ISO 8283 PT*4 92 ■ 4851903 0522076 301 ■

INTERNATIONAL STANDARD

ISO 8283-4

> First edition 1992-12-01

Plastics pipes and fittings — Dimensions of sockets and spigots for discharge systems inside buildings —

Part 4:

Acrylonitrile/butadiene/styrene (ABS)

Tubes et raccords en matières plastiques — Dimensions des emboîtures et des bouts mâles pour raccordement de tubes et raccords dans les systèmes d'évacuation à l'intérieur des bâtiments —

Partie 4: Acrylonitrile/butadiène/styrène (ABS)

Reference number ISO 8283-4:1992(E)

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

International Standard ISO 8283-4 was prepared by Technical Committee ISO/TC 138, Plastics pipes, fittings and valves for the transport of fluids, Sub-Committee SC 1, Plastics pipes and fittings for soil, waste and drainage (including land drainage).

ISO 8283 consists of the following parts, under the general title *Plastics* pipes and fittings — Dimensions of sockets and spigots for discharge systems inside buildings:

- Part 1: Unplasticized poly(vinyl chloride) (PVC-U) and chlorinated poly(vinyl chloride) (PVC-C)
- Part 2: Polyethylene (PE)
- Part 3: Polypropylene (PP)
- Part 4: Acrylonitrile/butadiene/styrene (ABS)

Annexes A and B form an integral part of this part of ISO 8283.

© ISO 1992 All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Organization for Standardization Case Postale 56 ● CH-1211 Genève 20 ● Switzerland

Printed in Switzerland

ISO 8283 PT*4 92 **= 4851903 0522078 184 =**

ISO 8283-4:1992(E)

Introduction

The socket design appropriate for a particular application should be chosen according to the type of system and jointing techniques to be used. Various socket designs are specified in this part of ISO 8283. They may be selected for use in accordance with the requirements of relevant national standards and codes of practice, which give information on the choice of the type of system and jointing techniques to be used.

Plastics pipes and fittings — Dimensions of sockets and spigots for discharge systems inside buildings —

Part 4:

Acrylonitrile/butadiene/styrene (ABS)

1 Scope

This part of ISO 8283 establishes a classification and designation system for sockets and specifies the design formulae and the derived dimensions, together with tolerances, of these sockets and of spigots for joints of acrylonitrile/butadiene/styrene (ABS) fittings and for integral sockets of ABS pipes intended for use in discharge systems inside buildings where such joints are intended to accommodate expansion and contraction in the discharge system.

2 Classification and designation of sockets

2.1 General

The sockets shall be classified according to whether they are ring-seal sockets or solvent cement sockets into the following types:

2.2 Ring-seal sockets

- 2.2.1 Type S (short) for use as an expansion joint system where the length of pipe does not exceed 2 m. These sockets, when they form part of a fixed-joint system (i.e. systems which do not in themselves allow for expansion and contraction), are intended for use only in conjunction with a type L (long) socket as specified in this part of ISO 8283.
- 2.2.2 Type M (medium) for use as an expansion joint system. These sockets, when they form part of a fixed-joint system (i.e. systems which do not in themselves allow for expansion and contraction), are intended for use only in conjunction with a

type L (long) socket as specified in this part of ISO 8283. The values given for the length of engagement in table 2 relate to a pipe length of 3 m inside buildings above ground.

Type S (short) and type M (medium) sockets are further classified as normal configuration (N), for use only as a ring-seal socket, or as dual-purpose configuration (DP), for use either as a ring-seal socket or as a solvent cement socket.

2.2.3 Type L (long) for use as an expansion joint in fixed-joint systems, i.e. systems which do not allow for expansion and contraction whether jointed by ring seal or solvent cement, or for use with type S and type M sockets where the length of pipe exceeds the given maximum for those types.

2.3 Solvent cement sockets

2.3.1 Type CS (short) for use where jointing is carried out under controlled conditions.

3 Ring-seal sockets and spigots (normal and dual-purpose)

3.1 General

These sockets can accommodate expansion and contraction in any of the joint systems given in clause 2 with the exception of the case where dual-purpose joints are used with solvent cement.

3.2 Ring-seal grooves

A selection of typical ring-seal groove designs is shown in figures 1 and 2, and the positions of measurement of specified dimensions are indicated.

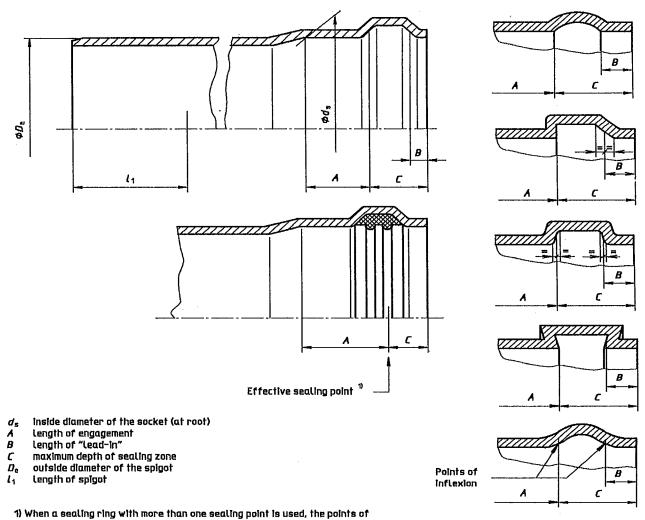
1

The design of the groove is not restricted to those illustrated.

3.3 Seal-ring retaining components

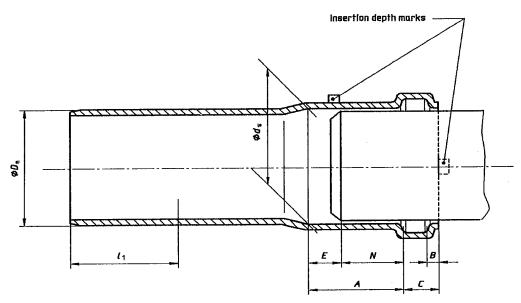
Seal-ring retaining components may be manufactured from plastics materials other than ABS.

3.4 Dimensions


When measured in accordance with figure 1 or 2, as applicable, the dimensions of ring-seal sockets and related spigots shall comply with the applicable limits given in table 1, 2 or 3, as appropriate.

There shall be no requirement on dimension \boldsymbol{B} where the seal-ring is firmly retained in the groove (see figure 2).

4 Solvent cement sockets and spigots


When measured in accordance with figure 3, the dimensions of solvent cement sockets and spigots shall comply with the applicable limits given in table 4.

Within the tolerances necessary for manufacturing, solvent cement sockets should be approximately cylindrical.

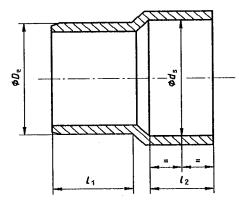

measurement for ${\cal A}$ and ${\cal C}$ shall be indicated by the manufacturer and these points shall give a full sealing action.

Figure 1 — Location of points of measurement for type S and type M sockets and spigots, normal and dual-purpose

- inside diameter of the socket (at root) d,
- B
- length of engagement Length of "Lead-in" maximum depth of sealing zone
- E expansion gap
- effective insertion depth
- Length of spigot
- outside diameter of the spigot

Figure 2 — Location of points of measurement for type L sockets and spigots

- Inside diameter of the socket
- Length of socket
- outside diameter of the spigot length of spigot ($> \ell_2$)

Figure 3 — Location of points of measurement for solvent cement sockets and spigots

Table 1 — Dimensions of ring-seal sockets and related spigots, type S, normal and dual-purpose

Dimensions in millimetres

Nominal outside diameter	1	D_{e}		d _s		В	С	4
D	min.	max.	min.	max.1)	min.	min.	max.	min.
32	32,0	32,3	32,3	32,7	16	5	12	28
40	40,0	40,3	40,3	40,7	18	5	13	31
50	50,0	50,3	50,3	50,7	20	5	14	34

NOTE — This table specifies the permitted limits, calculated using the relationships given in the appropriate table in annex A, on the main dimensions indicated in figure 1 for type S sockets and spigots, together with non-calculated limits on the other dimensions. The calculated values have been rounded up to the nearest 0,1 mm for diameters and to the nearest 1 mm for other dimensions.

The nominal outside diameters have been selected from ISO 161-1:1978, Thermoplastics pipes for the transport of fluids — Nominal outside diameters and nominal pressures — Part 1: Metric series.

1) Required for dual-purpose sockets only.

Table 2 — Dimensions of ring-seal sockets and related spigots, type M, normal and dual-purpose

Dimensions in millimetres

Nominal								Syste	ems ¹⁾	
outside diameter	D _e		$D_{f e}$ $d_{f s}$		A B		1		ll II	
D	min.	max.	min.	max. ²⁾	min.	min.	C max.	l ₁ min.	C max.	4 min.
32	32,0	32,3	32,3	32,7	24	5	12	36	18	42
40	40,0	40,3	40,3	40,7	26	5	13	39	18	44
50	50,0	50,3	50,3	50,7	28	5	14	42	18	46
75	75,0	75,3	75,3	75,7	33	5	. 15	48	18	51
90	90,0	90,3	90,3	90,7	36	5	16	52	20	56
110	110,0	110,4	110,4	110,8	36	6	16	52	22	58
125	125,0	125,4	125,4	125,9	38	7	16	54	26	64
160	160,0	160,5	160,5	161,0	41	9	17	58	32	73

NOTE — This table specifies the permitted limits, calculated using the relationships given in the appropriate table in annex A, on the main dimensions indicated in figure 1 for type M sockets and spigots, together with non-calculated limits on the other dimensions. The calculated values have been rounded up to the nearest 0,1 mm for diameters and to the nearest 1 mm for other dimensions.

The nominal outside diameters have been selected from ISO 161-1:1978, Thermoplastics pipes for the transport of fluids — Nominal outside diameters and nominal pressures — Part 1: Metric series.

- 1) Pipes and fittings with sockets in accordance with system I and II are not interchangeable.
- 2) Required for dual-purpose sockets only.

Table 3 — Dimensions of ring-seal sockets and related spigots, type L

Dimensions in millimetres

Nominal outside diameter).	$d_{\mathtt{s}}$	Α	В	С	E	N	4
D	min.	max.	min.	min.	min.	max.	min.	min.	min.
32	32,0	32,3	32,4		5	18			35
40	40,0	40,3	40,4		5	18			36
50	50,0	50,3	50,4	l	5	18	!		38
75	75,0	75,3	75,4	65	5	20	20	45	43
90	90,0	90,3	90,4	65	5	23	2.0	"	46
110	110,0	110,4	110,5		6	26			54
125	125,0	125,4	125,5		7	28			60
160	160,0	160,5	160,6		9	32			74

NOTE — This table specifies the permitted limits, calculated using the relationships given in the appropriate table in annex A, on the main dimensions indicated in figure 2 for type L sockets and spigots, together with non-calculated limits on the other dimensions. The calculated values have been rounded up to the nearest 0,1 mm for diameters and to the nearest 1 mm for other dimensions.

The nominal outside diameters have been selected from ISO 161-1:1978, Thermoplastics pipes for the transport of fluids — Nominal outside diameters and nominal pressures — Part 1: Metric series.

Table 4 — Dimensions of solvent cement sockets and spigots, type CS

Dimensions in millimetres

Nominal outside diameter D	D)	d _s	4	l ₂	
	min.	max.	min.	max.	mi	in.
32	32,0	32,3	32,1	32,4	1	7
40	40,0	40,3	40,1	40,4	1	8
50	50,0	50,3	50,1	50,4	1	0
75	75,0	75,3	75,1	75,4		5
90	90,0	90,3	90,1	90,4	2	8
110	110,0	110,4	110,2	110,5] 3	2
125	125,0	125,4	125,2	125,5	3	5
160	160,0	160,5	160,2	160,6	4	2

NOTE — This table specifies the permitted limits, calculated using the relationships given in annex B, on the dimensions indicated in figure 3. The calculated values have been rounded up to the nearest 0,1 mm for diameters and to the nearest 1 mm for other dimensions.

The nominal outside diameters have been selected from ISO 161-1:1978, Thermoplastics pipes for the transport of fluids — Nominal outside diameters and nominal pressures — Part 1: Metric series.

1) The absolute limits for the value of any inside diameter (also called the tolerance on ovality) shall be determined in accordance with the condition

$$d_{\mathrm{s,max}} - d_{\mathrm{s,min}} \leqslant 0.011 D_{\mathrm{e}}$$

For sockets for which the ratio $e_2/D_{\rm e}$ (where e_2 is the wall thickness, in millimetres, of the sockets) is less than 0,035, there is no requirement to be met in respect of this tolerance.

Annex A (normative)

Ring-seal design calculations

Table A.1 — Relationships for the calculation of the dimensions of ring-seal sockets, type S, normal and dual-purpose

Dimensions in millimetres

Nominal outside diameter	D_{e}		d	A	
D	min.	max.	min.	max.	min.
32 40 50	32,0 40,0 50,0	$D_{\rm e,min} + 0.3$	$D_{ m e,max}$	<i>d</i> _{s,min} + 0,4	0,2 $D_{\rm e,min}$ + 10

Table A.2 — Relationships for the calculation of the dimensions of ring-seal sockets, type M, normal and dual-purpose

Dimensions in millimetres

Nominal outside diameter	$D_{\mathbf{e}}$				A	4 1)	
D	min.	max.	min.	max. ²⁾	min.	min.	
32 40 50 75 90	32,0 40,0 50,0 75,0 90,0	$D_{\mathrm{e,min}} + 0.3$	$D_{ m e,max}$	d _{s,min} + 0,4	0,2 $D_{ m e,min}+18$	$A_{\min} + C_{\max}$	
110 125 160	110,0 125,0 160,0	$D_{\text{e,min}} + 0.4$ $D_{\text{e,min}} + 0.5$		d _{s,min} + 0,5	0,1 <i>D</i> _{e,min} + 25		

¹⁾ Also applies to l_2 .

Table A.3 — Relationships for the calculation of the dimensions of ring-seal sockets, type L.

Dimensions in millimetres

Nominal outside diameter		D_{e}	$d_{\mathtt{s}}$
D	min.	max.	min.
32	32,0		
40	40,0		
50	50,0	$D_{\rm e,min} + 0.3$	
63	63,0	•,	
75	75,0		$D_{\rm e,max} + 0.1$
90	90,0		-,
110	110,0	$D_{\rm e,min} + 0.4$	
125	125,0		
160	160,0	D _{e,min} + 0,5	

²⁾ Required for dual-purpose sockets only.

Annex B (normative)

Solvent cement design calculations

Table B.1 — Relationships for the calculation of the dimensions of solvent cement sockets and spigots, type CS (for use where jointing is carried out under controlled conditions)

Dimensions in millimetres

Nominal outside diameter	D_{e}		D_{e} d_{g}			4
D	min.	max.	min.	max.	min.	min.
32 40 50 75 90	32,0 40,0 50,0 75,0 90,0	$D_{\mathrm{e,min}} + 0.3$	$D_{\mathrm{e,min}}$ + 0,1	$D_{ m e,max}+0,1$	0,2 <i>D</i> _{e,min} + 10	≥ l₂
110 125 160	110,0 125,0 160,0	$D_{e,\min} + 0,4$ $D_{e,\min} + 0,5$	$D_{\mathrm{e,min}}$ + 0,2			

ISO 8283 PT*4 92 🖿 4851903 0522087 197

ISO 8283-4:1992(E)

UDC 621.643.413-036.[745.32+762.2+746.22]:696.22

Descriptors: buildings, drainage, plastics products, ABS plastics, plastic tubes, pipe fittings, spigot-and-socket joints, pipe sockets, dimensions.

Price based on 8 pages