INTERNATIONAL STANDARD ISO 1213-2 Second edition 2016-12-15 # Solid mineral fuels — Vocabulary — Part 2: Terms relating to sampling, testing and analysis Combustibles minéraux solides — Vocabulaire — Partie 2: Termes relatifs à l'échantillonnage, l'essai et l'analyse # **COPYRIGHT PROTECTED DOCUMENT** # © ISO 2016, Published in Switzerland All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester. ISO copyright office Ch. de Blandonnet 8 • CP 401 CH-1214 Vernier, Geneva, Switzerland Tel. +41 22 749 01 11 Fax +41 22 749 09 47 copyright@iso.org www.iso.org | Coı | ontents | Page | |------|-----------------------|------| | Fore | reword | iv | | 1 | Scope | 1 | | 2 | Normative references | 1 | | 3 | Terms and definitions | 1 | | Bibl | oliography | 27 | | Alph | hahetical index | 28 | # **Foreword** ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives). Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents). Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement. For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see the following URL: www.iso.org/iso/foreword.html. The committee responsible for this document is ISO/TC 27, *Solid mineral fuels*, Subcommittee SC 1, *Coal preparation: Terminology and performance*. This second edition cancels and replaces the first edition (ISO 1213-2:1992), which has been technically revised. A list of all parts in the ISO 1213 series can be found on the ISO website. # Solid mineral fuels — Vocabulary — # Part 2: # Terms relating to sampling, testing and analysis # 1 Scope This document defines terms commonly employed in the sampling, testing and analysis of solid mineral fuels. Alternative names are given for several terms. In some cases, however, the use of the alternative name is deprecated (as indicated). An alphabetical index, with numerical cross reference is provided. # 2 Normative references There are no normative references in this document. # 3 Terms and definitions For the purposes of this document, the following terms and definitions apply. ISO and IEC maintain terminological databases for use in standardization at the following addresses: - IEC Electropedia: available at http://www.electropedia.org/ - ISO Online browsing platform: available at http://www.iso.org/obp # 3.1 # abrasion loss of material from particle surfaces of a solid mineral fuel, or from other surfaces in contact with the particles, caused by friction between contacting surfaces ### 3.2 ### abrasion index total mass lost by the *abrasion* (3.1) of four carbon steel blades when rotated in a specified mass of a solid mineral fuel under specified conditions Note 1 to entry: Expressed in milligrams of metal lost per kilogram of solid mineral fuel. ### 3.3 ### abrasion value resistance to *abrasion* (3.1) of the *coke* (3.42) after reaction with carbon dioxide in the CRI test, measured as the percentage of a sample passing through a 0.5 mm sieve after tumbling under conditions specified ### 3.4 # adiabatic calorimeter calorimeter that adjusts its jacket temperature constantly to be identical to bomb temperature, thereby preventing heat losses Note 1 to entry: The inner calorimeter chamber and the jacket exchange no energy because the water temperature in both is identical during the test. The water in the external jacket is heated or cooled to match the temperature change in the calorimeter proper. ### 3.5 ### accuracy closeness of agreement between an observation and the "true" value Note 1 to entry: The accuracy of a result should not be confused with its precision. A result may be precise but it is only accurate when it is free of *bias* (3.18). ### 3.6 ### adventitious ash DEPRECATED: extraneous ash ash arising from *mineral matter* (3.136) associated with, but not inherent in, a solid mineral fuel ### 3.7 ### air-dried basis means of expressing an analytical result based on the condition in which a solid mineral fuel is in equilibrium with atmospheric humidity ### 3.8 # air-drying process of bringing the moisture content of the sample near to equilibrium with the atmosphere, in the area in which further reduction of the sample are to take place Note 1 to entry: The solid mineral fuel in this state is composed of absorbed moisture, mineral matter and organic matter. ### 3.9 ### anthracite *coal* (3.39) of high *rank* (3.174), with a low *volatile matter* (3.239) content and a semi-metallic lustre, and which does not soften or swell when heated # 3.10 # apparent relative density ratio of the mass of a fuel (lump sample) to the mass of an equal volume of water (at the same temperature), inclusive of any voids within the fuel subjected to the test Note 1 to entry: The apparent relative density should not be confused with the bulk density (3.25). ### 3.11 ## ash residue obtained by incineration of a solid mineral fuel under specified conditions # 3.12 ### ash analysis analysis of ash (3.11) for its elemental composition Note 1 to entry: The elements usually determined are silicon, aluminium, iron, magnesium, manganese, titanium, calcium, sodium, potassium, phosphorus and sulfur, and these are usually expressed as oxides. ### 3.13 ### ash fusibility characteristic physical state of the ash (3.11) obtained by heating under specified conditions Note 1 to entry: Ash fusibility is determined under either oxidizing or $reducing\ atmosphere\ (3.176)$ conditions. Note 2 to entry: See also deformation temperature, sphere temperature (3.215), hemisphere temperature (3.98) and flow temperature (3.75). ### 3.14 ### ash viscosity measure of the resistance to flow of ash (3.11) in the fused state # as received basis # as sampled basis means of expressing an analytical result based on the condition where total moisture (3.232) is included ### 3.16 ### base/acid ratio ratio of the mass of basic oxides (iron(III) oxide, calcium oxide, magnesium oxide, disodium oxide and dipotassium oxide) to the mass of acidic oxides (silica, aluminium oxide and titanium (IV) oxide) in ash (3.11) Note 1 to entry: This ratio can be used in the determination of the *fouling factor* (3.81) and the slagging factor. ### 3 17 ### batch quantity of a solid mineral fuel produced at one time under relatively uniform conditions ### 3.18 ### bias systematic *error* (3.68) which leads to the average value of a series of results being persistently higher or persistently lower than those obtained using a reference sampling method Note 1 to entry: Bias is the total systematic error as contrasted to random error. There may be one or more systematic error components contributing to the bias. A larger systematic difference from the accepted reference value is reflected by a larger bias value. ### 3.19 ### bias of scale bias (3.18) that is constant and independent of the range of values measured # 3.20 # bituminous coal general descriptive term for coal (3.39) of rank (3.174) between anthracite (3.9) and brown coal and lignite (3.24) Note 1 to entry: The vitrinites in all coals in the bituminous range melt and form a coke when the coal is heated above $400\,^{\circ}\text{C}$ in the absence of air. Note 2 to entry: In some countries, coals of rank immediately below that of bituminous coal are referred to as sub-bituminous coals. # 3.21 # blast furnace coke strong, *large coke* (3.116) for use in blast furnaces Note 1 to entry: Blast furnace coke is generally produced from blends of *bituminous coals* (3.20), which may incorporate additives. Note 2 to entry: Blast furnace coke usually has a low reactivity to carbon dioxide. ### 3.22 # breakage particle size reduction (3.155) resulting from impact and/or compression # 3.23 ### breeze undersize after separating the smallest size of *graded coke* (3.91) Note 1 to entry: Breeze is usually less than 10 mm in size. # brown coal and lignite coals (3.39) of low rank (3.174) characterized by high inherent moisture, high volatile matter (3.239) and low calorific value Note
1 to entry: In some countries, the terms are used to describe all low-rank coals up to *bituminous coals* (3.20). In other countries, the coals at the higher end of the range are referred to as sub-bituminous coals. ### 3.25 # bulk density mass of a portion of a solid mineral fuel divided by the volume of the container which is filled by that portion under specified conditions Note 1 to entry: Bulk density values can have range and may depend on previous handling, time and weather. The values on stockpiles can also vary from loose free fall situations to compacted filled by that portion under specified conditions. ### 3.26 # bulk sample sample of large mass, taken in a particular operation for a specific reason such as for *float sink* analysis (3.78) ### 3.27 ### caking of coal property of *coal* (3.39) when heating without access of air to a plastic condition with formation of the connected non-volatile residue ### 3.28 # caking index measure of the caking power of a coal in terms of the *mechanical strength* (3.132) of the *coke* (3.42) obtained by carbonization, under specified conditions, of an intimate mixture of the *coal* (3.39) and standard *anthracite* (3.9) ### 3.29 ## calorific value gross at constant volume absolute value of the specific energy of combustion, in joules, for unit mass of a solid fuel burned in oxygen in a calorimetric bomb under the conditions specified Note 1 to entry: The products of combustion are assumed to consist of gaseous oxygen, nitrogen, carbon dioxide and sulfur dioxide, of liquid water (in equilibrium with its vapour) saturated with carbon dioxide under the conditions of the bomb reaction, and of solid ash, all at the reference temperature. Note 2 to entry: Equipment such as Adiabatic and or Isothermal bomb calorimeters are used to determine this result. # 3.30 # calorific value net at constant volume absolute value of the specific energy of combustion, in joules, for unit mass of the fuel burned in oxygen under conditions of constant volume and such that all the water of the reaction remains as water vapour (in a hypothetical state at 0,1 Mpa), the other products being as for the gross calorific value all at the reference temperature Note 1 to entry: The net calorific value at constant volume is the negative value of the net specific energy of combustion. ### 3.31 # calorific value net at constant pressure absolute value of the specific heat (enthalpy) of combustion in joules, for unit mass of the fuel burned in oxygen at constant pressure under such conditions that all the water of the reaction products remains as water vapour (at 0.1 Mpa), the other products being as for the gross calorific value, all at the reference temperature ### carbominerite collective term for inter growths of minerals and *macerals* (3.121) Note 1 to entry: The various types of carbominerite with their compositions are given in Table 1. Table 1 — Types and compositions of carbominerite | Туре | Volume percentage of minerals | |--------------------------------|-------------------------------| | Carbargilite | 20 to 60, clay minerals | | Carbopyrite | 5 to 20, sulfides | | Carbankerite | 20 to 60, carbonates | | Carbosilicite | 20 to 60, quartz | | Carbopolyminerite ^a | 20 to 60, various minerals | $^{^{\}rm a}$ $\,$ The term is used also for carbopolyminerite containing a maximum of 5 % of mineral matter, provided that sulfides form a substantial part of the mineral matter. ### 3.33 ### carbon in mineral matter carbon in the mineral matter carbonates of a solid mineral fuel ### 3.34 ### carboxyreactivity rate of reaction of a solid mineral fuel with carbon dioxide under specified conditions ### 3.35 # channel sample sample of raw *coal* (3.39) and associated inorganic material taken by removing a channel of even cross-section from the seam Note 1 to entry: Where the full section of the seam is not accessible or not required, this term may refer to a sample taken either from a specifically defined portion of the seam, or from the floor to roof as mined or exposed. ### 3.36 # char solid, partially or non-agglomerated carbonaceous material produced by the pyrolysis of solid mineral fuels ### 3.37 ### chute inclined trough for conveying solid mineral fuel to a lower level # 3.38 ### clinkering aggregation of particles of ash (3.11) after it has melted during the course of combustion of a solid mineral fuel or during gasification Note 1 to entry: The aggregated particles may include small amounts of unburnt solid mineral fuel. # 3.39 ### coal combustible sedimentary rock formed from altered plant remains consolidated under superimposed strata Note 1 to entry: The characteristics of different coals are due to differences in source plant material, in the conditions and the degree of change that the material has undergone in its geological history, and in the range of impurities present. Coals can be characterized macroscopically by their lithotype composition and microscopically by their maceral and *microlithotype* (3.123) compositions. # coalification process by which accumulated plant matter is compacted and transformed into coal (3.39) ### 3.41 ### coefficient of variation standard deviation (3.216), expressed as a percentage of the absolute value of the arithmetic mean $$CV = \frac{s}{\overline{x}} \times 100 \%$$ where CV is normally denoted as v. ### 3.42 ### coke solid, agglomerated carbonaceous residue produced by the pyrolysis of coal (3.39) in the absence of air ### 3.43 # coke reactivity index ### CRI percentage weight loss of coke (3.42) after reaction with carbon dioxide and carbon monoxide under specified conditions ### 3.44 # coke strength after reaction ### **CSR** strength of coke (3.42) after reaction with carbon dioxide and carbon monoxide in the CRI test, measured as the percentage retained on either a 10,0 mm or a 9,5 mm sieve after tumbling under specified conditions ### 3.45 ### combustible matter theoretical state of a solid mineral fuel without moisture and *mineral matter* (3.136) other than *pyritic sulfur* (3.170) and sulfidic sulfur ### 3.46 # combustible sulfur sulfur which reacts with oxygen when a solid mineral fuel is burnt under specified controlled conditions Note 1 to entry: Most of the reacted sulfur reports as SO_2 in the chimney gas, but under certain conditions, some of the sulfur is captured by alkaline minerals in the ash # 3.47 # common sample sample collected for more than one intended use ### 3.48 # complete seam profile sample for each bench collective designation of the coal samples taken separately from each coal bench and band of the tested seam or a part of it which is a section of a thick seam # 3.49 ### constant mass division method of increment or *sample division* (3.194) in which the portions retained from individual *increments* (3.106), *partial samples* (3.153) or *gross samples* (3.94) are of uniform mass # 3.50 # continuous sampling taking of a sample from each consecutive sub-lot (3.221) so that increments (3.106) are taken at uniform intervals whenever the fuel is handled at the point of sampling ### correlation coefficient measure of the degree of correlation between the members of paired sets ### 3.52 # core sample cylindrical sample of the whole or part of a coal seam obtained from drilling using a coring barrel Note 1 to entry: The diameter of the core may vary from 50 mm to 1000 mm depending on the reason for which the sample is required. However, 50 mm to 200 mm is the most common core diameter range. ### 3.53 # crucible swelling number ### **CSN** number which defines, by reference to a series of standard profiles, the size and shape of the residue obtained when a specified mass of *coal* (3.39) is heated in a covered crucible under specified conditions Note 1 to entry: ASTM Standards use the term free swelling index (FSI) for this test. ### 3.54 # crush (verb) action of reducing the particle size of a sample to produce particles at the required *nominal top size* (3.144) required Note 1 to entry: See also grind (3.93). ### 3.55 ### cut coke screened coke (3.42) from which the oversize has been reduced by mechanical means and rescreened ### 3.56 ### cutter mechanical sampling device which extracts increments (3.106) ### 3.57 # deformation interval # softening interval interval between the deformation temperature (3.58) and the hemisphere temperature (3.98) ### 3.58 # deformation temperature temperature at which deformation of a test piece prepared from *ash* (3.11), by a specified procedure, occurs Note 1 to entry: When using cylindrical (or cubicoidal) test pieces, a change of the surface and the rounding of the edges at the rim or corner. Note 2 to entry: When using pyramidal test pieces, the rounding of the tip of the test piece. Shrinkage or distortion of the test piece, or rounding of cracks and fins, are not criteria for deformation and should be ignored if the tip and edges remain sharp. ### 3.59 # dial divisions per minute ### ddnm measure of stirrer rotation rate, in the Gieseler Plastometer method Note 1 to entry: There are 100 dial divisions for each full 360° rotation of the stirrer. The *fluidity* (3.77) result is expressed as total dial division turned by the stirrer in a one-minute time period ### 3.60 # dilatation measure of the volume change produced by heating a coal (3.39) through its $plastic\ range$ (3.162) under specified conditions Note 1 to entry: Similar tests with their own specified conditions have been developed historically, including Audibert-Arnu and the Ruhr Coal test. ### 3.61 ### dirt band DEPRECATED: shale band layer of mineral matter (3.136) lying parallel to the bedding plane in a seam of coal (3.39) ### 3.62 ### divided increment part obtained from the division of the *increment* (3.106) in order to decrease its mass Note 1 to entry: Such division may be done with or without prior size reduction. ### 3.63 ### dry ash-free basis means of expressing an analytical result based on a
hypothetical condition in which the solid mineral fuel is considered to be free from both moisture and ash (3.11) ## 3.64 ### dry basis means of expressing an analytical result based on the condition in which the solid mineral fuel is free from moisture ### 3.65 ### dry mineral-matter-free basis means of expressing an analytical result based on a hypothetical condition in which the solid mineral fuel is considered to be free from both moisture and *mineral matter* (3.136) ### 3.66 # duplicate determination determination of a characteristic on two portions of the same *test sample* (3.226) carried out by the same operator using the same apparatus but at different times # 3.67 ### duplicate sampling particular case of *replicate sampling* (3.185) with only two replicate samples ### 3.68 ### error difference between the observation and the accepted reference value as defined in ISO 5725-1:1994 ### 3.69 ### falling stream stream of solid mineral fuel in free fall, for example, from the end of a conveyor ### 3.70 # final fluidity temperature temperature at which stirrer rotation rate reached 1 ddpm in the Gieseler Plastometer test ### 3.71 # fixed carbon remainder after the percentages of the moisture in the analysis sample, ash (3.11) and volatile matter (3.239) are subtracted from 100 reported on an air-dried basis Note 1 to entry: Fixed carbon may also be calculated to different bases. ### fixed mass division method of *sample division* (3.194) in which the mass retained is predetermined and independent of the mass of the feed ### 3.73 ### fixed rate division method of increment or *sample division* (3.194) in which the portions retained from individual *increments* (3.106), *partial samples* (3.153) or *gross samples* (3.94) have a mass proportional to the mass of the increment, partial sample or gross sample Note 1 to entry: In fixed rate division, the mass of sample retained is a fixed proportion of the mass of the feed. ### 3.74 ### fixed sulfur sulfur which is present in the solid residue (non-volatile) after the pyrolysis of a solid mineral fuel at a particular temperature ### 3.75 # flow temperature temperature at which a test piece, prepared from *ash* (3.11) by a specified procedure, loses its profile and flows to the extent that its height is one third of its height at the *hemisphere temperature* (3.98) ### 3.76 # flattened-heap method method of *sample division* (3.194) in which a sample is flattened and divided into identical rectangles and from each rectangle, one *increment* (3.106) is taken using a scoop and bump plate and combined into a divided sample ### 3.77 # fluidity measure of the viscosity of a coal (3.39) in its plastic state determined under specified conditions # 3.78 # float sink analysis laboratory procedure for analysing raw coal samples, using organic and/or other high specific gravity solutions adjusted to various gravities to predict ash (3.11) levels and yield for coal product(s) and reject(s) in a coal preparation plant # 3.79 # formed coke coke (3.42) specially prepared from coal (3.39) by processes involving the compaction of particles into a regularly shaped artefact ### 3.80 ### forms of sulfur collective term for the *pyritic sulphur* (3.170), *sulfate sulfur* (3.222) and *organic sulfur* (3.149) in a solid mineral fuel Note 1 to entry: For the purposes of this definition, elemental sulfur and monosulfides, which may be present in certain solid mineral fuels, are disregarded. # 3.81 ### fouling factor measure of the tendency of ash (3.11) to form sintered deposits in the convective zone of a furnace # 3.82 # fouling index empirical estimate of the fouling propensity of coal ash ### 3.83 ### foundry coke very strong, very large, dense coke (3.42) for use in foundry cupola furnaces Note 1 to entry: It is prepared in coke ovens from selected coking coal blends, and may incorporate additives. Many cokes including foundry and *blast furnace cokes* (3.21) have several functions, provide carbon for reduction, heat to melt the metal, support the burden and finally aid permeability for passage of CO_2 and CO. ### 3.84 ### free moisture moisture which is lost by the solid mineral fuel sample in attaining approximate equilibrium with the atmosphere to which it is exposed Note 1 to entry: This term sometimes called surface moisture. # 3.85 # froth flotation laboratory test laboratory procedure for the froth flotation testing of fine *coal* (3.39) less than 0,5 mm under specified conditions ### 3.86 ### fuel energy carriers intended for energy conversion such as coal (3.39) or coke (3.42) ### 3.87 ### fuel ratio ratio of fixed carbon (3.71) to volatile matter (3.239) on the same basis of analysis ### 3.88 # gas coke coke (3.42) usually made from high volatile $bituminous\ coal$ (3.20) at high temperature in gas making carbonization plants ### 3.89 # general analysis determination of the chemical and physical characteristics of a solid mineral fuel, other than the determination of *total moisture* (3.232) ## 3.90 # general analysis test sample sample, crushed to pass a sieve, of nominal size of 212 μ m, complying with ISO 3310-1, used for the determination of most chemical and some physical characteristics of a solid mineral fuel ### 3.91 # graded coke coke (3.42) which has been screened between two specified sizes # 3.92 # Gray-King coke type type, denoted by a letter, with a subscript in certain cases, which defines, by reference to a series of standard profiles, the size, strength and texture of the coke (3.42) residue obtained when a specified mass of coal (3.39) is heated in a retort tube under specified conditions # 3.93 # grind (verb) DEPRECATED: mill (verb) action of reducing the particle size of a sample to produce fine particles # gross sample quantity of a solid mineral fuel consisting of all the *increments* (3.106) or *partial samples* (3.153) taken from a *sub-lot* (3.221), either in the condition as taken or after the increments have been individually reduced and/or divided ### 3.95 # hand placing operation by which an attempt is made to pass each particle of solid mineral fuel through a stationary sieve by presenting it to the sieve in all possible orientations but without the use of force ### 3.96 # hand shaking # manual shaking operation in which a sieve is held in the hands and is given a gentle horizontal oscillatory motion ### 3.97 # hardgrove grindability index measure of the grindability of a coal (3.39) determined by testing a specially prepared sample in standard apparatus ### 3.98 # hemisphere temperature temperature at which the height of a test piece, prepared from ash (3.11) by a specified procedure, is equal to half the width of the base, and its shape becomes approximately hemispherical ### 3.99 ### high temperature coke solid, agglomerated carbonaceous residue of the pyrolysis of coal (3.39) at temperatures above 850 °C ### 3.100 ### humic acid group of complex organic, amorphous compounds of high relative molecular mass occurring as free acids and as metal salts (humates) in *coal* (3.39), which can be extracted by a sodium hydroxide solution ### 3.101 # huminite group of medium grey *macerals* (3.121) having *reflectances* (3.177) generally between those of the associated darker *liptinites* (3.117) and the lighter *inertinites* (3.109) ### 3.102 # hydrogen in mineral matter hydrogen in the water of constitution (3.243) in the mineral matter (3.136) of a solid mineral fuel # 3.103 ### hvdroreactivity rate of reaction of a solid mineral fuel with water vapour under specified conditions ### 3.104 # hygroscopic moisture of brown coals and lignites part of *total moisture* (3.232) which is retained by a brown coal or lignite after exposing it to the atmosphere and allowing it to attain a constant mass, at 20 °C \pm 2 °C and (70 \pm 5) % relative humidity # 3.105 # ignition temperature minimum temperature at which a solid mineral fuel liberates enough *volatile matter* (3.239) to form, together with the surrounding atmosphere, a flammable mixture ### 3.106 ### increment portion of fuel (3.86) extracted in a single operation of the sampling device Note 1 to entry: For some types of sampling device, a single operation consists of a double pass (back and forth) through the stream. ### 3.107 # inert (inorganic) constituents of a solid mineral fuel which decrease its efficiency in a specific use ### 3.108 # inert (organic) maceral (3.121) components of a coal (3.39) which do not soften or swell during the process of carbonization ### 3.109 ### inertinite maceral (3.121) group that comprises macerals whose reflectance (3.177) in low and medium-rank coals (3.39) and in sedimentary rocks of corresponding rank (3.174) is higher in comparison to the macerals of the vitrinite (3.241) and liptinite (3.117) groups ### 3.110 ### inherent ash ash (3.11) arising from mineral matter (3.136) present in the original plant material from which the solid mineral fuel was formed and from mineral matter incorporated intimately in the solid mineral fuel during the *coalification* (3.40) process ### 3.111 # intermittent sampling taking of a sample from only certain *sub-lots* (3.221) of *fuel* (3.86) # 3.112 ### irsid indices percentages of a specially prepared sample of coke (3.42) remaining on a test sieve of 40 mm nominal size of openings (round hole) and passing a test sieve of 10 mm nominal size of openings (round hole), denoted by I_{40} and I_{10} , respectively, after the sample has been subjected to 500 revolutions by a specified procedure in a rotating drum Note 1 to entry: Other indices, for example, I_{20} , may be reported in addition to, or in place of, I_{40} if required. # 3.113 # isoperibol calorimeter isothermal type calorimeter that has a jacket of uniform and constant temperature Note 1 to entry: These calorimeters have the inner chamber surrounded by a water jacket in which the temperature is maintained at ambient temperature. The outer jacket
acts like a thermostat and the thermal conductivity of the interspace between the two chambers is kept as even as possible. ### 3.114 # laboratory sample sample prepared from the gross or *partial sample* (3.153) as delivered to the laboratory and from which further samples are prepared for test purposes ### 3.115 ### large coal coal (3.39) above a specified lower limiting size, without any upper size limit ### 3.116 ### large coke coke (3.42) with lower size of 20 mm and above, with or without upper size limit # liptinite maceral (3.121) distinguished from other macerals by its lower reflectance Note 1 to entry: Fluorescence properties have become an important secondary distinguishing feature. Note 2 to entry: Liptinite macerals have a low reflectance and high hydrogen content until their properties converge with those of *vitrinite* (3.241). ### 3.118 # lot defined quantity of *fuel* (3.86) for which the overall quality is to be determined Note 1 to entry: A lot may be divided into a number of sub-lots (3.221). ### 3.119 # low temperature coke solid, agglomerated carbonaceous residue of the pyrolysis of coal (3.39) at a temperature between 500 °C and 850 °C ### 3.120 ### lump section piece of solid mineral fuel of size suitable for polishing and examination under the microscope Note 1 to entry: One face of the lump section, usually that perpendicular to the bedding plane, is ground and polished. ### 3.121 ### maceral smallest microscopically identifiable constituents of coal (3.39) and of fossil organic matter finely dispersed in sediments ### 3.122 # maceral group collective term for *macerals* (3.121) having broadly similar properties in a single *coal* (3.39) of specific rank (3.174) Note 1 to entry: See Table 2. Table 2 — Macerals as defined in the IC CP 1994 system | Maceral group | Maceral sub-group | Ma | iceral | Maceral variety | |---------------|--|---------------------------------------|---------------|-----------------| | Vitrinite/ | Telovitrinite/ | Telinite | Textinite | | | huminite | telohuminite | Collotelinite | Ulminite | | | | Detrovitrinite/
detrohuminite | Vitrodetrinite | Attrinite | | | | | Collodetrinite | Densinite | | | | Gelovitrinite/
gelohuminite | Corpogelinite | Corpohuminite | | | | | Gelinite | Gelinite | | | Inertinite | Not sub-groups sensu stricto:
(with plant cell structure) | Fusinite
Semifusinite
Funginite | | | | | (lacking plant cell structure) | Secretinite
Macrinite
Micrinite | | | | | (fragmented inertinite) | Inertodetrinite | | | Note 1 to entry: Huminite maceral subgroups can be used synonymously with those from the vitrinite group. Huminite macerals, however, cannot be used synonymously with vitrinite macerals. **Table 2** (continued) | Maceral group | Maceral sub-group | Maceral | Maceral variety | |---------------|-------------------|-------------------------------------|-----------------| | Liptinite | | Cutinite
Suberinite
Sporinite | | | | | Resinite | | | | | Exsudatinite
Chlorophyllinite | | | | | Alginite | Telalginite | | | | | Lamalginite | | | | Liptodetrinite | | | | | Bituminite | | Note 1 to entry: Huminite maceral subgroups can be used synonymously with those from the vitrinite group. Huminite macerals, however, cannot be used synonymously with vitrinite macerals. ### 3.123 # microlithotype naturally occurring *maceral* (3.121) or association of macerals with a minimum band width of 50 μm Note 1 to entry: Microlithotypes are classified in one of three categories, namely, monomaceral, bimaceral and trimaceral microlithotypes, according to whether they contain significant proportions of macerals of one, two or three *maceral groups* (3.122). For the bimaceral and trimaceral microlithotypes, the proportion of an individual maceral group is more than 5 % by volume in each case. Note 2 to entry: The classification of the main microlithotypes in *bituminous coal* (3.20) and anthracite and their maceral group compositions are given in <u>Table 3</u>. Table 3 — Classification of the main microlithotypes | Microlithotype | Maceral-group composition
(total greater than or equal to 95 % by vol-
ume, mineral-free basis) | |----------------|---| | Monomaceral | Vitrinite | | Vitrite | Liptinite | | Liptite | Inertinite | | lnertite | | | Bimaceral | Vitrinite + Liptinite | | Cia rite | Inertinite + Liptinite | | Durite | Vitrinite + Inertinite | | Vitrinertite | | | Trimaceral | Vitrinite + Liptinite + Inertinite | | Trimacerite | | # 3.124 # manual sampling collection of increments (3.106) by human effort # 3.125 ### mass based sampling taking of *increments* (3.106), whereby the position of each increment to be collected from the stream of *fuel* (3.86) is measured by a mass interval of stream flow and the increment mass is fixed Note 1 to entry: Each increment or *divided increment* (3.62) constituting the *partial sample* (3.153) or the *gross sample* (3.94) should be of almost uniform mass. # maximum fluidity maximum rate of rotation for the stirring shaft in dial *divisions per minute* (3.59), in the Gieseler Plastometer test ### 3.127 ### maximum fluidity temperature temperature at which the stirring shaft rotation reached the maximum rate in the Gieseler Plastometer test ### 3.128 ### maximum reflectance highest value of *reflectance* (3.177) obtained when any polished section of a particle or lump of *coal* (3.39) is rotated in its own plane in linearly polarized light ### 3.129 ### mean size weighted average particle size of any sample ### 3.130 ### mechanical sampling taking of *increments* (3.106) by mechanical means ### 3.131 # mechanical sampling system operational mechanism and/or mechanical installation for taking *increments* (3.106) and *sample* preparation (3.195) ### 3.132 ### mechanical strength measure of the strength of coke (3.42) by applying mechanical stresses in a rotating drum ### 3.133 # melting interval interval between the hemisphere temperature (3.98) and the flow temperature (3.75) # 3.134 # micum index percentage of a specially prepared sample of coke (3.42) remaining on a test sieve of 40 mm nominal size of openings (round hole) and passing a test sieve of 10 mm nominal size of openings (round hole), denoted by M_{40} and M_{10} , respectively, after the sample has been subjected to 100 revolutions by a specified procedure in a rotating drum Note 1 to entry: Other indices, e.g. M_{60} and M_{20} , may be reported if required. ### 3.135 # milled coke coke (3.42) reduced in size by milling (grinding) so that it will meet a nominal top size (3.144) of minus 212 μ m with minimum fines # 3.136 ## mineral matter inorganic material, excluding moisture but including water of constitution (3.243), in a solid mineral fuel Note 1 to entry: Mineral matter is calculated on a mass basis either from a direct determination at low temperature or from the ash yield at high temperature. # mineral sulfur sum of the pyritic sulfur (3.170) and sulfate sulfur (3.222) in a solid mineral fuel Note 1 to entry: For the purposes of this definition, elemental sulfur and monosulfides, which may be present in certain solid mineral fuels, are disregarded. ### 3.138 ### minerite collective term for intergrowths of minerals with different *macerals* (3.121) where the proportion of the total *mineral matter* (3.136) is more than 60 % by volume or if more than 20 % by volume of sulfide minerals are present ### 3.139 ### moist <ash-free basis> means of expressing an analytical result based on a hypothetical condition in which the solid mineral fuel is considered to be ash-free but with a moisture content equal to the *moisture-holding capacity* (3.141) # 3.140 # moist <mineral-matter-free basis> means of expressing an analytical result based on a hypothetical condition in which the solid mineral fuel is considered to be mineral-matter-free but with a moisture content equal to the *moisture-holding capacity* (3.141) ### 3.141 # moisture-holding capacity moisture content of a solid mineral fuel in equilibrium with an atmosphere of 96 % relative humidity at a temperature of 30 °C determined under specified conditions Note 1 to entry: Moisture holding capacity is also referred to as equilibrium moisture. ### 3.142 # moisture in air-dried sample moisture in the solid mineral fuel sample after it has attained approximate equilibrium with the atmosphere to which it is exposed # 3.143 # moisture in the general analysis sample moisture content of the general analysis sample of a solid mineral fuel after it has attained approximate equilibrium with the atmosphere in the laboratory and which is removable under specified conditions # 3.144 # nominal top size smallest sieve in the range~(3.173) included in the R 20 series on which not more than 5 % of the sample is retained Note 1 to entry: See ISO 565, square hole. Note 2 to entry: See also top size, upper size (3.229). ### 3.145 # off-line sample preparation sample preparation (3.195) performed manually or by mechanical equipment not integral with the mechanical sampling system (3.131) ### 3.146 ### on-line sample preparation sample preparation (3.195) by mechanical equipment integral with the sampling system # organic coal substance part of a coal (3.39) which contains all of the organically combined carbon, hydrogen, nitrogen, oxygen and sulfur. Note 1 to entry: Also includes other organically combined elements in plant tissue such as calcium, magnesium, iron, phosphorus, potassium and some trace elements. ### 3.148 # organic hydrogen hydrogen in the organic matter of a solid mineral fuel ### 3.149 ### organic sulfur sulfur which is bound in the organic matter of a solid mineral fuel ### 3.150 ### outlier result which meets statistical criteria identifying it as an outlier, using, for example, Cochran's maximum
variance test, and for which there is direct physical evidence of causation by gross deviation from the prescribed experimental procedure ### 3.151 # oxidizing atmosphere gaseous medium consisting of oxygen, air, carbon dioxide, water vapour or a mixture of these, irrespective of the proportions used ### 3 152 # oxyreactivity rate of reaction of a solid mineral fuel with oxygen under specified conditions ### 3.153 # partial sample sample representative of a part of the whole *sub-lot* (3.221), constituted in order to prepare *laboratory samples* (3.114) or *test samples* (3.226) Note 1 to entry: A partial sample may be obtained by combining all increments from a *sub-lot* (3.221) into two or more sets, each set being composed of consecutive increments, the number of which need not be the same in all sets. ### 3.154 # particle size size of the sieve opening in which the particle is retained (i.e. does not pass) Note 1 to entry: This may refer to sieves with round or square shaped holes. The shape of the holes shall be stated. ### 3.155 # particle size reduction process of crushing or grinding the sample to reduce the *particle size* (3.154) ### 3.156 # particulate block solid block consisting of particles of crushed *coal* (3.39) representative of the sample, bound in resin, cast in a mould and with one face ground and polished ### 3.157 # pass <in sample division> passage of an increment (3.106) or a sample once through a sample divider ### 3.158 # petrography description of the macroscopic and microscopic characteristics of rocks including fuels (3.86) and also including the textures and composition of the individual constituents and their classification and assessment Note 1 to entry: In its narrower sense, petrography covers the microscopic examination analysis and measurement of coal and coke. ### 3.159 ### petroleum coke solid agglomerated product consisting principally of carbon, obtained most often by thermal cracking of materials derived from petroleum ### 3.160 ### physical sample sample taken specifically for the determination of physical characteristics, e.g. *size analysis* (3.205) or strength indices ### 3.161 # pillar sample section of a seam taken in the form of a block or series of blocks of *coal* (3.39) with associated inorganic rock which when arranged in correct vertical sequence, represent a true section of the seam Note 1 to entry: Where the full section of the seam is not accessible or not required, this term refers to a sample taken either from a specifically defined portion of the seam, or from the floor to roof as mined or exposed. ### 3.162 # plastic range difference between the initial softening temperature and the *solidification temperature* (3.214), in the Gieseler Plastometer test ### 3.163 ### ply sample sample taken from an individual ply or leaf or from a series of plies or leaves of a coal seam ### 3.164 # porosity of coke ratio of the volume of the voids within a piece of coke (3.42) to its apparent volume Note 1 to entry: It is the difference between the *true relative density* (3.236) and the *apparent relative density* (3.10) of a sample of coke expressed as a proportion of the true relative density. ### 3 165 # post reaction strength measure of the residual strength of a coke (3.42) after it has been subjected to a reactivity (3.175) test ### 3.166 # precision closeness of agreement between independent test results obtained under stipulated conditions Note 1 to entry: It is often defined using an index of precision, such as two standard deviations. Note 2 to entry: A determination may be made with great precision, and the standard deviation of a number of determinations on the same sampling unit may therefore be low, but the results will be accurate only if they are free from *bias* (3.18). ### 3.167 # primary increment increment (3.106) taken at the first stage of sampling, prior to any sample division (3.194) and/or sample reduction (3.196) # production seam profile sample sample taken from the section of the seam being worked ### 3.169 # proximate analysis analysis of a solid mineral fuel reported in terms of moisture in the analysis sample, *volatile matter* (3.239), *ash* (3.11) and *fixed carbon* (3.71) Note 1 to entry: Analysis carried out on equilibrated samples crushed to minus 212 μ m, such as the general analysis test sample (3.90) and or individual *sub-lot* (3.221) samples, lot samples, etc. ### 3.170 # pyritic sulfur sulfur present in the *mineral matter* (3.136) of a solid mineral fuel as pyrite or marcasite ### 3.171 ### random error error (3.68) that is statistically independent of previous errors Note 1 to entry: This implies that any two errors in a series of random errors are uncorrelated, and that individual errors are unpredictable in consequence of the partitioning of error into systematic (bias) and random components. The theoretical mean of the random errors is zero. Whereas individual errors are unpredictable, the mean of the random errors in a series of observations tends towards zero as the number of observations increases. ### 3.172 # random reflectance microscopically determined *reflectance* (3.177) of the polished surface of a *maceral* (3.121) (usually vitrinite) determined in non-polarized white light at 546 nm ### 3.173 ### range difference between the greatest and least values of a number of observations ### 3.174 ### rank position of a coal (3.39) in the coalification (3.40) series indicating maturity in terms of chemical and physical properties Note 1 to entry: Higher rank coals are of greater maturity. # 3.175 ### reactivity rate of reaction of a solid mineral fuel with a given agent under specified conditions Note 1 to entry: See also carboxyreactivity (3.34), hydroreactivity (3.103) and oxyreactivity (3.152). # 3.176 ### reducing atmosphere gaseous medium consisting of methane, carbon monoxide, hydrogen or a mixture of these, irrespective of the proportions used ### 3.177 # reflectance percentage of the normal incident light reflected from a polished surface Note 1 to entry: In the context of organic *petrography* (3.158), reflectance refers to the microscopically determined percentage of incident white light reflected from the polished surface of macerals (usually vitrinite) under oil immersion at 546 nm. ### reflectance standard polished surface of a material of known reflectance (3.177) which is used for calibrating reflectance measuring equipment Note 1 to entry: It is essential that the reflectance standard meets stringent requirements with regard to the properties of the material of which it is composed, and the way in which it is mounted and prepared. ### 3.179 # relative density of the analysis sample ratio of the mass of a volume of a representative sample, ground to pass a 212 μ m aperture sieve, to the mass of an equal volume of water at the same temperature ### 3.180 # repeatability precision (3.166) under repeatability conditions (3.181) ### 3.181 # repeatability conditions conditions where independent observed values or test results are obtained with the same method on identical test material in the same laboratory by the same operator using the same equipment within short intervals of time ### 3.182 # repeatability critical difference value less than or equal to which the absolute difference between two final values, each representing a series of observed values or test results obtained under *repeatability conditions* (3.181), may be expected to be, with a specified probability Note 1 to entry: Examples of final values are the mean and the median of the series of observed values or test results. The series itself may consist of only one single observation. ### 3.183 ### repeatability limit value less than or equal to which the absolute difference between two single observed values or test results obtained under *repeatability conditions* (3.181) may be expected to be, with a probability of 95 % Note 1 to entry: The symbol used is γ . Note 2 to entry: The repeatability limit corresponds to the *repeatability critical difference* (3.182) for two single observed values or test results and a probability of 95 %. # 3.184 # repeatability standard deviation standard deviation (3.216) of observed values or test results obtained under repeatability conditions (3.181) Note 1 to entry: It is a measure of the dispersion of the distribution of observed values or test results under repeatability conditions. Note 2 to entry: Similarly, "repeatability variance" and "repeatability coefficient of variation" could be defined and used as measures of the dispersion of observed values or test results under repeatability conditions. ### 3.185 # replicate sampling taking from the *sub-lot* (3.221) of *increments* (3.106) which are combined in rotation into different containers to give two or more samples of approximately equal mass, each being representative of the whole *sub-lot* (3.221) Note 1 to entry: See also duplicate sampling (3.67). # reproducibility precision (3.166) under reproducibility conditions (3.187) ### 3.187 # reproducibility conditions conditions where observed values or test results are obtained with the same method on identical test material in different laboratories with different operators using different equipment ### 3.188 # reproducibility critical difference value less than or equal to which the absolute difference between two final values, each representing a series of observed values or test results obtained under *reproducibility conditions* (3.187), may be expected to be, with a specified probability Note 1 to entry: Examples of final values are the mean and the median of the series of observed values or test results. The series itself may consist of only one single observation. ### 3.189 # reproducibility limit value less than or equal to which the absolute difference between two single observed values or test results obtained under *reproducibility conditions* (3.187) may be expected to
be, with a probability of 95 % Note 1 to entry: The symbol used is *R*. Note 2 to entry: The reproducibility limit corresponds to the *reproducibility critical difference* (3.188) for two single observed values or test results and a probability of 95 %. ### 3.190 ### reproducibility standard deviation standard deviation (3.216) of observed values or test results obtained under reproducibility conditions (3.187) Note 1 to entry: It is a measure of the dispersion of the distribution of observed values or test results under reproducibility conditions. Note 2 to entry: Similarly, "reproducibility variance" and "reproducibility coefficient of variation" could be defined and used as measures of the dispersion of observed values or test results under reproducibility conditions. # 3.191 ### riffle non-mechanical divider in which the material is divided by means of alternate parallel slots, each of the same width, feeding into two opposite and separate containers Note 1 to entry: Care is taken in distributing the feed evenly so that all slots have an equal chance in the division. Closed types with holding hoppers and gate mechanisms to smooth the feed to the riffle are recommended. # 3.192 # sample (noun) portion taken from a *lot* (3.118) or *sub-lot* (3.221) to be representative of it with regard to the characteristic to be investigated ## 3.193 ### sample (verb) process of taking a portion of a material which is representative of the whole ### 3.194 # sample division process in *sample preparation* (3.195) whereby the sample is divided into separate representative portions, one or more of which is retained ### 3.195 # sample preparation process of bringing samples to the condition required for analysis or testing Note 1 to entry: Sample preparation covers mixing, sample division, particle size reduction and sometimes air drying of the sample and may be performed in several stages. ### 3.196 ### sample reduction process in *sample preparation* (3.195) whereby the *particle size* (3.154) of the sample is reduced by *crushing or grinding* (3.54) ### 3.197 # sampling frame parallel-sided frame used for taking a stopped-belt increment of a *fuel* (3.86) Note 1 to entry: The distance between the parallel sides of the frame should be not less than 3,0 times the nominal top size of the solid mineral fuel. ### 3.198 ### sapoznikov Russian method of determining plastometric parameters such as "y" plastic thickness and "x" plastometric shrinkage. Note 1 to entry: See GOST 1186-87. ### 3.199 # seam section sample of a coal seam taken from roof to floor, either as one representative mass or split into a number of subsections of different qualities # 3.200 # segregation accidental separation of particles of different physical characteristics Note 1 to entry: It takes place when fuel particles are in motion which have differences in size, shape, moisture and electrostatic properties. ### 3.201 ### shale generic term for certain fine-grained sedimentary rocks, commonly occurring as an impurity in coal seams Note 1 to entry: This term should not be used as a general term for washery rejects. ### 3.202 ### shatter index percentage of a specially prepared sample of *coke* (3.42) remaining on a test sieve of stated size of openings after the sample has been subjected to a specified dropping test # 3.203 ### sieving test machine machine designed to simulate the *hand shaking* (3.96) procedure specified in the method for carrying out a *size analysis* (3.205) ### 3.204 # silica ratio ratio of the mass of silica to the total mass of silica, iron(III) oxide, calcium oxide and magnesium oxide in ash (3.11) Note 1 to entry: It is expressed as a percentage. Note 2 to entry: This ratio gives an indication of the refractoriness of the ash and the tendency to form slag. ### 3.205 # size analysis **DEPRECATED**: sieve analysis process or the result of the separation of a sample into *size fractions* (3.209) with defined limits, the proportions of the fractions being expressed as percentages of the total sample ### 3.206 # size analysis sample sample taken specifically for particle size (3.154) analysis. ### 3.207 ### sized coal DEPRECATED: graded coal coal (3.39) which has been screened between two specified sizes ### 3.208 ### size distribution **DEPRECATED:** size consist proportions of various particle sizes (3.154) in a product # 3.209 ### size fraction part of the sample belonging to a specified *size range* (3.210) limited by either one or two sieve sizes ### 3.210 ### size range top size (3.229) (upper-size) and the bottom size (lower size) of a solid mineral fuel ### 3.211 # slagging factor measure of the tendency of ash (3.11) to form fused deposits in the radiant zone of a furnace ### 3.212 ### small coal **DEPRECATED:** smalls coal (3.39) with a specified *nominal top size* (3.144) but with no lower size limit Note 1 to entry: The nominal top size is usually between 50 mm and 4 mm. ### 3.213 ### small coke coke (3.42) with nominal top size (3.144) of 20 mm or smaller ### 3.214 # solidification temperature temperature at which the stirring shaft stops in the Gieseler Plastometer test ### 3.215 # sphere temperature temperature at which the height is equal to the width of the base in the Ash Fusion test # 3.216 # standard deviation positive square root of the variance (3.238) Note 1 to entry: This term is usually designated as σ . # stratified random sampling taking of an *increment* (3.106) at random within the mass interval or time interval determined for mass basis sampling or *time basis sampling* (3.228), respectively ### 3.218 ### strip mixing and splitting method method of *sample division* (3.194), in which splitting sections are taken using a *sampling frame* (3.197) from a strip of sample to be divided Note 1 to entry: A single strip sample may often be regarded as being too small to guarantee that all horizons of the seam are adequately represented. However, a number of such samples may be taken to achieve better representativity in a variable seam. ### 3.219 # strip sampling sample similar to a *channel sample* (3.35) but smaller in cross section ### 3.220 ### struck levelling method of levelling the surface of a solid mineral fuel in a container when determining *bulk density* (3.25), whereby a straight edge is slid across the top of the container, any piece of solid mineral fuel which touches the straight edge being removed ### 3.221 ### sub-lot part of a lot (3.118) for which a test result is required Note 1 to entry: There may be two or more sub-lots per lot # 3.222 # sulfate sulfur sulfur present in the *mineral matter* (3.136) of a solid mineral fuel as sulfate # 3.223 ### sulfur in ash sulfur which is present in the ash (3.11) after a solid mineral fuel is burnt under specified controlled conditions ### 3.224 # systematic sampling taking of *increments* (3.106) at equal intervals of time, space or mass over the whole *lot* (3.118) or *sub-lot* (3.221), the first increment being taken at random within the first such interval # 3.225 # test portion quantity of material taken from the test sample (3.226) and used for one determination # 3.226 # test sample sample which is prepared to meet the requirements of a specific test ### 3.227 ### thermal stability dimensional stability of a solid mineral fuel heated under specified conditions # time basis sampling taking of *increments* (3.106), whereby the position of each increment to be collected from the stream is measured by a time interval and the increment mass is proportional to the flow rate at the time the increment is taken Note 1 to entry: Each increment or *divided increment* (3.62) constituting the partial sample or the *gross sample* (3.94) should be of a mass proportional to the flow rate of the solid mineral fuel stream at the time of taking the increment. ### 3.229 ### top size ### upper size size corresponding to the 5th percentile on the cumulative *size distribution* (3.208) curve of a material, i.e. the largest sieve size on which 5 % of the material is retained ### 3.230 # total carbon sum of the carbon in the organic matter and the carbon in the *mineral matter* (3.136) of a solid mineral fuel ### 3.231 ### total hydrogen sum of the *organic hydrogen* (3.148), the hydrogen in the *mineral matter* (3.136) and the hydrogen in the moisture of a solid mineral fuel ### 3.232 ### total moisture moisture in the solid mineral fuel as sampled, and removable under specified conditions ### 3.233 ## total moisture sample sample taken specifically for the determination of total moisture (3.232) ### 3.234 # total oxygen sum of the oxygen in the organic matter, the oxygen in the *mineral matter* (3.136) and the oxygen in the moisture of a solid mineral fuel ### 3.235 ### total sulfur sum of mineral and *organic sulfur* (3.149) in a solid mineral fuel ### 3.236 ### true relative density ratio of the mass of a sample of dry solid mineral fuel ground to pass a 212 μ m sieve to the mass of an equal volume of water (at a specified temperature) ### 3.237 # ultimate analysis analysis of a solid mineral fuel reported on an air-dried basis in terms of its carbon, hydrogen, nitrogen, sulfur and *ash* (3.11) Note 1 to entry: Moisture in the analysis sample and oxygen by difference. May also be reported on other basis such as dry ash free basis. Note 2 to entry: This definition includes hydrogen and oxygen present in the water of constitution of the mineral matter associated with the coal substance and carbon and oxygen present in mineral carbonates. Note 3 to entry: Oxygen is usually reported by difference and calculated on an air-dried basis by the sum of carbon, hydrogen, nitrogen, sulfur, ash and moisture in the analysis sample expressed as percent mass fraction subtracted from 100. # variance measure of dispersion, which is the sum of the squared deviations of observations from the average divided by one less than the number of observations Note 1 to entry: This term
is usually designated as *V*. ### 3.239 ## volatile matter loss in mass, corrected for moisture, when a solid mineral fuel is heated out of contact with air under specified conditions # 3.240 ### volatile sulfur sulfur liberated among the volatile products in the pyrolysis of a solid mineral fuel ### 3.241 ### vitrinite designates a group of *macerals* (3.121) whose colour is grey and whose *reflectance* (3.177) is generally between that of the associated darker *liptinites* (3.117) and lighter *inertinites* (3.109) over the rank range in which the three respective *maceral groups* (3.122) can be readily recognized ### 3.242 ## washed coal coal (3.39) which has been treated by a wet cleaning process ### 3.243 ### water of constitution water chemically bound to the *mineral matter* (3.136) and remaining after the determination of *total moisture* (3.232) ### 3.244 ### zero standard non-reflecting standard used for calibrating reflectance-measuring equipment # **Bibliography** - [1] ISO 565, Test sieves Metal wire cloth, perforated metal plate and electroformed sheet Nominal sizes of openings - [2] ISO 3310-1, Test sieves Technical requirements and testing Part 1: Test sieves of metal wire cloth # Alphabetical index | A | |--------------------------------| | abrasion <u>3.1</u> | | abrasion index 3.2 | | abrasion value 3.3 | | adiabatic calorimeter 3.4 | | accuracy <u>3.5</u> | | adventitious ash 3.6 | | air-dried basis 3.7 | | air-drying <u>3.8</u> | | anthracite <u>3.9</u> | | apparent relative density 3.10 | | ash <u>3.11</u> | | ash analysis 3.12 | | ash fusibility 3.13 | | ash viscosity 3.14 | | as received basis 3.15 | | В | | base/acid ratio 3.16 | | batch <u>3.17</u> | | bias <u>3.18</u> | | bias of scale 3.19 | | bituminous coal 3.20 | | blast furnace coke 3.21 | | breakage <u>3.22</u> | | breeze <u>3.23</u> | | brown coal and lignite 3.24 | | bulk density 3.25 | | bulk sample 3.26 | | С | | caking of coal 3.27 | | caking index 3.28 | ``` calorific value gross at constant V 3.29 calorific value net at constant V 3.30 calorific value net at constant P 3.31 carbominerite 3.32 carbon In mineral matter 3.33 carboxyreactivity 3.34 channel sample 3.35 char 3.36 chute 3.37 clinkering 3.38 coal <u>3.39</u> coalification 3.40 coefficient of variation 3.41 coke <u>3.42</u> coke reactivity index 3.43 coke strength after reaction 3.44 combustible matter 3.45 combustible sulfur 3.46 common sample 3.47 complete seam profile sample for each bench 3.48 constant mass division 3.49 continuous sampling 3.50 correlation coefficient 3.51 core sample 3.52 crucible swelling number 3.53 crush <u>3.54</u> cut coke 3.55 cutter 3.56 D deformation interval 3.57 deformation temperature 3.58 dial divisions per minute 3.59 dilatation 3.60 ``` | dirt band 3.61 | |--------------------------------------| | divided increment 3.62 | | dry ash-free basis 3.63 | | dry basis 3.64 | | dry mineral-matter-free basis 3.65 | | duplicate determination 3.66 | | duplicate sampling 3.67 | | Е | | error <u>3.68</u> | | F | | falling stream 3.69 | | final fluidity temperature 3.70 | | fixed carbon 3.71 | | fixed mass division 3.72 | | fixed rate division $\frac{3.73}{}$ | | fixed sulfur 3.74 | | flow temperature 3.75 | | flattened-heap method 3.76 | | fluidity 3.77 | | float sink analysis 3.78 | | formed coke 3.79 | | forms of sulfur 3.80 | | fouling factor 3.81 | | fouling index 3.82 | | foundry coke 3.83 | | free moisture 3.84 | | froth flotation laboratory test 3.85 | | fuel <u>3.86</u> | | fuel ratio 3.87 | | G | | gas coke 3.88 | | general analysis 3.89 | | general analysis test sample 3.90 | ``` graded coke 3.91 Gray-King coke type 3.92 grind <u>3.93</u> gross sample 3.94 Н hand placing 3.95 hand shaking 3.96 hardgrove grindability index 3.97 hemisphere temperature 3.98 high temperature coke 3.99 humic acid 3.100 huminite 3.101 hydrogen in mineral matter 3.102 hydroreactivity 3.103 hygroscopic moisture of brown coals and lignites 3.104 I ignition temperature 3.105 increment 3.106 inert (inorganic) 3.107 inert (organic) 3.108 inertinite 3.109 inherent ash 3.110 intermittent sampling 3.111 irsid index 3.112 isoperibol calorimeter 3.113 L laboratory sample 3.114 large coal 3.115 large coke 3.116 liptinite 3.117 lot <u>3.118</u> low temperature coke 3.119 lump section 3.120 ``` | M | |---| | maceral <u>3.121</u> | | maceral group 3.122 | | microlithotype 3.123 | | manual sampling 3.124 | | mass based sampling 3.125 | | maximum fluidity 3.126 | | maximum fluidity temperature 3.127 | | maximum reflectance 3.128 | | mean size 3.129 | | mechanical sampling 3.130 | | mechanical sampling system 3.131 | | mechanical strength 3.132 | | melting interval 3.133 | | micum index 3.134 | | milled coke 3.135 | | mineral matter 3.136 | | mineral sulfur 3.137 | | minerite 3.138 | | moist ash free basis 3.139 | | moist mineral matter free 3.140 | | moisture-holding capacity 3.141 | | moisture in air-dried sample 3.142 | | moisture in the general analysis sample 3.143 | | N | | nominal top size 3.144 | | 0 | | off-line sample preparation 3.145 | | on-line sample preparation 3.146 | | organic coal substance 3.147 | | organic hydrogen 3.148 | | organic sulfur 3.149 | | outlier <u>3.150</u> | | oxidizing atmosphere 3.151 | | oxyreactivity <u>3.152</u> | ``` P partial sample 3.153 particle size 3.154 particle size reduction 3.155 particulate block 3.156 pass (in sample division) 3.157 petrography 3.158 petroleum coke 3.159 physical sample 3.160 pillar sample 3.161 plastic range 3.162 ply sample 3.163 porosity of coke 3.164 post reaction strength 3.165 precision 3.166 primary increment 3.167 production seam profile sample 3.168 proximate analysis 3.169 pyritic sulfur 3.170 R random error 3.171 random reflectance 3.172 range <u>3.173</u> rank <u>3.174</u> reactivity <u>3.175</u> reducing atmosphere 3.176 reflectance 3.177 reflectance standard 3.178 relative density of the analysis sample. 3.179 repeatability 3.180 repeatability conditions 3.181 repeatability critical difference 3.182 repeatability limit 3.183 repeatability standard deviation 3.184 ``` ``` replicate sampling 3.185 reproducibility 3.186 reproducibility conditions 3.187 reproducibility critical difference 3.188 reproducibility limit 3.189 reproducibility standard deviation riffle <u>3.191</u> S sample (noun) 3.192 sample (verb) 3.193 sample division 3.194 sample preparation 3.195 sample reduction 3.196 sampling frame 3.197 sapoznikov 3.198 seam section 3.199 segregation 3.200 shale 3.201 shatter index 3.202 sieving test machine 3.203 silica ratio 3.204 size analysis 3.205 size analysis sample 3.206 sized coal 3.207 size distribution 3.208 size fraction 3.209 size range 3.210 slagging factor 3.211 small coal 3.212 small coke 3.213 solidification temperature 3.214 sphere temperature 3.215 standard deviation 3.216 stratified random sampling 3.217 ``` ``` strip mixing and splitting method 3.218 strip sampling 3.219 struck levelling 3.220 sub-lot <u>3.221</u> sulfate sulfur 3.222 sulfur in ash 3.223 systematic sampling 3.224 Т test portion 3.225 test sample 3.226 thermal stability 3.227 time basis sampling 3.228 top size <u>3.229</u> total carbon 3.230 total hydrogen 3.231 total moisture 3.232 total moisture sample 3.233 total oxygen 3.234 total sulfur 3.235 true relative density 3.236 U ultimate analysis 3.237 V variance 3.238 volatile matter 3.239 volatile sulfur 3.240 vitrinite 3.241 W washed coal 3.242 water of constitution 3.243 Z zero standard 3.244 ``` Price code A