PD ISO/TS 11937:2012 # **BSI Standards Publication** Nanotechnologies — Nanoscale titanium dioxide in powder form — Characteristics and measurement #### National foreword This Published Document is the UK implementation of ISO/TS 11937:2012. The UK participation in its preparation was entrusted to Technical Committee NTI/1, Nanotechnologies. A list of organizations represented on this committee can be obtained on request to its secretary. This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application. © The British Standards Institution 2013. Published by BSI Standards Limited 2013 ISBN 978 0 580 66601 8 ICS 07.030 Compliance with a British Standard cannot confer immunity from legal obligations. This Published Document was published under the authority of the Standards Policy and Strategy Committee on 31 January 2013. Amendments issued since publication Date Text affected # TECHNICAL SPECIFICATION ISO/TS 11937:2012 ISO/TS 11937 First edition 2012-12-15 # Nanotechnologies — Nanoscale titanium dioxide in powder form — Characteristics and measurement Nanotechnologies — Dioxyde de titane à la nano-échelle sous forme de poudre — Caractéristiques et mesurage PD ISO/TS 11937:2012 **ISO/TS 11937:2012(E)** # **COPYRIGHT PROTECTED DOCUMENT** © ISO 2012 All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester. ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org Published in Switzerland ## Foreword ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2. The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote. In other circumstances, particularly when there is an urgent market requirement for such documents, a technical committee may decide to publish other types of document: an ISO Publicly Available Specification (ISO/PAS) represents an agreement between technical experts in an ISO working group and is accepted for publication if it is approved by more than $50\,\%$ of the members of the parent committee casting a vote; an ISO Technical Specification (ISO/TS) represents an agreement between the members of a technical committee and is accepted for publication if it is approved by 2/3 of the members of the committee casting a vote. An ISO/PAS or ISO/TS is reviewed after three years in order to decide whether it will be confirmed for a further three years, revised to become an International Standard, or withdrawn. If the ISO/PAS or ISO/TS is confirmed, it is reviewed again after a further three years, at which time it must either be transformed into an International Standard or be withdrawn. Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. ISO/TS 11937 was prepared by Technical Committee ISO/TC 229, Nanotechnologies. # Introduction Titanium dioxide, TiO₂, has been used extensively for circa 90 years as the main white pigment in paints, plastics, printing inks and many other products due to its ability to scatter visible light and provide white opacity to the products in which it is used. More recently, nanoscale titanium dioxide has been developed, here the smaller particle size does not provide pigmentary properties but gives a transparent product which can be used in different applications such as sunscreens or catalysis where the small particle size can enhance the activity. Accordingly, there is a need to better define the characteristics of the nanoscale material providing these alternative properties. This technical specification provides the methods to evaluate mass fraction of the rutile and anatase titanium dioxide as well as to measure four key parameters: crystal structure, average crystallite size, average primary particle size and specific surface area, which are commonly used to indicate characteristics of nanoscale materials. Most of the manufactured nanoscale titanium dioxides are synthesized by the sulfate process, the chloride process or the sol-gel process, and the crystal structures of the products are almost entirely rutile and anatase. Therefore, brookite and amorphous forms are not specified in this Technical Specification. The X-ray diffraction (XRD) method is used to measure the crystal structure and the ratio of anatase to rutile. Commonly, some of the nanoscale titanium dioxide products are coated with silica or alumina for specific applications. Alternatively, some of the nanoscale titanium dioxide products may include a dopant of another metal within their crystal lattice for other specific applications. These coatings and dopants are permanent. Buyer, seller and regulator should be aware the presence of any coatings. The XRD method and transmission electron microscopy (TEM) are used to measure crystal size and primary particle size/shape, respectively. The Brunauer, Emmet and Teller (BET) method is widely used for the evaluation of specific surface area. Theoretically, XRD just measures the core size of the coated nanoscale titanium dioxide but not the surface coating. TEM is used to measure the physical primary particle size including surface coatings. Nanotechnology is a rapidly growing and evolving field. Users of this document should maintain an awareness of the legislative environment and latest developments in Environmental Health and Safety regarding nanotechnology. These references may be of interest^[1-12]. Responsibilities of users of this document include the following: the seller is obliged to provide the buyer with such environmental health and safety information as required by law. If the seller or buyer wishes to assess the environmental, safety or health risks of the material, they may refer to ISO/TR 12885:2008^[8] for further guidance. This document may be used in conjunction with other application specific standards developed either by ISO or other standards development bodies. # Nanotechnologies — Nanoscale titanium dioxide in powder form — Characteristics and measurement WARNING — Persons using this document should be familiar with normal laboratory practice, if applicable. This document does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user to establish appropriate safety and health practices and to ensure compliance with any regulatory requirements. ## 1 Scope This Technical Specification provides requirements to describe the basic characteristics of titanium dioxide in powder form relevant for applications in nanotechnology. It is intended to detail the materials specification necessary to use titanium dioxide in the applications related to nanotechnology. It is limited to dry powders and does not include materials dispersed or suspended in water or solvents. It does not cover characteristics for health and safety issue, and for specific application of titanium dioxide or for surface modification, if coated. #### 2 Normative references The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. ISO 591-1, Titanium dioxide pigments for paints — Part 1: Specifications and methods of test ISO 9277:2010, Determination of the specific surface area of solids by gas adsorption using the BET method ISO 13322-1, Particle size analysis — Image analysis methods — Part 1: Static image analysis methods ISO 14887, Sample preparation — Dispersing procedures for powders in liquids ISO 14488, Particulate materials — Sampling and sample splitting for the determination of particulate properties $ISO/TS\,27687, Nanote chnologies -- Terminology\ and\ definitions\ for\ nano-objects -- Nanoparticle, nanofibre\ and\ nanoplate$ ISO 80004-1, Nanotechnologies — Vocabulary — Part 1: Core terms #### 3 Terms and definitions For the purposes of this document, the terms, definitions and abbreviated terms given in ISO 14488, ISO/TS 27687 and ISO/TS 80004-1 and the following apply. #### 3.1 #### transmission electron microscope (TEM) instrument that produces magnified images or diffraction patterns of the sample by an electron beam which passes through the sample and interacts with it [ISO 29301:2010, definition 3.37] # PD ISO/TS 11937:2012 **ISO/TS 11937:2012(E)** #### 3.2 #### X-Ray diffraction (XRD) scattering in which the incident radiation is a beam of x-rays. The elastic scattering of the x-rays from the electron clouds of atoms in a system produces a diffraction pattern that gives information about the crystallographic structure #### 3.3 #### specific surface area absolute surface area of the sample divided by sample mass [ISO 9277:2010, definition 3.11] #### 3.4 ## crystal structure arrangement of a regular and repeating internal unit of atoms in three dimensions in which the atoms are set in space in a fixed relation to each other #### 3.5 # primary particle particle not formed from a collection of smaller particles Note 1 to entry: The term typically refers to particles formed through nucleation from the vapour phase before coagulation occurs. [ISO/TR 27628:2007, definition 2.16] ### 4 Basic characteristics and measurement methods For titanium dioxide in powder form conforming to this Technical Specification the following basic characteristics should be measured and reported. The necessary characteristics and corresponding measurement method are listed in Table 1. The requirements for magnitudes of measured characteristics shall be agreed upon between interested parties and test results should be reported complying with the requirement of Clause 6. | Table 1 — Basic characteristics with co | corresponding measurement methods | |---|-----------------------------------| |---|-----------------------------------| | Characteristics | Unit | measurement methods | |-----------------------------------|-------------------|---| | Mass fraction of titanium dioxide | % (kg/kg) | Aluminium reduction method/
Chromium(II) chloride reduction
method (ISO 591-1) or other chemical
analysis methods upon the agreement
between interested parties | | Ratio of crystalline phases | % | XRD | | Average crystallite size | nm | XRD (Scherrer formula) | | Average primary particle size | nm | TEM | | Specific surface area | m ² /g | BET method | NOTE 1 The set of basic characteristics is evaluated in order to represent the nanoscale titanium dioxide in powder form in terms of nano size-related features and its main ingredient. NOTE 2 Additional characteristics relevant to specific applications may be specified depend on the intended application and other related international standards. NOTE 3 The detailed procedures for these measurement methods are not provided in this Technical Specification. In order to obtain the measurement results required by the interested parties, the measurement methods should be applied and managed under a well recognized quality system. # 5 Sampling Take a representative sample of the product to be tested, as described in ISO 14488. # 6 Reporting The test report should contain at least the following information: - **6.1** A reference to this Technical Specification, i.e. ISO/TS 11937. - **6.2** Identification of material tested (product name, chemical name). - **6.3** Samples description (manufacturer of nanoscale titanium dioxide, batch number or lot number, country of origin). - **6.4** Laboratory (name of testing laboratory). - **6.5** Results. - **6.5.1** Measurement results of basic characteristics, and their measurement methods required in Table 1 (for TEM, also report the number of particles used in the determination of the average size, standard deviation of measurement results and details on measurement method for TEM method). - **6.5.2** Measurement uncertainty (subject to the agreement between users, suppliers and regulators). - **6.6** Additional information (if any). # **Bibliography** - [1] CAN/CSA-Q850-97 Risk Management: Guideline for Decision Makers - [2] Consumer Product Safety Commission, Handbook for Manufacturing Safer Consumer Products. July 2006, www.cpsc.gov/businfo/intl/handbookenglishaug05.pdf - [3] Consumer Product Safety Commission, Recall Handbook, May 1999, www.cpsc. gov/BUSINFO/8002.html - [4] EC Guidelines for the notification of Dangerous Consumer Products to the Competent Authorities of the Member States by Producers and Distributors in Accordance with Article 5(3) of Directive 2001/95/EC ec.europa.eu/consumers/cons_safe/prod_safe/guidelines_documents.pdf - [5] European Commission, *Risk Assessment Guidelines for Non-Food Consumer Products*, Draft for Consultation, August 2008 - [6] http://ec.europa.eu/consumers/ipm/risk_assesment_guidelines_non_food.pdf - [7] IEC's Advisory Committee on Safety Development of a standard for safety related risk assessment in the area of low voltage - [8] ISO/TR 12885:2008, Nanotechnologies Health and safety practices in occupational settings relevant to nanotechnologies - [9] ISO/IEC Guide 51 Safety aspects Guidelines for their inclusion in standards - [10] ISO/IEC Guide 50 Safety aspects Guidelines for child safety - [11] ISO/IEC Guide 71 Guidelines for standards developers to address the needs of older persons and persons with disabilities - [12] ISO Guide 73 Risk management Vocabulary - [13] EN 13925-1:2003, Non-destructive testing X-ray diffraction from polycrystalline and amorphous materials Part 1: General principles - [14] ISO/TS 11931, Nanotechnologies Nanoscale calcium carbonate in powder form Characteristics and measurement - [15] EN 13925-2:2003, Non-destructive testing X-ray diffraction from polycrystalline and amorphous materials Part 2: Procedures - [16] ISO 29301:2010, Microbeam analysis Analytical transmission electron microscopy Methods for calibrating image magnification by using reference materials having periodic structures - [17] ISO/TR 27628:2007, Workplace atmospheres Ultrafine, nanoparticle and nano-structured aerosols Inhalation exposure characterization and assessment - [18] EN 13925-3:2005, Non-destructive testing X-ray diffraction from polycrystalline and amorphous materials Part 3: Instruments # British Standards Institution (BSI) BSI is the national body responsible for preparing British Standards and other standards-related publications, information and services. BSI is incorporated by Royal Charter. British Standards and other standardization products are published by BSI Standards Limited. #### About us We bring together business, industry, government, consumers, innovators and others to shape their combined experience and expertise into standards -based solutions. The knowledge embodied in our standards has been carefully assembled in a dependable format and refined through our open consultation process. Organizations of all sizes and across all sectors choose standards to help them achieve their goals. #### Information on standards We can provide you with the knowledge that your organization needs to succeed. Find out more about British Standards by visiting our website at bsigroup.com/standards or contacting our Customer Services team or Knowledge Centre. #### **Buying standards** You can buy and download PDF versions of BSI publications, including British and adopted European and international standards, through our website at bsigroup.com/shop, where hard copies can also be purchased. If you need international and foreign standards from other Standards Development Organizations, hard copies can be ordered from our Customer Services team. #### **Subscriptions** Our range of subscription services are designed to make using standards easier for you. For further information on our subscription products go to bsigroup.com/subscriptions. With **British Standards Online (BSOL)** you'll have instant access to over 55,000 British and adopted European and international standards from your desktop. It's available 24/7 and is refreshed daily so you'll always be up to date. You can keep in touch with standards developments and receive substantial discounts on the purchase price of standards, both in single copy and subscription format, by becoming a **BSI Subscribing Member**. **PLUS** is an updating service exclusive to BSI Subscribing Members. You will automatically receive the latest hard copy of your standards when they're revised or replaced. To find out more about becoming a BSI Subscribing Member and the benefits of membership, please visit bsigroup.com/shop. With a **Multi-User Network Licence (MUNL)** you are able to host standards publications on your intranet. Licences can cover as few or as many users as you wish. With updates supplied as soon as they're available, you can be sure your documentation is current. For further information, email bsmusales@bsigroup.com. #### **BSI Group Headquarters** 389 Chiswick High Road London W4 4AL UK #### **Revisions** Our British Standards and other publications are updated by amendment or revision. We continually improve the quality of our products and services to benefit your business. If you find an inaccuracy or ambiguity within a British Standard or other BSI publication please inform the Knowledge Centre. ## Copyright All the data, software and documentation set out in all British Standards and other BSI publications are the property of and copyrighted by BSI, or some person or entity that owns copyright in the information used (such as the international standardization bodies) and has formally licensed such information to BSI for commercial publication and use. Except as permitted under the Copyright, Designs and Patents Act 1988 no extract may be reproduced, stored in a retrieval system or transmitted in any form or by any means – electronic, photocopying, recording or otherwise – without prior written permission from BSI. Details and advice can be obtained from the Copyright & Licensing Department. #### **Useful Contacts:** #### **Customer Services** Tel: +44 845 086 9001 Email (orders): orders@bsigroup.com Email (enquiries): cservices@bsigroup.com ## Subscriptions Tel: +44 845 086 9001 Email: subscriptions@bsigroup.com #### **Knowledge Centre** Tel: +44 20 8996 7004 Email: knowledgecentre@bsigroup.com #### **Copyright & Licensing** Tel: +44 20 8996 7070 Email: copyright@bsigroup.com