INTERNATIONAL ISO
STANDARD 10303-14

First edition
2005-10-01

Industrial automation systems and
integration — Product data
representation and exchange —

Part 14:
Description methods: The EXPRESS-X
language reference manual

Systemes d'automatisation industrielle et intégration — Représentation
et échange de données de produits —

Partie 14: Méthodes descriptives: Le manuel de référence du langage
EXPRESS-X

7 Reference number
—/@\— ISO 10303-14:2005(E)

\@/

© SO 2005

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

ISO 10303-14:2005(E)

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but
shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In
downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat
accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation
parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In
the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

© 1S0 2005

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or
ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 « CH-1211 Geneva 20
Tel. +412274901 11
Fax + 4122749 09 47
E-mail copyright@iso.org
Web www.iso.org
Published in Switzerland

7 ©1S0 2005 — All rights reserved

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

ISO 10303-14:2005(E)

Contents
| To70] o1 PRSP 1
2 NOIMALIVE TEIETEIICES ..eeuutiiiiiitiieiiieiiiert et ettt ettt shee ettt et esbaeeabe et e et eesaeeene 2
3 Terms and DefINItiONScoouiiiiiiiiiiiie ittt s 2
3.1 Terms defined in ISO 103031ccuoiiiiieeiie e 2
3.2 Terms defined in ISO 10303-11.....ooiiiiiieiie e 2
3.3 Other defINItIONS.....cccoiiiiiiiiiieeii ittt ea 3
4 Fundamental PrinCIPLEScccveeiiieeiiieeiie ettt et e se e seae e e sabe e e saae e e saaeeennee s 4
4.1 OVEIVIEW ..ttt ettt ettt ettt ettt et e eh e es bt et e et e e sbeeebbeebeeaeees 4
4.2 Fundamental principles of the execution modelcccoovveeiiieiiiiieiiiin e, 5
421 OVEIVIEW ittt ettt ettt et e h e et e e et e sbaeeabe et e et e ebeeeabeenaen 5
4.2.2 BINAING PIOCESS ..uuvveeiiieeiiieeitieeteeeiteeeiraeeaeessreesssseeesseeessseeessseeessseessssessssseesnses 5
4.2.3 INStantiation PIOCESSeeeeurierureerureerieeesueeerreesueeessaeeessseeessseeessseeessseessssessssseennses 6
4.3 Implementation ENVIFONMENTccveeeiiieeierieeirierreeereeeereeeireeeareeenreeessneeessneeesnnes 8
5 ConfOormance reQUITEIMENLSc..eecrureerureerireeeireeeireeereeessreesnreessreessneeessseesssseesssseessseeens 8
5.1 EXPRESS-X conformance Classescccccueeeuiieiiieeiiieeiiiesieee e sieee e seve e 8
S5.101 OVETIVIEW oottt ettt et ettt sttt et e s e sa e e e eniees 8
5.1.2 EXPRESS-X parser conformance classesccccoevuvivriiieniiienieennieeesieeeeeieees 9
5.1.3 EXPRESS-X mapping engine conformance classesccccceeveeveveenreennieennnen. 9
5.1.4 Consistency checking of EXPRESS-X parserscccccoccvvviiiniieenneeeiieeeee 9
6 Language specifiCation SYNTAXccccceeeivieeiiieeiiieeiieeeireeeneeeeeeesaeeessseeessneeessneeessseeensns 10
7 Basic 1anguage CleMENLSccccvieiiiiieeiiie ettt e e e e e e eaaeas 11
Tl OVEIVIEW ..t ettt ettt ettt et ettt eb e b e e bt e et e e sbaeeabe e 11
7.2 RESEIVEA WOTMS ...coueiiiieiiiiiiiete ettt et 11
8 DAL LYPES . eeevieeeeiitie ettt et e et e et ee e et te e e et bt ee e e aaeae e e et aeeeenaeae s 12
Bl OVEIVIEW .ttt ittt et ettt ettt e e e ettt sh e eab e et e et e e sbteeabeenneeeneas 12
LI YA T e 1 1 1 o TP 12
O DECIATALIONS ...ttt ettt ettt st ettt bbbt et e et e ea e eaee 12
0.1 OVEIVIBW ..ttt ettt ettt eb e ea e et e et e sb e eabe e 12
0.2 BINAING ..tiieiiiie ettt s et e e e e et e e e enaeeeerbeaeeabeee e 13
0.2.1 OVETVIEW ...ttt ettt ettt sttt ettt sb e bbbt s s e b e 13
0.2.2 BiINAING €XLENT ..ocuviiiiiiieeiiieeiiieeitee et ee ettt e ee e e etbeeesebeeesebeeesabeeesabeeesaseeessaeaens 13
9.2.3 Qualification of the binding eXtentccceeveviriiiiiriiiiie e 14
9.2.4 Identification of view and target iNStancCescccccevevveeeivierieeenieeenieeeeeeeeens 15
9.2.5 Equivalence classes and the instantiation ProCesscccocceeerveeerveersveensveeennes 16
9.2.6 Ordering of view and target INSTANCESccevvveeeiueieriieieiiiieeieeeeieeeeieeesieeeseieens 17
0.3 VIEW dECIATATION ...ttt et et 18
0.3.1 OVETVIEW ..ottt ettt ettt sttt et sb e bbbt et e b e 18
0.3.2 VIEW AtIIDULES ...eeiiiiiiieiiiieiee ettt e 18
0.3.3 VIEW PATTILIONS ...veieieiiieeiiiieiiieesieeesieeestteeestteeseaeeeseteeessbeeessseeessseeessseassssesssssennns 19
0.3.4 CoNStant PATTILIONSeeeeurierireeriieerieeeeieeesieeeieeeseteeessbeeessreeesssesesssesssssessssseenns 20
0.3.5 DEPENAENE VIEWS ...oovuiiiiiiieiiiieiiieeeieeesiieeestieeeeieeessteeesebeeessseeessseeessseesssseeessseeans 20
0.3.6 SPecCifying SUDLYPE VIEWSeviieiiieeiiieeiiieeiieeeiree et e eeieeeseieeesereeesaaeeessreeesaseeenns 21
0.3.7 SUPETLYPE CONSITAINLS ...eevuvrieriiireiiieeniieeesiieeesieeesieeessseeessseeassaeesssseenssseenssseesssaesnns 22
0.4 Map deClaration..........cecvieeiiieciie ettt e sae e seae e e snre e e 23
0.4.1 OVETVIEW ...ttt ettt sttt ettt sb e bbbt e e e b e 23
9.4.2 Evaluation of the Mmap bodycccceeriiiiiiiiiiie e 24
9.4.3 Iteration under a single binding INStANCEccecveeeriiierieieiieeeeie e 24
0.4.4 MaP PATLILIONS .oouvvieeiiieeirieeieieeteeeitee et ee ettt e eteeeesseeessaeeessneeessseesssseeessseesssseeeses 27
9.4.5 Mapping to a type and itS SUDLYPESceevevereruieriiieriieeeieeesieeeeieee e e e siieeesaeeens 28
© ISO 2005 — All rights reserved 1ii

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

ISO 10303-14:2005(E)

9.4.6 Explicit declaration of complex entity data typesccccceeeveeveercvienienieecneennen. 31

0.4.7 Dependent MAPcccoeerrieeiiieiiiiitieitieereesteeteeere et esseesseessseesseassseesseesssessneansees 33

9.5 Schema view declaration...........coceiieriieieeieiieeree e e e 34

0.6 Schema map deClarationcccceeriiiriieiieeie et e s e eeae e 34

9.7 Local deClarationc..eecueiuieiiiriiiieie ettt ettt e e e 36

9.8 Constant deClarationccecueeieiuieriirrieneee ettt 37

9.9 Function declaration............ccecueeieiuieriiisiireee et st 37
9.10 Procedure declaration...........ccecueeiereieriieieieeie ettt 37
9.11 Rule declarationccoceiieiieieiiesieee ettt e s 37

LO EXPIESSIONS .eeuuvieeiutieeiiieeiteeetieeitee et eeesteeeenaeeeesseeessseeesseeeesseeessseeessseeessseeessseesssseessssesnnsns 37
LO. T OVEIVIEW ..ttt ettt et ettt ettt ettt e b e eabe et e st e b enbe e 37
LO.2 VIBW Call ..ttt ettt sttt et e et e 39
10.3 MaAP CAll.ciiiiiiiiie e ettt er e et s e eraeeeneanns 41
10.4 Partial binding CallS........ccceoriiiiiieiiiiiieiie et e e 43
10.5 FOR @XPIESSION ...eeeivieeiiieeiiieeitieeteeeeteeeereeenaeeesseeeenseaeessreessseeessseeessseesssseeessseenes 44
JO.6 TF @XPIESSION ..euuiieeiiieeitieetieeiteeeiteeeieaeenttaeesaeeesseaeenssaeesseeessseaessseaessseeessseesssseennes 47
10.7 CASE EXPIESSION ...vvieiueiieiiieeeiieeeiieerteeesteeeteesteeenstaessraesnseeesssreessseeessseesssseesssnes 47
10.8 Forward path OPEIator..........c.eecuiiiiiieiieiie ettt ettt e saaeeeae e e saee e 48
10.9 Backward path OPETatorc.cooueeiuieriieniieeiiecieetee ettt ee et eeve e e e e sseeseseennas 49

11 Built-n fUNCHONS ...eovveiiieieieiee ettt et sa e ettt e saeeees 51
11.1 Extent - general fUnCHONccoviiiiiiiiiiiie e e seiee e 51

12 Scope and VISIDIIIEYcccveeviieiiiiiiiiiieciie ettt ettt et b e st eete e e e saeerae e 51
L2.1 OVEIVIEW ..ttt ettt ettt ettt et ettt se e eabe et s e e b e e 51
12.2 SCREMA VIEW ...ttt ettt ettt ea e st se et e e et e 52
12.3 SCREMA MAP ..eocviiiiiieiieciie et ettt et etbeeste e e e e s aeesaessneeseeensees 53
12.4 View and dependent VIEWccceereieriieiieeiiienie et eneeesree e esve e e sseesraeeeneenes 53
12.5 View partition 1abel.........c.cocveiiiiiiiiiiiiieeie e 53
12.6 View attribute 1dentifiercccoeiiiiiiiiiie i 53
12.7 FOR @XPIESSION ...eeeuivieeiiieeiiieeiteeeiteeeiteeeteeeenaeeesseaeenseaeessreessseaessseeessseeessseeessseennes 54
12.8 Map and dependent MAPcccveeeueeriieriieeie et erie et eere e e neessaesraeeeneanee 54
12.9 FROM Language EISMENtcceevieeiiiiiiiiieeiieeeeeceeie et e 54
12.10 InStantiation LOOP ..oveeeeiieeiiie et s e eeenbeeeeeaeeeenneee e 54
12,11 Path @XPIeSSION...ccuiieiiieeiieeieeiiietieetteeeie et et teerte e e et eeetaessseesseeesseessaeesseenseaasseensees 55

13 Interface SPECIfICAtIONc..eeiviiieiiiieiie e e e e e e sebe e e sabe e naae s 55
L1301 OVEIVIEW ..ttt ettt ettt ettt ettt sh e eab e et e s e e sbaeenbe e 55
13.2 The REFERENCE language element..............ccocuerierriienieeieeieieiieeeie e 55
Annex A (normative) Information object regiStrationccccceeveveieriieeniieeniieenieeeeieeenn 57
Annex B (normative) EXPRESS-X 1anguage Syntaxccccccceeveerieeiiienieenniienieeneeneeennens 58
BT TOKEINS ettt ettt ettt et et ettt e et e e et eneeeees 58
B.2 Grammar TUIEScocuiiiiiiiiie e e e 59
B.3 Cross 1eference LISTINGcocvieriieeieiiieiieiie ettt ettt ee e s e eraeseseenenas 65
Annex C (normative) EXPRESS-X to EXPRESS transformation algorithm 69
Annex D (informative) Implementation considerationsc.coecueeveerienriienieeiieeeeeeeenneens 71
D.1 PUSh MAPPING ..ooiniiiiiieeiie ettt ettt ettt et e e e e esaeesbeenseeesaessseesneannnas 71
D.2 PUll MAPPING ..evieiieeiie ettt ettt et ettt ete e e e e s aeesaeesse e e eesaeenseenneanneas 71
D.3 Support of constraint CheCKingcccoovviiiiiiiiiiinie et 71
D.4 Support fOr UPAALEScceieiieiiieeiieiiieiee sttt ettt st e e ss e eaaeenneaneeas 71

v © ISO 2005 — All rights reserved

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

ISO 10303-14:2005(E)

Annex E (informative) Path operator unnest functioncccoeevveiieriienienie e 73
Annex F (informative) Mapping table SEMantiCsccvevvirriieniieeieeiieniiesrieeveeieeseeeneenn 74
F.1 Delimiter SYMDOISccciiiiiiiiiieeiieiiietiesiie ettt et st e s enseenneaneeas 74
F.2 Aggregation SYMDOLScccoooiiiiiiieiiiciiiiiiesiee ettt ettt ese e s e saaeeeneeneeas 76
F.3 EQUAL SIZN vttt ettt ettt et e b ebaeenbeen e e e s aeenbeenneanneas 77
Fo4 ParentheSeScc.ooiiiieiieeiieeee ettt ettt e et sh ettt 77
F.5 SQUATe DIACKELS ...c.eeeviiiiiiiiieciie ettt ettt et ettt et ente e e s aeenaeenneanenas 78
F.6 EXAMPIE ..ooviiiiiiiiieieeee ettt ettt et ettt sebe et e s e e s eane s 78
BiblIO@IAPNY ...ttt ettt er e et e te e e e e raesebeenteanneeebaens 80
TIUACX ¢t et ettt ettt eh e eh e ea et et e e eaee e et enne 81
Tables
Table 1-Language SUDSELSccciiriierieeieeieieieestieeie et eteestre e et e estaeesaeesseesnneesaesssessseennnas 8
Table 2-Additional EXPRESS-X KEYWOIdSc..cccieriiiiiiiiiiiie ittt 11
Table 3-Operator PrECEACIICEc.eecieeiuieiiieiieetie et et et eete et e e steeetbeeebeasseeensaessseesreansseessaens 38
Table 4-Scope and identifier defining iteMSceevieeiiiiriieriie et 51
© ISO 2005 — All rights reserved v

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

ISO 10303-14:2005(E)

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out
through ISO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International organi-
zations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO col-
laborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Stand-
ards adopted by the technical committees are circulated to the member bodies for voting. Publication as
an International Standard requires approval by at least 75% of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this part of ISO 10303 may be the sub-
ject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 10303-14 was prepared by Technical Committee ISO/TC 184, Industrial automation systems and
integration, Subcommittee SC4, Industrial data.

This International Standard is organized as a series of parts, each published separately. The structure of
this International Standard is described in ISO 10303-1.

Each part of this International Standard is a member of one of the following series: description meth-
ods, implementation methods, conformance testing methodology and framework, integrated generic
resources, integrated application resources, application protocols, abstract test suites, application inter-
preted constructs, and application modules. This part is a member of the 10 series.

A complete list of parts of ISO 10303 is available from the Internet:
http://www.tcl84-scd.org/SC4 Open/SC4 Work Products Documents/STEP_ (10303)

Annexes A, B and C form an integral part of this part of ISO 10303. Annexes D, E and F are for infor-
mation only.

vi © ISO 2005 — All rights reserved

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

http://www.tc184-sc4.org/SC4_Open/SC4_Work_Products_Documents/STEP_(10303)

ISO 10303-14:2005(E)

Introduction

ISO 10303 is an International Standard for the computer-interpretable representation of product infor-
mation and for the exchange of product data. The objective is to provide a neutral mechanism capable
of describing products throughout their life cycle. The mechanism is suitable not only for neutral file
exchange, but also as a basis for implementing and sharing product databases, and as a basis for archiv-

ing.

This part of ISO 10303 is a member of the 10 series. This part of ISO 10303 specifies a language for
specifying relationships between data that is governed by EXPRESS schemas, and for specifying alter-
native views of data that is governed by EXPRESS schemas. The language is called EXPRESS-X.

It is assumed that readers of this part of ISO 10303 are familiar with the EXPRESS data specification
language defined in ISO 10303-11 and with clear text encoding specification defined in ISO 10303-21.

© ISO 2005 — All rights reserved vii

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

INTERNATIONAL STANDARD I SO 10303-14:2005(E)

Industrial automation systems and integration —
Product data representation and exchange —
Part 14:

Description methods: The EXPRESS-X language
reference manual

1 Scope

This part of ISO 10303 specifies a language for specifying relationships between data that is governed
by EXPRESS schemas, and for specifying alternate views of data that is governed by EXPRESS sche-
mas. The language is called EXPRESS-X.

EXPRESS-X is a structural data mapping language. It consists of language elements that allow an
unambiguous specification of a relationship between EXPRESS schemas.

The following are within the scope of this part of ISO 10303:

— mapping of data governed by one EXPRESS schema to data governed by another EXPRESS
schema;

— mapping of data governed by one version of an EXPRESS schema to data governed by another ver-
sion of that EXPRESS schema, where the two schemas have different names;

— specification of requirements for data translators for data sharing and data exchange applications;
— specification of alternate views of data defined by an EXPRESS schema;
— an alternate notation for application protocol mapping tables;

— bi-directional mappings where mathematically possible;

specification of constraints that may be evaluated against data produced by mapping.

The following are outside the scope of this part of ISO 10303:
— mapping of data defined using means other than EXPRESS;
— 1identification of the version of an EXPRESS schema;

— graphical representation of constructs in the EXPRESS-X language.

© ISO 2005 — All rights reserved 1

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

ISO 10303-14:2005(E)

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.

iSO/IEC 8824-1:2002, Information technology — Abstract Syntax Notation One (ASN.1): Specification
of basic notation — Part 1.

ISO 10303-1:1994, Industrial automation systems and integration — Product data representation and
exchange — Part 1: Overview and fundamental principles.

ISO 10303-11:2004, Industrial automation systems and integration — Product data representation and
exchange — Part 11: Description methods: The EXPRESS language reference manual.

ISO/IEC 10646-1:2000, Information technology — Universal Multi-Octet Coded Character Set (UCS)
— Part 1: Architecture and Basic Multilingual Plane.

3 Terms and Definitions

3.1 Terms defined in ISO 10303-1
For the purpose of this part of ISO 10303, the following terms defined in ISO 10303-1 apply:
— data;

— information.

3.2 Terms defined in ISO 10303-11

For the purpose of this part of ISO 10303, the following terms defined in ISO 10303-11 apply:
— complex entity data type;

— complex entity (data type) instance;

— constant;

— entity;

— entity data type;

— entity (data type) instance;

— instance;

— partial complex entity data type;

© ISO 2005 — All rights reserved

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

ISO 10303-14:2005(E)

— partial complex entity value;

— population;

— simple entity (data type) instance;
— subtype/supertype graph;

— token;

— value.

3.3 Other definitions

For the purpose of this part of ISO 10303, the following definitions apply:

3.3.1
binding extent
a set of binding instances constructed from instances in source entity data type extents and view extents

3.3.2

binding instance

a collection of references to entity data type instances and view data type instances associated with a
view or map.

333
entity data type extent
the collection of instances of a given entity data type

334
EXPRESS-X parser
a tool capable of parsing a specification stated in the EXPRESS-X language

3.3.5

EXPRESS-X mapping engine

a tool that performs structural information mapping based on a specification stated in the EXPRESS-X
language

3.3.6

map

the declaration of a relationship between data of one or more source entity data types or source view
data types and data of one or more target entity data types

3.3.7
network mapping
a mapping to many target entity instances

3.3.8
qualified binding extent
a subset of a binding extent consisting of binding instances satisfying a set of selection criteria

NOTE A set of selection criteria is satisfied if each selection criterion individually is satisfied.

3.3.9
selection criterion
a logical expression, the criterion being satisfied only if the expression evaluates to the value TRUE

© ISO 2005 — All rights reserved 3

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

ISO 10303-14:2005(E)

3.3.10
source data set
a collection of entity data type instances governed by an EXPRESS schema and serving as an origin of

mapping

3.3.11
source extent
a view extent or entity data type extent drawn on to create a binding extent

3.3.12
target data set
a collection of entity instances produced by means of mapping

3.3.13
view
an alternative organization of the information in an EXPRESS schema

3.3.14
view data type
the representation of a view

3.3.15
view data type instance
a named unit of information established by evaluation of a view

3.3.16

view extent

an aggregate of view data type instances that contains all instances that can be constructed from the
qualified binding extent

4 Fundamental principles

4.1 Overview

The following principles apply to this part of ISO 10303; the concepts described in ISO 10303-11,
clause 5 also apply.

EXPRESS-X provides the specification of:

— differing views of the data governed by an EXPRESS schema, using view declarations (see 9.3) in a
schema view (see 9.5);

— the mapping of data governed by one or more source EXPRESS schemas into data governed by one
or more target EXPRESS schemas, using map declarations (see 9.4) in a schema map (see 9.6).

An EXPRESS-X schema may contain EXPRESS function and procedure specifications in order to sup-
port the definition of views and maps.

NOTE 1 A typographical convention used throughout this specification is to contextualize parts of a sentence to
either the discussion of views or maps particularly by including the terms “(views)” or “(maps)” were appropriate
in the sentence.

7 ©1S0 2005 — All rights reserved

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

ISO 10303-14:2005(E)

NOTE 2 A typographical convention used throughout this specification is that a binding instance is denoted as an
ordered set of entity or view instance names separated by commas “,” and enclosed in angle brackets, “<>". The
ordering of instance names corresponds to the order of appearance of the source extent in the FROM language ele-

ment of the subject view or map declaration.

EXAMPLE Given the view declaration:

SCHEMA VIEW my person org schema view;
REFERENCE FROM person and org schema;
VIEW person org;

FROM p: person; o : organization; -- provides ordering
SELECT
name : STRING := p.last name;
org : STRING := o.department name;
END VIEW;

END SCHEMA VIEW;

the source express schema:

SCHEMA person and org schema;
ENTITY person;
first name : STRING;
last name : STRING;
END ENTITY;
ENTITY organization;
department name : STRING;
END ENTITY;
END SCHEMA;

and the data (encoded as defined in ISO 10303-21 — see [2]):

#1=PERSON ('James"', 'Smith') ;
#2=PERSON ('Fredrick', 'Jones"') ;
#31=ORGANIZATION ('Engineering') ;
#32=ORGANIZATION ('Sales"');

binding instances for this view and data may be written as below. The concept of binding instances is defined in
subsequent clauses and is not necessary to understand the example. Note here, however, that the first element of
each binding instance is drawn from the person extent and the second element is draw from the organization
extent. This ordering corresponds to the order of appearance of person and organization in the FROM language
element of the view:

{<#1,#31>,<#1,#32>,<#2,#31>,<#2,#32>}.

4.2 Fundamental principles of the execution model

4.2.1 Overview

This specification defines a language and an execution model. The execution model is composed of two
phases: a binding process and an instantiation process. The evaluation of views and maps share a com-
mon binding process but differ with respect to instantiation.

4.2.2 Binding process

A binding is an environment in which values are given to variables. A binding instance is a structure
that binds the variables declared in the FROM language element of a view or map declaration. The FROM
language element references source entity extents and view extents. The values bound are taken from
these source extents. Each binding instance is a member of the set computed as the Cartesian product of
the source extents referenced. The set of binding instances thus computed is the binding extent of that
view or map for the given source extents. The variable bindings of a binding instance provide an envi-
ronment for the evaluation of the body of the view or map in the instantiation process, where the data
referenced in the binding instance is related to structures created in the target population. Thus each

- © 1802005 — All rights reserved >

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

ISO 10303-14:2005(E)

binding instance corresponds to a view data type instance (views) or target entity data type instances
(maps) in the target population.

The source extents of maps and views shall be entity data type extents or view extents.

Circularity among references to source extents is prohibited.

EXAMPLE 1 The binding process applied to the view, data and schema defined in the example of 4.1 computes
a binding extent of person_org {<#1,#31>, <#1,#32>, <#2 #31>, <#2,#32>}. This extent is depicted in tabular

form below:
Binding person organization
Instance
first name last name # department name

<#1,#31> #1 'James' 'Smith' #31 'Engineering’
<#1,#32> #1 'James' 'Smith' #32 'Sales'
<#2,#31> #2 'Fredrick' 'Jones' #31 'Engineering’
<#2,#32> #2 'Fredrick' 'Jones' #32 'Sales'

EXAMPLE 2 The following schema_view is invalid; it contains a cycle of references (view a references view b
which references view a).

SCHEMA VIEW invalid;

VIEW a;

FROM some b : b;

attrl : INTEGER := some_b.attrZ + 2;
END VIEW;
VIEW b;

FROM some a : a;

attr2 : INTEGER := some a.attrl * 3;
END VIEW;

END SCHEMA VIEW;

4.2.3 Instantiation process

A binding is an environment in which variables are given values used during the instantiation process.
Each binding instance provides a set of values to be bound to the variables. The view instantiation pro-
cess is the process of evaluating the body of the view (see 9.3.2) for each binding instance in the bind-
ing extent. The order of evaluation of the binding instances is not specified.

EXAMPLE 1 The binding process applied to the schema, data, and view declaration of the example in clause 4.1
results in the binding extent of person_org: {<#1,#31>, <#1#32>, <#2 #31>, <#2#32>}. The view declaration
and data used in that example is repeated here:

VIEW person org;

FROM p: person; o : organization; —-- provides the illustrated ordering
SELECT
name : STRING := p.last name;
org : STRING := o.department name;
END VIEW;

#1=PERSON ('James"', 'Smith');
#2=PERSON ('Fredrick', 'Jones"') ;
#31=ORGANIZATION ('Engineering') ;
#32=ORGANIZATION ('Sales"') ;

© ISO 2005 — All rights reserved

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

ISO 10303-14:2005(E)

The binding instance <#1,#3 1> corresponds to the assignment of entity data type instance #1 to the variable p and
#31 to variable o. Evaluation of the body of the view in this binding results in a view data type instance with
name attribute 'Smith' and org attribute 'Engineering.' View data type instances may be encoded as though they
were entity data type instances using the encoding specified in ISO 10303-21 [2]. The view extent for this exam-

ple is:

#100=PERSON ORG('Smith', 'Engineering"'); /* <#$1,#31> */
#101=PERSON_ORG('Smith', 'Sales'); /* <#1,432> */
#102=PERSON ORG('Jones', 'Engineering"') ; /* <#$2,#31> */
#103=PERSON ORG('Jones', 'Sales'); /* <$2,#32> */

EXAMPLE 2 A target EXPRESS schema and schema map with structure similar to that of the schema view used
in the previous example can be defined as follows:

SCHEMA similar_target;
ENTITY person_org;
name : STRING;
org : STRING;
END ENTITY;
END SCHEMA;

SCHEMA MAP similar;
REFERENCE FROM person and org schema AS SOURCE;
REFERENCE FROM similar target AS TARGET;
MAP person_org map AS

po : person org;

FROM

p : person;

o : organization;

SELECT

po.name := p.last name;

po.org := o.department name;
END MAP;
END SCHEMA MAP;

Evaluation of the data of the previous example results in the following entity data type instances governed by the
schema similar_target:

#100=PERSON ORG('Smith', 'Engineering'); /* <#1,#31> */
#101=PERSON_ORG('Smith', 'Sales'): /* <#1,432> */
#102=PERSON ORG ('Jones', 'Engineering'); /* <#2,#31> */
#103=PERSON ORG('Jones', 'Sales"'); /* <#$2,#32> */

When the expression in the right-hand-side of an assignment of the body of the map (view) declaration
consists only of attribute references (.) from a source entity, and the referenced attribute is an explicit
attribute, the mapping of that target entity attribute (view attribute) is bi-directional.

EXAMPLE 3

MAP person_org map AS
po : person org;

FROM

p: person;

o : organization;
SELECT

po.name := p.last name; -- bi-directional

po.org := o.department name; -- bi-directional

po.industry code := o.owning enterprise.industry.code num; -- bi-directional
po.dept number := dept func(o.department name); -- possibly not bi-directional
END MAP;

Whether or not the attribute po.dept_number is bi-directional depends on the nature of the dept_func function.

© ISO 2005 — All rights reserved 7

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

ISO 10303-14:2005(E)

Clause 4.2 specifies only the fundamental aspects of the execution model. Details of the binding pro-
cess are described in clause 9.2. Details of the instantiation process for views are described in clause
9.3. Details of the instantiation process for maps are described in clause 9.4.

4.3 Implementation environment

The EXPRESS-X language does not describe an implementation environment. In particular,
EXPRESS-X does not specify:

— how references to names are resolved;
— how input and output data sets are specified;

— how maps are executed for instances that do not conform to an EXPRESS schema.

Evaluation of a view produces a view extent. Evaluation of a map may produce entity instances in the
target data set. EXPRESS-X does not specify what effect modification of source data may have on view
extents or target data sets after initial mapping.

5 Conformance requirements

5.1 EXPRESS-X conformance classes

5.1.1 Overview

~ The conformance class of an implementation of an EXPRESS-X parser or mapping engine is indicated
- by what portion of the language the implementation supports. Declarations are classified by language
subset in Table 1 below.

Table 1: Declarations and language subset

Declaration Subset 1| Subset 2
view declaration .

map declaration .
dependent map declaration| .
constant declaration . .
function declaration . .
procedure declaration . .
rule declaration .

The implementor of an EXPRESS-X parser or mapping engine shall state any constraints that the
implementation imposes on the number and length of identifiers, on the range of processed numbers,
and on the maximum precision of real numbers. Such constraints shall be documented for the purpose
of conformance testing.

© ISO 2005 — All rights reserved

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

ISO 10303-14:2005(E)

5.1.2 EXPRESS-X parser conformance classes

An implementation of an EXPRESS-X parser shall be able to parse any formal specification written in
EXPRESS-X consistent with the conformance class associated with that implementation. An
EXPRESS-X parser shall be said to conform to a particular level of checking (as defined in 5.1.4) if it
can apply all checks required by that level (and any level below it) to a formal specification written in
EXPRESS-X.

A conformance class 1 conforming EXPRESS-X parser shall parse all declarations from language sub-
set 1 (see Table 1).

A conformance class 2 conforming EXPRESS-X parser shall parse all declarations from language sub-
set 2 (see Table 1).

A conforming class 3 conforming EXPRESS-X parser shall parse all declarations that may appear in
this part of ISO 10303.

5.1.3 EXPRESS-X mapping engine conformance classes

An implementation of an EXPRESS-X mapping engine shall be able to execute any formal specifica-
tion written in EXPRESS-X consistent with the conformance class associated with that implementation.
The execution of a map is relative to one or more source data sets; the specification of how these data
sets are made available to the mapping engine is outside the scope of this part of ISO 10303.

A conformance class 1 conforming EXPRESS-X mapping engine shall be able to execute all declara-
tions from language subset 1 (see Table 1).

A conformance class 2 conforming EXPRESS-X mapping engine shall be able to execute all declara-
tions form language subset 2 (see Table 1).

A conforming class 3 conforming EXPRESS-X mapping engine shall be able to execute all declara-
tions that may appear in this part of ISO 10303.

5.1.4 Consistency checking of EXPRESS-X parsers

5.1.4.1 Overview

A formal specification written in EXPRESS-X shall be consistent with a given level of checking as
specified below. A formal specification is consistent with a given level when all checks identified for
~that level as well as all lower levels are verified for the specification.

5.1.4.2 Level 1: reference checking

~ This level consists of checking the formal specification to ensure that it is syntactically and referentially

~valid. A formal specification is syntactically valid if it matches the syntax generated by expanding the
primary syntax rule (syntax) given in Annex A. A formal specification is referentially valid if all ref-
erences to EXPRESS-X items are consistent with the scope and visibility rules defined in clause 13.

5.1.4.3 Level 2: type checking

This level consists of Level 1 checking and checking the formal specification to ensure that it is consis-
tent with the following:

© ISO 2005 — All rights reserved 9

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

ISO 10303-14:2005(E)

— expressions shall comply with the rules specified in clause 10 and in ISO 10303-11 clause 12;

— assignments shall comply with the rules specified in ISO 10303-11 clause 13.3.

5.1.4.4 Level 3: value checking

This level consists of Level 2 checking and checking the formal specification to ensure that it is consis-
tent with statements of the form, ‘A shall be greater than B’, as specified in clause 7 to 14 of ISO
10303-11. This is limited to those places where both A and B can be evaluated from literals and/or con-
stants.

5.1.4.5 Level 4: complete checking

This level consists of checking the formal specification to ensure that it is consistent with all stated
requirements as specified in this part of ISO 10303.

6 Language specification syntax

The notation used to present the syntax of the EXPRESS-X language is defined in this clause.

The full syntax for the EXPRESS-X language is given in Annex B. Portions of those syntax rules are
reproduced in various clauses to illustrate the syntax of a particular statement. Those portions are not
always complete. It will sometimes be necessary to consult Annex A for the missing rules. The syntax
portions within this part of ISO 10303 are presented in a box. Each rule within the syntax box has a
unique number toward the left margin for use in cross-references to other syntax rules.

The syntax of EXPRESS-X is defined in a derivative of Wirth Syntax Notation (WSN).

NOTE See the bibliography for a reference describing Wirth Syntax Notation [1].

The notational conventions and WSN defined in itself are given below.

syntax = { production }
production = identifier '=' expression '.'
expression = term { '|' term }

term = factor { factor }

factor = identifier | literal | group | option | repetition .

identifier = character { character }

literal = '"''' character { character } ''''

group = ' (' expression ')'

option = '[' expression ']'

repetition = '{' expression '}'

— The equal sign '=" indicates a production. The element on the left is defined to be the combination

of the elements on the right. Any spaces appearing between the elements of a production are mean-
ingless unless they appear within a literal. A production is terminated by a period ' . '.

— The use of an identifier within a factor denotes a nonterminal symbol that appears on the left side of
another production. An identifier is composed of letters, digits, and the underscore character. The
keywords of the language are represented by productions whose identifier is given in uppercase
characters only.

10 © ISO 2005 — All rights reserved

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

ISO 10303-14:2005(E)

— The word literal is used to denote a terminal symbol that cannot be expanded further. A literal is a
sequence of characters enclosed in apostrophes. For an apostrophe to appear in a literal it must be
written twice, thatis, ' ' ' '.

— The semantics of the enclosing braces are defined below:
* curly brackets ' { }' indicates zero or more repetitions;
 square brackets ' [] ' indicates optional parameters;

* parenthesis ' () ' indicates that the group of productions enclosed by parenthesis shall be used
as a single production;

 vertical bar ' | ' indicates that exactly one of the terms in the expression shall be chosen.

The following notation is used to represent entire character sets and certain special characters which are
difficult to display:

— \a represents any character from ISO/IEC 10646-1;

— \n represents a newline (system dependent) (see ISO 10303-1, 7.1.5.2).

7 Basic language elements

7.1 Overview

This clause specifies the basic elements from which an EXPRESS-X mapping specification is com-
posed: the character set, remarks, symbols, reserved words, identifiers, and literals.

The language elements of EXPRESS-X are those of the EXPRESS language defined in Clause 7 of
ISO 10303-11, with the exceptions noted below.

7.2 Reserved words

The reserved words of EXPRESS-X are the keywords and the names of built-in constants, functions,
and procedures. All reserved words of EXPRESS (ISO 10303-11) are reserved words of EXPRESS-X.
The reserved words shall not be used as identifiers. The additional reserved words of EXPRESS-X are
specified in Table 2 below.

Table 2: Additional EXPRESS-X keywords

DEPENDENT MAP EACH ELSIF END_DEPENDENT MAP
END_MAP END_SCHEMA MAP END_SCHEMA_ VIEW END_VIEW

EXTENT IDENTIFIED BY INDEXING MAP

ORDERED_BY PARTITION SCHEMA_MAP SCHEMA _VIEW
SOURCE TARGET VIEW

© ISO 2005 — All rights reserved 11

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

ISO 10303-14:2005(E)

NOTE In the case that a legal EXPRESS identifier is a reserved word in EXPRESS-X, schemas using that iden-
tifier can be mapped by renaming the conflicting identifier using the REFERENCE language element (see 13.2).

8 Data types

8.1 Overview

The data types defined here as well as those defined in the EXPRESS language (clause 8 of ISO 10303-
11) are provided as part of the language.

‘Every view attribute (see 9.3.2) has an associated data type.

82 View data type

View data types are established by view declarations (see 9.3). A view data type is assigned an identi-
fier in the defining schema map or schema view. The view data type is referenced by this identifier.

Syntax:

230 view reference = [(schema map ref | schema view ref) '.'] view ref

Rules and restrictions:
a) view reference shall be areference to a view visible in the current scope.

b) view reference shall not refer to a dependent view (see 9.3.5).

EXAMPLE The following declaration defines a view data type named circle.

VIEW circle;
FROM e : ellipse;
WHERE (e.major axis = e.minor axis);
SELECT
radius : REAL := e.minor axis;
centre : point := e.centre;
END VIEW;

9 Declarations

9.1 Overview

This clause defines the various declarations available in EXPRESS-X. An EXPRESS-X declaration
creates a new EXPRESS-X item and associates an identifier with it. The item may be referenced else-
where by this identifier.

12 © ISO 2005 — All rights reserved

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

ISO 10303-14:2005(E)

EXPRESS-X provides the following declarations:
— view;

— map;

— dependent map;

— schema view;

— schema map.

In addition, an EXPRESS-X specification may contain the following declarations defined in
ISO 10303-11:1994:

— constant;
— function;
— procedure;

— rule.

9.2 Binding

9.2.1 Overview

A binding extent is a set of binding instances constructed from instances in source entity data type
extents and view extents. A binding extent of a population is computed as the Cartesian product of the
extents referenced in the FROM language element of the view or map declaration.

A qualified binding extent is a subset of the binding extent consisting of only those binding instances
for which the WHERE language element, under the binding of its variables to the values in the binding
instance, returns TRUE.

NOTE Provisions defined in 9.2 apply to map declarations and view declarations. Provisions applying only to
view declarations are defined in 9.3. Provisions applying only to map declarations are defined in 9.4.

9.2.2 Binding extent

The FrROM language element defines the elements of binding instances in the binding extent. The FROM
language element consists of one or more source parameters. Each source parameter associates an iden-
tifier with an extent.

© ISO 2005 — All rights reserved 13

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

ISO 10303-14:2005(E)

Syntax:

228 wview decl = (root view decl | dependent view decl | subtype view decl
) .

136 map decl = MAP map id AS target parameter ';' { target parameter ';' }
(map_subtype of clause subtype binding header map decl body) | (
binding header map_decl body { binding header map_decl body })

END MAP ';'

47 binding header = [PARTITION partition id ';'] [from clause] [
local decl] [where clause] [identified by clause] [
ordered by clause]

90 from clause = FROM source parameter ';' { source parameter ';' }

198 source parameter = source parameter id ':' extent reference

83 extent reference = source entity reference | view reference

Rules and restrictions:

a) source parameter ids shall be unique within the scope of the map or view declaration.

The binding extent is computed as the Cartesian product of instances in the extents referenced in the
FROM language element.

EXAMPLE A binding extent is constructed over the populations of entity data types item and person.

SCHEMA source schema; -- An EXPRESS schema
ENTITY item;
item number : INTEGER;
approved by : STRING;
END ENTITY;
ENTITY person;
name : STRING;
END ENTITY;
END SCHEMA;

SCHEMA VIEW example;
REFERENCE FROM source_ schema;
VIEW items and persons;

FROM i : item; p : person;

SELECT
item number : INTEGER := i.item number;
responsible : STRING := p.name;

END VIEW;

END SCHEMA VIEW;

Given a population (written as ISO 10303-21 entity instances — see [2]):

#1=ITEM (123, 'Smith'") ;
#2=ITEM (234, 'Smith') ;
#33=PERSON ('Jones"') ;
#44=PERSON ('Smith") ;

the corresponding binding extent of items_and person is: {<#1,#33> <#1,#44> <#2 #33> <#2 #44>}.

9.2.3 Qualification of the binding extent

The WHERE language element defines selection criteria on binding instances in the binding extent. The
WHERE language element, together with the source extents identified in the FROM language element
define the qualified binding extent.

14 © ISO 2005 — All rights reserved

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

ISO 10303-14:2005(E)

A binding is an environment in which values are given to variables. The source parameters of the FROM
language element are bound to the binding instance. The domain rule expressions of the WHERE lan-
guage element are evaluated with this binding. A binding instance in the binding extent is a member of
the qualified binding extent if all the domain rule expressions of the WHERE language element evaluate
to TRUE.

The syntax of the WHERE language element is as defined in ISO 10303-11, 9.2.2.2.

EXAMPLE The qualified binding extent consists of those pairs of item and person of the binding extent for
which person.name is 'Smith' or 'Jones' and item.approved_by is 'Smith' or 'Jones'.

SCHEMA VIEW example;
REFERENCE FROM source schema;
VIEW items and persons;

FROM i : item; p : person;

WHERE (p.name = 'Smith') OR (p.name = 'Jones');
(i.approved by = p.name);
SELECT
name : STRING := p.name;
END VIEW;

END SCHEMA VIEW;

The qualified binding extent corresponding to the data in example 1 above is: {<#1,#44> <#2 #44>}.

9.2.4 Identification of view and target instances

A binding instance of a map or view not containing the identified by clause language element is
identified by the values (entity data type instances) it takes from the extents referenced in the FROM lan-
guage element. A binding instance of a map or view containing the identified by clause lan-
guage element is identified by the value(s) of the expression language element in syntax rule 108.
The view call (see 10.2) and map call (see 10.3) use these identification schemes.

The identified by clause language element defines an equivalence relation among instances in a
binding extent.

Syntax:

107 identified by clause = IDENTIFIED BY id parameter ';' { id parameter
1 ; 1 }

108 id parameter = [id parameter id ':'] expression

109 id parameter id = simple id

90 from clause = FROM source parameter ';' { source parameter ';' }
198 source parameter = source parameter id ':' extent reference

Rules and restrictions:

a) When used in a map declaration, an expression in the id parameter language syntax
shall not refer, through any level of indirection, to the target entity instances of the map or any
of their attributes.

Two binding instances are in the same equivalence class if, for each expression of the
identified by clause language element, evaluating the expression in the context of each of those
instances produces result that are instance equal (ISO 10303-11, 12.2.2). The instantiation process pro-
duces one view instance (views) or target network (maps) for each equivalence class.

© ISO 2005 — All rights reserved 15

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

ISO 10303-14:2005(E)

EXAMPLE This example illustrates the use of IDENTIFIED BY.

SCHEMA VIEW example;
REFERENCE FROM some schema;
VIEW department;
FROM e : employee;
IDENTIFIED BY e.department name;
SELECT
name : STRING := e.department name;
END VIEW;
END SCHEMA VIEW;

SCHEMA some schema;
ENTITY employee;
name : STRING;
department name : STRING;
END ENTITY;
END SCHEMA;
#1=EMPLOYEE ('Jones', 'Engineering') ;
#2=EMPLOYEE ('Smith', 'Sales"');
#3=EMPLOYEE ('Doe"', 'Engineering') ;
Given the view and population above, there are two equivalence classes: {<#1>,<#3>} and {<#2>}, correspond-
ing to binding instances with e.department _name = 'Engineering' and e.department_name = 'Sales' respectively.

9.2.5 Equivalence classes and the instantiation process

View attributes (see 9.3.2) and target entity attributes (see 9.4.2) represent properties of the correspond-
ing view (view declaration) and target network entities (map declaration). These attributes are provided
values by evaluation of the corresponding expression (syntax rule 224). The expressions are evalu-
ated in the context of a binding instance in the qualified binding extent.

Syntax:

224 view attribute decl = view attribute id ':' [OPTIONAL] [
source schema ref '.'] base type ':=' expression ';'

134 map attribute declaration = [target parameter ref [index qualifier]
[group qualifier] '.'] attribute ref [index qualifier] ':='
expression ';'

If an equivalence class defined by an identified by clause language element contains more than
one qualified binding instance, then the value of the expression is computed as follows:

— if there are binding instances for which expression (syntax rule 224) evaluates to a non-indeter-
minate value, and if all such non-indeterminate values are the same (instance equal) or if there is
only one such value, that value is assigned to the attribute.

— If for two or more binding instances, the evaluation of the expression of the attribute produces
non-indeterminate, unequal values (instance equal), or if all evaluations produce indeterminate val-
ues, an indeterminate value is assigned to the attribute.

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

© ISO 2005 — All rights reserved

ISO 10303-14:2005(E)

EXAMPLE This example illustrates the assignment of values where an equivalence class contain more than one
qualified binding instance. The map declaration is described in clause 9.4.

(* source schema ¥*) (* target schema ¥*)

SCHEMA src; SCHEMA tar;

ENTITY employee; ENTITY department;
name : STRING; employee : STRING;
manager : STRING; manager : STRING;
dept : STRING; dept name : STRING;

END ENTITY; END_ENTITY;

END SCHEMA; END_ SCHEMA;

(* mapping schema *)
SCHEMA MAP example;
REFERENCE FROM src AS SOURCE;
REFERENCE FROM tar AS TARGET;
MAP department map AS d : department;
FROM e : src.employee;
IDENTIFIED BY e.dept;

SELECT

d.employee := e.name;

d.manager := e.manager;

d.dept name := e.dept;
END_MAP;

END_SCHEMA MAP;

#1=EMPLOYEE ('Smith', 'Jones', 'Marketing') ;
#2=EMPLOYEE ('Doe"', 'Jones"', 'Marketing"') ;

Given the data above, the target data set contains one entity instance, #1=DEPARTMENT($, ' Jones','Marketing").
The attribute department.dept_name is indeterminate because the expression for this attribute evaluates to two
different values ('Smith' and 'Doe").

9.2.6 Ordering of view and target instances

The ORDERED_BY language element defines an ordering on the binding instances of a qualified binding
extent. Partial binding calls (see 10.4) on the corresponding view or map partition evaluate to aggre-
gates ordered according to the ORDERED BY language element, if present.

The expression inan ORDERED BY language element shall evaluate to values of the same order-
comparable type for all bindings in the partition. The order-comparable types are NUMBER, BINARY,
STRING, and ENUMERATION and specializations of these. A resulting ordering on the binding extent
shall be such that the expression (e < f) shall not evaluate to FALSE, where e and f are respectively the
values produced by evaluation of the expression (see syntax rule 148) for any two successive ele-
ments of the binding extent, and < is the EXPRESS value comparison operator (ISO 10303-11, 12.2.1).
If additional expression language elements are specified, then for each subsequent expression,
the process describe is applied to the result of the previous expression.

Syntax:

47 binding header = [PARTITION partition id ';'] [from clause] [
local decl] [where clause] [identified by clause] [
ordered by clause]

148 ordered by clause = ORDERED BY expression { ',' expression } ';'

Rules and restrictions:

a) The expression of syntax rule 148 shall not evaluate to an indeterminate value for any
bindings in the partition.

© ISO 2005 — All rights reserved L 17

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

ISO 10303-14:2005(E)

b) Subtype view and map partitions shall not specify an ORDERED BY language element. Subtype

views and map partitions shall inherit ordering from parent partitions defining ORDERED BY, if
present in a parent.

c) A collection of view partitions related through type hierarchy shall contain no more than one

ORDERED BY language element.

d) A collection of map partitions related through the map subtype of clause (see syntax rule

9.3

9.3.1

141) shall contain no more than one ORDERED BY language element.

View declaration

Overview

A view declaration creates a view data type and declares an identifier to refer to it.

EXAMPLE The following view defines a view data type arm_person_role_in_organization .

VIEW arm person role in organization;

FROM

pao person and organization;

ccdpaoa cc_deszgn person and organization assignment;

WHERE ccdpaoafassigngd persgn and organizatign :=: pao;

SELECT - -

person : person := pao.the person;

org organization := pao.Ehe organization;

role label := ccdpaoa.role.;ame;

END VIEW;

Syntax:

228 view decl = (root view decl | dependent view decl | subtype view decl
)

177 root view decl = VIEW view id [supertype constraint] ';'
binding header SELECT view attr decl stmt list { binding header SELECT
view attr decl stmt list } END VIEW ';'

47 binding header = [PARTITION partition id ';'] [from clause] [
local decl] [where clause] [identified by clause] [
ordered by clause]

90 from clause = FROM source parameter ';' { source parameter ';' }

198 source parameter = source parameter id ':' extent reference

83 extent reference = source entity reference | view reference

-9.3.2 View attributes

" An attribute of a view data type represents a property of the view. The value of the attribute of a view

instance is computed as the evaluation of the expression of syntax rule 224.

The name of a view attribute, view attribute id of syntax rule 224, represents the role played

by its associated value in the context of the view in which it appears.

18

© ISO 2005 — All rights reserved

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

ISO 10303-14:2005(E)

Syntax:

226 view _attr decl stmt list = { view_attribute decl }

224 view attribute decl = view attribute id ':' [OPTIONAL] [
source_schema ref '.'] base type ':=' expression ';'

Rules and restrictions:

a) The value resulting from evaluation of the expression of syntax rule 224 shall be assign-
ment compatible with the base type of the view attribute.

b) Each view attribute id declared in the view declaration shall be unique within that dec-
laration.

¢) OPTIONAL indicates that the value of the attribute may be indeterminate. Use of OPTIONAL has
no effect on the execution model.

9.3.3 View partitions

A view partition is a subset of a view extent. A view extent is the union of its partitions. A view decla-
ration consists of one or more partition declarations, each partition declaration having its own rFroM and
WHERE language elements.

EXAMPLE InISO 10303-201, the application object ORGANIZATION may be mapped to from a PERSON,
an ORGANIZATION, or a PERSON_AND ORGANIZATION entity. A view from this schema to the
arm_organization view is specified as follows:
VIEW arm organization;
PARTITION a single person;

FROM p : Eerson;_

PARTITION a single organization;
FROM o: organization;

PARTITION a person in an organization;
FROM po: person and organization;

END VIEW;

Syntax:

228 view decl = (root view decl | dependent view decl | subtype view decl
)

177 root view decl = VIEW view id [supertype constraint] ';'

binding header SELECT view attr decl stmt list { binding header SELECT
view attr decl stmt list } END VIEW ';'
67 dependent view decl = VIEW view id ':' base type ';' binding header
RETURN expression { binding header RETURN expression } END VIEW ';'
206 subtype view decl = VIEW view id subtype declaration ';'
subtype binding header SELECT view attr decl stmt list {
subtype binding header SELECT view attr decl stmt list } END VIEW ';'

203 subtype binding header = [PARTITION partition id ';'] where clause

47 binding header = [PARTITION partition id ';'] [from clause] [
local decl] [where clause] [identified by clause] [

ordered by clause]

© ISO 2005 — All rights reserved - - 19

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

ISO 10303-14:2005(E)

Rules and restrictions:

a) If more than one partition exists in the view declaration, a partition id shall be provided
for each partition.

b) Each partition id within a view declaration shall be unique.

c) All partitions of a view declaration shall define the same attributes (including names and
types).

d) The attributes of a view declaration shall appear in the same order in each of its partitions.

9.3.4 Constant partitions

A partition that omits the FROM, WHERE, and IDENTIFIED BY language elements is called a constant
partition. Such a partition represents a single view instance with no correspondence to the source data.

EXAMPLE This example illustrates the use of constant partitions.

VIEW person;
PARTITION mary;

SELECT
name : STRING := 'Mary';
age : INTEGER := 22;
PARTITION john;
SELECT
name : STRING := 'John';
age : INTEGER := 23;
END VIEW;

9.3.5 Dependent views

A dependent view is a view that does not define attributes. Partitions of the dependent view specify
RETURN expression (see syntax rule 67). Evaluation of expression shall not produce a value of
type AGGREGATE. The value computed shall be type compatible with base type (see syntax rule

67).
Syntax:
228 view decl = (root view decl | dependent view decl | subtype view decl
) .
67 dependent view decl = VIEW view id ':' base type ';' binding header
RETURN expression { binding header RETURN expression } END VIEW ';'

If an equivalence class defined by an IDENTIFIED BY language element of a dependent view contains
more than one qualified binding instance, then the value returned is computed as follows:

— If for each such binding, the RETURN expression (syntax rule 67) produces an equal value, that value
1s returned;

— If for two or more bindings, the RETURN expression (syntax rule 67) produces unequal values, an
indeterminate value is returned.

20 © ISO 2005 — All rights reserved

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

ISO 10303-14:2005(E)

EXAMPLE 1 This example defines a subtype of type car whose instances have the value 'red' in their colour
attribute.

VIEW red car : car;
FROM rc : car;

WHERE rc.colour ='red';
RETURN rc;

END VIEW;

EXAMPLE 2 This example defines an extent whose members are strings. The strings come from two sources.

VIEW owner name : STRING;
PARTITION one;
FROM po : person;
RETURN po.name;
PARTITION two;
FROM or : organization;
RETURN org.name;
END VIEW;

9.3.6 Specifying subtype views

EXPRESS-X allows for the specification of views as subtypes of other views, where a subtype view
data type is a specialization of its supertype. This establishes an inheritance relationship between the
view data types in which the subtype inherits the attributes and selection criteria of its supertype. A
view is a subtype view if it contains a SUBTYPE language element. The extent of a subtype view data
type is a subset of the extent of its supertype as defined by the selection criteria defined by the WHERE
language element in the subtype.

A subtype view inherits attributes from its supertype view(s). Inheritance of attributes shall adhere to
the rules and restrictions of attribute inheritance defined in ISO 10303-1, 9.2.3.3.

A subtype view declaration may redefine attributes found in one of its supertypes. The redefinition of
attributes shall adhere to the rules and restrictions of attribute redefinition defined in ISO 10303-11,
9.2.34.

During the evaluation of a view, a view instance shall be created if the selection criteria of the most
general supertype is satisfied. The view instance shall have the type corresponding to a subtype view if
all of the selection criteria in that subtype view in addition to all of its supertype views evaluate to
TRUE.

Syntax:

228 wview decl = (root view decl | dependent view decl | subtype view decl
) .

206 subtype view decl = VIEW view id subtype declaration ';'
subtype binding header SELECT view attr decl stmt list {
subtype binding header SELECT view attr decl stmt list } END VIEW ';'

205 subtype declaration = SUBTYPE OF '(' view ref { ',' view ref } ')'

203 subtype binding header = [PARTITION partition id ';'] where clause
© ISO 2005 — All rights reserved 21

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

ISO 10303-14:2005(E)

Rules and restrictions:
a) Exactly one supertype view of a subtype view shall define a FROM language element

b) The set of partitions of a subtype view shall be a subset of the set of partitions of its supertype
view.

EXAMPLE 1 The following view illustrates subtyping. The view male defines an additional membership
requirement (gender = ‘M) for view instances of the subtype.

VIEW person;
FROM e:employee;
END VIEW;

VIEW male SUBTYPE OF (person);
WHERE e.gender = 'M';

END VIEW;

EXAMPLE 2 This example illustrates the use of partitions and subtype views.

VIEW j;

PARTITION first;
FROM s:three, t:four
WHERE cond6;

PARTITION second;

FROM r:four, g:five
WHERE cond7;

END VIEW;

VIEW k SUBTYPE OF (j);
PARTITION second;
WHERE cond9;

END VIEW;

Any subtype view for which ‘k’ is a supertype can only include partition ‘second.’

9.3.7 Supertype constraints

A view declaration may define supertype constraints (see ISO 10303-11, 9.2.4). Whether or not a super-
type constraint is satisfied has no effect on the execution model nor on the contents of view extents.

Syntax:

228 view decl = (root view decl | dependent view decl | subtype view decl
)

177 root view decl = VIEW view id [supertype constraint] ';'

binding header SELECT view attr decl stmt list { binding header SELECT
view attr decl stmt list } END VIEW ';'
207 supertype constraint = abstract supertype declaration | supertype rule

33 abstract supertype declaration = ABSTRACT SUPERTYPE [
subtype constraint]
205 subtype declaration = SUBTYPE OF '(' view ref { ',' view ref } ")'
204 subtype constraint = OF ' (' supertype expression ')'
208 supertype expression = supertype factor { ANDOR supertype factor }
209 supertype factor = supertype term { AND supertype term }
211 supertype term = view ref | one of | '(' supertype expression ')'
147 one of = ONEOF ' (' supertype expression { ',' supertype expression }
l)l

22 © ISO 2005 — All rights reserved
Copyright International Organization for Standardization
Reproduced by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

ISO 10303-14:2005(E)

EXAMPLE

VIEW a ABSTRACT SUPERTYPE OF ONEOF (b ANDOR c, d);

END_VIEW;

An instance of a is valid if it has at least two types (a and something else) because of the ABSTRACT keyword,
and one of the other types is either d or some combination of b and ¢ because of the ONEOF keyword.

9.4 Map declaration

9.4.1 Overview

The map declaration supports the specification of correspondence between entity data type definitions
of two or more EXPRESS schemas. The declaration supports the mapping from many source entity
data type definitions to many target entity data type definitions.

Syntax:

136 map decl = MAP map id AS target parameter ';' { target parameter ';' }
(map_subtype of clause subtype binding header map decl body) | (
binding header map_ decl body { binding header map decl body })

END MAP ';'

47 binding header = [PARTITION partition id ';'] [from clause] [
local decl] [where clause] [identified by clause] [
ordered by clause]

203 subtype binding header = [PARTITION partition id ';'] where clause

90 from clause = FROM source parameter ';' { source parameter ';' }

198 source parameter = source parameter id ':' extent reference

83 extent reference = source entity reference | view reference

137 map decl body = (entity instantiation loop {
entity instantiation loop }) | map project clause | (RETURN expres-
sion ';"')

214 target parameter = target parameter id { ',' target parameter id } ':'
[AGGREGATE [bound spec] OF] target entity reference
213 target entity reference = entity reference { '&' entity reference }

Rules and restrictions:

a) The map id of syntax rule 136 names a map declaration.

EXAMPLE In the example below, a pump in the source data set is mapped to a product and
product_related_product_category.

SCHEMA source schema;
ENTITY pump;

id, name : STRING;
END ENTITY;

END SCHEMA;

SCHEMA target schema;
ENTITY product;

id, name : STRING;
END ENTITY;

ENTITY product related product category;
name : STRING;

products : SET OF product;
END ENTITY;

END SCHEMA;

© ISO 2005 — All rights reserved 23
Copyright International Organization for Standardization
Reproduced by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

ISO 10303-14:2005(E)

SCHEMA MAP pump mapping;

REFERENCE FROM source_schema AS SOURCE;
REFERENCE FROM target_schema AS TARGET;

MAP network for pump AS

pr : product;

prpc : product related product category;
FROM p : pump;

SELECT

pr.id := p.id;

pr.name := p.name;

prpc.name := 'pump';

prpc.products := [pr];
END_MAP;

END_SCHEMA MAP;

Note that, in this example, for each instance of type product created there is exactly one instance of
product related product category created.

The initial values of the attributes of the newly created instance(s) are indeterminate. If the attribute is
not assigned in the body of the map the value remains indeterminate.

9.4.2 Evaluation of the map body

Syntax:

136 map decl = MAP map id AS target parameter ';' { target parameter ';' }
(map_subtype of clause subtype binding header map decl body) | (
binding header map_decl body { binding header map decl body })

END MAP ';'

137 map decl body = (entity instantiation loop {
entity instantiation loop }) | map project clause | (RETURN expres-
sion ';')

139 map project clause = SELECT { map attribute declaration }

134 map attribute declaration = [target parameter ref [index qualifier]
[group qualifier] '.'] attribute ref [index qualifier] ':='
expression ';'

A map decl body specifying map attribute declaration syntax elements shall assign
values to the attributes of the target entity instances. The expression shall produce a value that is
assignment compatible with the target entity attribute (see ISO 10303-11, 13.3).

A map decl body specifying RETURN shall evaluate the expression which is specified after the
RETURN keyword. Evaluation shall result in the instantiation of target entity instances that are type
compatible with the entity data types defined by the target parameters. Entity instances for all target
parameters shall be instantiated.

9.4.3 Iteration under a single binding instance

9.4.3.1 Overview

Evaluation of a map may produce aggregates of target entity data type instances. The initial value of the
aggregate is indeterminate.

24 © ISO 2005 — All rights reserved

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

ISO 10303-14:2005(E)

The instantiation loop control and repeat control provide the following forms of
iteration:

— iteration over the collection of instances in an EXPRESS aggregate;

— iteration incrementing a numeric variable.

Syntax:

77 entity instantiation loop = FOR instantiation loop control ';
map project clause

139 map project clause = SELECT { map_ attribute declaration }

119 instantiation loop control = instantiation foreach control |
repeat control

118 instantiation foreach control = EACH variable id IN expression { AND
variable id IN expression } [INDEXING variable id]

171 repeat control = [increment control] [while control] [
until control]

Rules and restrictions:

a) The map project clause language element (see 139) establishes a local scope in which all
the loop variables variable id (see syntax rule 118) are implicitly declared.

b) The type of the variable implicitly declared by variable id before IN (see syntax rule 118)
is the type of the expression.

c) The type of the variable implicitly declared by variable id after INDEXING (see syntax rule
118) is of type INTEGER.

The variable id after INDEXING (see syntax rule 118) is initialized to one at the beginning of the
first iteration cycle and incremented by one at the beginning of each subsequent cycle.

9.4.3.2 Control by numeric increment

The repeat control syntax element allows for the iteration under a single binding instance by
means of the EXPRESS language repeat control (see ISO 10303-11, 13.9).

© ISO 2005 — All rights reserved 25

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

ISO 10303-14:2005(E)

EXAMPLE This example illustrates the use of the EXPRESS repeat control in EXPRESS-X target
instantiation. A collection of target child entity instances are created for each source parent entity. The number
created is specified by the parent entity attribute number_of children.

SCHEMA src; SCHEMA tar;

ENTITY parent; ENTITY parent;
number_of_children : INTEGER; END ENTITY;

END ENTITY; ENTITY child;

END SCHEMA; parent : parent;

END ENTITY;
END SCHEMA;

SCHEMA MAP example;
REFERENCE FROM src AS SOURCE;
REFERENCE FROM tar AS TARGET;

MAP parent map AS tp : tar.parent;
FROM sp : src.parent;
SELECT

END MAP;

MAP children map AS ¢ : AGGREGATE OF child;
FROM p : src.parent;

FOR 1 := 1 TO p.number_of_children;
SELECT
c[i] .parent := tp(p):
END_MAP;

END SCHEMA MAP;

9.4.3.3 Control by iteration over an aggregate

Under the instantiation foreach control syntax element, at each iteration step, the next
element of the specified aggregate is bound to a variable and optionally the index position of that ele-
ment is bound to an iterator variable. The scope of these variable bindings includes the
map_project clause.

EXAMPLE In the following example, all item versions of one item are grouped together in the source data set.
In the target set, each item version is an instance.

SCHEMA tar;

ENTITY item version;
item_id : INTEGER;
version_id : INTEGER;

END ENTITY;

END SCHEMA;

SCHEMA src;
ENTITY item with versions;
id : INTEGER;
id_of_versions : LIST OF INTEGER;
END ENTITY;
END_SCHEMA;

SCHEMA MAP mapping schema;
REFERENCE FROM src AS SOURCE;
REFERENCE FROM tar AS TARGET;

26 © ISO 2005 — All rights reserved

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

ISO 10303-14:2005(E)

MAP item version map AS
iv : AGGREGATE OF item version;

FROM
iwv : item with versions;
FOR EACH version iterator IN iwv.id of versions INDEXING i;
SELECT
iv[i].item id = iwv.id;
iv[i].version id := version iterator;
END_MAP;

END_ SCHEMA MAP;

For example, the following target instances are built from the source instance below.
Source instance set:

#1 = ITEM WITH VERSIONS (1, (10,11,12));
Target instance set:

#1 ITEM VERSION (1,10);
#2 ITEM VERSION(1,11);
#3 = ITEM VERSION(1,12);

The instantiation foreach control syntax element may specify many expressions using
the optional AND syntax (see syntax rule 118). Iteration continues while at least one source aggregate
is not exhausted. An indeterminate value is assigned to the variable id of exhausted aggregates.

9.4.4 Map partitions
The instances of an entity data type may each relate differently to source data. Multiple map partitions

may be used to specify these differing relations.

If multiple target entities are listed in the header of the map declaration, different subsets of those enti-
ties may be created by each partition.

Syntax:

136 map decl = MAP map id AS target parameter ';' { target parameter ';' }
(map_subtype of clause subtype binding header map decl body) | (
binding header map_decl body { binding header map_decl body })

END MAP ';'
47 binding header = [PARTITION partition id ';'] [from clause] [
local decl] [where clause] [identified by clause] [

ordered by clause]

Rules and restrictions:

a) If more than one partition exists in the map declaration, a partition id shall be provided
for each partition.

b) Each partition id within a map declaration shall be unique.

¢) For every target entity data type referenced in the map header, at least one of the partitions of
the map declaration shall create instances for it.

© ISO 2005 — All rights reserved o 27

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

ISO 10303-14:2005(E)

EXAMPLE This example illustrates how various source entity data types may be mapped into a single target
entity data type using a map declaration containing partitions.

(* source schema *) (* target schema *)
SCHEMA src; SCHEMA tar;
ENTITY student; ENTITY person;

name : STRING; name : STRING;
END ENTITY; END ENTITY;
ENTITY employee; END_SCHEMA;

name : STRING;
END ENTITY;
END SCHEMA;

(* mapping schema *)
SCHEMA MAP example;
REFERENCE FROM src AS SOURCE;
REFERENCE FROM tar AS TARGET;

MAP student employee to person AS p : tar.person;
PARTITION student;
FROM s : src.student;
SELECT

p.name := s.name;
PARTITION employee;
FROM e : src.employee;
SELECT

p.name := e.name;
END_MAP;
END SCHEMA MAP;

9.4.5 Mapping to a type and its subtypes

Map declarations can be organized into a type/subtype hierarchy. Subtype map declarations may extend
the collection of entity instances created by its supertype map, specialize those instances created and
require additional selection criteria beyond those specified in the supertype map. The specification of a
target attribute assignment declared in a supertype map is inherited by its subtype maps. Through these
means, the pattern of inheritance present in the target schema can be duplicated in the map declarations.

Syntax:

136 map decl = MAP map id AS target parameter ';' { target parameter ';' }
(map_subtype of clause subtype binding header map decl body) | (
binding header map_ decl body { binding header map decl body })

END MAP ';'
141 map subtype of clause = SUBTYPE OF '(' map reference ')' ';'

The following rules shall apply for inheritance among map declarations:

— A subtype map declaration shall execute if its WHERE rule and the WHERE rules of all its supertype
maps evaluates to TRUE.

— A subtype map declaration inherits all target parameters from its supertype map declarations.

— A subtype map declaration may redeclare the type of any target parameter of its supertype maps.
The type of the redeclared target parameter shall be a specialization of every type of the target
parameter declared in its supertype maps. The rules of specialization are those defined in ISO
10303-11, 9.2.6.

28 S © ISO 2005 — All rights reserved

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

ISO 10303-14:2005(E)

— A subtype map declaration may add new target parameters by declaring an additional
target parameter with an target parameter id different from the ones in its super-
type map declarations.

— If a supertype map declares a target parameter of type SELECT (see ISO 10303-11, 8.4.2), GENERIC
(see ISO 10303-11, 9.5.3.2), or of an entity data type that is declared ABSTRACT (see ISO 10303-11,
9.2.4.1) and no subtype map declaration that redefines this target parameter is executed, then no
instance shall be created for the target parameter.

Whether a subtype map extends the collection of entity instances created by its supertype map or spe-
cializes those instance created depends on whether the subtype map references
target parameter id syntax elements declared in the supertype map or whether it declare addi-
tional target parameter id syntax elements. A subtype map may introduce a
target parameter id thatis not defined in any of the supertype maps. In this case, a new target
entity of the type defined by the target parameter is created.

A subtype map may reference for assignment a target attribute referenced for assignment in one of its
supertypes (possibly through several levels of inheritance). In this case, the target attribute is assigned
the value corresponding to that of the most specialized map for which the selection criteria and selec-
tion criteria of its supertypes is satisfied.

A subtype map shall have exactly one direct supertype map.

EXAMPLE 1 This example illustrates assignment to attributes declared in supertypes and subtypes through
supertype and subtype maps. Source entities are of one type, s_project. Target entities are of type t_project and
perhaps one of its subtypes, in_house_project and external project. The target_parameter_id, tp, used in the
supertype map (project_map) is used again in its subtype maps (in_house_map, ext_map) signifying that the
corresponding target entity is specialized in the subtype maps.

SCHEMA source schema;
ENTITY s project;
name : STRING;
project type : STRING;
cost : INTEGER;
price : INTEGER;
vendor : STRING;
END ENTITY;
END SCHEMA;

© ISO 2005 — All rights reserved 29

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

ISO 10303-14:2005(E)

SCHEMA target schema;
ENTITY t project
SUPERTYPE OF (ONEOF (in house project, external project));
name : STRING;
cost : INTEGER;
management : STRING;
END ENTITY;

ENTITY in house project
SUBTYPE OF (t project);
END ENTITY;

ENTITY external project
SUBTYPE OF (t project);
price : INTEGER;

END ENTITY;

END_SCHEMA;

SCHEMA MAP example;

REFERENCE FROM source_schema AS SOURCE;
REFERENCE FROM target_schema AS TARGET;

MAP project map AS tp : target schema.t project;

FROM p : source schema.s project;
SELECT
tp.name := p.name;
tp.cost := p.cost;
END MAP;
MAP in house map AS tp : target schema.in house project;
SUBTYPE OF (project map);
WHERE (p.project type = 'in house');
SELECT
tp.management := IF (p.cost < 50000) THEN 'small accts'

ELSE 'large accts' END IF;
END MAP;

MAP ext map AS tp : target schema.external project;
SUBTYPE OF (project map);

WHERE (p.project type = 'external');
SELECT
tp.price := p.price;
tp.management := p.vendor;
END MAP;

END SCHEMA MAP;

A supertype map may define entity instantiation loops. A subtype map of such a supertype map shall
inherit these instantiation loops. The body of the instantiation loop may be redefined. The correspon-
dence between supertype map bodies and subtype map bodies where instantiation loops are used is
made through use of identical index identifiers; the map body of the subtype map inheriting a loop shall
reference the identical index identifier as defined in its supertype map.

30 © ISO 2005 — All rights reserved

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

ISO 10303-14:2005(E)

EXAMPLE 2 This example illustrates the inheritance of an entity instantiation loop.

SCHEMA source schema;
ENTITY part;

name STRING;
no_of_versions INTEGER;
is assembly BOOLEAN;

END ENTITY;
END SCHEMA;

SCHEMA target schema;
ENTITY product;

name STRING;
END _ENTITY;

ENTITY product version;
INTEGER;
product;

version id
of product
END _ENTITY;

ENTITY product definition;
name STRING;
of version
END _ENTITY;

product version;

END_ SCHEMA;

SCHEMA MAP example;
REFERENCE FROM source_schema AS SOURCE;
REFERENCE FROM target_schema AS TARGET;

MAP super map AS

jokva’y AGGREGATE OF product definition;
pver AGGREGATE OF product version;
pro product;

FROM prt part;

FOR i1 := 1 TO prt.no of versions;

SELECT

pver[i].version id := 1i;

pver[i].of product := pro;
pvw[i] .of version := pver[i];

pvw[i] .name
SELECT

pro.name
END MAP;

'view of part + prt.name;

'part + prt.name;

MAP sub map AS
pro product;
SUBTYPE OF (super map);
WHERE
prt.is assembly
SELECT
pvw[i] .name

TRUE;

'view of assembly
' + prt.name;

+ prt.name;

pro.name
END MAP;
END SCHEMA MAP;

'assembly

9.4.6 Explicit declaration of complex entity data types

Complex entity data types (see ISO 10303-11, 3.2.1) may be explicitly declared in the map header. A
complex entity data type is denoted by syntax that lists the partial complex entity data types that are
combined to form it, separated by ‘&’.

© ISO 2005 — All rights reserved

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO
No reproduction or networking permitted without license from IHS

31

Not for Resale

ISO 10303-14:2005(E)

The partial complex entity data types may be listed in any order.

Syntax:

214 target parameter = target parameter id ({
[AGGREGATE [bound spec] OF]
target entity reference = entity reference
entity reference = [(source schema ref |

schema ref) '.'] entity ref

213
78

', ' target parameter id } ':'
target entity reference

{ '&' entity reference }
target schema ref |

Rules and restrictions:

a) Each entity ref shall be a reference to an entity data type definition which is visible in the

current scope.

b) The referenced complex entity data type shall describe a valid domain within a target schema

(see ISO 10303-11, annex B).

c) A
target entity reference.

given entity reference shall

occur

at most once within a

d) Foreachentity reference declaredinthe target entity reference, none ofits

supertypes shall be declared.

EXAMPLE This example illustrates the use of the ‘&’ syntax to define target complex entity data types.

SCHEMA source schema;

ENTITY pump;
id, name

END ENTITY;

STRING;

END_ SCHEMA;
SCHEMA target schema;
ENTITY item

ABSTRACT SUPERTYPE OF (ONEOF (product, kitchen appliance)):;
END ENTITY;
ENTITY product SUBTYPE OF (item);

id, name :STRING;
END ENTITY;

ENTITY kitchen appliance SUBYPE OF (item);
END ENTITY;

ENTITY product related product category;
name STRING;

products SET OF product;
END ENTITY;

END SCHEMA;
SCHEMA MAP example;

REFERENCE FROM source_schema AS SOURCE;
REFERENCE FROM target_schema AS TARGET;

MAP network for pump AS
pr product & kitchen appliance;
prpc product related product category;
FROM p pump;
SELECT
pr.id := p.id;
pr.name := p.name;
prpc.name := 'pump';
prpc.products := [pr
END MAP;

17

32

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO

No reproduction or networking permitted without license from IHS Not for Resale

© ISO 2005 — All rights reserved

ISO 10303-14:2005(E)

END_SCHEMA MAP;

9.4.7 Dependent map

A dependent map is a map that shall only execute by means of a map call (see 10.3). A dependent map

shall have simple types and/or entity data types as source parameters.

Syntax:

dep map partition } END DEPENDENT MAP ';'
[AGGREGATE [bound spec] OF] target entity reference

70 dep map decl body = dep binding decl map project clause
68 dep binding decl = dep from clause [where clause] |
ordered by clause]

';'}

':' (simple types | type reference)

66 dependent map decl = DEPENDENT MAP map id AS target parameter {
target parameter } [map subtype of clause] dep map partition ({

214 target parameter = target parameter id { ',' target parameter id }

71 dep map partition = [PARTITION partition id ':'] dep map decl body

72 dep source parameter = source parameter id { ',' source parameter id }

69 dep from clause = FROM dep source parameter ';' { dep source parameter

Rules and restrictions:

a) If more than one partition exists, a partition id shall be provided for each partition.

b) For every target entity data type referenced in the dependent map header, at least one of the par-

titions of the map declaration shall create instances for it.

¢) Partition_ids shall be unique within the scope of the dependent map declaration.

d) A dependent map declaration containing the map subtype of clause shall contain

exactly one partition

EXAMPLE

This example illustrates the use of a dependent map to instantiate target organization instances having unique id
attributes. The call to the dependent map ensures organization instances in the target population have unique id

attributes, since map calls with identical arguments return the same target entity instance. See 10.3.

SCHEMA source;

ENTITY named organization;
name : STRING;

END ENTITY;

ENTITY id organization;
id : STRING;

END ENTITY;

END SCHEMA;

SCHEMA target schema;
ENTITY organization;
id : STRING;
UNIQUE
url: id;
END ENTITY;
END SCHEMA;

SCHEMA MAP example;

REFERENCE FROM source_schema AS SOURCE;
REFERENCE FROM target_schema AS TARGET;

© ISO 2005 — All rights reserved

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

33

ISO 10303-14:2005(E)

MAP unique orgs map AS org : organization;
PARTITION a_ org;
FROM a : named organization;
RETURN org map (a.name) ;
PARTITION b_org;
FROM b : id_organization;
RETURN org map(b.id);
END MAP;

DEPENDENT MAP org map AS org : organization;
FROM id : STRING;
SELECT
org.id := id;
END DEPENDENT MAP;

END_SCHEMA MAP;

9.5 Schema view declaration

A schema view declaration defines a common scope for a collection of related declarations. A schema
view may contain any declarations from language subset 1 (see Table 1).

The order in which declarations appear within a schema view declaration is not significant.

Declarations in one schema view or EXPRESS schema may be made visible within the scope of
another schema view via an interface specification as described in clause 13.

Syntax:

189 schema view decl = SCHEMA VIEW schema view id ';' { reference clause }
[constant decl] schema view body element list END SCHEMA VIEW ';'

167 reference clause = REFERENCE FROM schema ref or rename ['('
resource or rename { ',' resource or rename } ')'] [AS (SOURCE |
TARGET)] ';'

188 schema view body element list = schema view body element ({
schema view body element }

187 schema view body element = function decl | procedure decl | view decl

| rule decl

Rules and restrictions:

a) The syntax AS(SOURCE | TARGET) shall not be used in view schema.

EXAMPLE ap203_arm names a schema_view that may contain declarations defining a view over the schema
config_control_design.

SCHEMA VIEW ap203_arm;

REFERENCE FROM config control design;

VIEW part version

(* other declarations as appropriate *)

END_ SCHEMA VIEW;

9.6 Schema map declaration

A schema map declaration defines a common scope for a collection of related declarations. A schema
map shall identify one or more schemas as source and one or more schemas as target (see 13.2). A
schema map is not limited to declarations in language subsets (see Table 1).

34 © ISO 2005 — All rights reserved

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

ISO 10303-14:2005(E)

The order in which declarations appear within a schema map declaration is not significant.

Declarations in one schema map may be made visible within the scope of another schema map via an
interface specification as described in clause 13.

Syntax:
184 schema map decl = SCHEMA MAP schema map id ';' reference clause {
reference clause } [constant decl] schema map body element list

END SCHEMA MAP ';'
182 schema map body element = function decl | procedure decl | view decl |
map decl | dependent map decl | rule decl

Rules and restrictions:

a) The schema map shall include explicitly, or by reference using the REFERENCE language ele-
ment (see 13.2), at least one map declaration.

EXAMPLE 1 iges2step names a schema map that may contain declarations for translating geometry defined
using an EXPRESS data set base upon IGES into a data set based on ISO 10303-203.

SCHEMA MAP iges2step;

REFERENCE FROM step schema AS TARGET;
REFERENCE FROM iges express schema AS SOURCE;
MAP iges structure

(* other declarations as appropriate *)

END_ SCHEMA MAP;

A schema map may reference EXPRESS schema, other schema map schema and schema view schema
through use of the reference clause language syntax (see 13.2).

Syntax:

184 schema map decl = SCHEMA MAP schema map id ';' reference clause {
reference clause } [constant decl] schema map body element list
END SCHEMA MAP ';'

167 reference clause = REFERENCE FROM schema ref or rename [' ('
resource or rename { ',' resource or rename } ')'] [AS (SOURCE |
TARGET)] ';'

186 schema ref or rename = [general schema alias id ':']
general schema ref

Rules and restrictions:

a) A schema map shall reference at least one EXPRESS schema designated as a mapping source
using the AS SOURCE syntax.

b) A schema map shall reference at least one EXPRESS schema designated as a mapping target
using the AS TARGET syntax.

EXAMPLE 2 This example illustrates the designation of source and target EXPRESS schemas. EXPRESS
schema schema_target one is referenced as the target of mapping. EXPRESS schema schema_source_one is
referenced as the source of mapping; it may be referred to as s1 within the scope of this schema_map.

© ISO 2005 — All rights reserved 35

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

ISO 10303-14:2005(E)

SCHEMA MAP map name;
REFERENCE FROM schema_target_one AS TARGET;
REFERENCE FROM sl : schema source one AS SOURCE;
MAP my map AS

END SCHEMA MAP;

9.7 Local declaration

A map partition may declare local variables. Local variables are declared with the LOCAL language ele-
ment. A local variable is only visible within the scope of the map partition in which it is declared,
including its IDENTIFIED BY, WHERE and SELECT language elements. When a map partition is evalu-
ated, all local variable initially have an indeterminate value unless an initializer is explicitly given.
Local variables may be assigned values in the body of the map partition and may be referenced in
expressions.

Syntax:

47 binding header = [PARTITION partition id ';'] [from clause] [
local decl] [where clause] [identified by clause] [
ordered by clause]

129 local decl = LOCAL local variable { local variable } END LOCAL ';'
130 local variable = variable id { ',' variable id } ':' parameter type [
':=' expression] ';'

Rules and restrictions:

a) local decl shall not be used in a view declaration.

EXAMPLE In this example a local variable is assigned a target entity data type instance value. An attribute of
that entity is updated in the body of the map.

SCHEMA MAP arm2aim;

REFERENCE FROM arm AS SOURCE;
REFERENCE FROM aim AS TARGET:

MAP product map AS p : product;
p : product;

FROM
ap : arm product;
LOCAL
asc : applied security classification;
END LOCAL;
SELECT
asc := asc@security classification map(ap.security);
asc.items := asc.items + p;
END MAP;
MAP security classification map AS
asc : applied security classification;
scl : security classification;
FROM
arm_asc : arm_security classification;
SELECT
asc.items := [];
asc.classification := scl;
END MAP;

END SCHEMA MAP;

36 © ISO 2005 — All rights reserved

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

ISO 10303-14:2005(E)

9.8 Constant declaration

Constants may be defined for use within the WHERE language element of a view or map declaration, or
within the body of a map declaration or algorithm. Entity data type valued constants are made present
in a target population if they are referenced by entity data type instances of that target population.

Constant declarations are as defined in ISO 10303-11, 9.4.

9.9 Function declaration

Functions may be defined for use within the WHERE language element of a view or map declaration, or
within the body of a map declaration. An entity instance created and returned by the evaluation of a
function is made present in a target population if it is referenced by an attribute of a map declaration tar-
get instance.

Function declarations are as defined in ISO 10303-11, 9.5.1.

9.10 Procedure declaration

Procedures may be defined for use within the bodies of function declarations. Procedures shall not be
used directly within the body of a map or view declaration.

Procedure declarations are as defined in ISO 10303-11, 9.5.2.

9.11 Rule declaration

Rules may be defined for use within a schema view.
Rule declarations are as defined in ISO 10303-11, 9.6.

Inclusion of rule declarations has no effect on the execution model nor on the contents of source nor
view extents.

10 Expressions

10.1 Overview

Expressions are combinations of operators, operands, and function calls that are evaluated to produce a
value.

The built-in functions defined in Clause 15, and the operators defined in clause 12 of ISO 10303-11;
1994 apply to this part of ISO 10303. Arguments of view data types shall be treated as arguments of
entity data types. The relationship between view definitions and entity definitions is defined in annex C.

© ISO 2005 — All rights reserved 37

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

ISO 10303-14:2005(E)

Syntax:
81 expression = simple expression [rel op extended simple expression]
169 rel op extended = rel op | IN | LIKE
168 rel op = '<' | '">'" | '<=' | '>=' | <> t=t] >t | V=t
193 simple expression = term { add _like op term }
216 term = factor { multiplication like op factor }
84 factor = simple factor ['**' simple factor]
194 simple factor = aggregate initializer | entity constructor |
enumeration reference | interval | query expression | ([unary op] (
'(' expression ')' | primary)) | case expr | for expr | 1if expr
158 primary = literal | (qualifiable factor { qualifier })
163 qualifiable factor = attribute ref | constant factor | function call
general ref | map call | population | target parameter ref |
view attribute ref | view call

Entity constructors create instances that are local only to the function or procedure in which they are
used. Instances produced by entity constructors shall not create target nor source populations.

Evaluation of an expression is governed by the precedence of the operators which form part of the
expression. Expressions enclosed by parentheses are evaluated before being treated as a single operand.
Evaluation proceeds from left to right, with the highest precedence being evaluated first. Table 3 speci-
fies the precedence rules for all of the operators of EXPRESS-X. Operators in the same row have the
same precedence, and the rows are ordered by decreasing precedence. An operand between two opera-
tors of different precedence is bound to the operator with the higher precedence. An operand between
two operators of the same precedence is bound to the one on the left.

38 © ISO 2005 — All rights reserved

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

ISO 10303-14:2005(E)

Table 3: Operator precedence

Precedence Description Operators
1 Component Reference [1 .\ :: <= {}
2 Unary Operators + - NOT
3 Exponentiation * K
4 Multiplication/Division / * DIV MOD AND | |
5 Addition/Subtraction + - OR XOR
6 Relational = <> <= >= < > :=: :<>: IN LIKE

10.2 View call

A view call is an expression that evaluates to a view data type instance or aggregate of view data type
instances. The view call provides a means to access a view data type instance (or instances) via the
view name and actual parameters corresponding to its binding instance (when no IDENTIFIED BY is
defined by the view) or IDENTIFIED BY language element expression values (when
IDENTIFIED BY is defined by the view). When no IDENTIFIED BY language element is present in
the partition, the number, type, and order of the actual parameters shall agree with those of the source
parameters of the FROM language element in the view. When an IDENTIFIED BY language element is
present, the number, type and order of the actual parameters shall agree with those of the expressions of
the IDENTIFIED BY language element.

If no binding instance corresponds to the actual parameters of the view call, the call evaluates to an
indeterminate value.

A view call identifies a single partition of a view. If the view contains more than one partition, a
partition qualification may be specified to explicitly select the partition for which a value
shall be returned. Alternatively, when no partition qualification is specified, the partition
for which a value is returned shall be the first partition to appear lexically in the declaration for which
the number and type of arguments agree with the parameters and the WHERE language element returns
true. For type agreement, the type compatibility rules of ISO 10303-11 clause 12.11 shall apply.

A view call referencing a constant partition shall have an empty argument list.

Syntax:

227 wview call = view reference [partition qualification] ' (' [
expression or wild { ',' expression or wild }] ')'

153 partition qualification = '\' partition ref

82 expression or wild = expression |

© IS0 2005 — All rights reserved S 39

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

ISO 10303-14:2005(E)

EXAMPLE This example illustrates the use of a view call to define a relationship between two view data types.
The IDENTIFIED_ BY language element in the person_part partition specifies one expression, a.creator. View
calls to approver\person_part will therefore be supplied with one argument, a STRING which is also the creator
attribute of an approval entity instance.

SCHEMA VIEW example;
REFERENCE FROM src schema;

VIEW approver;
PARTITION person part;
FROM a : approval; p : person;
WHERE a.creator = p.name;
IDENTIFIED BY a.creator;

SELECT

approver id : INTEGER := p.id;
PARTITION org part;
FROM a : approval; o : organization;

WHERE a.creator = o.name;
IDENTIFIED BY a.creator;
SELECT
approver id : INTEGER := o.id;
END VIEW;

VIEW design order;
FROM a : approval;
SELECT
id : STRING := a.id;
approved by : approver :=
approver\person part (a.creator);
END VIEW;
END SCHEMA VIEW;

SCHEMA src_schema;

ENTITY approval;
id : STRING;
creator : STRING;
END ENTITY;

ENTITY person;
name : STRING;
id : INTEGER;

END ENTITY;

ENTITY organization;
id : INTEGER;
name : STRING;

END ENTITY;

END SCHEMA;

(* Source data set in ISO 10303-21 form — see [2] *)
#1=APPROVAL('a 1', 'Jones');

#2=APPROVAL('a 2','Smith');
#3=APPROVAL('a 3', 'Jones');

#4=PERSON ('Jones"',123);

#5=PERSON ('Smith',234);

(* Resulting view instances in ISO 10303-21 form *)
#101=APPROVER (123) ;

#102=APPROVER (234) ;

#103=DESIGN ORDER('a 1',6#101);

#104=DESIGN ORDER('a 2',6#102);

#105=DESIGN ORDER('a 3',6#101);

40 © ISO 2005 — All rights reserved

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

ISO 10303-14:2005(E)

10.3 Map call

A map call is an expression that evaluates to target entity instances or an aggregate of entity instances.
The map call provides a means to access the values produced by evaluation of a map (including depen-
dent map) via the map name and actual parameters corresponding to its binding instance (when no
IDENTIFIED BY is defined by the map) or IDENTIFIED BY language element expression values
(when IDENTIFIED BY is defined by the map). When no IDENTIFIED BY language element is
present in the map, then the number, type, and order of the actual parameters shall agree with those of
the source parameters of the FROM language element in the partition. When an IDENTIFIED BY lan-
guage element is present, the number, type and order of the actual parameters shall agree with those of
the expressions of the IDENTIFIED BY language element.

If no binding instance corresponds the actual parameters of the map call, the call evaluates to an inde-
terminate value.

A map call identifies a single partition of a map. If the map contains more than one partition a
partition qualification may be provided to explicitly select the partition for which a value
shall be returned. Alternatively, when no partition_qualification is specified, the partition for which a
value is returned shall be the first partition that appears lexically in the map declaration for which the
number and type of arguments agree with the parameters and the WHERE language element returns
true. For type agreement, the type compatibility rules of ISO 10303-11 clause 12.11 shall apply.

Syntax:

135 map call = [target parameter ref 'Q@'] map reference [
partition qualification] '(' expression or wild { ','
expression or wild } ")'

153 partition qualification = '\' partition ref

Rules and restrictions:

a) target parameter ref shall refer to a parameter reference declared in the map declara-
tion referenced as map reference.

b) If the map declaration referenced by the map call declares more than one target parameter, the
target parameter ref @ syntax shall be used to identify the target to be returned by the
map call.

EXAMPLE 1 This example illustrates the use of a map call to define a relationship between entities in the target
schema.

(* source schema ¥*)
SCHEMA src;
ENTITY approval;
id : STRING;
creator : STRING;
END ENTITY;
END SCHEMA;

(* target schema ¥*)

© ISO 2005 — All rights reserved 41

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

ISO 10303-14:2005(E)

SCHEMA tar;
ENTITY person;
name : STRING;
END ENTITY;
ENTITY design_order;
id : STRING;
approved by : person;
END ENTITY;
END SCHEMA;

SCHEMA MAP example;
REFERENCE FROM src AS SOURCE;
REFERENCE FROM tar AS TARGET;

MAP person _map AS p : tar.person;
FROM a : approval;
IDENTIFIED BY a.creator;
SELECT
p.id := a.creator;
END_MAP;

MAP design order map AS d : tar.design order;
FROM a : approval;

SELECT

d.id := a.id;

d.approved by := p@person map(a.creator); -- map call
END_MAP;

END_SCHEMA MAP;

(* source instance set written as ISO 10303-21 instances — see [2] *)
#1 = APPROVAL('a 1','Miller');

#2 APPROVAL('a 2','Jones');

#3 = APPROVAL('a 3','Miller');

(* Resulting target instances in ISO 10303-21 form (see [2]). *)
#101=PERSON ('Miller');

#102=PERSON ('Jones") ;

#103=DESIGN ORDER('a 1',6#101);

#104=DESIGN ORDER('a 2',6#102);

#105=DESIGN ORDER('a 3',6#101);

EXAMPLE 2 This example illustrates the use of map calls where partitions are not explicitly identified.

SCHEMA source schema;
TYPE person select = SELECT (male, female, child);
END TYPE;

ENTITY male;
name: STRING;
END ENTITY;

ENTITY female;
name : STRING;
END ENTITY;

ENTITY child;

name : STRING;

parents : SET of person select;
END ENTITY;
END_ SCHEMA;

SCHEMA target schema;
ENTITY person;

name : STRING;
END ENTITY;

42 © ISO 2005 — All rights reserved

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

ISO 10303-14:2005(E)

ENTITY person with parents
SUBTYPE OF (person);

parents : SET [1:2] of person;
END ENTITY;
END SCHEMA;

SCHEMA MAP source to target;
REFERENCE FROM source_schema AS SOURCE;
REFERENCE FROM target_schema AS TARGET;

MAP person_map AS
P : person;
PARTITION p male;
FROM m : male;
SELECT
p.name := m.name;
PARTITION p female;
FROM f : female;
SELECT
p.name := f.name;
PARTITION p_child;
FROM c : child;
RETURN person with parents map (c);
END_MAP;

MAP person with parents map AS
p : person with parents;
FROM c: child;
WHERE SIZEOF (c.parents) > 0; -- only create person with parents if there is
-- at least one parent.

SELECT
p.name := c.name;
p.parents := FOR EACH par IN c.parents;
RETURN person map (par); -- see 10.5.
END MAP;

END SCHEMA MAP;
(* example population:
SOURCE:

#1=FEMALE ('Julia');
#3=MALE ('Richard') ;
#4=CHILD ('Mary"', (#1));
#5=CHILD('Paul', (#1,#3));

TARGET :

#6=PERSON('Julia');

#7=PERSON_WITH PARENTS ('Mary', (#6));
#8=PERSON ('Richard"') ;

#9=PERSON_WITH PARENTS ('Paul', (#8,#6));

*)

10.4 Partial binding calls

A partial binding call is a view or map call in which one or more arguments is the ¢’ language element.
The partial binding call evaluates to a subset of the view extent or target population of the view or map
declaration respectively.

The FROM language element defines the elements of binding instances in the binding extent of the
view or map call (see 9.2.1). In a view or map declaration not specifying an IDENTIFIED BY lan-
guage element, the view or map declaration defines a functional correspondence from binding instances
to instances in the view extent or target population: there is a unique instance in the view extent or tar-
get population for each binding instance. In view or map declarations specifying an IDENTIFIED BY

© ISO 2005 — All rights reserved 43

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

ISO 10303-14:2005(E)

language element this correspondence is not functional, there is not a unique instance in the view extent
or target population for each binding instance, rather there is a unique instance in the view extent or tar-
get population for each equivalence class of binding instances defined by the IDENTIFIED BY lan-
guage element (see 9.2.2).

When IDENTIFIED BY is not specified, each qualified binding instance serves as a key to identify an
instance of the correspondence. When IDENTIFIED BY is specified, any binding instance in the
equivalence class serves as a key to identify an instance of the correspondence. The elements (compo-
nents of the keys) of these two kinds of keys are defined by the FROM language element and
IDENTIFIED BY expressions respectively.

A partial binding call is a view or map call in which a value for one or more of the elements of these
keys is not specified, (designated by © ’ language element in the syntax).

When IDENTIFIED BY is not specified, this partially specified key corresponds to the set of qualified
binding instances that match on the specified elements of the key. The components of the key that are
not specified (designated by ¢) are ignored in the matching process.

When IDENTFIED BY is specified, this partially specified key is matched against values from the
evaluation of the corresponding expression in the IDENTIFIED BY language element. The compo-
nents of the key that are not specified (designated by °) are ignored in the matching process.

The value of the partial binding call is the set of view instances (view call) or entity instances (map call)
corresponding to the binding instances collected by these means.

EXAMPLE In the following, the various versions associated with a part are collected by using a partial binding
call. Returned by the partial binding call version_and_its_product is the subset of the extent for which the sec-
ond element of the binding instance is instance-equal to the specified product instance.

VIEW part;
FROM p : product;
SELECT
versions : SET OF version and its product
:= version and its product(, p);
END VIEW;

VIEW version and its product;
FROM pdf : product definition formation; p : product;

WHERE p :=: pdf.of product;
SELECT

the version : product definition formation := pdf;
END VIEW;

10.5 FOR expression

A FOR expression computes an aggregate value by iterating over an index value or aggregate. This
specification defines two forms of iteration:

— the foreach expr expression iterates over an EXPRESS aggregate and evaluates the expres-
sion for each element of that aggregate. The result of these evaluations are collected in an aggre-
gate which is the value of the FOR expression;

— the forloop expr expression is controlled by the repeat_control (ISO 10303-11, 13.9) and eval-
uates the expression for each iteration.

If no iteration occurs, the FOR expression evaluates to an empty aggregate.

44 © ISO 2005 — All rights reserved

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

ISO 10303-14:2005(E)

Syntax:

89 for expr = FOR (foreach expr | forloop expr)
85 foreach expr = EACH variable id IN expression [where clause] RETURN

expression
86 forloop expr = repeat control RETURN expression
171 repeat control = [increment control] [while control] [
until control]
113 increment control = variable id ':=' bound 1 TO bound 2 [BY increment

1.
232 while control = WHILE logical expression
222 until control UNTIL logical expression

Rules and restrictions:

a) Each expression ofthe foreach expr shall evaluate to an EXPRESS aggregate, extent,
or view extent.

b) A view declaration shall not contain the FOR expression.

The foreach expr language element implicitly declares an iterator variable variable id (see syn-
tax rule 85) of type GENERIC visible within the scope of the where clause and expression. The
expression after the IN language element shall be the EXPRESS aggregate over which the iteration is
performed. In each iteration of the loop, an element of the aggregate is bound to this iterator variable.
The elements are bound in order proceeding from LOINDEX to HIINDEX (ISO 10303-11, 15.17 and
15.11).

The RETURN language element of syntax rule 85 specifies an expression evaluated for each element of
the iteration. The expression is evaluated in an environment binding the iterator variable to each value
of the source aggregate in turn. The result of each evaluation is added to the target attribute aggregate as
though the union operator (ISO 10303-11, 12.6.3) were applied with the target attribute aggregate as its
left operand and the result of the expression evaluation as its right operand.

The optional where clause of syntax rule 85 specifies an expression that shall return a LOGICAL or
indeterminate value. The expression following the RETURN language element is only evaluated and the
value included in the result aggregate if the where clause evaluates to TRUE.

© ISO 2005 — All rights reserved 45

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

ISO 10303-14:2005(E)

EXAMPLE 1 In this example, the target entity component maps to the source entity product_definition and all
instances of product_definition_name which reference one instance of product_definition are grouped into the
target attribute component.names. This is specified as follows.

(* Source schema *)

SCHEMA source schema;

ENTITY product definition;
product name : STRING;
description : STRING;

END ENTITY;

ENTITY product definition name;
name : STRING;
of product definition : product definition;

END ENTITY;

END_ SCHEMA;

(* Target schema ¥*)

SCHEMA target schema;

ENTITY component;
names : SET [0:?] OF STRING;
product name : STRING;
description : STRING;

END ENTITY;

END_ SCHEMA;

(* Mapping definition *)
SCHEMA MAP example;
REFERENCE FROM source_schema AS SOURCE;
REFERENCE FROM target_schema AS TARGET;
MAP component map AS c : component;
FROM pd : product definition;
SELECT
c.description := pd.description;
c.product name := pd.product name;
c.names := FOR EACH pdn_ instance
IN EXTENT ('SOURCE SCHEMA.PRODUCT DEFINITION NAME') ;
WHERE pdn_instance.of product definition :=: pd;
RETURN pdn_ instance.name;
END MAP;
END SCHEMA MAP;

EXAMPLE 2 This example illustrates the use of nested FOR expressions. Example 1 is extended as follows.
(* Source schema ¥*)

SCHEMA source schema;

ENTITY product definition;
product name : STRING;
description : STRING;

END ENTITY;

ENTITY product definition name;
name : STRING;
of product definition : product definition;

END ENTITY;

ENTITY product definition value;
of pdn : product definition name;
val : STRING;

END _ENTITY;

END_SCHEMA;

46 © ISO 2005 — All rights reserved

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

ISO 10303-14:2005(E)

(* Target schema *)
SCHEMA target schema;
ENTITY component;
values : SET [0:?] OF SET [0:?] OF STRING;

product name : STRING;
description : STRING;
END_ENTITY;
END_SCHEMA;

All instances of product definition_value which reference one instance of product definition_name are
grouped together and are assigned to the inner aggregate of component.values. This is specified as follows.

(* Mapping definition *)

SCHEMA MAP example;

REFERENCE FROM source schema AS SOURCE;
REFERENCE FROM target_schema AS TARGET;

MAP component map AS c : component;
FROM pd : product definition;
SELECT
c.description := pd.description;
c.product name := pd.product name;
c.values := FOR EACH pdn_ instance
IN EXTENT ('SOURCE SCHEMA.PRODUCT DEFINITION NAME') ;
WHERE pdn_ instance.of product definition :=: pd;

RETURN FOR EACH pdv_instance
IN EXTENT ('SOURCE SCHEMA.PRODUCT DEFINITION VALUE');
WHERE pdv_instance.of pdn :=: pdn instance;
RETURN pdv_instance.val;
END_MAP;
END_SCHEMA MAP;

10.6 IF expression

The 1F language element provides for the conditional evaluation of expression language elements
based on the evaluation of logical expression of syntax rule 110. If no
logical expression is satisfied and an ELSE language element is not specified, the map or view
attribute is assigned an indeterminate value.

Syntax:

110 if expr = IF logical expression THEN expression { ELSIF
logical expression expression } [ELSE expression] END IF

10.7 CASE expression

The cASE language element provides for the conditional evaluation of expression language ele-

- ments following the pattern of the EXPRESS CASE statement (ISO 10303-11, 13.4). If no OTHERWISE

- language element is specified and no case expr action is satisfied the map or view attribute is
assigned an indeterminate value.

Syntax:

56 case expr = CASE selector OF { case expr action } [OTHERWISE ':'
expression] END CASE
57 case_expr action = case label { ',' case label }

':' expression ';

© ISO 2005 — All rights reserved 47

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

ISO 10303-14:2005(E)

Rules and restrictions:

a) The CASE expression shall not be used in conformance class 1 conforming schema views.

EXAMPLE This example illustrates use of the CASE expression.

SCHEMA source schema;

ENTITY approval;
status : STRING;

END ENTITY;

END SCHEMA;

SCHEMA target schema;

ENTITY my approval;
status : INTEGER;

END ENTITY;

END SCHEMA;

SCHEMA MAP mapping example;

REFERENCE FROM source_schema AS SOURCE;
REFERENCE FROM target_schema AS TARGET;

MAP approval map AS ma : my approval;
FROM a : approval;

SELECT
ma.status := CASE a.status OF
'approved' H
'not yet approved' : -1;
'disapproved’ : 05
OTHERWISE : 25
END CASE;
END_MAP;

END_SCHEMA MAP;

10.8 Forward path operator

The forward path operator (::) provides an aggregate of entity instances referenced by the value of
attribute ref in syntax rule 88. If the optional extent reference of syntax rule 154 is
specified, the result aggregate shall contain only entity instances of the type corresponding to
extent reference or of one of its subtypes.

Syntax:
88 forward path qualifier = '::' attribute ref [path condition]
154 path condition = '{' extent reference ['|' logical expression] '}'

Rules and restrictions:
a) The forward path operator shall not be used in conformance class 1 conforming schema views;

b) A variable having the same name as extent reference is implicitly declared within the
scope of the forward path expression.

NOTE The variable does not have to be declared elsewhere, and it does not persist outside the expression.

NOTE The example of clause 10.9 illustrates the use of the forward path operator.

When logical expression of syntax rule 154 is specified, elements are taken in turn from the ref-
erenced extent and are bound to the implicitly declared variable. The logical expression is then

48 © ISO 2005 — All rights reserved

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

ISO 10303-14:2005(E)

evaluated in the environment of this binding. For each such binding of the wvariable, if
logical expression evaluates to TRUE the element is added to the result; otherwise, it is not.

NOTE The unnest function referenced below accepts one argument of arbitrary type (including a nested aggre-
gate) and returns an aggregate whose elements are non-aggregate types. For example, unnest([[a],[b,c],[[d]]])
returns [a,b,c,d]. See annex E for a definition of the unnest function.

EXAMPLE For some population a, an entity reference product and an attribute of instances in the extent a,
of_product, the expression result := a::of _product{product} is equivalent to the following EXPRESS specifi-
cation:
LOCAL

result : AGGREGATE OF GENERIC := [];
tmp : AGGREGATE OF GENERIC := [];

END LOCAL;
tmp := unnest(a);
REPEAT i1 := 1 TO HIINDEX (tmp) ;
result := result + QUERY (e <* unnest(tmp[i].of_product)|

: "SCHEMA NAME.PRODUCT' IN TYPEOF (e));
END_REPEAT;

iesult := unnest (result);
The expression result := a::x isequivalent to the EXPRESS specification:
fesult = [1;
tmp := unnest(a);
REPEAT i1 := 1 TO HIINDEX (tmp) ;
result := result + unnest (tmp[i].x);
END REPEAT;
result := unnest (result)

10.9 Backward path operator

The backward path operator (<-) provides an aggregate of entity instances using the expression on the
right side of the operator. The expression a <-x { b | c } evaluates to an aggregate of entity
instances such that for each element e of the aggregate:

— the attribute x of e references an element of the unnested a;

— eisoftypeb;
— and, the logical expression ¢ evaluate to TRUE in an environment where the implicit variable b is
bound to e.
Syntax:
43 backward path qualifier = '<-' [attribute ref] path condition
154 path condition = '{' extent reference ['|' logical expression] '}'

Rules and restrictions:

a) The backward path opeartor shall not be used in conformance class 1 conforming schema
ViIEWS;

b) attribute ref shall be defined in some partial entity data type of each instance of the argu-
ment extent.

c) A variable having the same name as extent reference is implicitly declared within the
scope of the backward path expression.

© ISO 2005 — All rights reserved 49

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

ISO 10303-14:2005(E)

When identifier a represents an population, the expression result := a<-x{b} is equivalent to
the EXPRESS specification:
LOCAL

result : AGGREGATE OF GENERIC := [];
tmp : AGGREGATE OF GENERIC := [];

END LOCAL;
result := [];
tmp := unnest(a):;
REPEAT i1 := 1 TO HIINDEX (tmp) ;
result := result + QUERY (e <* USEDIN(tmp[i], ''") |

('SCHEMA_NAME.B' IN TYPEOF (e))
AND (tmp[i] IN e.x));
END_ REPEAT;

The expression a<-{b} is equivalent to the EXPRESS specification:

result := [];
tmp := unnest(a):;
REPEAT i1 := 1 TO HIINDEX (tmp) ;
result := result + QUERY (e <* USEDIN(tmp[i],'") |

('"SCHEMA NAME.B' IN TYPEOF(e))):
END REPEAT;

NOTE The unnest function referenced above accepts one argument of arbitrary type (including a nested aggre-
gate) and returns an aggregate whose elements are non-aggregate types. for example, unnest([[a],[b,c],[[d]]])
returns [a,b,c,d]. See annex E for a definition of the unnest function.

EXAMPLE In this example path operators are used to compute the source aggregate of an instantiation loop.
The source aggregate contains all instances of type document_file, referring to a representation_type instance
with name of 'digital' and are referenced as documentation_ids of a
product_definition_with_associated_documents instance which refers to the source
product_definition_formation instance.

SCHEMA document schema;

ENTITY folder;
name : STRING;
END ENTITY;

ENTITY file;
name : STRING;
location : folder;
END ENTITY;
END SCHEMA;

SCHEMA source schema;

ENTITY product definition formation;
id : STRING;
name : STRING;

END ENTITY;

ENTITY product definition with associated documents;
documentation ids : SET OF document file;
formation : product definition formation;

END ENTITY;

ENTITY document file;
name : STRING;
representation type : document representation;

END ENTITY;

ENTITY document representation;
name : STRING;

END ENTITY;

END_SCHEMA;

50 © ISO 2005 — All rights reserved

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO
No reproduction or networking permitted without license

from IHS Not for Resale

SCHEMA MAP example2;
REFERENCE FROM document schema AS TARGET;
REFERENCE FROM source schema AS SOURCE;
MAP document map AS

folder : folder;

files: AGGREGATE OF file;

FROM pdf : product definition formation;

FOR EACH f IN

ISO 10303-14:2005(E)

pdf<-formation{product definition with associated documents}

::documentation ids{document file
| document file.representation type.name =
INDEXING 1i;

SELECT
files[i] .name := f.name;
files[i].location := folder;
folder.name := pdf.name;
END_MAP;

END SCHEMA MAP;

11 Built-in functions

11.1 Extent - general function

FUNCTION EXTENT (R : STRING) : SET OF GENERIC;

'digital'}

The EXTENT function evaluates to a set of all instances in the population that are of the type specified

by the parameter.

Parameters:

a) R is a string that contains the name of a entity data type or view data type. Such names are qual-
ified by the name of the schema which contains the definition of the type.

Result: A set containing all instances of the entity data type or view data type specified by the parame-
ter. It is an error to specify as the parameter a type which is neither a view data type nor an entity data

type defined in a source schema.

EXAMPLE The extent of the action entity data type in the automotive_design schema is:

EXTENT ('AUTOMOTIVE DESIGN.ACTION');

12 Scope and visibility

12.1 Overview

An EXPRESS-X declaration creates an identifier that can be used to reference the declared item in
other parts of the schema view / schema map (or in other schema views / schema maps). Some
EXPRESS-X constructs implicitly declare items, attaching identifiers to them. An item is said to be vis-

© ISO 2005 — All rights reserved
Copyright International Organization for Standardization
Reproduced by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

51

ISO 10303-14:2005(E)

ible in those areas where an identifier for a declared item may be referenced. An item shall only be ref-
erenced where its identifier is visible.

Certain EXPRESS-X items define a region (block of text) called the scope of the item. This scope lim-
its the visibility of identifiers declared within it. Scope can be nested; that is, an EXPRESS-X item
which establishes a scope may be included within the scope of another item. There are constraints on
which items may appear within the scope of a particular EXPRESS-X item. These constraints are spec-
ified in terms of language element syntax.

For each of the items specified in Table 4 below, the following subclauses specify the limits of the
scope defined, if any, and the visibility of the declared identifier both in general terms and with specific
details. For language elements defined in EXPRESS (ISO 10303-11) the limits of the scope defined and
the visibility of the declared identifier is as specified in EXPRESS (see ISO 10303-11, 10.3).

The general rules of scope and visibility of EXPRESS apply (see ISO 10303-11, 10.1, 10.2, 10.2.1).

Table 4: Scope and identifier defining items

Item Scope Identifier
Instantiation Loop . o
For Expression . !
Dependent map, Map . .
Dependent view, View . .
Source Parameter .
Target Parameter .
Path Expression . .
NOTE 1 - the identifier is an implicitly declared
variable within the scope of the declaration.

12.2 Schema view

Visibility: A schema view declaration is visible to all other schema views.

Scope: A schema view declaration defines a new scope. This scope extends from the keyword
SCHEMA VIEW to the keyword END SCHEMA VIEW that terminates that schema view declaration.

Declarations: The following items may declare identifiers within the scope of a schema view declara-
tion:

— constant;
— function;
— procedure;
— rule;

— view.

52 Tl © ISO 2005 — All rights reserved

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

ISO 10303-14:2005(E)

12.3 Schema map

Visibility: A schema map identifier is visible to all other schema views and schema maps.

NOTE The map declarations of a schema map shall not be referenced by a schema view.

Scope: A schema map declaration defines a new scope. The scope extends from the SCHEMA MAP key-
word to the keyword END SCHEMA MAP which terminates the schema map declaration.

Declarations: The following items may declare identifiers within the scope of a schema map:
— constant;

— function;

— procedure;

— view;

— dependent view;

— map;

— dependent map;

— rule.

12.4 View and dependent view

Visibility: A view or dependent view identifier is visible in the scope of the schema view, or schema
map in which it is declared. A view or dependent view identifier remains visible within inner scopes
that do not redeclare that identifier.

Scope: A view or dependent view declaration defines a new scope. This scope extends from the key-
word VIEW (DEPENDENT VIEW) to the keyword END VIEW (END DEPENDENT VIEW) which termi-
nates that view declaration.

Declarations: The following items may declare identifiers within the scope of a view declaration:
— partition label;

— FROM language element;

— IDENTIFIED BY language element;

— view attribute.

12.5 View partition label

Visibility: The visibility rules of a view partition label are identical with the visibility rules of the view
(see 12.4).

12.6 View attribute identifier

Visibility: A view attribute identifier is visible in the scope of the view in which it is declared.

© ISO 2005 — All rights reserved 53

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

ISO 10303-14:2005(E)

12.7 FOR expression

Visibility: The implicitly declared iterator variable is visible in the expression following the RETURN
keyword of the FOR expression and in the WHERE language element of syntax rule 85.

Scope: A FOR expression defines a new scope. This scope is visible for the expression followed by the
RETURN keyword of the FOR expression.

Declarations: The following items may declare identifiers within the scope of a FOR expression:
— FOR expression;

— QUERY expression.

12.8 Map and dependent map

Visibility: A map or dependent map identifier is visible in the scope of the schema view, or schema
map in which it is declared. A map or dependent map identifier remains visible within inner scopes that
do not redeclare that identifier.

Scope: A map or dependent map declaration defines a new scope. This scope extends from the key-
word MAP (DEPENDENT MAP) to the keyword END MAP (END DEPENDENT MAP) which terminates the
map declaration.

Declarations: The following items may declare identifiers within the scope of a map or dependent map
declaration:

— FOR expression;

— QUERY expression;

— instantiation loop;

— FROM language element;

— IDENTIFIED BY language element;

— attribute.

12.9 FROM Language Element

Visibility: A source parameter identifier is visible in the partition in which it is declared and in subtype
views or maps of that view or map.

12.10 Instantiation Loop

Visibility: The implicitly declared identifiers of an instantiation loops are visible within the items of the
SELECT language element followed by the instantiation loop. The scope is terminated either by the
END_MAP keyword or by the preceding instantiation loop.

Declarations: The QUERY expression may declare identifiers within the scope of an instantiation loop.

54 - © ISO 2005 — All rights reserved

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

ISO 10303-14:2005(E)

12.11 Path expression

Visibility: Within a path condition, the attributes of the type qualifier and its supertypes are visible as
well as the SELF keyword. In addition all identifiers declared outside the expression are visible.

Scope: The path expression defines a new nesting scope within the path condition language ele-
ment, which is the scope of the entity data type of the type qualifier (see ISO-10303-11, 10.3.5). The
new scope starts with the '|' syntax element and ends with the terminating closing brace '}".

Declarations: The QUERY expression may declare identifiers within the scope of a path condition.

13 Interface specification

13.1 Overview

Interface specifications enable items declared in one foreign schema, view schema and map schema to
be visible in another view schema or map schema.

13.2 The REFERENCE language element

The REFERENCE language element enable items declared in one schema, schema view or schema map
to be visible in the current schema view or schema map.

A REFERENCE specification makes the following items, declared in a foreign schema, schema view, or
schema map, to be visible in the current schema view:

— view

— dependent view;
— map

— dependent map;
— constant;

— entity;

— type;

— function;

— procedure;

— rule.

A REFERENCE specification identifies the name of the foreign schema, schema view or schema map,
and optionally the names of EXPRESS or EXPRESS-X items declared therein. If there are no names
specified, all the items declared in the foreign schema, schema view, or schema map are visible within
the current schema view or schema map.

©1S0 2005 — All rights reserved)

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

ISO 10303-14:2005(E)

Syntax:

167 reference clause = REFERENCE FROM schema ref or rename ['('
resource or rename { ',' resource or rename } ')'] [AS (SOURCE |
TARGET)] ';'

186 schema ref or rename = [general schema alias_id ':']
general schema ref

103 general schema ref = schema ref | schema map ref | schema view ref

174 resource or rename = resource ref [AS rename id]

Rules and restrictions:

a) The rename id shall be unique within the scope of the referencing schema, including all
other referenced identifiers. The referencing schema shall refer to the declaration using its
rename_id.

b) The general schema ref shall be unique within the scope of the referencing schema.

¢) A schema view shall not reference a map declaration.

EXAMPLE This example illustrates the designation of a source EXPRESS schema and the reference of
resources from other schema. The resource your_view_decl is referenced from the schema other_map_schema
and is renamed my_view_decl for use within this schema_view.

SCHEMA VIEW my_view_schema;

REFERENCE FROM automotive design;

REFERENCE FROM other map schema (your view decl AS my view decl);
END SCHEMA VIEW;

56 © ISO 2005 — All rights reserved

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

ISO 10303-14:2005(E)

Annex A
(normative)

Information object registration

To provide for unambiguous identification of an information object in an open system, the object iden-
tifier

{ iso standard 10303 part(14) version(1) }

is assigned to this part of ISO 10303. The meaning of this value is defined is ISO/IEC 8824-1, and is
described in ISO 10303-1.

© ISO 2005 — All rights reserved 57

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

ISO 10303-14:2005(E)

Annex B

(normative)

EXPRESS-X language syntax

This annex defines the lexical elements of the language and the grammar rules that these elements shall
obey.

NOTE This syntax definition will result in ambiguous parsers if used directly. It has been written so as to con-
vey information regarding the use of identifiers. The interpreted identifiers define tokens that are references to

declared identifiers, and therefore should not resolve to simple id. This requires a parser developer to enable
identifier reference resolution and return the required reference token to a grammar rule checker.

All of the grammar rules of EXPRESS specified in annex A of ISO 10303-11:1994 are also grammar
rules of EXPRESS-X. In addition to the EXPRESS grammar rules, the grammar rules specified in the
remainder of this annex are grammar rules of EXPRESS-X.

B.1 Tokens

The following rules specify the tokens used in EXPRESS-X. Except where explicitly stated in the syn-
tax rules, no white space or remarks shall appear within the text matched by a single syntax rule in the
following clauses.

B.1.1 Keywords

This subclause gives the rules used to represent the keywords of EXPRESS-X.

NOTE This subclause follows the typographical convention that each keyword is represented by a syntax rule
whose left hand side is that keyword in uppercase.

The reserved words of EXPRESS-X are the reserved words of EXPRESS and the keywords and the
names of built-in functions of EXPRESS-X. EXPRESS-X reserved words shall not be used as identifi-

ers.
1 DEPENDENT MAP = 'dependent map'
2 EACH = 'each'
3 ELSIF = 'elsif'
4 END DEPENDENT MAP = 'end dependent map'
5 END MAP = 'end map'
6 END SCHEMA MAP = 'end schema map'
7 END SCHEMA VIEW = 'end schema view'
8 END VIEW = 'end view'
9 EXTENT = 'extent'
10 IDENTIFIED BY = 'identified_by'
11 INDEXING = 'indexing'
12 MAP = 'map' .
13 ORDERED BY = 'ordered_by'
14 PARTITION = 'partition'
15 SCHEMA MAP = 'schema map'
58 T © ISO 2005 — All rights reserved

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

ISO 10303-14:2005(E)

16 SCHEMA VIEW = 'schema view'
17 SOURCE = 'source'

18 TARGET 'target'

19 VIEW = 'view'

B.1.2 Character classes

20 dlglt: 0! | r | o | 30 | 4 | U | e | v | rgr | g

21 letter = lal | lbl | lcl | ldl | lel | lfl | lgl | lhl | lil | ljl
| lkl | lll | lml | lnl | lol | lpl | lql | lrl | ISI | ltl
| lul | lvl | 'W' | 'X' | lyl | 'Z'

22 simple id = letter { letter | digit | ' ' }

B.1.3 Interpreted identifiers

NOTE All interpreted identifiers of EXPRESS are also interpreted identifiers of EXPRESS-X. The following
are additional interpreted identifiers of EXPRESS-X.

23 partition ref = partition id

24 map ref = map id

25 schema map ref = schema map id

26 schema view ref = schema view id

27 source parameter ref = source parameter id
28 source schema ref = schema ref

29 target parameter ref = target parameter id
30 target schema ref = schema ref

31 view attribute ref = view attribute id

32 view ref = view id

B.2 Grammar rules

The following rules specify how the previous lexical elements and the lexical elements of EXPRESS
may be combined into constructs of EXPRESS-X. White space and EXPRESS remarks may appear
between any two tokens in these rules. The primary syntax rule for EXPRESS-Xis syntax x.

33 abstract supertype declaration = ABSTRACT SUPERTYPE |
subtype constraint]

34 actual parameter list = '(' parameter { ',' parameter } ')'

35 add like op = '+' | '-' | OR | XOR

36 aggregate initializer = '[' [element { ',' element }] ']'

37 aggregate source = simple expression

38 aggregate type = AGGREGATE [':' type label] OF parameter type
39 aggregation types = array type | bag type | list type | set type
40 algorithm head = { declaration } [constant decl] [local decl]
41 array type = ARRAY bound spec OF [OPTIONAL] [UNIQUE] base type
42 assignment stmt = general ref { qualifier } ':=' expression ';'
43 backward path qualifier '<-'" [attribute ref] path condition
44 bag type = BAG [bound spec] OF base type

© ISO 2005 — All rights reserved 59

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

ISO 10303-14:2005(E)

45
46
47

48
49
50
51
52
53

54
55
56

57
58
59

60
61
62

63
64
65
66
67
68

69

70
71
72

73
74
75

76
77

78

79
80

60

base type = aggregation types | simple types | named types
binary type = BINARY [width spec]

binding header = [PARTITION partition id ';'] [from clause]
[local decl] [where clause] [identified by clause]

[ordered by clause]

boolean type = BOOLEAN

bound 1 = numeric expression

bound 2 = numeric expression

bound spec = '[' bound 1 ':' bound 2 ']'

built in constant = CONST E | PI | SELF | '?'
built_in_function = ABS | ACOS | ASIN | ATAN | BLENGTH | COS | EXISTS

| EXTENT | EXP | FORMAT | HIBOUND | HIINDEX | LENGTH | LOBOUND
| LOINDEX | LOG | LOGZ | LOG1l0 | NVL | ODD | ROLESOF | SIN | SIZEOF
| SQRT | TAN | TYPEOF | USEDIN | VALUE | VALUE IN | VALUE UNIQUE

built in procedure = INSERT | REMOVE

case _action = case label { ',' case label } ':' stmt

case expr = CASE selector OF { case expr action } [OTHERWISE ':'
expression] END CASE

case expr_action = case label { ',' case label } ':' expression ';'
case label = expression

case stmt = CASE selector OF { case action } [OTHERWISE ':' stmt]
END CASE ';'

compound stmt = BEGIN stmt { stmt } END ';'

constant body = constant id ':' base type ':=' expression ';'
constant decl = CONSTANT constant body { constant body } END CONSTANT
Vo

constant factor = built in constant | constant ref

constant id = simple id

declaration = function decl | procedure decl

dependent map decl = DEPENDENT MAP map id AS target parameter ({
target parameter } [map subtype of clause] dep map partition ({

dep map partition } END DEPENDENT MAP ';'

dependent view decl = VIEW view id ':' base type ';' binding header
RETURN expression { binding header RETURN expression } END VIEW ';'
dep binding decl = dep from clause [where clause] [ordered by clause

]
dep from clause = FROM dep source parameter ';' { dep source parameter
i} - - - -
dep map decl body

dep binding decl map project clause

dep map partition = [PARTITION partition id ':'] dep map decl body
dep source parameter = source parameter id { ',' source parameter id }
':' (simple types | type reference)

domain rule = [label ':'] logical expression

element = expression [':' repetition]

entity constructor = entity reference '(' [expression

{ ',' expression }] ")'

entity id = simple id

entity instantiation loop = FOR instantiation loop control ';'

map project clause

entity reference = [(source schema ref | target schema ref |
schema ref) '.'] entity ref

enumeration reference = [type reference '.'] enumeration ref
escape stmt = ESCAPE ';'

© ISO 2005 — All rights reserved

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

81
82
83
84
85

86
87

88
89
90
91

92

93

94
95

96

97

98

99
100
101
102
103
104
105
106
107

108
109
110

111

112
113

114
115
116
117
118

ISO 10303-14:2005(E)

expression = simple expression [rel op extended simple expression]
expression or wild = expression | ' '

extent reference = source entity reference | view reference

factor = simple factor ['**' simple factor]

foreach expr = EACH variable id IN expression [where clause] RETURN
expression

forloop expr = repeat control RETURN expression

formal parameter = parameter id { ',' parameter id } ':'

parameter type

forward path qualifier = '::' attribute ref [path condition]

for expr = FOR (foreach expr | forloop expr)

from clause = FROM source parameter ';' { source parameter ';' }
function call = (built in function | function ref) |

actual parameter list]

function decl
END_FUNCTION !

function head [algorithm head] stmt { stmt }

function head = FUNCTION function id ['(' formal parameter { ';'
formal_pgrameter Pyt ot paramgter_type ! a

function id = simple id

generalized types = aggregate type | general aggregation types |
generic_ type

general aggregation types = general array type | general bag type |
general list type | general set type

general array type = ARRAY [bound spec] OF [OPTIONAL] [UNIQUE]
parameter type

general attribute qualifier = '.' (attribute ref | view attribute ref
)

general bag type = BAG [bound spec] OF parameter type
general list type = LIST [bound spec] OF [UNIQUE] parameter type
general ref = parameter ref | variable ref | source parameter ref

general schema alias id = schema id | schema map id | schema view id

general schema ref = schema ref | schema map ref | schema view ref
general set type = SET [bound spec] OF parameter type

generic type = GENERIC [':' type label]

group_qualifier = '\' entity ref

identified by clause = IDENTIFIED BY id parameter ';' { id parameter
i}

id parameter = [id parameter id ':'] expression

id parameter id = simple id

if expr = IF logical expression THEN expression { ELSIF

logical expression expression } [ELSE expression] END IF

if stmt = 1IF logical expression THEN stmt { stmt } [ELSE stmt { stmt
} 1 END IF ';'

increment = numeric expression

increment control = variable id ':=' bound 1 TO bound 2

[BY increment]

index = numeric expression

index 1 = index

index 2 = index

index qualifier = '"[' index 1 [':' index 2] ']’
instantiation foreach control = EACH variable id IN expression { AND

variable id IN expression } [INDEXING variable id]

© ISO 2005 — All rights reserved 61

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

ISO 10303-14:2005(E)

119 instantiat

repeat con

ion_ loop_ control
trol

instantiation foreach control |

120 integer type = INTEGER

121 interval = '{' interval low interval op interval item interval op
interval high '}'

122 interval high = simple expression

123 interval item = simple expression

124 interval low = simple expression

125 interval op = '<' | '<='

126 label = simple id

127 1list type = LIST [bound spec] OF [UNIQUE] base type

128 1literal = binary literal | integer literal | logical literal |
real literal | string literal

129 local decl = LOCAL local variable { local variable } END LOCAL ';'

130 local variable = wvariable id { ',' variable id } ':' parameter type [
':=' expression] ';'

131 logical expression = expression

132 logical literal = FALSE | TRUE | UNKNOWN

133 logical type = LOGICAL

134 map attribute declaration = [target parameter ref [index qualifier]
[group qualifier] '.'] attribute ref [index qualifier] ':='
expression ';'

135 map call = [target parameter ref '@'] map reference [
partition qualification] '(' expression or wild { ','
expression or wild } ")'

136 map decl = MAP map id AS target parameter ';' { target parameter ';' }
(map subtype of clause subtype binding header map decl body) | (
binding header map decl body { binding header map decl body }) END MAP
Vo

137 map decl body = (entity instantiation loop {
entity instantiation loop })
| map project clause
| (RETURN expression ';')

138 map id = simple id

139 map project clause = SELECT { map attribute declaration }

140 map reference = [schema map ref '.'] map ref

141 map subtype of clause = SUBTYPE OF '(' map reference ')' ';'

142 multiplication like op = '*' | '/' | DIV | MOD | AND | '[['

143 named types = entity reference | type reference | view reference

144 null stmt
145 number typ
146 numeric ex
147 one of =

{ v supe
148 ordered by
149 parameter
150 parameter
151 parameter
152 partition_
153 partition_
154 path condi
155 path quali
156 population
62

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO
No reproduction or networking permitted without license from IHS

LI
’

e = NUMBER

pression = simple expression

ONEOF ' (' supertype expression

rtype expression } ')'

~clause = ORDERED BY expression { ',' expression } ';'
= expression

id = simple id

type = generalized types | named types | simple types
id = simple id

qualification = '\' partition ref

tion = '{' extent reference v "'

[

forward path qualifier

logical expression]

fier = | backward path qualifier

entity reference

© ISO 2005 — All rights reserved

Not for Resale

157
158
159

160

161

162

163

164

165

166

167

168
169
170

171

172
173
174
175

176

177

178

179

180
181
182

183

184

185

186

187

ISO 10303-14:2005(E)

precision spec = numeric expression

primary = literal | (qualifiable factor { qualifier })
procedure call stmt = (built in procedure | procedure ref) |
actual parameter list] ';'

procedure decl = procedure head [algorithm head] { stmt }

END PROCEDURE !

procedure head = PROCEDURE procedure id ['(' [VAR] formal parameter
{ ';'" [VAR] formal parameter } ")'] ';'

procedure id = simple id

qualifiable factor = attribute ref | constant factor | function call |
general ref | map call | population | target parameter ref |

view attribute ref | view call

qualifier = general attribute qualifier | group qualifier |

index qualifier | path qualifier

query expression = QUERY ' (' variable id '<*' aggregate source '|'
logical expression ')'

real type = REAL [' (' precision spec '")']

reference clause = REFERENCE FROM schema ref or rename ['('
resource or rename { ',' resource or rename } ')'] [AS (SOURCE |
TARGET)] ';'

rel op = '"<' | '>' | '<=' | '>=' | <> =t) it | =t

rel op extended = rel op | IN | LIKE

rename id = constant id | entity id | function id | procedure_ id |
type id

repeat control = [increment control] [while control] [

until control]

repeat stmt = REPEAT repeat control ';' stmt { stmt } END REPEAT ';'
repetition = numeric expression

resource or rename = resource ref [AS rename id]

resource ref = constant ref | entity ref | function ref |
procedure ref | type ref | view ref | map ref

return stmt = RETURN [' (' expression ')'] ';'

root view decl = VIEW view id [supertype constraint] ';'

binding header SELECT view attr decl stmt list { binding header SELECT
view attr decl stmt list } END VIEW ';'

rule decl = rule head [algorithm head] { stmt } where clause
END RULE ';'

rule head = RULE rule id FOR ' (' entity ref { ',' entity ref } ")’
1o

rule id = simple id

schema id = simple id

schema map body element = function decl | procedure decl | view decl
map_decl | dependent map decl | rule decl

schema map body element list = schema map body element {
schema map body element }

schema map decl = SCHEMA MAP schema map id ';' reference clause ({
reference clause } [constant decl] schema map body element list

END SCHEMA MAP ';'
schema map id

simple id

schema ref or rename = [general schema alias id ':']
general schema ref
schema view body element = function decl | procedure decl | view decl

| rule decl

© ISO 2005 — All rights reserved 63

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

ISO 10303-14:20

05(E)

188 schema view body element list = schema view body element ({
schema view body element }
189 schema view decl = SCHEMA VIEW schema view id ';' { reference clause }
[constant decl] schema view body element list END SCHEMA VIEW ';'
190 schema view id = simple id
191 selector = expression

192 set type

= SET [bound spec]

OF base type

193 simple expression = term { add like op term }

194 simple factor = aggregate initializer | entity constructor |
enumeration reference | interval | query expression | ([unary op] (
'(' expression ')' | primary)) | case expr | for expr | 1if expr

195 simple t

ypes = binary type | boolean type

integer type |

logical type | number type | real type | string type
196 skip stmt = SKIP ';'
197 source entity reference = entity reference

198 source p
199 source p

arameter = source parameter id

arameter id =

simple id

:' extent reference

200 stmt = assignment stmt | case stmt | compound stmt | escape stmt |
if stmt | null stmt | procedure call stmt | repeat stmt | return stmt |
skip stmt

201 string literal = simple string literal | encoded string literal

202 string type = STRING [width spec]

203 subtype binding header = [PARTITION partition id ';'] where clause

204 subtype constraint = OF '(' supertype expression ')'

205 subtype declaration = SUBTYPE OF ' (' view ref { ',' view ref } ")’

206 subtype view decl = VIEW view id subtype declaration ';'

subtype binding header
subtype binding header

207 supertyp
supertyp

208 supertyp
209 supertyp
210 supertyp

e constraint
e rule

e expression

SELECT view attr decl stmt list {
SELECT view attr decl stmt list } END VIEW ';'

abstract supertype declaration |

supertype factor { ANDOR supertype factor }

e factor = supertype term { AND supertype term }

e rule = SUPERTYPE

[subtype constraint]

211 supertype term = view ref | one of | '(' supertype expression ')'
212 syntax x = schema map decl | schema view decl
213 target entity reference = entity reference { '&' entity reference }

214 target p
[AGGREG

215 target p
216 term =

217 type id
218 type lab
219 type lab
220 type ref
221 unary op
222 until co
223 wvariable

224 view att
source_s

225 view_ att

arameter = target parameter id { ',' target parameter id } ':'
ATE [bound spec] OF] target entity reference

arameter id =

simple id ';'

factor { multiplication like op factor }

= simple id

el = type label id | type label ref
el id = simple id
erence = [schema ref '.'] type ref
= '+' | '-' | NOT
ntrol = UNTIL logical expression
_1d = simple id
ribute decl = view attribute id ':' [OPTIONAL] [
chema ref '.'] base type ':=' expression ';'
ribute id = simple id

226 view attr decl stmt list = { view attribute decl }

227 view cal
expressi

64

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO
No reproduction or networking permitted without license from |

1 = view reference

on or wild f{

HS

Not for Resale

;' expression or wild }

[partition qualification] ' (' [

]')'

© ISO 2005 — All rights reserved

ISO 10303-14:2005(E)

228 wview decl = (root view decl | dependent view decl |
subtype view decl)

229 view id = simple id

230 view reference = [(schema map ref | schema view ref) '.']
view ref

231 where clause = WHERE domain rule ';' { domain rule ';' }

232 while control = WHILE logical expression

233 width = numeric expression

234 width spec = ' (' width ')' [FIXED]

B3 Cross reference listing

DEPENDENT MAP | 66
¢ EXTENT | 53
IDENTIFIED BY | 107
MAP | 136
ORDERED BY | 148
PARTITION | 47 71 203
SCHEMA MAP | 184
SCHEMA VIEW | 189
SELECT | 139 177 206
VIEW | 67 177 206
abstract supertype declaration | 207
actual parameter list | 91 159
add _like op | 193
aggregate initializer | 194
aggregate source | 165
aggregate type | 95
aggregation types | 45
algorithm head | 92 160 178
array type [39
assignment stmt | 200
backward path qualifier | 155
bag type | 39
base type | 41 44 61 67 127 192 224
binary type | 195
binding header | 67 136 177
boolean type | 195
bound 1 | 51 113
bound 2 | 51 113
bound spec | 41 44 97 99 100 104 127 192 214
built in constant | 63
built in function | 91
built in procedure | 159
case_action | 59
case expr | 194
case expr_action | 56
case label | 55 57
case stmt | 200
compound stmt | 200
constant body | 62
constant decl | 40 184 189
constant factor | 163
constant id | 61 170
declaration | 40
dependent map decl | 182
dependent view decl | 228

© ISO 2005 — All rights reserved 65

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

ISO 10303-14:2005(E)

dep_binding decl | 70

dep from clause | 68

dep map_decl body [71

dep map partition | 66

dep source parameter | 69
domain rule | 231
element | 36
entity constructor | 194
entity id | 170
entity instantiation loop | 137
entity reference | 75 143 156 197 213
enumeration reference | 194
escape stmt | 200
expression | 42 56 57 58 61 67 74 75 82 85 86 108 110
118 130 131 134 137 148 149 176 191 194 224
expression or wild | 135 227
extent reference 154 198
factor 216
foreach expr 89
forloop expr 89
formal parameter 93 16l
forward path qualifier 155

for expr 194
from clause 47
function call 163
function decl 65 182 187
function head 92
function id 93 170
generalized types 151
general aggregation types 95
general array type 96
general attribute qualifier 164
general bag type 96
general list type 96
general ref 42 163
general schema alias id 186
general schema ref 186

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
general set type | 96
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

generic_ type 95
group_qualifier 134 164
identified by clause 47
id parameter 107
id parameter id 108
if expr 194
if stmt 200
increment 113
increment control 171
index 115 116
index 1 117
index 2 117
index qualifier 134 164
instantiation foreach control 119
instantiation loop control 77
integer type 195
interval 194
interval high 121
interval item 121
interval low 121
interval op 121
66 S © ISO 2005 — All rights reserved

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

label

list type

literal

local decl

local variable
logical expression
logical literal
logical type

map_ attribute declaration
map_call

map_ decl

map_ decl body

map_ id

map_ project clause
map_ reference

map_ subtype of clause
multiplication like op
named_types

null stmt

number type

numeric expression
one of
ordered by clause
parameter
parameter id
parameter type
partition id
partition qualification
path condition

path qualifier
population

precision_ spec
primary
procedure call stmt
procedure decl
procedure head
procedure id
qualifiable factor
qualifier

query expression

real type

reference clause

rel op

rel op extended
rename id

repeat control

repeat stmt
repetition

resource_ or_rename
resource ref

return stmt

root view decl

rule decl

rule head

rule id

schema id
schema map body element
schema map body element list
schema map decl

© ISO 2005 — All rights reserved

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO
No reproduction or networking permitted without license from IHS

ISO 10303-14:2005(E)

73

39

158

40 47

129

73 110 111 154 165 222 232
128

195

139

163

182

136

66 136

70 77 137
135 141
66 136
216

45 151
200

195

49 50 112 114 157 173 233
211

47 68

34

87

38 87 93 97 99 100 104 130
47 71 203
135 227
43 88

164

163

166

194

200

65 182 187
160

161 170
158

42 158
194

195

184 189
169

81

174

86 119 172
200

74

167

174

200

228

182 187
178

179

102

183

184

212

67

Not for Resale

ISO 10303-14:2005(E)

schema map id 102 184
schema ref or rename 167
schema view body element 188
schema view body element list 189
schema view decl 212
schema view id 102 189
selector 56 59

set type 39

simple expression 37 81 122 123 124 146
simple factor 84

simple types 45 72 151
skip stmt 200
source entity reference 83

source parameter 90

source parameter id 72 198
stmt 55 59 60 92 111 160 172 178
string literal 128
string type 195
subtype binding header 136 206
subtype constraint 33 210
subtype declaration 206
subtype view decl 228
supertype constraint 177

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
supertype expression | 147 204 211
supertype factor | 208

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

supertype rule 207

supertype term 209

target entity reference 214

target parameter 66 136

target parameter id 214

term 193

type id 170

type label 38 105

type label id 218

type reference 72 79 143

unary op 194

until control 171

variable id 85 113 118 130 165
view attribute decl 226

view attribute id 224

view attr decl stmt list 177 206

view call 163

view decl 182 187

view id 67 177 206

view reference 83 143 227

where clause 47 68 85 178 203
while control 171

width 234

width spec 46 202
68 © ISO 2005 — All rights reserved

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

ISO 10303-14:2005(E)

Annex C

(normative)

EXPRESS-X to EXPRESS transformation algorithm

This annex describes how a collection of view declarations may be transformed into a collection of
EXPRESS entity declarations suitable for representing the results of an EXPRESS-X execution. The
transformation is described as an algorithm taking the text of a view declaration as input and producing
the text of an entity declaration as output. The algorithm is given here for specification purposes only,
not to prescribe a particular implementation.

The transformed entities are assumed to exist in a uniquely named schema, into which all necessary for-
eign declarations have been interfaced.

Algorithm:

a) If the view declaration is a dependent view (that is, does not define any view attributes), skip
the declaration.

b) Change the keyword VIEW to ENTITY.

c) Delete FROM, WHERE, IDENTIFIED BY and ORDERED BY language elements. Delete only
WHERE language elements in the header; do not delete constraint WHERE language elements.

d) Delete the keyword SELECT.

e) If the view declaration contains partitions, delete entirely all but the first partition declaration,
and delete the keyword PARTITION and the partition identifier (if any) from the first partition
declaration.

f) Delete the assignment operator and expression for each view attribute.

g) Change the keyword END VIEWto END ENTITY.

© ISO 2005 — All rights reserved 69

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

ISO 10303-14:2005(E)

EXAMPLE 1

VIEW a ABSTRACT SUPERTYPE;
PARTITION one;

FROM b:one; c:two;

WHERE condl;

cond?2;
SELECT
x : attrl := expressionl;
y : attr2 := expression2;

PARTITION two;
FROM d:two; e:three;
WHERE cond3;

cond4;
SELECT
X : attrl := expression3;
y : attr2 := expressioni;
END VIEW;

is transformed into the following EXPRESS entity declaration:

ENTITY a ABSTRACT SUPERTYPE;

x : attrl;
y : attr2;
END ENTITY;

EXAMPLE 2

VIEW b SUBTYPE OF (a);
PARTITION one;
WHERE condb5;
SELECT

z : attr3 := expressionb;
PARTITION two;
WHERE cond6;

SELECT

z : attr3 := expressionb;
WHERE

WR2 : rule expression2;
END VIEW;

is transformed into the following EXPRESS entity declaration:

ENTITY b SUBTYPE OF (a);

z : attr3;
WHERE
WR2 : rules expression2;

END ENTITY;

70

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO
No reproduction or networking permitted without license from IHS

Not for Resale

© ISO 2005 — All rights reserved

ISO 10303-14:2005(E)

Annex D
(informative)

Implementation considerations

D.1 Push mapping

An implementation shall be said to be a push mapping implementation if it meets all of the following
criteria.

— The mapping engine accepts one or more source data sets, and produces one or more output data sets
and view extents (map) or view extents (view).

— The output data sets are derived from the input data sets by the execution and evaluation of all of the
VIEW and MAP declarations.

— Every instance in the source data sets is mapped as specified in the mapping schema into the output
data sets (maps) or view extents (views).

D.2 Pull mapping

An implementation shall be said to be a pull mapping implementation if it meets all of the following
criteria:

— The mapping engine accepts one or more source data sets.

— Specified target data instances, and only those specified, are derived on demand from the input data
sets by the execution and evaluation of the appropriate view or map declarations.

NOTE This part of ISO 10303 does not define how view and map declarations are selected for pull mapping.

D.3 Support of constraint checking

An implementation shall be said to support constraint checking if it implements the concepts described
in clause 9.6 of ISO 10303-11 against entity instances in target populations and against view instances
in the view extents.

NOTE The evaluation of constraints has no effect on execution.

D.4 Support for updates
Propagation of updates is not possible in situations where any of the following hold:

— The view / target entity is derived from / mapped to two or more source entities by applying a join
operation.

EXAMPLE the view / target entity person_in_dept corresponds to the source entities person and
department where the join condition person.id = department.person_id evaluates to true.

© ISO 2005 — All rights reserved 71

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

ISO 10303-14:2005(E)
— Duplicates (with respect to value equivalence of attributes) which exist in the source data are elimi-
nated in the view / target data.

— View / target attributes are derived from / mapped to source schema elements by applying mathe-
matical expressions that are not mathematically invertible.

— The view / target schema defines additional subtypes which do not exist in the source schema(s).

— Subtypes which are defined in the source schema(s) are projected (that is, not contained) in the view
/ target schema.

— The sort order of source attributes of type AGGREGATE is eliminated in the view / target schema.

— Duplicates (with respect to value equivalence) of elements of source attributes of type AGGREGATE
are eliminated in the view / target schema.

— A single source entity corresponds to a network of interconnected view / target entities (by relation-
ships or equivalence of attribute values').

1. The latter kind of relationship is comparable to primary key - foreign key relationships in the relational data model.

72 © ISO 2005 — All rights reserved

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

ISO 10303-14:2005(E)

Annex E
(informative)

Path operator unnest function

The following implements unnest, an EXPRESS function referred to in clause 10.8 and clause 10.9.

FUNCTION unnest (src : GENERIC) : AGGREGATE OF GENERIC;
LOCAL
result : AGGREGATE OF GENERIC := [];

tmp : AGGREGATE OF GENERIC;
END LOCAL;

IF SIZEOF(['LIST', 'BAG', 'SET', 'ARRAY', 'AGGREGATE'] * TYPEOF(src)) > O

THEN
REPEAT 1 := 1 TO HIINDEX(src);
tmp := unnest(src[i]);
REPEAT j := 1 TO HIINDEX (tmp) ;

result := result + tmpl[j]l;
END REPEAT;
END REPEAT;
ELSE
IF SIZEOF (['STRING', 'BINARY', 'LOGICAL', 'NUMBER']
THEN -- entity instance
result := result + src;
END IF;
END IF;
RETURN (result);
END FUNCTION;

* TYPEOF (src)) = 0

© ISO 2005 — All rights reserved 73
Copyright International Organization for Standardization
Reproduced by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

ISO 10303-14:2005(E)

Annex F
(informative)

Mapping table semantics

EXPRESS-X may be used as an alternative specification of the reference paths in the mappings in

STEP Application Protocol Mapping Tables. This annex indicates how this may be done by giving pro-

totype EXPRESS-X examples for each of the mapping table reference path constructs described in ISO

TC 184/SC4 N1029, Guidelines for the development of mapping specifications, 2nd edition, section 9.1

Symbology. These examples use the more functional specification available using the VIEW construct

of EXPRESS-X, with the direction of the mapping being from AIM to ARM. Mapping in the opposite
~direction, from ARM to AIM, can be done more appropriately using the more procedural MAP con-
-struct of EXPRESS-X. The reference path direction is assumed to be as in AP mapping tables, from
- ARM (top and left) to AIM (bottom and right).

'F.1 Delimiter symbols

The supertype symbol “=>" indicates that the ARM-direction item on its left hand side is to be a super-
type of the AIM-direction item on its right hand side. In mapping to the ARM then, this symbol indi-
cates movement from subtype to supertype, which requires no EXPRESS-X specification since
inheritance is transparent in EXPRESS.

The subtype symbol “<=" indicates that the ARM-direction item on its left hand side is to be a subtype
of the AIM-direction item on its right hand side. In mapping to the ARM then, this symbol indicates a
subtype requirement, which can be specified in EXPRESS-X using a WHERE clause containing a
TYPEOF reference, as follows:

Mapping table:
cc_design approval <=

approval assignment

EXPRESS-X:

VIEW ...;

FROM ... aa:approval assignment;

WHERE ... ‘CONFIG CONTROL DESIGN.CC DESIGN APPROVAL’ IN TYPEOF (aa);

Note that this is equivalent in all cases to:

VIEW ...;

FROM ... aa:cc_design _approval;

So in cases of both chained supertype or chained subtype delimiters, only the most-specific subtype
need appear as a source type, as in:

Mapping table:
product definition usage =>
assembly component usage =>

next assembly usage occurrence

74 © ISO 2005 — All rights reserved

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

ISO 10303-14:2005(E)

EXPRESS-X:
VIEW ...;
FROM ... nauo:next assembly usage occurrence;

If there are multiple such specific subtypes in a chain of combined supertype and subtype delimiters, a
TYPEOF condition can be used, or an instance-equal condition can be used:

Mapping table:

representation item =>

measure_ representation item

{ measure representation item <=
measure with unit =>

length measure with unit }

EXPRESS-X:

VIEW ...;

FROM ... mri:measure representation item;

WHERE ... ‘FEATURE BASED PROCESS PLANNING.LENGTH MEASURE WITH UNIT’ IN TYPEOF (mri);
Or:

VIEW ...;

FROM ... lmwu:length measure with unit;

WHERE ‘FEATURE BASED PROCESS PLANNING.MEASURE REPRESENTATION ITEM’ IN TYPEOF (lmwu) ;

Or:

VIEW ...;

FROM ... mri:measure representation item; lmwu:length measure with unit;
WHERE ... mri :=: Imwu;

The attribute reference symbol “->” indicates that the ARM-direction item on its left hand side is an
attribute reference whose type is the AIM-direction item on its right hand side. In mapping to the ARM
then, this symbol indicates movement from a type to an attribute of that type. The reference-from-
attribute symbol “<-” is the reverse, indicating in a mapping to the ARM a movement from an attribute
to the type of that attribute. In the general case, both of these can be specified in EXPRESS-X using an
instance-equal condition:

Mapping table:

approval assignment.assigned approval ->
approval

EXPRESS-X:

VIEW ...;

FROM ... aa:approval assignment; a:approval;
WHERE ... aa.assigned approval :=: a;

And similar to the supertype and subtype delimiters, chains of attribute reference delimiters can be
combined so that only the “top-most” referencers need appear as source types. It may also be desirable
to include the start and/or end types of the complete reference path as well in order to “anchor” it:

© ISO 2005 — All rights reserved - 75

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

ISO 10303-14:2005(E)

Mapping table:

cc design person and organization assignment <=

person and organization assignment

person and organization assignment.assigned person and organization ->
person_and organization

person _and organization.the person ->

person

EXPRESS-X:

VIEW ...;

FROM ... poa:cc design person and organization assignment; p:person;
WHERE ... poa.assigned person and organization.the person :=: p;

F.2 Aggregation symbols

The “[i]” aggregation symbol is specified in EXPRESS-X using an “IN” constraint, while the “[n]”
aggregation symbol is specified similarly to the way an attribute reference is specified in EXPRESS-X:

Mapping table:

property definition representation

property definition representation.used representation ->
representation

representation.items[i] ->

representation item =>

measure representation item

EXPRESS-X:
VIEW ...;
FROM ... pdr:property definition representation; mri:measure representation item;

WHERE ... mri IN pdr.used representation.items;

Mapping table:

representation
representation.items[2] ->
representation item =>

geometric representation item =>
placement =>

axis2 placement 3d

EXPRESS-X:

VIEW ...;

FROM ... r:representation; ap:axis2 placement 3d;

WHERE ... r.items[2] :=: ap;

76 e © ISO 2005 — All rights reserved

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

ISO 10303-14:2005(E)

F.3 Equal sign

1 __%

The equal sign symbo is used to specify the type of a SELECT type or to constrain the value of a
primitive-type attribute. When used to specify the type of a SELECT type, the equal sign functions
very similarly to the supertype and subtype specification symbols, and it may combine with them in
chains of specification or generalization, where, as above, only the most specific types of a chain need
be specified as source types for a VIEW:

Mapping table:

approval date time
approval date time.date time ->
date time select

date time select = date

date =>

calendar date

EXPRESS-X:

VIEW ...;

FROM ... adt:approval date time; cd: calendar date;
WHERE ... adt.date time :=: cd;

__%

For the case where is used to constrain the value of a primitive-type attribute (that is, within
braces), the constraint is specified directly in EXPRESS-X using a WHERE clause:

Mapping table:
representation
representation.items[i] ->

{ representation item

representation item.name = ‘diameter’ }
EXPRESS-X:
VIEW ...;
FROM ... r:representation; ri:representation item;
WHERE ... ri IN r.items; ri.name = ‘diameter’;

F.4 Parentheses

The parentheses symbols “(“ and “)” are used to enclose individual options within a reference path. For
mapping to the ARM, this means that any of the options which are present in the AIM will result in a
mapping to the ARM. In EXPRESS-X, this type of situation is specified using the PARTITION ele-
ment of the language:

Mapping table:

person_and organization

(person and organization.the person ->
person <-
personal address.people[i]
personal address <=

address)

© ISO 2005 — All rights reserved 77

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

ISO 10303-14:2005(E)

(person and organization.the organization ->
organization <-
organizational address <=

address)

EXPRESS-X:

VIEW ...;

PARTITION p;

FROM ... po:person and organization; pa:personal address;

WHERE ... po.the person IN pa.people;

PARTITION o;
FROM ... po:person and organization; oa:organizational address;

WHERE ... po.the organization IN oa.organizations;

F.5 Square brackets

E.The square brackets symbols “[*“ and “]” are used to enclose branches of a reference path which must all
ibe present. This is specified in EXPRESS-X by supplementing a view to include all such sub-branch
specifications:

Mapping table:

[mapped item
mapped item.mapping target ->
representation item]

[mapped item
mapped item.mapping source ->
representation map
representation map.mapping origin ->

representation item]

EXPRESS-X:
VIEW ...;
FROM ... mi:mapped item; source:representation item; target:representation item;
WHERE ... mi.mapping target :=: target;
mi.mapping source.mapping origin :=: source;

F.6 Example

Mapping table: circular closed profile to numeric_parameter (as diameter)
circular closed profile <=

shape aspect

shape definition = shape aspect

shape definition

characterized definition = shape definition

characterized definition <-

78 © ISO 2005 — All rights reserved

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

ISO 10303-14:2005(E)

property definition.definition
property definition <-
property definition representation.definition
{ property definition representation =>
shape definition representation }
property definition representation
property definition representation.used representation ->
{ representation =>
shape representation =>
shape representation with parameters }
representation
representation.items[i] ->
{ representation item
representation item.name = ‘diameter’ }
representation item =>
measure representation item
{ measure representation item <=
measure with unit =>

length measure with unit }

EXPRESS-X:

VIEW find diameter;

FROM ccp:circular closed profile;
sdr:shape definition representation;
srwp:shape representation with parameters;
mri:measure representation item;
Imwu:length measure with unit;

IDENTIFIED BY ccp;

WHERE sdr.definition.definition :=: ccp;
sdr.used_representation 1=: Srwp;
mri IN srwp.items;
mri.name = ‘diameter’;

Imwu :=: mri;

RETURN

Imwu.value component;

END VIEW;

© ISO 2005 — All rights reserved 79

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

ISO 10303-14:2005(E)

Bibliography

[1] WIRTH, Niklaus, “What can we do about the unnecessary diversity of notations for syntactic
definitions?,” Communications of the ACM, November 1977, v. 20, no. 11, p.822.

[2] ISO 10303-21:1994, Industrial automation systems and integration — Product data
representation and exchange — Part 21: Implementation methods: Clear text encoding of the
exchange structure.

80 © ISO 2005 — All rights reserved

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

ISO 10303-14:2005(E)

Index

A

ALTTDULES (INAP) 1.evveeeiie ettt et ee et ee et ee et ee et eeesaeeeeseaeesseeessseeessseeessseeessseaensseeenssesnnsseas 24
ALTTDULES (VIEW) 1.etieieiieeeiie et eetee et ee et et ee et ee et ae ettt eeesnaeesseeessneeessseeessseeesaseaessseeessseeenssens 18
B

backward path OPETALOTooiiiiiieiiie e et e e et e e s e e sabe e e seaeeeneee 49
DINAING EXEENE ...vviieiie it et ee et e et e e esteessteaeesseeeesseeessseeessseeessseeessseeensseennses 3
DINAING TNSTATICE ..ovvviieiiiieitieieciie ettt et e et et ee e ee e e saseaeesseaeesseeessseeessseeessseaenssesesees 3
DINAING PIOCESS ..vvieiiieeiiie ettt et te et ee et ee et eeeteeeesseeessseessssaeesseaessseeessseaessseeessseeessseeesseennses 5
C

CASE ©XPICSSION ..eeeuivieeiiieeitieeiteeeiteeeeeeessraeesseeeesseaessseeesssaeasseasssseeessseesssseeessseesssseessssesnsssees 47
coMPleX ENLILY dAtA EYPES ..eeeeiuiieeiiieeiie et e e e sebe e e ae e e eabe e e naaeeeeae 31
CONSEANT AECIATATION . ..eiiiiiiiiiie ettt ettt sttt e e e e 37
D

4[]0 1S3 16 [4 08 1 0 T 1 o SRR 33
E

EQUIVALEINICE ClASSES ..eiuuvieeiiieeiiie et ie et te ettt et ee et e e st e et eessaeeeseaeeesabeeessseeessseeessseeessseennses 16
EXPLICTE DINAING ©oenivie it ste e e saae e e saae e e sebeeessbeeessaeeensseennses 39
EXPLICt DINAING OPETATOT ...eieiiiieiiiieciie ettt et te et e e ae e aae et aeeaaeenneeennnaeenseas 39
EXPICSSIONS .eeuuvreenereeeireeeireeeeteeeereeesereeassreeesseeessseeessseeesssesesssaessseeesssseessseeessseesssseessssesnnssesnses 37
EXTENT fUNCHION ..ottt ettt ettt ettt sb e eabe e e e e ee 51
F

FOR EXPIESSION ..uvvieiiiiieeiiieeitieeitee et ee ettt ee et ee ettt eessbeeeseaeessseaessaeeessaeeessseeessseeessseeessseeessseennses 44
S0 Sy o1 | TP 25
FOREAGCH ..ottt et e et sb et et e e en e eateeaee e eeneenee 26
Forward path OPEIatorcoociiiiiiie it e e saae e e seae e e 48
fUNCHION AECIATATION ...ttt ettt sttt 37
I

TAENTIFICALION ...ttt ettt et et et esb e eabeebeeeeee 15
181533 Un U (T B o) TP 15
L SO q o 3 10 s TP 47
INSEANTIAtION PIOCESS ..uvvveeuirieririeeiireeeireeeereeeteeeeeseeessseeessseessseeessseeessseeessseessssesesssessssseesssseenses 16
TNEETTACE ettt ettt b e et et et esb e eabeebeeeaee 55
L

1€VELS OF CRECKINE ...veeuiiieeiiie et s ete e st e e sabe e e sabeeesaaeeessaeaensae s 9
M

100 1 TR RPSPRTRUPTPRR 3,23
100 F: 1 oI 2| | TP 41
mMap RETURN L.ttt e e stae e e saae e e sabe e e stbeeesaaeeesseennees 24
MNAPPING CTIZINIC ..vvvveenirieeiireeeiteeeireeeereeeereeesareeasseeessseeessseeessseessseeesssseessseesssseessssesssssesssssesssseees 9
N

NEEWOTK TNAPPING ..vviieiiiieitieeectie et eette et te et te et ee et e eaee e eeesneeeesssaeesneeessseeessseeessseeessseesnsses 3
© ISO 2005 — All rights reserved 81

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

ISO 10303-14:2005(E)

O
OPETALOT PIECEACTICE ...vveeueieieiieeiiieeetieestteeritee et eeeiteeesneeessseeesseeessneeesnneeessneeessseeessseesesseeesses 39
P
PATLItIONS (COMSTANLE) ©eieuviiiiiieeeiieeetie et te et ee et ee et ee et eeesieeenseaeesseeessseeessneeeesseeessseeessseeensseennses 20
PATLILIONS (TNAP) weeevveeeerieeeitieeeitieeatteesiteeesteeesseaeesreeessraeassseesssaeensseessseeessseaessseeessseessssesnssseennses 27
PATEIEIONS (VIEW) weeiitieeiiieeiteeeteeeiteeeniteeeseeeeesseeessseaessseaesssaeasssaessseaessseaessseessssessssseensssesnsssennns 19
PA OPCIALOTS ...vviieiiieeiie ettt ettt ee et ee et e et eeetaeeeesteeesseaeesseeessseaessseeessseeessseeesseasnsseanns 48
Procedure deClarationccccciieiiiiiiiiie et e et e e s e e sabe e e saae e e naaeans 37
Q
qualified DINAING EXENLccccviiiiiie e e er e st e e seae e e sebeeesabeeessseeensseenns 3
R
TESEIVEA WOTAS ...ttt ettt ettt b e et e e et e sbbeeabeebeeenee s 11
TEEUITL VIEW ..iitieitie ettt ettt st ettt ettt e eh e ehbe et e et esh b eh bt ea e e sbeeeh bt eabe et eesbbeebbeenbe e e s eenbaeenbeenben 20
TULE AECIATATION ...viiiiiiieiie ettt eeetee e eeeateeessteeessseeessseeessseeessseannsneanns 37
©USCRGIMA INAP ..ot 34
U SCREIMA VIBW ..ottt ettt 34
© SEIECTION CIILETIONvvvceeeteee ettt ee ettt es e ee e e s ee s es et es s eene st ene e e e e ee 4
| SOUTCE AALA SET ..evivivieieiieteteee ettt ettt ettt ettt es sttt se s s et et eaesss st sese s sneseseseeees 4
SOUICE EXEEII ..ttt ettt ettt ettt et et et et eh e ea bt et e e eh e eabe et e et e e sbbeenbe et e et eesbeeenbeenaees 4
S Lol 0 ol 3021 o) TP 28
SUDELYPE (VIEW) 1eenitieeeiieeetieeiteeetteeiteeeteeeneraeenseaeesseaeessaeesssaeasseaessseeessseaessseeessseeessseeenssesnsses 21
SUPETEYPE CONSITAINES ...eeuuvveerurieeieieestieesteeessreeesreeeereeesseeessseessssesssseesssseesssseesssseeessseesssseesnssees 22
74117 . QTS PRR PRI 58
SYNEAX CTOSS TETRIEIICE ...veiviiieiiiie ettt ettt ettt eeeaae e e seae e e sabeeesabeeesaaeeessaeeensseennses 65
T
1 DL A b 2 <) AT 4
\Y
VIEW ettt ettt ettt et ettt sttt et ettt nenent e nnnnnes ot ot ot et st st et et nt et st ne et et nnntnnnenennnnnnns 4,18
VIEBW CAlL Lottt ettt sb e et et s b e sateeabens 39
VIEW AALA SEE .ttt et sa e ettt bbbt et et e bt ea b e e e e nee 4
N2 Tk e 17 TR 0 oL TR 4,12
VIEW data tYPE INSTANCE ..oevvviieiieieiieeeiieeeiie et te et ee et et e ee et eeentreessnreesrnaeessseeessneeessseeesees 4
VIEW EXEEIIE ..eutiiitie ettt ettt ettt ee e ettt b e eab e et e et eh bt eabe e et eesbbeebbeeabe e et e e ebbeesbeebeeaneen 4
82 © ISO 2005 — All rights reserved

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

Copyright International Organization for Standardization
Reproduced by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale

ISO 10303-14:2005(E)

ICS 25.040.40

Price based on 82 pages

a0 - Wolan oo
Copyright International Organization for Slandardizationved

Reproduced by IHS under license with ISO

No reproduction or networking permitted without license from IHS Not for Resale

