International Standard INTERNATIONAL ORGANIZATION FOR STANDARDIZATION⊕МЕЖДУНАРОДНАЯ ОРГАНИЗАЦИЯ ПО СТАНДАРТИЗАЦИИ⊕ORGANISATION INTERNATIONALE DE NORMALISATION # General methods of test for pigments and extenders — Part 15: Comparison of resistance to light of coloured pigments of similar types Méthodes générales d'essai des pigments et matières de charge — Partie 15: Comparaison de la résistance à la lumière des pigments colorés de types semblables Second edition — 1986-11-01 UDC 667.622:620.191.7 Ref. No. ISO 787/15-1986 (E) Descriptors: paints, pigments, tests, daylight tests, determination, daylight resistance. # **Foreword** ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. Draft International Standards adopted by the technical committees are circulated to the member bodies for approval before their acceptance as International Standards by the ISO Council. They are approved in accordance with ISO procedures requiring at least 75 % approval by the member bodies voting. International Standard ISO 787/15 was prepared by Technical Committee ISO/TC 35, Paints and varnishes. This second edition cancels and replaces the first edition (ISO 787/XV-1973), clauses 0, 2, 3, 4, 6, 7 of which have been technically revised. Users should note that all International Standards undergo revision from time to time and that any reference made herein to any other International Standard implies its latest edition, unless otherwise stated. International Organization for Standardization, 1986 Printed in Switzerland The purpose of this International Standard is to establish a series of general test methods for pigments and extenders which are suitable for all or many of the individual pigments and extenders for which specifications might be required. In such cases, a cross-reference to the general method should be included in the International Standard relating to that pigment or extender, with a note of any detailed modifications which might be needed in view of the special properties of the product in question. Technical Committee ISO/TC 35, *Paints and varnishes*, decided that all the general methods should be published as they become available, as parts of a single International Standard, in order to emphasize the relationship of each to the whole series. The Technical Committee also decided that, where two or more procedures were widely used for determining the same or a similar characteristic of a pigment or extender, there would be no objection to including more than one of them in the ISO series. In such cases it will, however, be essential to state clearly in a specification which method is to be used and, in the test report, which method has been used. ### Parts of the series already published are as follows: - Part 1 : Comparison of colour of pigments - Part 2 : Determination of matter volatile at 105 °C - Part 3: Determination of matter soluble in water Hot extraction method - Part 4 : Determination of acidity or alkalinity of the aqueous extract - Part 5 : Determination of oil absorption value - Part 7 : Determination of residue on sieve Water method Manual procedure - Part 8 : Determination of matter soluble in water Cold extraction method - Part 9 : Determination of pH value of an aqueous suspension - Part 10: Determination of density Pyknometer method - Part 11: Determination of tamped volume and apparent density after tamping - Part 13: Determination of water-soluble sulphates, chlorides and nitrates - Part 14: Determination of resistivity of aqueous extract - Part 15: Comparison of resistance to light of coloured pigments of similar types - Part 16: Determination of relative tinting strength (or equivalent colouring value) and colour on reduction of coloured pigments Visual comparison method - Part 17: Comparison of lightening power of white pigments - Part 18: Determination of residue on sieve Mechanical flushing procedure - Part 19 : Determination of water-soluble nitrates Salicylic acid method - Part 20 : Comparison of ease of dispersion Oscillatory shaking method - Part 21: Comparison of heat stability of pigments using a stoying medium - Part 22: Comparison of resistance to bleeding of pigments - Part 23: Determination of density (using a centrifuge to remove entrained air) - Part 24: Determination of relative tinting strength of coloured pigments and - relative scattering power of white pigments Photometric methods # General methods of test for pigments and extenders — Part 15: Comparison of resistance to light of coloured pigments of similar types #### 0 Introduction This document is a part of ISO 787, General methods of test for pigments and extenders. The terms "resistance to light" and "light fastness (or colour fastness)" describe the resistance of a material to change in its appearance as a result of exposure to light. The magnitude of the change, if any, is influenced by the quantity and quality of the light to which the material is exposed, and by the nature and composition of the material itself. Two compositions, each consisting of identical components but in different proportions, may not have the same resistance to light. Also, two compositions each consisting of the same proportions of similar, but not identical, components may not have the same resistance to light. When exposed to natural light, the conditions of the test vary continuously because of the large number of variables (for example intensity and spectral distribution of the light, temperature, relative humidity, and the amount and nature of atmospheric contaminants) and therefore results cannot be related to similar tests carried out on other occasions. Consequently expressing the results as a function of time alone is not recommended. These considerations form the basis for the comparison of light fastness of two different samples of a coloured pigment. Each sample is incorporated in the same proportion in otherwise identical compositions and these compositions, in a suitable form, are examined for any difference in their change of appearance after exposure to the same quantity and quality of light. In order to comply with these exposure conditions, it is necessary for the compositions to be exposed side by side at the same time to the same light source for the same period of time. In addition, the light fastness of a pigment may be affected by the presence of other pigments such as titanium dioxide. This important aspect may be accommodated in this part of ISO 787 by allowing the agreed binder (medium) to consist of a dispersion of such a pigment. The test procedure is then followed as described. The extent to which the change on exposure is allowed to proceed before the comparison is made, may be of importance. It is unrealistic to assess the exposures when the change is only equivalent to the first perceptible change, but it is also inadvisable to wait until the amount of change is large. Thus, it is recommended that comparisons of change of appearance be made when the amount of change of the pigment with known resistance to light (agreed reference pigment) is equal to fastness grade 4 and 3 of the grey scale in accordance with ISO 105, section A02. For any particular application, the method of test described in this International Standard needs to be completed by the following supplementary information. This information should be derived, in part or totally, from an (inter)national standard or other document related to the product under test or, if appropriate, should be agreed between the interested parties. - a) Type and identification of the agreed reference pigment. - b) The binder (medium) for dispersion of the test sample and the agreed reference pigment and details of the composition of the dispersion. - c) The method of dispersion to be used. - d) Whether the test is to be carried out under natural exposure (method A) or artificial light (method B). - e) If method A is to be used, the exposure angle of the test specimens and glass cover. - f) If method B is to be used, the details of the apparatus and of the light source. #### 1 Scope and field of application This part of ISO 787 describes a general method of test for comparing the resistance to light of samples of similar types of coloured pigments (agreed reference pigment and test sample). Two methods of exposure are described. In method A, the material is exposed under glass to natural light. In method B, the material is exposed to direct artificial light. NOTE — When either of these general methods (A or B) is applicable to a given pigment, only a cross-reference to the appropriate method should be included in the International Standard relating to that pigment, indicating any detailed modification that may be needed in view of the special properties of the product. Only when the procedures given in this general method are not applicable to a particular product should a different method for comparison of resistance to light be specified. #### 2 References ISO 105, Textiles - Tests for colour fastness - Section A02: Grey scale for assessing change in colour. Section B01: Colour fastness to light: Daylight. Section B02: Colour fastness to artificial light: Xenon arc fading lamp test. ISO 842, Raw materials for paints and varnishes — Sampling. ISO 4892, Plastics — Methods of exposure to laboratory light sources. CIE Publication No. 20 (TC-2.2), Recommendations for the integrated irradiance and the spectral distribution of simulated solar radiation for testing purposes. #### 3 Principle The test sample and the agreed reference pigment are each dispersed in the same agreed binder (medium). The dispersions are applied to a substrate and dried; they are then exposed to natural daylight with protection from rain (method A) or to artificial light (method B) under specified conditions. The resistance to light is assessed by comparing the change in colour of the test sample to that of the agreed reference pigment. #### 4 Apparatus and materials #### 4.1 Substrate - a) aluminium or rigid cardboard panels of suitable size for the applicator used, and with a white high gloss, light fast, coated and non-absorbent surface for the application of paint or - b) paper used as substrate for mass tone prints. - **4.2** Film applicator or other device, suitable for applying, side by side, two films of wet thickness 50 to 100 μ m, or a suitable apparatus for preparing mass tone prints with a thickness of about 1,5 μ m. - **4.3** Cover sheet, of aluminium foil or other suitable opaque material. - **4.4** Grey scale for assessing change in colour, complying with ISO 105, section A02. - **4.5** Agreed reference pigment, for comparison with the test sample. It shall be agreed between the parties and shall be similar in composition to that of the test sample. - **4.6 Binder** (medium) to be agreed between the interested parties. Its choice should be made with regard to the field of application of the pigments being tested. - **4.7** Cabinet for exposure under glass to natural light (for method A). The exposure cabinet shall have a glass cover and shall be of a sufficient size to carry out the expected number of tests. The cabinet shall be constructed of metal, wood or other material capable of protecting the coated test substrates (specimens) from rain and similar climatic effects, and there shall be adequate ventilation to allow free flow of air over the test specimens. The glass cover shall be a single piece of clear sheet glass, of thickness 2 to 3 mm, and free from bubbles or other imperfections. The transmittance of the glass shall be approximately 90 % at 360 nm and throughout the visible region of the spectrum, falling to a transmittance of less than 1 % at 300 nm and shorter wavelengths. To maintain these characteristics it is usually necessary to clean the glass periodically and to replace the glass at intervals of not more than 2 years. The cabinet shall be fitted with a means of support that allows the specimens to be placed not less than 50 mm below, and in a plane parallel to, the glass cover. The cabinet shall be placed so as to receive direct sunlight throughout the day without shadows of neighbouring objects falling upon it. If the cabinet is placed over ground, the distance between the bottom of the cabinet and the plane of the cleared area shall be great enough to avoid any undesirable effects of contact with grass or plant growth during the period of exposure. The glass cover and the test specimens shall slope toward the equator at an angle from the horizontal approximately equal to the latitude of the location at which the tests are being made. Other angles of exposure such as 45° may be used, but the angle shall be stated in the test report. 4.8 Apparatus for exposure to artificial light (for method B). The apparatus may be a conventional artificial weathering machine, containing a suitable light source such as a xenon arc lamp and filter system, or a similar device. (See also clause 5.1.2 of ISO 4892-1981 which gives further details of the characteristics of xenon arc lamps.) The apparatus shall operate under the following conditions: - -~ the simulated total irradiance incident on the specimens provided by the light source (lamp and filter system) shall be 550 $\pm~$ 55 W/m² in the range 300 to 800 nm; - the irradiance shall be 50 \pm 15 W/m² in the range 300 to 400 nm; - the irradiance at wavelengths shorter than 320 nm shall not exceed 0,5 W/m²; - the spectral distribution of the total radiation at wavelengths above 360 nm corresponding to that given in the table and the figure [taken from CIE Publication No. 20 (TC-2.2)]; an approximation within ± 10 % of radiation data is sufficient; - the air drawn into the test chamber shall be at normal ambient conditions of temperature and humidity; - the degree of ventilation shall be such that the test specimens are maintained at a black panel temperature of 50 \pm 5 °C (see note 1); - no water spray shall be used. #### **NOTES** - 1 ISO 105, Section B02 gives details regarding black panel thermometers. - 2 Xenon arc lamps are convenient to use and give a spectrum reasonably close to natural daylight. It is necessary to frequently monitor the output of each lamp because it characteristically decreases (especially within the actinic region) with use. Lamps should be replaced immediately when they fail to comply with the requirements specified in this clause of this International Standard. Typical commercially available lamps have a useful life of about 1 000 h. In some cases, the transmission characteristics of the associated filter system also alter in course of time and a regular replacement of filters is necessary. Table — Irradiance of the total radiation in spectral bands, in watts per square metre and in percentage of $E_{\rm T}=1$ 120 W/m² | Range 0 | Wavelength | Irradiance W/m² | | Percentage of total radiation 1) % | | |---------|----------------------------------|-----------------|-------|------------------------------------|------| | | nm | | | | | | | <280
280 to 320 ²⁾ | | | | | | | | 5 | | 0,5 | | | | 320 to 360 | 27 | 68 | 2,4 | 6,1 | | | 360 to 400 | 36 | | 3,2 | | | 2 | 400 to 440 | 56 | | 5,0 | | | | 440 to 480 | 73 | | 6,5 | | | | 480 to 520 | 71 | | 6,3 | | | | 520 to 560 | 65 | | 5,8 | | | | 560 to 600 | 60 | 580 | 5,4 | 51,8 | | | 600 to 640 | 61 | | 5,5 | | | | 640 to 680 | 55 | | 4,9 | | | | 680 to 720 | 52 | | 4,6 | | | | 720 to 760 | 46 | | 4,1 | | | | 760 to 800 | 41 | | 3,7 | | | 3 | 800 to 1 000 | 156 | | 13,9 | | | | 1 000 to 1 200 | 108 | 329 | 9,7 | 29,4 | | | 1 200 to 1 400 | 65 | | 5,8 | | | 4 | 1 400 to 1 600 | 44 | | 3,9 | | | | 1 600 to 1 800 | 29 | | 2,6 | | | | 1 800 to 2 000 | 20 | 143 | 1,8 | 12,7 | | | 2 000 to 2 500 | 35 | | 3,1 | | | | 2 500 to 3 000 | 15 | | 1,3 | | | 5 | > 3 000 3) | | | | | | 0 to 5 | Σ | 1 120 | 1 120 | 100 | 100 | - I) Total radiation, $E_T = 1 \cdot 120 \text{ W/m}^2$ - 2) Radiation below 300 nm does not reach the surface of the earth. - 3) Radiation above 3 000 nm is negligible. NOTE - The values of the spectral irradiance shall be multiplied by the spectral bandwidth to obtain the table values. Figure — Spectral irradiance of the total radiation in spectral bands (altitude of the sun, $h = 90^{\circ}$, cloudless days, air mass = 1) ### 5 Sampling Take a representative sample of the product to be tested, as described in ISO 842. #### 6 Procedure #### 6.1 Preparation of the test specimens Prepare dispersions of the test sample and of the agreed reference pigment (4.5) in the agreed binder (medium) (4.6) by an agreed dispersion method. By means of a film applicator (4.2), apply to the substrate (4.1) continuous films of each dispersion so that both are at least 25 mm wide. Allow to dry in a horizontal position in diffuse daylight for 24 h at ambient temperature. If a stoving medium has been agreed, stove under the specified conditions for the binder (medium). Cut from the substrate a test specimen to a size, suitable to fit the exposure frame, if used, so that the dividing line between the two dispersion films is central. Cut a second test specimen and retain it in the dark at ambient temperature for later comparison with the tested specimen. ## 6.2 Exposure of the test specimens - **6.2.1** Place the test specimen in the apparatus (4.7 or 4.8). Fasten a cover sheet (4.3) across the middle one-third of the test specimen, but in such a way that the cover cannot distort or buckle and can be removed for examination of the films and replaced in the same position. - **6.2.2** Expose the test specimen to the source of light and, at suitable intervals of time, examine it by raising the cover to determine whether there is any change between the exposed and unexposed portions. Replace the cover in the same position immediately after each examination. Continue to expose the test specimen until the contrast between the exposed and unexposed portions of the film of the agreed reference pigment is equal to grey scale 4. Assess the degree of contrast of the exposed and unexposed portions of the film of the test sample by reference to the grey scale and replace the cover. **6.2.3** Place an additional cover sheet (4.3) over the test specimen so that only one-third of the test specimen remains exposed. Continue the exposure until the contrast between the fully exposed and the central unexposed portions of the film of the agreed reference pigment is equal to grey scale 3. Assess the degree of contrast of the fully exposed and the central unexposed portions of the film of the test sample by reference to the grey scale. **6.2.4** Compare the unexposed portion of the films of the agreed reference pigment and the test sample with a piece of the second specimen that has not been subjected to the exposure (see 6.1). A difference in appearance between the original material and the unexposed portion of the exposed specimen indicates that the material has been affected by some agent other than light, such as heat, moisture, or a reactive gas in the atmosphere. This change in appearance shall be stated in the test report. NOTE — In the case of light fastness tests caried out in natural daylight, the blue wool scale (see ISO 105, Sections B01 and B02) may be used to assist evaluation. #### 7 Test report The test report shall contain at least the following information: - a) the type and identification of the product tested and of the agreed reference pigment; - b) a reference to this International Standard (ISO 787/15); - c) the agreed binder used, and details of the composition and method of dispersion used; - d) whether method A or method B was used, and if method A was used, the exposure angle from the horizontal of the glass cover and of the test specimens (see 4.7); and if method B was used, details of the apparatus and of the light source (see 4.8); - e) whether, at the various stages of the test, the change in appearance of the film of the test sample is greater than, equal to or less than the change in appearance of the film of the agreed reference pigment; - f) whether agents other than light affected the material (see 6.2.4); - g) any deviation, by agreement or otherwise, from the procedure specified; - h) the period of test.