PD ISO/TS 18571:2014 ### **BSI Standards Publication** # Road vehicles — Objective rating metric for non-ambiguous signals #### National foreword This Published Document is the UK implementation of ISO/TS 18571:2014. The UK participation in its preparation was entrusted to Technical Committee AUE/15, Safety related to vehicles. A list of organizations represented on this committee can be obtained on request to its secretary. This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application. © The British Standards Institution 2014. Published by BSI Standards Limited 2014 ISBN 978 0 580 82290 2 ICS 43.040.01 Compliance with a British Standard cannot confer immunity from legal obligations. This Published Document was published under the authority of the Standards Policy and Strategy Committee on 31 August 2014. Amendments issued since publication Date Text affected # TECHNICAL SPECIFICATION ISO/TS 18571:2014 ISO/TS 18571 First edition 2014-08-01 # Road vehicles — Objective rating metric for non-ambiguous signals Véhicules routiers — Mesures pour l'évaluation objective de signaux non ambigus PD ISO/TS 18571:2014 **ISO/TS 18571:2014(E)** #### COPYRIGHT PROTECTED DOCUMENT © ISO 2014 All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester. ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org Published in Switzerland | Co | ontents | Page | |------|--|------| | For | eword | iv | | Intr | roduction | v | | 1 | Scope | 1 | | 2 | Normative references | 1 | | 3 | Terms and definitions | 1 | | 4 | Symbols and abbreviated terms | | | 5 | General data requirements | | | 6 | ISO metric 6.1 Calculation of the overall ISO rating 6.2 Corridor score 6.3 Phase, magnitude, and slope scores | | | 7 | Meaning of the overall ISO rating | | | 8 | Pre-processing of the data 8.1 Synchronization of the signals 8.2 Sampling rate 8.3 Filtering 8.4 Interval of evaluation | | | 9 | Limitations 9.1 Type of signals 9.2 Metric validation 9.3 Meaning of the results 9.4 Multiple responses | | | Ann | nex A (informative) Case studies | 16 | | Rib | lingranhy | 61 | #### **Foreword** ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives). Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents). Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement. For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the WTO principles in the Technical Barriers to Trade (TBT) see the following URL: Foreword - Supplementary information The committee responsible for this document is ISO/TC 22, *Road vehicles*, Subcommittee SC 10, *Impact test procedures*. #### Introduction Computer-aided engineering (CAE) has become a vital tool for product development in the automobile industry. Various computer programs and models are developed to simulate dynamic systems. To maximize the use of these models, the validity and predictive capabilities of these models need to be assessed quantitatively. Model validation is the process of comparing CAE model outputs with test measurements in order to assess the validity or predictive capabilities of the CAE model for its intended usage. The fundamental concepts and terminology of model validation have been established mainly by standard committees including the American Institute of Aeronautics and Astronautics (AIAA),[1] the American Society of Mechanical Engineers (ASME) Standards Committees on verification and validation of Computational Solid Mechanics[2] and Computational Fluid Dynamics and Heat Transfer,[3] the Defence Modelling and Simulation Office (DMSO) of the United States Department of Defence (DoD),[4] the United States Department of Energy (DOE),[5] and various other professional societies.[19] One of the critical tasks to achieve quantitative assessments of models is to develop a validation metric that has the desirable metric properties to quantify the discrepancy between functional or time history responses from both physical test and simulation result of a dynamic system. [6] [16] [17] Developing quantitative model validation methods has attracted considerable researchers' interest in recent years. [11] [12] [13] [15] [17] [18] [23] [24] [25] [27] However, the primary consideration in the selection of an effective metric should be based on the application requirements. In general, the validation metric is a quantitative measurement of the degree of agreement between the physical test and simulation result. This Technical Specification is the essential excerpt of ISO/TR 16250:2013^[10] which provides standardized calculations of the correlation between two signals of dynamic systems, and it is validated against multiple vehicle safety case studies. ### Road vehicles — Objective rating metric for nonambiguous signals #### 1 Scope This Technical Specification (TS) provides validation metrics and rating procedures to be used to calculate the level of correlation between two non-ambiguous signals obtained from a physical test and a computational model, and is aimed at vehicle safety applications. The objective comparison of time-history signals of model and test is validated against various loading cases under different types of physical loads such as forces, moments, and accelerations. However, other applications might be possible too, but are not within the scope of this Technical Specification. #### 2 Normative references There are no normative references used in this document. #### 3 Terms and definitions For the purposes of this document, the following terms and definitions apply. #### 3.1 #### filtering smoothing of signals by using standardized algorithms #### 3.2 #### goodness or level of correlation similarity of two signals #### 3.3 #### interval of evaluation time domain that is used to calculate the correlation between two signals #### 3.4 #### rating #### rating score calculated value that represents a certain level of correlation (objective rating) #### 3.5 #### sampling rate recording frequency of a signal #### 3.6 #### time sample pair values (e.g. time and amplitude) of a recorded signal #### 3.7 #### time-history signal physical value recorded in a time domain; those signals are non-ambiguous #### 4 Symbols and abbreviated terms CAE Computer-aided engineering ## PD ISO/TS 18571:2014 **ISO/TS 18571:2014(E)** CORA Correlation and analysis DTW Dynamic time warping EEARTH Enhanced error assessment of response time histories SME Subject matter expert a_0 Relative half width of the inner corridor *b*₀ Relative half width of the outer corridor C, C(t) Analysed signal (CAE signal) Cts, Cts(i) Truncated and shifted CAE curve Cts+d Derivative CAE curve, Cts Cts+w Warped CAE curve, Cts *DTW* Dynamic time warping distance $DTW_{opt}(i, j)$ Cost of the optimal warping path d Local cost matrix to perform the dynamic time warping d(i,j) Local cost function to perform the dynamic time warping dtw[i, j] Cumulative cost matrix Δt Interval between two time samples δ_i Half width of the inner corridor $\delta_i(t)$ Lower/upper bounds of the inner corridor at time, t, (curve) δ_o Half width of the outer corridor $\delta_o(t)$ Lower/upper bounds of the outer corridor at time, t, (curve) E_M Magnitude score E_P Phase score E_S Slope (topology) score ε_M^* Maximum allowable magnitude error ε_p^* Maximum allowable percentage of time shift ε_S^* Maximum allowable slope error ε_{mag} Magnitude error ε_{Slope} Slope error *i* Index number of time shifted and truncated CAE curve, *Cts* i_k Index number of k-th warping path of curve, C^{ts} *iw* Index number of warping path of CAE curve, *Cts* *j* Index number of time shifted and truncated test curve, *Tts* j_k Index number of k-th warping path of curve, T^{ts} *jw* Index number of warping path of test curve, *Tts* k Index number k_M Exponent factor for calculating the magnitude score, E_M k_P Exponent factor for calculating the phase
score, E_P k_S Exponent factor for calculating the slope score, E_S $k_{\rm Z}$ Exponent factor for calculating the corridor score between the inner and outer corridors *m* Time steps moved to evaluate the phase error N Total number of sample points (e.g. time steps) between the starting time, t_{start} , and ending time, t_{end} N > 0 All natural numbers without zero *n* Number of data samples of time shifted and truncated curves (*Cts* and *Tts*) n_w Number of data samples of the optimal warping path n_{ε} Number of time shifts to get ρ_E ρ_E Maximum cross correlation of all $\rho_L(m)$ and $\rho_R(m)$ $\rho_L(m)$ Cross correlation (signal is moved to the left) $\rho_R(m)$ Cross correlation (signal is moved to the right) *R* Overall ISO rating *r* Rank of the sliding scale of the ISO metric $SC_{lower}(r)$ Lower threshold of rank, r $SC_{upper}(r)$ Upper threshold of rank, r T, T(t) Reference signal (test signal) T_{norm} Absolute maximum amplitude of the reference signal, T *Tts*, *Tts*(*j*) Truncated and shifted test curve *Tts+d* Derivative test curve, *Tts* *Tts+w* Warped test curve, *Tts* *t* Time signal (axis of abscissa) *t_{end}* Ending time of the interval of evaluation t_{start} Starting time of the interval of evaluation # PD ISO/TS 18571:2014 **ISO/TS 18571:2014(E)** | t_0 | Time zero of an event (e.g. test, crash, impact etc.) | |-------|--| | w | Warping path | | W_M | Weighting factor of the magnitude score, E_M | | WP | Weighting factor of the phase score, E_P | | w_S | Weighting factor of the slope score, E_S | | WZ | Weighting factor of the corridor score, \boldsymbol{Z} | | W_k | The <i>k</i> -th warping path cell | | Z | Corridor score | | Z(t) | Corridor score at time, t, (curve) | #### 5 General data requirements The metric described in this Technical Specification requires non-ambiguous curves (e.g. time-history curves). Furthermore, it is required that the reference curve, T(t), and the evaluated curve, C(t), are both defined between starting time, t_{start} , and ending time, t_{end} . Both curves shall have the same number of sample points, N, with a constant time interval, Δt , within the evaluation interval. #### 6 ISO metric The approach of this Technical Specification is to combine different types of algorithms to get reliable and robust assessments of the correlation of two signals. The calculated score must provide fair assessment for poor and for good correlations of two signals. The two most promising metrics are identified in Reference [10] and they are CORA corridor method and EEARTH. A combined metric based on the improved CORA corridor method and EEARTH is then proposed for an ISO Technical Specification which has been fully validated using responses from multiple vehicle passive safety applications. <u>Figure 1</u> shows the structure of the overall ISO metric. While the corridor method calculates the deviation between curves with the help of automatically generated corridors, the EEARTH method analyses specific curve characteristics such as phase shift, magnitude, and shape. Hence, the ISO metric consists of the two best available algorithms. Figure 1 — ISO metric structure #### 6.1 Calculation of the overall ISO rating The combination of the four metric ratings (corridor, phase, magnitude, and slope) will provide a single number, R, for the correlation of the analysed signals which represents the final overall objective rating. The overall objective rating, R, is calculated by combining the separate sub-ratings of corridor (Z), phase (E_P), magnitude (E_M), and slope (E_S). Four individual weighting factors are defining the influence of each metric on the overall rating [see Formulae (1) and (2)]. The corresponding weighting factors are shown in Table 1. $$R = w_Z \cdot Z + w_P \cdot E_P + w_M \cdot E_M + w_S \cdot E_S \tag{1}$$ $$w_Z + w_P + w_M + w_S = 1 (2)$$ | Parameter | Value | Description | | |----------------|-------|---|--| | w_Z | 0,4 | Weighting factor of the corridor score | | | WP | 0,2 | Weighting factor of the phase score | | | w _M | 0,2 | Weighting factor of the magnitude score | | | Ws | 0,2 | Weighting factor of the slope score | | Table 1 — Weighting factors of the ISO sub-ratings #### 6.2 Corridor score The corridor metric calculates the deviation between two signals by means of corridor fitting. The two sets of corridors, the inner and the outer corridors, are defined along the mean curve. If the evaluated curve, C, is within the inner corridor bounds, a score of "1" is given and if it is outside the outer corridor bounds, the score is set to "0". The assessment declines from "1" to "0" between the bounds of inner and outer corridors resulting in three different rating zones as shown in Figure 2. The compliance with the corridors is calculated at each specific time, t, and the final corridor score, Z, of a signal is the average of all scores, Z(t), at specific times, t. Figure 2 — Rating zones of the corridor metric (corridors of constant width)[9] The philosophy of the ISO approach is to use a narrow inner corridor and a wide outer corridor. [14] It limits the number of "1" ratings to only good correlations and gives the opportunity to distinguish between poor and fair correlations. If the outer corridor is too narrow, too many curves of a fair or moderate correlation would get the same poor rating of "0", like signals of almost no correlation with the reference. Basically the width of the corridors can be adjusted in order to reflect the specific signal characteristic. The width can be constant for the whole duration of the dynamic responses or vary at the different time intervals. This Technical Specification applies the most common approach of using constant corridor widths for the whole duration of the dynamic response. [10] [26] #### 6.2.1 Calculation The parameters a_0 and b_0 define the relative half widths of the inner and the outer corridors. Both shall be between "0" and "1", and a_0 must be less than b_0 . The absolute half widths of both corridors are defined as the product of relative half width and the absolute maximum amplitude, T_{norm} , of the reference signal, T. Formula (3) shows the calculation of T_{norm} and it is calculated within the interval of evaluation. $$T_{norm} = \max\{\left|\min(T)\right|, \left|\max(T)\right|\}\tag{3}$$ The absolute half width of the inner corridor (absolute distance from the reference signal to the outer bounds of the inner corridor) is defined by Formula (4). The calculation of the absolute half width of the outer corridors [see Formula (5)] is similar to that of the inner corridors. $$\delta_i = a_0 \cdot T_{norm} \qquad 0 \le a_0 \le 1 \tag{4}$$ $$\delta_o = b_0 \cdot T_{norm} \qquad 0 \le b_0 \le 1 \quad \text{and} \quad a_0 < b_0 \tag{5}$$ Based on these definitions, the lower and upper bounds of the inner corridor are defined by Formula (6) and the lower and upper bounds of the outer corridor are defined by Formula (7). $$\delta_i(t) = T(t) \pm \delta_i \tag{6}$$ $$\delta_o(t) = T(t) \pm \delta_o \tag{7}$$ Formula (8) shows the calculation of the corridor score for the correlation between the reference signal, T, and the analysed signal, C, at each evaluation time, t. If the absolute difference between the signals, T and C, is less than the half width of the inner corridor (δ_i), then the score is set to "1". The score is calculated by Formula (8) when the absolute difference between both signals is in between $\delta_i \leq \left|T(t)-C(t)\right| \leq \delta_o$. If the absolute difference between both signals is greater than the half width of the outer corridor (δ_o), then the score is set to "0". The parameter, k_Z , assesses the location of the analysed signal within the outer corridor, and it applies the appropriate penalty on the rating score. A linear ($k_Z=1$), quadratic ($k_Z=2$), cubical ($k_Z=3$) or any other regression relationship can be defined accordingly. $$Z(t) = \begin{cases} 1 & \text{if } |T(t) - C(t)| < \delta_i \\ \frac{\delta_o - |T(t) - C(t)|}{\delta_o - \delta_i} \end{cases}^{k_Z} \qquad k_Z \in N_{>0}$$ $$0 & \text{if } |T(t) - C(t)| > \delta_o$$ $$(8)$$ The final corridor score, Z, is calculated by averaging all single time step score Z(t) as shown in Formula (9). The parameter, N, represents the total number of sample points (e.g. time steps) between starting and ending times of the interval of evaluation. $$Z = \frac{\sum_{t=t_{start}}^{t_{end}} Z(t)}{N}$$ (9) One of the advantages of the corridor metric is the simplicity and the clearness of the algorithm. It reflects criteria which are used intuitively in engineering judgment. Sometimes this simplicity may be the disadvantage of the method. For example, a small distortion of the phase can lead to a very undesirable rating.[10] Based on a sensitivity study of CORA^[14] and as described in Reference [10], fixed width corridors are employed and the most appropriate metric parameters are identified as shown in Table 2. Table 2 — Parameters of the corridor metric | Parameter | Value | Description | | |-----------|-------|---|--| | a_0 | 0,05 | Relative half width of the inner corridor | | | b_0 | 0,50 | Relative half width of the outer corridor | | | k_Z | 2 | Transition between ratings of "1" and "0" (progression) | | #### 6.2.2 Step by step procedure First of all, the signals shall be pre-processed as described in <u>Clause 8</u>. After preparing the signals for the analysis and defining the interval of evaluation, the maximum absolute amplitude, T_{norm} , of the reference signal, T, shall be determined within this interval. It is used to calculate the inner and outer corridors. The actual corridor assessment shall be executed within this
defined interval. The total score ranges between "0" and "1". A score of "1" does not mean that both signals are identical. Solely their correlation is mathematically perfect within the defined tolerances. To summarize, the following step-by-step procedures shall be followed to calculate corridor score. - a) Pre-process both signals according to <u>Clause 8</u>. - b) Calculate T_{norm} within the interval of evaluation by using the reference signal. - c) Calculate the inner and the outer corridors. - d) Calculate the corridor score, Z(t), at every specific time t within the interval of evaluation. - e) Calculate the total corridor score, Z, based on Z(t) and the number, N, of time samples. #### 6.3 Phase, magnitude, and slope scores Phase, magnitude, and slope (or so-called topology) error assessments between the time history curves, T and C, are used as objective rating metrics^[24] [28] in addition to the corridor metric described earlier. The enhanced error assessment of response time histories (EEARTH) metric combines these three assessments to the global response error.^[28] It is defined as the error associated with the complete time history with equal weight on each point. Quantifying the errors associated with these features of phase, magnitude, and slope (topology) separately is challenging because there are strong interactions among them. For example, to quantify the error associated with magnitude, the presence of a phase difference between the time histories may result in a misleading measurement. A unique feature dynamic time warping (DTW)^[22] is used to separate the interaction of phase, magnitude, and slope (topology) errors. It aligns peaks and valleys of the two signals as much as possible by expanding and compressing the time axis according to a given cost (distance) function.^[8] The ranges of the three errors are quite different and there is no single rating that can provide a quantitative assessment alone. Therefore, a numerical optimization method is employed to identify the appropriate parameters so that the resulted phase, magnitude, and slope sub-ratings can match with SME's ratings closely. [7] [21] Figure 3 shows the workflow of the procedures and the details of the algorithms are described in the following subsections. Figure 3 — Workflow of the calculation of phase, magnitude, and slope scores #### 6.3.1 Phase score The phase score, E_P , is used to measure the phase lag between the two time histories, T and C. The maximum allowable percentage of time shift is ε_P^* and it is pre-defined. In this step, the initial curve, C, is shifted left then right one step at a time to the original test data, curve (T), and the cross correlation between the truncated test curve (T), and shifted and truncated curve, C, are calculated until reaching the maximum allowable time shift limits $\varepsilon_P^* \cdot (t_{end} - t_{start})$. When the initial curve, C, is moved to the left by m time steps, the number of overlapping points of the two time histories after time shift, $m \cdot \Delta t$, is reduced to n (n = N - m) and the corresponding cross correlation value, $\rho_L(m)$, is calculated by Formula (10). $$\rho_{L}(m) = \frac{\sum_{i=0}^{n-1} \left[\left(C \left(t_{start} + (m+i) \cdot \Delta t \right) - \overline{C}(t) \right) \cdot \left(T \left(t_{start} + i \cdot \Delta t \right) - \overline{T}(t) \right) \right]}{\sqrt{\sum_{i=0}^{n-1} \left[C \left(t_{start} + (m+i) \cdot \Delta t \right) - \overline{C}(t) \right]^{2}} \cdot \sqrt{\sum_{i=0}^{n-1} \left[T \left(t_{start} + i \cdot \Delta t \right) - \overline{T}(t) \right]^{2}}}$$ (10) When the initial curve C is moved to the right by m time steps, the number of overlapping points after time shift, $m \cdot \Delta t$, is reduced to n (n = N - m) and the corresponding cross correlation value, $\rho_R(m)$, is calculated by Formula (11). $$\rho_{R}(m) = \frac{\sum_{i=0}^{n-1} \left[\left(C\left(t_{start} + i \cdot \Delta t\right) - \overline{C}\left(t\right) \right) \cdot \left(T\left(t_{start} + \left(m + i\right) \cdot \Delta t\right) - \overline{T}\left(t\right) \right) \right]}{\sqrt{\sum_{i=0}^{n-1} \left[C\left(t_{start} + i \cdot \Delta t\right) - \overline{C}\left(t\right) \right]^{2}} \cdot \sqrt{\sum_{i=0}^{n-1} \left[T\left(t_{start} + \left(m + i\right) \cdot \Delta t\right) - \overline{T}\left(t\right) \right]^{2}}}$$ (11) The maximum cross correlation, ρ_E , is the maximum of all $\rho_L(m)$ and $\rho_R(m)$. The number of the time shifting steps that yields the maximum cross correlation, ρ_E , is defined as the phase error, n_{ε} . The corresponding shifted and truncated CAE curve, C, is recorded as C^{ts} and the corresponding truncated test curve, T, is recorded as T^{ts} . The phase score, E_P , is calculated by Formula (12). The best phase score is "1", which means there is no need to shift the CAE curve to reach the maximum cross correlation between the initial test and CAE curves. If the time shift, $n_{\mathcal{E}}$, is equal to or greater than the maximum allowable time shift threshold $\varepsilon_P^* \cdot N$, then the phase score is "0". In between, the phase score is calculated by a regression method. It is either linear ($k_P = 1$), quadratic ($k_P = 2$), or cubical ($k_P = 3$). $$E_{P} = \begin{cases} 1 & \text{if} & n_{\varepsilon} = 0\\ \frac{\varepsilon_{P}^{*} \cdot N - n_{\varepsilon}}{\varepsilon_{P}^{*} \cdot N} \end{cases}^{k_{P}} \qquad k_{P} \in \{1, 2, 3\}$$ $$0 & \text{if} \quad n_{\varepsilon} \geq \varepsilon_{P}^{*} \cdot N$$ $$(12)$$ The pre-defined parameters shown in <u>Table 3</u> are identical to the definition in Reference [10]. Parameter Value Description k_P 1 Exponent factor for calculating the phase score ε_P 0,2 Maximum allowable percentage of time shift Table 3 — Fixed parameters of the phase score #### 6.3.2 Magnitude score The magnitude error is a measure of discrepancy in the amplitude of the two time histories. It is defined as the difference in amplitude of the two time histories when there is no time lag between them. Before calculating the magnitude error, the difference between the time histories caused by error in phase and slope (topology) are minimized by using dynamic time warping (DTW). The definition of DTW is based on the notion of warping path. Let d be the matrix $n \times n$ of pair-wise squared distances between samples of C^{ts} and T^{ts} . This matrix, d, is called the local cost matrix. The function used to calculate the value for each cell of the matrix is called local cost function, d(i, j). It is shown in Formula (13). $$d(i,j) = \left(C^{ts}(i) - T^{ts}(j)\right)^2 \tag{13}$$ Once the local cost matrix is built, the algorithm finds the alignment path which runs through the low-cost areas on the cumulated cost matrix. A warping path, w_k [see Formula (14)] is a sequence of k matrix cells, w_k , [see Formula (15)]. $$w = \langle w_1, w_2, \dots, w_k \rangle \qquad n \le k \le (2n-1)$$ $$(14)$$ $$w_k = [i_k, j_k] \qquad \qquad i_k \ge 1 \quad \text{and} \quad j_k \le n \tag{15}$$ The local cost matrix must meet the following three conditions: - boundary conditions - $w_1 = \begin{bmatrix} 1,1 \end{bmatrix}$ and $w_k = \begin{bmatrix} n,n \end{bmatrix}$, i.e. w starts in the lower left cell and ends in the upper right cell. - continuity - Given $w_{k-1} = [i_{k-1}, j_{k-1}]$ and $w_k = [i_k, j_k]$, then $i_k i_{k-1} \le 1$ and $j_k j_{k-1} \le 1$. This ensures that the cells of the warping path are adjacent. - monotonicity Given $w_{k-1} = [i_{k-1}, j_{k-1}]$ and $w_k = [i_k, j_k]$, then $i_k - i_{k-1} \ge 0$ and $j_k - j_{k-1} \ge 0$, with at least one strict inequality. This enforces w to progress over time. The DTW distance is recursively computed using a dynamic programming approach that fills the cells of a cumulative cost matrix, dtw[i, j], and recurrence relation [see Formula (16)]. Then the DTW distance is evaluated as shown in Formula (17). $$dtw[i,j] = \begin{cases} d(i,j) & i = 1, j = 1 \\ d(i,j) + dtw[i,j-1] & i = 1 \\ d(i,j) + dtw[i-1,j] & j = 1 \\ d(i,j) + \min(dtw[i-1,j-1], dtw[i-1,j], dtw[i,j-1]) & \text{otherwise} \end{cases}$$ (16) $$DTW = dtw[n,n] \tag{17}$$ The warping path which has a minimal cost associated with alignment is called the optimal warping path. It is found by following the definition that every possible warping path between C^{ts} and T^{ts} should be tested which could be computationally challenging due to the exponential growth of the number of optimal paths as the lengths of C^{ts} and T^{ts} grow linearly. Any warping path w defines an alignment between C^{ts} and T^{ts} and, consequently, a cost to align the two histories. $DTW_{opt}\left(C^{ts},T^{ts}\right)^2$ is the minimum of such costs, i.e. the cost of the optimal warping path [see Formula (18)]. $$DTW_{opt}\left(C^{ts}, T^{ts}\right)^{2} = \min_{w} \left(\sum_{\left[i_{k}, j_{k}\right] \in w} d\left(i_{k}, j_{k}\right)\right)$$ $$(18)$$ Let i^w and j^w represent the index of warping path of CAE and test data. A warping path index w is formed as shown in Formula (19). It starts with $i^w = n$ and $j^w = n$, then it records the optimal warping path of test and CAE by recording each time step from [n,n] to [1,1]. The algorithms can be expressed as shown in Formula (20). $$w = \begin{vmatrix} j^{w} & j^{w} - 1 & \dots & 1 \\ i^{w} & i^{w} - 1 & \dots & 1 \end{vmatrix}^{T}$$ (19) $$\begin{bmatrix} i^{W} - 1, j^{W} - 1 \end{bmatrix} = \begin{cases} [i - 1, 1] & j = 1 \\ [1, j - 1] & i = 1 \end{cases}$$ $$\begin{bmatrix} i - 1, j \end{bmatrix} & dtw[i - 1, j] = \min(dtw[i - 1, j - 1], dtw[i - 1, j], dtw[i, j - 1]) \\ [i, j - 1] & dtw[i, j - 1] = \min(dtw[i - 1, j - 1], dtw[i - 1, j], dtw[i, j - 1]) \end{cases}$$ $$\begin{bmatrix} i - 1, j \end{bmatrix} & dtw[i - 1, j \end{bmatrix} = \min(dtw[i - 1, j - 1], dtw[i - 1, j], dtw[i, j - 1])$$ Hence, the index
matrix of warping path, w, can be expressed by the index of CAE (C^{ts}) and test (T^{ts}) curves as shown in Formula (21). $$w = \begin{vmatrix} j^{w} & j^{w} - 1 & \dots & 1 \\ i^{w} & i^{w} - 1 & \dots & 1 \end{vmatrix}^{T} = \begin{vmatrix} n & n - 1 & \dots & 1 \\ n & n - 1 & \dots & 1 \end{vmatrix}^{T} \qquad w \in \Re^{n_{w} \times 2} \quad \text{and} \quad n_{w} > n$$ (21) Then the truncated and warped test curve T^{ts+w} and the shifted, truncated, and warped CAE curve, C^{ts+w} , are formed as shown in Formulae (22) and (23). $$\left[T^{ts+w}\left(i^{w}\right), T^{ts+w}\left(i^{w}-1\right), \dots, T^{ts+w}\left(1\right)\right] = \left[T^{ts}\left(n\right), T^{ts}\left(n-1\right), \dots, T^{ts}\left(1\right)\right] \qquad T^{ts+w} \in \Re^{n_{w}}$$ $$(22)$$ $$\left[C^{ts+w}\left(i^{w}\right),C^{ts+w}\left(i^{w}-1\right),\ldots,C^{ts+w}\left(1\right)\right]=\left[C^{ts}\left(n\right),C^{ts}\left(n-1\right),\ldots,C^{ts}\left(1\right)\right]\qquad C^{ts+w}\in\Re^{n_{w}}$$ (23) The magnitude error, ε_{mag} , is calculated by Formula (24). $$\varepsilon_{mag} = \frac{\left\| C^{ts+w} - T^{ts+w} \right\|_{1}}{\left\| T^{ts+w} \right\|_{1}} \tag{24}$$ Formula (25) is used to calculate the magnitude score (E_M) , where ε_M^* is the maximum allowable magnitude error and k_M defines the order of the regression. The best magnitude score is "1", which means there is no difference in the amplitudes after phase shift and dynamic time warping. If the magnitude error, ε_{mag} , is equal to or greater than the maximum allowable magnitude error threshold (ε_M^*), then the magnitude score is "0". In between, the magnitude score is calculated by regression method. $$E_{M} = \begin{cases} 1 & \text{if } \varepsilon_{mag} = 0 \\ \left(\frac{\varepsilon_{M}^{*} - \varepsilon_{mag}}{\varepsilon_{M}^{*}}\right)^{k_{M}} & k_{M} \in \{1, 2, 3\} \\ 0 & \text{if } \varepsilon_{mag} \geq \varepsilon_{M}^{*} \end{cases}$$ (25) The pre-defined parameters shown in Table 4 are identical to the definition in Reference [10]. Table 4 — Fixed parameters of the magnitude score | Parameter | Value | Description | | |---|-------|---|--| | k_M Exponent factor for calculating the magnitude score | | Exponent factor for calculating the magnitude score | | | ε_M^* | 0,5 | Maximum allowable magnitude error | | #### 6.3.3 Slope score The slope error is a measure of discrepancy in slope (topology) of the two time histories. The slope of a time history is defined by the slope at each point. In order to ensure that the effect of global time shift is minimized, the slope is calculated from the time shifted histories, T^{ts} and C^{ts} . The time shifted histories, T^{ts} and C^{ts} , are first divided into multiple intervals with a fixed length of 10 data points (1 ms sampling rate of 10 kHz). If the total number of data points of the whole signal is not a multiple of 10, then the last interval shall be calculated with the remaining data points. Next, the average slope is calculated in each interval to generate the slope curves (C^{ts+d} and T^{ts+d}). Therefore, the slope curves are used to calculate the slope error directly without performing dynamic time warping. Both curves are then used to calculate the slope error, ε_{slope} , by Formula (26). $$\varepsilon_{slope} = \frac{\left\| C^{ts+d} - T^{ts+d} \right\|_{1}}{\left\| T^{ts+d} \right\|_{1}} \tag{26}$$ Formula (27) is used to calculate the slope score (E_S), where ε_S^* is the maximum allowable slope error and k_S defines the order of the regression. The best slope score is "1", which means there is no difference between the two slope curves. If the slope error, ε_{slope} , is equal to or greater than the maximum allowable slope error (ε_S^*), then the slope score is "0". In between, the slope score is calculated by regression method. $$E_{S} = \begin{cases} 1 & \text{if } \varepsilon_{slope} = 0\\ \left(\frac{\varepsilon_{S}^{*} - \varepsilon_{slope}}{\varepsilon_{S}^{*}}\right)^{k_{S}} & k_{S} \in \{1, 2, 3\}\\ 0 & \text{if } \varepsilon_{slope} \ge \varepsilon_{S}^{*} \end{cases}$$ (27) The pre-defined parameters shown in <u>Table 5</u> are identical to the definition in Reference [10]. Table 5 — Fixed parameters of the slope score | Parameter | Value | Description | | |-------------------|-------|---|--| | k_S | 1 | Exponent factor for calculating the slope score | | | ε_S^* | 2,0 | Maximum allowable slope error | | #### 6.3.4 Step by step procedure The following step by step process shall be followed to calculate the phase, magnitude, and slope scores. - a) Pre-process both signals according to <u>Clause 8</u> (*T* and *C*). - b) Calculate the phase error in terms of time steps, n_{ε} , by maximizing cross correlation. - c) Calculate the phase score, E_P . - d) Calculate the shifted and truncated time history curves, *Tts* and *Cts*. - e) Perform dynamic time warping on the shifted and truncated time history curves to generate the shifted, truncated, and warped time history curves, T^{ts+w} and C^{ts+w} . - f) Calculate the magnitude error, ε_{mag} , between T^{ts+w} and C^{ts+w} . - g) Calculate the magnitude score, E_M . - h) Generate the shifted and truncated derivative time history curves, T^{ts+d} and C^{ts+d} . - i) Calculate the slope error, ε_{slope} , between T^{ts+d} and C^{ts+d} . - j) Calculate the slope score, E_S . #### 7 Meaning of the overall ISO rating The objective rating score, *R*, ranges from "0" to "1". The higher the score the better the correlation between the two signals. This single-rating number can be transferred to a grade that represents the goodness of the correlation by using a sliding scale (see <u>Table 6</u>). | Rank, r | Grade | Rating, R | Description | |---------|-----------|---------------------|--| | 1 | Excellent | R > 0,94 | Almost perfect characteristics of the reference signal is captured | | 2 | Good | 0,80 < R ≤ 0,94 | Reasonably good characteristics of the reference signal is captured, but there are noticeable differences between both signals | | 3 | Fair | $0.58 < R \le 0.80$ | Basic characteristics of the reference signal is captured but there are significant differences between the two signals | | 4 | Poor | <i>R</i> ≤ 0,58 | Almost no correlation between the two signals | Table 6 — Sliding scale of the overall ISO rating The lower and upper bounds of the different scales are calculated by using Formulae (28) and (29). Every grade is bounded by $[SC_{lower}(r), SC_{upper}(r)]$ except the fourth grade "poor" because there is no lower threshold $SC_{lower}(r=4)$ defined. $$SC_{lower}(r) = 1 - \frac{1}{25}r^2 - \frac{1}{50}r$$ $r \in \{1, 2, 3\}$ (28) $$SC_{upper}(r) = 1 - \frac{1}{25}(r-1)^2 - \frac{1}{50}(r-1)$$ $r \in \{1, 2, 3, 4\}$ (29) However, the thresholds of R in each grade are only valid if all the parameters (e.g. weighting factors, regression schemes, sampling rates, etc.) described in the previous sections are not altered. #### 8 Pre-processing of the data During the evaluation and validation of the ISO metric, it was concluded that basic conditions for the compared signals such as, starting and ending times of the signals, sampling rate, and filtering class must be kept the same in order to obtain correct results. This must be done by the user. #### 8.1 Synchronization of the signals Initially, the signals must be synchronized by physical meanings (t_0) and by its timing. At each time step of the test signal, a value of the CAE signal is required. #### 8.2 Sampling rate The ISO metric was validated with signals of 10 kHz sampling rate. The magnitude and slope scores are sensitive to the signal's sampling rate. #### 8.3 Filtering The algorithms do not modify the original signals. It should be noted that the calculation of the correlation could be difficult when using noisy signals. Figure 4 shows an example of the filtering effect. Signals A and B are derived from the same unfiltered signal and differ only by the applied filter class. The overall rating of the signal B is 6 % higher than that of signal A due to the application of a higher filter class. High-frequency oscillations could lead to misleading results. Figure 4 — Signals with different filter classes[9] #### 8.4 Interval of evaluation The assessment of the correlation should be focused on the relevant parts of the given signals. Typically, crash signals include pre- and post-crash phases that are not of interest and should be excluded from the rating calculation. Therefore, an interval of evaluation shall be defined where the part of the signals are to be assessed. The interval starts at t_{start} and ends at t_{end} . An assessment of using ratings of different sub-intervals of the same pair of signals is not allowed. Figure 5 — Different intervals of evaluation[9] Figure 5 depicts an example of this problem. The rating increases by 35 % when extending the interval of evaluation from the relevant part to the whole time domain. The ISO metric requires a minimum length of the interval of evaluation of 10 ms. #### 9 Limitations This Technical Specification describes a method to apply an objective metric to calculate the goodness of the correlation between two signals. As described previously, the application of such a metric requires some basic conditions. Below is a list of a few known limitations that must be considered when applying this metric. #### 9.1 Type of signals The application of this metric is limited to non-ambiguous signals obtained in all kinds of tests
of the passive safety of vehicles and the corresponding numerical simulations (CAE). The most commonly used signals in this field are time-history curves. #### 9.2 Metric validation The metric is validated with time-history signals obtained from different data channel types such as, forces, moments, accelerations, velocities and displacements. It is also validated with time-history signals of various correlation qualities. #### 9.3 Meaning of the results As described in this Technical Specification, the presented sliding scale (see <u>Clause 7</u>) is only valid for the comparison of two signals. Any modification to the parameters such as weighting factors, sampling rates, etc. requires a revision of the grade's thresholds. Furthermore, the defined scale shall only be applied to the overall objective rating, *R*, and not to its metrics. #### 9.4 Multiple responses This ISO metric is defined to calculate the level of the goodness of correlation between two signals only. If more than one pair of signals (e.g. whole set of signals from various channels of a test) are considered, the defined thresholds of the sliding scale are no longer valid. # **Annex A** (informative) #### Case studies This Annex provides some examples of the application of this Technical Specification. It is identical to ISO/TR 16250:2013, Annex C^[10] but shows intermediate result curves too. All responses are obtained from various tests related to passive safety of vehicles. The focus is on filtered and anonymized dummy responses. In each case three CAE signals are compared with a test signal. As the quality of the CAE signals differs, different levels of correlation are covered by these case studies. #### A.1 Accelerations #### A.1.1 Acceleration 1 | | CAE1 (<i>C</i> ₁) | CAE2 (C ₂) | CAE3 (C ₃) | |------------------------|---------------------------------------|-------------------------------|-------------------------------| | Grade | Good | Good | Good | | Overall rating, R | 0,910 | 0,877 | 0,906 | | Corridor score, Z | 0,956 | 0,898 | 0,922 | | Phase score, E_P | 0,936 | 0,904 | 0,968 | | Magnitude score, E_M | 0,952 | 0,964 | 0,972 | | Slope score, E_S | 0,751 | 0,721 | 0,745 | #### A.1.2 Acceleration 2 | | CAE1 (C ₁) | CAE2 (C ₂) | CAE3 (<i>C</i> ₃) | |------------------------|-------------------------------|-------------------------------|---------------------------------------| | Grade | Poor | Fair | Good | | Overall rating, R | 0,439 | 0,683 | 0,841 | | Corridor score, Z | 0,406 | 0,642 | 0,845 | | Phase score, E_P | 0,000 | 0,577 | 0,739 | | Magnitude score, E_M | 0,679 | 0,825 | 0,965 | | Slope score, E_S | 0,704 | 0,729 | 0,811 | #### A.1.3 Acceleration 3 | | CAE1 (<i>C</i> ₁) | CAE2 (C ₂) | CAE3 (<i>C</i> ₃) | |------------------------|---------------------------------------|-------------------------------|---------------------------------------| | Grade | Fair | Good | Good | | Overall rating, R | 0,788 | 0,850 | 0,813 | | Corridor score, Z | 0,725 | 0,816 | 0,749 | | Phase score, E_P | 0,910 | 0,910 | 0,910 | | Magnitude score, E_M | 0,898 | 0,931 | 0,909 | | Slope score, E_S | 0,682 | 0,780 | 0,747 | #### A.1.4 Acceleration 4 | | CAE1 (<i>C</i> ₁) | CAE2 (C ₂) | CAE3 (<i>C</i> ₃) | |------------------------|---------------------------------------|-------------------------------|---------------------------------------| | Grade | Fair | Fair | Fair | | Overall rating, R | 0,777 | 0,642 | 0,786 | | Corridor score, Z | 0,793 | 0,647 | 0,784 | | Phase score, E_P | 0,971 | 0,909 | 0,989 | | Magnitude score, E_M | 0,871 | 0,793 | 0,849 | | Slope score, E_S | 0,455 | 0,213 | 0,526 | #### A.2 Angles #### **A.2.1** Angle 1 | | CAE1 (C_1) | CAE2 (C ₂) | CAE3 (<i>C</i> ₃) | |------------------------|----------------|-------------------------------|---------------------------------------| | Grade | Fair | Fair | Fair | | Overall rating, R | 0,701 | 0,628 | 0,700 | | Corridor score, Z | 0,530 | 0,541 | 0,538 | | Phase score, E_P | 0.732 | 0.928 | 0.753 | | Magnitude score, E_M | 0,895 | 0,466 | 0,851 | | Slope score, E_S | 0,821 | 0,665 | 0,822 | # **A.2.2** Angle 2 | | CAE1 (<i>C</i> ₁) | CAE2 (<i>C</i> ₂) | CAE3 (<i>C</i> ₃) | |------------------------|---------------------------------------|---------------------------------------|---------------------------------------| | Grade | Fair | Poor | Fair | | Overall rating, R | 0,592 | 0,363 | 0,580 | | Corridor score, Z | 0,403 | 0,287 | 0,374 | | Phase score, E_P | 0,734 | 0,916 | 0,748 | | Magnitude score, E_M | 0,763 | 0,105 | 0,648 | | Slope score, E_S | 0,658 | 0,219 | 0,759 | # A.3 Displacements # A.3.1 Displacement 1 | | CAE1 (C_1) | CAE2 (<i>C</i> ₂) | CAE3 (<i>C</i> ₃) | |------------------------|----------------|---------------------------------------|--| | Grade | Good | Excellent | Excellent | | Overall rating, R | 0,915 | 0,978 | 0,979 | | Corridor score, Z | 0,889 | 1,000 | 0,999 | | Phase score, E_P | 0,911 | 0,962 | 0,937 | | Magnitude score, E_M | 0,978 | 0,981 | 0,995 | | Slope score, E_S | 0,910 | 0,948 | 0,965 | # A.3.2 Displacement 2 | | CAE1 (<i>C</i> ₁) | CAE2 (<i>C</i> ₂) | CAE3 (<i>C</i> ₃) | |------------------------|--|---------------------------------------|---------------------------------------| | Grade | Fair | Good | Good | | Overall rating, R | 0,647 | 0,859 | 0,829 | | Corridor score, Z | 0,470 | 0,807 | 0,791 | | Phase score, E_P | 0,809 | 0,929 | 0,844 | | Magnitude score, E_M | 0,689 | 0,943 | 0,956 | | Slope score, E_S | 0,797 | 0,811 | 0,763 | # A.4 Forces # **A.4.1 Force 1** | | CAE1 (<i>C</i> ₁) | CAE2 (<i>C</i> ₂) | CAE3 (<i>C</i> ₃) | |------------------------|---------------------------------------|---------------------------------------|---------------------------------------| | Grade | Poor | Fair | Good | | Overall rating, R | 0,523 | 0,651 | 0,937 | | Corridor score, Z | 0,452 | 0,527 | 0,938 | | Phase score, E_P | 0,630 | 0,572 | 0,903 | | Magnitude score, E_M | 0,621 | 0,911 | 0,967 | | Slope score, E_S | 0,462 | 0,719 | 0,939 | # **A.4.2 Force 2** | | CAE1 (C_1) | CAE2 (<i>C</i> ₂) | CAE3 (<i>C</i> ₃) | |------------------------|----------------|---------------------------------------|---------------------------------------| | Grade | Poor | Poor | Fair | | Overall rating, R | 0,261 | 0,569 | 0,632 | | Corridor score, Z | 0,375 | 0,428 | 0,521 | | Phase score, E_P | 0,500 | 0,357 | 0,857 | | Magnitude score, E_M | 0,000 | 0,850 | 0,658 | | Slope score, E_S | 0,055 | 0,782 | 0,602 | # **A.4.3 Force 3** | | CAE1 (<i>C</i> ₁) | CAE2 (<i>C</i> ₂) | CAE3 (<i>C</i> ₃) | |------------------------|---------------------------------------|---------------------------------------|---------------------------------------| | Grade | Fair | Poor | Good | | Overall rating, R | 0,710 | 0,460 | 0,862 | | Corridor score, Z | 0,654 | 0,492 | 0,904 | | Phase score, E_P | 0,971 | 0,856 | 0,954 | | Magnitude score, E_M | 0,738 | 0,372 | 0,929 | | Slope score, E_S | 0,533 | 0,087 | 0,621 | # A.5 Moments # **A.5.1** Moment 1 | | CAE1 (C_1) | CAE2 (C ₂) | CAE3 (<i>C</i> ₃) | |------------------------|----------------|-------------------------------|---------------------------------------| | Grade | Good | Fair | Fair | | Overall rating, R | 0,815 | 0,747 | 0,794 | | Corridor score, Z | 0,740 | 0,723 | 0,790 | | Phase score, E_P | 0,957 | 0,547 | 0,763 | | Magnitude score, E_M | 0,909 | 0,967 | 0,960 | | Slope score, E_S | 0,730 | 0,772 | 0,664 | # **A.5.2** Moment 2 | | CAE1 (<i>C</i> ₁) | CAE2 (C ₂) | CAE3 (<i>C</i> ₃) | |------------------------|---------------------------------------|-------------------------------|---------------------------------------| | Grade | Poor | Poor | Poor | | Overall rating, R | 0,203 | 0,370 | 0,577 | | Corridor score, Z | 0,205 | 0,280 | 0,448 | | Phase score, E_P | 0,000 | 0,561 | 0,927 | | Magnitude score, E_M | 0,054 | 0,210 | 0,500 | | Slope score, E_S | 0,551 | 0,519 | 0,562 | # **A.5.3** Moment 3 | | CAE1 (<i>C</i> ₁) | CAE2 (C ₂) | CAE3 (C ₃) | |------------------------|---------------------------------------|-------------------------------|-------------------------------| | Grade | Fair | Fair | Fair | | Overall rating, R | 0,654 | 0,655 | 0,665 | | Corridor score, Z | 0,539 | 0,538 | 0,556 | | Phase score, E_P | 0,677 | 0,696 | 0,962 | | Magnitude score, E_M | 0.840 | 0.798 | 0,735 | | Slope score, E_S | 0,674 | 0,707 | 0,515 | ### A.6 ASCII data of the case studies The data shown in the previous sections of this Annex is also available in a digital format to verify the implementation of the algorithms. All test, CAE, and intermediate result curves are provided as comma-separated values (CSV) in plain-text form. Semicolons (";") are used to separate the columns. The numbers use a point (".") as decimal separator. The first and second row of each file describe the data of each column. The name of the row is specified in the first row and the corresponding physical unit in the second row. The third to the last row contain the data. An overview of all columns is given in the following table. | Column | Name | Description | |--------|----------------------|---| | 1 | Generic_Time | Generic time: enumerator (abscissa values) | | 2 | Time | Real time of the signals (abscissa values) | | 3 | Test | Test signal (ordinate values) | | 4 | CAEx | CAE signal x (ordinate values) | | 5 | Outer_Corridor_Upper | Outer corridor, upper curve (ordinate values) | | 6 |
Inner_Corridor_Upper | Inner corridor, upper curve (ordinate values) | | 7 | Inner_Corridor_Lower | Inner corridor, lower curve (ordinate values) | | 8 | Outer_Corridor_Lower | Outer corridor, lower curve (ordinate values) | | 9 | Test_Phase_Shifted | Phase shifted test curve (ordinate values) | | 10 | CAEx_Phase_Shifted | Phase shifted CAE curve x (ordinate values) | | 11 | Test_Slope | Slope test curve (ordinate values) | | 12 | CAEx_Slope | Slope CAE curve x (ordinate values) | | 13 | Test_Warped | Warped test curve (ordinate values) | | 14 | CAEx_Warped | Warped CAE curve x (ordinate values) | The following table shows the link between the sub-sections of this Annex and the names of the ASCII files. Every file contains the CAE signal, the corresponding test signal, and intermediate result curves. | Section of
Annex A | CAE signal | File name | |-----------------------|------------|------------------------| | A.1.1 | CAE1 | annex_a_1_1ac1cae1.csv | | | CAE2 | annex_a_1_1ac1cae2.csv | | | CAE3 | annex_a_1_1ac1cae3.csv | | | CAE1 | annex_a_1_2ac2cae1.csv | | <u>A.1.2</u> | CAE2 | annex_a_1_2ac2cae2.csv | | | CAE3 | annex_a_1_2ac2cae3.csv | | | CAE1 | annex_a_1_3ac3cae1.csv | | <u>A.1.3</u> | CAE2 | annex_a_1_3ac3cae2.csv | | | CAE3 | annex_a_1_3ac3cae3.csv | | | CAE1 | annex_a_1_4ac4cae1.csv | | <u>A.1.4</u> | CAE2 | annex_a_1_4ac4cae2.csv | | | CAE3 | annex_a_1_4ac4cae3.csv | | | CAE1 | annex_a_2_1an1cae1.csv | | <u>A.2.1</u> | CAE2 | annex_a_2_1an1cae2.csv | | | CAE3 | annex_a_2_1an1cae3.csv | | | CAE1 | annex_a_2_2an2cae1.csv | | <u>A.2.2</u> | CAE2 | annex_a_2_2an2cae2.csv | | | CAE3 | annex_a_2_2an2cae3.csv | | | CAE1 | annex_a_3_1ds1cae1.csv | | <u>A.3.1</u> | CAE2 | annex_a_3_1ds1cae2.csv | | | CAE3 | annex_a_3_1ds1cae3.csv | | | CAE1 | annex_a_3_2ds2cae1.csv | | <u>A.3.2</u> | CAE2 | annex_a_3_2ds2cae2.csv | | | CAE3 | annex_a_3_2ds2cae3.csv | | | CAE1 | annex_a_4_1fo1cae1.csv | | A.4.1 | CAE2 | annex_a_4_1fo1cae2.csv | | | CAE3 | annex_a_4_1fo1cae3.csv | | | CAE1 | annex_a_4_2fo2cae1.csv | | <u>A.4.2</u> | CAE2 | annex_a_4_2fo2cae2.csv | | | CAE3 | annex_a_4_2fo2cae3.csv | | | CAE1 | annex_a_4_3fo3cae1.csv | | <u>A.4.3</u> | CAE2 | annex_a_4_3fo3cae2.csv | | | CAE3 | annex_a_4_3fo3cae3.csv | | | CAE1 | annex_a_5_1mo1cae1.csv | | <u>A.5.1</u> | CAE2 | annex_a_5_1mo1cae2.csv | | | CAE3 | annex_a_5_1mo1cae3.csv | # PD ISO/TS 18571:2014 **ISO/TS 18571:2014(E)** | Section of Annex A | CAE signal | File name | |--------------------|------------|------------------------| | | CAE1 | annex_a_5_2mo2cae1.csv | | <u>A.5.2</u> | CAE2 | annex_a_5_2mo2cae2.csv | | | CAE3 | annex_a_5_2mo2cae3.csv | | | CAE1 | annex_a_5_3mo3cae1.csv | | A.5.3 | CAE2 | annex_a_5_3mo3cae2.csv | | | CAE3 | annex_a_5_3mo3cae3.csv | # **Bibliography** - [1] AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS AIAA. Guide for the Verification and Validation of Computational Fluid Dynamics Simulations, American Institute of Aeronautics and Astronautics AIAA-G-077-1998, Reston, VA, USA, 1998 - [2] AMERICAN SOCIETY OF MECHANICAL ENGINEERS ASME. Guide for Verification and Validation in Computational Solid Mechanics, American Society of Mechanical Engineers, ASME V&V 10, USA, 2006 - [3] ANG J.A., TRUCANO T.G., LUGINBUHL D.R. Confidence in ASCI Scientific Simulations, Sandia National Laboratories, Report No. SAND98–1525C, 1998 - [4] DEPARTMENT OF DEFENSE DOD. Verification, Validation, and Accreditation (VV&A) Recommended Practices Guide. Department of Defense, Alexandria: 1996 - [5] DEPARTMENT OF ENERGY DOE. Accelerated Strategic Computing Initiative (ASCI) Program Plan, Department of Energy, DOE/DP-99-000010592, Washington D.C., USA, 2000 - [6] FERSON S., OBERKAMPF W.L., GINZBURG L. Model validation and predictive capability for the thermal challenge problem. *Comput. Methods Appl. Mech. Eng.* 2008, **197** (29-32) pp. 2408–2430 - [7] Fu Y., Jiang X., Yang R.J. Auto-correlation of an occupant restraint system model using a Bayesian validation metric, SAE 2009-01-1402, Detroit, MI, USA, 2009 - [8] Fu Y., Zhan Z., Yang R.J. A study of model validation method for dynamic systems, SAE 2010-01-0419, Detroit, MI, USA, 2010 - [9] Gehre C., Gades H., Wernicke P. Objective Rating of Signals Using Test and Simulation Responses, Paper Number 09-0407, 21st ESV Conference, Stuttgart, Germany, 2009 - [10] ISO/TR 16250:2013, Road vehicles Objective rating metrics for dynamic systems - [11] JIANG X., & MAHADEVAN S. Bayesian risk-based decision method for model validation under uncertainty. *Reliab. Eng. Syst. Saf.* 2007, **92** (6) pp. 707–718 - [12] JIANG X., & MAHADEVAN S. Bayesian wavelet method for multivariate model assessment of dynamical systems. *J. Sound Vibrat.* 2008, **312** (4-5) pp. 694–712 - [13] JIANG X., YANG R.J., BARBAT S., WEERAPPULI P. Bayesian probabilistic PCA approach for model validation of dynamic systems, SAE International Journal of Materials & Manufacturing, 2 (1), pp. 555-563, USA, 2009 - [14] KIM S.-A. Bewertung der Korrelation von Meßsignalen Sensitivitätsanalyse der Steuerparameter der Bewertungssoftware CORA, Master's thesis, TU Berlin, Germany, 2011 - [15] MAHADEVAN S., & REBBA R. Validation of reliability computational models using Bayes networks. *Reliab. Eng. Syst. Saf.* 2005, **87** (2) pp. 223–232 - [16] OBERKAMPF W.L. Overview of verification, validation and predictive capability, Sandia National Laboratories, SAND2005-1824P, Albuquerque, NM, USA, 2005 - [17] OBERKAMPF W.L., & BARONE M.F. Measures of agreement between computation and experiment: Validation metrics. *J. Comput. Phys.* 2006, **217** (1) pp. 5–36 - [18] OBERKAMPF W.L., & TRUCANO T.G. Design of and Comparison with Verification and Validation Benchmarks, Sandia National Laboratories, Technical Report Sand. No 2006-5376C, Albuquerque, NM, USA, 2006 - [19] OBERKAMPF W.L., & ROY C.J. Verification and Validation in Scientific Computing. Cambridge University Press, Cambridge, UK, 2010 - [20] O'HAGAN A. Bayesian Analysis of Computer Code Outputs: A Tutorial. *Reliab. Eng. Syst. Saf.* 2006, **91** (10-11) pp. 1290–1300 - [21] PAI Y. Investigation of Bayesian model Validation Framework for Dynamic Systems, Master's thesis, University of Michigan, Ann Arbor, MI, USA, 2009 - [22] PAI Y., KOKKOLARAS M., HULBERT G., PAPALAMBROS P., POZOLO M., FU Y. et al. Assessment of a Bayesian Model and Test Validation Method, National Defense Industrial Association Ground Vehicle Systems Engineering and Technology Symposium, Troy, MI, USA, 2009 - [23] Personal (Fu, Y.) communication with Goswami, S., "Simulation Code Benchmarking Project" conducted by Automotive Safety Council Systems Engineering Committee, 2012 - [24] SARIN H., KOKKOLARAS M., HULBERT G., PAPALAMBROS P., BARBAT S., YANG R.J. "Comparing Time Histories for Validation of Simulation Models: Error Measures and Metrics", Transactions of the ASME –. *J. Dyn. Syst. Meas. Control.* 2010, **132** (6) p. 061401 - [25] Schwer L.E. Validation metrics for response histories: perspectives and case studies. *Eng. Comput.* 2007, **23** (4) pp. 295–309 - [26] THUNERT C. CORA Release 3.6 User's Manual, GNS mbH, Braunschweig, Germany, 2012 - [27] TIPPING M.E., & BISHOP C.M. Probabilistic principal component analysis. *J. R. Stat. Soc. Series B Stat. Methodol.* 1999, **61** (3) pp. 611–622 - [28] ZHAN Z., FU Y., YANG R.J. Enhanced Error Assessment of Response Time Histories (EEARTH) Metric and Calibration Process, SAE 2011 World Congress, SAE 2011-01-0245, Detroit, MI, USA, 2011 # British Standards Institution (BSI) BSI is the national body responsible for preparing British Standards and other standards-related publications, information and services. BSI is incorporated by Royal Charter. British Standards and other standardization products are published by BSI Standards Limited. ### About us We bring together business, industry, government, consumers, innovators and others to shape their combined experience and expertise into standards -based solutions. The knowledge embodied in our standards has been carefully assembled in a dependable format and refined through our open consultation process. Organizations of all sizes and across all sectors choose standards to help them achieve their goals. ### Information on standards We can provide you with the knowledge that your organization needs to succeed. Find out more about British Standards by visiting our website at bsigroup.com/standards or contacting our Customer Services team or Knowledge Centre. ### **Buying standards** You can buy and download PDF versions of BSI publications, including British and adopted European and international standards, through our website at bsigroup.com/shop, where hard copies can also be purchased. If you need international and foreign standards from other Standards Development Organizations, hard copies can be ordered from our Customer Services team. ### **Subscriptions** Our range of subscription services are designed to make using standards easier for you. For further information on our subscription products go to bsigroup.com/subscriptions. With **British Standards Online (BSOL)** you'll have instant access to over 55,000 British and adopted European and international standards from your desktop. It's available 24/7 and is refreshed daily so you'll always be up to date. You can keep in touch with standards developments and receive substantial discounts on the purchase price of standards, both in single copy and subscription format, by becoming a **BSI Subscribing Member**. **PLUS** is an updating service exclusive to BSI Subscribing Members. You will automatically receive the latest hard copy of your standards when they're revised or replaced. To find out more about becoming a BSI Subscribing Member and the benefits of membership, please visit bsigroup.com/shop. With a **Multi-User Network Licence (MUNL)** you are able to host standards publications on your intranet. Licences can cover as few or as many users as you wish. With updates supplied as soon
as they're available, you can be sure your documentation is current. For further information, email bsmusales@bsigroup.com. ### **BSI Group Headquarters** 389 Chiswick High Road London W4 4AL UK ### **Revisions** Our British Standards and other publications are updated by amendment or revision. We continually improve the quality of our products and services to benefit your business. If you find an inaccuracy or ambiguity within a British Standard or other BSI publication please inform the Knowledge Centre. ### Copyright All the data, software and documentation set out in all British Standards and other BSI publications are the property of and copyrighted by BSI, or some person or entity that owns copyright in the information used (such as the international standardization bodies) and has formally licensed such information to BSI for commercial publication and use. Except as permitted under the Copyright, Designs and Patents Act 1988 no extract may be reproduced, stored in a retrieval system or transmitted in any form or by any means – electronic, photocopying, recording or otherwise – without prior written permission from BSI. Details and advice can be obtained from the Copyright & Licensing Department. #### **Useful Contacts:** ### **Customer Services** Tel: +44 845 086 9001 Email (orders): orders@bsigroup.com Email (enquiries): cservices@bsigroup.com ### Subscriptions Tel: +44 845 086 9001 Email: subscriptions@bsigroup.com ### **Knowledge Centre** Tel: +44 20 8996 7004 Email: knowledgecentre@bsigroup.com ### **Copyright & Licensing** Tel: +44 20 8996 7070 Email: copyright@bsigroup.com