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INTERNATIONAL STANDARD

ISO 2854-1976 (E)

Statistical interpretation of data — Techniques of estimation
and tests relating to means and variances

SECTION ONE : PRESENTATION OF CALCULATIONS

GENERAL REMARKS

1) This International Standard specifies the techniques
required :

a) to estimate the mean or the variance of populations;

b) to examine certain hypotheses concerning the value
of those parameters, from samples.

2) The techniques used are valid only if, in each of the
populations under consideration, the sample elements are
drawn at random and are independent. In the case of a
finite population, elements drawn at random may be
considered as independent when the population size is
sufficiently large or when the sampling fraction is
sufficiently small (for instance smaller than 1/10).

3) The distribution of the observed variable is assumed to
be normal in each population. However, if the distribution
does not deviate very much from the normal, the
techniques described remain approximately valid to an
extent sufficient for most practical applications, provided
the sample size is not too small. For tables A, B, C and D,
the sample size should be of the order of 5 to 10 at least;
for all the other tables, it should be not less than about
20.1)

4) A certain number of techniques exist which permit the
verification of the hypothesis of normality. This subject is
dealt with briefly in the examples in section two and will
also be dealt with in a further document (yet to be
prepared). Nevertheless, this hypothesis may be admitted
on the basis of information other than that provided by the
sample itself. In the case where the hypothesis of normality
should be rejected, the obvious method to follow is to
resort to non-parametric tests or to use suitable
transformations for obtaining normally distributed
populations, for example 1/x, log(x + a), \/x + a, but the
conclusions reached by applying these procedures described
in this International Standard are only directly valid
for the transformed variate; caution should be used
in the translation to the original variate. For example

1) Studies about normal distributions are in progress in TC 69/SC 2.

2) At present at the stage of draft.

exp (mean log x) is equal to the geometric mean of x
not the arithmetic mean.

If what is really needed is an estimate of the mean or
standard deviation of the variate X itself then, whether the
population distribution is normal or not, an unbiassed
estimation of the mean m and the population variance 02 is
produced by the sample mean X and characteristic s2.

5) It is desirable to accompany each statistical operation
with all the particulars relevant to the source or to the
method of obtaining the observations which may clarify
this statistical analysis, and in particular to give the unit or
the smallest unit of measurement having practical meaning.

6) It is not permissible to discard any observations or to
apply any corrections to apparently doubtful observations
without a justification based on experimental, technical or
other evident grounds which should be clearly given. In any
case the discarded or corrected values and the reason for
discarding or correcting them must be mentioned.

7) In problems of estimation, the confidence level 1 —a is
the probability that the confidence interval covers the true
value of the estimated parameter. Its most usual values are
0,95 and 0,99, or « = 0,05 and @ = 0,01.

8) In problems of testing a hypothesis, the significance
level is, in the two-sided cases, the probability of rejecting
the null hypothesis (or tested hypothesis) if it is true (error
of the first kind); in the one-sided cases, the significance
level is the maximum value of this probability (maximum
value of the error of the first kind). Values of & = 0,05
(1in20chance) or 0,01 (1 in 100 chance) are very commonly
employed according to the risk which the user is prepared
to take. Since a hypothesis may be rejected using o = 0,05,
but not when using 0,01, it is often appropriate to use the
phrase : ‘‘the hypothesis is rejected at the 5 % level” or, if
this is the case, ““at the 1 % level”’. Attention is drawn to
the existence of an error of the second kind. This error is
committed if the null hypothesis is accepted when it is false.
Terms concerning statistical tests are defined in clause 2 of
1SO 3534, Statistics — Vocabulary 2) .
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9) The calculations can often be greatly reduced by
making a change of origin and/or unit on the data. In the
case of data classified into groups, reference may be made
to the formulae in 1SO 2602, Statistical interpretation of

test results — Estimation of the mean — Confidence
interval.

NOTE — A change of origin may be essential to obtain sufficient
accuracy when calculating a variance using the stated formulae with
a low precision calculator or computer.

10) The methods shown in tables C and C’ deal
with the comparison of two means. They assume that the
corresponding samples are independent. For the study of

certain problems, it may be interesting to pair the
observations (for instance in the comparison of two
methods or the comparison of two instruments). The
statistical treatment of paired observations is the subject of
1SO 3301, Statistical interpretation of data — Comparison of
two means in the case of paired observations, but in
annex A an example of treatment of paired observations is
given. It uses formally the data of table A’.

11) The symbols and their definitions used in this
International Standard are in conformity with 1SO 3207,
Statistical interpretation of data — Determination of a
statistical tolerance interval.



TABLES
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Comparison of a mean with a given value (variance known)

Comparison of a mean with a given value (variance unknown)

Estimation of a mean (variance known)

Estimation of a mean (variance unknown)

Comparison of two means (variances known)

Comparison of two means (variances unknown, but may be assumed equal)
Estimation of the difference of two means (variances known)

Estimation of the difference of two means (variances unknown, but may be assumed equal)
Comparison of a variance or of a standard deviation with a given value
Estimation of a variance or of a standard deviation

Comparison of two variances or two standard deviations

Estimation of the ratio of two variances or of two standard deviations

I1SO 2854-1976 (E)
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TABLE A — Comparison of a mean with a given value (variance known)

Technical characteristics of the population studied (5)
Technical characteristics of the sample items (5)

Discarded observations (6) .

Statistical data Calculations
Sample size : ;(_—_Z_X:
n

n —

Sum of the observed values : [U1—a/\/’_7 Jo=
x =

Given value : _

[U1—as2/N/n) 0=

mqg =

Known value of the population variance :

02 =

Or standard deviation :

g=

Significance level chosen (8) :

o=

Results

Comparison of the population mean with the given value mq :
Two-sided case :

The hypothesis of the equality of the population mean to the given value (null hypothesis) is rejected if :
X —mol|>[u1 a2/ 0

One-sided cases :

a) The hypothesis that the population mean is not smaller than mg (null hypothesis) is rejected if :
x<mg—[uy_oA/nlo

b) The hypothesis that the population mean is not greater than mg (null hypothesis) is rejected if :

X>mg+[us_o/Nn]o

NOTE — The numbers (5), (6) and (8) refer to the corresponding paragraphs of the "’General remarks’’.
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Comments

1) The significance level o (see § 8 of the ““General remarks”’) is the probability of rejecting the null hypothesis when this
hypothesis is true.

2) U stands for the standardized normal variate : the value u,, is defined by :
PIU<Ku,]l=«
Since the distribution of U is symmetrical around zero, Uy, = —Uq — 4.
We therefore have :
PlU>uyl=1-a

Pl-uy—qpp <U<uUj_gp]=1-0

Probability density of U (standardized normal distribution)

flu) flu) flu)

a2 /2
\

Ug/2 =~ U1 —a/2 Uq — /2 Ug=—Uy—q

Two-sided case One-sided cases

3) 0/\/; is the standard deviation of the mean X, in a sample of n observations.

4) For convenience in application, values of u1_a/\/77- and u4 _a/z/\/ﬁ are given in table 1 of annex B for & = 0,05 and
a=0,01.

EXAMPLE : see section two, ‘‘Explanatory notes and examples’’.
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TABLE A’ — Comparison of a mean with a given value (variance unknown)

Technical characteristics of the population studied (5)
Technical characteristics of the sample items (5)

Discarded observations (6) .

Statistical data Calculations

Sample size : ===

n=

Sum of the observed values : Y(x—Xx)2 Zx2-(Zx)2/n

n—1 n—1
n i

ZXx =

/2 (x—Xx)2
Sum of the squares of the observed values : o*=s= % =

>x2 =

Given value : [t- oW/ ]s=

mgo =

Degrees of freedom :

v=n-—1
[t1-a/2WIA/A |5 =

Significance level chosen (8) :

oa =

Results

Comparison of the population mean with the given value mg :

Two-sided case :

The hypothesis of the equality of the population mean to the given value (null hypothesis) is rejected if :
X —mol > [ty _ a2 WN/n |s

One-sided cases :

a) The hypothesis that the population mean is not smaller than mg (null hypothesis) is rejected if :
X< mg—[ti—aW//nls

b) The hypothesis that the population mean is not greater than mg (null hypothesis) is rejected if :

)?>m° + [t1_a(V)/\/5]$

NOTE — The numbers (5), (6) and (8) refer to the corresponding paragraphs of the ““General remarks’’.
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Comments
1) The significance level o (see § 8 of the “General remarks”) is the probability of rejecting the null hypothesis when this
hypothesis is true.
2) t{v) stands for Student’s variate with » = n — 1 degrees of freedom : the value t,(v) is defined by
Pt <t,v)]=«a

Since the distribution of ¢(v) is symmetrical around zero, t,(v) =—t; _ 4 (v).
We therefore have :

Pltv) > t, )] =1«

P[~ t1—*(¥/2(V) <t(V)<t1—a/2(V)]= 1—a

Probability density of Student’s t(v) with v = n — 1 degrees of freedom

f(t) f(t) f(z)

\ \ l

/2 «

t(v) — t(v) ’ - t(v)
ta2) =—1tq _ o/20) t — a2l t] — o) ta) ==ty _4lv)

Two-sided case One-sided cases

3) ¢*A/n is the estimated standard deviation of the mean X, in a sample of nn observations.

4) For convenience in application, values of t, ,a/g(v)/\/; and t4 _ o (v)/A/n are given in table I1b of annex B for & = 0,05
and a = 0,01

EXAMPLE : see section two, ‘‘Explanatory notes and examples’’.
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TABLE B — Estimation of a mean (variance known)

Technical characteristics of the population studied (5)
Technical characteristics of the sample items (5)

Discarded observations (6) .

Statistical data Calculations
. _ Xx
Sample size : X=—=
n
n —
Sum of the observed values : [u1_gn]o=
X =

Known value of the population variance :

02=

[U1—a/2/\/’—7_] 0=

Or standard deviation :

o=

Confidence level chosen (7) :

1—-a=

Results

Estimation of the population mean m :

Two-sided confidence interval :
X [U1-a/2/\/;] o<m<Xx+ [U1—a/2/\/;] 0
One-sided confidence intervals :
m<x+[uj_o~nlo

or m>x—[uj_q/nlo

NOTE — The numbers (5), (6) and (7) refer to the corresponding paragraphs of the ‘‘General remarks’’.
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Comments

1) The confidence level 1 —a (see § 7 of the ““General remarks’’) is the probability that the confidence interval covers the
true value of the mean.

2) U stands for the standardized normal variate : the value u, is defined by :
PIU<Luy]l=a
Since the distribution of U is symmetrical around zero, Uy, = —Uq _ 4
We therefore have :
PlU>uy]=1—«

Plrus—app<U<uj_qp]=1-a

Probability density of U (standardized normal distribution)

flu) fu) flu)

l l l

a/2 /2

v
!

|

Ug/2 =~ U1—q/2 Uy —a/2 Ug=—Uq—q

Two-sided case One-sided cases

3) o/n/n is the standard deviation of the mean X, in a sample of n observations.

4) For convenience in application, values of u1_a/2/\/7; and U4 _ o/A/n are given in table | of annex B for @ = 0,05 and
a=0,01.

EXAMPLE : see section two, “"Explanatory notes and examples’’.
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TABLE B’ — Estimation of a mean (variance unknown)

Technical characteristics of the population studied (5)

Technical characteristics of the sample items (5)

Discarded observations (6) .

Statistical data

Sample size :

n=

Sum of the observed values :

Zx =

Sum of the squares of the observed values :

Zx2 =

Degrees of freedom :
v=n—1=

Confidence level chosen (7) :

1—a=

Calculations

X
n

X =

Z (x—X)2 _ Zx2 - (Zx)2/n _

n—1 n—1
* [ Z (x —Xx)2
O’ =s= —————
n—1

[ti-a@A/n]s=

[t1—ar2WiV/n]s=

Results

Estimation of the population mean m :

Two-sided confidence interval :

Il
x|
Il

X=[ti—a2WA/n s <m <X +[t1_a/2W)N/n |5

One-sided confidence intervals :

or

m<Xx+[ti_qWA/n]s

m>X—[ti_aW)A/n|s

NOTE — The numbers (5), (6) and (7) refer to the corresponding paragraphs of the ““General remarks’.

10
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Comments

1) The confidence level 1 —a (see § 7 of the ““General remarks’’) is the probability that the confidence interval covers the
true value of the mean.
2) t(v) stands for Student’s variate with v degrees of freedom; the value #,(v) is defined by
Plt) <ta(W)]=a
Since the distribution of t(v) is symmetrical around zero, t,(v) = —t; _ . (v).
We therefore have :
Pltv) > t,0)]=1-«a

Pl=ti—an) <t) <ti_q,pW)]=1-«

Probability density of Student’s t(v)-with v = n — 1 degrees of freedom

f(t) f(t) f(t)
a/z Ot/2 « o
0 0 - 0
—— t(v) = t(v) “ = t(v)
ta/2(V) = — 1, ‘.Q/2(V) tq —a/2(V’ t1—a(V) ta(V) ==t —qlv)
Two-sided case One-sided cases

3) o*/\/ﬁ is the estimated standard deviation of the mean x, in a sample of n observations.
4) For convenience in application, values of t1~a/2(v)/\/ﬁ and t;_o()A/n are given in table Ilb of annex B for

a = 0,05 and a = 0,01.

EXAMPLE : see section two, “Explanatory notes and examples’’.

11
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TABLE C — Comparison of two means (variances known)

of population 1

Technical characteristics (5) of population 2

Technical characteristics of in population 1
the sample items taken (5) in population 2
. . in sam
Discarded observations (6) . MM?!? ,1,
I Sairpic <
Statistical data Calculations
First Second 5
— X1
sample sample X =——=
nq
Size Na = Na =
- Zx
Sum of the observed values Txy = Tx, = Xy =—2=
na
Known values of the variances g2 o2
of the populations 02 = 0% = 0y =, [ +—2
)
Significance level chosen (8) : Uy_o Og =
o= Uy —q/204 =

Results

Comparison of the two population means :
Two-sided case :

The hypothesis of the equality of the means (null hypothesis) is rejected if :
X9 = X2l > uq /204

One-sided cases :

a) The hypothesis that the first mean is not smaller than the second (null hypothesis) is rejected if :

)?1 <)—(2 —Uq-404

b) The hypothesis that the first mean is not greater than the second (null hypothesis) is rejected if :

;1 >)_('2 +U1_a0d

NOTE — The numbers (5), (6) and (8) refer to the corresponding paragraphs of the ‘‘General remarks’’.

12
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Comments
1) The significance level o (see § 8 of the ““General remarks”) is the probability of rejecting the null hypothesis when this
hypothesis is true.
2) U stands for the standardized normal variate : the value v, is defined by :

PlU<Luyl=a
Since the distribution of U is symmetrical around zero, Uy, = —Uq _ .
We therefore have :

PIU>uy]=1-«

Plmti—anp<U<uj_qgp]l=1-a

Probability density of U (standardized normal distribution)

f(u) flu) flu)

| \

Ug2 =7 U1 —a/2 Uy — /2

Ug=—U1—q

Two-sided case One-sided cases

2 2

/o o - =

3) 04 =, [— +—2is the standard deviation of the difference d = X; — X, of the means of the two samples of n; and n,
ny N

observations respectively.

4) The values uq_ 45 and v, — o must be read for & = 0,05 and a = 0,01 on the line n = 1 of table 1 of annex B.

EXAMPLE : see section two, ‘Explanatory notes and examples’'.

13
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- '
I

ABLE C' — Comparison of two means {variances unknown, but may be assumed equai}

The hypothesis of the equality of the variances of the two populations can be tested as indicated in table G.

Technical characteristics (5)

Technical characteristics of
the sample items taken (5)

of population 1
of popuiation 2

in population 1
in population 2

. . in sample 1.
Discarded observations (6) in sample 2 .
Statistical data Calculations
. = ZX4
First Second 15— =
sample sample N
sample sample
— Zx
Size ny = ny = 2 =2
na
Sum of the observed values Ixq = Txg = Z(x1=%1)2+ 2 (xy —X3)2 =
. 1 1
Sum of the squares of the Ix2 4+ Zx3 ——(2x,)2 —— (Ix,)2 =
observed values Zx2 = Ex3 = 1 2

Degrees of freedom

04 =sd=\/"1 Ty 2 —X)2+43 (xp-Xp)2=

nqyny ny+ny,—2
Significance level chosen (8) :
t1 _a(V) Sq =
a —]
ti—a/2W)sg =
Results

Comparison of the two populations means :

Two-sided case :

The hypothesis of the equality of the means (null hypothesis) is rejected if :

One-sided cases :

X1 = Xx2| >ty —a/2(V) s

a) The hypothesis that the first mean is not smaller than the second (null hypothesis) is rejected if :

)71 <;2 il 2 _a(V) Sq

b) The hypothesis that the first mean is not greater than the second (null hypothesis) is rejected if :

X1 > X+t o) s4

NOTE — The numbers (5), (6) and (8) refer to the corresponding paragraphs of the ““General remarks".

14
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Comments

1) The significance level a (see § 8 of the ‘“General remarks’’) is the probability of rejecting the null hypothesis when this
hypothesis is true.

2) t(v) stands for Student’s variate with v = ny + n, — 2 degrees of freedom; the value t,(») is defined by :

Plth) < to)]=a

Since the distribution of t(v) is symmetrical around zero, t,(v) = —t; _ ,(»).
We therefore have :
Plt) >t ]=1-«a

Pl—t1_aqpp) <t) <tj_4W]=1-a

Probability density of Student’s t(v) with v = nq + n, — 2 degrees of freedom

f(t) f(e) f(t)

| \

/2 @/2 a
0 / 0
= t() —— t(v) = t(v)
ta2W) =—1t1 _ o/2(v) t —goW) t — o) ta) ==ty o)
Two-sided case One-sided cases

3) o) is the estimated standard deviation of the difference d = X; — X, of the means of the two samples of nq and n,
observations respectively.

4) Thevalues t;_4/5(v) and t; _,(v) are given in table lla of annex B for « = 0,05 and & = 0,01.

EXAMPLE : see section two, ““Explanatory notes and examples’.

15
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TABLE D — Estimation of the difference of two means (variances known)

of population 1

Technical characteristics (5) of population 2

Technical characteristics of in population 1
the sample items taken (5) in population 2
Discarded observations (6) n sample 1.
in sample 2 .
Statistical data Calculations
First Second % = ZXq_
sample sample ! nq
S' )? _ EXz__
1z¢ m= ny = 2 n2
Sum of the observed values Txq = Zxp =
02 o2
. O'd g _1 _|_ 2
Known values of the variances Ny ny
of the populations 02 = 02 =
Uqg—q0gq =
Confidence level chosen (7) : o
Uy—q/204 =
1—a=
Results

Estimation of the difference of the two populations means m, and m,, :
my—my)*=Xx, —x,=
Two-sided confidence interval :
(X7 = X2) —uq— /204 <my —my <Xy —X3) T Uq_ 4,204
One-sided confidence intervals :
mq—may<(Xxq —X3) +uq_g04

or mq —mgy > (Xq —X3) —Uq-404

NOTE — The numbers (5), (6) and (7) refer to the corresponding paragraphs of the ““General remarks’’.

16
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Comments

1) The confidence level 1 —« (see § 7 of the ““General remarks’’) is the probability that the calculated confidence interval
covers the true value of the difference between the means.

2) U stands for the standardized normal variate : the value v is defined by :
PlU<uy]l=a
Since the distribution of U is symmetrical around zero, U, = —uq — 4.
We therefore have :
PIU>u,l=1—a

Plruy—go<U<Uj_qp]l=1-a

Probability density of U (standardized normal distribution)

f(u) flu) flu)
oz/\2 a2 @ o
0 ] Y -—U 0 — U
Ug/2 =—U1—a/2 Uq — /2 Ug—q Ug=—Uq_q
Two-sided case One-sided case

[ 2 2

07 0O - -

3) o4 =,/—+ =2 is the standard deviation of the difference d = X1 — X5 between the means of the two samples of 7, and
ny  Np

n, observations respectively.

4) The values uq _ 4/» and U, _ o, must be read for @ = 0,05 and & = 0,01 on the line n = of table 1 of annex B.

EXAMPLE : see section two, ““Explanatory notes and examples’”.
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I

TABLE D — Estimation of the difference of two means (variances unknown, but may be assumed equal)

The hypothesis of the equality of the variances of the two populations can be tested as indicated in table G.

Technical characteristics (5)

of nonulation 1
ot pop 1 1

wauOd

of population 2

in population 1

+ha camnla itame +alban (R) in nantilatinn 9
uiIic aaulplc TLTITID LancTil \v) LR} pU'Julal.lUll <
. . in sample 1.
D .
iscarded observations (6) in sample 2 .
Statistical data Calculations
First Second % = X _
sample sample n
Size ny = n, = X, ==%X2_
2
n2
Sum of the observed vaiues Zxq = Zxy = Z(xq=X1)2 + 2 (xp —Xp)2 =
1 1
Sum of the squares of the Ix2 + 2x3 - — (Tx4)2 —— (Zx,)? =
observed values Ix3 = Ix3 = n n2

Degrees of freedom

Confidence level chosen (7) :

1—-a=

ot = s, = |™M +ny Z(x1—x)2 +Z (x5 —X5)2
. d ny N2 ny+ny,—2

t1—aW)sq =

t—a/2V) sq =

Results

Estimation of the difference of the two populations means m; and m, :

Two-sided confidence interval :
(X1

One-sided confidence intervals :

or

my—my)*=x; —x,=

—X2) T ti—a2W) sqg <my —my <Xy = Xo) g0 ) sy

-mq — My < ()_(1 _;2) + t‘l—a(V)Sd

mq —moy > (;1 “)_(2) - t1_a(l)) Sd

NOTE — The numbers (5), (6) and (7) refer to the corresponding paragraphs of the ““General remarks’’.

18
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e evei 1 — & \see 7 of the “General remarks’’) is the probabiﬁt‘y‘ that the calculated confidence interval
covers the true value of the difference between the means.

ial 1 — A lenn § T ~Af thno “"Carmara I varmsar [PPAY

2) t{v) stands for Student’s variate with v = n, + n, — 2 degrees of freedom; the value t, (v} is defined by
Pt) <ty)] =«

Since the distribution of #{v) is symmetricai around zero, t,(v) = —t1 _ ().

We therefore have :

DIl AN, . 1.\ a
Pltwi > t,wij=1—a

Pl=ty — a2 <tW) <ty_qow)=1-a

Probability density of Student’s t(v) with v = nq + ny — 2 degrees of freedom

f(t) f(e) f(e)
a/z &/2 o @
(o]
9 = t(v) 0 = t(v) < - t(v)
ta2W) =—1tq /20 t1—q/2w) t] — o) tav) =—1t9 _ o)
Two-sided case One-sided cases

3) 0§ is the estimated standard deviation of the difference d = x; — x5 between the means of the two samples of n4 and no
observations respectively.

4) Thevalues t;_,,5(v) and t; _ ,(v) are given in table lla of annex B for & = 0,05 and & = 0,01.

EXAMPLE : see section two, ““Explanatory notes and examples”.
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TABLE E — Comparison of a variance or of a standard deviation with a given value

Technical characteristics of the population studied (5)
Technical characteristics of the sample elements (5)

Discarded observations (6) .

Statistical data Calculations
Sample size :
n =
- Zx)2
2 (x—x)2 =Zx2~(~n—) =
Sum of the observed values :
Ix =
Zx—x)2-
Sum of the squares of the observed values : 0(2) -
Tx2 =
Given value : Xi(”) =
2 _
05 =
2 —
Degrees of freedom : X7—oW) =
v=n—1=
2 _
Significance level chosen (8) : Xas2W) =
a= X?—a/2(y) =
Results

Comparison of the population variance with the given value 0(2) :
Two-sided case :
The hypothesis that the population variance is equal to the given value (null hypothesis) is rejected if :

S (x — %)2
TOCX? 2 o

> (x —Xx)
2 2
0% )

2
> X?—a/z(”)

One-sided cases :

a) The hypothesis that the population variance is not larger than the given value (null hypothesis} is rejected if :

Z (x—x)2
T2z >X3h
o]

W)

b) The hypothesis that the population variance is not smaller than the given value (null hypothesis) is rejected if :

2 (x—Xx)2
T < Xi(V)

NOTE — The numbers (5), (6) and (8) refer to the corresponding paragraphs of the "“General remarks’’.
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Comments

1) The significance level « (see § 8 of the ““General remarks’) is the probability of rejecting the null hypothesis when this

hypothesis is true.

2) x2(v) stands for the x2 variate with v degrees of freedom; the value xi(v) is defined by
Px2(n)<x2Ww)]=a

We therefore have :
Px2(n) >x2w)]=1-a

P X2, <X2W) < X3 _q/p W] =1-0

Probability density of x2(v) with v = n — 1 degrees of freedom

f(x2) f(x2) f(x2)
al2 al/2 a a
0 x2() 0 X2w g
2 2
X2/, ) X3 _ oo Xav) 2w
Two-sided case One-sided cases

3) Thevalues x2(v), X3 _ ,(¥), X2, () and X3 _,, () are given in table |11 of annex B for @ = 0,05 and @ = 0,01.

EXAMPLE : see section two, “Explanatory notes and examples’'.

x2(v)
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TABLE F — Estimation of a variance or of a standard deviation

Discarded observations (6) .

Technical characteristics of the population studied (5)

Technical characteristics of the sample items (5)

variance 02,

Statistical data Calculations
2
Sample size : T(x—x)2=2%Ix2~- (Zx) =
n =
2= Z{x—Xx)2
Sum of the observed values : n—1
Zx = T (x—X)2
)
Sum of the squares of the observed values : @
2x2 = 2 (x —Xx)2
=
X5 _o(?)
Degrees of freedom : o
v=n—-1= Zix—Xx)2
Xa/2 @)
Confidence level chosen (7) :
—%)2
as B
X4 —a/2(V)
Results
Estimation of the population variance 02 :
(02)* =s2 =
Two-sided confidence intervall) :
2 (x—x)? z (x —x)2
Y R
X7 —as2W) Xa/2 W)
One-sided confidence intervals1) .
2 < B2
X5 (V)
- %)2
or 02> > (2x x)
Xi-al?)

1) The limits of the confidence intervals of the standard deviation ¢ are the square roots of the limits of the confidence intervals of the

NOTE — The numbers (5), (6) and (7) refer to the corresponding paragraphs of the “General remarks’.
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Comments
1) The confidence level 1 —a (see § 7 of the “General remarks’’) is the probability that the calculated confidence interval
covers the true value of the variance.
2) x2(v) stands for the x2 variate with v = n — 1 degrees of freedom; the value xg(V) is defined by
Px2w) <xiw)]=a
We therefore have :
PIx2w) >x2w)]=1-a

PIX2,,0) <x2W) <X2_4 00 ]=1-a

Probability density of x2(v) with v = n — 1 degrees of freedom

f(x2) f(x2) f(x2)
a{z al2 a o
0 x2(v) 0 x2(v) 0 x2(v)
ng/z‘") X% — a2 Xg(”) xf _ o)
Two-sided case One-sided cases

3) The values xg(v), xffa(v), xi/z(u) and X%—a/z(”) are given in table Il of annex B for & = 0,05 and o = 0,01.

EXAMPLE : see section two, ““Explanatory notes and examples’’.
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TABLE G — Comparison of two variances or of two standard deviations

Technical characteristics (5) [

Technical characteristics of
the sample items taken (5)

Discarded observations (6) {

of population 1
of population 2

in population 1
in population 2

Comparison of the population variances :
Two-sided case :
2
s3
2
53

One-sided cases :

in sample 1
in sample 2.
Statistical data Calculations
First Second
_ (£x,4)?
sample sample Z(xq—Xxq)2=2Zx2— Rt E
4
Size ny = ny =
— Zx5)2
> (X2—X2)2:EX%_(___2_)_.:
Sum of the observed values Zxq = Txy = n,
—%.\2
Sum of the squares of the $2 = Z xq —xq) _
observed values Ix2 = Ix3 = ! ny—1
—%.)2
Degrees of freedom vy=ny—1 vy=ny,—1 2 :E xa =X5) _
2 ny—1
Significance level chosen (8) :
’ Fi-olvq,v2) = Fi—asp2y, va) =
a =
1 _ 1
Fi_alva, vy} Fi—aizWa, vy) =
Results

The hypothesis of the equality of the variances (null hypothesis) is rejected if :

1 2
or —2-> Fi—asalvy. va)

F1—as2lva, vq) $3

a) The hypothesis that the first variance is not greater than the second (null hypothesis} is rejected if :

§2
—>Fi_olvq. v2)
52

2

b) The hypothesis that the first variance is not smalier than the second (null hypothesis) is rejected if :

2
4 1

53 Fi_glvy, vq)

NOTE — The numbers (5), (6) and (8) refer to the corresponding paragraphs of the “*General remarks’’.
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1) The significance level o (see § 8 of the ““General remarks”) is the probability of rejecting the null hypothesis when this

hypothesis is true.

2) F(vq, vy) stands for the variance ratio with vy =n, =1 and v, =n, — 1 degrees of freedom; the value F,(vq, o) is

defined by :

PlFlvq,v3) <Fulvy,va)]l=a

We therefore have :

PlF(vy,v3) > Folvq,va)]=1-a
PlFasavy, v2) <FWq, v) <Fi_qsavq.v3)]=1-a

We also have :

1

Folvg, vy) =———
alv1, 2] F1-glva, vq)

Probability density of F(vq, vo) with vy = nq— 1 and vy = ny — 1 degrees of freedom '

f(F) f(F) f(F)
al2 /2 @ «
0 Flvq, vo) 0 Flvq, vo) o Flvq, vao)
Fas2vy. v2) F1—q2Wi.v2) Falvq, va) Fq—qlvq, va)
T F1—qs2iva, vq) F1—qalwa vq)
Two-sided case One-sided cases

3) The values Fy _, and Fq_,,, aregiven in table IV of annex B as functions of the numbers of degrees of freedom, for
a = 0,05 and a = 0,01. The values F, and F,,, may be derived as indicated above from the values F; _, and F;_4/2.

EXAMPLE : see section two, ‘‘Explanatory notes and examples’.
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TABLE H — Estimation of the ratio of two variances or of two standard deviations

of population 1

Technical characteristics (5) of population 2

Technical characteristics of in population 1
the sample items taken (5) in population 2
. . in sample 1.
Discarded observations (6) in sample 2 .
Statistical data Calculations
First Second S (X1 ~%1)2 = Tx2 — (Zx,)? _
sample sample L 1 n,
Size ny= Ny = {(Tx5)2
Z{xy=X%,)2% = Ex% - — =
Sum of the observed values Ixqy = Ixq = 2
2 (xq —%4)2
Sum of the squares of the $1= T
observed values Ix2 = Ix3 = 2
5 2 lxp—=%,)?
Degrees of freedom vy=n;—1 vo=ny—1 5= _,,__1_ =
2
Confidence level chosen (7) : 52 52
_ Froalva, vy)— = Froarz o, )5 =

1T—a= s5 s5

2 2

Fioly,v) 5= Fioare W1, v2) 5=

52 53

Results

Estimation of the ratio of the two population variances 0% and o% :

(02 \' _s3 2 (xq —X4)2/ny — 1)
o2 52 Zlxy—Xx3)2%/(ny = 1)

Two-sided confidence intervall) :

1 s2 o2 52

1 1 1
_'_—'3<_2<F1—a/2(v2' V1) -
Fi—asp2vi.v3) 53 03 52

One-sided confidence intervals?) :

2 2 2 2

o s g 1 s

1 1 1 1

—2<F1_a(1)2,1)1)——2' or EZ“>—“-—'—“——2

035 53 2 Fi-qalvy. v3) 55

1) The limits of the confidence intervals of the ratio of the standard deviations o and o5 are the square roots of the limits of the
confidence intervals of the ratio of the variances o? and og.

NOTE — The numbers (5), (6) and (7) refer to the corresponding paragraphs of the “General remarks”.
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Comments
1) The confidence level 1 —a (see § 7 of the “General remarks'’) is the probability that the calculated confidence interval
covers the true value of the ratio of the two variances.

2) Flvq, vy) stands for the variance ratio with vy =n; —1 and v, =n, — 1 degrees of freedom; the value Fo(vy, o) is
defined by :

P[F(V1,V2)<FQ(V1,V2)]=Q
We therefore have :
P[F(V1,V2) >Fa(V1, Vz)] =1-a«
PlFar2wy. va) <FWq, v2) <Fi_qpvy.va)]l=1-a

We also have :

1

F =—1
al1.v2) F1_olva,v4)

Probability density of F(vq, vp), with vy =nq —1and v5 = ny — 1 degrees of freedom

f(F) f(F) f(F)
!
af2 af2 @ a
F(vq, vp) o F(V1, u2) 0 F(p1, p2)
Foy2(vq, v3) F1—as2tvy.va) Falvy, va) F1—alvq, vo)
F1—a2lva vq) F1—alva, vq)

Two-sided case One-sided cases

3) The values Fqy _, and Fqi_4/2 are given in table IV of annex B as functions of the numbers of degrees of freedom,
for « = 0,05 and a = 0,01. The values F, and F,/, may be derived from the values Fy _, and F,_,,, as indicated above.

EXAMPLE : see section two, “Explanatory notes and examples”'.
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SECTION TWO : EXPLANATORY NOTES AND EXAMPLES

INTRODUCTORY REMARKS

1) The tables given in section one of this International
Standard set out formally twelve different procedures
which can be applied to data observed in samples in order
to help answer a variety of questions regarding the larger
population or populations from which it is supposed that
the sample(s) has (have) been randomly drawn. To add to
the understanding of the more formal presentation given in
tables A to H, the procedures will now be illustrated on
numerical data consisting of measurements of breaking load
for two samples of yarn. The most important characteristics
of the samples are printed beside the observations in
table X.

The unit in which the numerical data and the calculations
results are expressed is the newton.

TABLE X — Breaking load of yarn (in newtons)

(For the meanings of the symbols, see,
for instance, table G)

Yarn 1 Yarn 2
2,297 2,286
2,582 2,327
1,949 2,388
2,362 3,172
2,040 3,158
2,133 2,751
1,855 2,222
1,986 2,367
1,642 2,247
2,915 2,512
2,104
2,707
Sample sizes :
ny =10 n, =12

Sum of observed values Zx :

21,761 30,241
Mean values :
xq, =2,176 Xo = 2,520

Sum of squares of observed values, x2 :

48,610 477 77,599 609

Sum of squares of differences about means, Z(x —x)2 :

1,256 365 1,389 769

Estimates of variance :

s2 =0,139 60 s2=10,126 34

2) It is not suggested that answers to the whole set of
questions would ever be required in a given investigation,
but to simplify the presentation it is convenient to use the
same illustrative material in each case. As a result it seems
only necessary to illustrate numerically the complete
formal presentation of the twelve tables in two cases: the
single-sample case of table A and the two-sample case of
table C.

In general the question or questions to be asked will be
decided upon before the data are analyzed; indeed, it is best
that they should determine the way in which the data are
collected. However, a piot of the observations which are to
be used in the examples will illustrate the kind of question
which may be of interest. Some of these are as follows :

Allowing for chance sampling fluctuations, are the means or
the standard deviations in the two samples consistent with
the hypothesis that the two population means and/or
standard deviations are identical?

If they are not identical, by how much may they differ?

The procedures set out in tables A to H give an objective
backing, in terms of probability statements, to answers
which may be suggested more tentatively by inspection of
plots such as these.

3) Since the procedures to be followed depend on the
assumption that the populations sampled are approximately
represented by the normal density function, which in
standardized form has the equation

1 u?
flu) =—=exp (“5)

21

as a start it is usually desirable to make a rough
examination of this assumption, unless of course an
adequate assurance of normality has been established from
past examination of similar data. When the number of data
is not very large, this examination may be made graphically
used one of several alternative methods, two of which will
be described here. Both involve arranging the observations
in ascending order of magnitude’), so that in a sample of n
observations, x;

X1S<X3< ... <X

1) With quite simple modification, the observations could alternatively be arranged in descending order of magnitude, i.e. X12X0 =>...2Xp.

28



In the case of the second of the two samples of yarn given
in table X, the twelve ordered observations are :

2,104 — 2,222 — 2,247 — 2,286 — 2,327 — 2,367 —
2,388 — 2,512 — 2,707 — 2,751 — 3,158 — 3,172

These ordered observations are termed the “‘order statistics
of the sample’”’, and in either method will be used as
ordinates in the diagram to be plotted. The two methods
differ in the abscissae used; in one, a), the expected values
of the normal order statistics, are taken; in the second,
b), the plotting is done on so-called ‘“normal probability
paper’’ and the chosen abscissa is the expected value of the
cumulative probability associated with the order statistic.

a) Use of expected values of normal order statistics,
say £(iln)

For random samples of size n from a standardized normal
distribution (i.e. with mean zero and unit standard
deviation), these expected values, £(/|n) are given in table V
of annex B for n =2(1)50, /=1, 2, ..., n/2 for n even and
i=1,2, .., (n+1)/2 for n odd. H.L. Harter tables give
values of £(/|n) for n = 1(1)100 and afterwards for rather
wider intervals up to n=400. The remaining values are
obtained by giving negative signs to the values tabled, i.e.
the expected order statistics fori=n, n—1,n—2, ..., are
those for /=1, 2, 3, ..., with signs reversed. If the twelve
observed order statistics are plotted as ordinates against the
corresponding expected values £(iln), i=1, 2,...12, the
result is the diagram shown in figure 2.

If the population distribution is strictly normal, the plotted
points should only diverge from a straight line through
chance sampling fluctuations. The slope of the line provides
an estimate of the population standard deviation. This
straight line gives an approximate estimation of the
population mean (ordinate 2,52 of the abscissa point 0,0 of
the straight line) and of its standard deviation (slope of the
straight line, let for example 0,355 = the difference of
ordinates between the two points of abscissa 1 and 0 of the
straight line).

b) Use of normal probability paper

It is necessary to preface the description of this procedure
with a few words about the nature of this paper, which may
usually be obtained from any firm selling ruled papers
having a variety of scales of grid.

If X is a random variate from a population having
mean = m, standard deviation = ¢, and if U = (X —m)/o, it
is clear that if we have n values of x;, and plot x; as ordinate
against u; as abscissa, the points (u;, x;) will fall on a
straight line which will have slope o and will pass through
the point with co-ordinates (0, m). If the population
sampled is normal having a density function F(uv) as defined

ISO 2854-1976 (E)

above, the uniform abscissa-scale, v, may be replaced by the
probability scale, P(u), where

y
Plu;) = f "e-u2/2 quin/am

— o

The following table indicates certain corresponding values
of 100 P and w.

100 P u
0.1 - 3,090
0,5 —2576
1.0 -2,326
25 - 1,960
50 — 1,645

10,0 -1,282

20,0 -0,842

25,0 -0,674

30,0 —0,624

40,0 —0,253

50,0 0,000

60,0 0,253

70,0 0,524

75,0 0,674

80,0 0,842

90,0 1,282

95,0 1,645

97,5 1,960

99,0 2,326

99,5 2,576

99,9 3,090

Figure 3 shows a uniformly spaced vertical set of rules for
x, while the horizontal rules are drawn against the scale of
Plu), rather than the uniformly spaced scale u. In the
standard form of normal probability paper the scale u is, in
fact, omitted.

In practice, of course, the population values of m and o will
generally be unknown so that neither the u; or P(uj)
corresponding to x; can be determined. It is, however,
known that if repeated random samples of n observations
are drawn from a normal population and the individual
observations in each sample arranged in ascending order of
magnitude, x; being the /th order statistic, then whatever be
m and o, the average or expected value of P(x;) is equal to
i/ln + 1), that is it lies at a fixed point on the P-scale.

Given a single sample of size n, the graphical test for
departure from normality, based on the use of normal
probability paper, consists therefore in

a) assigning to the vertical x-grid a suitable scale
according to the observed range of values of x in the
sample;

b) plotting the /th normal order statistic x; as ordinate
against P; = i/(n + 1) as abscissa.

1) Taken from H.L. Harter, Order Statistics and their Use in Testing and Estimations, Volume 2.
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FIGURE 1 — Breaking load of yarn in samples

3,20¢
3,004
2,801

2,60 t
252t —m— m e —— — — — —

Sample order statistic

2,401

2,20+

2,004

-16 -12 -08 -04

Expected normal order statistic, & (i/|n)

FIGURE 2 — Graphical test for normality applied to sample of yarn 2
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In those conditions, if the distribution is strictly normal, the
quantiles x; with probability i/(n + 1) of this distribution will
be represented graphically by points lying on the straightline

Aint T Ainatac (N M) and
paSang tthUgh the pulﬂt witn COo-orainates \U, mj; anda

having a slope 0. As a consequence, for a single sample, the
points with co-ordinates [i/(n+ 1), x;] will only diverge
through chance fluctuations from this line.

On the other hand, it is clear that in this second method of
graphical representation, the mean position of the point
representing x; will not lie on this straight line, although it

= e, al

will be very near to it1).

In figure 3, the n = 12 ordered observations for the second
of the two samples of yarn have been plotted, using a
suitable x-scale, against abscissa P = 1/13, 2/13, ..., 12/13.
It will be seen that the spot pattern in figure 3 is very
closely similar to that in figure 2, but not precisely so, since
£{(/112) does not equal u{P; = i/13) exactly.

The sloping straight line has been drawn using for the
unknown population m and o0, the sample estimates
X = 2,520, s = 0,355.

Both these graphical methods may be used if the
hypothetical population is not normal but has some other
form, for example that of a negative exponential, or a
gamma (or x2) distribution. But it will then be necessary to
have

a) another, appropriate table of the expected values of
order statistics, £(/|n); or

b) probability paper with a vertical grid drawn to
another scale.

Such tables and paper exist.

An alternative graphical method sometimes employed
combines elements of the two methods described under a)
and b) above. Normal probability paper is again used, the
order statistic of the sample, x;, being plotted as ordinates
against abscissa

pleim) = [*"e 22 qun/am

instead of against P; = i/(n + 1) as in method b). The values
of P{Z(iln)} may be found by entering a table of the
normal probability function with the values of £(/In) given in
table V. Again, if the population sampled is normal, the
plotted points will lie roughly on a sloping straight line.

The weakness of the graphical method is that it provides no
objective means of judging whether, as in this case, the
departure of the points from a straight line is important. As
stated in paragraph 4 of the “General remarks’’ introducing

section one of this International Standard it is possible to
apply the test of Shapiro and Wilk (provided n < 50),
which was developed with the idea of giving precision to
this graphical approach. This method will be described with
others in more detail in a further document. If this test is
applied to the observations on yarn 2 and also to the
n = 10 observations on yarn 1 it is found that in neither
case are the results inconsistent with sampling from normal
populations.

4) The graphical method de

The graphical me
helpful in reaching a decision as to whether one of the
transformations suggested in paragraph 4 of the ““General
remarks”’ is likely to make a variable x more closely normal.

AVATI~ Ava PRI |
As an example of this kind the following data are quoted

for the results of a rotating bend fatigue test applied to
15 specimens of an aero-engine component.

e ooy

the 15 values of

The variable, x, measures endurance. if

a) x,
b) logq1g(10 x).

already arranged in ascending order of magnitude, are
plotted against the corresponding expected normal order
statistics £(/]15), /=1, 2,..., 15 taken from table V of
annex B, it is at once found (see figure 4) that the plot
using log x is approximately linear, while that for x is
decidedly not so. This suggests that in testing hypotheses,
the analysis of the kind suggested in tables A, A", C, C’, E
and G should be applied to logx rather than x. This
suggestion was confirmed by fuller test data. If, however,
the requirement was to obtain confidence intervals, say, for
the mean and standard deviation of x, these could not be
derived directly from the confidence intervals for the mean
and standard deviation of log x. However, tolerance limits
for the whole population of x could be found using log x as
the variate.

Rotating-bend fatigue tests, x and log1(10 x)

Specimen / Xj log10(10 x;)
1 0,200 0,301
2 0,330 0,519
3 0,450 0,653
4 0,490 0,690
5 0,780 0,892
6 0,920 0,964
7 0,950 0,978
8 0,970 0,987
9 1,040 1,017

10 1,710 1,233
11 2,220 1,346
12 2,275 1,357
13 3,650 1,562
14 7,000 1,845
15 8,800 1,944

1) The amount by which the true line of means differs from the straight line is greatest when / = 1 or n, but is even then small compared with

the sample variations about the means, £(iln).
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FIGURE 4 — Rotating-bend fatigue data. Graphical test for normality
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5) Being satisfied, therefore, that it is appropriate to use
the procedures described below for the analysis of normally
distributed variables, the only pieces of numerical
information required from the samples are the number of
observations, n (the sample size), and the statistics Z(x) and
2(x —X)2. These, with their derived sample estimates, the
means m1* = X4, my ™ = X,,and the variances 03~ = s7 and
03™ =53, are set out beside the basic data in table X. As
previously stated in illustrating the procedure contained in
the twelve tables A to H, a complete formal presentation of
data and computational workings will only be given for
table A (single-sample test on the mean with variance
known) and table C (comparison of two means, variances
assumed known and not necessarily equal). In the other ten
cases the illustration in the following notes will be confined
to

a) stating the question to be put to the data;

b) inserting into the formulae of the formulae table the
appropriate numerical values taken from table X and
from tables | to 1V of annex B;

c) discussing the conclusion reached.

6) The methods described above in tablesC and C’
concern the comparison of means derived from two
completely independent samples. In certain situations,
however, the observations in the two samples are related in
pairs, say x; and y; (i=1, 2,..., n). The problem of
practical interest may then be to study the differences
d;=y;—xj, either in regard to the mean value or the
variance of d;. Problems of this kind will be considered fully
in a further document. However, to avoid possible misuse
of table C' where table A’ should be used, an illustration of
such a problem is set out in annex A although no formal
presentation of the procedure has been given in section one
of this International Standard.

7) Finally, it is possible to summarize the relationship
between the situations presented in the twelve tables A to H
and | to IV of annex B as follows :

a) If the question asked concerns the relationship
between sample and/or population means, and the
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variances are specified or believed known from past
experience (tables A, B, C, D), then the procedures can be
based on the use of the standardized normal deviate U of
table | of annex B;

b) If on the other hand, when dealing with mean
values, the variances must be estimated from the sample
data (tables A’, B’, C’, D’) then the procedure must be
based on the use of the distribution of “Student’s’’ t of
table Il of annex B. Inevitably in this case, conclusions
are reached with somewhat less precision, but it is better
that this should be so than that an erroneous value of
the variance or standard deviation should be introduced
under a) above.

c) If the question asked concerns the relationship
between a sample variance and a population variance
(tables E, F), then the procedures make use of the
distribution of x2 of table Ill of annex B;

d) If it is desired to compare two variances or to derive
an estimate of the limits within which the ratio of the
two unknown population variances lies (tables G, H),
then the procedure makes use of the distribution of the
variance ratio F (sometimes called Snedecor’s ratio) of
table 1V of annex B.

NUMERICAL ILLUSTRATION OF PROCEDURES

TABLE A — Comparison of a mean with a given value
(variance known)

Suppose it is necessary to examine whether the tests on the
sample of 10 pieces of yarn (yarn 1 of table X) are
consistent with the manufacturer’s claim that the mean
breaking load of his yarn has a given value, mg = 2,40. It
will be supposed that earlier measurements have shown that
the variation from consignment to consignment, if not the
mean value, is stable and may be represented by a standard
deviation of 0 =0,3315. Following the scheme given in
table A, the formal presentation of the numerical data
would then be as follows :
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Technical characteristics of the population studied : The batch consists of a consignment of cotton yarn received on
1969-08-03 from supplier H consisting of 10 000 bobbins packed in 100 boxes with 100 bobbins in each.

Technical characteristics of the sample elements : 10 boxes were drawn at random and one bobbin drawn at random
out of each of these boxes. Test pieces of 50 cm length of yarn were cut out from the bobbins at about 5 m distance
from the free end. The actual tests were carried out on the central 25 cm of these test pieces, the breaking load in
newtons being measured on each piece.

Discarded observations : none

Statistical data ' Calculations
Sample size :
n=10 21761 _
X 10 2,176
Sum of the observed values :
2x = 21,761
Given value : Using table | of annex B,
mqg = 2,40

(u0 975/\/10) 0=0,620X 0,3315=0,2055
Known value of the standard deviation : ’

0=0,3315

Significance level chosen :

o= 0,05

Results

Comparison of the population mean with the given value myg :

Two-sided case :

Ix —mgl = 12,176 — 2,40/ = 0,224 > 0,205 5

The hypothesis that the population mean equals 2,40 is rejected at the 5 % level.

35



1SO 2854-1976 (E)

TABLE A’ — Comparison of a mean with a given value
(variance unknown)

The problem is the same as that described under table A,
but in this case the variance must be estimated from the
sample, either because no earlier measurements are available
or because it is thought that they are no longer appropriate.
We apply the formal procedure of table A’ to the data of
yarn 1, using the numerical values already given in table X.

In this case 0* =5 =+/0,139 60 = 0,373 6 and
0*A/10=0,1181,r=10—1=09.

Taking a two-sided test with a = 0,05 we find from
table I[la of annex B that tgg75(9) = 2,262, so that
t0,975((7*/\/ 10) = 0,267.

Comparing the sample mean, X =2,176 with the
manufacturer’s claimed value of 2,40, we find

[x —mgl = 0,224 < 0,267

It follows that the sample results are not inconsistent with
the manufacturer’s claim. Note that the sample estimate of
0, i.e. 0¥ = s = 0,373 6, is larger than that assumed in the
illustration of table A (0 =0,3315) and as a result we
cannot now be confident that the population mean has
fallen below 2,40.

If it is preferred to use table llb, of annex B, giving
values of the ratio tq _4,2(W)A/N for v=n—-1=09,
we must compare |x —mg| with

[t0,075(9)A/10]* = 0,715 x 0,373 6 = 0,267,

the same critical figure as obtained using table Ila.

TABLE B — Interval estimation of a mean (variance
known)

In this case we do not test whether the population mean
has a specified value mqg, but seek limits within which the
unknown true mean, m, lies. We then associate a
probability 1 —a with the statement that the limits
include m.

The formal procedure of table B can be applied to the data
of yarn 1. It will be supposed that it is again justifiable to
use the population standard deviation, derived from earlier
measurements, i.e. that 0=0,3315. For a two-sided
confidence interval associated with a probability
1—a=0,95, we have

x=2,176
and (ug 975/A/10)0 = 0,620 x 0,331 5 = 0,205 5

from table! of annex B. It follows that the 95 %
confidence interval for m is

2,176 - 0,206 <m < 2,176 + 0,205 5

or 1,970 <m < 2,382
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TABLE B’ — Interval estimation of a mean (variance
unknown)

The problem is the same as that just described except that
the estimate 0™ = s is substituted for ¢ and the probability
limits of t(or t/A/n) are used instead of those for ul/n.

Applying the procedure of table B’ to derive two-sided
confidence limits for m, with 1 —a = 0,95, using the same
sample of yarn1, we have n=10, v=9, x=2,176,
s =0,3736, tg 975(s/A/10) = 0,267 as in the illustration of
table A’, so that the 95 % confidence interval derived from
the sample is given by the statement :

2,176 - 0,267 <m < 2,176 + 0,267

or 1,909 <m <2443

If it is desired to obtain limits, necessarily wider, to
which greater confidence can be assigned, we could take
1—a=0,99.

Then table lla of annex B gives tggg5(9) = 3,250
or, alternatively, table Ilb of annex B gives

t0,095(9)/A/10 = 1,028.

As a resulit, by either means we find

1’0,995(5/\' /10) = (to ,995/\/ 10) s = 0,384

The 99 % confidence interval is now given by the statement
2,176 - 0,384 = 1,792 <m < 2,560 = 2,176 + 0,384

This interval is clearly wider than that just derived using the
scheme of table B, under which it was supposed that the
variance was known. This is the penalty which must be paid
for having to estimate the variance from a small sample. On
the other hand it may be safer to use an estimate derived
from the sample if there is any doubt whether the variance
based on past experience is still relevant.

TABLE C — Comparison of two means (variances known)

This will be illustrated by comparing the means of the
samples of yarn 1 and yarn 2 given in table X. It is
supposed that the population variances have been
satisfactorily established from earlier measurements as

02 =0,10989, 0 =0,3315
02 = 0,096 85, 0, = 0,311 2

The formal presentation of the numerical data would then
be as follows :
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Technical characteristics of the population : 2 batches of yarn received on 1969-08-03 from supplier H and on
1969-08-05 from supplier F, consisting of 10 000 and 12 000 bobbins respectively, packed in boxes of 100 bobbins.

Technical characteristics of the samples : 10 and 12 boxes, respectively, were drawn at random from each batch and
one bobbin was drawn at random from each of these boxes. Test pieces of 50 cm length were cut at about 5 m distance
from the free end of the bobbins sampled. The actual tests were carried out on the central 25 cm of these test pieces,
the breaking load in newtons being measured on each piece.

Discarded observations : none.

Statistical data Calculations
First Second
- sample sample
Size : = _ 21,761 _ 2176
n= 10 12 ! 10 -
Sum of the observed values : - 30,241 — 2520
Ix = 21,761 30,241 2 12  ~
Known value of the variance : . 0,109 89 s 0,096 85 01381
02 = 0,10989 0,096 85 d 10 12 ’

Significance level chosen :

a= 0,05 Uog7s 0a = 1,96 X 0,138 1 = 0,271

Results

Comparison of the two population means :

Two-sided case :

12,176 —2,520| = 0,344 > 0,271

The null hypothesis that the means are equal is rejected at the 5 % level. The second type of yarn has the breaking load
accepted as the largest.

If we are not prepared to take so large a risk as 0,05, or 1 in 20, of being wrong in our conclusion, we may take
a = 0,01. We then have

Ug,9950= 2,576 X 0,138 1 = 0,356
Hence, for the two-sided case
2,176 — 2,520| = 0,344 < 0,356

and we should not be able to reject the null hypothesis at the 1 % level.
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TABLE C' — Comparison of two means (variances

unknown but may be assumed equal)

The problem differs from that last described because as will
commonly happen it is not considered justifiable to accept
the values 0% and 02 based on previous measurements. It is
therefore necessary to obtain an estimate of variance from
the sample data. The test is strictly valid only if the two
unknown population variances are equal, but it will be very
little in error, particularly if the sample sizes n, and n, are
nearly equal, if we use the pooled estimate o4 ™ quoted in
table C'.

The two samples of yarn given in table X will be used and
the table need not be repeated. In this case we have

xq, =2,176 X, = 2,520
Sums of squares of
differences about mean :
degrees of
freedom
1st sample 1,256 365 10-1= 9
2nd sample 1,389 769 12-1=11
Total 2,646 134 22-2=20

Estimate of the standard deviation of the difference
between x; and X5 :

. 22 2,646 134
o) = X =0,1557
10 x12 20

Using a two-sided test with a = 0,05, we have
t,975(20) 0, = 2,086 x0,155 7 = 0,325
X1 —Xo| =12,176 — 2,520| = 0,344 > 0,325

The hypothesis of equal population means: mqy =m, is
therefore just rejected at the 5 % level. It would not be
rejected at the 1 % level.

TABLE D — Estimation of the difference of two means
(variances known)

In this case we do not test whether the two populations
have a common mean value but use the two samples to
estimate the difference between their two means, m; and
m,. We obtain confidence limits for this difference,
mq —m,, associated with a probability 1 —a.

The same data will again be used and it will be supposed
that the variances 0% = 0,109 89 and 03 = 0,096 85 are
known from previous measurements. The standard
deviation of the difference in sample means, x1 and x5, will
again as in table C be 04 = 0,138 1, and

Ug 97504 = 1,96 0,138 1 = 0,271

—X—‘] "‘72 = 0,344
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It follows that the two-sided 95 % confidence interval for
mq —my is

—0,344-0,271<my —m, <-0,344 + 0,271

or 0,073<m, —m,<0,615

TABLE D’ — Estimation of the difference of two means
(variances unknown, but may be assumed equal)

It is required to estimate a confidence interval for the
difference between the mean breaking loads of the two
types of yarn. In this case there are no acceptable values of
0? and U% based on past measurements, but assuming that
the unknown variances are equal, or nearly so, we use the
common value obtained from the pooled data, as derived
above, namely

0y =0,1557

and proceed to find a two-sided confidence interval for
mq —m5. The procedure is as in table D except that o4 ™ is
substituted for 04 and tg g75(v) for ug 975, giving

t0,975(20) 0, =2,086 x 0,155 7 = 0,325
This gives the inequality
-0,344-0,3256 <my —m, <—0,344 + 0,325
or 0,019 <m, —m4 <0,669

associated with a probability of 1 —a = 0,95. Note that in
this case where the variance has to be estimated, the
interval based on the t-distribution is somewhat wider than
that found in the example illustrating table D.

TABLE E — Comparison of a variance with a given value

The preceding examples have been concerned with
relationships between sample and population mean values.
In the present example and in the three which follow it is
the relationship between sample and population variances
or standard deviations which are of interest. Take the
10 observations of breaking load of yarn 1 from table X
and ask whether these are consistent with the hypothesis
that the population variance does not exceed a specified
value of 0§ = 0,090 0.

This is the one-sided case a) of table E. Using the results
given in table X, we have

T(x—X)2 1,256 365
= = 13,96
02 0,090 0

Reference to table [l of annex B shows that for degrees of
freedom v = 9, the upper 5 % point of X2 is 16,92, so that
the observed sample variance is not inconsistent with the
null hypothesis (that 02 < 0,090 0). Though the sample
variance, s7 =0,1396 is a good deal larger than the
specified value of 0,090 0, such a difference might well
occur through chance in a sample of only 10 observations.



TABLE F — Estimation of a variance

The data of the sample of yarn 1 may also be used to derive
lower and upper confidence limits for the unknown 02. If
we take 1 —a = 0,95, table |1l of annex B gives for degrees
of freedom v = 9.

X(2),G25(9) = 2,700

Xg’g75(9) = 19,02

Zlx—Xx)2 11,2563

= =0,4653
2,700

2
X0.,025

ix-xX)2 _ 1,2563
X3 975 19,02

= 0,066 1

and a probability of 0,95, or odds of 19 over 20, can be
associated with the statement

0,066 1 <02 <0,465 3, or 0,257 <0< 0,682

If it were desired to obtain limits, necessarily wider, for
which the probability of including the unknown variance
were greater, for example 0,99 instead of 0,95, values of
X3 005(9) and X3 545(9) could be obtained from table I11
of annex B. The confidence limits now become

0,053 26 <02 <0,724,0r 0,231 <0< 0,851

TABLE G — Comparison of two variances

It is required to determine whether the results for the
samples of yarn 1 and yarn 2 given in table X are consistent
with the hypothesis that the two populations have a
common but unspecified breaking-load variance, 0? = og.

TABLE X gives
1 =10-1=9,v,=12—-1=11
s2=0,139 60,53 = 0,126 34

It follows that F =s%/s3 = 1,10

From table IV of annex B we find by rough interpolation
that

F1__0‘/2(V1, VZ) = F0’g75(9, 11) = 3,6

Fosalvy. v2) =1/Fg 975(11,9) = 1/4,0 = 0,25

I1SO 2854-1976 (E)

The observed ratio of 1,10 lies well within these limits so
that there is no reason to doubt the hypothesis that

2 = g2
0% = 03.

TABLE H — Estimation of the ratio of two variances

Taking the two samples of breaking load in yarn (data in
table X) limits are required for the ratio of population
variances, 07/03.

Besides the approximate values
F0’975(9, 11) = 3,6
F0'025(9, 11) = 0,25

already obtained by interpolation in table IV of annex B in
the preceding example, we can similarly find

F0,995(9' 11) = 5,6

1
Fo,005(9, 1) = ————=

0,16
Fo,995(11,9)

1 —
6,4
The rule of table H therefore provides the following
confidence intervals, since s2/s2 = 1,10

Confidence Limits for ratio of population
level variances 02/02

1
0,95 3 X 1110= 0,31<0%/03<4,4=4x1,10

or 0,56<01/02 <2,1

1
0,99 EEX 1,10=10,20<0%/03<7,0=6,4 x 1,10

or 045<04/0,<2,6

Again it will be noted that for samples as small as 10 and 12
the limits associated with a confidence level of 0,95 or odds
of 19 over 20 are very wide. If greater assurance still is
needed (odds of 99 over 100) that the limits will include the
unknown true ratio, the limits for the ratio of variances are
so wide as to be almost valueless, although expressed as a
ratio of standard deviations they do not appear so extreme.
In other words, much larger samples are needed to estimate
a ratio of variances, or indeed a single variance, with any
degree of accuracy.
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ANNEX A

COMPARISON OF PAIRED OBSERVATIONS USING STUDENT'S - TEST

In connection with the procedure illustrated under the
headings of tables C' and D', it is of importance to note that
a different procedure has to be used when the two sets of
values, say x; and y;, are not independent, but paired. This
for example is the case if a single sample of n items is drawn
from a population and two observations of the same
character are made on each sample element, /, an
observation x; and an observation y; (i=1, 2,..., n).
Usually the latter observation is made after some treatment
has been applied and the former before or without the
application of treatment. Detecting a difference between
the means of the two variates then amounts to assessing an
effect of the treatment (or difference in treatments) on the
character studied.

The data tabled below were collected in an investigation

designed to determine whether the average rate of shaft-wear
caused by various bearing metals in an internal combustion
engine differed between metals.

(Data from W.E. Duckworth, Statistical Techniques in
Technological Research, published by Methuen and Co.)

Shaft-wear after a given working time in 0.000 1 in

Trial Wear with
i) white metal (x;) copper lead (y;) dj=y;—x;
1 15 35 20
2 1.3 2.0 0.7
3 4.5 4.7 0.2
4 25 2.8 0.3
5 45 6.5 2.0
6 1.7 2.2 05
7 1.8 25 0.7
8 3.3 5.8 25
9 2.3 4.2 1.9

Totals 234 34.2 10.8

If these data are treated as two completely independent
samples of n =9 observations following the procedure of
table C’, it is found that

X =260, Z(x —x)?> =12,16

y =3,80, Z(y —y)? = 20,84

Following the procedure of table C’, we find

/ 12,16 + 20,84 2
t=12/ |[————— x==1,77
16 9

With v = 16 degrees of freedom, table lla of annex B gives
for /2 = 0,025, t1-4,2 = 2,12, so that the difference in
means is not significant at the 5 % level (two-sided test).

However, as is clear from a comparison of corresponding
values x; and y; in the table, the observations are correlated
in pairs. To eliminate possible effects due to differences in
rate of wear on different shafts, the experiment was
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designed so that in each engine a white-metal bearing and a
copper-lead bearing were tested together on the same shaft.
This means that the (x;, y;) form nine pairs, each derived
from metals tested under as nearly the same conditions as
possible.

It may be assumed that the common contribution to x;
and y; due to the two metals being tested together on the
same, /th, shaft may be represented by an additive term z;
so that

xXi=zjtvi,yi=z;+w,

where v; and w; are independent normally distributed
chance variables, that is to say

di=y;=X;i=wW;~V;

will be normally distributed. The hypothesis tested is that
the mean shaft-wear is independent of the metal selected,
i.e. if the differences d;, vary only from chance causes
about a mean of zero. To examine this hypothesis we apply
the single-sample t-test as in table A’. The nine values of d;
are shown in the last column of the table above, and we
find

d=108/9=1,2

Z(d;—d)? =6,26

sq =+/6,26/8 = 0,884 6
(d—0nN9

Sd

Hence, t = =1,2x3/0,884 6 = 4,07

From table lla, with v = 9 — 1 = 8 degrees of freedom, it is
seen that t1_,,2 = 3,35 for a/2=0,005 so that the
difference between the mean wear rates of the two metals is
now shown to be highly significant, the wear rate for the
copper lead being clearly the greater.

In the same way a narrower confidence interval for the
mean difference between wear rates could be obtained
using the paired differences and the procedure of table B’,
rather than following that of table D’.

Note that if the additive relations x; =z;+v;, y;=z; + w;
are true or approximately true, there is no need for the
“shaft effects”, z;, to be normally distributed, as z vanishes
in taking the differences. Of course, in the case of
comparing the two yarns, this pairing would not be
possible. Suppose, however, that it had been wished to
compare the effect of two different treatments on the same
yarn, the breaking loads could have been determined by
giving the two treatments in pairs to short lengths of yarn
cut off close together. In this way the effect of possible
long-term fluctuations in strength along the whole length of
the yarn (represented by the term z;) could be largely
eliminated and the test made more sensitive to a real
treatment difference.
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STATISTICAL TABLES

TABLE | — Values of the ratio u; _ 4,/A\/n

TABLE lla — Fractiles of Student’s distribution

TABLE 1lb — Values of the ratio t1 _ o (?)/A\/n for v=n— 1
TABLE Il — Fractiles of the chi-squared distribution
TABLE 1V — Upper percentage points of F

TABLE V — Expected values of normal order statistics, £(i|n)

1ISO 2854-1976 (E)

41



I1SO 2854-1976 (E)

TABLE | — Values of the ratio uq _ o/A/n

Two-sided case

One-sided case

Yo,975 Uo,995 Uo,95 Y0,99
v NG vn i
1 1,960 2,576 1,645 2,326
2 1,386 1,821 1,163 1,645
3 1,132 1,487 0,950 1,343
4 0,980 1,288 0,822 1,163
5 0,877 1,152 0,736 1,040
6 0,800 1,052 0,672 0,950
7 0,741 0,974 0,622 0,879
8 0,693 0,911 0,582 0,822
9 0,653 0,859 0,548 0,775
10 0,620 0,815 0,520 0,735
11 0,591 0,777 0,496 0,701
12 0,566 0,744 0,475 0,671
13 0,544 0,714 0,456 0,645
14 0,524 0,688 0,440 0,622
15 0,506 0,665 0,425 0,601
16 0,490 0,644 0,411 0,582
17 0,475 0,625 0,399 0,564
18 0,462 0,607 0,388 0,548
19 0,450 0,591 0,377 0,534
20 0,438 0,576 0,368 0,520
21 0,428 0,562 0,359 0,508
22 0,418 0,549 0,351 0,496
23 0,409 0,537 0,343 0,485
24 0,400 0,526 0,336 0,475
25 0,392 0,515 0,329 0,465
26 0,384 0,505 0,323 0,456
27 0,377 0,496 0,317 0,448
28 0,370 0,487 0,311 0,440
29 0,364 0,478 0,305 0,432
30 0,358 0,470 0,300 0,425
31 0,352 0,463 0,295 0,418
41 0,306 0,402 0,257 0,363
51 0,274 0,361 0,230 0,326
61 0,251 0,330 0,211 0,298
71 0,233 0,306 0,195 0,276
81 0,218 0,286 0,183 0,258
91 0,205 0,270 0,172 0,244
101 0,195 0,256 0,164 0,231
201 0,138 0,182 0,116 0,164
501 0,088 0,115 0,073 0,104
L 0 0 0 0
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TABLE lla — Fractiles of Student’s distribution

TABLE Ilb — Values of the ratio
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t1—oW/nforv=n—1

Two-sided case

One-sided case

Two-sided case One-sided case

v
0,975 0,995 to,95 to,99
1 12,706 63,657 6,314 31,821
2 4,303 9,925 2,920 6,965
3 3,182 5,841 2,353 4,541
4 2,776 4,604 2,132 3,747
5 2,571 4,032 2,015 3,365
6 2,447 3,707 1,943 3,143
7 2,365 3,499 1,895 2,998
8 2,306 3,355 1,860 2,896
9 2,262 3,250 1,833 2,821
10 2,288 3,169 1,812 2,764
11 2,201 3,106 1,796 2,718
12 2,179 3,055 1,782 2,681
13 2,160 3,012 1,771 2,650
14 2,145 2,977 1,761 2,624
15 2,131 2,947 1,753 2,602
16 2,120 2,921 1,746 2,583
17 2,110 2,898 1,740 2,567
18 2,101 2,878 1,734 2,552
19 2,093 2,861 1,729 2,539
20 2,086 2,845 1,725 2,528
21 2,080 2,831 1,721 2,518
22 2,074 2,819 1,717 2,508
23 2,069 2,807 1,714 2,500
24 2,064 2,797 1,711 2,492
25 2,060 2,787 1,708 2,485
26 2,056 2,779 1,706 2,479
27 2,052 2,771 1,703 2,473
28 2,048 2,763 1,701 2,467
29 2,045 2,756 1,699 2,462
30 2,042 2,750 1,697 2,457
40 2,021 2,704 1,684 2,423
60 2,000 2,660 1,671 2,390
120 1,980 2,617 1,658 2,358
oo 1,960 2,576 1,645 2,326

Taken from E.S. Pearson and H.O. Hartley, Biometrika
Tables for Statisticians, Vol. | (1954).

NOTE — For interpolation when v > 30, take z = 120/v as

argument.
Example :
v =40
v =60

v=50 z=120/v=24

z=120/v=3
z=120/v=2

to,975 = 2,021
t0,075 = 2,000
to,075 = 2,021 —
t0,075 = 2,008

3-24
Ty (2.021-2)

v=n-1 0,975 0,995 to,95 t0,99
Jn Jn vn Vn
1 8,985 45,013 4,465 22,501
2 2,434 5,730 1,686 4,021
3 1,591 2,920 1,177 2,270
4 1,242 2,059 0,953 1,676
5 1,049 1,646 0,823 1,374
6 0,925 1,401 0,734 1,188
7 0,836 1,237 0,670 1,060
8 0,769 1,118 0,620 0,966
9 0,715 1,028 0,580 0,892
10 0,672 0,956 0,546 0,833
11 0,635 0,897 0,518 0,785
12 0,604 0,847 0,494 0,744
13 0,577 0,805 0,473 0,708
14 0,554 0,769 0,455 0,678
15 0,533 0,737 0,438 0,651
16 0,514 0,708 0,423 0,626
17 0,497 0,683 0,410 0,605
18 0,482 0,660 0,398 0,586
19 0,468 0,640 0,387 0,568
20 0,455 0,621 0,376 0,552
21 0,443 0,604 0,367 0,537
22 0,432 0,588 0,358 0,523
23 0,422 0,573 0,350 0,510
24 0,413 0,559 0,342 0,498
25 0,404 0,547 0,335 0,487
26 0,396 0,535 0,328 0,477
27 0,388 0,524 0,322 0,467
28 0,380 0,513 0,316 0,458
29 0,373 0,503 0,310 0,449
30 0,367 0,494 0,305 0,441
40 0,316 0,422 0,263 0,378
50 0,281 0,375 0,235 0,337
60 0,256 0,341 0,214 0,306
70 0,237 0,314 0,198 0,283
80 0,221 0,293 0,185 0,264
90 0,208 0,276 0,174 0,248
100 0,197 0,261 0,165 0,235
200 0,139 0,183 0,117 0,165
500 0,088 0,116 0,074 0,104
oo 0 0 0 0
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TABLE Il — Fractiles of the chi-squared distirbution
Two-sided case One-sided case
v
2 2 2 2 2 2 2
Xg,ozs Xp,975 X0,005 X0,995 X0,05 X0,95 X0,01 X0,99

1 0,001 5,023 0,000 039 3 7,879 0,004 3,841 0,000 2 6,635

2 0,051 7,378 0,010 10,597 0,103 5,991 0,020 9,210

3 0,216 9,348 © 0,072 12,838 0,352 7,815 0,115 11,345

4 0,484 11,143 0,207 14,860 0,711 9,488 0,297 13,277

5 0,831 12,833 0,412 16,750 1,145 11,071 0,554 15,086

6 1,237 14,449 0,676 18,548 1,635 12,592 0,872 16,812

7 1,690 16,013 0,989 20,278 2,167 14,067 1,239 18,475

8 2,180 17,535 1,344 21,955 2,733 15,507 1,646 20,090

9 2,700 19,023 1,735 23,589 3,325 16,919 2,088 21,666
10 3,247 20,483 2,156 25,188 3,940 18,307 2,558 23,209
1 3,816 21,920 2,603 26,757 4,575 19,675 3,053 24,725
12 4,404 23,337 3,074 28,300 5,226 21,026 3,671 26,217
13 5,009 24,736 3,565 29,819 5,892 22,362 4,107 27,688
14 5,629 26,119 4,075 31,319 6,571 23,685 4,660 29,141
15 6,262 27,488 4,601 32,801 7,261 24,996 5,229 30,578
16 6,908 28,845 5,142 34,267 7,962 26,296 5,812 32,000
17 7,564 30,191 5,697 35,719 8,672 27,587 6,408 33,409
18 8,231 31,526 6,265 37,156 9,390 28,869 7,015 34,805
19 8,907 32,852 6,844 38,582 10,117 30,144 7,633 36,191
20 9,691 34,170 7,434 39,997 10,851 31,410 8,260 37,566
21 10,283 35,479 8,034 41,401 11,591 32,671 8,897 38,932
22 10,982 36,781 8,643 42,796 12,338 33,924 9,542 40,289
23 11,689 38,076 9,260 44,181 13,091 35,173 10,196 41,638
24 12,401 39,364 9,886 45,559 13,848 36,415 10,856 42,980
25 13,120 40,647 10,520 46,928 14,611 37,653 11,524 44 314
26 13,844 41,923 11,160 48,290 15,379 38,885 12,198 45,642
27 14,573 43,194 11,808 49,645 16,151 40,113 12,879 46,963
28 15,308 44,461 12,461 50,993 16,928 41,337 13,565 48,278
29 16,047 45,722 13,121 52,336 17,708 42,557 14,257 49,588
30 16,791 46,979 13,787 53,672 18,493 43,773 14,954 50,892

Taken from E.S. Pearson and H.O. Hartley, Biometrika Tables for Statisticians, VVol. | (1954). See note to table |la.
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TABLE IV — Upper percentage points of F

1SO 2854-1976 (E)

Values of Fy _ ,(vq, v5), a =0,05

"1 4 5 6 7 8 10 12 15 20 24 30 40 60 120
4 6.39 6,26 6.16 6.09 6,04 5,96 5,91 5.86 5,80 5,77 5,75 5,72 5,69 5,66

5 5,19 5,05 4,95 488 4,82 4,74 4,68 4,62 4,56 453 4,50 4,48 4,43 4,40

6 4,53 4,39 4,28 4,21 4,15 4,06 4,00 3.94 3,87 384 3.81 3,77 3,74 3,70

7 4,12 3,97 387 3.79 373 364 357 351 3,44 341 3.38 3,34 3,30 3,27

8 3,84 3,69 3,58 3,50 3,44 335 3.28 3.22 3.15 3,12 3,08 3,04 3,01 2,97
10 3.48 3,33 3.22 3,14 3,07 2,98 291 2,85 2,77 2,74 2,70 2,66 262 2,58
i2 3.26 3 3,00 291 2,85 2,75 2,69 2,62 2,54 251 247 243 2,38 2,34
15 3,06 2,90 2,79 2,71 2,64 2,54 2,48 2,40 2,33 2,29 2,25 2,20 246 2,11
20 2,87 2,71 2,60 2,51 245 2,35 2,28 2,20 2,12 2,08 2,04 1,99 1,95 1,90
24 2,78 2,62 2,51 242 2,36 2,25 2,18 2,11 2,03 1,98 1,94 1,89 1,84 1,79
30 2,69 253 242 2.33 2,27 216 2,09 2,01 1,03 1,80 1,84 1,79 1,74 1,68
40 261 2,45 234 2,25 2,18 2,08 2,00 1,92 1,84 1,79 1,74 1,69 1,64 1,58
60 2,53 237 225 2,17 2,10 1,99 1,92 184 1,75 1,70 1,65 1,59 1,53 1,47
120 245 2,29 217 2,09 2,02 1,91 183 1,75 1,66 1.61 1,55 1,50 143 1,35

Values of Fq _ 4 (vq, v5), « = 0,026

- 5 6 7 8 10 12 15 20 24 30 40 60 120
4 9,60 9,36 9,20 9,07 8,98 8.84 8,75 8,66 8,56 8,51 8.46 8,41 8,36 8,31

5 7,39 715 6,98 6,85 6,76 6,62 6.52 6,43 6.33 6.28 6,23 6,18 6.12 6,07

6 6,23 5,99 5,82 5,70 5,60 5.46 5.37 5,27 517 5,12 5,07 5,01 4,96 4,90

7 5,52 5,29 5.12 4,99 4,90 4,76 4,67 4,57 4,47 4,42 4,36 4,31 4,25 4,20

8 5,05 4,82 4,65 4,53 4,43 4,30 4,20 4,10 4,00 3,95 3,89 3.84 3,78 3,73
10 4,47 4,24 4,07 3,95 3,85 3,72 3,62 3,52 342 3.37 3,31 3,26 3.20 3,14
12 412 3,89 3,73 361 351 3.37 3.28 3,18 3,07 3,02 2,96 2,91 2,85 2,79
185 3.80 3,58 341 3,29 3,20 3.06 2.96 2,86 2,76 2,70 2,64 2,59 2,52 2,46
20 3,51 3,29 313 3,01 2,91 2,77 2,68 2,57 2,46 241 2,35 2,29 2,22 2,16
24 338 3.15 2,99 2,87 2,78 2,64 2,54 244 233 2,27 2,21 2,15 2,08 2,01
30 3,25 3,03 2,87 2,75 2,66 2,51 241 2,31 2,20 214 2,07 2,01 1,94 1,87
40 313 2,90 2,74 2,62 2,53 2,39 2,29 2,18 2,07 2,01 1,94 1,88 1,80 1,72
60 3,01 2,79 263 2,51 241 2,27 217 2,06 1,94 188 1,82 1,74 167 1,58
120 2,89 2,67 2,52 2,39 2,30 2,16 2,05 1,94 1,82 1,76 1,69 1,61 1,53 143

Values of Fq _ (vq, v2), @ =0,01

v~ 4 5 6 7 8 10 12 15 20 24 30 40 60 120
4 1598 | 1552 | 1521 1498 | 1580 | 1455 | 1437 | 1420 | 1402 | 1393 | 1384 | 1375 | 1365 | 13,56

5 11,39 | 1097 | 1067 |1046 | 1029 | 1005 9,89 9,72 9,55 9,47 9,38 9,29 9,20 9,11

6 9.15 8,75 8.47 8,26 8,10 7,87 7.72 7,56 7,40 7.31 7,23 7.14 7.06 6,97

7 7.85 7.46 7.19 6.99 6,84 6.62 6,47 6,31 6.16 6,07 5,99 5,91 5,82 5,74

8 7,01 6.63 6,37 6,18 6.03 5.81 5.67 5,52 536 5,28 5,20 5,12 5,03 4,95
10 5,99 5,64 5,39 5,20 5,06 485 an 456 441 4,33 425 4,17 4,08 4,00
12 541 5.06 4,82 4,64 4,50 4,30 4,16 4,01 3.86 378 3.70 3,62 3.54 345
15 4,89 456 4,32 4,14 4,00 3.80 3,67 3,52 3.37 3,29 3.21 313 3,05 2,96
20 4,43 4,10 387 3.70 3,56 3.37 3,23 3,09 2,94 2,86 2,78 2,69 261 2,52
24 4,22 3,90 367 | .350 3,36 3,17 3,03 2,89 2,74 2,66 2,58 2,49 2,40 231
30 4,02 3,70 3,47 3,30 317 2,98 2,84 2,70 2,55 2,47 2,39 2,30 2,21 241
40 3,83 351 3.29 3,12 2,99 2,80 2,66 2,52 2,37 2,29 2,20 2,11 2,02 1,92
60 3,65 3,34 312 2,95 2,82 2,63 2,50 235 2,20 2,12 2,03 1,94 1,84 1,73
120 348 317 2,96 2,79 2,66 2,47 234 2,19 2,03 1,95 1,86 1,76 1,66 153

Values of Fq _ 4(vq, v3), @ = 0,005

vy~ 4 5 6 7 8 10 12 15 20 24 30 40 60 120
4 2315 | 2246 | 2197 |2162 | 2135 | 2097 | 2070 | 2044 | 2017 | 2003 | 19,89 | 19,75 | 1961 19,47

5 1566 | 1494 | 1451 | 1420 | 1396 | 1362 | 1338 | 1315 | 1290 | 1278 | 1266 | 1253 | 1240 | 1227
6 1203 | 1146 | 11,07 [1079 | 1057 | 1025 | 1003 9.81 9,59 947 9,36 9,24 9,12 9,00
7 10,05 9,52 9,16 8.89 8,68 8,38 8,18 7,97 7,75 7,65 7,53 7.42 7,31 7.19

8 8,81 8.30 7.95 7.69 7,50 7.21 7,01 6.81 6.61 6.50 6.40 6.29 6.18 6.06
10 7.34 6,87 6.54 6.30 6.12 585 5,66 5,47 5,27 5,17 5,07 4,97 4,86 4,75
12 6.52 6,07 5,76 5,52 5,35 5,09 4,91 4,72 453 443 4,33 4,23 4,12 4,01
15 5,80 5.37 5,07 485 4,67 4,42 4,25 4,07 3,88 3,79 3,69 3,58 348 3,37
20 517 4,76 4,47 4,26 4,09 3,85 3,68 3,50 3,32 3,22 3,12 3,02 2,92 2,81
24 4,89 4,49 4,20 3.99 383 3,59 342 3,25 3,06 297 2,87 2,77 2,66 2,55
30 4,62 4,23 3,95 3.74 3,58 3,34 3,18 3,01 2,82 2,73 2,63 2,52 242 2,30
40 4,37 3,99 37 351 3.35 3,12 2,95 2,78 2,60 2,50 2,40 2,30 2,18 2,06
60 4,14 376 3,49 3,29 313 2,90 2,74 2557 2,39 2,29 2,19 2,08 196 1.83
120 3,92 3,55 3,28 3,09 2,93 2,71 2,54 2,37 2,19 2,09 1,98 1,87 1,75 1,61

Taken from table 18, Biometrika Tables for Statisticians, Vol. 1, 1966.

NOTES

1) For the lower 100 a % points, Fo(vq, vp) = 1/Fq _ o (v, vq).

2) For interpolation
a) between vq, vy = 10 and 20 take z = 60/v as argument;
b) beyond vq, vp = 20 take z' = 120/v as argument.
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TABLE V — Expected values of normal order statistics, £ (/|n)

i g 3 4 5 6 7 8 9 10 1 12 13 14
1 0,846 1,029 1,163 1,267 1,352 1424 1,485 1,539 1,586 1,629 1,668 1,703
2 0,000 0,297 0,495 0,642 0,757 0,852 0,932 1,001 1,062 1,116 1,164 1,208
3 0,000 0,202 0,353 0,473 0572 0,656 0,729 0.793 0,850 0,901
4 0,000 0,153 0,275 0,376 0,462 0,537 0,603 0,662
5 0,000 0,123 0,225 0,312 0,388 0,456
6 0,000 0,103 0,191 0,267
7 0,000 0,088
i n 15 16 17 18 19 20 21 22 23 24 25 26
1 1,736 1,766 1,794 1,820 1,844 1,867 1,889 1,910 1,929 1,948 1,965 1,982
2 1,248 1,285 1,319 1,350 1,380 1,408 1,434 1,458 1,481 1,503 1,524 1,544
3 0,948 0,990 1,029 1,066 1,099 1,131 1,160 1,188 1,214 1,239 1,263 1,285
4 0,715 0,763 0,807 0,848 0,886 0,921 0,954 0,985 1,014 1,041 1,067 1,091
5 0,516 0,570 0619 0,665 0,707 0,745 0,781 0,815 0,847 0877 0,905 0,932
6 0,335 0,396 0,451 0,502 0,548 0,590 0,630 0,667 0,701 0,734 0,764 0,793
7 0,165 0,234 0,295 0,351 0,402 0,448 0,491 0,532 0,569 0,604 0,637 0,668
8 0,000 0,077 0,146 0,208 0,264 0,315 0,362 0,406 0,446 0,484 0,519 0,553
9 0,000 0,069 0,131 0,187 0,238 0.286 0.330 0,370 0.409 0,444
10 0,000 0,062 0,118 0,170 0,218 0,262 0,303 0,341
11 0,000 0,056 0,108 0,156 0,200 0,241
12 0,000 0,052 0,100 0,144
13 0,000 0,048
i n 27 28 29 30 31 32 33 34 35 36 37 38
1 1,998 2,014 2,029 2,043 2,056 2,070 2,082 2,095 2,107 2,118 2,129 2,140
2 1,563 1,581 1,599 1,616 1,632 1,647 1,662 1,676 1,690 1,704 1,717 1,729
3 1,306 1,327 1,346 1,365 1,383 1,400 1,416 1,432 1,448 1,462 1,477 1,491
4 1,115 1,137 1,158 1,179 1,198 1,217 1,235 1,252 1,269 1,285 1,300 1,315
5 0,957 0,981 1,004 1,026 1,047 1,067 1,087 1,105 1,123 1,140 1,157 1,173
6 0,820 0,846 0,871 0,894 0917 0,938 0,959 0,979 0,998 1,016 1,034 1,051
7 0,697 0,725 0,751 0,777 0,801 0,824 0,846 0,867 0,887 0,906 0,925 0,943
8 0,584 0,614 0,642 0,669 0,694 0,719 0,742 0,764 0,786 0,806 0,826 0,845
9 0,478 0510 0,540 0,568 0,595 0,621 0,646 0,670 0,692 0,714 0,735 0,755
10 0,377 0411 0,443 0,473 0,502 0,529 0,556 0,580 0,604 0,627 0,649 0,670
1 0,280 0.316 0.350 0,382 0,413 0,442 0.469 0.496 0,521 0,545 0,568 0,590
12 0,185 0,224 0,260 0,294 0,327 0,358 0,387 0414 0,441 0,466 0,490 0,514
13 0,092 0,134 0,172 0,209 0,243 0,276 0,307 0,336 0,364 0,390 0,416 0,440
14 0,000 0,044 0,086 0,125 0,161 0,196 0.228 0,259 0,289 0,317 0,343 0,369
15 0,000 0,041 0,080 0,117 0,151 0,184 0,215 0,245 0,273 0,300
16 0,000 0,039 0,076 0,110 0,143 0,174 0,203 0,232
17 0,000 0,037 0,071 0,104 0,135 0,165
18 0,000 0,035 0,067 0,099
19 0,000 0,033
i n 39 40 41 42 43 a4 45 46 47 48 49 50
1 2,151 2,161 2,171 2,180 2,190 2,199 2,208 2,216 2,225 2,233 2,241 2,249
2 1,741 1,753 1,765 1,776 1,787 1,797 1,807 1,817 1,827 1,837 1,846 1,855
3 1,504 1,517 1,530 1,542 1,554 1,565 1577 1,588 1,598 1,609 1,619 1,629
4 1,330 1,344 1,357 1,370 1,383 1,396 1,408 1,420 1,431 1,442 1,453 1,464
5 1,188 1,203 1,218 1,232 1,246 1,259 1,272 1,284 1,296 1,308 1,320 1,331
6 1,067 1,083 1,099 1,114 1,128 1,142 1,156 1,169 1,182 1,194 1,207 1,218
7 0,960 0,977 0,993 1,009 1,024 1,039 1,054 1,068 1,081 1,094 1,107 1,119
8 0,863 0,881 0,898 0,915 0,931 0,946 0,961 0,976 0,990 1,004 1,017 1,030
9 0,774 0,793 0811 0,828 0,845 0,861 0,877 0,892 0,907 0,921 0,935 0,949
10 0,690 0,710 0,729 0,747 0,764 0,781 0,798 0,814 0,829 0,844 0,859 0,873
11 0,611 0,632 0,651 0,671 0,689 0,707 0,724 0,740 0,757 0,772 0,787 0,802
12 0,536 0,557 0,578 0,598 0,617 0,636 0,654 0,671 0,688 0,704 0,720 0,735
13 0,463 0,486 0,507 0,528 0,548 0,568 0,586 0,604 0,622 0,639 0,655 0,671
14 0,393 0417 0,439 0,461 0,482 0,502 0,522 0,540 0,559 0,576 0,593 0,610
15 0,325 0,350 0,373 0,396 0,418 0439 0,459 0,479 0,498 0,516 0,534 0.551
16 0,258 0,284 0,309 0,333 0,355 0,377 0,398 0,419 0,438 0,457 0476 0,494
17 0,193 0,220 0,246 0,270 0,294 0317 0,339 0,360 0,381 0,400 0,419 0,438
18 0,128 0,156 0,183 0.209 0,234 0,258 0,281 0,303 0,324 0,345 0,364 0,384
19 0,064 0,094 0,122 0,149 0,175 0,200 0,224 0,247 0,269 0,290 0,310 0,330
20 0.000 0,031 0,061 0,089 0,116 0,142 0,167 0,191 0,214 0,236 0,257 0,278
21 0,000 0,030 0,058 0,085 0,111 0,136 0,160 0,183 0,205 0,227
22 0,000 0,028 0,055 0,081 0,106 0,130 0,153 0,176
23 0,000 0,027 0,053 0,078 0,102 0.125
24 0,000 0,026 0,051 0,075
25 0,000 0,025

1)

Forn=2,£(7]2) = 0,564.

Taken from H.L. Harter, Order Statistics and their Use in Testing and Estimations, Volume 2.
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