PD ISO/TR 17987-5:2016

il ——

BSI Standards Publication

Road vehicles — Local
Interconnect Network (LIN)

Part 5: Application programmers
interface (API)

bsi.

PD ISO/TR 17987-5:2016

PUBLISHED DOCUMENT

National foreword

This Published Document is the UK implementation of ISO/TR
17987-5:2016.

The UK participation in its preparation was entrusted to Technical
Committee AUE/16, Data Communication (Road Vehicles).

A list of organizations represented on this committee can be obtained on
request to its secretary.

This publication does not purport to include all the necessary provisions of
a contract. Users are responsible for its correct application.

© The British Standards Institution 2016.
Published by BSI Standards Limited 2016

ISBN 978 0 580 90705 0
ICS 43.040.15

Compliance with a British Standard cannot confer immunity from
legal obligations.

This Published Document was published under the authority of the
Standards Policy and Strategy Committee on 30 November 2016.

Amendments/corrigenda issued since publication

Date Text affected

TECHNICAL
REPORT

PD ISO/TR 17987-5:2016

ISO/TR
17987-5

First edition
2016-11-15

Road vehicles — Local Interconnect

Network (LIN) —
Part 5:

Application programmers interface

(API)

Véhicules routiers — Réseau Internet local (LIN) —

Partie 5: Interface du programmeur d’application (API)

— o=

ISO

S —

Reference number
ISO/TR 17987-5:2016(E)

© IS0 2016

PD ISO/TR 17987-5:2016
ISO/TR 17987-5:2016(E)

COPYRIGHT PROTECTED DOCUMENT

© IS0 2016, Published in Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form
or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior
written permission. Permission can be requested from either ISO at the address below or ISO’s member body in the country of
the requester.

ISO copyright office

Ch. de Blandonnet 8 « CP 401
CH-1214 Vernier, Geneva, Switzerland
Tel. +41 22 749 01 11

Fax +41 22 749 09 47
copyright@iso.org

www.iso.org

ii © ISO 2016 - All rights reserved

Contents

PD ISO/TR 17987-5:2016
ISO/TR 17987-5:2016(E)

Page

FFOTE@WOIMoooooooeoeee oo sk 8 iv

IIMEIOAUCTION.......ooooo e85 8858 v

1 S0P ... 1

2 NOTINATIVE FEEETEIICESooooiooeees e85 1

3 Terms, definitions and abbreviated terMIS ... 1
3.1 Terms and definitions

3.2 Symbols ...
3.3 Abbreviated terms...
4 APT A@FIMETIONS ...
4.1 LIN CIUSEET OINMOTATION ...t
4.2 Concept of operations
.21 GEIETAL e
4,22 LIN COT@ AP oo
4.2.3 LIN node configuration and identification API.
4.2.4 LIN transportlayer AP ...

4.3 API cONVENTIONS.....ooocciiiisisisees e
4.3.1 General....ns
4.3.2 Data types .
4.3.3 Driver and cluster Man@@emMIEIIE
4.3.4 SIGNAL INTEIACTION oo
4.3.5 Notification ...
4.3.6 Schedule management...........cccuce.
4.3.7 Interface management.................
4.3.8 User provided call outs........cccocccme.

4.4 Node configuration and identification
4T OVEIVIEW ..ottt
4.4.2 NOAE CONFIGUIATION ..ooccoi e
4.4.3 Identification

4.5 TLANSPOIT AT e
5.1 OVEIVIBW oot
4.5.2 Raw- and messaged-based API
4.5.3 Initialization.........e,
.54 RAW AP
5.5 OVEIVIBW oo
4.5.6 Messaged-based API..

4.6 EXAIMIPIES ...
0.1 OVETVIEW ..ot
4.6.2 Master node example
4.6.3 SIaVe NOAE EXAMPIE ...ooooeee e

BIDIIOGIAPIY ... 34

© 1S0 2016 - All rights reserved iii

PD ISO/TR 17987-5:2016
ISO/TR 17987-5:2016(E)

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out
through ISO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.
ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the
different types of ISO documents should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of
any patent rights identified during the development of the document will be in the Introduction and/or
on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment,
as well as information about ISO’s adherence to the World Trade Organization (WTO) principles in the
Technical Barriers to Trade (TBT) see the following URL: www.iso.org/iso/foreword.html.

The committee responsible for this document is ISO/TC 22, Road vehicles, Subcommittee SC 31, Data
communication.

Alist of all parts in the ISO 17987 series can be found on the ISO website.

iv © ISO 2016 - All rights reserved

http://www.iso.org/directives
http://www.iso.org/patents
http://www.iso.org/iso/foreword.html

PD ISO/TR 17987-5:2016
ISO/TR 17987-5:2016(E)

Introduction

ISO 17987 (all parts) specifies the use cases, the communication protocol and physical layer
requirements of an in-vehicle communication network called Local Interconnect Network (LIN).

The LIN protocol as proposed is an automotive focused low speed Universal Asynchronous Receiver
Transmitter (UART) based network. Some of the key characteristics of the LIN protocol are signal-
based communication, schedule table-based frame transfer, master/slave communication with error
detection, node configuration and diagnostic service communication.

The LIN protocol is for low cost automotive control applications, for example, door module and air
condition systems. It serves as a communication infrastructure for low-speed control applications in
vehicles by providing:

— signal-based communication to exchange information between applications in different nodes;
— Dbitrate support from 1 kbit/s to 20 kbit/s;

— deterministic schedule table-based frame communication;

— network management that wakes up and puts the LIN cluster into sleep mode in a controlled manner;
— status management that provides error handling and error signalling;

— transport layer that allows large amount of data to be transmitted (such as diagnostic services);
— specification of how to handle diagnostic services;

— electrical physical layer specifications;

— node description language describing properties of slave nodes;

— network description file describing behaviour of communication;

— application programmer’s interface;

ISO 17987 (all parts) is based on the open systems interconnection (OSI) Basic Reference Model as
specified in ISO/IEC 7498-1 which structures communication systems into seven layers.

The OSI model structures data communication into seven layers called (top down) application layer
(layer 7), presentation layer, session layer, transport layer, network layer, data link layer and physical layer
(layer 1). A subset of these layers is used in ISO 17987 (all parts).

ISO 17987 (all parts) distinguishes between the services provided by a layer to the layer above it and
the protocol used by the layer to send a message between the peer entities of that layer. The reason for
this distinction is to make the services, especially the application layer services and the transport layer
services, reusable also for other types of networks than LIN. In this way, the protocol is hidden from the
service user and it is possible to change the protocol if special system requirements demand it.

ISO 17987 (all parts) provides all documents and references required to support the implementation of
the requirements related to.

— IS0 17987-1: This part provides an overview of the ISO 17987 (all parts) and structure along with
the use case definitions and a common set of resources (definitions, references) for use by all
subsequent parts.

— IS0 17987-2: This part specifies the requirements related to the transport protocol and the network
layer requirements to transport the PDU of a message between LIN nodes.

— IS0 17987-3: This part specifies the requirements for implementations of the LIN protocol on the
logical level of abstraction. Hardware-related properties are hidden in the defined constraints.

© ISO 2016 - All rights reserved v

PD ISO/TR 17987-5:2016
ISO/TR 17987-5:2016(E)

ISO 17987-4: This part specifies the requirements for implementations of active hardware
components which are necessary to interconnect the protocol implementation.

ISO/TR 17987-5: This part specifies the LIN application programmers interface (API) and the
node configuration and identification services. The node configuration and identification services
are specified in the API and define how a slave node is configured and how a slave node uses the
identification service.

ISO 17987-6: This part specifies tests to check the conformance of the LIN protocol implementation
according to ISO 17987-2 and ISO 17987-3. This comprises tests for the data link layer, the network
layer and the transport layer.

[SO 17987-7: This part specifies tests to check the conformance of the LIN electrical physical layer
implementation (logical level of abstraction) according to ISO 17987-4.

The LIN API is a network software layer that hides the details of a LIN network configuration (e.g. how
signals are mapped into certain frames) for a user making an application program for an arbitrary
ECU. The user is provided an API, which is focused on the signals transported on the LIN network. A
tool takes care of the step from network configuration to program code. This provides the user with
configuration flexibility. The LIN API is only one possible API existing today beside others like defined
for LIN master nodes in the AUTOSAR standard. Therefore, the LIN API is published as a Technical
Report and all definitions given here are informative only.

Vi

© ISO 2016 - All rights reserved

PD ISO/TR 17987-5:2016

TECHNICAL REPORT ISO/TR 17987-5:2016(E)

Road vehicles — Local Interconnect Network (LIN) —

Part 5:
Application programmers interface (API)

1 Scope

This document has been established in order to define the LIN application programmers interface (API).

2 Normative references

There are no normative references in this document.

3 Terms, definitions and abbreviated terms

3.1 Terms and definitions
For the purposes of this document, the terms and definitions given in ISO 17987-2 and ISO 17987-3 apply.
ISO and IEC maintain terminological databases for use in standardization at the following addresses:

— IEC Electropedia: available at http://www.electropedia.org/

— ISO Online browsing platform: available at http://www.iso.or

3.2 Symbols

Il logical OR binary operation

3.3 Abbreviated terms

API application programmers interface
ms millisecond
0SI open systems interconnection

PDU protocol data unit
RX Rx pin of the transceiver

UART universal asynchronous receiver transmitter

4 API definitions

4.1 LIN cluster generation

The LIN Description file (LDF; see ISO 17987-2) is parsed by a tool and generates a configuration for
the LIN device driver. The node capability language specification (NCF) is normally not used in this

© ISO 2016 - All rights reserved 1

http://www.electropedia.org/
http://www.iso.org/obp

PD ISO/TR 17987-5:2016
ISO/TR 17987-5:2016(E)

process since its intention is to describe a hardware slave node, and therefore, does not need the API.
See ISO 17987-2 for a description of the workflow and the roles of the LDF and NCF.

4.2 Concept of operations

4.2.1 General

The APl is split in three areas

— LIN core API,

— LIN node configuration and identification AP, and

— LIN transport layer API (optional).

4.2.2 LIN core API

The LIN core API handles initialization, processing and a signal based interaction between the
application and the LIN core. This implies that the application does not have to bother with frames and
transmission of frames. Notification exists to detect transfer of a specific frame if this is necessary, see
4.3.5. API calls to control the LIN core also exist.

Two versions exist of most of the API calls
— static calls embed the name of the signal or interface in the name of the call, and
— dynamic calls provide the signal or interface as a parameter.

NOTE The named objects (signals, schedules) defined in the LDF extends their names with the channel
postfix name (see channel postfix name definition in ISO 17987-2).

4.2.3 LIN node configuration and identification API

The LIN node configuration and identification API is service-based (request/response), i.e. the
application in the master node calls an API routine that transmits a request to the specified slave node
and awaits a response. The slave node device driver automatically handles the service.

The behaviour of the LIN node configuration and identification APl is covered in the node configuration
and identification (see ISO 17987-3).

4.2.4 LIN transport layer API

The LIN transport layer is message based. Its intended use is to work as a transport layer for messages
to a diagnostic message parser outside of the LIN device driver. Two exclusively alternative APIs exist,
one raw that allows the application to control the contents of every frame sent and one messaged-based
that performs the full transport layer function.

The behaviour of the LIN transport layer API is defined in ISO 17987-2.

2 © ISO 2016 - All rights reserved

4.3 API conventions

4.3.1 General

PD ISO/TR 17987-5:2016
ISO/TR 17987-5:2016(E)

The LIN core API has a set of functions all based on the idea to give the API a separate name space, in
order to minimize the risk of conflicts with existing software. All functions and types have the prefix
“1_” (lowercase “L” followed by an “underscore”).

Table 1 — API functions overview

Function

| Description

DRIVER AND CLUSTER MANAGEMENT

1_sys_init

|Performs the initialization of the LIN core.

SIGNAL INTERACTION

scalar signal read

Reads and returns the current value of the signal.

scalar signal write

Reads and returns the current value of the signal.

byte array read

Reads and returns the current values of the selected bytes in the signal.

byte array write

Sets the current value of the selected bytes in the signal specified by the name sss
to the value specified.

NOTIFICATION

1_flg_tst Returns a Cboolean indicating the current state of the flag specified by the name of
the static API call, i.e. returns zero if the flag is cleared, non-zero otherwise.
1_flg_clr Sets the current value of the flag specified by the name of the static API call to zero.
SCHEDULE MANAGEMENT
1_sch_tick Function provides a time base for scheduling.
1_sch_set Sets up the next schedule.
INTERFACE MANAGEMENT
I_ifc_init Initializes the controller specified by the name, i.e. sets up internal functions such

as the baud rate.

1_ifc_goto_sleep

This call requests slave nodes on the cluster connected to the interface to enter bus
sleep mode by issuing one go to sleep command.

1_ifc_wake_up

The function transmits one wake up signal.

1_ifc_ioctl This function controls functionality that is not covered by the other API calls.

l_ifc_rx The application program is responsible for binding the interrupt and for setting the
correct interface handle (if interrupt is used).

1_ifc_tx The application program is responsible for binding the interrupt and for setting the
correct interface handle (if interrupt is used).

1_ifc_aux This function is used in a slave nodes to synchronize to the break field/sync byte

field sequence transmitted by the master node.

1_ifc_read_status

This function returns the status of the previous communication.

© ISO 2016 - All rights reserved

PD ISO/TR 17987-5:2016

ISO/TR 17987-5:2016(E)

Table 1 (continued)

Function

Description

USER PROVIDED CALL-OUTS

1_sys_irq_disable

The user implementation of this function achieves a state in which no interrupts
from the LIN communication occurs.

1_sys_irq_restore

The user implementation of this function recovers the previous configured inter-
rupt level.

NODE CONFIGURATION

1d_is_ready

This call returns the status of the last requested configuration service.

1d_check_response

This call returns the result of the last node configuration service.

ld_assign_frame_id_range

This call assigns the protected identifier of up to four frames in the slave node with
the configured NAD.

1d_assign_NAD

This call assigns the configured NAD (node diagnostic address) of all slave nodes
that matches the initial_NAD, the supplier ID and the function ID.

1d_save_configuration

This call makes a save configuration request to a specific slave node with the given
configured NAD or to all slave nodes if broadcast NAD is set.

ld_read_configuration

This call serializes the current configuration (configured NAD and PIDs) and copy
it to the area (data pointer) provided by the application.

1d_set_configuration

The function configures the configured NAD and the PIDs according to the config-
uration provided.

IDENTIFICATION

ld_read_by_id

The call requests the slave node selected with the configured NAD to return the
property associated with the id parameter.

ld_read_by_id_callout

This callout is used when the master node transmits a read by identifier request
with an identifier in the user defined area.

INITIALIZATION
1d_init This call reinitializes the raw or messaged-based layer on the interface.
RAW API
ld_put_raw The call queues the transmission of 8 bytes of data in one frame. The data is sent in
the next suitable MasterReq frame.
1d_get_raw The call copies the oldest received diagnostic frame data to the memory specified

by data.

Id_raw_tx_status

The call returns the status of the raw frame transmission function.

Id_raw_rx_status

The call returns the status of the raw frame receive function.

MESSAGE-BASED API

ld_send_message

The call packs the information specified by data and DataLength into one or multiple
diagnostic frames.

ld_receive_message

The call prepares the LIN diagnostic module to receive one message and store it in
the buffer pointed to by data.

Id_tx_status

The call returns the status of the last made call to 1d_send_message.

Id_rx_status

The call returns the status of the last made call to ld_receive_message.

© ISO 2016 - All rights reserved

PD ISO/TR 17987-5:2016
ISO/TR 17987-5:2016(E)

4.3.2 Data types

The LIN core defines the following types:

— 1_bool 0 is false, and non-zero (>0) is true;

— lioctl_op implementation dependent;

— l_irgmask implementation dependent;

— 1_u8 unsigned 8 bit integer;

— l_ulé6 unsigned 16 bit integer;

— l_signal_handle has character string type “signal name”.

In order to gain efficiency, the majority of the functions are static functions (no parameters are needed,
since one function exist per signal, per interface, etc.).

4.3.3 Driver and cluster management

4.3.3.1 l_sys_init

Table 2 defines the l_sys_init.

Table 2 — 1_sys_init

Prototype 1_bool 1_sys_init (void)
Applicability Master and slave nodes.
Description 1_sys_init performs the initialization of the LIN core. The scope of the initialization is the

physical node i.e. the complete node (see node composition definition in ISO 17987-2).

The call to the 1_sys_init is the first call a user uses in the LIN core before using any other
API functions.

Return value Zero if the initialization succeeded.

Non-zero if the initialization failed.

4.3.4 Signal interaction

4.3.4.1 General

In all signal API calls below the sss is the name of the signal, e.g.1_u8_rd_enginespeed ().

4.3.4.2 Signal types

The signals are of three different types:

— 1_bool for one bit signals; zero if false, non-zero otherwise;
— 1_u8 for signals of the size 2 bits to 8 bits;

— 1_u16 for signals of the size 9 bits to 16 bits.

© IS0 2016 - All rights reserved 5

PD ISO/TR 17987-5:2016
ISO/TR 17987-5:2016(E)

4.3.4.3 Scalar signal read

Table 3 defines the scalar signal read.

Table 3 — Scalar signal read

Dynamic prototype

1_bool 1_bool_rd (1_signal_handle sss);
1_u81_u8_rd (l_signal_handle sss);
1.u161_u16_rd (1_signal_handle sss);

Static prototype 1_bool 1_bool_rd_sss (void);
1_u81_u8_rd_sss (void);
1_ul61_ul6_rd_sss (void);
Applicability Master and slave nodes.
Description Reads and returns the current value of the signal.
Reference See ISO 17987-3:2016, 5.1.2.

4.3.4.4 Scalar signal write

Table 4 defines the scalar signal write.

Table 4 — Scalar signal write

Dynamic prototype

void I_bool_wr (l_signal_handle sss, 1_bool v);
void I_u8_wr (l_signal_handle sss, 1_u8 v);

void I_ul6_wr (l_signal_handle sss,1_ul6 v);

Static prototype void 1_bool_wr_sss (1_bool v);
void 1_u8_wr_sss (1_u8 v);
void I_ul6_wr_sss (1_ul6 v);
Applicability Master and slave nodes.
Description Sets the current value of the signal to v.
Reference See IS0 17987-3:2016, 5.1.2.
6 © ISO 2016 - All rights reserved

PD ISO/TR 17987-5:2016
ISO/TR 17987-5:2016(E)

4.3.4.5 Byte array read

Table 5 defines the byte array read.

Table 5 — Byte array read

Dynamic prototype

void |_bytes_rd (I_signal_handle sss,
1_u8 start, /* first byte to read from */
1_u8 count, /* number of bytes to read */

1_uB8* constdata); /* where data is written */

Static prototype

void I_bytes_rd_sss (1_u8 start,
1_u8 count,

1_u8* const data);

Applicability

Master and slave nodes.

Description

Reads and returns the current values of the selected bytes in the signal. The sum of start
and count are never greater than the length of the byte array.

Example

Assume thata byte array is 6 bytes long, numbered 0 to 5. Reading byte 2 and 3 from this
array indicates the parameter value start to be 2 (skipping byte 0 and 1) and count to be
2 (reading byte 2 and 3). In this case byte 2 is written to data [0] and byte 3 is written
to data [1].

Reference

See IS0 17987-3:2016, 5.1.2.

4.3.4.6 Byte array write

Table 6 defines the byte array write.

Table 6 — Byte array write

Dynamic prototype

void |_bytes_wr (I_signal_handle sss,
1_u8 start, /* first byte to write to */
1_u8 count, /* number of bytes to write */

const1_u8* const data); /* where data is read from */

Static prototype

void I_bytes_wr_sss (1_u8 start,
]_u8 count,

const1_u8* const data);

Applicability

Master and slave nodes.

Description

Sets the current value of the selected bytes in the signal specified by the name sss to the
value specified.

The sum of start and count are never greater than the length of the byte array, although
the device driver does not choose to enforce this in runtime.

Example

Assume that a byte array is 7 bytes long, numbered 0 to 6. Writing byte 3 and 4 from this
array indicates the parameter value start to be 3 (skipping byte 0, 1 and 2) and count to
be 2 (writing byte 3 and 4). In this case byte 3 is read from data [0] and byte 4 is read
from data [1].

Reference

See ISO 17987-3:2016, 5.1.2.

4.3.5 Notification

Flags are local objects in a node and they are used to synchronize the application program with the LIN
core. The flags are automatically set by the LIN core and can only be tested or cleared by the application

© ISO 2016 - All rights reserved 7

PD ISO/TR 17987-5:2016
ISO/TR 17987-5:2016(E)

program. Flags are attached to all types of frames. A flag is set when the frame/signal is considered to
be transmitted respectively received, see reception and transmission in ISO 17987-3.

Three types of flags can be created:

— aflagthatis attached to a signal,

— aflagthatis attached to a frame, and

— a flag that is attached to a signal in a particular frame. This is used when a signal is packed into

multiple frames.

All three listed flag types above are applicable on both transmitted and received signals/frames.

4.3.5.1 1. flg tst

Table 7 defines the 1_flg_tst.

Table 7 — I_flg_tst

Dynamic prototype |l_booll_flg tst (1_flag_handle fff)

Static prototype 1_bool |_flg_tst_fff (void);
Where fff is the name of the flag, e.g.1_flg_tst_RxEngineSpeed ().

Applicability Master and slave nodes.

Description Returns a C boolean indicating the current state of the flag specified by the name fff, i.e.
returns zero if the flag is cleared, non-zero otherwise.

Example A flag named tx confirmation is attached to a published signal valve position stored in the
10_1 frame. The static implementation of the 1_flg_tst is:
1_bool |_flg_tst_txconfirmation (void);
The flag is set when the I0_1 frame (containing the signal value position) is successfully
transmitted from the node.

Reference No reference, flags are API specific and not described anywhere else.

4.3.5.2 1flgclr

Table 8 defines the I_flg_clr.

Table 8 — 1_flg_clr

Dynamic prototype |void l_flg_clr (I_flag_handle fff);
Static prototype void 1_flg_clr_fff (void);
Where fff is the name of the flag, e.g.1_flg_clr_RxEngineSpeed ().
Applicability Master and slave nodes.
Description Sets the current value of the flag specified by the name fff to zero.
Reference No reference, flags are API specific and not described anywhere else.
8 © ISO 2016 - All rights reserved

PD ISO/TR 17987-5:2016
ISO/TR 17987-5:2016(E)

4.3.6 Schedule management

4.3.6.1 L_sch_tick

Table 9 defines the 1_sch_tick.

Table 9 — 1_sch_tick

Dynamic prototype |[l_ul61_sch_tick (L_ifc_handle iii);

Static prototype 1_ul6 1_sch_tick_iii (void);
where iii is the name of the interface, e.g.1_sch_tick_MyLinlIfc ().
Applicability Master nodes only.
Description The 1_sch_tick function provides the LIN driver a time base for the scheduler. When a

frame becomes due, its transmission is initiated. When the end of the current schedule is
reached, |_sch_tick starts again at the beginning of the schedule.

The1_sch_tickis called periodically and individually for each interface within the node. The
period is the time base, see ISO 17987-3:2016, 5.3, set in the LDF, see ISO 17987-3:2016, 12.3.4.2.
The period of the 1_sch_tick call effectively sets the time base tick, see ISO 17987-3:2016,
5.3. Therefore, it is essential that the time base period is uphold with minimum jitter.

The call to 1_sch_tick does not only start the transition of the next frame due, it also up-
dates the signal values for those signals received since the previous call to 1_sch_tick, see
ISO 17987-3:2016, 5.1.5.

Return value Zero, if the next call of 1_sch_tick does not start transmission of a frame.

Non-zero, if the next call of 1_sch_tick starts the transmission of the frame in the next
schedule table entry. The return value in this case is the next schedule table entry’s num-
ber (counted from the beginning of the schedule table) in the schedule table. The return
value is in range 1 to N if the schedule table has N entries.

Reference See ISO 17987-3:2016, 5.3.

© ISO 2016 - All rights reserved 9

PD ISO/TR 17987-5:2016
ISO/TR 17987-5:2016(E)

4.3.6.2 1.sch_set

Table 10 defines the 1_sch_set.

Table 10 — 1_sch_set

Dynamic prototype

void 1_sch_set (I_ifc_handle iii,
1_schedule_handle schedule,

1_ul6 entry);

Static prototype

void I_sch_set_iii (I_schedule_handle schedule, 1_u16 entry);
where iii is the name of the interface, e.g. 1_sch_set_MyLinlfc (MySchedulel, 0).

Applicability

Master node only.

Description

Sets up the next schedule to be followed by the 1_sch_tick function for a certain interface
iii. The new schedule is activated as soon as the current schedule reaches its next schedule
entry point. The extension “iii” is the interface name. It is optional and the intention is to
solve naming conflicts when the node is a master on more than one LIN cluster.

The entry defines the starting entry point in the new schedule table. The value is in the
range 0 to N if the schedule table has N entries, and if entry is 0 or 1 the new schedule
table is started from the beginning.

A predefined schedule table, L_NULL_SCHEDULE, exists and is used to stop all transfers
on the LIN cluster.

Example

A possible use of the entry value is in combination with the I_sch_tick return value to
temporarily interrupt one schedule with another schedule table and still be able to switch
back to the interrupted schedule table at the point where this was interrupted.

Reference

See ISO 17987-3:2016, 5.3.

4.3.7 Interface management

4.3.7.1 General

Interface management calls manage the specific interfaces (the logical channels to the bus). Each
interface is identified uniquely by its interface name, denoted by the iii extension for each API call. How
to set the interface name (iii) is not in the scope of this document.

10

© ISO 2016 - All rights reserved

4.3.7.2 Lifc_init

PD ISO/TR 17987-5:2016
ISO/TR 17987-5:2016(E)

Table 11 defines the 1_ifc_init.

Table 11 — L_ifc_init

Dynamic prototype |l_bool l_ifc_init (I_ifc_handle iii)
Static prototype 1_bool_ifc_init_iii (void);
Where iii is the name of the interface, e.g. 1_ifc_init_MyLinlfc ().
Applicability Master and slave nodes.
Description 1_ifc_init initializes the controller specified by the name iij, i.e. sets up internal functions
such as the baud rate. The default schedule set in a master node by the 1_ifc_init call is the
L_NULL_SCHEDULE where no frames are sent and received.
This is the first call a user performs before using any other interface related LIN API functions.
The function returns zero if the initialisation was successful and non-zero if failed.
Reference A general description of the interface concept is found in concept of operation in
ISO 17987-3.

4.3.7.3 l_ifc_goto_sleep

Table 12 defines the l_ifc_goto_sleep.

Table 12 — 1_ifc_goto_sleep

Dynamic prototype |void l_ifc_goto_sleep (l_ifc_handle iii)

Static prototype void 1_ifc_goto_sleep_iii (void);
Where iii is the name of the interface, e.g. 1_ifc_goto_sleep_MyLinlfc ().

Applicability Master node only.

Description This call requests slave nodes on the cluster connected to the interface to enter bus sleep
mode by issuing one go to sleep command, see ISO 17987-2:2016, 5.4.
The go to sleep command is scheduled latest when the next schedule entry is due.
The 1_ifc_goto_sleep does not affect the power mode. It is up to the application to do this.
If the go to sleep command was successfully transmitted on the cluster the go to sleep bit
is set in the status register, see ISO 17987-2:2016, 5.4.

Reference See ISO 17987-2:2016, 5.4.

© ISO 2016 - All rights reserved 11

PD ISO/TR 17987-5:2016
ISO/TR 17987-5:2016(E)

4.3.7.4 1_ifc_wake_up

Table 13 defines the l_ifc_wake_up.

Table 13 — 1_ifc_wake_up

Dynamic prototype |void 1_ifc_wake_up (l_ifc_handle iii)

Static prototype void |_ifc_wake_up_iii (void);
where iii is the name of the interface, e.g. 1_ifc_wake_up_MyLinlIfc ().

Applicability Master and slave nodes.

Description The function transmits one wake up signal. The wake up signal is transmitted directly
when this function is called. It is the responsibility of the application to retransmit the
wake up signal according to the wake up sequence defined in ISO 17987-2

Reference See IS0 17987-2:2016, 5.3.

4.3.7.5 Lifc_ioctl

Table 14 defines the |_ifc_ioctl.

Table 14 — L_ifc_ioctl

Dynamic prototype

1_ul6 1_ifc_ioctl (I_ifc_handle iii,
1_ioctl_op op,
void* pv)

Static prototype

1_ul6 1_ifc_ioctl_iii (1_ioctl_op op,
void* pv);

where iii is the name of the interface, e.g. 1_ifc_ioctl_MyLinlfc (MyOp, &MyPars).

Applicability

Master and slave nodes.

Description

This function controls functionality that is not covered by the other API calls. It is used
for protocol specific parameters or hardware specific functionality. Example of such func-
tionality can be to switch on/off the wake up signal detection.

The iii is the name of the interface to which the operation defined in op ise applied. The
pointer pv points to an optional parameter that is provided to the function.

Exactly which operations that are supported is implementation dependent.

Reference

No reference, the behaviour is API specific and not described anywhere else.

12

© ISO 2016 - All rights reserved

4.3.7.6 Llifcrx

PD ISO/TR 17987-5:2016
ISO/TR 17987-5:2016(E)

Table 15 defines the I_ifc_rx.

Table 15 — Lifc_rx

Dynamic prototype

void 1_ifc_rx (I_ifc_handle iii)

Static prototype

void I_ifc_rx_iii (void);

where iii is the name of the interface, e.g. 1_ifc_rx_MyLinlfc ().

Applicability

Master and slave nodes.

Description

The application program is responsible for binding the interrupt and for setting the correct
interface handle (if interruptis used).

For UART based implementations, it is called from a user-defined interrupt handler trig-
gered by a UART when it receives one character of data. In this case, the function performs
necessary operations on the UART control registers.

For more complex LIN hardware, it is used to indicate the reception of a complete header
or frame.

Reference

No reference, the behaviour is API specific and not described anywhere else.

4.3.7.7 Lifc_tx

Table 16 defines the l_ifc_tx.

Table 16 — 1_ifc_tx

Dynamic prototype |void 1_ifc_tx (l_ifc_handle iii)
Static prototype void I_ifc_tx_iii (void);
where iii is the name of the interface, e.g. 1_ifc_tx_MyLinlIfc ().
Applicability Master and slave nodes.
Description The application program is responsible for binding the interrupt and for setting the correct
interface handle (if interrupt is used).
For UART based implementations, it is called from a user-defined interrupt handler trig-
gered by a UART when it has transmitted one character of data. In this case the function
performs necessary operations on the UART control registers.
For more complex LIN hardware, it is used to indicate the transmission of a complete frame.
Reference No reference, the behaviour is API specific and not described anywhere else.

© ISO 2016 - All rights reserved 13

PD ISO/TR 17987-5:2016
ISO/TR 17987-5:2016(E)

4.3.7.8 lifc_aux

Table 17 defines the l_ifc_aux.

Table 17 — 1_ifc_aux

Dynamic prototype

void 1_ifc_aux (1_ifc_handle iii)

Static prototype

void l_ifc_aux_iii (void);

Where iii is the name of the interface, e.g. 1_ifc_aux_MyLinlfc ().

Applicability

Master and slave nodes.

Description

This function is used in the slave nodes to synchronize to the break field/sync byte field
sequence transmitted by the master node on the interface specified by iii.

Itis called, for example, from a user-defined interrupt handler raised upon an edge detec-
tion on a hardware pin connected to the interface iii.

1_ifc_aux is only used in a slave node.

This function is strongly hardware connected and the exact implementation and usage is
implementation dependent.

This function might even be empty in cases where the break field /sync byte field sequence
detection is implemented in the l_ifc_rx function.

Reference

No reference, the behaviour is API specific and not described anywhere else.

4.3.7.9 lifc_read_status

Table 18 defines the 1_ifc_read_status.

Table 18 — L_ifc_read_status

Dynamic prototype |I_ul6 1_ifc_read_status (I_ifc_handle iii)

Static prototype 1_u161_ifc_read_status_iii (void);
where iii is the name of the interface, e.g. 1_ifc_read_status_MyLinlfc ().

Applicability Master and slave nodes. The behaviour is different for master and slave nodes, see de-
scription below.

Description This function returns the status of the previous communication. The call returns the status
word (16 bit value), as shown in Table 19.

Reference See IS0 17987-3:2016, 5.5.

Table 19 defines the return value of 1_ifc_read_status (bit 15 is MSB, bit 0 is LSB).

Table 19 — Return value of 1_ifc_read_status (bit 15 is MSB, bit 0 is LSB).

15|14 [13 |12 |11 [10 [9] 8 |7] 6 5 4 3 2 1 0
Save Event Bus SUC IR rror
. triggered . Goto |[Over- |cessful|,
Last frame PID 0 |configu- activ- inre-
. frame . sleep |run trans-
ration . . ity sponse
collision fer

The status word is only set based on a frame transmitted or received by the node (except bus activity).

The call is a read-reset call; meaning that after the call has returned, the status word is set to 0.

In the master node, the status word is updated in the I_sch_tick function. In the slave node, the status
word is updated latest when the next frame is started.

14

© ISO 2016 - All rights reserved

PD ISO/TR 17987-5:2016
ISO/TR 17987-5:2016(E)

Error in response is set if a frame error is detected in the frame response, e.g. checksum error, framing
error, etc. An error in the header results in the header not being recognized and thus, the frame is
ignored. It is not set if there was no response on a received frame. Also, it is not be set if there is an error
in the response collision) of an event triggered frame.

Successful transfer is set if a frame has been transmitted /received without an error.

Overrun is set if two or more frames are processed since the previous call to 1_ifc_read_status. If this is
the case, error in response and successful transfer represent logical ORed values for all processed frames.

Go to sleep is set in a slave node if a go to sleep command has been received and set in a master node
when the go to sleep command is successfully transmitted on the bus. After receiving the go to sleep
command the power mode is not affected. This is done in the application.

Bus activity is set if the node has detected bus activity on the bus. For the definition of bus activity,
see go to sleep in ISO 17987-2. A slave node enters bus sleep mode after a period of bus inactivity on
the bus, see go to sleep in ISO 17987-2. This can be implemented by the application monitoring the bus
activity. Note the difference between bus activity and bus inactivity.

Event triggered frame collision is set as long the collision resolving schedule is executed. The intention
is to use it in parallel with the return value from 1_sch_tick. In the slave, this bit is always 0 (zero). If the
master node application switches schedule table during the collision is resolved, the event triggered
frame collision flag is set to 0 (zero). See example below how this flag is set.

Save configuration is set when the save configuration request has been successfully received, see
[SO 17987-3:2016, 6.3.5. It is set only in the slave node, in the master node it is always 0 (zero).

Last frame PID is the PID last detected on the bus and processed in the node. If over-run is set one or
more values of last frame PID are lost, only the latest value is maintained. It is set simultaneously with
successful transfer or error in response.

The combination of the two status bits successful transfer and error in response is interpreted
according to Table 20.

Table 20 — Node internal error interpretation

Errorin Successful Interpretation
response transfer
0 0 No communication or no response
1 1 Intermittent communication (some successful transfers and some failed)
0 1 Full communication
1 0 Erroneous communication (only failed transfers)

It is the responsibility of the node application to process the individual status reports (see ISO 17987-3).

EXAMPLE1 The l_ifc_read_status is designed to allow reading at a much lower frequency than the frame slot
frequency, e.g. once every 50 frame slots. In this case, the last frame PID has little use. Overrun is then used as
a check that the traffic is running as intended, i.e. is always be set. It is, however, also possible to call 1_ifc_read_
status every frame slot and get a much better error statistics, you can see the protected identifier of the failing
transfers and by knowing the topology, it is possible to draw better conclusion of faulty nodes. This is maybe
most useful in the master node, but is also possible in any slave node.

EXAMPLE 2 This example shows how the event triggered flag behaves in case of a collision resolving. The
normal schedule table is depicted in Table 21.

© IS0 2016 - All rights reserved 15

PD ISO/TR 17987-5:2016
ISO/TR 17987-5:2016(E)

Table 21 — Event triggered frame example schedule table

Frame Delay Frame type
UF1 10 ms unconditional
10_check 10 ms event triggered
UF2 10 ms unconditional

The 10_1 and 10_2 unconditional frames are associated with 10_check. The collision solving schedule
table contains the unconditional frames I0_1 and 10_2 (with delays set to 10 ms). The collision is
handled as shown in Figure 1. The time base in this example is set to 5 ms.

UF 1 10_1 10_2 UF 2
>
| I | | t
0 2 0 1 0 2 0 3 0 1 Return value of
I_sch_tick
0 0 0 0 1 1 1 1 0 0 Event triggered frame flag —

the |_ifc_read_status called
directly after | _sch_tick

Key

1 master node transmits header of I0_check but both slave nodes responded, i.e. a collision occurs
2 master node switches automatically to the collision solving schedule table

3 switches automatically back to the normal schedule table

Figure 1 — Event triggered frame collision solving example

4.3.8 User provided call outs

The application provides a pair of functions, which is called (implementation dependent) from within
the LIN module in order to disable LIN communication interrupts before certain internal operations
and to restore the previous state after such operations. These functions can, for example, be used in the
1_sch_tick function. The application itself also makes use of these functions.

4.3.8.1 1_sys_irq_disable
Table 22 defines the l_sys_irq_disable.

Table 22 — 1_sys_irq_disable

Prototype l_irgmask 1_sys_irq_disable (void)
Applicability Master and slave nodes.
Description The user implementation of this function achieves a state in which no interrupts from the

LIN communication can occur.

Reference No reference, the behaviour is API specific and not described anywhere else.

4.3.8.2 1_sys_irq_restore

Table 23 defines the l_sys_irq_restore.

16 © ISO 2016 - All rights reserved

PD ISO/TR 17987-5:2016
ISO/TR 17987-5:2016(E)

Table 23 — 1_sys_irq_restore

Prototype void 1_sys_irq_restore (l_irgmask previous)
Applicability Master and slave nodes.
Description The user implementation of this function restores the interrupt level identified by the

provided l_irgmask previous.

Reference No reference, the behaviour is API specific and not described anywhere else.

4.4 Node configuration and identification

4.4.1 Overview

The node configuration and diagnostic API has a set of functions all based on the idea to give the APl a
separate name space, in order to minimize the risk of conflicts with existing software. All functions and
types have the prefix “Id_" (lowercase “LD” followed by an “underscore”).

For operation of the node configuration, the master request frame and slave response frame are
scheduled. If the master node does not regard the responses of the requests only the master request
frame is contained in the schedule table.

4.4.2 Node configuration

4.4.2.1 1d_is_ready
Table 24 defines the 1d_is_ready.

Table 24 — 1d_is_ready

Prototype 1_u81d_is_ready (l_ifc_handle iii)

Applicability Master node only.

Description This call returns the status of the last requested configuration service.
Return value LD_SERVICE_BUSY:

Service is ongoing.
LD_REQUEST_FINISHED:

The configuration request has been completed. This is an intermediate status between
the configuration request and configuration response.

LD_SERVICE_IDLE:

The configuration request/response combination has been completed, i.e. the response is
valid and is analyzed. Also, this value is returned if no request has yet been called.
LD_SERVICE_ERROR

The configuration request or response experienced an error. Error here means error on
the bus, and not a negative configuration response from the slave node.

Reference No reference, the behaviour is API specific and not described anywhere else.

Figure 2 shows the situation where a successful configuration request and configuration response is
made. Note that the state change after the master request frame and slave response frame are finished
is delayed up to one time base.

© ISO 2016 - All rights reserved 17

PD ISO/TR 17987-5:2016
ISO/TR 17987-5:2016(E)

LD_SERVICE_IDLE

LD_SERVICE_BUSY LD_REQUEST_FINISHED LD_SERVICE_IDLE

T -l -t

)/ | Master Request Frame Slave Response Frame

Key

1 configuration service called

Figure 2 — Successful configuration request and configuration response

4.4.2.2 1d_check_response

Table 25 defines the ld_check_response.

Table 25 — ld_check_response

Prototype void ld_check_response (1_ifc_handle iii,

1_u8* const RSID,
1_u8* const error_code)

Applicability Master node only.

Description This call returns the result of the last node configuration service, in the parameters RSID
and error_code. A value in RSID is always returned but not always in the error_code. Default
values for RSID and error_code is 0 (zero).

Reference No reference, the behaviour is API specific and not described anywhere else.

4.4.2.3 ld_assign_frame_id_range

Table 26 defines the ld_assign_frame_id_range.

Table 26 — ld_assign_frame_id_range

Prototype void Id_assign_frame_id_range (I_ifc_handle iii,
1.u8 NAD,
1_u8 start_index,
const1_u8* const PIDs)
Applicability Master node only.
Description This call assigns the protected identifier of up to four frames in the slave node with the
addressed configured NAD. The PIDs parameter is four bytes long, each byte contains a
PID, do not care or unassign value.
Reference See ISO 17987-3:2016, 6.3.6.2.
18 © ISO 2016 - All rights reserved

PD ISO/TR 17987-5:2016
ISO/TR 17987-5:2016(E)

4.4.2.4 1d_assign_NAD

Table 27 defines the 1d_assign_NAD.

Table 27 — 1d_assign_NAD

Prototype

void Id_assign_NAD (l_ifc_handle iii,
1 u8 initial_NAD,
l_ul6é supplier_id,
1 ulé function_id,
1. u8 configured_NAD)

Applicability

Master node only.

Description

This call assigns the configured_NAD to the slave nodes that matches the initial NAD, the
supplier_id and the function_id.

Reference

See the definition of the service assign NAD, see ISO 17987-3.

4.4.2.5 ld_save_configuration

Table 28 defines the ld_save_configuration.

Table 28 — 1d_save_configuration

Prototype void Id_save_configuration (1_ifc_handle iii,
1.u8 NAD)
Applicability Master node only.
Description This call makes a save configuration request to a specific slave node with the given con-
figured NAD, or to all slave nodes if broadcast NAD is set.
Reference See the definition of the save configuration service in ISO 17987-3. API call l_ifc_read_status
see 4.3.7.9 and example in 4.6.

© ISO 2016 - All rights reserved 19

PD ISO/TR 17987-5:2016
ISO/TR 17987-5:2016(E)

4.4.2.6 ld_read_configuration

Table 29 defines the Id_read_configuration.

Table 29 — 1d_read_configuration

Prototype 1_u81d_read_configuration (1_ifc_handle iii,
1_u8* const data,
1_u8* const length)
Applicability Slave node only.
Description This function does not transport anything on the bus.

This call serializes the current configuration and copy it to the area (data pointer) pro-
vided by the application. The intention is to call this function when the save configuration
request flagis setin the status register, see 4.3.7.9. After the call is finished the application
is responsible to store the data in appropriate memory.

The caller reserves bytes in the data area equal to length, before calling this function. The
function sets the length parameter to the actual size of the configuration. In case the data
area is too short the function returns with no action.

In case the NAD has not been set by a previous call to 1d_set_configuration or the master
node has used the configuration services, the returned configured NAD still has the value
of the initial NAD.

The data contains the configured NAD and the PIDs and occupies one byte each. The structure
of the datais: configured NAD and then all PIDs for the frames. The order of the PIDs is the
same as the frame list in the LDF and the frame definition in the NCF, both in ISO 17987-2.

Return value

LD_READ_OK:

If the service was successful.
LD_LENGTH_TOO_SHORT:

If the configuration size is greater than the length. It means that the data area does not
contain a valid configuration.

Reference

See the definition of the save configuration service in 1ISO 17987-3.

Function I_ifc_read_status see 4.3.7.9 and example in 4.6.

20

© ISO 2016 - All rights reserved

PD ISO/TR 17987-5:2016
ISO/TR 17987-5:2016(E)

4.4.2.7 ld_set_configuration

Table 30 defines the ld_set_configuration.

Table 30 — ld_set_configuration

Prototype 1_u81d_set_configuration (1_ifc_handle iii,
const]_u8* const data,
l_ulé length)

Applicability Slave node only.

Description This call does not transport anything on the bus.

The function configures the NAD and the PIDs according to the configuration given by data.
The intended usage is to restore a saved configuration or set an initial configuration (e.g.
coded by I/0 pins). The function is called after calling l_ifc_init.

The caller sets the size of the data area before calling the function.

The data contains the configured NAD and the PIDs and occupies one byte each. The
structure of the data is NAD and then all PIDs for the frames. The order of the PIDs is the
same as the frame list in the LDF and the frame definition in the NCF, both in ISO 17987-2.

Return value

LD_SET_OK:
If the service was successful.
LD_LENGTH_NOT_CORRECT:

If the size of the configuration is not equal to the given length.
LD_DATA_ERROR:

The set of configuration could not be made.

Reference

See the definition of the save configuration service in ISO 17987-3.

Function l_ifc_read_status, see 4.3.7.9 and example in 4.6.

© ISO 2016 - All rights reserved 21

PD ISO/TR 17987-5:2016
ISO/TR 17987-5:2016(E)

4.4.3 Identification

4.4.3.1 ld_read_by_id
Table 31 defines the 1d_read_by_id.

Table 31 — 1d_read_by_id

Prototype void ld_read_by_id (I_ifc_handle iii,
1.u8 NAD,
1_ul6 supplier_id,

l_ulé6 function_id,

Lu8 id,
1_u8* const data);
Applicability Master node only.
Description The call requests the slave node selected with the NAD to return the property associated

with the id parameter, see ISO 17987-3:2016, Table 20 for interpretation of the id. When
the next call to ld_is_ready returns LD_SERVICE_IDLE (after the 1d_read_by_id is called),
the RAM area specified by data contains between one and five bytes data according to
the request.

The resultis returned in a big endian style. It is up to little endian CPUs to swap the bytes,
not the LIN diagnostic driver. The reason for using big endian data is to simplify message
routing to a (e.g. CAN) backbone network.

Reference See definition of the ReadByldentifier service in ISO 17987-3.

22 © ISO 2016 - All rights reserved

PD ISO/TR 17987-5:2016
ISO/TR 17987-5:2016(E)

4.4.3.2 ld_read_by_id_callout

Table 32 defines the 1d_read_by_id_callout.

Table 32 — ld_read_by_id_callout

Prototype 1_u81d_read_by_id_callout (I_ifc_handle iii,
1 u8 id,
1_u8* data)
Applicability This callout is optional and is available in slave node only. In case the user defined read by

identifier request is used, the slave node application implements this call-out.

Description This callout is used when the master node transmits a ReadByldentifier request with an
identifier in the user defined area. The slave node application is called from the driver
when such request is received.

The id parameter is the identifier in the user defined area (32 to 63), see ISO 17987-3:2016,
Table 18 from the ReadByldentifier configuration request.

The data pointer points to a data area with 5 bytes. This area is used by the application
to set up the positive response, see the user defined area in ISO 17987-3:2016, Table 19.

Return value LD_NEGATIVE_RESPONSE:

The slave node responds with a negative response as defined in ISO 17987-3:2016, Table 20.
In this case, the data area is not considered.

LD_POSTIVE_RESPONSE:

The slave node sets up a positive response using the data provided by the application.
LD_NO_RESPONSE:

The slave node does not answer.

Reference See ISO 17987-3:2016, Clause 6.

4.5 Transport layer

4.5.1 Overview

The LIN transport layer API has a set of functions all based on the idea to give the API a separate name
space, in order to minimize the risk of conflicts with existing software. All functions and types have the
prefix “1d_" (lowercase “LD” followed by an “underscore”).

Use of the LIN diagnostic transport layer API demands knowledge of the underlying protocol. The
relevant information can be found in ISO 17987-2. LIN diagnostic transport layer is intended to
transport diagnostic requests/responses between a test equipment on a (e.g. CAN) backbone network
to LIN slave nodes via the master node.

4.5.2 Raw- and messaged-based API

Since ISO 15765-2[4] PDUs on CAN are quite similar to LIN diagnostic frames, a raw API is provided. The
raw API is frame-/PDU-based and it is up to the application to manage the PCI information. The idea of
the raw APl is to interface to the CAN transport layer. With small efforts and resources the raw API can
be used to gateway diagnostic requests/responds between CAN and LIN. A prerequisite for the raw API
is that the frame format on CAN is equivalent to LIN where the addressing information is stored in the
first byte.

The messaged-based API is message based. The application provides a pointer to a message buffer.
When the transfer commences, the LIN driver does the packing/unpacking, i.e. act as a transport layer.
Typically, this is useful in slave nodes since they do not gateway the messages but parse them.

© ISO 2016 - All rights reserved 23

PD ISO/TR 17987-5:2016
ISO/TR 17987-5:2016(E)

Both raw API and the messaged-based API use the same structure of the diagnostic frames, i.e. NAD,

PCI, SID, etc.

4.5.3 Initialization

4.5.3.1 ld_init

Table 33 defines the ld_init.

Table 33 — 1d_init

Prototype void Id_init (1_ifc_handle iii)

Applicability Master and slave nodes.

Description This call (re)initializes the raw or messaged-based layers on the interface iii. All transport
layer buffers are initialized. If there is an ongoing diagnostic frame transporting a mes-
saged-based or raw message on the bus, it is not aborted.

Reference No reference, the behaviour is API specific and not described anywhere else.

4.54 Raw API

4.5.5 Overview

The raw API is operating on PDU level and it is typically used to gateway PDUs between CAN and LIN.
Usually, a FIFO is used to buffer PDUs in order to handle the different bus speeds.

4.5.5.1 1d_put_raw

Table 34 defines the Id_put_raw.

Table 34 — 1d_put_raw

Prototype void ld_put_raw (1_ifc_handle iii, const 1_u8* const data)

Applicability Master nodes.

Description The call queues the transmission of 8 bytes of data in one frame. The data is sent in the
next suitable frame (MasterReq frame).
The data area is copied in the call, the pointer is not memorized.
If no more queue resources are available, the data is jettisoned and the appropriate error
status is set.

Reference The raw and messaged-based is not differentiated outside the API. A general description
of the transport layer can be found in ISO 17987-2.

24 © ISO 2016 - All rights reserved

4.5.5.2 1d_get_raw

PD ISO/TR 17987-5:2016
ISO/TR 17987-5:2016(E)

Table 35 defines the 1d_get_raw.

Table 35 — 1d_get_raw

Prototype void Id_get_raw (l_ifc_handle iii, |_u8* const data)

Applicability Master nodes.

Description The call copies the oldest received diagnostic frame data to the memory specified by data.
The data returned is received from SlaveResp frame.
If the receive queue is empty no data is copied.

Reference The raw and messaged-based is not differentiated outside the API. A general description
of the transport layer can be found in ISO 17987-2.

4.5.5.3 ld_raw_tx_status

Table 36 defines the 1d_raw_tx_status.

Table 36 — ld_raw_tx_status

Prototype 1_u8ld_raw_tx_status (I_ifc_handle iii)
Applicability Master nodes.
Description The call returns the status of the raw frame transmission function:
Return values LD_QUEUE_EMPTY:
The transmit queue is empty. In case previous calls to ld_put_raw, all frames in the queue
have been transmitted.
LD_QUEUE_AVAILABLE:
The transmit queue contains entries, but is not full.
LD_QUEUE_FULL:
The transmit queue is full and cannot accept further frames.
LD_TRANSMIT_ERROR:
LIN protocol errors occurred during the transfer; initialize and redo the transfer.
Reference The raw and messaged-based is not differentiated outside the API. A general description
of the transport layer can be found in ISO 17987-2.

© IS0 2016 - All rights reserved 25

PD ISO/TR 17987-5:2016
ISO/TR 17987-5:2016(E)

4.5.5.4 1d_raw_rx_status

Table 37 defines the 1d_raw_rx_status.

Table 37 — ld_raw_rx_status

Prototype 1_u8 ld_raw_rx_status (l_ifc_handle iii)
Applicability Master nodes.
Description The call returns the status of the raw frame receive function:

Return values

LD_NO_DATA:

The receive queue is empty.
LD_DATA_AVAILABLE:

The receive queue contains data that can be read.
LD_RECEIVE_ERROR:

LIN protocol errors occurred during the transfer; initialize and redo the transfer.

Reference

The raw and messaged-based is not differentiated outside the API. A general description
of the transport layer can be found in ISO 17987-2.

4.5.6 Messaged-based API

4.5.6.1 Overview

Messaged-based processing of diagnostic messages manages one complete message at a time.

26

© ISO 2016 - All rights reserved

PD ISO/TR 17987-5:2016
ISO/TR 17987-5:2016(E)

4.5.6.2 ld_send_message

Table 38 defines the Id_send_message.

Table 38 — ld_send_message

Prototype void Id_send_message (1_ifc_handle iii,
l ulé DataLength,
1_u8 NAD,

const1_u8* const data)

Applicability Master and slave nodes.

Description The call packs the information specified by data and DataLength into one or multiple diag-
nostic frames. If the call is made in a master node application, the frames are transmitted
to the slave node with the address NAD. If the call is made in a slave node application, the
frames are transmitted to the master node with the address NAD. The parameter NAD is
not used in slave nodes.

The value of the SID (or RSID) is the first byte in the data area.

DataLength is in the range of 1 to 4095 bytes. The DataLength also includes the SID (or
RSID) value, i.e. message length plus one.

The call is asynchronous, i.e. not suspended until the message has been sent, and the
buffer does not be changed by the application as long as calls to ld_tx_status returns
LD_IN_PROGRESS.

The data is transmitted in suitable frames (master request frame for master nodes and
slave response frame for slave nodes).

If there is a message in progress, the call returns with no action.

Reference The raw and messaged-based is not differentiated outside the API. A general description
of the transport layer can be found in ISO 17987-2.

© ISO 2016 - All rights reserved 27

PD ISO/TR 17987-5:2016
ISO/TR 17987-5:2016(E)

4.5.6.3 ld_receive_message

Table 39 defines the ld_receive_message.

Table 39 — ld_receive_message

Prototype

void Id_receive_message (l_ifc_handle iii,
1_ul6* const DataLength,
l_u8* const NAD,

1_uB8* const data)

Applicability

Master and slave nodes.

Description

The call prepares the LIN diagnostic module to receive one message and store it in the
buffer pointed to by data. At the call, DataLength specifies the maximum length allowed.
When the reception has completed, DataLength is changed to the actual length and NAD
to the NAD in the message.

SID (or RSID) is the first byte in the data area.

DataLength is in the range of 1 to 4 095 bytes, but never more than the value originally
set in the call. SID (or RSID) is included in the DataLength.

The parameter NAD is not used in slave nodes.

The call is asynchronous, i.e. not suspended until the message has been received, and the
buffer is not changed by the application as long as calls to ld_rx_status returns LD_IN_PRO-
GRESS. If the call is made after the message transmission has commenced on the bus (i.e.
the SF or FF is already transmitted), this message is not received. Instead the function
waits until next message commence.

The data is received from the succeeding suitable frames (master request frame for slave
nodes and slave response frame for master nodes).

The application monitors the 1d_rx_status and does not call this function until the status
is LD_COMPLETED. Otherwise, this function returns inconsistent data in the parameters.

Reference

The raw and messaged-based is not differentiated outside the API. A general description
of the transport layer can be found in ISO 17987-2.

28

© ISO 2016 - All rights reserved

PD ISO/TR 17987-5:2016
ISO/TR 17987-5:2016(E)

4.5.6.4 1d_tx_status

Table 40 defines the 1d_tx_status.

Table 40 — 1d_tx_status

Prototype 1_u8ld_tx_status (I_ifc_handle iii)
Applicability Master and slave nodes.
Description The call returns the status of the last made call to 1d_send_message. The following values

can be returned.

Return values

LD_IN_PROGRESS:
The transmission is not yet completed.
LD_COMPLETED:

The transmission has completed successfully (and you can issue a new 1d_send_message
call). This value is also returned after initialization of the transport layer.

LD_FAILED:

The transmission ended in an error. The data was only partially sent. The transport layer
is reinitialized before processing further messages. To find out why a transmission has
failed, check the status management function l_ifc_read_status, see 4.3.7.9.

LD_N_AS_TIMEOUT:

The transmission failed because of a N_As timeout, see ISO 17987-2.

Reference

The raw and messaged-based is not differentiated outside the API. A general description
of the transport layer can be found in ISO 17987-2.

© ISO 2016 - All rights reserved 29

PD ISO/TR 17987-5:2016
ISO/TR 17987-5:2016(E)

4.5.6.5 1d_rx_status

Table 41 defines the Id_rx_status.

Table 41 — 1d_rx_status

Prototype 1_u8 ld_rx_status (I_ifc_handle iii)

Applicability Master and slave nodes.

Description The call returns the status of the last made call to 1d_receive_message. The following
values can be returned.

Return values LD_IN_PROGRESS:

The reception is not yet completed.
LD_COMPLETED:

The reception has completed successfully and all information (DataLength, NAD, data) is
available. (You can also issue a new ld_receive_message call). This value is also returned
after initialization of the transport layer.

LD_FAILED:

The reception ended in an error. The data was only partially received and is not trusted.
Initialize before processing further transport layer messages. To find out why a reception
has failed, check the status management function 1_ifc_read_status, see 4.3.7.9.

LD_N_CR_TIMEOUT:

The reception failed because of an N_Cr timeout, see ISO 17987-2.
LD_WRONG_SN:

The reception failed because of an unexpected sequence number.

Reference The raw and messaged-based is not differentiated outside the API. A general description
of the transport layer can be found in ISO 17987-2.

4.6 Examples

4.6.1 Overview

Two examples are included to show how the API can be used:
— master node example, and

— slave node example.

The examples are not complete; there are functions that are not implemented.

4.6.2 Master node example

/***

* Description : Example code for using the LIN API in a LIN master node
* The static LIN API is used

***/

#include <lin.h>
#define INT ENABLE LEVEL 1

/***

* Procedure : 1 sys irg restore

* Description : Restores the interrupt mask to the one before the call
* to 1 sys irq disable was made

* In parameters : previous - the old interrupt level

* Out parameters : None

* Return value : void

30 © ISO 2016 - All rights reserved

PD ISO/TR 17987-5:2016
ISO/TR 17987-5:2016(E)

***/

void 1 sys irqg restore (1 irgmask previous)
{

/* Set interrupt level to previous */
} /* 1 sys irqg_restore */

/***

* Procedure : 1 sys irq disable

* Description : Disable the UART interrupts of the controller and

* return the interrupt level to be able to restore it

* later

* In parameters : None

* Out parameters : None

* Return value : The interrupt level before disable
‘k************************/

1 irgmask 1 sys irq disable (void)

{
1 irgmask interrupt level;
/* Store the interrupt level and then disable UART interrupts */
return interrupt level;

} /* 1 sys_irqg _disable */

/*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k***‘k*‘k***‘k***‘k*‘k*********************

* Interrupt : lin char rx handler

* Description : UART receive character interrupt handler for the

* interface il

* In parameters : None

* Out parameters : None

* Return value : void
***/

void _ INTERRUPT /* Compiler intrinsic */ lin char rx handler (void)

{
/* Just call the LIN API provided function to do the actual work */

1 ifc rx i1 ();
} /* lin _char rx handler */

/***

* Procedure : main

* Description : Main entry of application

* In parameters : None

* Out parameters : None

* Return value : function never returns
***/

int main (void)
{
/* Initialize the LIN interface */
if (1 _sys init ()) {
/* The init of the LIN software failed - call error routine */
}
/* Initialize the interface */
if (1 ifc init i1 () {
/* Initialization of the LIN interface failed - call error routine */
}
/* Now is the first time the LIN interrupts can be enabled */
1 sys irg restore (INT ENABLE LEVEL);
/* Set the normal schedule */
1 sch set il (Normal Schedule, 0);
/* Start the 0S */
start 0S ();
/* return code */
return 1;
} /* main */

/***

* Procedure : main application 10ms
* Description : Main 10 ms task of the application
* In parameters : None

© ISO 2016 - All rights reserved 31

PD ISO/TR 17987-5:2016
ISO/TR 17987-5:2016(E)

* Out parameters : None

* Return value : void */
***/

void main application 10ms (void)
{
/* In/output of signals. Call it first in the task to minimize jitter */
(void) 1 sch tick i1();
/* Do some application specific stuff... */
/* Just a small example of frame receive check and signal writing */
if (1 flg tst RxInternalLightsSwitch ())
{
1 flg clr RxInternalLightsSwitch ();
/* signal reading and writing */
1 u8 wr InternallLightsRequest (1 u8 rd InternalLightsSwitch());
}

} /* main application 10ms */

4.6.3 Slave node example

The following example shows how a simple application in a slave is made. Special focus is made on the
node configuration.

/**

* Description : Example code for using the LIN API in a LIN slave node.
* The static LIN API is used (for the core API)

**/

#include "lin.h"
#define INT ENABLE LEVEL 1

/**

* Interrupt : lin char rx handler

* Description : UART receive character interrupt handler for the
* interface il

* In parameters : None

* Out parameters : None

* Return value : void

*

***/

void _ INTERRUPT /* Compiler intrinsic */ lin char rx handler (void)
{
/* Just call the LIN API provided function to do the actual work */
1 ifc rx i1 ();
} /* lin char rx handler */

/**

* Procedure : main task

* Description : Main task covering LIN functionalities
* In parameters : None

* Out parameters : None

* Return value : void */

*

***/

void main task (void)
{
/* Do some application specific stuff... */
/* poll frame received status */
if (1 flg tst InternallightsRequest flag ())
{
/* clear the flag */
1 flg clr InternallLightsRequest flag ();
/* Just a small example of signal and flag handling */
if (1 u8 rd InternalLightsSwitch () == 1) {
/* turn on lights */
}
}

} /* main task */

/**

32 © ISO 2016 - All rights reserved

* % % ok X %

PD ISO/TR 17987-5:2016
ISO/TR 17987-5:2016(E)

Procedure : main

Description : Main entry of application
In parameters : None

Out parameters : None

Return value : function never returns

***/

int main (void)

{

1 u8 cfgl20];

1 u8 len = 0;

1 bool configuration ok = 0;

1 bool stored configuration = 0;

/* Initialize the LIN interface */
if (1 _sys init ()) {
/* The init of the LIN software failed - call error routine */
}
/* Initialize the interface */
if (1 ifc init i1 ()) |
/* Initialization of the LIN interface failed - call error routine */
}
/* Now is the first time the LIN interrupts can be enabled */
1 sys irg restore (INT ENABLE LEVEL);
/* Configure the communication */
configuration ok = 0;
stored configuration = is configuration stored ();
if (stored configuration) {
/* there is a stored configuration in NVRAM */
read from NVRAM (cfg, &len);
/* configure the communication */
1d set configuration (il, cfg, len);
configuration ok = 1;
} else {
/* wait for the master to configure me for 5 s*/
1 ulé configuration timeout = 1000;
do {
if (1_ifc read status il () & SAVE CONFIGURATION) {
/* The master node is finished with the configuration */
configuration ok = 1;
/* save configuration in NVRAM */
1d read configuration (il, cfg, len);
write to NVRAM (cfg, len);
}
delay 5Sms ();
configuration timeout--;
} while (configuration timeout || !configuration ok);
}
if (!configuration ok) {
/* Timeout - no configuration from master, enter limp home */

}

while (1) {
/* Call the only task */
main task ();

}

/* return code */

return 1;

} /* main */

© ISO 2016 - All rights reserved 33

PD ISO/TR 17987-5:2016
ISO/TR 17987-5:2016(E)

34

Bibliography

ISO 14229-1, Road vehicles — Unified diagnostic services (UDS) — Part 1: Specification and
requirements

ISO 14229-2, Road vehicles — Unified diagnostic services (UDS) — Part 2: Session layer services

1SO 14229-7, Road vehicles — Unified diagnostic services (UDS) — Part 7: UDS on LIN implementation
(UDSonLIN)

ISO 15765-2, Road vehicles — Diagnostic communication over Controller Area Network (DoCAN) —
Part 2: Transport protocol and network layer services

[SO 17987-2:2016, Road vehicles — Local Interconnect Network (LIN) — Part 2: Transport protocol
and network layer services

ISO 17987-3:2016, Road vehicles — Local Interconnect Network (LIN) — Part 2: Protocol
specification

ISO/IEC 7498-1, Information technology — Open Systems Interconnection — Basic Reference
Model: The Basic Model — Part 1

ISO/IEC 10731, Information technology — Open Systems Interconnection — Basic Reference
Model — Conventions for the definition of OSI services

© ISO 2016 - All rights reserved

This page deliberately left blank

NO COPYING WITHOUT BSI PERMISSION EXCEPT AS PERMITTED BY COPYRIGHT LAW

British Standards Institution (BSI)

BSI is the national body responsible for preparing British Standards and other
standards-related publications, information and services.

BSI is incorporated by Royal Charter. British Standards and other standardization
products are published by BSI Standards Limited.

About us

We bring together business, industry, government, consumers, innovators
and others to shape their combined experience and expertise into standards
-based solutions.

The knowledge embodied in our standards has been carefully assembled in
a dependable format and refined through our open consultation process.
Organizations of all sizes and across all sectors choose standards to help
them achieve their goals.

Information on standards

We can provide you with the knowledge that your organization needs

to succeed. Find out more about British Standards by visiting our website at
bsigroup.com/standards or contacting our Customer Services team or
Knowledge Centre.

Buying standards

You can buy and download PDF versions of BSI publications, including British
and adopted European and international standards, through our website at
bsigroup.com/shop, where hard copies can also be purchased.

If you need international and foreign standards from other Standards Development
Organizations, hard copies can be ordered from our Customer Services team.

Copyright in BSI publications

All the content in BSI publications, including British Standards, is the property

of and copyrighted by BSI or some person or entity that owns copyright in the
information used (such as the international standardization bodies) and has
formally licensed such information to BSI for commercial publication and use.
Save for the provisions below, you may not transfer, share or disseminate any
portion of the standard to any other person. You may not adapt, distribute,
commercially exploit, or publicly display the standard or any portion thereof in any
manner whatsoever without BSI's prior written consent.

Storing and using standards
Standards purchased in soft copy format:

e A British Standard purchased in soft copy format is licensed to a sole named
user for personal or internal company use only.

e The standard may be stored on more than 1 device provided that it is accessible
by the sole named user only and that only 1 copy is accessed at any one time.

e Asingle paper copy may be printed for personal or internal company use only.

Standards purchased in hard copy format:

e A British Standard purchased in hard copy format is for personal or internal
company use only.

e [t may not be further reproduced — in any format — to create an additional copy.
This includes scanning of the document.

If you need more than 1 copy of the document, or if you wish to share the
document on an internal network, you can save money by choosing a subscription
product (see ‘Subscriptions’).

bsi.

Reproducing extracts

For permission to reproduce content from BSI publications contact the BSI
Copyright & Licensing team.

Subscriptions

Our range of subscription services are designed to make using standards

easier for you. For further information on our subscription products go to
bsigroup.com/subscriptions.

With British Standards Online (BSOL) you'll have instant access to over 55,000
British and adopted European and international standards from your desktop.

It's available 24/7 and is refreshed daily so you'll always be up to date.

You can keep in touch with standards developments and receive substantial
discounts on the purchase price of standards, both in single copy and subscription
format, by becoming a BSI Subscribing Member.

PLUS is an updating service exclusive to BSI Subscribing Members. You will
automatically receive the latest hard copy of your standards when they're

revised or replaced.

To find out more about becoming a BSI Subscribing Member and the benefits

of membership, please visit bsigroup.com/shop.

With a Multi-User Network Licence (MUNL) you are able to host standards
publications on your intranet. Licences can cover as few or as many users as you
wish. With updates supplied as soon as they're available, you can be sure your
documentation is current. For further information, email subscriptions@bsigroup.com.

Revisions
Our British Standards and other publications are updated by amendment or revision.

We continually improve the quality of our products and services to benefit your
business. If you find an inaccuracy or ambiguity within a British Standard or other
BSI publication please inform the Knowledge Centre.

Useful Contacts

Customer Services

Tel: +44 345 086 9001

Email (orders): orders@bsigroup.com
Email (enquiries): cservices@bsigroup.com

Subscriptions
Tel: +44 345 086 9001
Email: subscriptions@bsigroup.com

Knowledge Centre
Tel: +44 20 8996 7004
Email: knowledgecentre@bsigroup.com

Copyright & Licensing
Tel: +44 20 8996 7070
Email: copyright@bsigroup.com

BSI Group Headquarters
389 Chiswick High Road London W4 4AL UK

	30326027-VOR.pdf
	Foreword
	Introduction
	1 Scope
	2 Normative references
	3 Terms, definitions and abbreviated terms
	3.1 Terms and definitions
	3.2 Symbols
	3.3 Abbreviated terms
	4 API definitions
	4.1 LIN cluster generation
	4.2 Concept of operations
	4.2.1 General
	4.2.2 LIN core API
	4.2.3 LIN node configuration and identification API
	4.2.4 LIN transport layer API
	4.3 API conventions
	4.3.1 General
	4.3.2 Data types
	4.3.3 Driver and cluster management
	4.3.4 Signal interaction
	4.3.5 Notification
	4.3.6 Schedule management
	4.3.7 Interface management
	4.3.8 User provided call outs
	4.4 Node configuration and identification
	4.4.1 Overview
	4.4.2 Node configuration
	4.4.3 Identification
	4.5 Transport layer
	4.5.1 Overview
	4.5.2 Raw- and messaged-based API
	4.5.3 Initialization
	4.5.4 Raw API
	4.5.5 Overview
	4.5.6 Messaged-based API
	4.6 Examples
	4.6.1 Overview
	4.6.2 Master node example
	4.6.3 Slave node example
	Bibliography

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

