# INTERNATIONAL STANDARD ISO 105-X14 > Third edition 1994-09-01 # Textiles — Tests for colour fastness — Part X14: Colour fastness to acid chlorination of wool: Sodium dichloroisocyanurate Textiles — Essais de solidité des teintures — Partie X14: Solidité des teintures sur laine au chlorage acide: Dichloroisocyanurate de sodium Reference number ISO 105-X14:1994(E) ISO 105-X14:1994(E) #### **Foreword** ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote. International Standard ISO 105-X14 was prepared by Technical Committee ISO/TC 38, Textiles, Subcommittee SC 1, Tests for coloured textiles and colorants. This third edition cancels and replaces the second edition (ISO 105-X14:1987), of which it constitutes a minor revision. ISO 105 was previously published in thirteen "parts", each designated by a letter (e.g. "Part A"), with publication dates between 1978 and 1985. Each part contained a series of "sections", each designated by the respective part letter and by a two-digit serial number (e.g. "Section A01"). These sections are now being republished as separate documents, themselves designated "parts" but retaining their earlier alphanumeric designations. A complete list of these parts is given in ISO 105-A01. © ISO 1994 All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher. International Organization for Standardization Case Postale 56 • CH-1211 Genève 20 • Switzerland Printed in Switzerland ## Textiles — Tests for colour fastness — ### Part X14: Colour fastness to acid chlorination of wool: Sodium dichloroisocyanurate #### Scope This part of ISO 105 specifies a method for determining the resistance of the colour of wool in all forms to acid chlorination using sodium dichloroisocyanurate<sup>1)</sup>. This simulates the manufacturing operation in which a liquid containing or liberating active chlorine under mildly acid conditions is used for imparting shrink-resistant properties to wool in textiles. #### Normative references The following standards contain provisions which, through reference in this text, constitute provisions of this part of ISO 105. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agreements based on this part of ISO 105 are encouraged to investigate the possibility of applying the most recent editions of the standards indicated below. Members of IEC and ISO maintain registers of currently valid International Standards. ISO 105-A01:1994, Textiles — Tests for colour fastness — Part A01: General principles of testing. ISO 105-A02:1993, Textiles — Tests for colour fastness — Part A02: Grey scale for assessing change in colour. ISO 3074:1975. Wool Determination of dichloromethane-soluble matter in combed sliver. #### Principle A specimen of the textile is treated in a formic acid buffer solution to which solutions of sodium dichloroisocyanurate and sodium hydrogensulfite are added successively, and is then rinsed and dried. The change in colour of the specimen is assessed by comparison with the grey scale. #### Apparatus and reagent - 4.1 Grade 3 water (see ISO 105-A01:1994, subclause 8.1), both for making up solutions and for use by itself. - **4.2** A freshly prepared aqueous solution containing 3,0 g of anhydrous sodium formate per litre and an amount of sodium dioctylsulfosuccinate wetting agent equivalent to 0,5 g of the solid per litre, and buffered to pH 4,0 ± 0,2 with formic acid (approximately 1 g of 90 % formic acid is required per litre). <sup>1) 1,3-</sup>dichloro-1,3,5-triazine-2,4,6(1H, 3H, 5H)-trione sodium salt. ISO 105-X14:1994(E) © ISO To avoid difficulties in dissolving the sodium dioctylsulfosuccinate, either pipette 0,83 ml of a 60 % (or 8,3 ml of the 60 % solution diluted tenfold) per litre of final volume into the previously prepared solution of formate, made up to approximately 90 % of the final volume; or — dissolve each 0,5 g of the solid sodium dioctylsulfosuccinate in 100 ml of water by bringing to the boil, then add to the formate solution, previously made up to approximately 80 % of the final volume. In both cases, after adding the sodium dioctylsulfosuccinate, add formic acid to adjust the pH and make up to final volume. The final solution is often slightly cloudy. **4.3** A freshly prepared aqueous solution containing 11,27 g of **sodium dichloroisocyanurate** dihydrate (C<sub>3</sub>N<sub>3</sub>O<sub>3</sub>Cl<sub>2</sub>Na.2H<sub>2</sub>O) per litre. Sodium dichloroisocyanurate dihydrate with a typical available chlorine content on a mass basis of 55 % should preferably be used; 11,27 g of this is equivalent to 10,0 g of commercial anhydrous product with 62 % available chlorine. The amount of any other sodium dichloroisocyanurate formulation used should be adjusted to be equivalent in terms of available chlorine. Pure sodium dichloroisocyanurate contains 32,24 % chlorine, all of which is hydrolysed to oxidizing hydrochlorous acid, so the available chlorine is twice this, or 64,48 % (unlike the case of chlorine gas, where available chlorine and chlorine content are the same because only half of the molecule is converted to hypochlorous acid). - **4.4** A freshly prepared aqueous solution of **sodium hydrogensulfite** containing 3,29 g of NaHSO<sub>3</sub> per litre, prepared by dissolving 3,0 g of sodium metabisulfite (Na<sub>2</sub>S<sub>2</sub>O<sub>5</sub>) in 1 litre of water. - **4.5** Equipment ensuring continuous agitation of the test specimen, its complete immersion at a liquor ratio of 47:1, no overflow of liquor during agitation at a liquor ratio of 60:1, and ready access to the specimen. The equipment should permit continuous agitation and immersion of the specimen in the test solution, especially immediately after the sodium dichlorosocyanurate solution is added. Ready access to the specimen is required so that it may be manipulated easily and quickly, for example tamped with a flat- tened glass rod to help in wetting out, or temporarily raised above the liquor level to prevent direct contact with the concentrated sodium dichloroisocyanurate solution. Suitable apparatus is - a) a device allowing the specimen to reciprocate in a vertical direction whilst immersed continually in the solution; - b) a device in which the vessel contents (the test solution and the specimen) are agitated; - c) a device with a hand-stirrer. - **4.6 Electronic pH meter,** preferably, or narrow-range **pH-indicator paper.** - 4.7 Starch-iodide test paper. - **4.8** Grey scale for assessing change in colour, complying with ISO 105-A02. #### 5 Test specimen - **5.1** The specimen shall be air-dry under laboratory conditions. The content of dichloromethane-extractable matter, determined in accordance with ISO 3074, shall not exceed 0,5 %, calculated with respect to the original mass of the conditioned specimen (especially if testing to specify dye fastness), or, if testing for suitability for bulk processing, shall be typical, after appropriate pretreatments, of the bulk to be processed. - **5.2** It may be found advantageous for the mass of the test specimen to be a multiple of 0,5 g, i.e. 2,0 g or more. - **5.3** The rib of section and the body section of a garment shall be tested separately. - **5.4** If the textile to be tested is yarn, knit it into plain fabric, or test it in hank form. - **5.5** If the textile to be tested is loose fibre, comb and compress some of it into a sheet, of preferred minimum dimensions 40 mm $\times$ 100 mm. Place the sheet on a lightweight undyed polyester fabric of the same size and sew the two together with stitching round the edges. Use a method of agitation (see 4.5) that does not cause the composite specimen to disintegrate or, if this is not possible, use a composite specimen incorporating an additional sheet of light- 2 weight undyed polyester fabric of open structure, with the test specimen sandwiched between the two sheets of polyester fabric. #### 6 Procedure - **6.1** Carry out the operations described in 6.2 to 6.8 inclusive, treating each specimen in a separate bath. - **6.2** Constant stirring or other agitation is required throughout the test and is particularly important immediately after adding the sodium dichloroisocyanurate solution (4.3) and sodium hydrogensulfite solution (4.4). - **6.3** For each gram of mass of the specimen, use 47 ml of the formic acid buffer solution (4.2) at pH 4,0 $\pm$ 0,2, immerse the specimen at an initial temperature of 25 °C $\pm$ 2 °C, wet out thoroughly, then keep agitated in this solution for at least 10 min. Adequate wetting out is extremely important, especially if the materials have not been scoured previously (see 10.4 of ISO 105-A01, but note that kneading by hand is not suitable for this test). - 6.4 For each gram mass of the specimen, add 3,0 ml of the sodium dichloroisocyanurate solution (4.3) at 25 °C ± 2 °C, carefully but rapidly, interrupting agitation as little as possible and minimizing direct contact of the sodium dichloroisocyanurate solution with the specimen; if possible, remove the latter temporarily from the liquid without loss of formic acid buffer solution. Keep the specimen immersed and agitated for a further 30 min. Then check for available chlorine by spotting the solution on starch-iodide paper (4.7). Unless the paper remains colourless or turns only a very faint blue-black, rewarm the solution, if necessary, to a temperature of 25 °C ± 2 °C and recheck after a further 15 min and again, if necessary, after a further 15 min. If available chlorine is still present at the third check, discard the specimen and repeat the test with a fresh test specimen. - **6.5** For each gram mass of the specimen, add 10,0 ml of the sodium hydrogensulfite solution (4.4) to the test solution and keep the specimen immersed and agitated at a temperature 25 °C $\pm$ 2 °C for a further 15 min, then discard the test solution. - **6.6** Immerse the specimen in water (4.1) at a liquor ratio of 60:1 at an initial temperature of 25 °C $\pm$ 2 °C and keep agitated for 5 min. Repeat this process. - **6.7** Hydroextract or squeeze the specimen (for example by spinning or passing it through a mangle) within 5 min of its removal from the second rinse bath, and dry at a temperature of 60 °C $\pm$ 5 °C. (It is important not to exceed this temperature.) - **6.8** Condition all specimens for at least 2 h at ambient laboratory temperature. - **6.9** Assess the change in colour by comparison with the grey scale. Further change in colour could take place on steaming; to assess this, if required, a procedure should be agreed between the contracting parties. - **6.10** If it is desired to evaluate the staining of adjacent white wool, this should be done in a separate test. This additional test is not valid for change of colour only for staining, due to the effect of chlorine uptake on the colour of the wool. #### 7 Test report The test report shall include the following information: - a) the number and year of publication of this part of ISO 105, i.e. ISO 105-X14:1994; - all details necessary for the identification of the sample tested; - all practical details of any pretreatment carried out (see 5.1); - d) if the content of dichloromethane-extractable matter is not known; or the amount found, if it exceeds 0,5 % (see 5.1); - e) the numerical grey scale rating for change in colour of the test specimen (see 6.9); - f) any deviation from the specified procedure. ISO 105-X14:1994(E) © ISO #### ICS 59.080.10 Descriptors: textiles, wool, dyes, tests, chemical tests, determination, colour fastness, chlorination. Price based on 3 pages