , or no longer valid due to modifications at
the schema instance contents.

In error condition: sdaiFALSE .

38 ©ISO 2001 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

| SO 10303-24:2001(E)

Possible error indicators:

sdaiSS_NOPN Session is not open.

sdaiSI_NEXS Schema instance does not exist.
sdaiRP_NOPN Repository is not open.
sdaiTR_NAVL Transaction currently not available.
sdaiTR_EAB Transaction ended abnormally.
sdaiFN_NAVL Function not available.
sdaiSY_ERR Underlying system error.

Original specification in ISO 10303-22:

10.6.9

6.4.10 Schema instance operations for convenience

6.4.10.1 Get schema definition
The Get Schema function shall return the identifier of the schema definition with the specified name.

Prototype:

SdaiSchema sdaiGetSchema (SdaiString schemaName);
Input:

schemaName: The name of the schema to be found.
Return:

In normal condition: Identifier of the schema definition.
In error condition: NULL identifier.

Possible error indicators:

sdaiSS_NOPN Session is not open.
sdaiRP_NOPN Repository is not open.
sdaiSD_NDEF Schema definition not defined.
sdaiSY_ERR Underlying system error.

6.4.10.2 Get schema instance

The Get Schema Instance function shall return the identifier of the schema instance with the specified -
name. :

©ISO 2001 — All rights reserved 39

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

I SO 10303-24:2001(E)

Prototype:

SdaiSchemalnstance sdaiGetSchemalnstance (
SdaiString schemalnstanceName, SdaiRep repository);

Input:

schemalnstanceName: Name of the schema instance to be found.
repository: Repository containing the schema instance.
Return:

In normal condition: Identifier of the schema instance.
In error condition: NULL identifier.

Possible error indicators:

sdaiSS_NOPN Session is not open.
sdaiRP_NEXS Repository does not exist.
sdaiRP_NOPN Repository is not open.
sdaiSI_NEXS Schema instance does not exist.
sdaiSY_ERR Underlying system error.

6.5 SDAI-model operations

6.5.1 Delete SDAI-model

The Delete Model function shall delete the specified SDAI-model along with all of the instances it con-
tains.

Prototype:

void sdaiDeleteModel (SdaiModel model);

void sdaiDeleteModelBN (SdaiRep repository, SdaiString modelName);

Input:

model: The SDAI-model to delete.

repository: The identifier of the repository in which the SDAI-model exists.
modelName: The name, unique within the repository, of the SDAI-model to be deleted.

Possible error indicators:

sdaiSS_NOPN Session is not open.
sdaiTR_NRW Transaction not read-write.
sdaiTR_NEXS Transaction does not exist.
sdaiTR_NAVL Transaction currently not available.
sdaiTR_EAB Transaction ended abnormally.

40 ©ISO 2001 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

| SO 10303-24:2001(E)

sdaiRP_NOPN Repository is not open.
sdaiRP_NEXS Repository does not exist.
sdaiMO_NEXS SDAI-model does not exist.
sdaiVT_NVLD Name value type is invalid.
sdaiSY_ERR Underlying system error.

Original specification in ISO 10303-22:

10.7.1

6.5.2 Rename SDAI-model

The Rename Model function shall assign a new name to the specified SDAI-model.
Prototype:

void sdaiRenameModel (SdaiModel model, SdaiString modelName);

void sdaiRenameModelBN (SdaiRep repository, SdaiString modelOldName,
SdaiString modelName);

Input:

model: The SDAI-model to rename.

modelName: The new name for the SDAI-model.

repository: The identifier of the repository in which the SDAI-model exists.
modelOldName: The name, unique within the repository, of the SDAI-model to be renamed.

Possible error indicators:

sdaiSS_NOPN Session is not open.
sdaiTR_NRW Transaction not read-write access mode.
sdaiRP_NOPN Repository is not open.
sdaiRP_NEXS Repository does not exist.
sdaiTR_NAVL Transaction currently not available.
sdaiTR_EAB Transaction ended abnormally.
sdaiTR_NEXS Transaction does not exist.
sdaiMO_NEXS SDAI-model does not exist.
sdaiMO_DUP SDAI-model duplicate.
sdaiVT_NVLD Name value type is invalid.
sdaiSY_ERR Underlying system error.

Original specification in ISO 10303-22:

10.7.2

©ISO 2001 — All rights reserved 41

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

| SO 10303-24: 2001(E)
6.5.3 Start SDAI-model access

The Access Model function shall specify a read-write or read-only access mode to the specified SDAI-
model.

Prototype:
SdaiModel sdaiAccessModel (SdaiModel model, SdaiAccessMode mode);
SdaiModel sdaiAccessModelBN (SdaiRep repository,

SdaiString modelName,
SdaiAccessMode mode);

Input:

model: The identifier of the SDAI-model whose access mode is to be assigned.

mode: The access mode to be assigned to the SDAI-model, sdaiB® for read-
only, sdaiRW for read-write.

repository: The identifier of the repository containing the SDAI-model.

modelName: The name of the SDAI-model.

Return:

In normal condition: Identifier of the SDAI-model.
In error condition: NULL identifier.

Possible error indicators:

sdaiSS_NOPN Session is not open.
sdaiTR_NEXS Transaction does not exist.
sdaiTR_NAVL Transaction currently not available.
sdaiTR_EAB Transaction ended abnormally.
sdaiTR_NRW Transaction not read-write.
sdaiRP_NOPN Repository is not open.
sdaiRP_NEXS Repository does not exist.
sdaiMO_NEXS SDAI-model does not exist.
sdaiMX_RO SDAI-model access read-only.
sdaiMX_RW SDAI-model access read-write.
sdaiVT_NVLD Name value type is invalid.
sdaiSY_ERR Underlying system error.

Original specification in ISO 10303-22:

10.7.3 and 10.7.6
6.5.4 Promote SDAI-model to read-write access

The Promote Model function shall change the access mode of the specified SDAI-model from read-
only to read-write.

42 ©ISO 2001 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

| SO 10303-24:2001(E)
Prototype:
void sdaiPromoteModel (SdaiModel model);
Input:
model: The identifier of the SDAI-model whose access mode is set to be read-write.

Possible error indicators:

sdaiSS_NOPN Session is not open.
sdaiTR_NRW Transaction not read-write.
sdaiTR_NEXS Transaction does not exist.
sdaiTR_NAVL Transaction currently not available.
sdaiTR_EAB Transaction ended abnormally.
sdaiRP_NOPN Repository not open.
sdaiMO_NEXS SDAI-model does not exist.
sdaiMX_NDEF SDAI-model access not defined.
sdaiMX_RW SDAI-model access read-write.
sdaiSY_ERR Underlying system error.

Original specification in ISO 10303-22:

10.7.4
6.5.5 End SDAI-model access
The End Model Access function shall end access to the specified SDAI-model.

Prototype:

void sdaiEndModelAccess (SdaiModel model);

Input:

model; The identifier of the SDAI-model to which access is to be terminated.

Possible error indicators:

sdaiSS_NOPN Session is not open.
sdaiRP_NOPN Repository is not open.
sdaiMO_NEXS SDAI-model does not exist.
sdaiMX_NDEF SDAI-model access not defined.
sdaiMX_RO SDAI-model access read-only.
sdaiMX_RW SDAI-model access read-write.
sdaiTR_RW Transaction read-write.
sdaiSY_ERR Underlying system error.

©ISO 2001 — All rights reserved 43

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

I SO 10303-24:2001(E)

Original specification in ISO 10303-22:

10.7.5 and 10.7.7
6.5.6 Get entity definition

The Get Entity function shall return the entity definition for the specified entity name within the
schema definition upon which the specified SDAI-model is based.

Prototype:

SdaiEntity sdaiGetEntity (SdaiModel model, SdaiString hame);

Input:

model: The SDAI-model based upon the schema definition containing the entity type.
name: The entity type name.

Return:

In normal condition: Identifier of the entity definition.
In error condition: NULL identifier.

Possible error indicators:

sdaiSS_NOPN Session is not open.
sdaiRP_NOPN Repository is not open.
sdaiMO_NEXS SDAI-model does not exist.
sdaiED_NDEF Entity definition not defined.
sdaiVT_NVLD Name value type is invalid.
sdaiFN_NAVL Function not available.
sdaiSY_ERR Underlying system error.

Original specification in ISO 10303-22:

10.7.8
6.5.7 Create entity instance

The Create Instance function shall create an application instance based upon the specified entity data
type in the specified SDAI-model.

Prototype:

SdaiApplnstance sdaiCreatelnstance (SdaiModel model,
SdaiEntity entity);

SdaiApplnstance sdaiCreatelnstanceBN (SdaiModel model,
SdaiString entityName);

44 ©ISO 2001 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

| SO 10303-24:2001(E)

Input:

model: Identifier of the SDAI-model in which to create the entity instance.

entity: Identifier of the entity definition upon which the entity instance shall be based.
entityName: The name of the entity type upon which the entity instance shall be based.
Return:

In normal condition: Identifier of the newly created entity instance.
In error condition: NULL identifier.

Possible error indicators:

sdaiSS_NOPN Session is not open.

sdaiRP_NOPN Repository is not open.
sdaiTR_NAVL Transaction currently not available.
sdaiTR_EAB Transaction ended abnormally.
sdaiMX_NRW SDAI-model access is not read-write.
sdaiED_NDEF Entity definition not defined.
sdaiED_NVLD Entity definition invalid.

sdaiSY_ERR Underlying system error.

Original specification in ISO 10303-22:

10.7.9
6.5.8 Undo changes
The Undo Changes function shall restore the condition of the contents of the specified SDAI-model to

that which existed at the time of the last Access Model with mode sefla@W or Save Changes
function, whichever occurred most recently.

Prototype:

void sdaiUndoChanges (SdaiModel model);

Input:

model: The identifier of the targeted SDAI-model.

Possible error indicators:

sdaiSS_NOPN Session is not open.

sdaiRP_NOPN Repository is not open.
sdaiMO_NEXS SDAI-model does not exist.
sdaiMX_NRW SDAI-model access is not read-write.
sdaiFN_NAVL Function not available.

sdaiSY_ERR Underlying system error.

©ISO 2001 — All rights reserved 45

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

I SO 10303-24:2001(E)

Original specification in ISO 10303-22:

10.7.10
6.5.9 Save changes

The Save Changes function shall make persistent all changes to the contents of the specified SDAI-
model made since the last Access Model with mode sstaRW, Save Changes, or Undo Changes
function, whichever occurred most recently.

Prototype:

void sdaiSaveChanges (SdaiModel model);
Input:
model: The identifier of the target SDAI-model.

Possible error indicators:

sdaiSS_NOPN Session is not open.

sdaiRP_NOPN Repository is not open.
sdaiMO_NEXS SDAI-model does not exist.
sdaiMX_NRW SDAI-model access is not read-write.
sdaiFN_NAVL Function not available.

sdaiSY_ERR Underlying system error.

Original specification in ISO 10303-22:

10.7.11

6.5.10 SDAI-model operations for convenience

6.5.10.1 Create complex entity instance

The Create Complex Instance function shall create a new application instance of the specified type, as
determined by a constructed entity type that is made up of the supplied simple entity types, in the spec-
ified SDAI-model. For implementations supporting the SDAI data dictionary, this function shall behave
as if the Get Complex Entity function was executed to create the entity type in the data dictionary prior
to creating the new entity instance.

Prototype:

SdaiApplnstance sdaiCreateComplexinstance (SdaiModel model,
SdaiNPL entityList);

SdaiApplnstance sdaiCreateComplexinstanceBN (SdaiModel model,

Sdailnteger nameNumber, SdaiString *nameVector);

46 ©ISO 2001 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

| SO 10303-24:2001(E)

Input:

model: Identifier of the SDAI-model in which the entity instance will be created.

entityList: Identifier of a NPL of the&sdaiEntity entity definitions representing the
supplied simple entity types.

nameNumber: Number of the supplied simple entity type names in the name vector.

name\ector: Pointer to a vector with the indicated numb&daiString names of the
supplied simple entity types.

Return:

In normal condition: Identifier of the newly created entity instance.
In error condition: NULL identifier.

Possible error indicators:

sdaiSS_NOPN Session is not open.

sdaiRP_NOPN Repository is not open.
sdaiTR_NAVL Transaction currently not available.
sdaiTR_EAB Transaction ended abnormally.
sdaiTR_NRW Transaction not read-write.
sdaiMX_NRW SDAI-model access is not read-write.
sdaiED_NDEF Entity definition not defined.
sdaiED_NVLD Entity definition invalid.
sdaiFN_NAVL Function not available.

sdaiSY_ERR Underlying system error.

6.5.10.2 Get entity extent

The Get Entity Extent function shall return the identifier of the set instance that is the value of the
entity _extent.instanceqsee 1SO 10303-22: 8.4.4) attribute wheredhtity extent.definition is the
specified entity type.

Prototype:

SdaiSet sdaiGetEntityExtent (SdaiModel model, SdaiEntity entity);

SdaiSet sdaiGetEntityExtentBN (SdaiModel model, SdaiString name);

Input:

model: The identifier of the SDAI-model containing the entity extent.
entity: The identifier of the entity definition for the entity extent.
name: The name of the entity type for the entity extent.

Return:

In normal condition: Identifier of the set containing entity instances in the entity extent.
In error condition: NULL identifier.

©ISO 2001 — All rights reserved 47

Copyright Internationél Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

I SO 10303-24:2001(E)

Possible error indicators:

sdaiSS_NOPN Session is not open.
sdaiRP_NOPN Repository is not open.
sdaiTR_NAVL Transaction currently not available.
sdaiTR_EAB Transaction ended abnormally.
sdaiMO_NEXS SDAI-model does not exist.
sdaiMX_NDEF SDAI-model access not defined.
sdaiED_NDEF Entity definition not defined.
sdaiSY_ERR Underlying system error.

6.6 Scope operations

This subclause describes the functions that address support of the ISO 10303-21 SCOPE construct (see
ISO 10303-21: 10.3 and ISO 10303-22: 8.4.5).

6.6.1 Add to scope

The Add To Scope function shall add an application instance into the scope owned by another applica-
tion instance.

Prototype:

void sdaiAddToScope (SdaiApplnstance scopelnstance,
SdaiApplnstance instance);

Input:

scopelnstance: Identifier of the owning instance into whose scope the owned instance is to be
added.

instance: Identifier of the owned instance to be added to a scope.

Possible error indicators:

sdaiSS_NOPN Session is not open.
sdaiRP_NOPN Repository is not open.
sdaiEl_NEXS Entity instance does not exist.
sdaiSC_EXS Scope exists.

sdaiTR_NRW Transaction not read-write.
sdaiTR_NAVL Transaction currently not available.
sdaiTR_EAB Transaction ended abnormally.
sdaiMX_NRW SDAI-model access not read-write.
sdaiFN_NAVL Function not available.
sdaiSY_ERR Underlying system error.

Original specification in ISO 10303-22:

10.8.1

48 ©ISO 2001 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

| SO 10303-24:2001(E)

6.6.2 Is scope owner
The Is Scope Owner function shall determine whether the specified application instance owns a scope.

Prototype:

SdailLogical sdailsScopeOwner (SdaiApplnstance instance);

Input:

instance: Identifier of the instance to be tested for owning a scope.

Return:

In normal condition: sdaiTRUE if instance owns a scopsgaiFALSE if instance does not own a
scope.

In error condition: sdaiUNKNOWNT scope is not supportedgaiFALSE otherwise.

Possible error indicators:

sdaiSS_NOPN Session is not open.
sdaiRP_NOPN Repository is not open.
sdaiTR_NAVL Transaction currently not available.
sdaiTR_EAB Transaction ended abnormally.
sdaiEl_NEXS Entity instance does not exist.
sdaiFN_NAVL Function not available.
sdaiSY_ERR Underlying system error.

Original specification in ISO 10303-22:

10.8.2
6.6.3 Get scope

The Get Scope function shall return the identifier of the scope for which the specified application
instance is the owner.

Prototype:

SdaiScope sdaiGetScope (SdaiApplnstance instance);

Input;

instance: Identifier of the instance whose scope instance is to be returned.
Return:

In normal condition: Identifier of the scope instance for which the instance is the owner.
In error condition: NULL identifier.

©ISO 2001 — All rights reserved 49

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

I SO 10303-24:2001(E)

Possible error indicators:

sdaiSS_NOPN Session is not open.
sdaiRP_NOPN Repository is not open.
sdaiTR_NAVL Transaction currently not available.
sdaiTR_EAB Transaction ended abnormally.
sdaiSC_NEXS Scope does not exist.
sdaiFN_NAVL Function not available.
sdaiSY_ERR Underlying system error.

Original specification in ISO 10303-22:

10.8.3
6.6.4 Remove from scope

The Remove From Scope function shall remove an application instance from the specified scope. If the

specified scope is nested within a higher level scope, the application instance shall be added to the next
higher level scope. If the application instance is the last member of the scope, the scope shall be

deleted.

Prototype:

void sdaiRemoveFromScope (SdaiScope scope,
SdaiApplnstance instance);

Input:
scope: Identifier of the scope that owns the application instance.
instance: Identifier of the instance to be removed from the scope.

Possible error indicators:

sdaiSS_NOPN Session is not open.
sdaiRP_NOPN Repository is not open.
sdaiEl_NEXS Entity instance does not exist.
sdaiEl_NAVL Entity instance not available.
sdaiSC_NEXS Scope does not exist.
sdaiTR_NRW Transaction not read-write.
sdaiTR_NAVL Transaction currently not available.
sdaiTR_EAB Transaction ended abnormally.
sdaiMX_NRW SDAI-model access not read-write.
sdaiFN_NAVL Function not available.
sdaiSY_ERR Underlying system error.

Original specification in ISO 10303-22:

10.8.4

50 ©ISO 2001 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

1 SO 10303-24: 2001(E)
6.6.5 Add to export list

The Add To Export List function shall extend the domain of valid references of an application instance
by adding it to the export list of a scope. In the case where scopes are nested, the application instance
may be added to the export list of more than one scope.

Prototype:

void sdaiAddToExportList (SdaiScope scope,
SdaiApplnstance instance);

Input:
scope: Identifier of the scope with the export list to which the instance shall be added.
instance: Identifier of the instance to be exported.

Possible error indicators:

sdaiSS_NOPN Session is not open.
sdaiRP_NOPN Repository is not open.
sdaiEl_NEXS Entity instance does not exist.
sdaiEl_NAVL Entity instance not available.
sdaiTR_NAVL Transaction currently not available.
sdaiTR_EAB Transaction ended abnormally.
sdaiTR_NRW Transaction not read-write.
sdaiMX_NRW SDAI-model access not read-write.
sdaiSC_NEXS Scope does not exist.
sdaiFN_NAVL Function not available.
sdaiSY_ERR Underlying system error.

Original specification in ISO 10303-22:

10.8.5
6.6.6 Remove from export list

The Remove From Export List function shall remove the specified application instance from the export
list of the specified scope.

Prototype:

void sdaiRemoveFromExportList (SdaiScope scope,
SdaiApplnstance instance);

Input:

scope: Identifier of the scope owning the export list from which the application
instance shall be removed.

instance: Identifier of the application instance to be removed.

©ISO 2001 — All rights reserved 51

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

I SO 10303-24:2001(E)

Possible error indicators:

sdaiSS_NOPN Session is not open.
sdaiRP_NOPN Repository is not open.
sdaiEl_NEXS Entity instance does not exist.
sdaiEl_NAVL Entity instance not available.
sdaiEl_NEXP Entity instance not exported.
sdaiSC_NEXS Scope does not exist.
sdaiTR_NAVL Transaction currently not available.
sdaiTR_EAB Transaction ended abnormally.
sdaiTR_NRW Transaction not read-write.
sdaiMX_NRW SDAI-model access not read-write.
sdaiFN_NAVL Function not available.
sdaiSY_ERR Underlying system error.

Original specification in ISO 10303-22:

10.8.6

6.6.7 Scoped delete

The Scoped Delete function shall delete the application instance owning the specified scope, delete the
application instances owned by the specified scope, and delete the specified scope. If any of the appli-
cation instances owned by the specified scope are themselves scope owners, these scopes are similarly
deleted. The scoped deletion of these nested scopes continues until no owned application instance of
any nested scope owns a scope.

Prototype:

void sdaiScopedDelete (SdaiScope scope);

Input:

scope:

Identifier of the scope containing the application instances to be deleted.

Possible error indicators:

sdaiSS_NOPN Session is not open.
sdaiRP_NOPN Repository is not open.
sdaiEl_NEXS Entity instance does not exist.
sdaiSC_NEXS Scope does not exist.
sdaiTR_NAVL Transaction currently not available.
sdaiTR_EAB Transaction ended abnormally.
sdaiTR_NRW Transaction not read-write.
sdaiMX_NRW SDAI-model access not read-write.
sdaiFN_NAVL Function not available.
sdaiSY_ERR Underlying system error.

52 ©ISO 2001 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

| SO 10303-24:2001(E)

Original specification in ISO 10303-22:

10.8.7
6.6.8 Scoped copy in same SDAI-model

The Scoped Copy In Same Model function shall create a copy of all application instances that own and
are owned by the specified scope, and populate the copy of the scope based upon the copied application
instances all in the same SDAI-model in which the application instance owning the specified scope
exists.

Prototype:

SdaiScope sdaiScopedCopylnSameModel (SdaiScope scope);
Input:

scope: Identifier of the scope to copy.

Return:

In normal condition: Identifier of the newly created scope that is a copy of the specified scope.
- In error condition: NULL identifier.

" Possible error indicators:

- sdaiSS_NOPN Session is not open.

sdaiRP_NOPN Repository is not open.
sdaiSC_NEXS Scope does not exist.
sdaiTR_NAVL Transaction currently not available.
sdaiTR_EAB Transaction ended abnormally.
sdaiTR_NRW Transaction not read-write.
sdaiMX_NRW SDAI-model access not read-write.
sdaiFN_NAVL Function not available.
sdaiSY_ERR Underlying system error.

Original specification in ISO 10303-22:

10.8.8
6.6.9 Scoped copy to other SDAI-model
The Scoped Copy To Other Model function shall create a copy of all application instances that own and

are owned by the specified scope, and populate the copy of the scope based upon the copied application
instances all in the specified SDAI-model.

©ISO 2001 — All rights reserved 53

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

I SO 10303-24:2001(E)

Prototype:

SdaiScope sdaiScopedCopyToOtherModel (SdaiScope scope,
SdaiModel model);

Input:

scope: Identifier of the scope to copy.

model: Identifier of the SDAI-model that is to contain the new application instances
and scopes.

Return:

In normal condition: Identifier of the newly created scope that is a copy of the specified scope.
In error condition: NULL identifier.

Possible error indicators:

sdaiSS_NOPN Session is not open.
sdaiRP_NOPN Repository is not open.
sdaiSC_NEXS Scope does not exist.
sdaiTR_NAVL Transaction currently not available.
sdaiTR_EAB Transaction ended abnormally.
sdaiTR_NRW Transaction not read-write.
sdaiMX_NRW SDAI-model access not read-write.
sdaiMO_NEXS SDAI-model does not exist.
sdaiMO_NVLD SDAI-model invalid.

sdaiFN_NAVL Function not available.
sdaiSY_ERR Underlying system error.

Original specification in ISO 10303-22:

10.8.8
6.6.10 Validate scope reference restrictions

The Validate Scope Reference Restrictions function shall validate the reference restrictions of all
instances in the scope of the specified application instance. Any nested scopes shall also be validated.

Prototype:

SdailLogical sdaiValidateScopeReferenceRestrictions (
SdaiApplnstance instance);

Input:

instance: Identifier of the instance that is the owner of the scope to be validated.

54 ©ISO 2001 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

| SO 10303-24:2001(E)

Return:

In normal condition: sdaiTRUE if all restrictions are satisfieddaiFALSE if reference restric-
tions are violatedsdailUNKNOWNT any required explicit attribute value was
unset that could reference an entity instance.

In error condition: sdaiUNKNOWN

Possible error indicators:

sdaiSS_NOPN Session is not open.
sdaiRP_NOPN Repository is not open.
sdaiTR_NAVL Transaction currently not available.
sdaiTR_EAB Transaction ended abnormally.
sdaiEl_NEXS Entity instance does not exist.
sdaiFN_NAVL Function not available.
sdaiSY_ERR Underlying system error.

Original specification in ISO 10303-22:

10.8.9

6.6.11 Scope operations for convenience

6.6.11.1 Get owned scope instances

The Get Owned Scope Instances function shall return the aggregate identifier of the owned attribute of
the scope (see ISO 10303-22: 8.4.5) owned by the specified application instance.

Prototype:

SdaiSet sdaiGetOwnedScopelnstances (SdaiApplnstance applnstance);
Input;

applnstance: Identifier of the application instance owning a scope.
Return:

In normal condition: Identifier of the set of owned application instances.
In error condition: NULL identifier.

Possible error indicators:

sdaiSS_NOPN Session is not open.

sdaiRP_NOPN Repository is not open.

sdaiTR_NAVL Transaction currently not available.

sdaiTR_EAB Transaction ended abnormally.

sdaiEl_NEXS Entity instance does not exist. Here also: no scope defined
sdaiFN_NAVL Function not available.

©ISO 2001 — All rights reserved 55

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

I SO 10303-24:2001(E)

sdaiSY_ERR Underlying system error.
6.6.11.2 Get scope owner

The Get Scope Owner function shall return the identifier of the application instance that is the owner of
the scope owning the specified application instance.

Prototype:

SdaiApplnstance sdaiGetScopeOwner (SdaiApplnstance applnstance);
Input:

applnstance: Identifier of an owned application instance.
Return:

In normal condition: Identifier of the owning application instance.
In error condition: NULL identifier.

Possible error indicators:

sdaiSS_NOPN Session is not open.
sdaiRP_NOPN Repository is not open.
sdaiTR_NAVL Transaction currently not available.
sdaiTR_EAB Transaction ended abnormally.
sdaiEl_NEXS Entity instance does not exist.
sdaiFN_NAVL Function not available.
sdaiSY_ERR Underlying system error.

6.6.11.3 Get export list

The Get Export List function shall return the aggregate identifier oéxpert_list attribute of the
scope(see ISO 10303-22: 8.4.5) owned by the specified application instance.

Prototype:

SdaiSet sdaiGetExportList (SdaiApplnstance applnstance);

Input:

applnstance: Identifier of the owning application instance.
Return:

In normal condition: Identifier of the set containing the exported application instances.
In error condition: NULL identifier.

56 ©ISO 2001 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

| SO 10303-24:2001(E)

Possible error indicators:

sdaiSS_NOPN
sdaiRP_NOPN
sdaiTR_NAVL
sdaiTR_EAB
sdaiEl_NEXS
sdaiFN_NAVL
sdaiSY_ERR

Session is not open.

Repository is not open.
Transaction currently not available.
Transaction ended abnormally.
Entity instance does not exist.
Function not available.

Underlying system error.

6.7 Type operations

6.7.1 Get complex entity definition

The Get Complex Entity function shall return, and may add to the data dictionary, the constructed
entity_definition for the entity data type composed of the supplied simple entity types.

Prototype:

SdaiEntity sdaiGetComplexEntity (SdaiNPL entityList);

SdaiEntity sdaiGetComplexEntityBN (SdaiString schemaName,
Sdailnteger nameNumber, SdaiString *nameVector);

Input:
entityList:
schemaName:
nameNumber:
nameVector:

Return:

In normal condition:
In error condition:

Identifier of a NPL ofSdaiEntity entity definitions representing the sup-
plied simple entity types.

Name of the schema to which the entity types belong.

Number of the supplied simple entity type names in the name vector.

Pointer to a vector with the indicated numb&daiString names of the
supplied simple entity types.

Identifier of the resulting complex entity definition.
NULL identifier.

Possible error indicators:

sdaiSS_NOPN
sdaiRP_NOPN
sdaiSD_NDEF
sdaiED_NDEF
sdaiED_NVLD
sdaiFN_NAVL
sdaiSY_ERR

Session is not open.
Repository is not open.
Schema definition not defined.
Entity definition not defined.
Entity definition invalid.
Function not available.
Underlying system error.

©ISO 2001 — All rights reserved 57

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS

Not for Resale

I SO 10303-24:2001(E)

Original specification in ISO 10303-22:

10.9.1
6.7.2 Is subtype of

The Is Subtype Of function shall determine whether an entity definition is a subtype of another entity
definition.

Prototype:

SdaiBoolean sdailsSubtypeOf (SdaiEntity subtype,
SdaiEntity supertype);

SdaiBoolean sdailsSubtypeOfBN (SdaiString schemaName,
SdaiString subName, SdaiString superName);

Input:

subtype: Identifier of an entity definition, to be tested as a subtype.
supertype: Identifier of an entity definition, to be tested as a supertype.
schemaName: Name of the schema to which the entity types belong.
subName: Name of the entity definition, to be tested as a subtype.
superName: Name of the entity definition, to be tested as a supertype.
Return:

In normal condition: sdaiTRUE if the identified types are the same, or in the assumed relation
determined by the application schema(s) and the domain equivalence instruc-
tions;sdaiFALSE if the relationship does not hold.

In error condition: sdaiFALSE .

Possible error indicators:

sdaiSS_NOPN Session is not open.

sdaiRP_NOPN Repository is not open.
sdaiED_NDEF Entity definition not defined.
sdaiED_NDEQ Entity definition not domain equivalent.
sdaiSD_NDEF Schema definition not defined.
sdaiFN_NAVL Function not available.

sdaiSY_ERR Underlying system error.

Original specification in ISO 10303-22:

10.9.2

58 ©ISO 2001 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

1 SO 10303-24: 2001(E)
6.7.3 Is SDAI subtype of

The Is SDAI Subtype Of function shall determine whether an entity definition is a subtype of another
entity definition based upon the application schemas and the SDAI parameter data schema found in
ISO 10303-22 clause 9.

Prototype:

SdaiBoolean sdailsSDAISubtypeOf (SdaiEntity subtype,
SdaiEntity supertype);

SdaiBoolean sdailsSDAISubtypeOfBN (SdaiString schemaName,
SdaiString subName, SdaiString superName);

Input:

subtype: Identifier of an entity definition, to be tested as a subtype.
supertype: Identifier of an entity definition, to be tested as a supertype.
schemaName: Name of the schema to which the entity types belong.
subName: Name of the entity definition, to be tested as a subtype.
superName: Name of the entity definition, to be tested as a supertype.
Return:

In normal condition: sdaiTRUE if the identified types are the same, or in the assumed relation
determined by the SDAI data type schema, the application schema(s) and the
domain equivalence instructionsgaiFALSE if the relationship does not
hold.

In error condition: sdaiFALSE .

Possible error indicators:

sdaiSS_NOPN Session is not open.

sdaiRP_NOPN Repository is not open.
sdaiED_NDEF Entity definition not defined.
sdaiED_NDEQ Entity definition not domain equivalent.
sdaiSD_NDEF Schema definition not defined.
sdaiFN_NAVL Function not available.

sdaiSY_ERR Underlying system error.

Original specification in ISO 10303-22:

10.9.3
6.7.4 Is domain equivalent with
The Is Deq With function shall determine whether an entity data type is domain equivalent with :

another entity data type.

©ISO 2001 — All rights reserved 59

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

I SO 10303-24:2001(E)

Prototype:

SdaiBoolean sdailsDeqWith (
SdaiEntity entityTypel,
SdaiEntity entityType?2);

SdaiBoolean sdailsDegqWithBN (
SdaiString schemaNamel, SdaiString entityNamel,
SdaiString schemaName2, SdaiString entityName?2);

Input:

entityTypel: Identifier of an entity definition, to be tested as domain equivalent.
entityType2: Identifier of an entity definition, to be tested against as a domain equivalent.
schemaNamel.: Name of the schema to which the entity typel belongs.

schemaName2: Name of the schema to which the entity type2 belongs.

entityNamel: Name of the entity definition, to be tested as domain equivalent.
entityName2: Name of the entity definition, to be tested against as domain equivalent.
Return:

In normal condition: sdaiTRUE if the first identified entity type is domain equivalent with the sec-
ond one;sdaiFALSE if the first identified entity type is not domain equiva-
lent with the second one.

In error condition: sdaiFALSE .

Possible error indicators:

sdaiSS_NOPN Session is not open.
sdaiRP_NOPN Repository is not open.
sdaiED_NDEF Entity definition not defined.
sdaiSD_NDEF Schema definition not defined.
sdaiFN_NAVL Function not available.
sdaiSY_ERR Underlying system error.

Original specification in ISO 10303-22:

10.9.4

6.7.5 Type operations for convenience

6.7.5.1 Get attribute definition

The Get Attribute Definition function shall return the identifier of the attribute definition from the data
dictionary for the specified entity data type.

60 ©ISO 2001 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

I SO 10303-24:2001(E)
Prototype:

SdaiAttr sdaiGetAttrDefinition (SdaiEntity entity,
SdaiString attrName);

SdaiAttr sdaiGetAttrDefinitionBN (SdaiString schemaName,
SdaiString entityName, SdaiString attrName);

Input:

entity: Identifier of an entity definition.

attrName: Name of an attribute.

schemaName: Name of the schema to which the entity type belongs.
entityName: Name of an entity type.

Return:

In normal condition: Identifier of the specified attribute.
In error condition: NULL identifier.

Possible error indicators:

sdaiSS_NOPN Session is not open.
sdaiRP_NOPN Repository is not open.
sdaiED_NDEF Entity definition not defined.
sdaiAT_NDEF Attribute not defined.
sdaiSD_NDEF Schema definition not defined.
sdaiFN_NAVL Function not available.
sdaiSY_ERR Underlying system error.

6.8 Entity instance operations

6.8.1 Get attribute
The Get Attr function shall return, and may convert, the value of an attribute from an entity instance.

Prototype:

void* sdaiGetAttr (Sdailnstance instance, SdaiAttr attribute,
SdaiPrimitive Type valueType, void *value);

void* sdaiGetAttrBN (Sdailnstance instance,
SdaiString attributeName,
SdaiPrimitiveType valueType, void *value);

Input:
instance: The entity instance whose attribute is being read.
attribute: The identifier of the attribute definition of the attribute to be read.

©ISO 2001 — All rights reserved 61

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

I SO 10303-24:2001(E)

attributeName:
valueType:

value:

Output:

value:

Return:

The name of the attribute to be read.

The type of the attribute value, one of the following argument values:
sdailNTEGER, sdaiREAL, sdaiNUMBER, sdaiBOOLEAN,
sdaiLOGICAL, sdaiSTRING, sdaiBINARY, sdaiENUM,
sdaiADB, sdailINSTANCE, or sdaiAGGR.

Handle matching or convertible to the valueType. If valueTysdais\DB |,
value shall be the handle of an ADB previously created by a call to one of the
ADB create functions described in 6.2.12.1.

Handle filled with the primitive or identifier value.

This function shall return the value argument filled with the value read from the attribute. If the value-
Type issdaiADB , sdaiAGGR, orsdailNSTANCE an identifier shall be returned.

Possible error indicators:

sdaiSS_NOPN
sdaiRP_NOPN
sdaiTR_NAVL
sdaiTR_EAB
sdaiMO_NEXS
sdaiMX_NDEF
sdaiEl_NEXS
sdaiAT_NDEF
sdaiVA _NSET
sdaiVT_NVLD
sdaiFN_NAVL
sdaiSY_ERR

Session is not open.

Repository is not open.
Transaction currently not available.
Transaction ended abnormally.
SDAI-model does not exist.
SDAI-model access not defined.
Instance does not exist.
Attribute not defined.

Value not set.

Value type invalid.

Function not available.
Underlying system error.

Original specification in ISO 10303-22:

10.10.1

6.8.2 Test attribute

The Test Attr function shall determine whether the specified explicit attribute a value for the specified

entity instance.

Prototype:

SdaiBoolean sdaiTestAttr (Sdailnstance instance,

SdaiAttr attribute);

SdaiBoolean sdaiTestAttrBN (Sdailnstance instance,

62

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS

SdaiString attributeName);

©ISO 2001 — All rights reserved

Not for Resale

| SO 10303-24:2001(E)

Input:

instance: The instance of the entity whose attribute is being tested.
attribute: AnSdaiAttr instance from the SDAI dictionary.
attributeName: The name of the attribute being tested.

Return:

This function shall returedaiTRUE if the attribute has a value sdaiFALSE if the attribute value
is not set.

Possible error indicators:

sdaiSS_NOPN Session is not open.
sdaiRP_NOPN Repository is not open.
sdaiTR_NAVL Transaction currently not available.
sdaiTR_EAB Transaction ended abnormally.
sdaiMX_NDEF SDAI-model access not defined.
sdaiEl_NEXS Instance does not exist.
sdaiAT_NDEF Attribute not defined.
sdaiFN_NAVL Function not available.
sdaiSY_ERR Underlying system error.

Original specification in ISO 10303-22:

10.10.2
6.8.3 Find entity instance SDAI-model

;The Get Instance Model function shall return the identifier of the SDAI-model in which the entity
: instance exists.

Prototype:

SdaiModel sdaiGetinstanceModel (Sdailnstance instance);

Input;

instance: The instance identifier whose SDAI-model is to be found.
Return:

In normal condition: Identifier of the found SDAI-model.
In error condition: NULL identifier.

Possible error indicators:

sdaiSS_NOPN Session is not open.
sdaiRP_NOPN Repository is not open.

©ISO 2001 — All rights reserved 63

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

I SO 10303-24:2001(E)

sdaiTR_NAVL Transaction currently not available.
sdaiTR_EAB Transaction ended abnormally.
sdaiMO_NEXS SDAI-model does not exist.
sdaiEl_NEXS Instance does not exist.
sdaiSY_ERR Underlying system error.

Original specification in ISO 10303-22:

10.10.3
6.8.4 Get instance type
The Get Instance Type function shall return the entity type of the specified entity instance.

Prototype:

SdaiEntity sdaiGetIinstanceType (Sdailnstance instance);

Input;

instance: Identifier of the entity instance whose type is to be returned.
Return:

In normal condition: Identifier of an entity definition.
In error condition: NULL identifier.

Possible error indicators:

sdaiSS_NOPN Session is not open.
sdaiRP_NOPN Repository is not open.
sdaiTR_NAVL Transaction currently not available.
sdaiTR_EAB Transaction ended abnormally.
sdaiMX_NDEF SDAI-model access not defined.
sdaiEl_NEXS Instance does not exist.
sdaiFN_NAVL Function not available.
sdaiSY_ERR Underlying system error.

Original specification in ISO 10303-22:

10.10.4
6.8.5 Is instance of

The Is Instance Of function shall determine whether the specified entity instance is exactly of, or
domain equivalent with, the specified entity type.

64 ©ISO 2001 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

I SO 10303-24:2001(E)
Prototype:

SdaiBoolean sdailsinstanceOf (Sdailnstance instance,
SdaiEntity entity);

SdaiBoolean sdailsinstanceOfBN (Sdailnstance instance,
SdaiString entityName);

Input:

instance: Identifier of an instance.
entity: Identifier of an entity definition.
entityName: Name of an entity data type.
Return:

In normal condition: sdaiTRUE if the instance is of the specified typsgaiFALSE if the
instance is not of the specified type.
In error condition: sdaiFALSE .

Possible error indicators:

sdaiSS_NOPN Session is not open.
sdaiRP_NOPN Repository is not open.
sdaiTR_NAVL Transaction currently not available.
sdaiTR_EAB Transaction ended abnormally.
sdaiMX_NDEF SDAI-model access not defined.
sdaiED_NDEF Entity definition not defined.
sdaiEl_NEXS Instance does not exist.
sdaiFN_NAVL Function not available.
sdaiSY_ERR Underlying system error.

Original specification in ISO 10303-22:

10.10.5
6.8.6 Is kind of

The Is Kind Of function shall determine whether an entity instance is of the specified entity type or one
of its subtypes.

Prototype:
SdaiBoolean sdailsKindOf (Sdailnstance instance, SdaiEntity entity);

SdaiBoolean sdailsKindOfBN (Sdailnstance instance,
SdaiString entityName);

©ISO 2001 — All rights reserved 65

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

I SO 10303-24:2001(E)

Input:

instance: Entity instance identifier.
entity: Entity definition identifier.
entityName: Entity type name.
Return:

In normal condition: sdaiTRUE if the instance is a kind of the entity tymsaiFALSE if the
instance is not a kind of the entity type.
In error condition: sdaiFALSE .

Possible error indicators:

sdaiSS_NOPN Session is not open.
sdaiRP_NOPN Repository is not open.
sdaiTR_NEXS Transaction does not exist.
sdaiTR_NAVL Transaction currently not available.
sdaiTR_EAB Transaction ended abnormally.
sdaiMO_NEXS SDAI-model does not exist.
sdaiED_NDEF Entity definition not defined.
sdaiEl_NEXS Instance does not exist.
sdaiFN_NAVL Function not available.
sdaiSY_ERR Underlying system error.

Original specification in ISO 10303-22:

10.10.6
6.8.7 Is SDAI kind of

The Is SDAI Kind Of function shall determine whether or not an entity instance is of the specified
entity type, or is of one of its subtypes, based upon the application schemas and the SDAI parameter
data schema found in ISO 10303-22 clause 9.

Prototype:

SdaiBoolean sdailsSDAIKindOf (Sdailnstance instance,
SdaiEntity entity);

SdaiBoolean sdailsSDAIKIindOfBN (Sdailnstance instance,
SdaiString entityName);

Input:

instance: Entity instance identifier.
entity: Entity definition identifier.
entityName: Entity type name.

66 ©ISO 2001 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

| SO 10303-24:2001(E)

Return:

In normal condition: sdaiTRUE if the instance is an SDAI kind of the entity tygdaiFALSE if
the instance is not an SDAI kind of the entity type.

In error condition: sdaiFALSE .

Possible error indicators:

sdaiSS_NOPN Session is not open.
sdaiRP_NOPN Repository is not open.
sdaiTR_NAVL Transaction currently not available.
sdaiTR_EAB Transaction ended abnormally.
sdaiMX_NDEF SDAI-model access not defined.
sdaiED_NDEF Entity definition not defined.
sdaiEl_NEXS Instance does not exist.
sdaiFN_NAVL Function not available.
sdaiSY_ERR Underlying system error.

Original specification in ISO 10303-22:

10.10.7
6.8.8 Find entity instance users

The Find Instance Users function shall return the identifiers of all the entity instances in the defined
domain that reference the specified entity instance.

Prototype:

SdaiNPL sdaiFindInstanceUsers (Sdailnstance instance,
SdaiNPL domain, SdaiNPL resultList);

Input:

instance: Identifier of the entity instance whose users are requested.

domain: Identifier of a NPL containing ti8slaiSchemalnstance identifiers of the
schema instances that define the domain of the function request.

resultList: Identifier of the pre-existing NPL to which tiselailnstance instance
identifiers of the entity instances referencing the specified entity instance are
appended.

Return:

Identifier of the result NPL.

Possible error indicators:

sdaiSS_NOPN Session is not open.
sdaiTR_NAVL Transaction currently not available.

©ISO 2001 — All rights reserved 67

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

I SO 10303-24:2001(E)

sdaiTR_EAB Transaction ended abnormally.
sdaiRP_NOPN Repository is not open.
sdaiEl_NEXS Entity instance does not exist.
sdaiSI_NEXS Schema instance does not exist.
sdaiAl_NEXS Aggregate instance does not exist.
sdaiFN_NAVL Function not available.
sdaiSY_ERR Underlying system error.

Original specification in ISO 10303-22:

10.10.8
6.8.9 Find entity instance usedn

The Find Instance Used In functions shall return the identifiers of all the entity instances in the defined
domain that reference the specified entity instance by the specified attribute.

Prototype:

SdaiNPL sdaiFindInstanceUsedIn (Sdailnstance instance,
SdaiAttr role, SdaiNPL domain, SdaiNPL resultList);

SdaiNPL sdaiFindInstanceUsedInBN (Sdailnstance instance,
SdaiString roleName, SdaiNPL domain,
SdaiNPL resultList);

Input:

instance: Identifier of the entity instance whose users are requested.

role: Identifier of the attribute as the role being requested.

roleName: A string that contains a fully qualified attribute name as defined in ISO 10303-
11: 15.20.

domain: Identifier of a NPL containing tiSgaiSchemalnstance identifiers of the
schema instances that define the domain of the function request.

resultList: Identifier of the pre-existing NPL to which t&alailnstance instance
identifiers of the entity instances referencing the specified entity instance by
the specified attribute are added.

Return:

Identifier of the result NPL.

Possible error indicators:

sdaiSS_NOPN Session is not open.
sdaiTR_NAVL Transaction currently not available.
sdaiTR_EAB Transaction ended abnormally.
sdaiRP_NOPN Repository is not open.
sdaiEl_NEXS Entity instance does not exist.

68 ©ISO 2001 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

| SO 10303-24:2001(E)

sdaiAT_NDEF Attribute not defined.
sdaiSI_NEXS Schema instance does not exist.
sdaiAl_NEXS Aggregate instance does not exist.
sdaiFN_NAVL Function not available.
sdaiSY_ERR Underlying system error.

Original specification in ISO 10303-22:

10.10.9
6.8.10 Get attribute value bound

The Get Attr Bound function shall return the current value of the real precision, the string width, or the
binary width for the specified attribute of the specified entity instance.

Prototype:

Sdailnteger sdaiGetAttrBound (Sdailnstance instance,
SdaiAttr attribute);

Sdailnteger sdaiGetAttrBoundBN (Sdailnstance instance,
SdaiString attributeName);

Input:

instance: Identifier of the entity instance whose bound is to be returned.
attribute: Identifier of a real, string, or binary typed attribute of the instance.
attributeName: Name of a real, string, or binary typed attribute of the instance.
Return:

The attribute bound value.

Possible error indicators:

sdaiSS_NOPN Session is not open.
sdaiTR_NAVL Transaction currently not available.
sdaiTR_EAB Transaction ended abnormally.
sdaiRP_NOPN Repository is not open.
sdaiMX_NDEF SDAI-model access not defined.
sdaiEl_NEXS Entity instance does not exist.
sdaiVA _NSET Value not set.

sdaiAT_NDEF Attribute not defined.
sdaiAT_NVLD Attribute invalid.

sdaiEX_NSUP Expression evaluation not supported.
sdaiFN_NAVL Function not available.
sdaiSY_ERR Underlying system error.

©ISO 2001 — All rights reserved 69

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

I SO 10303-24:2001(E)

Original specification in ISO 10303-22:

10.10.10
6.8.11 Find instance roles

The Find Instance Roles Of function shall return the identifiers of the attributes of entity instances ref-
erencing the specified entity instance in the specified domain.

Prototype:

SdaiNPL sdaiFindInstanceRolesOf (Sdailnstance instance,
SdaiNPL domain, SdaiNPL resultList);

Input:

instance: Identifier of the entity instance whose users are inspected.

domain: Identifier of a NPL containing ti8slaiSchemalnstance identifiers of the
schema instances that define the domain of the function request.

resultList: Identifier of the pre-existing NPL to which tBdaiAttr identifiers of the
entity instances that reference the specified entity instance are appended.

Return:

Identifier of the result NPL.

Possible error indicators:

sdaiSS_NOPN Session is not open.
sdaiTR_NAVL Transaction currently not available.
sdaiTR_EAB Transaction ended abnormally.
sdaiRP_NOPN Repository is not open.
sdaiEl_NEXS Entity instance does not exist.
sdaiSI_NEXS Schema instance does not exist.
sdaiAl_NEXS Aggregate instance does not exist.
sdaiFN_NAVL Function not available.
sdaiSY_ERR Underlying system error.

Original specification in ISO 10303-22:

10.10.11
6.8.12 Find instance data types

The Find Instance Type Of function shall return the identifier db@dliNamedType data dictionary
instances of which the specified entity instance is a member.

70 ~ ©ISO 2001 - All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

| SO 10303-24:2001(E)

Prototype:

SdaiNPL sdaiFindInstanceTypeOf (Sdailnstance instance,
SdaiNPL resultList);

Input:

instance: Identifier of the entity instance whose types are requested.

resultList: Identifier of the pre-existing NPL to which tBelaiNamedType instance
identifiers for those dictionary instances are added meeting the specified crite-
ria.

Return:

Identifier of the result NPL.

Possible error indicators:

sdaiSS_NOPN Session is not open.
sdaiTR_NAVL Transaction currently not available.
sdaiTR_EAB Transaction ended abnormally.
sdaiRP_NOPN Repository is not open.
sdaiEl_NEXS Entity instance does not exist.
sdaiAl_NEXS Aggregate instance does not exist.
sdaiFN_NAVL Function not available.
sdaiSY_ERR Underlying system error.

Original specification in ISO 10303-22:

10.10.12

6.8.13 Entity instance operations for convenience

6.8.13.1 Get attributes

The Get Attrs function shall return, and may convert, the values of one or more attributes of the speci-
fied entity instance. The behaviour of this function is the same as that of the Get Attr function, except
that more than one attribute value may be returned at once.

Prototype:

void sdaiGetAttrs (Sdailnstance instance, Sdailnteger numberAttr,
SdaiAttr attribute, SdaiPrimitiveType valueType,
void *value, ...);

void sdaiGetAttrsBN (Sdailnstance instance, Sdailnteger numberAttr,
SdaiString attributeName, SdaiPrimitiveType valueType,
void *value, ...);

©ISO 2001 — All rights reserved 71

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

I SO 10303-24:2001(E)

Input:

instance: Identifier of the instance whose attributes are being read.

numberAttr: Number of attributes to be read and indirectly number of arguments specified
in the call.

attribute: The attribute definition, from the data dictionary, of the attribute to be read.

attributeName: The name of the attribute to be read.

valueType: The type of the read attribute, one of the following argument values:

sdailNTEGER, sdaiREAL, sdaiNUMBER, sdaiBOOLEAN,
sdaiLOGICAL, sdaiSTRING, sdaiBINARY, sdaiENUM,
sdaiADB, sdaiINSTANCE, or sdaiAGGR.

value: Handle matching or convertible to the valueType. If valueTysaais\DB |,
value shall be the handle of an ADB previously created by a call to one of the
ADB create functions described in 6.2.12.1.

The input parameters attribute or attributeName, valueType and value shall be repeated in the given
order as specified by the value of numberAttr.

Output:

value: These functions shall return the value argument(s) filled with the primitive or
identifier attribute value read from the instance. If the valueType is of
sdaiADB , sdaiAGGR, orsdailNSTANCE , an identifier shall be returned.

If the number of arguments does not match the number required for the specified number of attributes,
the behaviour of these two functions shall be undefined.

Possible error indicators:

sdaiSS_NOPN Session is not open.
sdaiTR_NAVL Transaction currently not available.
sdaiTR_EAB Transaction ended abnormally.
sdaiRP_NOPN Repository is not open.
sdaiMO_NEXS SDAI-model does not exist.
sdaiMX_NDEF SDAI-model access not defined.
sdaiEl_NEXS Instance does not exist.
sdaiAT_NDEF Attribute not defined.
sdaiVT_NVLD Value type invalid.

sdaiVA _NSET Value not set.

sdaiSY_ERR Underlying system error.

6.8.13.2 Get all attributes

The Get All Attrs function shall return, and may convert, the values of all explicit attributes of the spec-
ified entity instance. An array 8daiADB's is returned, containing all of the attribute values in the
order defined in ISO 10303-21. In the case of an attribute value being unset, an empty ADB shall be
returned in the array.

72 o ©ISO 2001 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

I SO 10303-24:2001(E)
Prototype:

SdaiADB *sdaiGetAllAttrs (Sdailnstance instance,
Sdailnteger *numberAttr);

Input:

instance: Identifier of the instance whose explicit attributes are being read.

Output:

numberAttr: Number of attribute values returned.

Return:

In normal condition: This function shall return a C array containing identifiers of internally created
SdaiADB's with the value arguments filled with the primitive or identifier
attribute values read from the instance. If the attribute is an aggregate or
instance, the identifier shall be set in the ADB.

In error condition: NULL pointer.

Possible error indicators:

sdaiSS_NOPN Session is not open.
sdaiTR_NAVL Transaction currently not available.
sdaiTR_EAB Transaction ended abnormally.
sdaiRP_NOPN Repository is not open.
sdaiMO_NEXS SDAI-model does not exist.
sdaiMX_NDEF SDAI-model access not defined.
sdaiEl_NEXS Instance does not exist.
sdaiSY_ERR Underlying system error.

6.9 Application instance operations

6.9.1 Copy application instance in same SDAI-model

The Near Copy Instance function shall create a new application instance in the same SDAI-model hav-
ing the same attribute values as the specified entity instance.

. Prototype:
SdaiApplnstance sdaiNearCopylnstance (SdaiApplnstance instance);
| Input:

instance: The entity instance to be copied.

©ISO 2001 — All rights reserved 73

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

I SO 10303-24:2001(E)

Return:

In normal condition: Identifier of the newly created instance.
In error condition: NULL identifier.

Possible error indicators:

sdaiSS_NOPN Session is not open.

sdaiTR_NAVL Transaction currently not available.
sdaiTR_EAB Transaction ended abnormally.
sdaiRP_NOPN Repository is not open.
sdaiTR_NRW Transaction not read-write.
sdaiMX_NRW SDAI-model access is not read-write.
sdaiMX_NDEF SDAI-model access not defined.
sdaiEl_NEXS Instance does not exist.
sdaiSY_ERR Underlying system error.

Original specification in ISO 10303-22:

10.11.1
6.9.2 Copy application instance to other SDAI-model

The Far Copy Instance function shall create a new application instance having the same attribute values
as the specified entity instance in the specified SDAI-model instance. The specified SDAI-model shall
be associated with a schema instance with which the SDAI-model containing the specified entity
instance is associated.

Prototype:

SdaiApplnstance sdaiFarCopylnstance (SdaiApplnstance instance,
SdaiModel model);

Input:

instance: Identifier of the entity instance to be copied.
model: Identifier of the target SDAI-model.

Return:

In normal condition: Identifier of the newly created entity instance.
In error condition: NULL identifier.

Possible error indicators:

sdaiSS_NOPN Session is not open.
sdaiRP_NOPN Repository is not open.
sdaiTR_NRW Transaction not read-write.
sdaiTR_NAVL Transaction currently not available.

74 ©ISO 2001 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

| SO 10303-24:2001(E)

sdaiTR_EAB Transaction ended abnormally.
sdaiMX_NDEF SDAI-model access not defined.
sdaiEl_NEXS Instance does not exist.
sdaiMX_NRW SDAI-model access is not read-write.
sdaiMO_NEXS SDAI-model does not exist.
sdaiMO_NDEQ SDAI-model not domain equivalent.
sdaiSY_ERR Underlying system error.

Original specification in ISO 10303-22:

10.11.1
6.9.3 Delete application instance

The Delete Instance function shall delete the specified application instance. Any aggregate instances
associated with any aggregate-valued attribute of the deleted application instance shall also be deleted.

Prototype:

void sdaiDeletelnstance (SdaiApplnstance instance);
Input:
instance: Identifier of the application instance to be deleted.

Possible error indicators:

sdaiSS_NOPN Session is not open.

sdaiRP_NOPN Repository is not open.
sdaiTR_NRW Transaction not read-write.
sdaiTR_NAVL Transaction currently not available.
sdaiTR_EAB Transaction ended abnormally.
sdaiMX_NRW SDAI-model access is not read-write.
sdaiEl_NEXS Instance does not exist.
sdaiSY_ERR Underlying system error.

Original specification in ISO 10303-22:

10.11.2
6.9.4 Put attribute

The Put Attr function shall set, and may convert, the value of the specified attribute of the specified
application instance.

©ISO 2001 — All rights reserved o 75

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

SO 10303-24:2001(E)
Prototype:

void sdaiPutAttr (SdaiApplnstance instance,
SdaiExplicitAttr attribute,
SdaiPrimitiveType valueType, ...);

void sdaiPutAttrBN (SdaiApplnstance instance,
SdaiString attributeName,
SdaiPrimitiveType valueType, ...);

Input:
instance: Identifier of the application instance.
attribute: The attribute definition, from the data dictionary, of the attribute to be set.
attributeName: The name of the attribute to be set.
valueType: The type of the attribute to be put, one of the following argument values:
sdailNTEGER, sdaiREAL, sdaiBOOLEAN, sdaiLOGICAL,
sdaiSTRING, sdaiBINARY, sdaiENUM, sdaiADB, or
sdailNSTANCE .
Value of Sdailnteger , SdaiReal , SdaiBoolean , SdailLogical

type, or handle matching or convertible to the valueType, and given as a func-
tion parameter with the specified C late binding type.

Possible error indicators:

sdaiSS_NOPN Session is not open.
sdaiRP_NOPN Repository is not open.
sdaiTR_NRW Transaction not read-write.
sdaiTR_NAVL Transaction currently not available.
sdaiTR_EAB Transaction ended abnormally.
sdaiMX_NRW SDAI-model access is not read-write.
sdaiEl_NEXS Instance does not exist.
sdaiAT_NDEF Attribute not defined.
sdaiVT_NVLD Value type invalid.

sdaiAT_NVLD Attribute invalid.

sdaiSY_ERR Underlying system error.

Original specification in ISO 10303-22:

10.11.3
6.9.5 Unset attribute value

The Unset Attr function shall restore the state of the specified attribute in the specified application
instance such it has no value. A subsequent Test Attr function will darBALSE .

76 ©ISO 2001 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

I SO 10303-24:2001(E)
Prototype:

void sdaiUnsetAttr (SdaiApplnstance instance,
SdaiExplicitAttr attribute);

void sdaiUnsetAttrBN (SdaiApplnstance instance,
SdaiString attributeName);

Input:

instance: The application instance whose attribute is to be unset.
attribute: An attribute definition from the data dictionary.
attributeName: The name of the attribute to be unset.

Possible error indicators:

sdaiSS_NOPN Session is not open.

sdaiRP_NOPN Repository is not open.
sdaiTR_NRW Transaction not read-write.
sdaiTR_NAVL Transaction currently not available.
sdaiTR_EAB Transaction ended abnormally.
sdaiMX_NRW SDAI-model access is not read-write.
sdaiEl_NEXS Instance does not exist.
sdaiAT_NDEF Attribute not defined.

sdaiAT_NVLD Attribute invalid.

sdaiSY_ERR Underlying system error.

Original specification in ISO 10303-22:

10.11.4
6.9.6 Create aggregate instance

The Create Aggr function shall create an aggregate instance identifier as the value of the specified
attribute of the specified application instance.

Prototype:

SdaiAggr sdaiCreateAggr (SdaiApplnstance instance,
SdaiExplicitAttr attribute);

SdaiAggr sdaiCreateAggrBN (SdaiApplnstance instance,
SdaiString attributeName);

Input:
instance: Identifier of an application instance.
- attribute: Identifier of the aggregate valued attribute definition of the instance.
~ attributeName: Name of the attribute in the entity definition.

©ISO 2001 — All rights reserved 77

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

I SO 10303-24:2001(E)

Return:

In normal condition:

In error condition:

Identifier of the new aggregate.
NULL identifier.

Possible error indicators:

sdaiSS_NOPN
sdaiRP_NOPN
sdaiTR_NRW
sdaiTR_NAVL
sdaiTR_EAB
sdaiMX_NRW
sdaiEl_NEXS
sdaiAT_NDEF
sdaiVA _NSET
sdaiEX_NSUP
sdaiAT_NVLD
sdaiSY_ERR

Session is not open.

Repository is not open.

Transaction not read-write.
Transaction currently not available.
Transaction ended abnormally.
SDAI-model access is not read-write.
Instance does not exist.

Attribute not defined.

Value not set.

Expression evaluation not supported.
Attribute invalid.

Underlying system error.

Original specification in ISO 10303-22:

10.11.5

6.9.7 Create aggregate instance ADB

The Create AggrADB function shall create an aggregate instance identifier as the value of the specified
attribute of the specified application instance based on the specified ADB.

Prototype:

SdaiAggr sdaiCreateAggrADB (SdaiApplnstance instance,
SdaiExplicitAttr attribute, SdaiADB selaggrinstance);

SdaiAggr sdaiCreateAggrADBBN (SdaiApplnstance instance,
SdaiString attributeName, SdaiADB selaggrinstance);

Input:

instance:
attribute:
attributeName:
selaggrinstance:

Return:

In normal condition:

In error condition:

78

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS

Identifier of an application instance.
Identifier of the aggregate valued attribute definition of the instance.
Name of the attribute in the entity definition.

The ADB specifying the type of aggregate to create.

Identifier of the new aggregate.
NULL identifier.

©ISO 2001 — All rights reserved

Not for Resale

Possible error indicators:

sdaiSS_NOPN
sdaiRP_NOPN
sdaiTR_NRW
sdaiTR_NAVL
sdaiTR_EAB
sdaiMX_NRW
sdaiEl_NEXS
sdaiAT_NDEF
sdaiVA _NSET
sdailEX_NSUP
sdaiAT_NVLD
sdaiSY_ERR

Session is not open.

Repository is not open.
Transaction not read-write.
Transaction currently not available.
Transaction ended abnormally.

SDAI-model access is not read-write.

Instance does not exist.
Attribute not defined.
Value not set.

Expression evaluation not supported.

Attribute invalid.
Underlying system error.

Original specification in ISO 10303-22:

10.11.5

6.9.8 Get persistent label

The Get Persistent Label function shall return a persistent label for the specified application instance.

Prototype:

SdaiString sdaiGetPersistentLabel (SdaiApplnstance instance,
SdaiString labelBuffer);

Input:

instance:

Output:

labelBuffer:

Return:

| SO 10303-24:2001(E)

Identifier of the entity instance for which a persistent label is requested.

The pre-allocated buffer filled with the requested persistent label of the maxi-

mum length of 256 character signs.

The function returns the labelBuffer.

Possible error indicators:

sdaiSS_NOPN
sdaiRP_NOPN
sdaiTR_NEXS
sdaiTR_NAVL
sdaiTR_EAB
sdaiEl_NEXS

Session is not open.

Repository is not open.
Transaction does not exist.
Transaction currently not available.
Transaction ended abnormally.
Entity instance does not exist.

©ISO 2001 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS

Not for Resale

79

I SO 10303-24:2001(E)

sdaiFN_NAVL Function not available.
sdaiSY_ERR Underlying system error.

Original specification in ISO 10303-22:

10.11.6
6.9.9 Get session identifier

The Get Session Id function shall return the session identifier of the application instance referenced by
the specified persistent label in the specified repository.

Prototype:

SdaiApplnstance sdaiGetSessionld (SdaiRep repository,
SdaiString label);

Input:

repository: Identifier of the repository the label is valid in.

label: The persistent label of an application instance in the repository.
Return:

In normal condition: Identifier of the application instance identified by its label.
In error condition: NULL identifier.

Possible error indicators:

sdaiSS_NOPN Session is not open.
sdaiRP_NEXS Repository does not exist.
sdaiRP_NOPN Repository is not open.
sdaiTR_NEXS Transaction does not exist.
sdaiTR_NAVL Transaction currently not available.
sdaiTR_EAB Transaction ended abnormally.
sdaiEl_NEXS Entity instance does not exist.
sdaiFN_NAVL Function not available.
sdaiSY_ERR Underlying system error.

Original specification in ISO 10303-22:

10.11.7
6.9.10 Get description

The Get Description function shall return a human readable description for the specified application *
instance.

80 ©ISO 2001 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

I SO 10303-24:2001(E)
Prototype:

SdaiString sdaiGetDescription (SdaiApplnstance instance,
SdaiString descriptionBuffer);

Input:

instance: Identifier of the entity instance for which a description is requested.

Output:

descriptionBuffer: The pre-allocated buffer filled with the requested description of the maximum
length of 1024 character signs.

Return:
The function returns the description for the application instance.

Possible error indicators:

sdaiSS_NOPN Session is not open.
sdaiRP_NOPN Repository is not open.
sdaiTR_NEXS Transaction does not exist.
sdaiTR_NAVL Transaction currently not available.
sdaiTR_EAB Transaction ended abnormally.
sdaiEl_NEXS Entity instance does not exist.
sdaiSY_ERR Underlying system error.

Original specification in ISO 10303-22:

10.11.8
6.9.11 Validate where rule

The Validate Where Rule function shall determine whether the specified where rule is satisfied by the
specified application instance.

Prototype:

Sdailogical sdaiValidateWhereRule (SdaiApplnstance instance,
SdaiWhereRule rule);

Sdailogical sdaiValidateWhereRuleBN (SdaiApplnstance instance,
SdaiString ruleName);

Input:
instance: Identifier of an application instance to be validated
rule: Identifier of the where rule to be evaluated

©ISO 2001 — All rights reserved 81

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

I SO 10303-24:2001(E)

ruleName: Label of the where rule to be evaluated.

Return:

In normal condition: sdaiTRUE if rule is satisfied; sdaiFALSE if rule is violated;
sdaiUNKNOWN(f indeterminate.

In error condition: sdaiUNKNOWN

Possible error indicators:

sdaiSS_NOPN Session is not open.

sdaiTR_NAVL Transaction currently not available.
sdaiTR_EAB Transaction ended abnormally.
sdaiRP_NOPN Repository is not open.
sdaiMX_NDEF SDAI-model access not defined.
sdaiRU_NDEF Rule not defined.

sdaiEl_NEXS Instance does not exist.
sdaiEX_NSUP Expression evaluation not supported.
sdaiFN_NAVL Function not available.

sdaiSY_ERR Underlying system error.

Original specification in ISO 10303-22:

10.11.9
6.9.12 Validate required explicit attributes assigned

The Validate Required Attrs function shall determine whether a value has been set for the mandatory
explicit attributes of the specified entity instance.

Prototype:
SdaiBoolean sdaiValidateRequiredAttrs (SdaiApplnstance instance,
SdaiNPL list);
Input:
instance: Identifier of an instance.
list: The identifier of a pre-existing NPL to which tBelaiAttr identifiers of
those attributes are appended that do not conform to the validation.
Return:

sdaiTRUE if all non-optional attributes of the identified instance have values, or if the instance has no
non-optional attributesdaiFALSE if any non-optional attribute has no value in the instance, or if an
error occurs.

82 ©ISO 2001 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

| SO 10303-24:2001(E)

Possible error indicators:

sdaiSS_NOPN Session is not open.
sdaiTR_NAVL Transaction currently not available.
sdaiTR_EAB Transaction ended abnormally.
sdaiRP_NOPN Repository is not open.
sdaiMX_NDEF SDAI-model access not defined.
sdaiEl_NEXS Instance does not exist.
sdaiAl_NEXS Aggregate instance does not exist.
sdaiFN_NAVL Function not available.
sdaiSY_ERR Underlying system error.

Original specification in ISO 10303-22:

10.11.10
6.9.13 Validate inverse attributes

The Validate Inverse Attrs function shall determine whether all EXPRESS INVERSE attribute con-
straints defined in the specified application instance are satisfied.

Prototype:
SdaiBoolean sdaiValidatelnverseAttrs (SdaiApplnstance instance,
SdaiNPL list);
Input:
instance: Identifier of an instance.
list: The identifier of a pre-existing NPL to which tiselaiAttr identifiers of
those attributes are appended that do not conform to the validation.
Return:

In normal condition: sdaiTRUE if all inverse attribute constraints are satisfied or if the instance
has no inverse attributesdaiFALSE if any inverse attribute constraint is
violated.

In error condition: sdaiFALSE .

Possible error indicators:

sdaiSS_NOPN Session is not open.

sdaiTR_NAVL Transaction currently not available.
sdaiTR_EAB Transaction ended abnormally.
sdaiRP_NOPN Repository is not open.
sdaiMX_NDEF SDAI-model access not defined.
sdaiAl_NEXS Aggregate instance does not exist.
sdaiEl_NEXS Instance does not exist.
sdaiEX_NSUP Expression evaluation not supported.

©ISO 2001 — All rights reserved 83

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

I SO 10303-24:2001(E)

sdaiFN_NAVL Function not available.
sdaiSY_ERR Underlying system error.

Original specification in ISO 10303-22:

10.11.11
6.9.14 Validate explicit attributes references

The Validate Attr Types function shall determine whether all of the entity instances that are values of
attributes of the specified application instance are of a valid entity data type for those attributes.

Prototype:

SdailLogical sdaiValidateAttrTypes (SdaiApplnstance instance,

E SdaiNPL list);

;lnput:

instance: Identifier of an application instance.

list: The identifier of a pre-existing NPL to which t&elaiAttr identifiers of
those attributes are appended that do not conform to the validation.

Return:

In normal condition: sdaiTRUE if all entity-valued attributes have instance values of a correct
type; sdaiFALSE if any entity-valued attribute has an instance value of an
incorrect typesdaiUNKNOWNIf any required explicit attribute value is unset
that could reference an entity instance.

In error condition: sdaiUNKNOWN

Possible error indicators:

sdaiSS_NOPN Session is not open.
sdaiTR_NAVL Transaction currently not available.
sdaiTR_EAB Transaction ended abnormally.
sdaiRP_NOPN Repository is not open.
sdaiMX_NDEF SDAI-model access not defined.
sdaiEl_NEXS Instance does not exist.
sdaiAl_NEXS Aggregate instance does not exist.
sdaiFN_NAVL Function not available.
sdaiSY_ERR Underlying system error.

Original specification in ISO 10303-22:

10.11.12

84 ©ISO 2001 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

| SO 10303-24:2001(E)

6.9.15 Validate aggregates size

The Validate Aggr Sizes function shall determine whether the aggregate size constraints defined in the
data dictionary for the specified application instance are satisfied.

Prototype:
Sdailogical sdaiValidateAggrSizes (SdaiApplnstance instance,
SdaiNPL list);
Input:
instance: Identifier of the application instance to be evaluated.
list: The identifier of a pre-existing NPL to which tBelaiAttr identifiers of
those attributes are appended that do not conform to the validation.
Return:

In normal condition: sdaiTRUE if aggregate size is valiggdaiFALSE if aggregate size is not
valid.
In error condition: sdaiUNKNOWN

Possible error indicators:

sdaiSS_NOPN Session is not open.
sdaiTR_NAVL Transaction currently not available.
sdaiTR_EAB Transaction ended abnormally.
sdaiRP_NOPN Repository is not open.
sdaiMX_NDEF SDAI-model access not defined.
sdaiEl_NEXS Instance does not exist.
sdaiAl_NEXS Aggregate instance does not exist.
sdaiEX_NSUP Expression evaluation not supported.
sdaiVA_NSET Value not set.

sdaiFN_NAVL Function not available.
sdaiSY_ERR Underlying system error.

Original specification in ISO 10303-22:

10.11.13
6.9.16 Validate aggregates uniqueness

The Validate Aggr Uni function shall determine whether all the aggregate uniqueness constraints
defined in the data dictionary for the specified application instance are satisfied. In the case of aggre-
gate members represented by ADBSs, the data value and data type shall be compared, not the ADB iden-
tifier.

©ISO 2001 — All rights reserved 85

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

I SO 10303-24:2001(E)

Prototype:
SdaiBoolean sdaiValidateAggrUni (SdaiApplnstance instance,
SdaiNPL list);
Input:
instance: Identifier of an instance.
list: The identifier of a pre-existing NPL to which tselaiAttr identifiers of
those attributes are appended that do not conform to the validation.
Return:

In normal condition: sdaiTRUE if all aggregate uniqueness is satisfiedaiFALSE if at least
‘ one aggregate uniqueness failed.
In error condition: sdaiFALSE .

Possible error indicators:

'SdaiSS_NOPN Session is not open.

sdaiTR_NAVL Transaction currently not available.
sdaiTR_EAB Transaction ended abnormally.
sdaiRP_NOPN Repository is not open.
sdaiMX_NDEF SDAI-model access not defined.
sdaiEl_NEXS Instance does not exist.
sdaiAl_NEXS Aggregate instance does not exist.
sdaiEX_NSUP Expression evaluation not supported.
sdaiVA _NSET Value not set.

sdaiFN_NAVL Function not available.

sdaiSY_ERR Underlying system error.

Original specification in ISO 10303-22:

10.11.14
6.9.17 Validate array not optional

The Validate Array Not Optional function shall determine whether array instances whose array type
declaration does not allow optional elements have values at all index positions. The validation is per-
formed for all array instances associated with all attributes of the specified application instance.

Prototype:

SdaiBoolean sdaiValidateArrayNotOptional (SdaiApplnstance instance,
SdaiNPL list);

Input:

instance: Identifier of an entity instance.

86 ©ISO 2001 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

list;

Return:

In normal condition:
In error condition:

| SO 10303-24:2001(E)

The identifier of a pre-existing NPL to which t&elaiAttr identifiers of
those attributes are appended that do not conform to the validation.

sdaiTRUE if valid; sdaiFALSE if invalid.
sdaiFALSE .

Possible error indicators:

sdaiSS_NOPN
sdaiTR_NAVL
sdaiTR_EAB
~sdaiRP_NOPN
- sdaiMX_NDEF
-sdaiEl_NEXS
- sdaiAl_NEXS
- sdaiEX_NSUP
sdaiVA_NSET
sdaiFN_NAVL
sdaiSY_ERR

Session is not open.

Transaction currently not available.
Transaction ended abnormally.
Repository is not open.
SDAI-model access not defined.
Instance does not exist.

Aggregate instance does not exist.
Expression evaluation not supported.
Value not set.

Function not available.

Underlying system error.

Original specification in ISO 10303-22:

10.11.15

6.9.18 Validate string width

The Validate String Width function shall determine whether all STRING-valued attributes of the speci-

fied application instance are of a valid width.

Prototype:

Sdailogical sdaiValidateStringWidth (SdaiApplnstance applnstance,
SdaiNPL list);

Input:

applnstance:

list:

Return:

In normal condition:

In error condition:

©ISO 2001 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS

Identifier of the application instance to be validated.
The identifier of a pre-existing NPL to which t&elaiAttr identifiers of
those attributes are appended that do not conform to the validation.

sdaiTRUE if the constraint is satisfieddaiFALSE if the constraint is vio-
lated.
sdaiUNKNOWN

87

Not for Resale

I SO 10303-24:2001(E)

Possible error indicators:

sdaiSS_NOPN Session is not open.
sdaiTR_NAVL Transaction currently not available.
sdaiTR_EAB Transaction ended abnormally.
sdaiRP_NOPN Repository is not open.
sdaiMX_NDEF SDAI-model access not defined.
sdaiEl_NEXS Entity instance does not exist.
sdaiAl_NEXS Aggregate instance does not exist.
sdaiVA _NSET Value not set.

sdaiEX_NSUP Expression evaluation not supported.
sdaiFN_NAVL Function not available.
sdaiSY_ERR Underlying system error.

Original specification in ISO 10303-22:

10.11.16
6.9.19 Validate binary width

The Validate Binary Width function shall determine whether all BINARY-valued attributes of the spec-
ified application instance are of a valid width.

Prototype:
Sdailogical sdaiValidateBinaryWidth (SdaiAppInstance applnstance,
SdaiNPL list);
Input:
applnstance: Identifier of the application instance to be validated.
list: The identifier of a pre-existing NPL to which t&elaiAttr identifiers of
those attributes are appended that do not conform to the validation.
Return:

In normal condition: sdaiTRUE if the constraint is satisfieddaiFALSE if the constraint is vio-
lated.
In error condition: sdaiUNKNOWN

Possible error indicators:

sdaiSS_NOPN Session is not open.
sdaiTR_NAVL Transaction currently not available.
sdaiTR_EAB Transaction ended abnormally.
sdaiRP_NOPN Repository is not open.
sdaiMX_NDEF SDAI-model access not defined.
sdaiEl_NEXS Entity instance does not exist.
sdaiAl_NEXS Aggregate instance does not exist.

88 ©ISO 2001 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

| SO 10303-24:2001(E)

sdaiEX_NSUP Expression evaluation not supported.
sdaiVA_NSET Value not set.

sdaiFN_NAVL Function not available.

sdaiSY_ERR Underlying system error.

Original specification in ISO 10303-22:

10.11.17
6.9.20 Validate real precision

The Validate Real Precision function shall determine whether all REAL-valued attributes of the speci-
fied application instance are of the valid minimum precision.

Prototype:
SdailLogical sdaiValidateRealPrecision (SdaiApplnstance applnstance,
SdaiNPL list);
Input:
applnstance: Identifier of the application instance to be validated.
list: The identifier of a pre-existing NPL to which tlelaiAttr identifiers of
those attributes are appended that do not conform to the validation.
Return:

In normal condition: sdaiTRUE if the constraint is satisfieddaiFALSE if the constraint is vio-
lated.
In error condition: sdaiUNKNOWN

Possible error indicators:

sdaiSS_NOPN Session is not open.
sdaiTR_NAVL Transaction currently not available.
sdaiTR_EAB Transaction ended abnormally.
sdaiRP_NOPN Repository is not open.
sdaiMX_NDEF SDAI-model access not defined.
sdaiEl_NEXS Entity instance does not exist.
sdaiAl_NEXS Aggregate instance does not exist.
sdaiEX_NSUP Expression evaluation not supported.
sdaiVA _NSET Value not set.

sdaiFN_NAVL Function not available.
sdaiSY_ERR Underlying system error.

Original specification in ISO 10303-22:

10.11.18

©ISO 2001 — All rights reserved 89

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

I SO 10303-24:2001(E)

6.9.21 Application instance operations for convenience

The functions in this clause are defined to provide for a more efficient and convenient access to more
than one attributes by a single function call.

6.9.21.1 Put attributes

The Put Attrs function shall set, and may convert, the values of one or more explicit attributes of the
specified application instance.

Prototype:

void sdaiPutAttrs (SdaiApplnstance applnstance,
Sdailnteger numberAttr, SdaiExplicitAttr attribute,
SdaiPrimitiveType valueType, ...);

void sdaiPutAttrsBN (SdaiApplnstance applnstance,
Sdailnteger numberAttr, SdaiString attributeName,
SdaiPrimitiveType valueType, ...);

Input:

applnstance: Identifier of the application instance whose attributes are to be set.

numberAttr: Number of explicit attributes to be set and indirectly number of arguments
specified in the call.

attribute: The attribute definition of the explicit attribute to be set.

attributeName: The name of the explicit attribute to be set.

valueType: Type of the attribute to be set, one of the following argument values:

sdaiINTEGER, sdaiREAL, sdaiBOOLEAN, sdaiLOGICAL,

sdaiSTRING, sdaiBINARY, sdaiENUM, sdaiADB,
sdailINSTANCE, orsdaiAGGR.

Value of Sdailnteger , SdaiReal , SdaiBoolean , SdailLogical

type, or handle matching or convertible to the valueType, and given as a func-
tion parameter with the specified C late binding type.

The input parameters attribute or attributeName, valueType and the value parameter shall repeated in
the given order as specified by the value of numberAttr.

Possible error indicators:

sdaiSS_NOPN Session is not open.

sdaiRP_NOPN Repository is not open.
sdaiTR_NAVL Transaction currently not available.
sdaiTR_EAB Transaction ended abnormally.
sdaiTR_NRW Transaction not read-write.
sdaiMX_NRW SDAI-model access is not read-write.
sdaiEl_NEXS Instance does not exist.
sdaiAT_NDEF Attribute not defined.

sdaiAT_NVLD Attribute invalid.

90 ©ISO 2001 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

| SO 10303-24:2001(E)

sdaiVT_NVLD Value type invalid.
sdaiSY_ERR Underlying system error.

6.9.21.2 Put all attributes

The Put All Attrs function shall set the values of all explicit attributes of the specified application
instance.

Prototype:

void sdaiPutAllAttrs (SdaiApplnstance applnstance,
Sdailnteger numberAttr, SdaiADB *values);

Input:

applnstance: Identifier of the application instance whose explicit attributes are being set.

numberAttr: Number of attribute values are being provided, determines the length of the
values array.

values: An array of C structuréaiADB containing the types and values of the

explicit attributes in the order defined in ISO 10303-21.

Possible error indicators:

sdaiSS_NOPN Session is not open.
sdaiRP_NOPN Repository is not open.
sdaiTR_NAVL Transaction currently not available.
sdaiTR_EAB Transaction ended abnormally.
sdaiTR_NRW Transaction not read-write.
sdaiMX_NRW SDAI-model access is not read-write.
sdaiEl_NEXS Instance does not exist.
sdaiAT_NVLD Attribute invalid.

sdaiAT_NDEF Attribute not defined.
sdaiVT_NVLD Value type invalid.

sdaiSY_ERR Underlying system error.

6.10 Entity instance aggregate operations

6.10.1 Get member count

The Get Member Count function shall return the number of elements contained in the specified aggre-
gate. If the aggregate is an array, the size of the array is returned.

Prototype:

Sdailnteger sdaiGetMemberCount (SdaiAggr aggregate);

©ISO 2001 — All rights reserved 91

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

SO 10303-24:2001(E)
Input:

aggregate: Identifier of an aggregate.
Return:

In normal condition: The number of elements or the size of the array.
In error condition: -1.

Possible error indicators:

sdaiSS_NOPN Session is not open.
sdaiTR_NAVL Transaction currently not available.
sdaiTR_EAB Transaction ended abnormally.
sdaiRP_NOPN Repository is not open.
sdaiMX_NDEF SDAI-model access not defined.
sdaiAl_NEXS Aggregate instance does not exist.
sdaiSY_ERR Underlying system error.

Original specification in ISO 10303-22:

10.12.1

6.10.2 Is member

The Is Member function shall determine whether the specified primitive or instance value is contained
in the aggregate. In the case of aggregate members represented by ADBs, both the data value and data
type shall be compared.

Prototype:

SdaiBoolean sdailsMember (SdaiAggr aggregate,
SdaiPrimitive Type valueType, ...);

Input:

aggregate: Identifier of the aggregate.

valueType: One of the following types:sdailNTEGER, sdaiREAL,
sdaiBOOLEAN, sdaiLOGICAL, sdaiSTRING, sdaiBINARY,
sdaiENUM, sdaiADB, sdailINSTANCE, andsdaiAGGR.
Value of Sdailnteger , SdaiReal , SdaiBoolean , SdailLogical
type, or handle matching or convertible to the valueType, and given as a func-
tion parameter with the specified C late binding type.

Return:

In normal condition: sdaiTRUE if the specified value is a membedaiFALSE if it is not a
member.
In error condition: sdaiFALSE .

92 L ©ISO 2001 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

| SO 10303-24:2001(E)

Possible error indicators:

sdaiSS_NOPN Session is not open.
sdaiTR_NAVL Transaction currently not available.
sdaiTR_EAB Transaction ended abnormally.
sdaiRP_NOPN Repository is not open.
sdaiMX_NDEF SDAI-model access not defined.
sdaiAl_NEXS Aggregate instance does not exist.
sdaiVT_NVLD Value type invalid.

sdaiSY_ERR Underlying system error.

Original specification in ISO 10303-22:

10.12.2
6.10.3 Create iterator

The Create Iterator function shall create an iterator associated with the specified aggregate instance.
The iterator shall be positioned as if the Beginning function had been executed such that so that no
member of the aggregate is referenced as the current member.

Prototype:

Sdailterator sdaiCreatelterator (SdaiAggr aggregate);

Input:

aggregate: Identifier of an aggregate with which an iterator is to be associated.
Return:

In normal condition: Identifier of an iterator.
In error condition: NULL identifier.

Possible error indicators:

sdaiSS_NOPN Session is not open.
sdaiTR_NAVL Transaction currently not available.
sdaiTR_EAB Transaction ended abnormally.
sdaiMX_NDEF SDAI-model access not defined.
sdaiAl_NEXS Aggregate instance does not exist.
sdaiSY_ERR Underlying system error.

Original specification in ISO 10303-22:

10.12.3

©ISO 2001 — All rights reserved 93

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

I SO 10303-24:2001(E)

6.10.4 Delete iterator
The Delete Iterator function shall delete the specified iterator.

Prototype:

void sdaiDeletelterator (Sdailterator iterator);
Input:
iterator: Identifier of the iterator to be deleted.

Possible error indicators:

sdaiSS_NOPN Session is not open.
sdaiTR_NAVL Transaction currently not available.
sdaiTR_EAB Transaction ended abnormally.
sdailR_NEXS Iterator does not exist.
sdaiSY_ERR Underlying system error.

Original specification in ISO 10303-22:

10.12.4
6.10.5 Beginning

The Beginning function shall position the iterator at the beginning of its associated aggregate instance
such that there is no current member.

Prototype:

void sdaiBeginning (Sdailterator iterator);
Input:
iterator: Identifier of an iterator.

Possible error indicators:

sdaiSS_NOPN Session is not open.
sdaiTR_NAVL Transaction currently not available.
sdaiTR_EAB Transaction ended abnormally.
sdaiRP_NOPN Repository is not open.
sdaiMX_NDEF SDAI-model access not defined.
sdaiAl_NEXS Aggregate instance does not exist.
sdailR_NEXS Iterator does not exist.
sdaiAl_NSET Aggregate instance is empty.
sdaiSY_ERR Underlying system error.

94 ©ISO 2001 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

| SO 10303-24:2001(E)

Original specification in ISO 10303-22:

10.12.5
6.10.6 Next

The Next function shall position the iterator to the succeeding member of the associated aggregate
instance.

Prototype:

SdaiBoolean sdaiNext (Sdailterator iterator);

Input:

iterator: Identifier of the iterator.

Return:

In normal condition: sdaiTRUE if there is a new current elemestlaiFALSE if there is no new
current element.

In error condition: sdaiFALSE .

Possible error indicators:

sdaiSS_NOPN Session is not open.
sdaiTR_NAVL Transaction currently not available.
sdaiTR_EAB Transaction ended abnormally.
sdaiRP_NOPN Repository is not open.
sdaiMX_NDEF SDAI-model access not defined.
sdaiAl_NEXS Aggregate instance does not exist.
sdailR_NEXS Iterator does not exist.
sdaiAl_NSET Aggregate instance is empty.
sdaiSY_ERR Underlying system error.

Original specification in ISO 10303-22:

10.12.6
6.10.7 Get current member

The Get Aggr By Iterator function shall return, and may convert, the value of the current member refer-
enced by the specified iterator.

Prototype:

void* sdaiGetAggrBylterator (Sdailterator iterator,
SdaiPrimitiveType valueType, void *value);

©ISO 2001 — All rights reserved o 95

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

I SO 10303-24:2001(E)

Input:
iterator: Identifier of the iterator identifying the member of interest.
valueType: Type of the aggregate element to be read, one of the following argument val-

ues:sdailNTEGER, sdaiREAL, sdaiNUMBER, sdaiBOOLEAN,
sdaiLOGICAL, sdaiSTRING, sdaiBINARY, sdaiENUM,
sdaiADB, sdailNSTANCE, or sdaiAGGR.

value: Handle matching or convertible to the valueType. If valueTysdais\DB |,
value shall be the handle of an ADB previously created by a call to one of the
ADB create functions described in 6.2.12.1.

Output:

value: Handle filled with the primitive or identifier value read from the aggregate.
Return:

This function shall return the value argument filled with the primitive or identifier value read from the
aggregate member. If the valueTypedsiADB , sdaiAGGR, orsdailNSTANCE , an identifier shall

be returned. If the member has no value, none shall be returned and an error shall be set.

Possible error indicators:

sdaiSS_NOPN Session is not open.
sdaiTR_NAVL Transaction currently not available.
sdaiTR_EAB Transaction ended abnormally.
sdaiRP_NOPN Repository is not open.
sdaiMX_NDEF SDAI-model access not defined.
sdaiAl_NEXS Aggregate instance does not exist.
sdailR_NEXS Iterator does not exist.
sdaiAl_NSET Aggregate instance is empty.
sdailR_NSET Iterator has no current value.
sdaiVT_NVLD Value type invalid.

sdaiSY_ERR Underlying system error.

Original specification in ISO 10303-22:

10.12.7
6.10.8 Get value bound by iterator

The Get Aggr Element Bound By Itr function shall return the current value of the real precision, the
string width, or the binary width for the current member referenced by the specified iterator.

Prototype:

Sdailnteger sdaiGetAggrElementBoundByltr (Sdailterator iterator);

96 ©ISO 2001 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

| SO 10303-24:2001(E)

Input:

iterator: Identifier of iterator specifying the aggregate element whose bound value is to
be returned.

Return:

The aggregate element bound value.

Possible error indicators:

sdaiSS_NOPN Session is not open.
sdaiTR_NAVL Transaction currently not available.
sdaiTR_EAB Transaction ended abnormally.
sdaiRP_NOPN Repository is not open.
sdaiMX_NDEF SDAI-model access not defined.
sdailR_NEXS Iterator does not exist.
sdaiAl_NEXS Aggregate instance does not exist.
sdaiVA_NSET Value not set.

sdaiVT_NVLD Value type invalid.

sdaiEX_NSUP Expression evaluation not supported.
sdaiFN_NAVL Function not available.
sdaiSY_ERR Underlying system error.

Original specification in ISO 10303-22:

10.12.8
6.10.9 Get lower bound

The Get Lower Bound function shall return the current value of the lower bound, or index, of the spec-
ified aggregate instance.

Prototype:

Sdailnteger sdaiGetLowerBound (SdaiAggr aggregate);

Input:

aggregate: Identifier of the aggregate instance whose lower bound value is to be returned.
Return:

The aggregate lower bound value.

Possible error indicators:

sdaiSS_NOPN Session is not open.
sdaiTR_NAVL Transaction currently not available.

©ISO 2001 — All rights reserved 97

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

I SO 10303-24:2001(E)

sdaiTR_EAB Transaction ended abnormally.
sdaiRP_NOPN Repository is not open.
sdaiMX_NDEF SDAI-model access not defined.
sdaiAl_NEXS Aggregate instance does not exist.
sdaiVA _NSET Value not set.

sdaiVT_NVLD Value type invalid.

sdaiEX_NSUP Expression evaluation not supported.
sdaiFN_NAVL Function not available.

sdaiSY_ERR Underlying system error.

Original specification in ISO 10303-22:

10.12.9

6.10.10 Get upper bound

The Get Upper Bound function shall return the current value of the upper bound, or index, of the spec-

ified aggregate instance.

Prototype:

Sdailnteger sdaiGetUpperBound (SdaiAggr aggregate);

Input:
aggregate:

Return:

Identifier of the aggregate instance whose upper bound value is to be returned.

The aggregate upper bound value.

Possible error indicators:

sdaiSS_NOPN Session is not open.
sdaiTR_NAVL Transaction currently not available.
sdaiTR_EAB Transaction ended abnormally.
sdaiRP_NOPN Repository is not open.
sdaiMX_NDEF SDAI-model access not defined.
sdaiAl_NEXS Aggregate instance does not exist.
sdaiVA_NSET Value not set.

sdaiVT_NVLD Value type invalid.

sdaiEX_NSUP Expression evaluation not supported.
sdaiFN_NAVL Function not available.
sdaiSY_ERR Underlying system error.

Original specification in ISO 10303-22:

10.12.10

98 ©ISO 2001 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

| SO 10303-24:2001(E)

6.11 Application instance aggregate operations

6.11.1 Create aggregate instance as current member

The Create Nested Aggr By Itr function shall create an aggregate instance replacing the current mem-
ber of the aggregate instance referenced by the specified iterator. In the case where the type of the
aggregate to create is a SELECT TYPE and ambiguous, the type shall be specified on input using an
ADB. The function shall set the value of the ADB with the identifier of the newly created aggregate
instance.

Prototype:
SdaiAggr sdaiCreateNestedAggrByltr (Sdailterator current);

SdaiAggr sdaiCreateNestedAggrByltrADB (Sdailterator current,
SdaiADB selaggrinstance);

Input:

current:
selaggrinstance:

The iterator referencing the current member of the aggregate.
The ADB specifying the type of aggregate to create.

Return:

In normal condition:
In error condition:

The identifier of the newly created aggregate instance.
NULL identifier.

Possible error indicators:

sdaiSS_NOPN Session is not open.

sdaiTR_NAVL Transaction currently not available.
sdaiTR_EAB Transaction ended abnormally.
sdaiTR_NRW Transaction not read-write.
sdaiRP_NOPN Repository is not open.
sdaiMX_NRW SDAI-model access is not read-write.
sdaiAl_NEXS Aggregate instance does not exist.
sdailR_NEXS Iterator does not exist.

sdailR_NSET Iterator has no current value.

sdaiVA _NSET Value not set.

sdaiEX_NSUP Expression evaluation not supported.
sdaiAB_NEXS ADB does not exist.

sdaiSY_ERR Underlying system error.

Original specification in ISO 10303-22:

10.13.1

©ISO 2001 — All rights reserved o 99

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS

Not for Resale

I SO 10303-24:2001(E)

6.11.2 Put current member

The Put Aggr By lterator function shall replace, and may convert, the value of the current member of
an aggregate referenced by the specified iterator.

Prototype:

void sdaiPutAggrBylterator (Sdailterator iterator,
SdaiPrimitive Type valueType, ...);

Input:

iterator: The iterator referencing the aggregate member to replace.

valueType: Type of the value to be set, one of the following argument values:
sdaiINTEGER, sdaiREAL, sdaiBOOLEAN, sdaiLOGICAL,
sdaiSTRING, sdaiBINARY, sdaiENUM, sdaiADB, or
sdailNSTANCE .
Value of Sdailnteger , SdaiReal , SdaiBoolean , SdailLogical

type, or handle matching or convertible to the valueType, and given as a func-
tion parameter with the specified C late binding type.

Possible error indicators:

sdaiSS_NOPN Session is not open.
sdaiTR_NAVL Transaction currently not available.
sdaiTR_EAB Transaction ended abnormally.
sdaiTR_NRW Transaction not read-write.
sdaiRP_NOPN Repository is not open.
sdaiMX_NRW SDAI-model access is not read-write.
sdaiVT_NVLD Value type invalid.

sdaiAl_NEXS Aggregate instance does not exist.
sdailR_NEXS Iterator does not exist.
sdaiAl_NSET Aggregate instance is empty.
sdailR_NSET Iterator has no current value.
sdaiSY_ERR Underlying system error.

Original specification in ISO 10303-22:

10.13.2
6.11.3 Remove current member

The Remove By Itr function shall remove the current member of an aggregate instance, that is not an
array, referenced by the specified iterator. After executing the function, the iterator position shall be set
as if the Next function had been invoked before the member was removed. If the removed member was
an aggregate instance, it along with any nested aggregate instances shall be deleted.

100 ©ISO 2001 — All rights reserved

Copyright International C)rganization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

I SO 10303-24:2001(E)
Prototype:

void sdaiRemoveBYylterator (Sdailterator iterator);
Input:
iterator Identifier of an iterator, not associated with an array.

Possible error indicators:

sdaiSS_NOPN Session is not open.
sdaiTR_NAVL Transaction currently not available.
sdaiTR_EAB Transaction ended abnormally.
sdaiTR_NRW Transaction not read-write.
sdaiRP_NOPN Repository is not open.
sdaiMX_NRW SDAI-model access is not read-write.
sdaiVT_NVLD Value type invalid.

sdaiAl_NEXS Aggregate instance does not exist.
sdaiAl_NSET Aggregate instance is empty.
sdaiAl_NVLD Aggregate instance invalid.
sdailR_NEXS Iterator does not exist.
sdailR_NSET Iterator has no current value.
sdaiSY_ERR Underlying system error.

Original specification in ISO 10303-22:

10.13.3

6.12 Application instance unordered collection operations

6.12.1 Add unordered

The Add function shall add a new member to an unordered aggregate instance.

Prototype:

void sdaiAdd (SdaiUnorderedAggr unorderedAggr,
SdaiPrimitiveType valueType, ...);

Input:

unorderedAggr: An identifier of an unordered aggregate instance.

valueType: Type of the value to be set, one of the following argument values:
sdailINTEGER, sdaiREAL, sdaiBOOLEAN, sdaiLOGICAL,
sdaiSTRING, sdaiBINARY, sdaiENUM, sdaiADB , or
sdailNSTANCE .
Value of Sdailnteger , SdaiReal , SdaiBoolean , SdailLogical

type, or handle matching or convertible to the valueType, and given as a func-
tion parameter with the specified C late binding type.

©ISO 2001 — All rights reserved 101

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

I SO 10303-24:2001(E)

Possible error indicators:

sdaiSS_NOPN Session is not open.

sdaiTR_NAVL Transaction currently not available.
sdaiTR_EAB Transaction ended abnormally.
sdaiTR_NRW Transaction not read-write.
sdaiRP_NOPN Repository is not open.
sdaiMX_NRW SDAI-model access is not read-write.
sdaiVT_NVLD Value type invalid.

sdaiAl_NEXS Aggregate instance does not exist.
sdaiAl_NVLD Aggregate instance invalid.
sdaiSY_ERR Underlying system error.

Original specification in ISO 10303-22:

10.14.1
6.12.2 Create aggregate instance unordered

The Create Nested Aggr function shall create an aggregate instance as a member of an unordered
aggregate instance. In the case where the type of the aggregate to create is a SELECT TYPE and
ambiguous, the type shall be specified on input using an ADB. The function shall set the value of the
ADB with the identifier of the newly created aggregate instance.

Prototype:
SdaiAggr sdaiCreateNestedAggr (SdaiUnorderedAggr aggregate);

SdaiAggr sdaiCreateNestedAggrADB (SdaiUnorderedAggr aggregate,
SdaiADB selaggrinstance);

Input:

aggregate: Identifier of an unordered aggregate instance.
selaggrinstance: The ADB specifying the type of aggregate to create.
Return:

In normal condition: The identifier of the newly created aggregate instance.
In error condition: NULL identifier.

Possible error indicators:

sdaiSS_NOPN Session is not open.

sdaiTR_NAVL Transaction currently not available.
sdaiTR_EAB Transaction ended abnormally.
sdaiTR_NRW Transaction not read-write.
sdaiRP_NOPN Repository is not open.
sdaiMX_NRW SDAI-model access is not read-write.

102 ©ISO 2001 — All rights reserved

Copyright International Organization for Standardization

Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

| SO 10303-24:2001(E)

sdaiAl_NEXS Aggregate instance does not exist.
sdaiAl_NVLD Aggregate instance invalid.

sdaiVA _NSET Value not set.

sdaiEX_NSUP Expression evaluation not supported.
sdaiSY_ERR Underlying system error.

Original specification in ISO 10303-22:

10.14.2
6.12.3 Remove unordered

The Remove function shall remove one occurrence of the specified value from the specified unordered
aggregate instance. If the removed element is an aggregate instance, it along with any nested aggregate
instances shall be deleted.

Prototype:

void sdaiRemove (SdaiUnorderedAggr unorderedAggr,
SdaiPrimitive Type valueType, ...);

Input:
unorderedAggr: An identifier of an unordered aggregate instance.
valueType: Type of the value to be removed, one of the following argument values:

sdaiINTEGER, sdaiREAL, sdaiBOOLEAN, sdaiLOGICAL,

sdaiSTRING, sdaiBINARY, sdaiENUM, sdaiADB, sdaiAGGR ,

or sdailINSTANCE .

Value of Sdailnteger , SdaiReal , SdaiBoolean , SdailLogical

type, or handle matching or convertible to the valueType, and given as a func-
tion parameter with the specified C late binding type.

Possible error indicators:

sdaiSS_NOPN Session is not open.
-sdaiTR_NAVL Transaction currently not available.
'sdaiTR_EAB Transaction ended abnormally.
'sdaiTR_NRW Transaction not read-write.
-sdaiRP_NOPN Repository is not open.
“sdaiMX_NRW SDAI-model access is not read-write.
sdaiVT_NVLD Value type invalid.

sdaiAl_NEXS Aggregate instance does not exist.
sdaiAl_NVLD Aggregate instance invalid.
sdaiVA_NEXS Value does not exist.

sdaiSY_ERR Underlying system error.

Original specification in ISO 10303-22:

10.14.3

©ISO 2001 — All rights reserved 103

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

I SO 10303-24:2001(E)

6.13 Entity instance ordered collection operations

6.13.1 Get by index

The Get Aggr By Index function shall get, and may convert, the value of the aggregate member refer-
enced by the specified index position.

Prototype:

void* sdaiGetAggrBylIndex (SdaiOrderedAggr aggregate,
SdaiAggrindex index, SdaiPrimitiveType valueType,

void *value);
Input:
aggregate: Identifier of an ordered aggregate instance.
index: Position in the aggregate of the value to be returned.
valueType: Type of the value to be read, one of the following argument values:

sdailNTEGER, sdaiREAL, sdaiNUMBER, sdaiBOOLEAN,
sdaiLOGICAL, sdaiSTRING, sdaiBINARY, sdaiENUM,
sdaiADB, sdaiINSTANCE , orsdaiAGGR.

value: Handle matching or convertible to the valueType. If valueTysdais\DB |,
value shall be the handle of an ADB previously created by a call to one of the
ADB create functions described in 6.2.12.1.

Output:

value: Handle filled with the primitive or identifier value read from the aggregate.
Return:

This function shall return the value argument filled with the primitive or identifier value read from the
aggregate member. If the valueTypedsiADB , sdaiAGGR, orsdailNSTANCE , an identifier shall

be returned. If the member has no value, none shall be returned and an error shall be set.

Possible error indicators:

sdaiSS_NOPN Session is not open.
sdaiTR_NAVL Transaction currently not available.
sdaiTR_EAB Transaction ended abnormally.
sdaiRP_NOPN Repository is not open.
sdaiMX_NDEF SDAI-model access not defined.
sdaiVT_NVLD Value type invalid.

sdaiVA _NSET Value not set.

sdaiAl_NVLD Aggregate instance invalid.
sdaiAl_NEXS Aggregate instance does not exist.
sdailX_NVLD Index invalid.

sdaiSY_ERR Underlying system error.

104 ©ISO 2001 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

| SO 10303-24:2001(E)

Original specification in ISO 10303-22:

10.15.1
6.13.2 End

The End function shall position the specified iterator at the end of the ordered aggregate instance mem-
bers such that there is no current member.

Prototype:

void sdaiEnd (Sdailterator iterator);
Input:
iterator: Iterator identifier for an ordered aggregate instance.

Possible error indicators:

sdaiSS_NOPN Session is not open.
sdaiTR_NAVL Transaction currently not available.
sdaiTR_EAB Transaction ended abnormally.
sdaiAl_NEXS Aggregate instance does not exist.
sdailR_NEXS Iterator does not exist.
sdaiAl_NSET Aggregate instance is empty.
sdaiAl_NVLD Aggregate instance invalid.
sdaiSY_ERR Underlying system error.

Original specification in ISO 10303-22:

10.15.2
6.13.3 Previous

The Previous function shall position the specified iterator so that the preceding member of its subject
ordered aggregate instance shall become the current member. If the iterator is at the end of the aggre-
gate, the last member shall become the current member. If the iterator is at the beginning of the aggre-
gate no repositioning shall occur. If the iterator references the first member of the aggregate, the
iterator shall be set at the beginning so there is no current member.

Prototype:

SdaiBoolean sdaiPrevious (Sdailterator iterator);

Input:

iterator: Identifier of an iterator of an ordered aggregate instance.

©ISO 2001 — All rights reserved 105

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

I SO 10303-24:2001(E)

Return:

In normal condition: sdaiTRUE if there is a member at the new current positsoi@iFALSE if
there is no member at the new current position.

In error condition: sdaiFALSE .

Possible error indicators:

sdaiSS_NOPN Session is not open.
sdaiTR_NAVL Transaction currently not available.
sdaiTR_EAB Transaction ended abnormally.
sdaiAl_NEXS Aggregate instance does not exist.
sdailR_NEXS Iterator does not exist.
sdaiAl_NSET Aggregate instance is empty.
sdaiAl_NVLD Aggregate instance invalid.
sdaiSY_ERR Underlying system error.

Original specification in ISO 10303-22:

10.15.3
6.13.4 Get value bound by index

The Get Aggr Element Bound By Index function shall return the current value of the real precision, the
string width, or the binary width of the aggregate element at the specified index position in the speci-
fied ordered aggregate instance.

Prototype:

Sdailnteger sdaiGetAggrElementBoundBylndex (
SdaiOrderedAggr aggregate, SdaiAggrindex index);

Input:

aggregate: Identifier of aggregate instance containing the aggregate element whose bound
value is to be returned.

index: Position specifying the aggregate element whose bound value is to be
returned.

Return:

The aggregate element bound value.

Possible error indicators:

sdaiSS_NOPN Session is not open.
sdaiTR_NAVL Transaction currently not available.
sdaiTR_EAB Transaction ended abnormally.
sdaiRP_NOPN Repository is not open.

106 ©ISO 2001 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

| SO 10303-24:2001(E)

sdaiMX_NDEF SDAI-model access not defined.
sdailX_NVLD Index invalid.

sdaiAl_NEXS Aggregate instance does not exist.
sdaiVA _NSET Value not set.

sdaiVT_NVLD Value type invalid.

sdaiEX_NSUP Expression evaluation not supported.
sdaiFN_NAVL Function not available.

sdaiSY_ERR Underlying system error.

Original specification in ISO 10303-22:

10.154

6.14 Application instance ordered collection operations

6.14.1 Put by index

The Put Aggr By Index function shall replace, and may convert, the value of the member of the speci-
fied ordered aggregate instance referenced by the specified index.

Prototype:

void sdaiPutAggrBylndex (SdaiOrderedAggr aggregate,
SdaiAggrindex index, SdaiPrimitiveType valueType, ...);

Input:

aggregate: Identifier of an ordered aggregate instance.

index: Position in the aggregate of the value to be set.

valueType: Type of the value to be set, one of the following argument values:
sdailNTEGER, sdaiREAL, sdaiBOOLEAN, sdaiLOGICAL,
sdaiSTRING, sdaiBINARY, sdaiENUM, sdaiADB , or
sdailNSTANCE .
Value of Sdailnteger , SdaiReal , SdaiBoolean , SdailLogical

type, or handle matching or convertible to the valueType, and given as a func-
tion parameter with the specified C late binding type.

Possible error indicators:

sdaiSS_NOPN Session is not open.

sdaiTR_NAVL Transaction currently not available.
sdaiTR_EAB Transaction ended abnormally.
sdaiTR_NRW Transaction not read-write.
sdaiRP_NOPN Repository is not open.
sdaiMX_NRW SDAI-model access is not read-write.
sdaiVT_NVLD Value type invalid.

sdaiAl_NEXS Aggregate instance does not exist.
sdaiAl_NVLD Aggregate instance invalid.
sdailX_NVLD Index invalid.

©ISO 2001 — All rights reserved 107

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

I SO 10303-24:2001(E)

sdaiSY_ERR Underlying system error.

Original specification in ISO 10303-22:

10.16.1
6.14.2 Create aggregate instance by index

The Create Nested Aggr By Index function shall create an aggregate instance and replaces the existing
member of the specified ordered aggregate instance referenced by the specified index. If the replaced
member was an aggregate instance, it along with any nested aggregate instances shall be deleted. In the
case where the type of the aggregate to create is a SELECT TYPE and ambiguous, the type shall be
specified on input using an ADB. The function shall set the value of the ADB with the identifier of the
newly created aggregate instance.

Prototype:

SdaiAggr sdaiCreateNestedAggrBylndex (SdaiOrderedAggr aggregate,
SdaiAggrindex index);

SdaiAggr sdaiCreateNestedAggrBylndexADB (SdaiOrderedAggr aggregate,
SdaiAggrindex index, SdaiADB selaggrinstance);

Input:
aggregate: Identifier of a nested ordered aggregate instance.
index: The index at where the new aggregate will be set.

selaggrinstance: The ADB specifying the type of aggregate to create.
Return:

The identifier of the newly created aggregate instance.
NULL identifier.

In normal condition:
In error condition:

Possible error indicators:

sdaiSS_NOPN

Session is not open.
sdaiTR_NAVL Transaction currently not available.
sdaiTR_EAB Transaction ended abnormally.
sdaiTR_NRW Transaction access not read-write.
sdaiRP_NOPN Repository is not open.
sdaiMX_NRW SDAI-model access is not read-write.
sdaiAl_NEXS Aggregate instance does not exist.
sdaiAl_NVLD Aggregate instance invalid.
sdailX_NVLD Index invalid.
sdaiVA NSET Value not set.
sdaiEX_NSUP Expression evaluation not supported.
sdaiSY_ERR Underlying system error.

108 ©ISO 2001 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

No reproduction or networking permitted without license from IHS Not for Resale

| SO 10303-24:2001(E)

Original specification in ISO 10303-22:

10.16.2

6.15 Entity instance array operations

6.15.1 Test by index

The Test Array By Index function shall test whether the member of the specified array referenced by
the specified index position has a value.

Prototype:

SdaiBoolean sdaiTestArrayBylndex (SdaiArray array,
SdaiAggrindex index);

Input:

array: Identifier of an array aggregate instance.
index: Position in the array aggregate to be tested.
Return:

In normal condition: sdaiTRUE if the array member is assigned a vaBagiFALSE if the mem-
ber value is undefined.
In error condition: sdaiFALSE .

Possible error indicators:

sdaiSS_NOPN Session is not open.
sdaiTR_NAVL Transaction currently not available.
sdaiTR_EAB Transaction ended abnormally.
sdaiAl_NEXS Aggregate instance does not exist.
sdaiAl_NVLD Aggregate instance invalid.
sdailX_NVLD Index invalid.

sdaiSY_ERR Underlying system error.

Original specification in ISO 10303-22:

10.17.1
6.15.2 Test current member

The Test Array By Itr function shall test whether the member of the array referenced by the specified
iterator has a value.

©ISO 2001 — All rights reserved 109

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

I SO 10303-24:2001(E)

Prototype:

SdaiBoolean sdaiTestArrayByltr (Sdailterator iterator);

Input:

iterator: Identifier of an iterator of an array position to be tested.

Return:

In normal condition: sdaiTRUE if the identified array member is assigned a veddajFALSE if
the member value is undefined.

In error condition: sdaiFALSE .

Possible error indicators:

sdaiSS_NOPN Session is not open.
sdaiTR_NAVL Transaction currently not available.
sdaiTR_EAB Transaction ended abnormally.
sdaiAl_NEXS Aggregate instance does not exist.
sdaiAl_NVLD Aggregate instance invalid.
sdailR_NEXS Iterator does not exist.
sdailR_NSET Current member is not defined.
sdaiSY_ERR Underlying system error.

Original specification in ISO 10303-22:

10.17.2
6.15.3 Get lower index

The Get Lower Index function shall return the value of the lower index of the specified array instance
when it was created.

Prototype:

Sdailnteger sdaiGetLowerlndex (SdaiArray array);

Input:

array: Identifier of the array instance whose lower index value is to be returned.
Return:

The array lower index value.

Possible error indicators:

sdaiSS_NOPN Session is not open.

110 ©ISO 2001 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

| SO 10303-24:2001(E)

sdaiTR_NAVL Transaction currently not available.
sdaiTR_EAB Transaction ended abnormally.
sdaiRP_NOPN Repository is not open.
sdaiMX_NDEF SDAI-model access not defined.
sdaiAl_NEXS Aggregate instance does not exist.
sdaiAl_NVLD Aggregate instance invalid.
sdaiFN_NAVL Function not available.
sdaiSY_ERR Underlying system error.

Original specification in ISO 10303-22:

10.17.3
6.15.4 Get upper index

The Get Upper Index function shall return the value of the upper index of the specified array instance
when it was created.

Prototype:

Sdailnteger sdaiGetUpperindex (SdaiArray array);

Input:

array: Identifier of the array instance whose upper index value is to be returned.
Return:

The array upper index value.

Possible error indicators:

sdaiSS_NOPN Session is not open.
sdaiTR_NAVL Transaction currently not available.
sdaiTR_EAB Transaction ended abnormally.
sdaiRP_NOPN Repository is not open.
sdaiMX_NDEF SDAI-model access not defined.
sdaiAl_NEXS Aggregate instance does not exist.
sdaiAl_NVLD Aggregate instance invalid.
sdaiFN_NAVL Function not available.
sdaiSY_ERR Underlying system error.

Original specification in ISO 10303-22:

10.17.4

©ISO 2001 — All rights reserved 111

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

I SO 10303-24:2001(E)

6.16 Application

instance array operations

6.16.1 Unset value by index

The Unset Array By Index function shall restore the unset (not assigned a value) status of the member
of the specified array at the specified index position. If the array member value was previously an
aggregate instance, it along with any nested aggregate instances shall be deleted.

Prototype:

void sdaiUnsetArrayBylndex (SdaiArray array, SdaiAggrindex index);

Input:

array:
index:

Array that contains the value to be unset.
Index identifying the value in the array to be unset.

Possible error indicators:

sdaiSS_NOPN
sdaiTR_NAVL
sdaiTR_EAB
sdaiTR_NRW
sdaiRP_NOPN
sdaiMX_NRW
sdaiAl_NEXS
sdaiAl_NVLD
sdailX_NVLD
sdaiSY_ERR

Session is not open.

Transaction currently not available.
Transaction ended abnormally.
Transaction not read-write.
Repository is not open.

SDAI-model access is not read-write.
Aggregate instance does not exist.
Aggregate instance invalid.

Index invalid.

Underlying system error.

Original specification in ISO 10303-22:

10.18.1

6.16.2 Unset value current member

The Unset Array By Itr function shall restore the unset (not assigned a value) status of a member at the
position identified by the iterator in the array associated with the iterator. Only iterators associated with
array aggregate instances may be specified as argument to this function. If the array member value was
previously an aggregate instance, it along with any nested aggregate instances shall be deleted.

: Prototype:

‘void sdaiUnsetArrayByltr (Sdailterator iterator);

Tnput

iterator:

112

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS

Identifier of an iterator associated with an array aggregate instance.

©ISO 2001 — All rights reserved

Not for Resale

| SO 10303-24:2001(E)

Possible error indicators:

sdaiSS_NOPN Session is not open.
sdaiTR_NAVL Transaction currently not available.
sdaiTR_EAB Transaction ended abnormally.
sdaiTR_NRW Transaction not read-write.
sdaiRP_NOPN Repository is not open.
sdaiMX_NRW SDAI-model access is not read-write.
sdaiAl_NEXS Aggregate instance does not exist.
sdailR_NEXS Iterator does not exist.
sdailR_NSET Current member is not defined.
sdaiAl_NVLD Aggregate instance invalid.
sdaiSY_ERR Underlying system error.

Original specification in ISO 10303-22:

10.18.2
6.16.3 Reindex array

The Reindex Array function shall resize the specified array instance setting the lower, or upper index,
or both, based upon the current population of the application schema.

Prototype:

void sdaiReindexArray (SdaiArray array);
Input:
array: Identifier of the array instance to be reindexed.

Possible error indicators:

sdaiSS_NOPN Session is not open.
sdaiTR_NAVL Transaction currently not available.
sdaiTR_EAB Transaction ended abnormally.
sdaiTR_NRW Transaction not read-write.
sdaiRP_NOPN Repository is not open.
sdaiMX_NDEF SDAI-model access not defined.
sdaiAl_NEXS Aggregate instance does not exist.
sdaiAl_NVLD Aggregate instance invalid.
sdaiVA _NSET Value not set.

sdaiEX_NSUP Expression evaluation not supported.
sdaiFN_NAVL Function not available.
sdaiSY_ERR Underlying system error.

Original specification in ISO 10303-22:

10.18.3

©ISO 2001 — All rights reserved 113

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

I SO 10303-24:2001(E)

6.16.4 Reset array index

The Reset Array Index function shall resize the specified array instance setting the lower and upper
index with the specified values.

Prototype:

void sdaiResetArrayIndex (SdaiArray array, SdaiAggrindex lower,
SdaiAggrindex upper);

Input:

array: Identifier of the array instance to be reindexed.
lower: The value for the new lower index.

upper: The value for the new upper index.

Possible error indicators:

sdaiSS_NOPN Session is not open.
sdaiTR_NAVL Transaction currently not available.
sdaiTR_EAB Transaction ended abnormally.
sdaiTR_NRW Transaction not read-write.
sdaiRP_NOPN Repository is not open.
sdaiMX_NDEF SDAI-model access not defined.
sdaiAl_NEXS Aggregate instance does not exist.
sdaiAl_NVLD Aggregate instance invalid.
sdaiVA_NVLD Value invalid.

sdaiVT_NVLD Value type invalid.

sdaiFN_NAVL Function not available.
sdaiSY_ERR Underlying system error.

Original specification in ISO 10303-22:

10.18.4

6.17 Application instance list operations

6.17.1 Add before current member

The Insert Before function shall insert a new member with the specified value before the current mem-
ber referenced by the specified iterator whose subject is a list instance. The current member referenced
by the iterator shall be unchanged by this function.

Prototype:

void sdailnsertBefore (Sdailterator iterator,
SdaiPrimitiveType valueType, ...);

114 ©ISO 2001 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

Input:

iterator:
valueType:

| SO 10303-24:2001(E)

Identifier of an iterator whose subject is a list aggregate instance.
Type of the value to be set, one of the following argument values:
sdailNTEGER, sdaiREAL, sdaiBOOLEAN, sdaiLOGICAL,

sdaiSTRING, sdaiBINARY, sdaiENUM, sdaiADB , or
sdailNSTANCE .
Value of Sdailnteger , SdaiReal , SdaiBoolean , SdailLogical

type, or handle matching or convertible to the valueType, and given as a func-
tion parameter with the specified C late binding type.

Possible error indicators:

sdaiSS_NOPN
sdaiTR_NAVL
sdaiTR_EAB
sdaiTR_NRW
sdaiRP_NOPN
sdaiMX_NRW
sdaiVT_NVLD
sdaiAl_NEXS
sdailR_NEXS
sdailR_NSET
sdaiAl_NVLD
sdaiSY_ERR

Session is not open.

Transaction currently not available.
Transaction ended abnormally.
Transaction not read-write.
Repository is not open.
SDAI-model access is not read-write.
Value type invalid.

Aggregate instance does not exist.
Iterator does not exist.

Iterator has no current value.
Aggregate instance invalid.
Underlying system error.

Original specification in ISO 10303-22:

10.19.1

6.17.2 Add after current member

The Insert After function shall insert a new member with the specified value after the current member
referenced by the specified iterator whose subject is a list instance. The current member referenced by
the iterator shall be unchanged by this function.

Prototype:

void sdailnsertAfter (Sdailterator iterator,

Input:

iterator:
valueType:

SdaiPrimitive Type valueType, ...);

Identifier of an iterator whose subject is a list aggregate instance.

Type of the value to be set, one of the following argument values:
sdailNTEGER, sdaiREAL, sdaiBOOLEAN, sdaiLOGICAL,
sdaiSTRING, sdaiBINARY, sdaiENUM, sdaiADB , or
sdailNSTANCE .

©ISO 2001 — All rights reserved 115

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS

Not for Resale

I SO 10303-24:2001(E)

Value of Sdailnteger , SdaiReal , SdaiBoolean , SdailLogical
type, or handle matching or convertible to the valueType, and given as a func-
tion parameter with the specified C late binding type.

Possible error indicators:

sdaiSS_NOPN Session is not open.
sdaiTR_NAVL Transaction currently not available.
sdaiTR_EAB Transaction ended abnormally.
sdaiTR_NRW Transaction not read-write.
sdaiRP_NOPN Repository is not open.
sdaiMX_NRW SDAI-model access is not read-write.
sdaiVT_NVLD Value type invalid.

sdaiAl_NEXS Aggregate instance does not exist.
sdailR_NEXS Iterator does not exist.
sdailR_NSET Iterator has no current value.
sdaiAl_NVLD Aggregate instance invalid.
sdaiSY_ERR Underlying system error.

Original specification in ISO 10303-22:

10.19.2
6.17.3 Add by index

The Insert By Index function shall add a new member with the specified value to the specified list
instance. The position of the new member within the list instance shall be specified by the index.

Prototype:

- void sdailnsertByIndex (SdailList list, SdaiAggrindex index,
SdaiPrimitiveType valueType, ...);

- Input:

list: Identifier of a list instance.

index: Index identifying the position for the new list element.

valueType: Type of the value to be set, one of the following argument values:
sdaiINTEGER, sdaiREAL, sdaiBOOLEAN, sdaiLOGICAL,
sdaiSTRING, sdaiBINARY, sdaiENUM, sdaiADB , or

sdailNSTANCE .

Value of Sdailnteger , SdaiReal , SdaiBoolean , SdailLogical

type, or handle matching or convertible to the valueType, and given as a func-
tion parameter with the specified C late binding type.

Possible error indicators:

sdaiSS_NOPN Session is not open.
sdaiRP_NOPN Repository is not open.

116 ©ISO 2001 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

| SO 10303-24:2001(E)

sdaiTR_NAVL Transaction currently not available.
sdaiTR_EAB Transaction ended abnormally.
sdaiTR_NRW Transaction not read-write.
sdaiMX_NRW SDAI-model access is not read-write.
sdailX_NVLD Index invalid.

sdaiVT_NVLD Value type invalid.

sdaiAl_NEXS Aggregate instance does not exist.
sdaiAl_NVLD Aggregate instance invalid.
sdaiSY_ERR Underlying system error.

Original specification in ISO 10303-22:

10.19.3
6.17.4 Create aggregate instance before current member

The Insert Nested Aggr Before function shall create an aggregate instance as a member of a list
instance. The newly created aggregate shall be inserted into the list instance before the member refer-
enced by the specified iterator. In the case where the type of the aggregate to create is a SELECT TYPE
and ambiguous, the type shall be specified on input using an ADB. The function shall set value of the
ADB with the identifier of the newly created aggregate instance.

Prototype:
SdaiAggr sdailnsertNestedAggrBefore (Sdailterator iterator);

SdaiAggr sdailnsertNestedAggrBeforeADB (Sdailterator iterator,
SdaiADB selaggrinstance);

Input:

iterator: Iterator connected with a nested list aggregate instance.
selaggrinstance: The ADB specifying the type of aggregate to create.
Return:

In normal condition: The identifier of the newly created aggregate instance.
In error condition: NULL identifier.

Possible error indicators:

sdaiSS_NOPN Session is not open.

sdaiTR_NAVL Transaction currently not available.
sdaiTR_EAB Transaction ended abnormally.
sdaiTR_NRW Transaction access not read-write.
sdaiRP_NOPN Repository is not open.
sdaiMX_NRW SDAI-model access is not read-write.
sdaiAl_NEXS Aggregate instance does not exist.
sdaiAl_NVLD Aggregate instance invalid.

©ISO 2001 — All rights reserved 117

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

I SO 10303-24:2001(E)

sdailR_NEXS Iterator does not exist.

sdailR_NSET Iterator not set.

sdaiVA NSET Value not set.

sdaiEX_NSUP Expression evaluation not supported.
sdaiSY_ERR Underlying system error.

Original specification in ISO 10303-22:

10.19.4
6.17.5 Create aggregate instance after current member

The Insert Nested Aggr After function shall create an aggregate instance as a member of a list instance.
The newly created aggregate shall be inserted into the list instance after the member referenced by the
specified iterator. In the case where the type of the aggregate to create is a SELECT TYPE and ambig-
uous, the type shall be specified on input using an ADB. The function shall set the value of the ADB

with the identifier of the newly created aggregate instance.

Prototype:

SdaiAggr sdailnsertNestedAggrAfter (Sdailterator iterator);

SdaiAggr sdailnsertNestedAggrAfterADB (Sdailterator iterator,

Input:

iterator:
selaggrinstance:

Return:

In normal condition:

In error condition:

SdaiADB selaggrinstance);

Iterator connected with a nested list aggregate instance.
The ADB specifying the type of aggregate to create.

The identifier of the newly created aggregate instance.
NULL identifier.

Possible error indicators:

sdaiSS_NOPN Session is not open.

sdaiTR_NAVL Transaction currently not available.
sdaiTR_EAB Transaction ended abnormally.
sdaiTR_NRW Transaction access not read-write.
sdaiRP_NOPN Repository is not open.
sdaiMX_NRW SDAI-model access is not read-write.
sdaiAl_NEXS Aggregate instance does not exist.
sdaiAl_NVLD Aggregate instance invalid.
sdailR_NEXS Iterator does not exist.

sdailR_NSET Iterator not set.

sdaiVA _NSET Value not set.

sdailEX_NSUP Expression evaluation not supported.
118 ©ISO 2001 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS

Not for Resale

| SO 10303-24:2001(E)

sdaiSY_ERR Underlying system error.

Original specification in ISO 10303-22:

10.19.5
6.17.6 Add aggregate instance by index

The Insert Nested Aggr By Index function shall create an aggregate instance as a member of the speci-
fied list instance. The newly created aggregate shall be inserted into the list instance at the position ref-
erenced by the specified index. In the case where the type of the aggregate to create is a SELECT
TYPE and ambiguous, the type shall be specified on input using an ADB. The function shall set the
value of the ADB with the identifier of the newly created aggregate instance.

Prototype:

SdaiAggr sdailnsertNestedAggrByIndex (SdailList list,
SdaiAggrindex index);

SdaiAggr sdailnsertNestedAggrBylndexADB (SdaiList list,
SdaiAggrindex index, SdaiADB selaggrinstance);

Input:

list: Identifier of a nested list aggregate instance.

index: The index at where the new aggregate instance will be inserted.
selaggrinstance: The ADB specifying the type of aggregate to create.

Return:

In normal condition: The identifier of the newly created aggregate instance.
In error condition: NULL identifier.

Possible error indicators:

sdaiSS_NOPN Session is not open.

sdaiTR_NAVL Transaction currently not available.
sdaiTR_EAB Transaction ended abnormally.
sdaiTR_NRW Transaction access not read-write.
sdaiRP_NOPN Repository is not open.
sdaiMX_NRW SDAI-model access is not read-write.
sdaiAl_NEXS Aggregate instance does not exist.
sdaiAl_NVLD Aggregate instance invalid.
sdailX_NVLD Index invalid.

sdaiVA_NSET Value not set.

sdaiEX_NSUP Expression evaluation not supported.
sdaiSY_ERR Underlying system error.

©ISO 2001 — All rights reserved 119

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

I SO 10303-24:2001(E)

Original spedficationin 1SO 10B03-22:

10.19.6
6.17.7 Remove by index

The Remove By Index function dhall remove the membeof the specified list referenced by the ped-
fied index. If the removed membea is an agregate indarce, it dong with any nested aggregate
instances shall be deleted.

Prototype:

void sdaiRemoveByln dex (SdaiList | i st, SdaiAggrin dex index);
Inpu:

list: Identifier of the list to be modified.

index: Thelist position d the memtler to be removed.

Possble aror indicators:

sdai SS_NOM Sesson is na open.

sdai TR_NA\WL Transaction currently not availabe.
sdai TR_EAB Transaction enced ebnormally.

sdai TR_NRN Transaction nat read-write.

sdai RP_NOM Repostory isnotopen.

sdai MX_NRWV SDAI-model accessis nat read-write.
sdai | X_NVLD Index invalid.

sdai Al NEXS Aggregate ingarnce desnot exist.
sdai Al_NVLD Aggregate ingance invalid.

sdai SY _ERR Underlying system atror.

Original spedficationin SO 10B03-22:

10.19.7
6.18 C late bnding specific SELECT TYPE operations

In the case where the ddinedtypes goplicable to an &tribute value a aggregate memberesuting from
one or mare EXPRESS SELECTTY PEsare amlguaus, an ADB is used as the meharism to imple-
ment an instance of a seled_value as specified in 1SO 101(38-22: 9.48. The ADB is used to specify
both the value and applicable defined types.Implementations of this pat of ISO 1033 stal provide
the spedfied Type Path functions to edalish and rerieve the data type of the sdect value. The
data_type shall be passed across the interface asa vector tha supparts one or more SdaiStrin - g as
itsmemters. The names 6the aplicable defined dda types are <t, on input by the calling application
and an output by the implementation, asthe vector members.

120 ©I1S0 200aL — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

| SO 10303-24: 2001(E)
6.18.1 Put ADB type path

The Put ADB Type Path function shall set ttata type value of the specified ADB with the
EXPRESS TYPE names in the specified vector. The application is responsible for allocation of mem-
ory for the input vector. After the function executes the application is responsible for freeing the allo-
cated memory.

Prototype:

void sdaiPutADBTypePath (SdaiADB block, Sdailnteger typeNameNumber,
SdaiString *typeNameVector);

Input:

block: Identifier of the ADB.

typeNameNumber: The count of the EXPRESS TYPE names in the vector.
typeNameVector: Pointer to the vector of EXPRESS TYPE names.

Possible error indicators:

sdaiSS_NOPN Session is not open.

sdaiTR_NAVL Transaction currently not available.
sdaiTR_EAB Transaction ended abnormally.
sdaiTR_NRW Transaction not read-write.
sdaiRP_NOPN Repository is not open.
sdaiMX_NRW SDAI-model access is not read-write.
sdaiVA_NVLD Value invalid.

sdaiVT_NVLD Value type invalid.

sdaiAB_NEXS ADB does not exist.

sdaiSY_ERR Underlying system error.

6.18.2 Get ADB type path

The Get ADB Type Path function shall return a pointer to a vector of strings representing the type in
the specified ADB. The specified ADB is one containing type path information that has been filled by a
function reading an attribute or aggregate member value. The implementation is responsible for allo-
cating the memory for the vector referenced by the returned pointer.The contents of this vector shall be
valid until the next call of this function. The implementation shall free the memory allocated for the
vector upon the application deleting the ADB or closing the SDAI session.

Prototype:

SdaiString *sdaiGetADBTypePath (SdaiADB block,
Sdailnteger *typeNameNumber);

Input:

block: Identifier of an ADB.

©ISO 2001 — All rights reserved 121

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

SO 10303-24:2001(E)
Output:

typeNameNumber: Count of the number of types returned.

Return:

In normal condition: Pointer to a vector with the indicated numb&daiString type that are
the EXPRESS type names comprising the type path information.

In error condition: NULL identifier.

Possible error indicators:

sdaiSS_NOPN Session is not open.
sdaiTR_NAVL Transaction currently not available.
sdaiTR_EAB Transaction ended abnormally.
sdaiVT_NVLD Value type invalid.

sdaiAB_NEXS ADB does not exist.

sdaiSY_ERR Underlying system error.

6.18.3 Validate type path

The Validate Type Path function determines whether all attribute and aggregate member values of the
specified application instance have defined type names specified as the type path information that are
allowable based upon the entity data type upon which the application instance is based.

Prototype:
Sdailogical sdaiValidateTypePath (SdaiAppInstance applnstance,
SdaiNPL list);
Input:
applnstance: Identifier of the application instance to be validated.
list: The identifier of a pre-existing NPL to which tBelaiAttr identifiers of
those attributes are appended that do not conform to the validation.
Return:

In normal condition: sdaiTRUE if the constraint is satisfieddaiFALSE if the constraint is vio-
lated.
In error condition: sdaiUNKNOWN

Possible error indicators:

sdaiSS_NOPN Session is not open.
sdaiTR_NAVL Transaction currently not available.
sdaiTR_EAB Transaction ended abnormally.
sdaiRP_NOPN Repository is not open.
sdaiMX_NDEF SDAI-model access not defined.

122 ©ISO 2001 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

| SO 10303-24:2001(E)

sdaiEl_NEXS Entity instance does not exist.

sdaiAl_NEXS Aggregate instance does not exist.

sdaiFN_NAVL Function not available.

sdaiSY_ERR Underlying system error.

©ISO 2001 — All rights reserved 123

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

| SO 10303-24:2001(E)
Annex A
(normative)

Information object registration

To provide for unambiguous identification of an information object in an open system, the object iden-
tifier

{iso standard 10303 part(24) version(1) }

is assigned to this part of ISO 10303. The meaning of this value is defined in ISO/IEC 8824-1, and is
described in ISO 10303-1.

124 ©ISO 2001 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

| SO 10303-24:2001(E)

Annex B
(informative)

The C late binding header include file <sdai.h>

*% k% * *% * * *% * * * *kkk * * *% /

/
/* This header file <sdai.h> is related to ISO 10303-24 */

/ *% k% * *% * * *% * * * *kkk * * *% /

#ifndef _SDAI_
#define _SDAI_

[¥** Constant declarations *****¥xwkkmikkiokiikiik ik ki
/* LOGICAL and BOOLEAN value elements: */

#define sdaiFALSE 0

#define sdaiTRUE 1

#define sdailUNKNOWN 2

/* BINARY value elements: */

#define sdaiBITO 'O’
#define sdaiBIT1 '1'

/* EXPRESS built-in constants: */

#define sdaiE 2.7182818284590451353602874713
#define sdaiP| 3.1415926353897932384626433832

/* SDAI C late binding error codes; ****x#kkkkkxkikiikiikkkxkikiokk |

#define sdaiNO_ERR 0 /*No error */

“#define sdaiSS_OPN 10 /* Session open */

“#define sdaiSS_NAVL 20 /* SDAI not available */

“#define sdaiSS_NOPN 30 /* Session is not open */

“#define sdaiRP_NEXS 40 /* Repository does not exist */

‘#define sdaiRP_NAVL 50 /* Repository not available */

#define sdaiRP_OPN 60 /* Repository open */

#define sdaiRP_NOPN 70 /* Repository is not open */

#define sdaiTR_EAB 80 /* Transaction ended abnormally */
#define sdaiTR_EXS 90 /* Transaction exists */

#define sdaiTR_NAVL 100 /* Transaction currently not available */
#define sdaiTR_RW 110 /* Transaction read-write */

#define sdaiTR_NRW 120 /* Transaction not read-write */

#define sdaiTR_NEXS 130 /* Transaction does not exist */
#define sdaiMO_NDEQ 140 /* SDAI-model not domain equivalent */
#define sdaiMO_NEXS 150 /* SDAI-model does not exist */
#define sdaiMO_NVLD 160 /* SDAI-model invalid */
#define sdaiMO_DUP 170 /* SDAI-model duplicate */
#define sdaiMX_NRW 180 /* SDAI-model access not read-write */

©ISO 2001 — All rights reserved 125

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

I SO 10303-24:2001(E)

#define sdaiMX_NDEF
#define sdaiMX_RW
#define sdaiMX_RO
#define sdaiSD_NDEF
#define sdaiED_NDEF
#define sdaiED_NDEQ
#define sdaiED_NVLD
#define sdaiRU_NDEF
#define sdaiEX_NSUP
#define sdaiAT_NVLD
#define sdaiAT_NDEF
#define sdaiSI_DUP
#define sdaiSI_NEXS
#define sdaiEl_NEXS
#define sdaiEl_NAVL
#define sdaiEl_NVLD
#define sdaiEl_NEXP
#define sdaiSC_NEXS
#define sdaiSC_EXS
#define sdaiAl_NEXS
#define sdaiAl_NVLD
#define sdaiAl_NSET
#define sdaiVA_NVLD
#define sdaiVA_NEXS
#define sdaiVA_NSET
#define sdaiVT_NVLD
#define sdailR_NEXS
#define sdailR_NSET
#define sdailX_NVLD
#define sdaiER_NSET
#define sdaiOP_NVLD
#define sdaiFN_NAVL
#define sdaiAB_NEXS
#define sdaiSY_ERR

190 /* SDAI-model access not defined */
200 /* SDAI-model access read-write */
210 /* SDAI-model access read-only */

220 /* Schema definition not defined */

230 /* Entity definition not defined */

240 /* Entity definition not domain equiv.*/

250 /* Entity definition invalid */

260 /* Rule not defined */

270 /* Expression evaluation not supported */

280 /* Attribute invalid */

290 /* Attribute not defined */

300 /* Schema instance duplicate */

310 /* Schema instance does not exist */
320 /* Entity instance does not exist */
330 /* Entity instance not available */
340 /* Entity instance invalid */

350 /* Entity instance not exported */

360 /* Scope does not exist */

370 /* Scope exists */

380 /* Aggregate instance does not exist */
390 /* Aggregate instance invalid */

400 /* Aggregate instance is empty */

410 /* Value invalid */

420 /* Value does not exist */

430 /* Value not set */

440 /* Value type invalid */

450 /* Iterator does not exist */
460 /* Current member is not defined */
470 /* Index invalid */

480 /* Event recording not set */

490 /* Operator invalid */

500 /* Function not available */

800 /* ADB does not exist */

1000 /* Underlying system error */

/*** Type declaratlons **/

typedef unsigned char

SdaiBit;

/* C late binding simple data types: */

typedef long Sdailnteger;
typedef double SdaiReal,
typedef SdaiReal SdaiNumber;
typedef int SdaiBoolean;
typedef int Sdailogical;
typedef char *SdaiString;
typedef SdaiBit *SdaiBinary;

/* enumeration data type: */

typedef char

*SdaiEnum;

/* entity instance identifier type: */

typedef Sdaild

Sdailnstance;

126 ©ISO 2001 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO

No reproduction or networking permitted without license from IHS Not for Resale

/* aggregate data types: */

typedef Sdailnstance SdaiAggr;

typedef SdaiAggr SdaiOrderedAggr;
typedef SdaiAggr SdaiUnorderedAggr;
typedef SdaiOrderedAggr SdaiArray;
typedef SdaiOrderedAggr Sdailist;
typedef SdaiUnorderedAggr SdaiSet;
typedef SdaiUnorderedAggr SdaiBag;

[* attribute type data type: */

typedef enum {

sdaiADB, sdaiAGGR, sdaiBINARY, sdaiBOOLEAN,

sdaiENUM, sdailNSTANCE, sdailINTEGER, sdaiLOGICAL,

sdaiNOTYPE, sdaiNUMBER, sdaiREAL, sdaiSTRING

} SdaiPrimitiveType;

/* SDAI instance identifier types: */

typedef Sdailnstance

SdaiApplnstance;

typedef Sdailnstance SdaiModel;
typedef Sdailnstance SdaiRep;
typedef Sdailnstance SdaiSession;
typedef Sdailnstance SdaiAttr;

typedef SdaiAttr

SdaiExplicitAttr;

typedef Sdailnstance SdaiNamedType;
typedef SdaiNamedType SdaiEntity;
typedef SdaiNamedType SdaiDefinedType;
typedef Sdailnstance SdaiWhereRule;
typedef Sdailnstance SdaiUniRule;

typedef Sdailnstance SdaiGlobalRule;
typedef Sdailnstance SdaiSchema,;

typedef Sdailnstance SdaiScope;

typedef Sdailnstance SdaiSchemalnstance;
typedef Sdailnstance SdaiTrx;

/* SDAI iterator identifier type: */
typedef Sdailtrld Sdailterator;

/* Non-persistent list data type: */
typedef SdailList SdaiNPL;

/* Query source data type: */
typedef enum {

sdaiAGGR, sdaiMODEL, sdaiREP, sdaiSCHEMAINSTANCE
} SdaiQuerySourceType;

[* access mode data type: */
typedef enum {

sdaiRO, sdaiRW
} SdaiAccessMode;

/* C late binding ADB identifier type: */
typedef SdaiADBId SdaiADB;

[* aggregate index data type: */

©ISO 2001 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

| SO 10303-24:2001(E)

127

I SO 10303-24:2001(E)

typedef SdailndexId SdaiAggrindex;

/* error code data type: */
typedef SdaiErrorld SdaiErrorCode;

/* error handler data type: */
typedef void (*SdaiErrorHandler)(SdaiErrorCode);

/* transaction commit mode data type: */
typedef enum {

sdaiABORT, sdaiCOMMIT
} SdaiCommitMode;

/* NULL identifier data type: */
typedef Sdaild SdaiNullld;

/* the ANSI-C style function prototypes of the SDAI operations */
SdaiSession sdaiOpenSession (void);
int sdaiLogicalCompare (SdaiLogical valuel, SdailLogical value?2);
SdaiErrorCode sdaiErrorQuery (void);
void sdaiSetErrorHandler (SdaiErrorHandler function);
SdaiErrorHandler sdaiRestoreErrorHandler (void);
SdaiBoolean sdailsEqual (Sdailnstance instancel,

Sdailnstance instance?);

void sdaiRecordEvent (SdaiSession session, SdaiString functionName,
SdaiErrorCode error, SdaiString description);
SdaiBoolean sdaiSetEventRecording (SdaiSession session,
SdaiBoolean setRec);
void sdaiCloseSession (SdaiSession session);
SdaiRep sdaiOpenRepository (SdaiSession session,
SdaiRep repository);
SdaiRep sdaiOpenRepositoryBN (SdaiSession session,
SdaiString repositoryName);
SdaiTrx sdaiStartTrx (SdaiSession session, SdaiAccessMode mode);
void sdaiBreakTrx (SdaiTrx transaction, SdaiCommitMode mode);
void sdaiEndTrx (SdaiTrx transaction, SdaiCommitMode mode);
SdaiNPL sdaiCreateNPL (void);
void sdaiDeleteNPL (SdaiNPL list);
Sdailnteger sdaiQuery (SdaiQuerySourceType sourceType,
SdaiString criteria, Sdailnstance instance,
SdaiNPL result, ...);
Sdailogical sdailsRecordingOn (SdaiSession session);
SdaiADB sdaiCreateADB (SdaiPrimitiveType valueType, ...);
SdaiADB sdaiCreateEmptyADB (void);
void *sdaiGetADBValue (SdaiADB block,
SdaiPrimitiveType valueType, void *value);
void sdaiPutADBValue (SdaiADB block,
SdaiPrimitiveType valueType, ...);
SdaiPrimitiveType sdaiGetADBType (SdaiADB block);
void sdaiUnsetADB (SdaiADB block);
void sdaiDeleteADB (SdaiADB block);

128 ©ISO 2001 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

| SO 10303-24:2001(E)

SdaiModel sdaiCreateModel (SdaiRep repository,
SdaiString modelName, SdaiSchema schema);
SdaiModel sdaiCreateModelBN (SdaiRep repository,
SdaiString modelName, SdaiString schemaName);
SdaiSchemalnstance sdaiCreateSchemalnstance (
SdaiString schemalnstanceName, SdaiSchema schema,
SdaiRep repository);
SdaiSchemalnstance sdaiCreateSchemalnstanceBN (
SdaiString schemalnstanceName, SdaiString schemaName,
SdaiRep repository);
void sdaiCloseRepository (SdaiRep repository);

void sdaiDeleteSchemalnstance (SdaiSchemalnstance schemalnstance);
void sdaiDeleteSchemalnstanceBN (SdaiString schemalnstanceName,
SdaiRep repository);
void sdaiRenameSchemalnstance (SdaiSchemalnstance schemalnstance,
SdaiString schemalnstanceName);
void sdaiRenameSchemalnstanceBN (SdaiString schemalnstanceOldName,
SdaiRep repository, SdaiString schemalnstanceName);
void sdaiAddModel (SdaiSchemalnstance schemalnstance,
SdaiModel model);
void sdaiAddModelBN (SdaiSchemalnstance schemalnstance,
SdaiRep repository, SdaiString modelName);
void sdaiRemoveModel (SdaiSchemalnstance schemalnstance, SdaiModel model);
void sdaiRemoveModelBN (SdaiSchemalnstance schemalnstance,
SdaiRep repository, SdaiString modelName);
Sdail ogical sdaiValidateGlobalRule (SdaiSchemalnstance schemalnstance,
SdaiGlobalRule rule, SdaiNPL list);
Sdail ogical sdaiValidateGlobalRuleBN (
SdaiSchemalnstance schemalnstance,
SdaiString ruleName, SdaiNPL list);
Sdail ogical sdaiValidateUniqueness (SdaiSchemalnstance schemalnstance,
SdaiUniRule uniRule, SdaiNPL list);
Sdailogical sdaiValidateUniquenessBN (
SdaiSchemalnstance schemalnstance, SdaiString entityName,
SdaiString uniRuleName, SdaiNPL list);
Sdailogical sdaiValidateReferenceDomain (
SdaiSchemalnstance schemalnstance,
SdaiApplnstance applnstance, SdaiNPL list);
Sdail ogical sdaiValidateSchemalnstance (
SdaiSchemalnstance schemalnstance);
SdaiBoolean sdailsValidationCurrent (
SdaiSchemalnstance schemalnstance);
SdaiSchema sdaiGetSchema (SdaiString schemaName);
SdaiSchemalnstance sdaiGetSchemalnstance (
SdaiString schemalnstanceName, SdaiRep repository);

void sdaiDeleteModel (SdaiModel model);

void sdaiDeleteModelBN (SdaiRep repository, SdaiString modelName);

void sdaiRenameModel (SdaiModel model, SdaiString modelName);

void sdaiRenameModelBN (SdaiRep repository, SdaiString modelOldName,
SdaiString modelName);

SdaiModel sdaiAccessModel (SdaiModel model, SdaiAccessMode mode);

©ISO 2001 — All rights reserved S 129

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

I SO 10303-24:2001(E)

SdaiModel sdaiAccessModelBN (SdaiRep repository, SdaiString modelName,
SdaiAccessMode mode);

void sdaiPromoteModel (SdaiModel model);

void sdaiEndModelAccess (SdaiModel model);

SdaiEntity sdaiGetEntity (SdaiModel model, SdaiString name);

SdaiApplnstance sdaiCreatelnstance (SdaiModel model,
SdaiEntity entity);

SdaiApplnstance sdaiCreatelnstanceBN (SdaiModel model,
SdaiString entityName);

void sdaiUndoChanges (SdaiModel model);

void sdaiSaveChanges (SdaiModel model);

SdaiApplnstance sdaiCreateComplexInstance (SdaiModel model,
SdaiNPL entityList);

SdaiApplnstance sdaiCreateComplexinstanceBN (SdaiModel model,
Sdailnteger nameNumber, SdaiString *nameVector);

SdaiSet sdaiGetEntityExtent (SdaiModel model, SdaiEntity entity);

SdaiSet sdaiGetEntityExtentBN (SdaiModel model, SdaiString name);

void sdaiAddToScope (SdaiApplnstance scopelnstance,
SdaiApplnstance instance);
Sdail ogical sdailsScopeOwner (SdaiApplnstance instance);
SdaiScope sdaiGetScope (SdaiApplnstance instance);
void sdaiRemoveFromScope (SdaiScope scope, SdaiApplnstance instance);
void sdaiAddToExportList (SdaiScope scope, SdaiApplnstance instance);
void sdaiRemoveFromExportList (SdaiScope scope,
SdaiApplnstance instance);
void sdaiScopedDelete (SdaiScope scope);
SdaiScope sdaiScopedCopylnSameModel (SdaiScope scope);
SdaiScope sdaiScopedCopyToOtherModel (SdaiScope scope,
SdaiModel model);
Sdail ogical sdaiValidateScopeReferenceRestrictions (
SdaiApplnstance instance);
SdaiSet sdaiGetOwnedScopelnstances (SdaiApplnstance applnstance);
SdaiApplnstance sdaiGetScopeOwner (SdaiApplnstance applnstance);
SdaiSet sdaiGetExportList (SdaiApplnstance applnstance);

SdaiEntity sdaiGetComplexEntity (SdaiNPL entityList);
SdaiEntity sdaiGetComplexEntityBN (SdaiString schemaName,
Sdailnteger nameNumber, SdaiString *nameVector);
SdaiBoolean sdailsSubtypeOf (SdaiEntity subtype, SdaiEntity supertype);
SdaiBoolean sdailsSubtypeOfBN (SdaiString schemaName,
SdaiString subName, SdaiString superName);
SdaiBoolean sdailsSDAISubtypeOf (SdaiEntity subtype,
SdaiEntity supertype);
SdaiBoolean sdailsSDAISubtypeOfBN (SdaiString schemaName,
SdaiString subName, SdaiString superName);
SdaiBoolean sdailsDeqWith (SdaiEntity entityType1l,
SdaiEntity entityType2);
SdaiBoolean sdailsDeqWithBN (
SdaiString schemaNamel, SdaiString entityName1,
SdaiString schemaName?2, SdaiString entityName?2);
SdaiAttr sdaiGetAttrDefinition (SdaiEntity entity,
SdaiString attrName);

130 ©ISO 2001 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

| SO 10303-24:2001(E)

SdaiAttr sdaiGetAttrDefinitionBN (SdaiString schemaName,
SdaiString entityName, SdaiString attrName);
void* sdaiGetAttr (Sdailnstance instance, SdaiAttr attribute,
SdaiPrimitiveType valueType, void *value);
void* sdaiGetAttrBN (Sdailnstance instance, SdaiString attributeName,
SdaiPrimitiveType valueType, void *value);
SdaiBoolean sdaiTestAttr (Sdailnstance instance, SdaiAttr attribute);
SdaiBoolean sdaiTestAttrBN (Sdailnstance instance,
SdaiString attributeName);
SdaiModel sdaiGetinstanceModel (Sdailnstance instance);
SdaiEntity sdaiGetinstanceType (Sdailnstance instance);
SdaiBoolean sdailsinstanceOf (Sdailnstance instance,
SdaiEntity entity);
SdaiBoolean sdailsinstanceOfBN (Sdailnstance instance,
SdaiString entityName);
SdaiBoolean sdailsKindOf (Sdailnstance instance, SdaiEntity entity);
SdaiBoolean sdailsKindOfBN (Sdailnstance instance,
SdaiString entityName);
SdaiBoolean sdailsSDAIKindOf (Sdailnstance instance,
SdaiEntity entity);
SdaiBoolean sdailsSDAIKindOfBN (Sdailnstance instance,
SdaiString entityName);
SdaiNPL sdaiFindinstanceUsers (Sdailnstance instance,
SdaiNPL domain, SdaiNPL resultList);
SdaiNPL sdaiFindinstanceUsedIn (Sdailnstance instance, SdaiAttr role,
SdaiNPL domain, SdaiNPL resultList);
SdaiNPL sdaiFindinstanceUsedInBN (Sdailnstance instance,
SdaiString roleName, SdaiNPL domain,
SdaiNPL resultList);
Sdailnteger sdaiGetAttrBound (Sdailnstance instance,
SdaiAttr attribute);
Sdailnteger sdaiGetAttrBoundBN (Sdailnstance instance,
SdaiString attributeName);
SdaiNPL sdaiFindinstanceRolesOf (Sdailnstance instance,
SdaiNPL domain, SdaiNPL resultList);
SdaiNPL sdaiFindinstanceTypeOf (Sdailnstance instance,
SdaiNPL resultList);
void sdaiGetAttrs (Sdailnstance instance, Sdailnteger numberAttr,
SdaiAttr attribute, SdaiPrimitiveType valueType,
void *value, ...);
void sdaiGetAttrsBN (Sdailnstance instance, Sdailnteger numberAttr,
SdaiString attributeName, SdaiPrimitiveType valueType,
void *value, ...);
SdaiADB *sdaiGetAllAttrs (Sdailnstance instance,
Sdailnteger *numberAittr);

SdaiApplnstance sdaiNearCopylnstance (SdaiApplnstance instance);
SdaiApplnstance sdaiFarCopylnstance (SdaiApplnstance instance,
SdaiModel model);
void sdaiDeletelnstance (SdaiApplnstance instance);
void sdaiPutAttr (SdaiApplnstance instance,
SdaiExplicitAttr attribute,
SdaiPrimitiveType valueType, ...);

©ISO 2001 — All rights reserved 131

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

I SO 10303-24:2001(E)

void sdaiPutAttrBN (SdaiApplnstance instance,
SdaiString attributeName,
SdaiPrimitiveType valueType, ...);
void sdaiUnsetAttr (SdaiApplnstance instance,
SdaiExplicitAttr attribute);
void sdaiUnsetAttrBN (SdaiApplnstance instance,
SdaiString attributeName);
SdaiAggr sdaiCreateAggr (SdaiApplnstance instance,
SdaiExplicitAttr attribute);
SdaiAggr sdaiCreateAggrBN (SdaiApplnstance instance,
SdaiString attributeName);
SdaiAggr sdaiCreateAggrADB (SdaiApplnstance instance,
SdaiExplicitAttr attribute, SdaiADB selaggrinstance);
SdaiAggr sdaiCreateAggrADBBN (SdaiApplnstance instance,
SdaiString attributeName, SdaiADB selaggrinstance);
SdaiString sdaiGetPersistentLabel (SdaiApplnstance instance,
SdaiString labelBuffer);
SdaiApplnstance sdaiGetSessionld (SdaiRep repository, SdaiString label);
SdaiString sdaiGetDescription (SdaiApplnstance instance,
SdaiString descriptionBuffer);
Sdail ogical sdaiValidateWhereRule (SdaiApplnstance instance,
SdaiWhereRule rule);
Sdail ogical sdaiValidateWhereRuleBN (SdaiApplnstance instance,
SdaiString ruleName);
SdaiBoolean sdaiValidateRequiredAttrs (SdaiApplnstance instance,

SdaiNPL list);
SdaiBoolean sdaiValidatelnverseAttrs (SdaiApplnstance instance,
SdaiNPL list);
Sdail ogical sdaiValidateAttrTypes (SdaiApplnstance instance,
SdaiNPL list);
Sdail ogical sdaiValidateAggrSizes (SdaiApplnstance instance,
SdaiNPL list);
. SdaiBoolean sdaiValidateAggrUni (SdaiApplnstance instance,
; SdaiNPL list);
. SdaiBoolean sdaiValidateArrayNotOptional (SdaiApplnstance instance,
: SdaiNPL list);
- Sdailogical sdaiValidateStringWidth (SdaiApplnstance applnstance,
‘ SdaiNPL list);
Sdailogical sdaiValidateBinaryWidth (SdaiApplnstance applnstance,
SdaiNPL list);
Sdailogical sdaiValidateRealPrecision (SdaiApplnstance applnstance,
SdaiNPL list);

void sdaiPutAttrs (SdaiApplnstance applnstance,
Sdailnteger numberAttr, SdaiExplicitAttr attribute,
SdaiPrimitiveType valueType, ...);

void sdaiPutAttrsBN (SdaiApplnstance applnstance,
Sdailnteger numberAttr, SdaiString attributeName,
SdaiPrimitiveType valueType, ...);

void sdaiPutAllAttrs (SdaiApplnstance applnstance,
Sdailnteger numberAttr, SdaiADB *values);

Sdailnteger sdaiGetMemberCount (SdaiAggr aggregate);
SdaiBoolean sdailsMember (SdaiAggr aggregate,
SdaiPrimitiveType valueType, ...);

132 ©ISO 2001 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

| SO 10303-24:2001(E)

Sdailterator sdaiCreatelterator (SdaiAggr aggregate);

void sdaiDeletelterator (Sdailterator iterator);

void sdaiBeginning (Sdailterator iterator);

SdaiBoolean sdaiNext (Sdailterator iterator);

void* sdaiGetAggrBylterator (Sdailterator iterator,
SdaiPrimitiveType valueType, void *value);

Sdailnteger sdaiGetAggrElementBoundBYyltr (Sdailterator iterator);

Sdailnteger sdaiGetLowerBound (SdaiAggr aggregate);

Sdailnteger sdaiGetUpperBound (SdaiAggr aggregate);

SdaiAggr sdaiCreateNestedAggrByltr (Sdailterator current);

SdaiAggr sdaiCreateNestedAggrByltrADB (Sdailterator current,
SdaiADB selaggrinstance);

void sdaiPutAggrBylterator (Sdailterator iterator,
SdaiPrimitiveType valueType, ...);

void sdaiRemoveBylterator (Sdailterator iterator);

void sdaiAdd (SdaiUnorderedAggr unorderedAggr,
SdaiPrimitiveType valueType, ...);

SdaiAggr sdaiCreateNestedAggr (SdaiUnorderedAggr aggregate);

SdaiAggr sdaiCreateNestedAggrADB (SdaiUnorderedAggr aggregate,
SdaiADB selaggrinstance);

void sdaiRemove (SdaiUnorderedAggr unorderedAggr,
SdaiPrimitiveType valueType, ...);

void* sdaiGetAggrBylndex (SdaiOrderedAggr aggregate,
SdaiAggrindex index,
SdaiPrimitiveType valueType, void *value);

void sdaiEnd (Sdailterator iterator);

SdaiBoolean sdaiPrevious (Sdailterator iterator);

Sdailnteger sdaiGetAggrElementBoundBylndex (
SdaiOrderedAggr aggregate,
SdaiAggrindex index);

void sdaiPutAggrBylndex (SdaiOrderedAggr aggregate,
SdaiAggrindex index,
SdaiPrimitiveType valueType, ...);

SdaiAggr sdaiCreateNestedAggrBylndex (SdaiOrderedAggr aggregate,
SdaiAggrindex index);

SdaiAggr sdaiCreateNestedAggrBylndexADB (SdaiOrderedAggr aggregate,
SdaiAggrindex index, SdaiADB selaggrinstance);

SdaiBoolean sdaiTestArrayBylndex (SdaiArray array,
SdaiAggrindex index);

SdaiBoolean sdaiTestArrayByltr (Sdailterator iterator);

Sdailnteger sdaiGetLowerlndex (SdaiArray array);

Sdailnteger sdaiGetUpperindex (SdaiArray array);

void sdaiUnsetArrayBylIndex (SdaiArray array, SdaiAggrindex index);

void sdaiUnsetArrayByltr (Sdailterator iterator);

void sdaiReindexArray (SdaiArray array);

void sdaiResetArraylndex (SdaiArray array, SdaiAggrindex lower,
SdaiAggrindex upper);

void sdailnsertBefore (Sdailterator iterator,
SdaiPrimitiveType valueType, ...);

void sdailnsertAfter (Sdailterator iterator,
SdaiPrimitiveType valueType, ...);

©ISO 2001 — All rights reserved 133

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

I SO 10303-24:2001(E)

void sdailnsertBylndex (SdailList list, SdaiAggrindex index,
SdaiPrimitiveType valueType, ...);

SdaiAggr sdailnsertNestedAggrBefore (Sdailterator iterator);

SdaiAggr sdailnsertNestedAggrBeforeADB (Sdailterator iterator,
SdaiADB selaggrinstance);

SdaiAggr sdailnsertNestedAggrAfter (Sdailterator iterator);

SdaiAggr sdailnsertNestedAggrAfterADB (Sdailterator iterator,
SdaiADB selaggrinstance);

SdaiAggr sdailnsertNestedAggrByIndex (Sdailist list,
SdaiAggrindex index);

SdaiAggr sdailnsertNestedAggrByIndexADB (Sdailist list,
SdaiAggrindex index, SdaiADB selaggrinstance);

void sdaiRemoveBylIndex (Sdailist list, SdaiAggrindex index);

void sdaiPutADBTypePath (SdaiADB block, Sdailnteger typeNameNumber,
SdaiString *typeNameVector);

SdaiString *sdaiGetADBTypePath (SdaiADB block,
Sdailnteger *typeNameNumber);

Sdail ogical sdaiValidateTypePath (SdaiApplnstance applnstance,
SdaiNPL list);

#endif /* _SDAI_*/

134 ©ISO 2001 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

| SO 10303-24:2001(E)

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

Index
ACCESS MOUE . .ottt e e 13, 21, 42
ACCESS MOAEl e 42, 45
A e 101
Add model 33
Add to export St e e e 51
Add 10 SCOPE . ..o e 48
AGOIEgalE . . . 85-87, 91-120
ANSE C L 1,15
ATAY o oot e e e e e 86, 112-114
Attribute
eXPliCIt . . e 12, 37, 55,%%,82,84
1A VZ=] =T 83
Attribute data block ,.9,.81,26-29
BegiNNING . . 94
Binary width 69, 88, 96, 106
Break transactiont e e e 22
ClOSE rEPOSIHONY . . . ittt e e 31
ClOSE SESSION . .ottt e 17, 20
. Copy
' 7Y o PR 74
1= 73
: SCOPEA ..ttt e e 53
S Create AD B .. 26
S Creatl aggreOatettt 77
NESIEA . . o o e 102
nested, by INdeX 108
nested, by iterator e 99, 117, 118
USING AD B . . .o i wm 78
Create CoOMPleX INSIANCE e e e e e e e e 46
Create INSTANCE . . . ottt et e e e 44
CreatE EIAOr . . .ttt e e e 93
Create MOAel e 29
Create NP .. e 23
Create SChEMA INSIANCE i e e e e e e e e e e 30
Delete ADB o e 29
Delete INStANCEo 75
SCOPEA . ..o e 52
Delete HBratOr . . .ot 94
Delete Model 40
Delete NP L ... e 23
Delete SChema iNStaNCe i e 31
Domain equivalent 4,59, 64
BN . 105
End model aCCeSS oot e e e —— 43
ENd transactiono e 22
Entity definition e 44, 57
Error
©ISO 2001 — All rights reserved 135

I SO 10303-24:2001(E)

COOBS . ottt e e e 7,14, 15
handling e 14,17-18
Eventrecording i s 19-20, 25
Export list
A 10 . . . 51
0 56
FEMOVE frOM . . o 51
EXPRESS
AQOIE0ate Y PES . . ot e e e e 10
BINARY . 9, 86, 806
BOOLEAN .. 8
DUIlt-in CONSEANES 7
EN T Y o 10
ENUMERATION . .o e e e 9
INTEGER . . . e e 8
INVERSE . . . e 83
LOGIC AL . . e e 9
NUMBER . . 8
REAL 8, 69, 96, 106
ROLESOF . . . e 70
SELECT . e 9
STRING . ,.69,.98 106
TY PEOF . e 70
USEDIN . e 68
Far COPY INSEANCE et e 74
Find inStance roles Ofo e 70
Find instance type Of o e 70
Find instance usedin 68
FiNd INStANCE USEIS oo e e e e 67
FUNCHION o e 15
FUNCHON ProtOtYpe e —— 4,15
Gt AD B Iy PE . oo e 28
Get ADB type Path ... e e 121
Get ADB ValUe 26
Getaggr by INdeX e 104
Getaggr by iterator e 95
Getaggrelementbound by index 106
Get aggr elementbound by iterator 96
Getall attributes e 72
Getattribute 61
Get attribute bouNd 69
Get attribute definition 60
Gt At UL . . . 71
Get COMPIEX BNLILY . . o oottt e e e e e e e ——— 46, 57 5
Gt desSCiPtON . . . e e 80
Gt BNEIY . .ot e 44
Get entity EXIENt 47
Gt EXPOIt LISt . . e e 56
Getinstance MOdel 63
136 ©ISO 2001 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS

Not for Resale

| SO 10303-24:2001(E)

Gt NS ANCE By P . . . ot e e e e 64
Getlower bound 97
Gt oW INAEX . .t e e e e 110
Gt MEMDbEr COUNE . . . e e e e e e 91
Get OWNed SCOPE INSIANCES . .. it ittt et e e e e e e e e 55
Getpersistent label e e 79
Gt SCheMA e 39
GetschemainstanCe 39
Gt SCOP . .t it e e e e e 49
Gt SCOPE DWW . . ottt e et e e e et e e e e 56
Get session identifier e e 80
Getupper BoUNd e 98
GetUPPEI INAEX . .ttt 111
Global rule 34
Handle Ctype e e 4 10, 13, 14
Header fille 6, 125
IMmplementation Class i e e e 5
Implementation specific handle
SAalADBId . . 14
SAaild .. e 10
SdailndexId ——— 14
SAaltrId . . . e 13
Information object registration 124
INS eIt Al T . . . e e e 115
INSErt IO . . . 114
INSErt DY INAEX . . .\ 116
Insert nested aggr after e e 118
Insert nested aggr before e 117
Insert nested aggr by INdeX e 119
Instance identifiers —————— 11
IS deg With . .. e e 59
IS qUAl . . .o e ————— e e 18
IS INStANCE Of e e e 64
IS KINA Of . .o e e 65
IS MM . . e 92
IS TECOrdING ONot ————— 25
IS SCOPE WL . . ittt e e e e e 49
IS SDAILKINA Of e e 66
IS SDAI SUBtYPE Of . ..o e e e 59
IS SUBLYPE Of . . . e e 58
Is validation CUITENt e e e 38
SO 103B03-1d . . ettt e 2,7,68
SO 10303-22 . .ttt 1, 27555559, 66
erator 13, 93-97, 99-101, 10R?,1007
LogiCal COMPAIE ... it e e e e 16
Lower bOUNd e e 97
LOWET INOEX . . oot e 110,113, 114
a0 . . ot e 6
MeEMOrY MaNagEMENt . . . o e e e e e e 5
©ISO 2001 — All rights reserved 137

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

I SO 10303-24:2001(E)

NEar COPY INSEANCE oottt ettt e e e e et et et e e e 73
N Xt . o e 95, 100
NON-PErSIStENt ISt e 13

03 1T | 23

delete . . e ———— 23
OPEN TBPOSIIONY . . oottt e e e e e e e . 20
OPEN SESSIONt e 16, 17, 20
Previous 105
PrIMIIVE L e e 10
Promote model e a e 42
Put ADB type path e 121
PULADB value 27
Putaggr by iIndeX 107
PuUt aggr by lterator e 100
Put all attribUtes e 91
PUL At ULE . . . e e e e 75
PUL At ULES . . .o e e e 90
QUEBTY oo e e e 13,24
Real precision 69, .89, 96, 106
RECOI BVENL e e e 19
REfEIENCES . . oo e e 84
ReiNdeX array e e e aaa—— 113
REMOVE . .. e e 103
RemMOVE by INdeX 120
REMOVE DY Iterator e e 100
Remove from exXport ISt 51
REMOVE frOM SCOPE . . .ot e e e e 50
Remove model e e e 34
Rename model e e 41
Rename schemainstance i e 32
REPOSIONY . . s 20, 29, 31
RESEt Array INUEX . . .o e 114
Restore error handler e 17, 18
SaAVE ChaNgeS e e 45, 46
Schema definition e 39, 44
Schemainstance 30,3140
SO o ot e e 48-57

add . .. ————— 48

add to eXPOrt liSt . .. e 51

copytoothermodel e maaa 53

copytosame model e 53

delete INSTANCE e 52

get eXport liSt . . . 56

DWW . . ittt et et e e e e e e 49

FEIIOV . . . ittt e e e e e e e i ————— 50

remove from export liSt e 51

validate reference restriction e 54
SAaIACCESSMOOE e e 13,21
sdaiAccessModel() e 42
138 ©ISO 2001 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

| SO 10303-24:2001(E)

SAAIACCESSMOAEIBN() . . . oo e 42
SAalAD B . . 9,14
SAalADBIA . .. e 14
SAAAAU() .« . oo e———— 101
SAAAAAMOAEN() oo 33
SAAIAAAMOAEIBN() .« . . e 33
sdaiAddTOEXPOrtLISt() 51
SAAIAAATOSCOPE() - o oo e e e e 48
S0 F= 17 Ao o | 10
SAaAIAGGIINAEX . . oo e e ——— 14
SAalAPPINSIANCE . . . e e 11
SAIAITAYo e 10

S AT . . . 11
SdaiBag 10
SAaiBegiNNINg() . .. oot 94
S BINAIY . .. e e ——— 9
SAaiBOO0lEaN e 8
SAAIBIEAKTIX() « . oo e e 22
SAaAICIOSEREPOSIHOIY() . . o v v it e e 31
SAAICIOSESESSION() .+« o e 20
SdaiCommItMOde e 15
SAAICrEateADB ()ot 26
SAAICIEAtEAGON) . . o v it e e 77
SAAICTEAtEAGOIADB () . . . oo e e 78
sdaiCreateAggrADBBN() e e e e 78
sdaiCreate AggrBN() e 77
sdaiCreateComplexInstanCe()o e e 46
sdaiCreateComplexInstanCeBN() ittt e e e e e 46
sdaiCreateEMpPtyADB() oo 26
sdaiCreatelnstanCe()t 44
sdaiCreatelnstanCeBN() e 44
sdaiCreatelterator() e e 93
sdaiCreateModel() i e e 29
sdaiCreateModelBN() e 29
sdaiCreateNestedAggr() ... oot e 102
sdaiCreateNestedAggrADB() . .. oot e 102
sdaiCreateNestedAggrByIndex() e 108.
sdaiCreateNestedAggrByIndexADB() i e e 108. ...
sdaiCreateNestedAggrBYItr()o e e 99
sdaiCreateNestedAggrBYItTADB() oottt e 99
sdaiCreateN P L) e 23
sdaiCreateSchemalnstance() i 30
sdaiCreateSchemalnstanceBN() 30
SdaiDefiInedType 12
SAaIDElEtEADB() . . . oot e e . 29
sdaiDeletelnsStanCe()ot e e e 75
sdaiDeletelterator() e 94
sdaiDeleteModel() 40
sdaiDeleteModelBN() o 40
©ISO 2001 — All rights reserved 139

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

I SO 10303-24:2001(E)

sAdaiDeElEtENP L) . ..o 24
sdaiDeleteSchemalnstance() i 31
sdaiDeleteSchemalnstanceBN() i e e 32
SAAIENA() . ..o e e 105
SAAIENAMOAEIACCESS() .« . oottt e e e 43
SAAIENATIX() . ..ottt 22
SAAiEN Y .. e e 12
SAAI ENUM . . e 9
SdaiErrorCode 14
SdaiErrorHandler e e 14
SAaiEIOrId . . . 14
SAAIEITOrQUEIY() . .ottt e e e e 17
SAaiEXPI I AL . .. e 11
sdaiFarCopylInstance()t e 74
sdaiFindInstanceROoIESOf() oot e e 70
sdaiFindinstanceTypeOf() i e e e 71
sdaiFindinstanceUsedIn() i e e, 68
sdaiFindinstanceUsedInBN() 68
sdaiFindinstanceUsers() i a.. BT
SAAGEIADBTYPE() .+« v v ettt et e e e e e e e e 28
sdaiGetADBTYpePRath() e e 121
SAAIGEtADBVAIUE() . .. oot 26
SdaiGetAggrBYINAEX() . ..ot e e 104
sdaiGetAggrBylterator() e — 95 :
sdaiGetAggrElementBoundByIndex() 106. . ..
sdaiGetAggrElementBoundBYItr() 96
SAAIGEIAIAIIS() . . oo et e e 73

SAA GBI) . . .t e e e e 61
SAAIGEIAIBN) ..ot t e 61
SAaiGEtArBOUNd() oo 69
SAaiGEtArBOUNABIN() . . . oo e e 69
sdaiGetAttrDefinitioN() e e 61
sdaiGetAttrDefinitioNBN() e e 61
SAAIGEIAIS) . . ottt e 71
SAaIGEtALISBN() . . . oo —— 71
sdaiGetComplexENtity() i e 57
sdaiGetComplexEntityBN() 57
SAAIGEDESCIIPLON() . . . o oot 81
SAAIGEIENLLY() . . . ottt e ———— 44
sdaiGetENttYEXIENT() e e 47
sdaiGetENtityEXtENtBN()o e 47
SAAIGEtEXPOILISt() oo 56
sdaiGetInstanceModel() oo 63
SAAIGEINSIANCETYPE() -« v o oottt e e e 64
sdaiGetLowerBouNd()o it e e e 97
sdaiGetLowerINdeX() oo oot e e e 110
sdaiGetMemberCount() e 91
sdaiGetOWNedSCoPeINStANCES() . . o v v v v ottt e e 55
sdaiGetPersistentLabel() e 79

140 ©ISO 2001 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

| SO 10303-24:2001(E)

sdaiGetSchema() 39
sdaiGetSchemalnstance() i e —— 40
SAAIGELSCOPE() . . .t v i e e e 49
SAAIGELSCOPEOWNEI() .« v o ittt e e 56
SAaiGetSESSIONIA()o e e e 80
sdaiGetUpperBound() o e 98
sdaiGetUpperindex()o e e 111
SdaiGlobalRUIE . .. e 12
SAaild e ——— 10, 15
SdailndexId 14
sdailnsertAfter() e e 115
SAAINSEMBEIOrE() . ..o 114
sAdailnSentBYINAEX()ot 116
sdailnserntNestedAgOrAREr()o 118
sdailnsertNestedAggrAfIEIADB() oot 118
sdailnsertNestedAggrBefore() oo i e 117
sdailnsertNestedAggrBeforeADB() it e 117
sdailnsertNestedAggrByINdexX()o e 119
sdailnsertNestedAggrByINdexADB() oot 119..
SAAIINSIANCEo 10
SAaNtEgEr . . . e e 8
sdailsDegWith() ——— 60
sdailsDegWIthBIN() oo e 60
sdailsSEQUAl()ot e 18
sdailsinstanceOf() 65
sdailsinstanceOfBN() e 65
SAailSKINAOT()o e 65
SAAIISKINAOTBN() . ..ottt e e e e 65
SdailsSMEmMbDEr() ... e e 92
sdailsRecordingOn() 25
SAAISSCOPEOWNET() . . o oottt e e e e e 49
SAailsSSDAIKINAOT() o 66
sdailsSDAIKINAOBN() . ..ttt e e e e s 66
sdailsSDAISUDtYPEO () . . . oo e 59
sdailsSDAISUBLYPEOTBN() . .. oot e 59
SAailSSUBLYPEOT() . . 58
sAailsSUBbtYpPeOTBN() . .. e 58
sdailsValidationCurrent() 38
SAailterator 13
SAailtrld 13
SAaiLiSt . .o e 10
Sdailogical e 9
sdaiLogicalCompare()ov v 16
SDAI-MOAEl 20,8848, 63
SdaiModel 11
SAaINAMEA Y P . oot e e 12
sdaiNearCopyInstanCe() e e i aa—aaaa 73
SAAINEXE) . e e 95
SAaINPL . . ————— 13

©ISO 2001 — All rights reserved 141

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

I SO 10303-24:2001(E)

SAaiNUIId . . 15
SAaINUMD T . e e 8
SAAIOPENREPOSIIOIY() . v oottt e e 20
sdaiopenRepPoSItOrYBN() e 21
SAAIOPENSESSION() .« . v vttt it e e 16
SAAIOIdErEAGOr .« . i e e e 10
SAAIPTEVIOUS() . oot e e e 105
sdaiPromoteModel() oo e 43
sdaiPUtADBTYpEPath() e e 121
SAAIPULADBYAIUE() o e e 27
SAaiPULAGOIBYINAEX() . . . v et e 107
sdaiPutAggrBylterator() 100
SAAI P UL AL LIS) . . .o o e 91
SAAIPULALII) . . 76
SAAIPULALIBN () . . oo e e e i m 76
SAAIPULALIS) . . . oo e ——— 90
SAAIPULALISBN() . . . oo e —— 90
SAAIQUEIY() .o oot 24
SAAIQUENYSOUICETYPE .« v v e e e e 13
SAaiReEal 8
SAAIRECOITAEVENT() . . . oot e e 19
SAAIREINAEXAITAY() .+ . oo vttt e e e ree——— 113
SAAIREMOVE() . . oot e e e 103
sdaiRemoveBYINdeX()o 120
sdaiRemoveBylterator() e 101
sdaiRemoveFromEXPOrtLIiSt() 51
SAaIREMOVEFIOMSCOPE() . .ot vt it e e e e e 50
sdaiRemoveModel() o e 34
sdaiRemoveModelBN()o e e 34
sdaiRenameModel()t 41
sdaiRenameMOodelBN()o e 41
sdaiRenameSchemalnstance() 32
sdaiRenameSchemalnstanceBN() i e 32
SAAIRED . .o e 11
sdaiResetArraylndeX()ot e 114
sdaiRestoreErrorHandler()o e, 18
SAAISAVECNANGES() - . o o o ot e e e 46
SAaAISCNEMA . . . o e 12
SdaiSchemalnstance 13
S0 F= 1o o] o 1= 13
sdaiScopedCopylnSameModel()t e 53
sdaiScopedCopyToOtherModel() 54
csdaiScopedDelete() 52
S SdAIS eSS 0N L . 11
SdAISE . . 10
- sdaiSetErrorHandIer()t e 18
- sdaiSetEventRecording() 19
CSAISIANTIX() © o ot et ———— 21
SAa S NG . ..o e e 9
142 ©ISO 2001 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

| SO 10303-24:2001(E)

sdaiTestArrayByIndex() 109
sdaiTestArrayByYItr()o e e 110

SAAI TSI () . . . e e e ———— 62
SAaiTEStABN() e e e . 62

SAAITIX .. 13
sdaiuUndoChanges()o e 45
SAaiUNIRUIE . . . 12
SAaiUNOrderedAggr . . o o e 10
SAAIUNSELIAD B) .. oot e e e 28
sdaiunsetArrayByIndex()ottt s 112
sdaiunsetArrayByItr()o e 112
SAAIUNSELALI() 77
SAAIUNSELATIBN() . . . o e e 77
sdaiValidateAgarSizes() oo 85
sdaiValidate AggrUni() e . 86
sdaiValidateArrayNotOptional() i e e 86
sdaiValidate AttrTYPES() . . oot e ee——— 84
sdaiValidateBinaryWidth() e 88
sdaiValidateGlobalRule() 35
sdaiValidateGlobalRUIEBN() 35
sdaiValidatelnVerseAttrS() oot e ——— 83
sdaiValidateRealPrecCision() i e e e 89
sdaiValidateReferenceDomain() it e e, 37
sdaiValidateRequiredAtrS() 82
sdaiValidateSchemalnstanCe()ot 37
sdaiValidateScopeReferenceRestrictions() 84 ...
sdaiValidateStringWidth() e 87
sdaiValidateTypePath() e e i e 122
sdaiValidateUniqueness()ttt e e e e 36
sdaiValidateUniquenessBN() 36
sdaiValidateWhereRule() e 81
sdaiValidateWhereRUIEBN()o e et et e e 81
SdaiWhereRuUIe 12
Selecttype path e 120-123

SO SION . ot et e e 16, 19, 20, 80

Set error handler 17
Set VENL rECOIAINGot 19
Start tranSaCtioN e 21

String Width e 69, 87, 96, 106
Testarray by INAeX e e e e 109
Testarray by terator 109
Test attribute 62, 76
TraNSaCON . . .o 15, 21-23

Type path, see select type path

UNdo Changes i e e 45, 46
UNIQUENESS . . o ittt ittt e et e e e e e e 35, 85

UNSet ADB 28

Unset array by iINdeX 112
Unset array Dy iterator e 112
©ISO 2001 — All rights reserved 143

Copyright Internationdl Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

I SO 10303-24:2001(E)

Unset attribute
Upper bouNd
UPPEr INAEX ..ottt e e 111,.113, 114
Validate aggregates Size it i e e e e i, 8D
Validate aggregates UNIQUENESSottt it ittt ettt e e e e et e
Validate array not optional e ——— 86
Validate attribute tYPeSo e
Validate binary Width e
Validate global rule e immama 34
Validate inverse attributes e 83
Validate real precCisSion e e 89
Validate reference domain e, 36
Validate required attributes 82
Validate schema instance e 37,38
Validate scope reference restrictions i e
Validate string Width e e 87
Validate type path e e
Validate UniqUENESS TUIE
Validate Where rule
Where TUIE . ——— 81
144 ©ISO 2001 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

1ISO 10303-24:2001(E)

ICS 25.040.40

Price based on 144 pages

© I1SO 2001 — All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS

Not for Resale

	Foreword
	Introduction
	1 Scope
	2 Normative references
	3 Terms, definitions, and abbreviations
	3.1 Terms defined in ISO 10303-1
	3.2 Terms defined in ISO 10303-11
	3.3 Terms defined in ISO 10303-22
	3.4 Other definitions
	3.4.1 attribute data block
	3.4.2 function
	3.4.3 function prototype
	3.4.4 handle C type

	3.5 Abbreviations

	4 Overview of the C language late binding of SDAI
	4.1 Language bindings
	4.2 Conformance
	4.3 Use of late binding functions
	4.3.1 Invalid parameter values
	4.3.2 Error handling
	4.3.3 Memory management
	4.3.4 The SDAI header file
	4.3.5 Macros

	4.4 Naming and typographical conventions

	5 Constants and data type definitions
	5.1 Standard error codes
	5.2 EXPRESS constants
	5.3 EXPRESS data types
	5.3.1 Bit data type
	5.3.2 EXPRESS simple data types
	5.3.2.1 EXPRESS INTEGER data type
	5.3.2.2 EXPRESS REAL data type
	5.3.2.3 EXPRESS NUMBER data type
	5.3.2.4 EXPRESS BOOLEAN data type
	5.3.2.5 EXPRESS LOGICAL data type
	5.3.2.6 EXPRESS STRING data type
	5.3.2.7 EXPRESS BINARY data type

	5.3.3 Enumeration data type
	5.3.4 Select data type
	5.3.5 Entity data type
	5.3.6 Aggregate data types

	5.4 SDAI data types
	5.4.1 SDAI primitive data types
	5.4.2 SDAI entity data types
	5.4.3 Iterator data type
	5.4.4 Non-persistent list data type
	5.4.5 Query source data type
	5.4.6 SDAI access type data type

	5.5 C late binding�specific data types
	5.5.1 Attribute data block data type
	5.5.2 Aggregate index data type
	5.5.3 Error code data type
	5.5.4 Error handler data type
	5.5.5 Transaction commit mode data type
	5.5.6 NULL identifier data type

	6 C late binding functions of the SDAI operations
	6.1 Environment operations
	6.1.1 Open session
	6.1.2 C late binding specific arithmetic operations
	6.1.2.1 Logical compare

	6.1.3 C late binding specific error handling operations
	6.1.3.1 Error query
	6.1.3.2 Set error handler
	6.1.3.3 Restore error handler

	6.1.4 C late binding specific instance operations
	6.1.4.1 Is equal

	6.2 Session operations
	6.2.1 Record event
	6.2.2 Set event recording
	6.2.3 Close session
	6.2.4 Open repository
	6.2.5 Start transaction read-write or read-only access
	6.2.6 Break transaction
	6.2.7 End transaction access
	6.2.8 Create non-persistent list
	6.2.9 Delete non-persistent list
	6.2.10 SDAI query
	6.2.11 C late binding specific recording operations
	6.2.11.1 Is recording on

	6.2.12 C late binding specific attribute data block operations
	6.2.12.1 Create ADB
	6.2.12.2 Get ADB value
	6.2.12.3 Put ADB value
	6.2.12.4 Get ADB type
	6.2.12.5 Unset ADB
	6.2.12.6 Delete ADB

	6.3 Repository operations
	6.3.1 Create SDAI-model
	6.3.2 Create schema instance
	6.3.3 Close repository

	6.4 Schema instance operations
	6.4.1 Delete schema instance
	6.4.2 Rename schema instance
	6.4.3 Add SDAI-model
	6.4.4 Remove SDAI-model
	6.4.5 Validate global rule
	6.4.6 Validate uniqueness rule
	6.4.7 Validate instance reference domain
	6.4.8 Validate schema instance
	6.4.9 Is validation current
	6.4.10 Schema instance operations for convenience
	6.4.10.1 Get schema definition
	6.4.10.2 Get schema instance

	6.5 SDAI-model operations
	6.5.1 Delete SDAI-model
	6.5.2 Rename SDAI-model
	6.5.3 Start SDAI-model access
	6.5.4 Promote SDAI-model to read�write access
	6.5.5 End SDAI-model access
	6.5.6 Get entity definition
	6.5.7 Create entity instance
	6.5.8 Undo changes
	6.5.9 Save changes
	6.5.10 SDAI-model operations for convenience
	6.5.10.1 Create complex entity instance
	6.5.10.2 Get entity extent

	6.6 Scope operations
	6.6.1 Add to scope
	6.6.2 Is scope owner
	6.6.3 Get scope
	6.6.4 Remove from scope
	6.6.5 Add to export list
	6.6.6 Remove from export list
	6.6.7 Scoped delete
	6.6.8 Scoped copy in same SDAI-model
	6.6.9 Scoped copy to other SDAI-model
	6.6.10 Validate scope reference restrictions
	6.6.11 Scope operations for convenience
	6.6.11.1 Get owned scope instances
	6.6.11.2 Get scope owner
	6.6.11.3 Get export list

	6.7 Type operations
	6.7.1 Get complex entity definition
	6.7.2 Is subtype of
	6.7.3 Is SDAI subtype of
	6.7.4 Is domain equivalent with
	6.7.5 Type operations for convenience
	6.7.5.1 Get attribute definition

	6.8 Entity instance operations
	6.8.1 Get attribute
	6.8.2 Test attribute
	6.8.3 Find entity instance SDAI-model
	6.8.4 Get instance type
	6.8.5 Is instance of
	6.8.6 Is kind of
	6.8.7 Is SDAI kind of
	6.8.8 Find entity instance users
	6.8.9 Find entity instance usedin
	6.8.10 Get attribute value bound
	6.8.11 Find instance roles
	6.8.12 Find instance data types
	6.8.13 Entity instance operations for convenience
	6.8.13.1 Get attributes
	6.8.13.2 Get all attributes

	6.9 Application instance operations
	6.9.1 Copy application instance in same SDAI-model
	6.9.2 Copy application instance to other SDAI-model
	6.9.3 Delete application instance
	6.9.4 Put attribute
	6.9.5 Unset attribute value
	6.9.6 Create aggregate instance
	6.9.7 Create aggregate instance ADB
	6.9.8 Get persistent label
	6.9.9 Get session identifier
	6.9.10 Get description
	6.9.11 Validate where rule
	6.9.12 Validate required explicit attributes assigned
	6.9.13 Validate inverse attributes
	6.9.14 Validate explicit attributes references
	6.9.15 Validate aggregates size
	6.9.16 Validate aggregates uniqueness
	6.9.17 Validate array not optional
	6.9.18 Validate string width
	6.9.19 Validate binary width
	6.9.20 Validate real precision
	6.9.21 Application instance operations for convenience
	6.9.21.1 Put attributes
	6.9.21.2 Put all attributes

	6.10 Entity instance aggregate operations
	6.10.1 Get member count
	6.10.2 Is member
	6.10.3 Create iterator
	6.10.4 Delete iterator
	6.10.5 Beginning
	6.10.6 Next
	6.10.7 Get current member
	6.10.8 Get value bound by iterator
	6.10.9 Get lower bound
	6.10.10 Get upper bound

	6.11 Application instance aggregate operations
	6.11.1 Create aggregate instance as current member
	6.11.2 Put current member
	6.11.3 Remove current member

	6.12 Application instance unordered collection operations
	6.12.1 Add unordered
	6.12.2 Create aggregate instance unordered
	6.12.3 Remove unordered

	6.13 Entity instance ordered collection operations
	6.13.1 Get by index
	6.13.2 End
	6.13.3 Previous
	6.13.4 Get value bound by index

	6.14 Application instance ordered collection operations
	6.14.1 Put by index
	6.14.2 Create aggregate instance by index

	6.15 Entity instance array operations
	6.15.1 Test by index
	6.15.2 Test current member
	6.15.3 Get lower index
	6.15.4 Get upper index

	6.16 Application instance array operations
	6.16.1 Unset value by index
	6.16.2 Unset value current member
	6.16.3 Reindex array
	6.16.4 Reset array index

	6.17 Application instance list operations
	6.17.1 Add before current member
	6.17.2 Add after current member
	6.17.3 Add by index
	6.17.4 Create aggregate instance before current member
	6.17.5 Create aggregate instance after current member
	6.17.6 Add aggregate instance by index
	6.17.7 Remove by index

	6.18 C late binding specific SELECT TYPE operations
	6.18.1 Put ADB type path
	6.18.2 Get ADB type path
	6.18.3 Validate type path

	Annex A
	Annex B
	Index

