[PD ISO/TR 15144-2:2014](http://dx.doi.org/10.3403/30274815)

Incorporating corrigendum September 2015

BSI Standards Publication

Calculation of micropitting load capacity of cylindrical spur and helical gears

Part 2: Examples of calculation for micropitting

... making excellence a habit."

National foreword

This Published Document is the UK implementation of ISO/TR [15144-2:2014](http://dx.doi.org/10.3403/30274815).

The UK participation in its preparation was entrusted to Technical Committee MCE/5/-/15, Micropitting.

A list of organizations represented on this committee can be obtained on request to its secretary.

This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application.

© The British Standards Institution 2015. Published by BSI Standards Limited 2015

ISBN 978 0 580 91717 2

ICS 21.200

Compliance with a British Standard cannot confer immunity from legal obligations.

This British Standard was published under the authority of the Standards Policy and Strategy Committee on 31 October 2014.

Amendments/corrigenda issued since publication

TECHNICAL REPORT

[ISO/TR](http://dx.doi.org/10.3403/30274815U) [15144-2](http://dx.doi.org/10.3403/30274815U) [PD ISO/TR 15144-2:2014](http://dx.doi.org/10.3403/30274815)

First edition 2014-10-01

Corrected version 2015-01-15

Calculation of micropitting load capacity of cylindrical spur and helical gears —

Part 2: **Examples of calculation for micropitting**

Calcul de la capacité de charge aux micropiqûres des engrenages cylindriques à dentures droite et hélicoïdale —

Partie 2: Exemples de calcul pour micropiqûres

Reference number [ISO/TR 15144-2:2014](http://dx.doi.org/10.3403/30274815)(E)

COPYRIGHT PROTECTED DOCUMENT

© ISO 2014

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org

Published in Switzerland

PD ISO/TR 15144-2:2014 ISO/TR 15144-2:2014(E)

Contents

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see [www.iso.org/directives\)](http://www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the WTO principles in the Technical Barriers to Trade (TBT) see the following URL: [Foreword - Supplementary information](http://www.iso.org/iso/home/standards_development/resources-for-technical-work/foreword.htm)

The committee responsible for this document is ISO/TC 60, *Gears*, Subcommittee SC 2, *Gear capacity calculation*.

This corrected version of [ISO/TR15144-2:2014](http://dx.doi.org/10.3403/30274815) incorporates the following corrections: errors in symbols and equations have been corrected.

ISO/TR 15144 consists of the following parts, under the general title *Calculation of micropitting load capacity of cylindrical spur and helical gears*:

- *Part 1: Introduction and basic principles*
- *Part 2: Examples of calculation for micropitting*

Introduction

This part of ISO/TR 15144 provides worked examples for the application of the calculation procedures defined in [ISO/TR15144-1](http://dx.doi.org/10.3403/30213516U). The example calculations cover the application to spur and helical cyclindrical involute gears for both high-speed and low-speed operating conditions, determining the micropitting safety factor for each gear pair. The calculation procedures used are consistent with those presented in ISO/TR [15144-1.](http://dx.doi.org/10.3403/30213516U) No additional calculations are presented here that are outside of the technical report.

Four worked examples are presented with the necessary input data for each gear set provided at the beginning of the calculation. The worked examples are based on real gear pairs where either laboratory or operational field performance data has been established, with the examples covering several applications. When available, pictures and measurements are provided of the micropitting wear, experienced on the gear sets when run under the conditions used in the worked examples. Calculation details are presented in full for several of the initial calculations after which only summarized results data are included. For better applicability, the numbering of the formulae follows ISO/TR [15144-1](http://dx.doi.org/10.3403/30213516U). Several of the worked examples are presented with the calculation procedures performed in accordance with the application of both methods A and B.

[PD ISO/TR 15144-2:2014](http://dx.doi.org/10.3403/30274815)

Calculation of micropitting load capacity of cylindrical spur and helical gears —

Part 2: **Examples of calculation for micropitting**

1 Scope

The example calculations presented here are provided for guidance on the application of the technical report ISO/TR [15144-1](http://dx.doi.org/10.3403/30213516U) only. Any of the values or the data presented should not be used as material or lubricant allowables or as recommendations for micro-geometry in real applications when applying this procedure. The necessary parameters and allowable film thickness values, λ_{GFP} , should be determined for a given application in accordance with the procedures defined in ISO/TR [15144-1.](http://dx.doi.org/10.3403/30213516U)

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO [1122-1:1998](http://dx.doi.org/10.3403/01452597), *Vocabulary of gear terms — Part 1: Definitions related to geometry*

ISO [6336-1:2006](http://dx.doi.org/10.3403/30097334), *Calculation of load capacity of spur and helical gears — Part 1: Basic principles, introduction and general influence factors*

ISO [6336-2:2006](http://dx.doi.org/10.3403/30097336), *Calculation of load capacity of spur and helical gears — Part 2: Calculation of surface durability (pitting)*

ISO [21771:2007,](http://dx.doi.org/10.3403/30112628) *Gears — Cylindrical involute gears and gear pairs — Concepts and geometry*

ISO/TR [15144-1:2014](http://dx.doi.org/10.3403/30284819), *Calculation of micropitting load capacity of cylindrical spur and helical gears — Part 1: Introduction and basic principles*

3 Terms, definitions, symbols, and units

3.1 Terms and definitions

For the purpose of this document, the terms and definitions given in ISO [1122-1](http://dx.doi.org/10.3403/01452597U), ISO [6336-1,](http://dx.doi.org/10.3403/01764632U) and ISO [6336-2](http://dx.doi.org/10.3403/01764668U) apply.

3.2 Symbols and units

The symbols used in this technical report are given in [Table](#page-9-0) 1. The units of length metre, millimetre, and micrometre are chosen in accordance with common practice. The conversions of the units are already included in the given formulae.

Table 1 — Symbols and units

Table 1 *(continued)*

4 Example calculation

The following presents examples for the calculation of the safety factor against micropitting, *S*λ. Each example is first calculated according to method B and examples 1, 3, and 4 subsequently calculated according to method A. The calculation sequence for method B has been provided to follow a logical approach in relation to the input data. Beside the formulae itself, the formula numbers related to ISO/TR [15144-1](http://dx.doi.org/10.3403/30213516U) are given.

The examples calculate the safety factor *S*_λ of a specific gear set when compared to an allowable $λ$ _{GFP} value. For the examples 1, 2, and 4, the permissible specific oil film thickness, λ_{GFP} was determined from the test result of the lubricant in the FZG-FVA micropitting test.[\[1\]](#page-54-1) For these calculations medium values for the standard FZG back-to-back test rig and standard test conditions for *K*Hβ and *K*v were used (K_{H} _B = 1,10 and K_{v} = 1,05). The calculation of the λ_{GFP} value from the test result of the FZG-FVA micropitting test[\[1\]](#page-54-1) (method B) is shown exemplary on the basis of the first example. For example 3, the permissible specific oil film thickness, λ_{GFP}, was determined from a bench test.

NOTE The calculations were performed computer-based. If the calculations are performed manually, small differences between the results can appear.

4.1 Example 1 — Spur gear

The result of this example is confirmed by experimental investigations. The gears were obviously micropitted and had profile deviations of approximately 8 to 10 μ m. [Figure](#page-12-1) 1 shows a diagram of the observed location and severity of micropitting for pinion and wheel of example 1.

a) pinion b) wheel

Key

- 1 tip
- 2 root

4.1.1 Input data

Table 2 — Input data for Example 1

4.1.2 Calculation according to method B

4.1.2.1 Calculation of gear geometry (according to ISO [21771](http://dx.doi.org/10.3403/30112628U))

Basic values:

$$
m_{\rm t} = \frac{m_{\rm n}}{\cos \beta}
$$
\n
$$
d_1 = z_1 \cdot m_{\rm t}
$$
\n
$$
d_2 = z_2 \cdot m_{\rm t}
$$
\n
$$
d_2 = 2z \cdot m_{\rm t}
$$
\n
$$
d_2 = 196,74 \text{ mm}
$$
\n
$$
d_2 = 19
$$

$$
\varepsilon_{\beta} = \frac{b \cdot \sin \beta}{m_{\rm n} \cdot \pi} \tag{2.5}
$$

$$
\varepsilon_{\gamma} = \varepsilon_{\alpha} + \varepsilon_{\beta}
$$

\n $g_{\alpha} = 0.5 \cdot \left(\sqrt{d_{a1}^2 - d_{b1}^2} + \sqrt{d_{a2}^2 - d_{b2}^2} \right) - a \cdot \sin \alpha_{wt}$
\n $g_{\alpha} = 45.519 \text{ mm}$

Coordinates of the basic points (A, AB, B, C, D, DE, E) on the line of action:

$$
g_{A} = 0 \text{ mm}
$$
\n
$$
g_{AB} = \frac{g_{\alpha} - p_{\text{et}}}{2}
$$
\n
$$
g_{B} = g_{\alpha} - p_{\text{et}}
$$
\n
$$
g_{C} = \frac{d_{b1}}{2} \cdot \tan \alpha_{\text{wt}} - \sqrt{\frac{d_{a1}^{2}}{4} - \frac{d_{b1}^{2}}{4}} + g_{\alpha}
$$
\n
$$
g_{D} = p_{\text{et}}
$$
\n
$$
g_{D} = p_{\text{et}}
$$
\n
$$
g_{D} = \frac{g_{\alpha} - p_{\text{et}}}{2} + p_{\text{et}}
$$
\n
$$
g_{D} = 32,267 \text{ mm}
$$
\n
$$
g_{E} = g_{\alpha}
$$
\n
$$
g_{A1} = 2 \cdot \sqrt{\frac{d_{b1}^{2}}{4} + \left(\sqrt{\frac{d_{a1}^{2}}{4} - \frac{d_{b1}^{2}}{4}} - g_{\alpha} + g_{A}\right)^{2}}
$$
\n
$$
g_{A2} = 190,046 \text{ mm}
$$
\n
$$
g_{D} = 193,546 \text{ mm}
$$
\n
$$
g_{D} = 221,400 \text{ mm}
$$
\n
$$
g_{A2} = 2 \cdot \sqrt{\frac{d_{b2}^{2}}{4} + \left(\sqrt{\frac{d_{a2}^{2}}{4} - \frac{d_{b2}^{2}}{4}} - g_{A}\right)^{2}}
$$
\n
$$
g_{D} = 214,394 \text{ mm}
$$
\n
$$
g_{D} = 221,400 \text{ mm}
$$
\n
$$
g_{D} = 221,400
$$

 $n, A = \frac{\rho_{t, A}}{\cos \beta}$ b $(\text{45}) \qquad \rho_{n,\text{A}} = 12,285 \text{ mm}$ $\rho_{n,AB}$ = 15,663 mm $\rho_{n,B}$ = 17,890 mm $\rho_{n,C}$ = 19,074 mm $\rho_{n,D}$ = 17,890 $\rho_{n,DE}$ = 15,663 mm $\rho_{n,E}$ = 12,285 mm

ρ

t,A

4.1.2.2 Calculation of material data

$$
E_r = 2 \cdot \left(\frac{1 - v_1^2}{E_1} + \frac{1 - v_2^2}{E_2}\right)^{-1}
$$
 (6) $E_r = 226374 \text{ N/mm}^2$

$$
B_{\rm M1} = \sqrt{\lambda_{\rm M1} \cdot \rho_{\rm M1} \cdot c_{\rm M1}} \tag{82}
$$

$$
B_{\rm M1} = 12 \, 427.4 \, \text{N/(m} \, \text{s}^{\rm 0.5} \, \text{K})
$$

$$
B_{\text{M2}} = \sqrt{\lambda_{\text{M2}} \cdot \rho_{\text{M2}} \cdot c_{\text{M2}}}
$$
 (83)
$$
B_{\text{M2}} = 12 \, 427.4 \, \text{N/(m/s0.5K)}
$$

4.1.2.3 Calculation of operating conditions

Loading:

$$
P = 2 \cdot \pi \cdot \frac{n_1}{60} \cdot \frac{T_1}{1\,000} \tag{85} \qquad P = 590 \text{ kW}
$$

$$
F_{\rm t} = 2\,000 \cdot \frac{T_1}{d_1} \tag{6.19}
$$

$$
F_{\text{bt}} = 2000 \cdot \frac{T_1}{d_{\text{b1}}} \tag{5.16}
$$

Local load sharing factor:

NOTE No tooth flank modifications, spur gears, gear quality ≤7 (see ISO/TR [15144-1:2014](http://dx.doi.org/10.3403/30284819), Figure 2).

$$
X_{A} = \frac{Q - 2}{15} + \frac{1}{3} \cdot \frac{g_{A}}{g_{B}}
$$
(46)
$$
X_{A} = 0.333
$$

$$
X_{AB} = 0.500
$$

$$
X_{D} = 1.000
$$

$$
X_{D} = 1.000
$$

$$
X_{D} = 0.500
$$

$$
X_{D} = 0.333
$$

Elasticity factor:

$$
Z_{\rm E} = \sqrt{\frac{E_{\rm r}}{2 \cdot \pi}} \tag{26} \qquad Z_{\rm E} = 189,812 \, \text{(N/mm²)}^{\rm 0.5}
$$

Local Hertzian contact stress:

 ~ 100

$$
p_{H,A,B} = Z_{E} \cdot \sqrt{\frac{F_{t} \cdot X_{A}}{b \cdot \rho_{n,A} \cdot \cos \alpha_{t} \cdot \cos \beta_{b}}}
$$
\n
$$
p_{H,AB,B} = 1.045 \text{ N/mm}^2
$$
\n
$$
p_{H,B,B} = 1.383 \text{ N/mm}^2
$$
\n
$$
p_{H,D,B} = 1.045 \text{ N/mm}^2
$$
\n
$$
p_{H,E,B} = 963 \text{ N/mm}^2
$$
\n
$$
p_{H,B,B} = 1.383 \text{ N/mm}^2
$$
\n
$$
p_{H,D,B} = 1.38
$$

 $X_S = 1.2$ for injection lubrication

4.1.2.5 Calculation of the material parameter

Mean coefficient of friction:

$$
X_{R} = 2.2 \cdot \left(\frac{Ra}{\rho_{n,C}}\right)^{0.25}
$$
 (87) $X_{R} = 1.025$

*K*_{Bγ} = 1,0 for $ε_γ$ <2

$$
\mu_{\rm m} = 0.045 \cdot \left(\frac{K_{\rm A} \cdot K_{\rm v} \cdot K_{\rm H\alpha} \cdot K_{\rm H\beta} \cdot F_{\rm bt} \cdot K_{\rm B\gamma}}{b \cdot v_{\Sigma, \rm C} \cdot \rho_{\rm n, C}} \right)^{0,2} \cdot \left(10^3 \cdot \eta_{\rm \theta oil} \right)^{-0,05} \cdot X_{\rm R} \cdot X_{\rm L} \tag{86} \mu_{\rm m} = 0.048
$$

Bulk temperature:

$$
H_{\rm v} = \left(\varepsilon_1^2 + \varepsilon_2^2 + 1 - \varepsilon_\alpha\right) \cdot \left(\frac{1}{z_1} + \frac{1}{z_2}\right) \cdot \frac{\pi}{\cos \beta_{\rm b}} \quad \text{for } \varepsilon_\alpha < 2 \tag{91} \qquad H_{\rm v} = 0.204
$$

*ε*max = *ε*1 = *ε*²

$$
X_{\text{CA}} = 1.0
$$
 for no profile modification (method B) (101)

$$
\theta_{\rm M} = \theta_{\rm oil} + 7400 \cdot \left(\frac{P \cdot \mu_{\rm m} \cdot H_{\rm v}}{a \cdot b}\right)^{0.72} \cdot \frac{X_{\rm S}}{1.2 \cdot X_{\rm Ca}}\tag{84} \theta_{\rm M} = 153.6^{\circ} \text{ C}
$$

Material parameter:

$$
G_M = 10^6 \cdot \alpha_{\theta M} \cdot E_r \tag{5} \qquad G_M = 2.678,6
$$

4.1.2.6 Calculation of the velocity parameter

$$
U_{A} = \eta_{\theta M} \cdot \frac{v_{\Sigma, A}}{2000 \cdot E_{r} \cdot \rho_{n, A}}
$$
 (12) $U_{A} = 2,005 \cdot 10^{-11}$

$$
U_{\rm AB} = 1{,}572 \cdot 10^{-11} \qquad \qquad U_{\rm B} = 1{,}377 \cdot 10^{-11} \qquad \qquad U_{\rm C} = 1{,}291 \cdot 10^{-11}
$$

$$
U_{\rm D} = 1{,}377 \cdot 10^{-11} \qquad \qquad U_{\rm DE} = 1{,}572 \cdot 10^{-11} \qquad \qquad U_{\rm E} = 2{,}005 \cdot 10^{-11}
$$

4.1.2.7 Calculation of the load parameter

$$
W_{\rm A} = \frac{2 \cdot \pi \cdot p_{\rm dyn,A}^2}{E_{\rm r}^2} \tag{22} \qquad W_{\rm A} = 1,440 \cdot 10^{-4}
$$

$$
W_{AB} = 1,694 \cdot 10^{-4}
$$

\n
$$
W_B = 2,966 \cdot 10^{-4}
$$

\n
$$
W_B = 1,694 \cdot 10^{-4}
$$

\n
$$
W_B = 1,694 \cdot 10^{-4}
$$

\n
$$
W_B = 1,440 \cdot 10^{-4}
$$

4.1.2.8 Calculation of the sliding parameter

Local flash temperature:

$$
\theta_{\text{fl},A} = \frac{\sqrt{\pi}}{2} \cdot \frac{10^6 \cdot \mu_{\text{m}} \cdot p_{\text{dyn},A} \cdot \left| v_{\text{g},A} \right|}{B_{\text{M1}} \sqrt{v_{\text{r1},A}} + B_{\text{M2}} \sqrt{v_{\text{r2},A}}} \cdot \sqrt{8 \cdot \rho_{\text{n},A} \cdot \frac{p_{\text{dyn},A}}{1000 \cdot E_{\text{r}}}}
$$
(80) $\theta_{\text{fl},A} = 175.3^{\circ} \text{ C}$
 $\theta_{\text{fl},AB} = 154.1^{\circ} \text{ C}$ $\theta_{\text{fl},BE} = 145.4^{\circ} \text{ C}$ $\theta_{\text{fl},E} = 0^{\circ} \text{ C}$
 $\theta_{\text{fl},D} = 145.4^{\circ} \text{ C}$ $\theta_{\text{fl},DE} = 154.1^{\circ} \text{ C}$ $\theta_{\text{fl},E} = 175.3^{\circ} \text{ C}$

Local contact temperature as sum of bulk and local flash temperature:

 $\theta_{B,A} = \theta_M + \theta_{fI,A}$ (79) $\theta_{B,A} = 328.9$ ° C

$$
\theta_{B,AB} = 307.7^{\circ} C
$$
 $\theta_{B,B} = 299.0^{\circ} C$ $\theta_{B,C} = 153.6^{\circ} C$
\n $\theta_{B,D} = 299.0^{\circ} C$ $\theta_{B,DE} = 307.7^{\circ} C$ $\theta_{B,E} = 328.9^{\circ} C$

Local sliding parameter:

$$
S_{\text{GF,A}} = \frac{\alpha_{\text{OB,A}} \cdot \eta_{\text{OB,A}}}{\alpha_{\text{OM}} \cdot \eta_{\text{OM}}}
$$
 (27) $S_{\text{GF,A}} = 0.057$

$$
S_{GF,AB} = 0.076
$$

\n $S_{GF,D} = 0.086$
\n $S_{GF,D} = 0.086$
\n $S_{GF,DE} = 0.076$
\n $S_{GF,E} = 0.057$

4.1.2.9 Calculation of the lubricant film thickness

$$
h_{A} = 1600 \cdot \rho_{n,A} \cdot G_{M}^{0.6} \cdot U_{A}^{0.7} \cdot W_{A}^{-0.13} \cdot S_{GF,A}^{0.22}
$$
 (4) $h_{A} = 0.122 \text{ }\mu\text{m}$

4.1.2.10 Calculation of the specific lubricant film thickness

4.1.2.11 Calculation of the micropitting safety factor

$$
S_{\lambda} = \frac{\lambda_{\text{GF,min}}}{\lambda_{\text{GFP}}} \tag{1} \qquad S_{\lambda} = 0.644
$$

The calculation of the permissible specific lubricant film thickness, λ _{GFP}, for example 1 is shown exemplary in $4.1.4$.

The final results for the calculation of the safety factor against micropitting, *Sλ*, for example 1 are shown in [Table](#page-19-1) 3.

Table 3 — Results of calculation according to method B — Example 1

Point	A	AB	B	C	D	DE	E
λ GF,Y	0,136	0,153	0,152	0,267	0,152	0,153	0,136
λ GF, min	0,136						
λ GFP		0,211					
S_{λ}	0,644						

4.1.3 Calculation according to method A

The calculation of example 1 according to method A was carried out by a 3D-calculation programme. Calculated results during method A will vary depending on the method of determining load distribution. The load distribution, on which the following calculation according to method A is based, is shown in [Table](#page-19-2) 4. The maximum values are printed in bold.

	Width in mm					
	0,0	7,6	13,8	21,4		
A	1 1 1 5	1 1 1 0	1 1 1 0	1 1 1 4		
AB	1048	1 0 4 4	1 0 4 4	1047		
В	1 3 7 5	1 3 7 3	1 3 7 3	1375		
C	1 3 4 2	1 3 3 9	1 3 3 9	1 3 4 2		
D	1048	1 0 4 5	1045	1048		
DE	1050	1046	1046	1050		
E	1099	1 0 9 4	1 0 9 4	1099		

Table 4 — Matrix of pressure distribution — $p_{H,Y,A}$ in N/mm²

The resulting matrix of specific lubricant film thickness according to method A is shown in [Table](#page-20-2) 5. The minimum value is printed in bold.

Table 5 — Matrix of resulting specific lubricant film thickness *λ***GF,Y**

For the calculation of the micropitting safety factor according to method A, the minimum value of the matrix of resulting specific lubricant film thickness, shown in [Table](#page-20-2) 5, was used.

$$
S_{\lambda} = \frac{\lambda_{\text{GF,min}}}{\lambda_{\text{GFP}}} \tag{1} \qquad S_{\lambda} = 0.577
$$

NOTE The difference in safety factor calculated between methods A and B in the above example 1 results from the simplified calculation of load distribution according to method B.

4.1.4 Calculation of the permissible lubricant film thickness

Calculation of the permissible specific lubricant film thickness from the test result of the FZG-FVA micropitting test^{[\[1\]](#page-54-1)} (Method B) with the reference test gears type C-GF.

The calculation of the reference value, $λ$ _{GFT}, is done for point A because the minimum specific lubricant film thickness for gear type C is always at point A. All data of the reference test gears type C-GF have the subscript "Ref".

NOTE The used values for *K_{VRef}* and *K*_{HβRef} are valid for the standard FZG back-to-back test rig and standard conditions.

[Table](#page-22-0) 7 gives the nominal Hertzian contact stress at point A for the reference test gears type C-GF as a function of the reached failure load stage (SKS) in the FZG-FVA micropitting test.[\[1\]](#page-54-1)

 $u_{\text{Ref}} = 1.5$

d d b2Ref Ref tRef = ⋅ ² cos^α *^d*b2Ref = 101,487 mm

 d_{w1Ref} = 73,20 mm

Table 7 — Relation between failure load stage according to FZG-FVA micropitting test[\[1](#page-54-1)] and nominal Hertzian contact stress at point A

4.1.4.1 Calculation of gear geometry

 $d_{2Ref} = z_{2Ref} \cdot m_{tRef}$ $d_{2Ref} = 108,00 \text{ mm}$

 $u_{\text{Ref}} = \frac{z}{z}$ $\text{Ref} = \frac{z_{2\text{Ref}}}{z_{1\text{Ref}}}$ Ref $=\frac{z_2}{z_1}$ 1

 $d_{b1Ref} = d_{1Ref} \cdot \cos \alpha_{tRef}$ (cos α_{tRef}) cosaries the set of the set

$$
d_{\text{b2Ref}} = d_{\text{2Ref}} \cdot \cos \alpha_{\text{tRef}}
$$

$$
d_{\text{w1Ref}} = \frac{2 \cdot a_{\text{Ref}}}{u_{\text{Ref}} + 1}
$$

 $d_{\text{w2Ref}} = 2 \cdot a_{\text{Ref}} - d_{\text{w1Ref}}$ and $d_{\text{w2Ref}} = 109,80 \text{ mm}$

α wtRef = $\arccos \left(\frac{(Z_{1 \text{Ref}} + Z_{2 \text{Ref}}) \cdot m_{1 \text{Ref}} \cdot \cos \alpha}{2} \right)$ $Ref + Z_{2Ref}$) m_{tRef} \cdot $\cos \alpha_{tRef}$ Ref $= \arccos \left(\frac{(z_{1 \text{Ref}} + z_{2 \text{Ref}}) \cdot m_{\text{tRef}}}{z_{1 \text{Ref}} + z_{2 \text{Ref}} \cdot m_{\text{tRef}} \cdot w_{\text{tref}} \right)$ ⋅ \mathbf{r} L \mathbf{r} L $\arccos \left[\frac{(z_{1 \text{Ref}} + z_{2 \text{Ref}}) \cdot m_{\text{tRef}} \cdot \cos \theta}{2 \cdot m_{\text{tRef}} \cdot \cos \theta} \right]$ *a* $\frac{1 \text{Ref} + Z_{2 \text{Ref}} \cdot m_{\text{tRef}} \cdot \cos \alpha_{\text{tRef}}}{2 \cdot a_{\text{pof}}}$ $\alpha_{\text{wtRef}} = 22.439$

 $p_{\text{etRef}} = m_{\text{tRef}} \cdot \pi \cdot \cos \alpha_{\text{tRef}}$ (*p*etRef = 13,285 mm

$$
\varepsilon_{1\text{Ref}} = \frac{z_{1\text{Ref}}}{2 \cdot \pi} \cdot \left[\sqrt{\left(\frac{d_{a1\text{Ref}}}{d_{b1\text{Ref}}} \right)^2 - 1} - \tan \alpha_{\text{wtRef}} \right]
$$
\n
$$
\varepsilon_{2\text{Ref}} = \frac{z_{2\text{Ref}}}{2 \cdot \pi} \cdot \left[\sqrt{\left(\frac{d_{a2\text{Ref}}}{d_{b2\text{Ref}}} \right)^2 - 1} - \tan \alpha_{\text{wtRef}} \right]
$$
\n
$$
\varepsilon_{2\text{Ref}} = 0.722
$$
\n
$$
\varepsilon_{2\text{Ref}} = 0.714
$$

 $\overline{}$

 $\overline{}$

 $\overline{}$

 \Box $\overline{}$ $\overline{}$

$$
\varepsilon_{\text{aRef}} = \frac{1}{p_{\text{erter}}t} \left(\sqrt{\frac{d_{\text{a1Ref}}^2}{4} - \frac{d_{\text{b1Ref}}^2}{4} + \sqrt{\frac{d_{\text{a2Ref}}^2}{4} - \frac{d_{\text{b2Ref}}^2}{4} - a_{\text{Ref}} \cdot \sin \alpha_{\text{wRef}}}} \right) \varepsilon_{\text{aRef}} = 1,436
$$
\n
$$
\varepsilon_{\text{pRef}} = \varepsilon_{\text{aRef}} + \varepsilon_{\text{pRef}}
$$
\n
$$
\varepsilon_{\text{rRef}} = 0
$$
\n
$$
\varepsilon_{\text{
$$

4.1.4.2 Calculation of material data type C-GF

$$
E_{rRef} = 2 \cdot \left(\frac{1 - v_{1Ref}}{E_{1Ref}} + \frac{1 - v_{2Ref}}{E_{2Ref}}\right)^{-1}
$$
\n(6) $E_{rRef} = 226\,374\,N/mm^2$
\n
$$
B_{M1Ref} = \sqrt{\lambda_{M1Ref} \cdot \rho_{M1Ref} \cdot c_{M1Ref}}
$$
\n(82) $\frac{B_{M1Ref}}{(ms^0.5K)}$
\n
$$
B_{M2Ref} = \sqrt{\lambda_{M2Ref} \cdot \rho_{M2Ref} \cdot c_{M2Ref}}
$$
\n(83) $\frac{B_{M2Ref}}{(ms^0.5K)}$

4.1.4.3 Calculation of operating conditions of FVA-FZG micropitting test

 $P_{\text{Ref}} = 2 \cdot \pi \cdot \frac{n_{1 \text{Ref}}}{\epsilon \cdot n} \cdot \frac{T}{I}$ $P_{\text{Ref}} = 2 \cdot \pi \cdot \frac{n_{\text{1Ref}}}{60} \cdot \frac{I_{\text{1Ref}}}{1000}$ (85) $P_{\text{Ref}} = 40,43 \text{ kW}$

$$
F_{\text{btRef}} = 2000 \cdot \frac{T_{\text{1Ref}}}{d_{\text{b1Ref}}} \tag{5.072,6 N}
$$

$$
p_{\text{dyn,A,ARef}} = p_{\text{H,A,ARef}} \cdot \sqrt{K_{\text{ARef}}} \cdot K_{\text{vRef}}
$$
 (24) $p_{\text{dyn,A,ARef}} = 1220 \text{ N/mm}^2$

$$
v_{r1, \text{ARef}} = 2 \cdot \pi \cdot \frac{n_{\text{1Ref}}}{60} \cdot \frac{d_{\text{w1Ref}}}{2000} \cdot \sin \alpha_{\text{wtkef}} \cdot \sqrt{\frac{d_{\text{A1Ref}}^2 - d_{\text{b1Ref}}^2}{d_{\text{w1Ref}}^2 - d_{\text{b1Ref}}^2}}
$$
 (14) $v_{r1, \text{ARef}} = 1.056 \text{ m/s}$

$$
v_{r1, \text{CRef}} = 2 \cdot \pi \cdot \frac{n_{\text{IRef}}}{60} \cdot \frac{d_{\text{w1Ref}}}{2000} \cdot \sin \alpha_{\text{wtRef}} \tag{14} \tag{14} \quad v_{r1, \text{CRef}} = 3.292 \text{ m/s}
$$

$$
v_{r2, \text{AREf}} = 2 \cdot \pi \cdot \frac{n_{1\text{Ref}}}{60 \cdot u_{\text{Ref}}} \cdot \frac{d_{w2\text{Ref}}}{2000} \cdot \sin \alpha_{w\text{tRef}} \cdot \sqrt{\frac{d_{A2\text{Ref}}^2 - d_{b2\text{Ref}}^2}{d_{w2\text{Ref}}^2 - d_{b2\text{Ref}}^2}} \quad (15) \quad v_{r2, \text{AREf}} = 4,782 \text{ m/s}
$$

$$
v_{\text{r2,CRef}} = 2 \cdot \pi \cdot \frac{n_{\text{1Ref}}}{60 \cdot u_{\text{Ref}}} \cdot \frac{d_{\text{w2Ref}}}{2000} \cdot \sin \alpha_{\text{wtRef}}
$$
 (15) $v_{\text{r2,CRef}} = 3,292 \text{ m/s}$

$$
v_{g,ARef} = v_{r1,ARef} - v_{r2,ARef}
$$
 (81) $v_{g,ARef} = -3,726$ m/s

$$
v_{\Sigma,\text{ARef}} = v_{r1,\text{ARef}} + v_{r2,\text{ARef}}
$$
\n
$$
(13) \quad v_{\Sigma,\text{ARef}} = 5,838 \text{ m/s}
$$

 $v_{\Sigma, \text{CRef}} = v_{r1, \text{CRef}} + v_{r2, \text{CRef}}$ (13) $v_{\Sigma, \text{CRef}} = 6.583 \text{ m/s}$

 $Ra_{\text{Ref}} = 0.5 \cdot (Ra_{1\text{Ref}} + Ra_{2\text{Ref}})$ (3) $Ra_{\text{Ref}} = 0.50 \text{ µm}$

4.1.4.4 Calculation of lubricant data

$$
\theta_{\rm oilRef} = \theta_{\rm oil} = 90\ {\rm ^oC}
$$

 $\eta_{\text{BoilRef}} = \eta_{\text{Boil}} = 0.021 \text{ N} \cdot \text{s} / \text{m}^2$

*X*SRef = 1,2 for injection lubrication

4.1.4.5 Calculation of the permissible specific lubricant film thickness

$$
X_{\text{RRef}} = 2,2 \cdot \left(\frac{Ra_{\text{Ref}}}{\rho_{\text{n,CRef}}}\right)^{0,25} \tag{87} \tag{87} X_{\text{RRef}} = 1,087
$$

$$
K_{\rm B\gamma Ref} = 1.0 \text{ for } \varepsilon_{\gamma} < 2 \tag{88}
$$

 $\Pi K_{\text{Ref}} = K_{\text{ARef}} \cdot K_{\text{VRef}} \cdot K_{\text{H} \alpha \text{Ref}} \cdot K_{\text{H} \beta \text{Ref}} \cdot K_{\text{B} \nu \text{Ref}}$ (Fig. 1) $K_{\text{Ref}} = 1.155$

$$
\mu_{\text{mRef}} = 0.045 \cdot \left(\frac{\prod_{\text{Ref}} K_{\text{Ref}} \cdot F_{\text{btkef}}}{b_{\text{Ref}} \cdot v_{\Sigma, \text{CRef}} \cdot \rho_{\text{n}, \text{CRef}}}\right)^{0,2} \cdot \left(10^3 \cdot \eta_{\text{bollRef}}\right)^{-0,05} \cdot X_{\text{RRef}} \cdot X_{\text{L}} \text{ (86) } \mu_{\text{mRef}} = 0.063
$$

$$
H_{\text{vRef}} = \left(\varepsilon_{1\text{Ref}}^2 + \varepsilon_{2\text{Ref}}^2 + 1 - \varepsilon_{\alpha\text{Ref}}\right) \cdot \left(\frac{1}{z_{1\text{Ref}}} + \frac{1}{z_{2\text{Ref}}}\right) \cdot \frac{\pi}{\cos\beta_{\text{bRef}}}
$$
 for
\n $\varepsilon_{\alpha} < 2$ (91) $H_{\text{vRef}} = 0.195$

 $X_{\text{CaRef}} = 1.0$ for no profile modification (method B) (101)

 $\left(\frac{1}{\theta_{\text{MRef}} + 273}\right)$ $\left(\frac{1}{2(1+272)} - \frac{1}{211}\right)$

 $1+516 \cdot \left(\frac{1}{2^{12}} - \frac{1}{211} \right)$

 α_{38} 1+516 $\left(\frac{1}{\theta_{\text{MDef}}+273}\right)$

v

 $= \eta_{\text{~0MRef}} \cdot \frac{P_{2,\text{AKer}}}{2000 \cdot E_{\text{rRef}} \cdot \rho_{\text{n. ARef}}}$

dyn,ARef

2

rRef

 $2 \cdot \pi \cdot p_{\text{dyn ARef}}^2$

,ARef

 $\alpha_{\theta MRef} = \alpha_{38} \cdot 1 + 516 \cdot \frac{\theta_{MRef}}{\theta_{MRef}}$ $= \alpha_{38} \cdot | 1 + 516 \cdot$

L \mathbf{r} I

 $G_{MRef} = 10^6 \cdot \alpha_{\theta MRef} \cdot E_{rRef}$

 A Ref $=$ η θ MRef \cdot $\overline{2000 \cdot E}$

π

 $W_{\text{ARef}} = \frac{2 \cdot \pi \cdot p}{p}$ $_{\text{ARef}} = \frac{E}{E}$

=

$$
\theta_{\text{MRef}} = \theta_{\text{oilRef}} + 7400 \cdot \left(\frac{P_{\text{Ref}} \cdot \mu_{\text{mRef}} \cdot H_{\text{vRef}}}{a_{\text{Ref}} \cdot b_{\text{Ref}}} \right)^{0.72} \cdot \frac{X_{\text{SRef}}}{1.2 \cdot X_{\text{CaRef}}} \tag{84} \theta_{\text{MRef}} = 115.9 \text{ °C}
$$

 $log[log(v_{\theta MRef} + 0.7)] = A \cdot log(\theta_{MRef} + 273) + B$ (17) $v_{\theta MRef} = 12,317$ mm²/s

$$
\rho_{\text{BMRef}} = \rho_{15} \cdot \left[1 - 0.7 \cdot \frac{\left(\theta_{\text{MRef}} + 273 \right) - 289}{\rho_{15}} \right]
$$
\n(20) $\rho_{\text{BMRef}} = 825.1 \text{ kg/m}^3$

J

1

 $\overline{}$

 \Box $\overline{}$ $\overline{}$

 $\eta_{\text{MRef}} = 10^{-6} \cdot v_{\text{MRef}} \cdot \rho_{\text{MRef}}$ (16) $\eta_{\text{MRef}} = 0.010 \text{ N} \cdot \text{s/m}^2$

$$
\frac{1}{311}
$$
 | (8) $\alpha_{\text{bMRef}} = 1.436 \cdot 10^{-8} \text{ m}^2/\text{N}$

(5)
$$
G_{MRef} = 3249.9
$$

$$
\frac{v_{\Sigma,\text{AREf}}}{2000 \cdot E_{\text{vDef}} \cdot \rho_{\text{n} \text{ABC}}}
$$
(12) $U_{\text{AREf}} = 3.354 \cdot 10^{-11}$

$$
(22) WAREf = 1,825 \cdot 10^{-4}
$$

$$
\bullet
$$
 ISO 2014 – All rights reserved

U

$$
\theta_{\rm fl, ARef}=\frac{\sqrt{\pi}}{2}\cdot\frac{10^6\cdot\mu_{\rm mRef}\cdot p_{\rm dyn, ARef}\cdot\left|v_{\rm g, ARef}\right|}{B_{\rm M1Ref}\sqrt{v_{\rm r1, ARef}}+B_{\rm M2Ref}\sqrt{v_{\rm r2, ARef}}}\cdot\sqrt{8\cdot\rho_{\rm n, ARef}\cdot\frac{p_{\rm dyn, ARef}}{1000\cdot E_{\rm rRef}}}\text{ (80) }\theta_{\rm fl, ARef}\text{ = 82.5 °C}
$$

$$
\theta_{\text{B,AREf}} = \theta_{\text{MRef}} + \theta_{\text{fl,AREf}}
$$
\n
$$
(79) \theta_{\text{B,AREf}} = 198.3 \text{ °C}
$$

$$
log[log(v_{\theta B,AREf} + 0.7)] = A \cdot log(\theta_{B,AREf} + 273) + B
$$
\n(30) $v_{\theta B,AREf} = 3.112 \text{ mm}^2/\text{s}$

$$
\rho_{\text{BB,AREf}} = \rho_{15} \cdot \left[1 - 0.7 \cdot \frac{\left(\theta_{\text{B,AREf}} + 273 \right) - 289}{\rho_{15}} \right]
$$
(33) $\rho_{\text{BB,AREf}} = 767.4 \text{ kg/m}^3$

$$
\eta_{\theta B, ARef} = 10^{-6} \cdot v_{\theta B, ARef} \cdot \rho_{\theta B, ARef}
$$
\n
$$
\alpha_{\theta B, ARef} = \alpha_{38} \cdot \left[1 + 516 \cdot \left(\frac{1}{\theta_{B, ARef} + 273} - \frac{1}{311} \right) \right]
$$
\n(28) $\alpha_{\theta B, ARef} = 9,364 \cdot 10^{-9} \text{ m}^2/\text{N}$

$$
S_{GF,AREf} = \frac{\alpha_{\theta B,AREf} \cdot \eta_{\theta B,AREf}}{\alpha_{\theta MRef} \cdot \eta_{\theta MRef}}
$$
(27) S_{GF,AREf} = 0.153

$$
h_{\text{ARef}} = 1600 \cdot \rho_{\text{n,ARef}} \cdot G_{\text{MRef}}^{0.6} \cdot U_{\text{ARef}}^{0.7} \cdot W_{\text{ARef}}^{-0.13} \cdot S_{\text{GF,ARef}}^{0.22} \tag{4} \quad h_{\text{ARef}} = 0.075 \, \mu \text{m}
$$

$$
\lambda_{\text{GFT}} = \lambda_{\text{GF,AREf}} = \frac{h_{\text{AREf}}}{R a_{\text{Ref}}}
$$
\n(2) $\lambda_{\text{GFT}} = 0.151$

$$
\lambda_{\text{GFP}} = 1.4 \cdot W_{\text{W}} \cdot \lambda_{\text{GFT}} \tag{2.11}
$$

4.2 Example 2 — Spur gear

The result of this example is confirmed by experimental investigations. The gears were obviously micropitted and had profile deviations of approximately 15 µm. <u>[Figure](#page-27-1) 2</u> shows a diagram of the observed location and severity of micropitting for the pinion of example 2.

Key

1 tip

2 root

Figure 2 — Diagram of schematic profile deviations of the pinion for example 2

NOTE Example 2 is only calculated according to method B. Furthermore, no modifications for the calculation according to method B were considered.

4.2.1 Input data

Table 8 — Input data for Example 2

Table 8 *(continued)*

4.2.2 Calculation according to method B

4.2.2.1 Calculation of gear geometry (according to ISO [21771](http://dx.doi.org/10.3403/30112628U))

Basic values:

$$
\alpha_{t} = \arctan\left(\frac{\tan\alpha_{n}}{\cos\beta}\right)
$$
\n
$$
\alpha_{t} = 20,000^{\circ}
$$

$$
d_{b1} = d_1 \cdot \cos \alpha_t \qquad d_{b1} = 187,939 \text{ mm}
$$

$$
d_{\text{b2}} = d_2 \cdot \cos \alpha_{\text{t}} \qquad d_{\text{b2}} = 187,939 \text{ mm}
$$

$$
d_{\rm w1} = \frac{2 \cdot a}{u + 1}
$$
 $d_{\rm w1} = 200,000 \text{ mm}$

$$
d_{\text{w2}} = 2 \cdot a - d_{\text{w1}} \qquad d_{\text{w2}} = 200,000 \text{ mm}
$$

$$
\alpha_{\text{wt}} = \arccos\left[\frac{(z_1 + z_2) \cdot m_t \cdot \cos \alpha_t}{2 \cdot a}\right] \qquad \alpha_{\text{wt}} = 20,000 \text{°}
$$

$$
\beta_b = \arcsin\left(\sin\beta \cdot \cos\alpha_n\right) \qquad \beta_b = 0^\circ
$$

 $p_{\text{et}} = m_{\text{t}} \cdot \pi \cdot \cos \alpha_{\text{t}}$ *p*et = 29,521 mm

$$
\varepsilon_1 = \frac{z_1}{2 \cdot \pi} \cdot \left[\sqrt{\left(\frac{d_{\text{a1}}}{d_{\text{b1}}}\right)^2 - 1} - \tan \alpha_{\text{wt}} \right]
$$

$$
\varepsilon_1 = 0.778
$$

$$
\varepsilon_2 = \frac{z_2}{2 \cdot \pi} \cdot \left[\sqrt{\left(\frac{d_{\text{a2}}}{d_{\text{b2}}}\right)^2 - 1} - \tan \alpha_{\text{wt}} \right]
$$

$$
\varepsilon_2 = 0.778
$$

$$
\varepsilon_{\alpha} = \frac{1}{p_{\text{et}}} \left(\sqrt{\frac{d_{\text{a1}}^2}{4} - \frac{d_{\text{b1}}^2}{4}} + \sqrt{\frac{d_{\text{a2}}^2}{4} - \frac{d_{\text{b2}}^2}{4}} - a \cdot \sin \alpha_{\text{wt}} \right) \qquad \varepsilon_{\alpha} = 1.557
$$

$$
\varepsilon_{\beta} = \frac{b \cdot \sin \beta}{m_{\text{n}} \cdot \pi} \qquad \qquad \varepsilon_{\beta} = 0
$$

$$
\varepsilon_{\gamma} = \varepsilon_{\alpha} + \varepsilon_{\beta} \qquad \qquad \varepsilon_{\gamma} = 1.557
$$

$$
g_{\alpha} = 0.5 \cdot \left(\sqrt{{d_{a1}}^2 - {d_{b1}}^2} + \sqrt{{d_{a2}}^2 - {d_{b2}}^2}\right) - a \cdot \sin \alpha_{wt} \qquad g_{\alpha} = 45,960 \text{ mm}
$$

Coordinates of the basic points (A, AB, B, C, D, DE, E) on the line of action:

$$
g_{A} = 0 \text{ mm}
$$
\n
$$
g_{AB} = \frac{g_{\alpha} - p_{\text{et}}}{2}
$$
\n(34)
$$
g_{A} = 0 \text{ mm}
$$
\n(35)
$$
g_{AB} = 8,219 \text{ mm}
$$

 $g_B = g_\alpha - p_{\text{et}}$ (36) $g_B = 16,439 \text{ mm}$

$$
g_C = \frac{d_{b1}}{2} \cdot \tan \alpha_{wt} - \sqrt{\frac{d_{a1}^2}{4} - \frac{d_{b1}^2}{4}} + g_{\alpha}
$$
 (37) $g_C = 22,980 \text{ mm}$

$$
g_{\rm D} = p_{\rm et} \tag{38} g_{\rm D} = 29{,}521 \text{ mm}
$$

$$
g_{DE} = \frac{g_{\alpha} - p_{\text{et}}}{2} + p_{\text{et}}
$$
 (39) $g_{DE} = 37,741 \text{ mm}$

$$
g_{\rm E} = g_{\alpha} \tag{40} g_{\rm E} = 45,960 \text{ mm}
$$

$$
d_{A1} = 2 \cdot \sqrt{\frac{d_{b1}^{2}}{4} + \left(\sqrt{\frac{d_{a1}^{2}}{4} - \frac{d_{b1}^{2}}{4}} - g_{\alpha} + g_{A}\right)^{2}}
$$
 (41) $d_{A1} = 189,274 \text{ mm}$

$$
d_{AB1} = 191,919 \text{ mm}
$$
 $d_{B1} = 195,912 \text{ mm}$ $d_{C1} = 200,00 \text{ mm}$
 $d_{D1} = 204,844 \text{ mm}$ $d_{DE1} = 211,920 \text{ mm}$ $d_{E1} = 220,000 \text{ mm}$

$$
d_{A2} = 2 \cdot \sqrt{\frac{d_{b2}^2}{4} + \left(\sqrt{\frac{d_{a2}^2}{4} - \frac{d_{b2}^2}{4}} - g_A\right)^2}
$$
 (42) $d_{A2} = 220,000 \text{ mm}$

$$
d_{AB2} = 211,920 \text{ mm}
$$
 $d_{B2} = 204,844 \text{ mm}$ $d_{C2} = 200,000 \text{ mm}$
 $d_{D2} = 195,912 \text{ mm}$ $d_{DE2} = 191,919 \text{ mm}$ $d_{E2} = 189,274 \text{ mm}$

Normal radius of relative curvature:

ρ $n,A = \frac{\rho_{t,A}}{\cos \beta}$ t,A b (45) $\rho_{n,A} = 9.381 \text{ mm}$

$$
\rho_{n,AB} = 13,916 \text{ mm}
$$
 $\rho_{n,B} = 16,475 \text{ mm}$ $\rho_{n,C} = 17,101 \text{ mm}$
\n $\rho_{n,D} = 16,475 \text{ mm}$ $\rho_{n,DE} = 13,916 \text{ mm}$ $\rho_{n,E} = 9,381 \text{ mm}$

4.2.2.2 Calculation of material data

$$
E_r = 2 \cdot \left(\frac{1 - {v_1}^2}{E_1} + \frac{1 - {v_2}^2}{E_2}\right)^{-1}
$$
 (6) $E_r = 226374 \text{ N/mm}^2$

$$
B_{\rm M1} = \sqrt{\lambda_{\rm M1} \cdot \rho_{\rm M1} \cdot c_{\rm M1}}
$$
 (82)
$$
B_{\rm M1} = 12\ 427.4\ \text{N/(m}\,\text{s}^{0.5}\,\text{K})
$$

$$
B_{\text{M2}} = \sqrt{\lambda_{\text{M2}} \cdot \rho_{\text{M2}} \cdot c_{\text{M2}}}
$$
 (83)
$$
B_{\text{M2}} = 12 \, 427.4 \, \text{N/(m/s0.5K)}
$$

4.2.2.3 Calculation of operating conditions

Loading:

$$
P = 2 \cdot \pi \cdot \frac{n_1}{60} \cdot \frac{T_1}{1000}
$$
 (85)
$$
P = 251 \text{ kW}
$$

$$
F_{\rm t} = 2000 \cdot \frac{T_1}{d_1} \tag{24.000 N}
$$

$$
F_{\text{bt}} = 2000 \cdot \frac{T_1}{d_{\text{b1}}} \qquad F_{\text{bt}} = 25540 \text{ N}
$$

Local load sharing factor:

NOTE No tooth flank modifications, spur gears, gear quality ≤ 7 (see ISO/TR [15144-1:2014,](http://dx.doi.org/10.3403/30284819) Figure 2).

$$
X_{A} = \frac{Q - 2}{15} + \frac{1}{3} \cdot \frac{g_{A}}{g_{B}}
$$
(46)
$$
X_{A} = 0.333
$$

$$
X_{AB} = 0.500
$$

$$
X_{D} = 1,000
$$

$$
X_{D} = 1,000
$$

$$
X_{D} = 0.500
$$

$$
X_{E} = 0.333
$$

Elasticity factor:

$$
Z_{\rm E} = \sqrt{\frac{E_{\rm r}}{2 \cdot \pi}} \tag{26} \qquad Z_{\rm E} = 189,812 \, \text{(N/mm2)}^{\rm 0.5}
$$

Local Hertzian contact stress:

$$
p_{\text{H,A,B}} = Z_{\text{E}} \cdot \sqrt{\frac{F_{\text{t}} \cdot X_{\text{A}}}{b \cdot \rho_{\text{n,A}} \cdot \cos \alpha_{\text{t}} \cdot \cos \beta_{\text{b}}}}
$$
(25) $p_{\text{H,A,B}} = 1\,476\,\text{N/mm}^2$

$$
p_{H,AB,B} = 1.485 \text{ N/mm}^2
$$
 $p_{H,B,B} = 1.930 \text{ N/mm}^2$ $p_{H,C,B} = 1.894 \text{ N/mm}^2$

 $p_{\text{H},\text{D},\text{B}} = 1930 \text{ N/mm}^2$ $p_{\text{H},\text{DE},\text{B}} = 1485 \text{ N/mm}^2$ $p_{\text{H},\text{E},\text{B}} = 1476 \text{ N/mm}^2$

$$
p_{\text{dyn,A,B}} = p_{\text{H,A,B}} \cdot \sqrt{K_{\text{A}} \cdot K_{\text{v}} \cdot K_{\text{H}\alpha} \cdot K_{\text{H}\beta}}
$$
 (24) $p_{\text{dyn,A,B}} = 1.541 \text{ N/mm}^2$

$$
p_{dyn,AB,B} = 1\,550\,\text{N/mm}^2
$$
\n
$$
p_{dyn,B,B} = 2\,014\,\text{N/mm}^2
$$
\n
$$
p_{dyn,D,B} = 2\,014\,\text{N/mm}^2
$$
\n
$$
p_{dyn,D,B} = 2\,014\,\text{N/mm}^2
$$
\n
$$
p_{dyn,D,B} = 1\,550\,\text{N/mm}^2
$$
\n
$$
p_{dyn,E,B} = 1\,541\,\text{N/mm}^2
$$

Velocity:

$$
v_{g,A} = v_{r1,A} - v_{r2,A}
$$
\n(81)
$$
v_{g,A} = -4.813 \text{ m/s}
$$
\n
$$
v_{g,B} = -3.091 \text{ m/s}
$$
\n
$$
v_{g,D} = 1.370 \text{ m/s}
$$
\n
$$
v_{g,D} = 1.370 \text{ m/s}
$$
\n
$$
v_{g,D} = 3.091 \text{ m/s}
$$
\n
$$
v_{g,E} = 4.813 \text{ m/s}
$$
\n
$$
v_{g,A} = v_{r1,A} + v_{r2,A}
$$
\n(13)
$$
v_{\Sigma,A} = 7.163 \text{ m/s}
$$

Effective arithmetic mean roughness value:

$$
Ra = 0.5 \cdot (Ra_1 + Ra_2)
$$
 (3) $Ra = 0.80 \text{ }\mu\text{m}$

4.2.2.4 Calculation of lubricant data

*X*L = 1,0 for mineral oil (see ISO/TR 15144-1:2014, Table 3)

 $\alpha_{38} = 2{,}657 \cdot 10^{-8} \cdot \eta_{38}^{0,1348}$ (9) $\alpha_{38} = 2{,}05 \cdot 10^{-8} \text{ m}^2/\text{N}$

 $X_S = 1,2$ for injection lubrication

4.2.2.5 Calculation of the material parameter

Mean coefficient of friction:

$$
X_R = 2.2 \cdot \left(\frac{Ra}{\rho_{n,C}}\right)^{0.25}
$$
 (87) $X_R = 1.023$

$$
K_{\rm B\gamma} = 1.0 \text{ for } \varepsilon_{\gamma} < 2 \tag{88}
$$

$$
\mu_{\rm m} = 0.045 \cdot \left(\frac{K_{\rm A} \cdot K_{\rm v} \cdot K_{\rm H\alpha} \cdot K_{\rm H\beta} \cdot F_{\rm bt} \cdot K_{\rm B\gamma}}{b \cdot v_{\Sigma, \rm C} \cdot \rho_{\rm n, C}} \right)^{0,2} \cdot \left(10^3 \cdot \eta_{\rm \theta oil} \right)^{-0,05} \cdot X_{\rm R} \cdot X_{\rm L} \text{ (86)} \qquad \mu_{\rm m} = 0.067
$$

Bulk temperature:

$$
H_{\rm v} = \left(\varepsilon_1^2 + \varepsilon_2^2 + 1 - \varepsilon_\alpha\right) \cdot \left(\frac{1}{z_1} + \frac{1}{z_2}\right) \cdot \frac{\pi}{\cos \beta_{\rm b}} \quad \text{for } \varepsilon_\alpha < 2 \tag{91} \qquad H_{\rm v} = 0,206
$$

 $\varepsilon_{\text{max}} = \varepsilon_1 = \varepsilon_2$

 $X_{Ca} = 1.0$ for no adequate profile modification (method B) (101)

$$
\theta_{\rm M} = \theta_{\rm oil} + 7\ 400 \cdot \left(\frac{P \cdot \mu_{\rm m} \cdot H_{\rm v}}{a \cdot b}\right) 0.72 \cdot \frac{X_{\rm s}}{1.2 \cdot X_{\rm Ca}} \tag{84} \theta_{\rm M} = 126.6 \,^{\circ}\text{C}
$$

Material parameter:

$$
G_{\rm M} = 10^6 \cdot \alpha_{\rm \theta M} \cdot E_{\rm r}
$$
 (5) $G_{\rm M} = 2936.2$

4.2.2.6 Calculation of the velocity parameter

$$
U_A = \eta_{\theta M} \cdot \frac{v_{\Sigma, A}}{2000 \cdot E_{\Gamma} \cdot \rho_{\text{n}, A}}
$$
 (12) $U_A = 1,087 \cdot 10^{-11}$

4.2.2.7 Calculation of the load parameter

$$
W_{A} = \frac{2 \cdot \pi \cdot p_{\text{dyn},A}^{2}}{E_{r}^{2}}
$$
 (22) $W_{A} = 2.913 \cdot 10^{-4}$

$$
W_{\text{AB}} = 2.946 \cdot 10^{-4}
$$

\n
$$
W_{\text{B}} = 4.976 \cdot 10^{-4}
$$

\n
$$
W_{\text{C}} = 4.794 \cdot 10^{-4}
$$

\n
$$
W_{\text{C}} = 4.794 \cdot 10^{-4}
$$

\n
$$
W_{\text{C}} = 4.794 \cdot 10^{-4}
$$

\n
$$
W_{\text{C}} = 2.913 \cdot 10^{-4}
$$

4.2.2.8 Calculation of the sliding parameter

Local flash temperature:

$$
\theta_{\text{fl},A} = \frac{\sqrt{\pi}}{2} \cdot \frac{10^6 \cdot \mu_{\text{m}} \cdot p_{\text{dyn},A} \cdot \left| v_{\text{g},A} \right|}{B_{\text{M1}} \sqrt{v_{\text{r1},A}} + B_{\text{M2}} \sqrt{v_{\text{r2},A}}} \cdot \sqrt{8 \cdot \rho_{\text{n},A} \cdot \frac{p_{\text{dyn},A}}{1000 \cdot E_{\text{r}}}}
$$
(80) $\theta_{\text{fl},A} = 225,7 \text{ °C}$
 $\theta_{\text{fl},AB} = 170,3 \text{ °C}$
 $\theta_{\text{fl},D} = 119,2 \text{ °C}$
 $\theta_{\text{fl},DE} = 170,3 \text{ °C}$
 $\theta_{\text{fl},E} = 225,7 \text{ °C}$

Local contact temperature as sum of bulk and local flash temperature:

$$
\theta_{\text{B,A}} = \theta_{\text{M}} + \theta_{\text{fl,A}} \tag{79} \theta_{\text{B,A}} = 352.3 \text{ °C}
$$

$$
\theta_{B,AB} = 296.9 \text{ °C}
$$
\n
$$
\theta_{B,B} = 245.8 \text{ °C}
$$
\n
$$
\theta_{B,D} = 245.8 \text{ °C}
$$
\n
$$
\theta_{B,D} = 245.8 \text{ °C}
$$
\n
$$
\theta_{B,D} = 296.9 \text{ °C}
$$
\n
$$
\theta_{B,E} = 352.3 \text{ °C}
$$

Local sliding parameter:

$$
S_{\text{GF,A}} = \frac{\alpha_{\text{BB,A}} \cdot \eta_{\text{BB,A}}}{\alpha_{\text{QM}} \cdot \eta_{\text{BM}}}
$$
 (27) $S_{\text{GF,A}} = 0.024$

$$
S_{GF,AB} = 0.049
$$

\n $S_{GF,D} = 0.102$
\n $S_{GF,D} = 0.102$
\n $S_{GF,D} = 0.049$
\n $S_{GF,E} = 0.024$

4.2.2.9 Calculation of the lubricant film thickness

$$
h_{A} = 1600 \cdot \rho_{n,A} \cdot G_{M}^{0.6} \cdot U_{A}^{0.7} \cdot W_{A}^{-0.13} \cdot S_{GFA}^{0.22}
$$
 (4) $h_{A} = 0.048 \text{ }\mu\text{m}$

$$
h_{AB} = 0.064 \text{ }\mu\text{m}
$$
 $h_B = 0.074 \text{ }\mu\text{m}$ $h_C = 0.124 \text{ }\mu\text{m}$
\n $h_D = 0.074 \text{ }\mu\text{m}$ $h_D = 0.048 \text{ }\mu\text{m}$

4.2.2.10 Calculation of the specific lubricant film thickness

$$
\lambda_{GF,A} = \frac{h_A}{Ra}
$$
\n(2) $\lambda_{GF,A} = 0.060$
\n $\lambda_{GF,B} = 0.092$ $\lambda_{GF,E} = 0.155$
\n $\lambda_{GF,D} = 0.092$ $\lambda_{GF,E} = 0.060$
\n $\lambda_{GF,min} = \lambda_{GF,A}$ $\lambda_{GF,min} = 0.060$

4.2.2.11 Calculation of the micropitting safety factor

$$
S_{\lambda} = \frac{\lambda_{\text{GF,min}}}{\lambda_{\text{GFP}}} \tag{1} \qquad S_{\lambda} = 0.353
$$

The final results for the calculation of the safety factor against micropitting, *Sλ,* for example 2 are shown in [Table](#page-34-0) 9.

Point	A	AB	В	C	D	DE	E
λ GF,Y	0,060	0,080	0,092	0,155	0,092	0,080	0,060
λ GF,min		0,060					
λ GFP		0,171					
S_{λ}	0,353						

Table 9 — Results of calculation according to method B — Example 2

NOTE With reference to ISO 15144-1, 5.4, for θ_{oilRef} the oil temperature, at which the test was performed, has to be used. Micropitting load capacity is significantly influenced by additives, often more than by the viscosity. As the effectiveness of additives depends significantly on temperature, it is recommended to test the oil at the temperature used in the application.

Normally, the FZG-FVA micropitting test^{[\[1\]](#page-54-1)} is executed at 90 °C oil temperature. The data from oil providers should contain together with the failure load stage SKS also the test temperature.

4.3 Example 3 — Helical gear

The result of this example is confirmed by experimental investigations. The gears were obviously micropitted and had profile deviations of approximately 10 μ m (pinion) and 5 μ m (wheel). [Figure](#page-35-1) 3 shows a diagram of the observed location and severity of micropitting for pinion and wheel of example 3.

1 tip 2 root

Key

Figure 3 — Diagram of schematic profile deviations of pinion and wheel for example 3

NOTE For the calculation according to method B, no modifications were considered.

4.3.1 Input data

Table 10 — Input data for Example 3

Table 10 *(continued)*

4.3.2 Calculation according to method B

4.3.2.1 Calculation of gear geometry (according to ISO [21771](http://dx.doi.org/10.3403/30112628U))

Basic values:

$$
p_{\rm et} = m_{\rm t} \cdot \pi \cdot \cos \alpha_{\rm t} \qquad p_{\rm et} = 13,997 \, \text{mm}
$$

$$
\varepsilon_1 = \frac{z_1}{2 \cdot \pi} \cdot \left[\sqrt{\left(\frac{d_{\text{a1}}}{d_{\text{b1}}}\right)^2 - 1} - \tan \alpha_{\text{wt}} \right]
$$

$$
\varepsilon_1 = 0.771
$$

$$
\varepsilon_2 = \frac{z_2}{2 \cdot \pi} \cdot \left[\sqrt{\left(\frac{d_{\rm a2}}{d_{\rm b2}}\right)^2 - 1} - \tan \alpha_{\rm wt} \right]
$$

$$
\varepsilon_2 = 0.774
$$

$$
\varepsilon_{\alpha} = \frac{1}{p_{\text{et}}} \left(\sqrt{\frac{d_{\text{a1}}^2}{4} - \frac{d_{\text{b1}}^2}{4}} + \sqrt{\frac{d_{\text{a2}}^2}{4} - \frac{d_{\text{b2}}^2}{4}} - a \cdot \sin \alpha_{\text{wt}} \right) \qquad \varepsilon_{\alpha} = 1.545
$$

$$
\varepsilon_{\beta} = \frac{b \cdot \sin \beta}{m_{\text{n}} \cdot \pi} \qquad \varepsilon_{\beta} = 1.043
$$

$$
\varepsilon_{\gamma} = \varepsilon_{\alpha} + \varepsilon_{\beta} \qquad \qquad \varepsilon_{\gamma} = 2.588
$$

$$
g_{\alpha} = 0.5 \cdot \left(\sqrt{{d_{a1}}^2 - {d_{b1}}^2} + \sqrt{{d_{a2}}^2 - {d_{b2}}^2} \right) - a \cdot \sin \alpha_{wt}
$$

 $g_{\alpha} = 21,623 \text{ mm}$

Coordinates of the basic points (A, AB, B, C, D, DE, E) on the line of action:

$$
g_A = 0
$$
 mm
\n $g_{AB} = \frac{g_{\alpha} - p_{\text{et}}}{2}$ (34) $g_A = 0$ mm
\n(35) $g_{AB} = 3,813$ mm

$$
g_B = g_\alpha - p_{\text{et}} \tag{36} g_B = 7{,}626 \text{ mm}
$$

$$
g_C = \frac{d_{b1}}{2} \cdot \tan \alpha_{wt} - \sqrt{\frac{d_{a1}^2}{4} - \frac{d_{b1}^2}{4}} + g_{\alpha}
$$
 (37) $g_C = 10,832 \text{ mm}$

$$
g_{\rm D} = p_{\rm et} \tag{38} g_{\rm D} = 13,997 \text{ mm}
$$

$$
g_{DE} = \frac{g_{\alpha} - p_{\text{et}}}{2} + p_{\text{et}}
$$
 (39) $g_{DE} = 17,810 \text{ mm}$

$$
g_{\rm E} = g_{\alpha} \tag{40} \qquad g_{\rm E} = 21,623 \text{ mm}
$$

$$
d_{A1} = 2 \cdot \sqrt{\frac{d_{b1}^{2}}{4} + \left(\sqrt{\frac{d_{a1}^{2}}{4} - \frac{d_{b1}^{2}}{4}} - g_{\alpha} + g_{A}\right)^{2}}
$$
 (41) $d_{A1} = 151,162 \text{ mm}$

$$
d_{AB1} = 153,115 \text{ mm}
$$
 $d_{B1} = 155,417 \text{ mm}$ $d_{C1} = 157,612 \text{ mm}$

$$
d_{D1} = 160,002 \text{ mm}
$$
\n
$$
d_{D2} = 2 \cdot \sqrt{\frac{d_{b2}^{2}}{4} + \left(\sqrt{\frac{d_{a2}^{2}}{4} - \frac{d_{b2}^{2}}{4}} - g_{A}\right)^{2}}
$$
\n
$$
d_{A2} = 2 \cdot \sqrt{\frac{d_{b2}^{2}}{4} + \left(\sqrt{\frac{d_{a2}^{2}}{4} - \frac{d_{b2}^{2}}{4}} - g_{A}\right)^{2}}
$$
\n
$$
d_{B2} = 167,957 \text{ mm}
$$
\n
$$
d_{B2} = 164,807 \text{ mm}
$$
\n
$$
d_{C2} = 162,388 \text{ mm}
$$
\n
$$
d_{D2} = 160,216 \text{ mm}
$$
\n
$$
d_{D2} = 157,897 \text{ mm}
$$
\n
$$
d_{E2} = 155,916 \text{ mm}
$$

Normal radius of relative curvature:

$$
\rho_{n,A} = \frac{\rho_{t,A}}{\cos \beta_b}
$$
 (45) $\rho_{n,A} = 12,869 \text{ mm}$

$$
\rho_{n,AB} = 14,173 \text{ mm}
$$
 $\rho_{n,B} = 14,945 \text{ mm}$ $\rho_{n,C} = 15,183 \text{ mm}$
\n $\rho_{n,D} = 15,050 \text{ mm}$ $\rho_{n,DE} = 14,403 \text{ mm}$ $\rho_{n,E} = 13,225 \text{ mm}$

4.3.2.2 Calculation of material data

$$
E_r = 2 \cdot \left(\frac{1 - {v_1}^2}{E_1} + \frac{1 - {v_2}^2}{E_2}\right)^{-1}
$$
 (6) $E_r = 226374 \text{ N/mm}^2$

$$
B_{M1} = \sqrt{\lambda_{M1} \cdot \rho_{M1} \cdot c_{M1}}
$$
\n(82)
$$
B_{M1} = 12 \, 427.4 \, \text{N/(ms0.5K)}
$$
\n
$$
B_{M2} = \sqrt{\lambda_{M2} \cdot \rho_{M2} \cdot c_{M2}}
$$
\n(83)
$$
B_{M2} = 12 \, 427.4 \, \text{N/(ms0.5K)}
$$

4.3.2.3 Calculation of operating conditions

Loading:

$$
P = 2 \cdot \pi \cdot \frac{n_1}{60} \cdot \frac{T_1}{1000}
$$
 (85) $P = 1257 \text{ kW}$

$$
F_{\rm t} = 2000 \cdot \frac{T_1}{d_1}
$$
 $F_{\rm t} = 50758 \text{ N}$

$$
F_{\text{bt}} = 2000 \cdot \frac{T_1}{d_{\text{b1}}} \tag{F_{\text{bt}} = 54413 \text{ N}
$$

Local load sharing factor:

NOTE Helical gears, *ε*^β ≥ 1, unmodified profile (see ISO/TR [15144-1:2014](http://dx.doi.org/10.3403/30284819), Figure 12).

$$
X_{A} = \frac{1}{\varepsilon_{\alpha}} \cdot X_{\text{but},A} \tag{69}
$$

$$
X_{A} = 0.841
$$

$$
(X_{\text{but},A} = 1.3)
$$

Elasticity factor:

$$
Z_{\rm E} = \sqrt{\frac{E_{\rm r}}{2 \cdot \pi}} \tag{26} \qquad Z_{\rm E} = 189,812 \, \text{(N/mm2)}^{\rm 0.5}
$$

Local Hertzian contact stress:

$$
p_{H,A,B} = Z_{E} \cdot \sqrt{\frac{F_{t} \cdot X_{A}}{b \cdot \rho_{n,A} \cdot \cos \alpha_{t} \cdot \cos \beta_{b}}}
$$
(25) $p_{H,A,B} = 1752 \text{ N/mm}^2$
\n $p_{H,B,B} = 1464 \text{ N/mm}^2$ $p_{H,B,B} = 1426 \text{ N/mm}^2$ $p_{H,C,B} = 1415 \text{ N/mm}^2$
\n $p_{dyn,A,B} = p_{H,A,B} \cdot \sqrt{K_{A} \cdot K_{v} \cdot K_{H\alpha} \cdot K_{H\beta}}$ (24) $p_{dyn,A,B} = 1883 \text{ N/mm}^2$
\n $p_{dyn,A,B} = 1574 \text{ N/mm}^2$ $p_{dyn,B,B} = 1532 \text{ N/mm}^2$ $p_{dyn,C,B} = 1520 \text{ N/mm}^2$
\n $p_{dyn,D,B} = 1527 \text{ N/mm}^2$ $p_{dyn,DE,B} = 1561 \text{ N/mm}^2$ $p_{dyn,E,B} = 1857 \text{ N/mm}^2$

Velocity:

$$
v_{g,A} = v_{r1,A} - v_{r2,A}
$$
\n(81) $v_{g,A} = -6,706 \text{ m/s}$
\n $v_{g,AB} = -4,345 \text{ m/s}$ $v_{g,B} = -1,984 \text{ m/s}$ $v_{g,C} = 0 \text{ m/s}$
\n $v_{g,D} = 1,959 \text{ m/s}$ $v_{g,DE} = 4,320 \text{ m/s}$ $v_{g,E} = 6,681 \text{ m/s}$
\n $v_{\Sigma,A} = v_{r1,A} + v_{r2,A}$ (13) $v_{\Sigma,A} = 17,743 \text{ m/s}$
\n $v_{\Sigma,AB} = 17,778 \text{ m/s}$ $v_{\Sigma,B} = 17,813 \text{ m/s}$ $v_{\Sigma,C} = 17,843 \text{ m/s}$
\n $v_{\Sigma,D} = 17,872 \text{ m/s}$ $v_{\Sigma,DE} = 17,907 \text{ m/s}$ $v_{\Sigma,E} = 17,942 \text{ m/s}$

Effective arithmetic mean roughness value:

$$
Ra = 0.5 \cdot (Ra_1 + Ra_2)
$$
 (3)
$$
Ra = 0.45 \text{ }\mu\text{m}
$$

4.3.2.4 Calculation of lubricant data

*X*L = 1,0 for mineral oil (see Table 3 in ISO/TR 15144 part 1)

$$
\alpha_{38} = 2,657 \cdot 10^{-8} \cdot \eta_{38}^{0,1348} \tag{9} \qquad \alpha_{38} = 1,88 \cdot 10^{-8} \text{ m}^2/\text{N}
$$

 $X_S = 1,2$ for injection lubrication

4.3.2.5 Calculation of the material parameter

Mean coefficient of friction:

$$
X_R = 2.2 \cdot \left(\frac{Ra}{\rho_{n,C}}\right)^{0.25}
$$
 (87) $X_R = 0.913$

$$
K_{\rm By} = 1,238 \text{ for } 2 < \varepsilon_{\gamma} < 3,5 \tag{89}
$$

$$
\mu_{\rm m} = 0.045 \cdot \left(\frac{K_{\rm A} \cdot K_{\rm v} \cdot K_{\rm H\alpha} \cdot K_{\rm H\beta} \cdot F_{\rm bt} \cdot K_{\rm B\gamma}}{b \cdot v_{\Sigma, \rm C} \cdot \rho_{\rm n, C}} \right)^{0,2} \cdot \left(10^3 \cdot \eta_{\rm \theta oil} \right)^{-0,05} \cdot X_{\rm R} \cdot X_{\rm L} \text{ (86)} \qquad \mu_{\rm m} = 0.054
$$

Bulk temperature:

$$
H_{\rm v} = \left(\varepsilon_1^2 + \varepsilon_2^2 + 1 - \varepsilon_\alpha\right) \cdot \left(\frac{1}{z_1} + \frac{1}{z_2}\right) \cdot \frac{\pi}{\cos \beta_{\rm b}} \quad \text{for } \varepsilon_\alpha < 2 \tag{91} \qquad H_{\rm v} = 0.128
$$

 $\varepsilon_{\text{max}} = \varepsilon_2$

 $X_{Ca} = 1.0$ for no adequate profile modification (method B) (101)

$$
\theta_{\rm M} = \theta_{\rm oil} + 7400 \cdot \left(\frac{P \cdot \mu_{\rm m} \cdot H_{\rm v}}{a \cdot b}\right)^{0.72} \cdot \frac{X_{\rm S}}{1.2 \cdot X_{\rm Ca}}\tag{84} \theta_{\rm M} = 149.3 \text{ °C}
$$

Material parameter:

$$
G_{\rm M} = 10^6 \cdot \alpha_{\rm \theta M} \cdot E_{\rm r}
$$
 (5) $G_{\rm M} = 2388.5$

4.3.2.6 Calculation of the velocity parameter

$$
U_{A} = \eta_{\theta M} \cdot \frac{V_{\Sigma, A}}{2000 \cdot E_{r} \cdot \rho_{n, A}}
$$
 (12) $U_{A} = 7,431 \cdot 10^{-12}$

$$
U_{AB} = 6,761 \cdot 10^{-12}
$$
 $U_B = 6,424 \cdot 10^{-12}$ $U_C = 6,334 \cdot 10^{-12}$
\n $U_D = 6,400 \cdot 10^{-12}$ $U_{DE} = 6,701 \cdot 10^{-12}$ $U_E = 7,312 \cdot 10^{-12}$

4.3.2.7 Calculation of the load parameter

$$
W_{A} = \frac{2 \cdot \pi \cdot p_{\text{dyn},A}^{2}}{E_{r}^{2}}
$$
 (22) $W_{A} = 4,347 \cdot 10^{-4}$

$$
W_{AB} = 3,036 \cdot 10^{-4}
$$

\n
$$
W_B = 2,879 \cdot 10^{-4}
$$

\n
$$
W_C = 2,834 \cdot 10^{-4}
$$

4.3.2.8 Calculation of the sliding parameter

Local flash temperature:

$$
\theta_{\text{fl},A} = \frac{\sqrt{\pi}}{2} \cdot \frac{10^6 \cdot \mu_{\text{m}} \cdot p_{\text{dyn},A} \cdot \left| v_{\text{g},A} \right|}{B_{\text{M1}} \sqrt{v_{\text{r1},A}} + B_{\text{M2}} \sqrt{v_{\text{r2},A}}} \cdot \sqrt{8 \cdot \rho_{\text{n},A} \cdot \frac{p_{\text{dyn},A}}{1000 \cdot E_{\text{r}}}}
$$
(80) $\theta_{\text{fl},A} = 241.7 \text{ °C}$

$$
\theta_{\text{fl},AB} = 124.0 \text{ °C}
$$

$$
\theta_{\text{fl},B} = 55.5 \text{ °C}
$$

$$
\theta_{\text{fl},DE} = 122.4 \text{ °C}
$$

$$
\theta_{\text{fl},E} = 237.7 \text{ °C}
$$

Local contact temperature as sum of bulk and local flash temperature:

 $\theta_{\text{BA}} = \theta_{\text{M}} + \theta_{\text{fl},\text{A}}$ (79) $\theta_{\text{BA}} = 391.0 \text{ °C}$

$$
\theta_{\text{B},\text{AB}} = 273,4 \text{ °C}
$$
\n
$$
\theta_{\text{B},\text{B}} = 204,8 \text{ °C}
$$
\n
$$
\theta_{\text{B},\text{D}} = 203,9 \text{ °C}
$$
\n
$$
\theta_{\text{B},\text{D}} = 271,7 \text{ °C}
$$
\n
$$
\theta_{\text{B},\text{E}} = 387,0 \text{ °C}
$$
\n
$$
\theta_{\text{B},\text{D}} = 271,7 \text{ °C}
$$
\n
$$
\theta_{\text{B},\text{E}} = 387,0 \text{ °C}
$$

Local sliding parameter:

$$
S_{GF,A} = \frac{\alpha_{\theta B,A} \cdot \eta_{\theta B,A}}{\alpha_{\theta M} \cdot \eta_{\theta M}}
$$
(27) $S_{GF,A} = 0.030$

$$
S_{GF,AB} = 0.135
$$

$$
S_{GF,B} = 0.361
$$

$$
S_{GF,C} = 1.000
$$

$$
S_{GF,D} = 0.366
$$

$$
S_{GF,DE} = 0.138
$$

$$
S_{GF,E} = 0.031
$$

4.3.2.9 Calculation of the lubricant film thickness

$$
h_{A} = 1600 \cdot \rho_{n,A} \cdot G_{M}^{0.6} \cdot U_{A}^{0.7} \cdot W_{A}^{-0.13} \cdot S_{GF,A}^{0.22}
$$
 (4)
$$
h_{A} = 0.045 \text{ }\mu\text{m}
$$

\n
$$
h_{AB} = 0.067 \text{ }\mu\text{m}
$$

\n
$$
h_{D} = 0.087 \text{ }\mu\text{m}
$$

\n
$$
h_{D} = 0.087 \text{ }\mu\text{m}
$$

\n
$$
h_{D} = 0.069 \text{ }\mu\text{m}
$$

\n
$$
h_{E} = 0.046 \text{ }\mu\text{m}
$$

4.3.2.10 Calculation of the specific lubricant film thickness

4.3.2.11 Calculation of the micropitting safety factor

$$
S_{\lambda} = \frac{\lambda_{\text{GF,min}}}{\lambda_{\text{GFP}}} \tag{1} \qquad S_{\lambda} = 0.884
$$

The final results for the calculation of the safety factor against micropitting, S_λ , for example 3 are shown in [Table](#page-43-1) 11.

4.3.3 Calculation according to method A

The calculation of example 3 according to method A was carried out by a 3D-calculation programme. Calculated results during method A will vary depending on the method of determining load distribution. The load distribution, on which the following calculation according to method A is based, is shown in [Table](#page-43-2) 12. The maximum values are printed in bold.

Table 12 – **Matrix** of pressure distribution – $p_{H,Y,A}$ in N/mm²

	Width in mm					
	0,0	15,5	28,5	44,0		
A	1 2 0 5	768	742	384		
AB	1572	1456	1457	1 2 7 3		
B	1568	1560	1550	1589		
$\mathbf C$	1518	1510	1530	1582		
D	1516	1529	1574	1621		
DE	1 1 9 2	1423	1454	1623		
E	250	655	765	1513		

The resulting matrix of specific lubricant film thickness according to method A is shown in [Table](#page-43-3) 13. The minimum value is printed in bold.

Table 13 — Matrix of resulting specific lubricant film thickness, λGF,Y

	Width in mm					
	0,0	15,5	28,5	44,0		
A	0,198	0,274	0,280	0,391		
AB	0,191	0,203	0,203	0,225		
B	0,244	0,245	0,246	0,242		
C	0,323	0,324	0,323	0,320		
D	0,251	0,250	0,245	0,241		
DE	0,238	0,209	0,205	0,188		
E	0,467	0,306	0,279	0,163		

For the calculation of the micropitting safety factor according to method A, the minimum value of the matrix of resulting specific lubricant film thickness, shown in [Table](#page-43-3) 13, was used.

$$
S_{\lambda} = \frac{\lambda_{\text{GF,min}}}{\lambda_{\text{GFP}}} \tag{5.1124}
$$

NOTE The difference in safety factor calculated between methods A and B in the above example 3 results from the simplified analysis of method B, in relation to the account for profile modification. In example 3, the amount of tip relief is not calculated as being optimum for the specified load; therefore, the calculations for method B are based on contact conditions with no consideration for tip relief.

4.4 Example 4 — Speed increaser

The result of this example is confirmed by experimental investigations. The gears were obviously micropitted and had profile deviations of approximately 12 μ m (pinion) and 3 μ m (wheel). [Figure](#page-35-1) 3 shows a diagram of the observed location and severity of micropitting for pinion and wheel of example 4.

NOTE It has to be considered that in example 4, the wheel is the driving gear. The beginning of tooth contact in this example is at the root of the wheel, point E.

Key

1 tip

2 root

Figure 4 — Diagram of schematic profile deviations of pinion and wheel for example 4

NOTE For the calculation according to method B, no modifications were considered.

4.4.1 Input data

Table 14 — Input data for Example 4

a Calculation according to method B: modifications assumed as not adequate; calculation according to method A: modifications recognized during calculation of pressure distribution.

Table 14 *(continued)*

NOTE With reference to ISO 15144-1, 5.4, for θ_{oilRef} the oil temperature, at which the test was performed, has to be used. Micropitting load capacity is significantly influenced by additives, often more than by the viscosity. As the effectiveness of additives depends significantly on temperature, it is recommended to test the oil at the temperature used in the application.

Normally the FZG-FVA micropitting test^{[\[1\]](#page-54-1)} is executed at 90 °C oil temperature. The data from oil providers should contain together with the failure load stage SKS also the test temperature.

4.4.2 Calculation according to method B

4.4.2.1 Calculation of gear geometry (according to ISO [21771](http://dx.doi.org/10.3403/30112628U))

Basic values:

$$
d_{\rm w1} = \frac{2 \cdot a}{u + 1}
$$
 $d_{\rm w1} = 176,114 \text{ mm}$

 $d_{\text{w2}} = 2 \cdot a - d_{\text{w1}}$ *d*_{w2} = 561,886 mm

$$
\alpha_{\text{wt}} = \arccos\left[\frac{(z_1 + z_2) \cdot m_t \cdot \cos \alpha_t}{2 \cdot a}\right] \qquad \alpha_{\text{wt}} = 22.737 \text{°}
$$

$$
\beta_b = \arcsin\left(\sin\beta \cdot \cos\alpha_n\right) \qquad \beta_b = 13,608^\circ
$$

 $p_{\text{et}} = m_{\text{t}} \cdot \pi \cdot \cos \alpha_{\text{t}}$ *p*et = 24,299 mm

$$
\varepsilon_1 = \frac{z_1}{2 \cdot \pi} \cdot \left[\sqrt{\left(\frac{d_{\text{a1}}}{d_{\text{b1}}}\right)^2 - 1} - \tan \alpha_{\text{wt}} \right]
$$

$$
\varepsilon_1 = 0.820
$$

$$
\varepsilon_2 = \frac{z_2}{2 \cdot \pi} \cdot \left[\sqrt{\left(\frac{d_{\text{a2}}}{d_{\text{b2}}}\right)^2 - 1} - \tan \alpha_{\text{wt}} \right]
$$

$$
\varepsilon_2 = 0.719
$$

$$
\varepsilon_{\alpha} = \frac{1}{p_{\text{et}}} \left(\sqrt{\frac{d_{\text{a1}}^2}{4} - \frac{d_{\text{b1}}^2}{4}} + \sqrt{\frac{d_{\text{a2}}^2}{4} - \frac{d_{\text{b2}}^2}{4}} - a \cdot \sin \alpha_{\text{wt}} \right) \qquad \varepsilon_{\alpha} = 1.539
$$

$$
\varepsilon_{\beta} = \frac{b \cdot \sin \beta}{m_{\text{n}} \cdot \pi} \qquad \qquad \varepsilon_{\beta} = 1.843
$$

$$
\varepsilon_{\gamma} = \varepsilon_{\alpha} + \varepsilon_{\beta} \tag{2}
$$

$$
g_{\alpha} = 0.5 \cdot \left(\sqrt{{d_{a1}}^2 - {d_{b1}}^2} + \sqrt{{d_{a2}}^2 - {d_{b2}}^2}\right) - a \cdot \sin \alpha_{wt} \qquad g_{\alpha} = 37,395 \text{ mm}
$$

Coordinates of the basic points (A, AB, B, C, D, DE, E) on the line of action:

$$
g_A = 0 \text{ mm}
$$
 (34) $g_A = 0 \text{ mm}$
\n $g_{AB} = \frac{g_{\alpha} - p_{\text{et}}}{2}$ (35) $g_{AB} = 6.548 \text{ mm}$

$$
g_B = g_\alpha - p_{\text{et}} \tag{36} \qquad g_B = 13,096 \text{ mm}
$$

$$
g_{\rm C} = \frac{d_{\rm b1}}{2} \cdot \tan \alpha_{\rm wt} - \sqrt{\frac{d_{\rm a1}^2}{4} - \frac{d_{\rm b1}^2}{4}} + g_{\alpha} \tag{37} \qquad g_{\rm C} = 17,479 \text{ mm}
$$

 $g_D = p_{et}$ (38) $g_D = 24,299$ mm

$$
g_{DE} = \frac{g_{\alpha} - p_{\text{et}}}{2} + p_{\text{et}}
$$
 (39) $g_{DE} = 30,847 \text{ mm}$

 $g_E = g_\alpha$ (40) $g_E = 37,395$ mm

 d_{A1} = 165,768 mm

$$
d_{A1} = 2 \cdot \sqrt{\frac{d_{b1}^{2}}{4} + \left(\sqrt{\frac{d_{a1}^{2}}{4} - \frac{d_{b1}^{2}}{4}} - g_{\alpha} + g_{A}\right)^{2}}
$$
(41)

 $d_{AB1} = 168,872$ mm $d_{B1} = 172,914$ mm $d_{C1} = 176,114$ mm

 d_{D1} = 181,821 mm d_{DE1} = 188,070 mm d_{E1} = 195,000 mm

$$
d_{A2} = 2 \cdot \sqrt{\frac{d_{b2}^2}{4} + \left(\sqrt{\frac{d_{a2}^2}{4} - \frac{d_{b2}^2}{4}} - g_A\right)^2}
$$
 (42) $d_{A2} = 576,300 \text{ mm}$

$$
d_{AB2} = 570,692 \text{ mm}
$$
 $d_{B2} = 565,333 \text{ mm}$ $d_{C2} = 561,886 \text{ mm}$
 $d_{D2} = 556,757 \text{ mm}$ $d_{DE2} = 552,104 \text{ mm}$ $d_{E2} = 547,725 \text{ mm}$

Normal radius of relative curvature:

$$
\rho_{n,A} = \frac{\rho_{t,A}}{\cos \beta_b}
$$
 (45) $\rho_{n,A} = 15,057 \text{ mm}$

$$
\rho_{n,AB} = 19,919 \text{ mm}
$$
\n $\rho_{n,B} = 24,164 \text{ mm}$ \n $\rho_{n,C} = 26,660 \text{ mm}$ \n
\n $\rho_{n,D} = 29,993 \text{ mm}$ \n $\rho_{n,DE} = 32,561 \text{ mm}$ \n $\rho_{n,E} = 34,510 \text{ mm}$

4.4.2.2 Calculation of material data

 $E_r = 2 \cdot \left(\frac{1 - v_1^2}{E_1} + \frac{1 - v_1^2}{E_1} \right)$ 1 2 2 2 $=2.\left(\frac{1-v_1^2}{\sigma}+\frac{1-v_2^2}{\sigma}\right)^{-1}$ \setminus $\overline{}$ \setminus J $\overline{}$ − V_1 ⁻ $I-V$ (6) $E_r = 230\,769\,\text{N/mm}^2$

$$
B_{\rm M1} = \sqrt{\lambda_{\rm M1} \cdot \rho_{\rm M1} \cdot c_{\rm M1}} \tag{82}
$$

$$
B_{\rm M1} = 11\,008.1 \, \text{N/(ms0.5K)}
$$

$$
B_{\text{M2}} = \sqrt{\lambda_{\text{M2}} \cdot \rho_{\text{M2}} \cdot c_{\text{M2}}}
$$
 (83)
$$
B_{\text{M2}} = 11\,008.1\,\text{N/(ms^0.5K)}
$$

4.4.2.3 Calculation of operating conditions

Loading:

$$
P = 2 \cdot \pi \cdot \frac{n_1}{60} \cdot \frac{T_1}{1000}
$$
 (85)
$$
P = 935 \text{ kW}
$$

$$
F_{t} = 2000 \cdot \frac{T_{1}}{d_{1}}
$$
 $F_{t} = 193825 \text{ N}$

$$
F_{\text{bt}} = 2000 \cdot \frac{T_1}{d_{\text{b1}}} \tag{70.10}
$$

Local load sharing factor:

NOTE Helical gears, *ε*^β ≥ 1, unmodified profile (see ISO/TR [15144-1:2014](http://dx.doi.org/10.3403/30284819), Figure 12).

$$
X_A = \frac{1}{\varepsilon_\alpha} \cdot X_{\text{but},A} \tag{69} \qquad X_A = 0.845
$$

$$
X_{AB} = 0.650
$$
 $X_B = 0.650$ $X_C = 0.650$
 $X_D = 0.650$ $X_{DE} = 0.650$ $X_E = 0.845$

Elasticity factor:

$$
Z_{\rm E} = \sqrt{\frac{E_{\rm r}}{2 \cdot \pi}} \tag{26} \qquad Z_{\rm E} = 191,646 \, (\rm N/mm^2)^{0.5}
$$

Local Hertzian contact stress:

$$
p_{H,A,B} = Z_{E} \cdot \sqrt{\frac{F_{t} \cdot X_{A}}{b \cdot \rho_{n,A} \cdot \cos \alpha_{t} \cdot \cos \beta_{b}}}
$$
(25) $p_{H,A,B} = 1.541 \text{ N/mm}^2$
\n $p_{H,B,B} = 1.175 \text{ N/mm}^2$ $p_{H,B,B} = 1.066 \text{ N/mm}^2$ $p_{H,C,B} = 1.015 \text{ N/mm}^2$
\n $p_{H,D,B} = 957 \text{ N/mm}^2$ $p_{H,DE,B} = 919 \text{ N/mm}^2$ $p_{H,E,B} = 1.018 \text{ N/mm}^2$

$$
p_{dyn,A,B} = p_{H,A,B} \cdot \sqrt{K_A \cdot K_V \cdot K_{H\alpha} \cdot K_{H\beta}}
$$
 (24) $p_{dyn,A,B} = 1917 \text{ N/mm}^2$
\n
$$
p_{dyn,AB,B} = 1461 \text{ N/mm}^2
$$
 $p_{dyn,B,B} = 1327 \text{ N/mm}^2$ $p_{dyn,C,B} = 1263 \text{ N/mm}^2$

$$
p_{\rm dyn,D,B} = 1\ 191\ {\rm N/mm^2} \qquad \qquad p_{\rm dyn,DE,B} = 1\ 143\ {\rm N/mm^2} \qquad p_{\rm dyn,E,B} = 1\ 266\ {\rm N/mm^2}
$$

Velocity:

$$
v_{g,A} = v_{r1,A} - v_{r2,A}
$$
\n(81)
$$
v_{g,A} = -1,276 \text{ m/s}
$$
\n
$$
v_{g,B} = -0,798 \text{ m/s}
$$
\n
$$
v_{g,B} = -0,320 \text{ m/s}
$$
\n
$$
v_{g,C} = 0 \text{ m/s}
$$
\n
$$
v_{g,D} = 0,498 \text{ m/s}
$$
\n
$$
v_{g,D} = 0,976 \text{ m/s}
$$
\n
$$
v_{g,E} = 1,454 \text{ m/s}
$$
\n
$$
v_{\Sigma,A} = v_{r1,A} + v_{r2,A}
$$
\n
$$
v_{\Sigma,A} = 3,367 \text{ m/s}
$$
\n
$$
v_{\Sigma,B} = 3,617 \text{ m/s}
$$
\n
$$
v_{\Sigma,C} = 3,784 \text{ m/s}
$$
\n
$$
v_{\Sigma,D} = 4,045 \text{ m/s}
$$
\n
$$
v_{\Sigma,DE} = 4,294 \text{ m/s}
$$
\n
$$
v_{\Sigma,E} = 4,544 \text{ m/s}
$$

Effective arithmetic mean roughness value:

$$
Ra = 0.5 \cdot (Ra_1 + Ra_2)
$$
 (3)
$$
Ra = 0.67 \text{ }\mu\text{m}
$$

4.4.2.4 Calculation of lubricant data

 $X_L = 1,0$ for mineral oil (see Table 3 in ISO/TR 15144 part 1)

 $X_S = 1,2$ for injection lubrication

4.4.2.5 Calculation of the material parameter

Mean coefficient of friction:

$$
X_{\rm R} = 2.2 \cdot \left(\frac{Ra}{\rho_{\rm n,C}}\right)^{0.25}
$$
 (87) $X_{\rm R} = 0.876$

*K*_{Bγ} = 1,299 for 2 < ε_γ < 3,5

$$
\mu_{\rm m} = 0.045 \cdot \left(\frac{K_{\rm A} \cdot K_{\rm v} \cdot K_{\rm H\alpha} \cdot K_{\rm H\beta} \cdot F_{\rm bt} \cdot K_{\rm B\gamma}}{b \cdot v_{\Sigma, \rm C} \cdot \rho_{\rm n, C}} \right)^{0,2} \cdot \left(10^3 \cdot \eta_{\rm \theta oil} \right)^{-0,05} \cdot X_{\rm R} \cdot X_{\rm L} \quad (86) \quad \mu_{\rm m} = 0.060
$$

Bulk temperature:

$$
H_{\rm v} = \left(\varepsilon_1^2 + \varepsilon_2^2 + 1 - \varepsilon_\alpha\right) \cdot \left(\frac{1}{z_1} + \frac{1}{z_2}\right) \cdot \frac{\pi}{\cos \beta_{\rm b}} \quad \text{for } \varepsilon_\alpha < 2 \tag{91} \quad H_{\rm v} = 0.131
$$

 $\varepsilon_{\text{max}} = \varepsilon_1$

$$
X_{Ca} = 1.0
$$
 for no adequate profile modification (method B) (101)

$$
\theta_{\rm M} = \theta_{\rm oil} + 7400 \cdot \left(\frac{P \cdot \mu_{\rm m} \cdot H_{\rm v}}{a \cdot b}\right)^{0.72} \cdot \frac{X_{\rm S}}{1.2 \cdot X_{\rm Ca}}\tag{84} \theta_{\rm M} = 80.282 \text{ °C}
$$

Material parameter:

$$
G_{\rm M} = 10^6 \cdot \alpha_{\rm \theta M} \cdot E_{\rm r}
$$
 (5) $G_{\rm M} = 4290.7$

4.4.2.6 Calculation of the velocity parameter

$$
U_A = \eta_{\theta M} \cdot \frac{v_{\Sigma, A}}{2000 \cdot E_{\rm r} \cdot \rho_{\rm n, A}}
$$
(12) $U_A = 1.798 \cdot 10^{-11}$

$$
U_{AB} = 1,468 \cdot 10^{-11}
$$
 $U_B = 1,300 \cdot 10^{-11}$ $U_C = 1,232 \cdot 10^{-11}$
\n $U_D = 1,171 \cdot 10^{-11}$ $U_{DE} = 1,145 \cdot 10^{-11}$ $U_E = 1,143 \cdot 10^{-11}$

4.4.2.7 Calculation of the load parameter

$$
W_{\rm A} = \frac{2 \cdot \pi \cdot p_{\rm dyn,A}^2}{E_{\rm r}^2}
$$
 (22) $W_{\rm A} = 4.334 \cdot 10^{-4}$

$$
W_{\rm D} = 1.674 \cdot 10^{-4}
$$

$$
W_{\rm DE} = 1.542 \cdot 10^{-4}
$$

$$
W_{\rm E} = 1.891 \cdot 10^{-4}
$$

4.4.2.8 Calculation of the sliding parameter

Local flash temperature:

$$
\theta_{f1,A} = \frac{\sqrt{\pi}}{2} \cdot \frac{10^6 \cdot \mu_m \cdot p_{dyn,A} \cdot |v_{g,A}|}{B_{M1} \sqrt{v_{r1,A}} + B_{M2} \sqrt{v_{r2,A}}} \cdot \sqrt{8 \cdot \rho_{n,A} \cdot \frac{p_{dyn,A}}{1000 \cdot E_r}}
$$
\n(80) $\theta_{f1,A} = 152.4 \text{ °C}$
\n $\theta_{f1,AB} = 69.2 \text{ °C}$
\n $\theta_{f1,D} = 35.4 \text{ °C}$
\n $\theta_{f1,DE} = 66.2 \text{ °C}$
\n $\theta_{f1,DE} = 66.2 \text{ °C}$
\n $\theta_{f1,E} = 115.8 \text{ °C}$

Local contact temperature as sum of bulk and local flash temperature:

$$
\theta_{B,A} = \theta_M + \theta_{f1,A}
$$
\n
$$
\theta_{B,AB} = 149.5 \,^{\circ}\text{C}
$$
\n
$$
\theta_{B,B} = 105.6 \,^{\circ}\text{C}
$$
\n
$$
\theta_{B,D} = 115.6 \,^{\circ}\text{C}
$$
\n
$$
\theta_{B,D} = 115.6 \,^{\circ}\text{C}
$$
\n
$$
\theta_{B,D} = 146.5 \,^{\circ}\text{C}
$$
\n
$$
\theta_{B,D} = 146.5 \,^{\circ}\text{C}
$$
\n
$$
\theta_{B,D} = 196.1 \,^{\circ}\text{C}
$$

Local sliding parameter:

$$
S_{GF,A} = \frac{\alpha_{\theta B,A} \cdot \eta_{\theta B,A}}{\alpha_{\theta M} \cdot \eta_{\theta M}}
$$
(27) $S_{GF,A} = 0.021$

$$
S_{\text{GF},\text{AB}} = 0,109 \qquad S_{\text{GF},\text{B}} = 0,382 \qquad S_{\text{GF},\text{C}} = 1,000
$$

$$
S_{\text{GF,D}} = 0.276 \qquad S_{\text{GF,DE}} = 0.118 \qquad S_{\text{GF,E}} = 0.041
$$

4.4.2.9 Calculation of the lubricant film thickness

$$
h_{A} = 1600 \cdot \rho_{n,A} \cdot G_{M}^{0.6} \cdot U_{A}^{0.7} \cdot W_{A}^{-0.13} \cdot S_{GF,A}^{0.22}
$$
 (4) $h_{A} = 0.129 \text{ }\mu\text{m}$

$$
h_{AB} = 0.227 \text{ }\mu\text{m}
$$
 $h_{B} = 0.341 \text{ }\mu\text{m}$ $h_{C} = 0.454 \text{ }\mu\text{m}$

$$
h_D = 0.377 \text{ }\mu\text{m}
$$
 $h_{DE} = 0.338 \text{ }\mu\text{m}$ $h_E = 0.275 \text{ }\mu\text{m}$

4.4.2.10 Calculation of the specific lubricant film thickness

$$
\lambda_{GFA} = \frac{h_A}{Ra}
$$
 (2) $\lambda_{GFA} = 0.192$
\n
$$
\lambda_{GF,AB} = 0.339
$$
 $\lambda_{GF,B} = 0.510$ $\lambda_{GF,C} = 0.678$
\n
$$
\lambda_{GF,D} = 0.563
$$
 $\lambda_{GF,DE} = 0.504$ $\lambda_{GF,E} = 0.411$

 $\lambda_{\text{GF,min}} = \lambda_{\text{GF,A}}$ $\lambda_{\text{GF,min}} = 0.192$

4.4.2.11 Calculation of the micropitting safety factor

$$
S_{\lambda} = \frac{\lambda_{\text{GF,min}}}{\lambda_{\text{GFP}}} \tag{1} \quad S_{\lambda} = 0.894
$$

The final results for the calculation of the safety factor against micropitting, S*λ*, for example 4 are shown in [Table](#page-52-1) 15.

Point	А	AB	В	C	D	DE	E
λ GF,Y	0,192	0,339	0,510	0,678	0,563	0,504	0,411
λ GF,min	0,192						
λ GFP	0,215						
S_{λ}	0,894						

Table 15 — Results of calculation according to method B — Example 4

4.4.3 Calculation according to method A

The calculation of example 1 according to method A was carried out by a 3D-calculation programme. Calculated results during method A will vary depending on the method of determining load distribution. The load distribution, on which the following calculation according to method A is based, is shown in [Table](#page-52-2) 16. The maximum values are printed in bold.

	Width in mm					
	0,0	65,3	185,0			
A	468	996	1013	1412		
AB	641	1 1 5 1	1 2 7 1	1 0 1 2		
B	640	1 1 0 6	1 2 6 0	871		
C.	579	1 0 8 2	1 2 0 9	850		
D	543	1039	1 1 2 9	822		
DE	538	935	1013	674		
E	621	796	1002	188		

Table 16 – **Matrix** of pressure distribution – $p_{H,Y,A}$ in N/mm²

The resulting matrix of specific lubricant film thickness according to method A is shown in [Table](#page-52-3) 17. The minimum value is printed in bold.

For the calculation of the micropitting safety factor according to method A, the minimum value of the matrix of resulting specific lubricant film thickness, shown in [Table](#page-52-3) 17, was used.

$$
S_{\lambda} = \frac{\lambda_{\text{GF,min}}}{\lambda_{\text{GFP}}} \tag{1} \quad S_{\lambda} = 1.158
$$

NOTE The difference in safety factor calculated between methods A and B in the above example 4 results from the simplified analysis of method B with relation to the account for profile modification. In example 4, the amount of tip relief is not calculated as being optimum for the specified load and therefore the calculations for method B are based on contact conditions with no consideration for tip relief.

Bibliography

[1] FVA-Information Sheet 54/7: Test procedure for the investigation of the micropitting capacity of gear lubricants. 1993

British Standards Institution (BSI)

BSI is the national body responsible for preparing British Standards and other standards-related publications, information and services.

BSI is incorporated by Royal Charter. British Standards and other standardization products are published by BSI Standards Limited.

About us

We bring together business, industry, government, consumers, innovators and others to shape their combined experience and expertise into standards -based solutions.

The knowledge embodied in our standards has been carefully assembled in a dependable format and refined through our open consultation process. Organizations of all sizes and across all sectors choose standards to help them achieve their goals.

Information on standards

We can provide you with the knowledge that your organization needs to succeed. Find out more about British Standards by visiting our website at [bsigroup.com/standards](www.bsigroup.com/standards) or contacting our Customer Services team or Knowledge Centre.

Buying standards

You can buy and download PDF versions of BSI publications, including British and adopted European and international standards, through our website at [bsigroup.com/shop](www.bsigroup.com/shop), where hard copies can also be purchased.

If you need international and foreign standards from other Standards Development Organizations, hard copies can be ordered from our Customer Services team.

Subscriptions

Our range of subscription services are designed to make using standards easier for you. For further information on our subscription products go to [bsigroup.com/subscriptions](www.bsigroup.com/subscriptions).

With **British Standards Online (BSOL)** you'll have instant access to over 55,000 British and adopted European and international standards from your desktop. It's available 24/7 and is refreshed daily so you'll always be up to date.

You can keep in touch with standards developments and receive substantial discounts on the purchase price of standards, both in single copy and subscription format, by becoming a **BSI Subscribing Member**.

PLUS is an updating service exclusive to BSI Subscribing Members. You will automatically receive the latest hard copy of your standards when they're revised or replaced.

To find out more about becoming a BSI Subscribing Member and the benefits of membership, please visit [bsigroup.com/shop](www.bsigroup.com/shop).

With a **Multi-User Network Licence (MUNL)** you are able to host standards publications on your intranet. Licences can cover as few or as many users as you wish. With updates supplied as soon as they're available, you can be sure your documentation is current. For further information, email bsmusales@bsigroup.com.

BSI Group Headquarters

389 Chiswick High Road London W4 4AL UK

Revisions

Our British Standards and other publications are updated by amendment or revision. We continually improve the quality of our products and services to benefit your business. If you find an inaccuracy or ambiguity within a British Standard or other BSI publication please inform the Knowledge Centre.

Copyright

All the data, software and documentation set out in all British Standards and other BSI publications are the property of and copyrighted by BSI, or some person or entity that owns copyright in the information used (such as the international standardization bodies) and has formally licensed such information to BSI for commercial publication and use. Except as permitted under the Copyright, Designs and Patents Act 1988 no extract may be reproduced, stored in a retrieval system or transmitted in any form or by any means – electronic, photocopying, recording or otherwise – without prior written permission from BSI. Details and advice can be obtained from the Copyright & Licensing Department.

Useful Contacts:

Customer Services Tel: +44 845 086 9001 **Email (orders):** orders@bsigroup.com **Email (enquiries):** cservices@bsigroup.com

Subscriptions Tel: +44 845 086 9001 **Email:** subscriptions@bsigroup.com

Knowledge Centre Tel: +44 20 8996 7004 **Email:** knowledgecentre@bsigroup.com

Copyright & Licensing Tel: +44 20 8996 7070 **Email:** copyright@bsigroup.com

... making excellence a habit."