INTERNATIONAL STANDARD ISO 1827 Fifth edition 2016-10-01 ## Rubber, vulcanized or thermoplastic — Determination of shear modulus and adhesion to rigid plates — Quadruple-shear methods Caoutchouc vulcanisé ou thermoplastique — Détermination du module de cisaillement et de la force d'adhérence à des plaques rigides — Méthodes du quadruple cisaillement ISO 1827:2016(E) ## **COPYRIGHT PROTECTED DOCUMENT** © ISO 2016, Published in Switzerland All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester. ISO copyright office Ch. de Blandonnet 8 • CP 401 CH-1214 Vernier, Geneva, Switzerland Tel. +41 22 749 01 11 Fax +41 22 749 09 47 copyright@iso.org www.iso.org | Co | Page | | | | | | |------|---|--|----|--|--|--| | Fore | word | | iv | | | | | 1 | Scop | ve | 1 | | | | | 2 | Norn | 1 | | | | | | 3 | | 1 | | | | | | 4 | Princ | 2 | | | | | | | 4.1
4.2 | Method A — Determination of the shear modulus
Method B — Determination of the adhesion | | | | | | 5 | Appa | aratus | 2 | | | | | 6 | Calib | 2 | | | | | | 7 | 7.1
7.2
7.3 | piece Shape and dimensions Preparation 7.2.1 Preparation of rigid plates 7.2.2 Preparation using unmoulded rubber 7.2.3 Preparation using pre-moulded rubber Number of test pieces | | | | | | 8 | Time interval between vulcanization and testing | | | | | | | 9 | Cond | Conditioning | | | | | | 10 | Temj | perature of test | 4 | | | | | 11 | Proc
11.1
11.2 | 11001001 | 4 | | | | | 12 | Expression of results 12.1 Method A 12.2 Method B | | 5 | | | | | 13 | Test : 13.1 13.2 | | 6 | | | | | Ann | ex A (no | ormative) Calibration schedule | 8 | | | | ## **Foreword** ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives). Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents). Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement. For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see the following URL: www.iso.org/iso/foreword.html. The committee responsible for this document is ISO/TC 45, *Rubber and rubber products*, Subcommittee SC 2, *Testing and analysis*. This fifth edition cancels and replaces the fourth edition (ISO 1827:2011), which has been technically revised by changing symbols in 12.2.2. # Rubber, vulcanized or thermoplastic — Determination of shear modulus and adhesion to rigid plates — Quadruple-shear methods WARNING — Persons using this document should be familiar with normal laboratory practice. This document does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user to establish appropriate safety and health practices and to ensure compliance with any national regulatory conditions. IMPORTANT — Certain procedures specified in this document might involve the use or generation of substances, or the generation of waste, that could constitute a local environmental hazard. Reference should be made to appropriate documentation on safe handling and disposal after use. ## 1 Scope This document specifies methods for the determination of the modulus in shear and the strength of bonds of rubber to metal or other rigid plates, using rubber bonded between four parallel plates. Method A describes the determination of the modulus in shear. Method B describes the determination of the strength of the bonds. The methods are applicable primarily to test pieces prepared in the laboratory under standard conditions, such as can be used to provide data for the development and control of rubber compounds and methods of manufacture of bonded shear units. #### 2 Normative references The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. ISO 5893:2002, Rubber and plastics test equipment — Tensile, flexural and compression types (constant rate of traverse) — Specification ISO 18899:2013, Rubber — Guide to the calibration of test equipment ISO 23529, Rubber — General procedures for preparing and conditioning test pieces for physical test methods #### 3 Terms and definitions For the purposes of this document, the following terms and definitions apply. ISO and IEC maintain terminological databases for use in standardization at the following addresses: - IEC Electropedia: available at http://www.electropedia.org/ - ISO Online browsing platform: available at http://www.iso.org/obp #### 3.1 #### shear modulus applied shear stress, calculated with respect to the bonded area of the rubber in a test piece, divided by the resultant shear strain in the direction of application of the stress Note 1 to entry: The shear strain (γ) is half the measured deformation divided by the thickness of one rubber block or element. The shear stress (τ) is the applied force divided by twice the area of a bonded face of one rubber block or element. Note 2 to entry: The form of the test piece specified ensures that there is zero applied stress in the direction normal to the bonded surfaces, so that the deformation can be regarded as simple shear. Note 3 to entry: This definition of shear modulus is sometimes referred to as the secant modulus. ## 4 Principle #### 4.1 Method A — Determination of the shear modulus The force required to obtain a range of predetermined shear strains of a unit of standard dimensions comprising four parallelepipeds of rubber symmetrically disposed and bonded to four parallel rigid plates is measured, the forces being parallel to the bonding surfaces and, as a rule, non-destructive, i.e. of maximum values appreciably lower than the bond strength. #### 4.2 Method B — Determination of the adhesion The force required to cause the rupture of a unit as described for method A is measured. ## 5 Apparatus **5.1 Test machine**, complying with the requirements of ISO 5893, capable of measuring force with an accuracy corresponding to class 1, as defined in ISO 5893:2002, and with a rate of traverse of the moving grip of 5 mm/min (method A) or 50 mm/min (method B). The test machine shall include apparatus to measure the deformation of the rubber of the test piece to an accuracy of 0,02 mm. - **5.2 Fixtures**, for holding the test pieces in the grips, provided with a universal joint to permit accurate centring of the line of action of the applied force. - **5.3 Environmental chamber**, suitable for carrying out tests at the temperature chosen or specified (see <u>Clause 10</u>), conforming to the requirements of ISO 23529. ## 6 Calibration The test apparatus shall be calibrated in accordance with the schedule given in Annex A. ## 7 Test piece #### 7.1 Shape and dimensions The test piece shall consist of four identical parallelepipedic rubber elements 4 mm \pm 1 mm thick, 20 mm \pm 5 mm wide and 25 mm \pm 5 mm long, bonded on each of their two largest opposite faces to the mating faces of four rigid plates of the same width and of appropriate lengths to obtain a symmetrical double-sandwich arrangement, means being provided at the free external end of each central plate to enable it to be attached to a holding fixture. The rigid plates shall be of sufficient thickness to withstand bending. A typical arrangement is shown in <u>Figure 1</u>. #### Key - 1 two external plates - 2 two internal plates - 3 pin and fixture for tensile loading Figure 1 — Test piece arrangement ## 7.2 Preparation #### 7.2.1 Preparation of rigid plates Rectangular rigid plates of suitable dimensions shall be prepared and treated in accordance with the requirements of a suitable adhesive system. ## 7.2.2 Preparation using unmoulded rubber Prepared rigid plates and suitably sized rubber blanks shall be moulded either by compression or by transfer methods. The moulding shall be carried out using a time and temperature sequence appropriate to the rubber under test. At the conclusion of moulding, care shall be taken in removing the test pieces from the mould to avoid subjecting the adhered surfaces to undue stress. ## 7.2.3 Preparation using pre-moulded rubber The four rubber elements for each test piece may be cut from a pre-moulded sheet of uniform thickness or from a rubber product. In either case, care shall be taken to ensure that all four elements are equal in all their dimensions to within ± 0.1 mm. The elements shall be bonded to the prepared rigid plates using an adhesive system giving a high-modulus bond. ## 7.3 Number of test pieces The test shall be carried out on three (method A) or five (method B) test pieces. ## 8 Time interval between vulcanization and testing Unless otherwise specified for technical reasons, the time interval between vulcanization and testing shall be in accordance with ISO 23529. ## 9 Conditioning - **9.1** When a test is made at one of the standard laboratory temperatures specified in ISO 23529, the test piece shall be maintained at that condition for at least 3 h before the test. - **9.2** When tests are made at subnormal or elevated temperatures, the test pieces shall be maintained at the conditions of test for a period of time sufficient to reach temperature equilibrium with the test environment, or for the period of time required by the specification covering the material or product being tested. ## 10 Temperature of test Carry out the test at one of the temperatures specified in ISO 23529. Unless otherwise specified, one of the standard laboratory temperatures shall be used. The same temperature shall be used for any series of tests intended to be comparable. ## 11 Procedure #### 11.1 Method A 11.1.1 Determine the dimensions of the rubber elements in the test piece. Where applicable, the requirements of ISO 23529 shall be met. For test pieces prepared by vulcanization in a mould, the mould dimensions may be used to determine the area of each element. The thickness shall be determined, from measurements of the rigid plates and of the moulded test piece, by difference. For test pieces prepared from pre-moulded rubber elements, the dimensions of the elements shall be determined before bonding. **11.1.2** After conditioning as specified in <u>Clause 9</u>, immediately mount the test piece in the test machine, taking care to ensure freedom of longitudinal self-alignment with the direction of force application. For some applications, a mechanical conditioning procedure could be required. In such cases, apply five successive shear-loading cycles from $0\,\%$ to $30\,\%$. During mechanical conditioning and subsequent testing, maintain the test piece at the test temperature. 11.1.3 When the test piece is mounted in the test machine, immediately zero the force-measuring and deformation-measuring apparatus while maintaining a slight traction force; for example, 1% of the expected maximum force. Immediately apply an increasing traction force at a rate of separation of the jaws of $5\ \text{mm/min} \pm 1\ \text{mm/min}$ until a maximum shear strain of 30% is reached, and record the force/deformation curve. #### 11.2 Method B **11.2.1** Determine the dimensions of the rubber elements in the test piece. Where applicable, the requirements of ISO 23529 shall be met. For test pieces prepared by vulcanization in a mould, the mould dimensions may be used to determine the area of each element. The thickness shall be determined, from measurements of the rigid plates and of the moulded test piece, by difference. For test pieces prepared from pre-moulded rubber elements, the dimensions of the elements shall be determined before bonding. **11.2.2** After conditioning as specified in <u>Clause 9</u>, immediately mount the test piece in the test machine, taking care to ensure freedom of longitudinal self-alignment with the direction of force application. Operate the test machine at a rate of separation of the jaws of $50 \text{ mm/min} \pm 5 \text{ mm/min}$ until the test piece breaks. Record the maximum force. Recover the broken pieces and examine the failure surfaces. ## **12 Expression of results** #### 12.1 Method A The shear modulus shall be determined at a shear strain of 25 %. Calculate the shear strain, γ , from Formula (1): $$\gamma = \frac{d}{2c} \tag{1}$$ where *d* is the deformation, in millimetres, of the test piece; *c* is the thickness, in millimetres, of one rubber element. Calculate the deformation corresponding to 25 % shear strain, d_{25} , in millimetres, from Formula (2): $$d_{25} = 0,25 \times 2c \tag{2}$$ From the force/deformation curve, determine the force needed to give 25 % shear strain, F_{25} . Calculate the shear stress at 25 % strain, τ_{25} , in newtons per square millimetre, from Formula (3): $$\tau_{25} = \frac{F_{25}}{2A} \tag{3}$$ where *F* is the force, in newtons; *A* is the bonded area, in square millimetres, of one face of one rubber element. ## ISO 1827:2016(E) Calculate the shear modulus, *G*, in newtons per square millimetre, from Formula (4): $$G = \frac{\tau_{25}}{\gamma_{25}} = \frac{\tau_{25}}{0,25} \tag{4}$$ Calculate the mean value of the shear modulus for the three test pieces. #### 12.2 Method B **12.2.1** Calculate the adhesion value, in pascals, by dividing the maximum force by the total bonded area of one of the double sandwiches on the corresponding rigid plate, as given in Formula (5): i.e. adhesion = $$\frac{F_{\text{max}}}{2A}$$ (5) where F_{max} is the maximum force, in newtons; A is the bonded area, in square millimetres, of one face of one bonded rubber block or element. **12.2.2** Use the following symbols to indicate the type of adhesion failure. - R Failure in the rubber - RC Failure at the interface between the rubber and the layer of adhesive - CP Failure at the interface between the layer of adhesive and the primer (if used) - PS Failure at the interface between the primer (if used) and the substrate - CS Failure at the interface between the adhesive and the substrate (when no primer is used) - D Failure at the interface between the rubber and the substrate in the case of direct adhesion, i.e. no adhesive is used - S Failure in the substrate ## 13 Test report #### 13.1 For method A The test report shall contain the following information: - a) the reference number of this document, i.e. ISO 1827; - b) the method used: - c) test piece details: - 1) all details necessary for identification of the rubber compound; - 2) the bonding and/or moulding process used (direct vulcanization, adhesive, compression, transfer, casting, etc.); - 3) the duration and temperature of vulcanization and/or curing of the adhesive; - 4) the date of vulcanization and/or curing of the adhesive; - d) test details: - 1) whether or not mechanical conditioning was used; - 2) the temperature of the test; - 3) details of any procedures not specified in this document; - e) test results: - 1) the individual test results; - 2) the mean value of the shear modulus; - f) the date of the test. #### 13.2 For method B The test report shall contain the following information: - a) the reference number of this document, i.e. ISO 1827; - b) the method used; - c) test piece details: - 1) all details necessary for identification of the rubber compound; - 2) the nature of the rigid plates (material, surface roughness, etc.); - 3) a description of the method used to secure adhesion (preparation of surface, adhesive system used, etc.); - 4) the bonding and/or moulding process used (direct vulcanization, adhesive, compression, transfer, casting, etc.); - 5) the duration and temperature of vulcanization and/or curing of the adhesive; - 6) the date of vulcanization and/or curing of the adhesive; - d) test details: - 1) the temperature of the test; - 2) details of any procedures not specified in this document; - e) the results for all five test pieces, calculated in accordance with 12.2.1, for the adhesion value; - f) the date of the test. ## Annex A (normative) ## **Calibration schedule** ## A.1 Inspection Before any calibration is undertaken, the condition of the items to be calibrated shall be ascertained by inspection and recorded in any calibration report or certificate. It shall be reported whether calibration is carried out in the "as-received" condition or after rectification of any abnormality or fault. It shall be ascertained that the apparatus is generally fit for the intended purpose, including any parameters specified as approximate and for which the apparatus does not therefore need to be formally calibrated. If such parameters are liable to change, then the need for periodic checks shall be written into the detailed calibration procedures. #### A.2 Schedule Verification/calibration of the test apparatus is a mandatory part of this document. However, the frequency of calibration and the procedures used are, unless otherwise stated, at the discretion of the individual laboratory, using ISO 18899 for guidance. The calibration schedule given in <u>Table A.1</u> has been compiled by listing all of the parameters specified in the test method, together with the specified requirement. A parameter and requirement might relate to the main test apparatus, to part of that apparatus or to an ancillary apparatus necessary for the test. For each parameter, a calibration procedure is indicated by reference to ISO 18899, to another publication or to a procedure particular to the test method which is detailed (whenever a calibration procedure which is more specific or detailed than that in ISO 18899 is available, it shall be used in preference). The verification frequency for each parameter is given by a code-letter. The code-letters used in the calibration schedule are as follows: - C requirement to be confirmed, but no measurement; - S standard interval as given in ISO 18899; - U in use. Table A.1 — Calibration frequency schedule | Parameter | Requirement | Subclause in
ISO 18899:2013 | Verification
frequency
guide | Notes | |---------------------------------------|--|--------------------------------|------------------------------------|-----------------------------| | Test machine | Complying with ISO 5893 | 21.1 | S | | | Force measurement accuracy | Class 1 | 21.2 | S | | | Rate of traverse of moving grip | 5 mm/min or
50 mm/min | 23.4 | S | See ISO 5893 for tolerances | | Deformation
measurement | Accurate to 0,02 mm | 15.4 | S | | | Fixtures to mount test piece in grips | Provided with universal joint for test piece to self-align with direction of force | С | U | | | Environmental chamber | Complying with ISO 23529 | | | See ISO 23529 for details | In addition to the items listed in <u>Table A.1</u>, use of the following is implied, all of which need calibrating in accordance with ISO 18899: - timer; - thermometer for monitoring the conditioning and test temperatures; - instruments for determining the dimensions of the test pieces.