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Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards 
bodies (ISO member bodies). The work of preparing International Standards is normally carried out 
through ISO technical committees. Each member body interested in a subject for which a technical 
committee has been established has the right to be represented on that committee. International 
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. 
ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of 
electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are 
described in the ISO/IEC Directives, Part 1.  In particular the different approval criteria needed for the 
different types of ISO documents should be noted.  This document was drafted in accordance with the 
editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).  

Attention is drawn to the possibility that some of the elements of this document may be the subject of 
patent rights. ISO shall not be held responsible for identifying any or all such patent rights.  Details of 
any patent rights identified during the development of the document will be in the Introduction and/or 
on the ISO list of patent declarations received (see www.iso.org/patents). 

Any trade name used in this document is information given for the convenience of users and does not 
constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity 
assessment, as well as information about ISO’s adherence to the WTO principles in the Technical 
Barriers to Trade (TBT) see the following URL:  Foreword - Supplementary information

The committee responsible for this document is ISO/TC 69, Applications of statistical methods, 
Subcommittee SC 7, Applications of statistical and related techniques for the implementation of Six Sigma.
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Introduction

The present Technical Report takes one specific statistical tool (Central Composite Designs in Response 
Surface Methodology) and develops the topic somewhat generically (in the spirit of International 
Standards) but then illustrates it through the use of four detailed and distinct applications. The generic 
description focuses on the Central Composite Designs.

The annexes containing the four illustrations follow the basic framework but also identify the nuances 
and peculiarities in the specific applications. Each example offers at least one “wrinkle” to the problem, 
which is generally the case for real applications. It is hoped that practitioners can identify with at least 
one of the four examples, if only to remind them of the basic material on response surface method that 
was encountered during their training.

Each of the four examples is developed and analysed using statistical software of current vintage. The 
explanations throughout are devoid of mathematical detail—such material can be readily obtained from 
the many design and analysis of experiments textbooks (such as those given in References [1] to [7]).
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Selected illustrations of response surface method — 
Central composite design

1 Scope

This Technical Report describes the steps necessary to understand the scope of Response Surface 
Methodology (RSM) and the method to analyse data collected using Central Composite Designs (CCD) 
through illustration with four distinct applications of this methodology.

Response surface methodology (RSM) is used in order to investigate a relation between the response 
and the set of quantitative predictor variables or factors. Especially after specifying the vital few 
controllable factors, RSM is used in order to find the factor setting which optimizes the response.

2	 Terms	and	definitions

For the purposes of this document, the following terms and definitions apply.

2.1
experiment
purposive investigation of a system through selective adjustment of controllable conditions and 
allocation of resources

Note 1 to entry: Adapted from ISO 3534-3:2013, definition 3.1.1. (The notes are not reproduced here.)

2.2
response variable
variable representing the outcome of an experiment (2.1)

Note 1 to entry: Adapted from ISO 3534-3:2013, definition 3.1.3. (Except for NOTE 3 the notes are not 
reproduced here.)

Note 2 to entry: A common synonym is “output variable”.

Note 3 to entry: The response variable is likely to be influenced by one or more predictor variables (2.3), the 
nature of which can be useful in controlling or optimizing the response variable.

2.3
predictor variable
variable that can contribute to the explanation of the outcome of an experiment (2.1)

Note 1 to entry: Adapted from ISO 3534-3:2013, definition 3.1.4. (The notes are not reproduced here.)

Note 2 to entry: Natural predictor variables are expressed in natural units of measurement such as degrees 
Celcius (°C) or grams per liter, for example. In RSM work, it is convenient to transform the natural variables to 
coded variables which are dimensionless variables, symmetric around zero and all with the same spread.

2.4
model
<experiment> formalized representation of outcomes of an experiment (2.1)

Note 1 to entry: Adapted from ISO 3534-3:2013, definition 3.1.2. (The notes and examples are not reproduced 
here except for NOTE 2 which is NOTE 1 in ISO 3534-3.)
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Note 2 to entry: The model consists of three parts. The first part is the response variable (2.2) that is being 
modelled. The second part is the deterministic or the systematic part of the model that includes predictor 
variable(s) (2.3). Finally, the third part is the residual error (2.12) that can involve pure random error (2.13) 
and misspecification error (2.14). The model applies for the experiment as a whole and for separate outcomes 
denoted with subscripts. The model is a mathematical description that relates the response variable to predictor 
variables and includes associated assumptions. Outcomes refer to recorded or measured observations of the 
response variable.

Note 3 to entry: In some areas the term transfer function is used for the systematic part of the model.

EXAMPLE In the models considered in response surface methodology the deterministic or systematic part 
are polynomials in the predictor variables. A second order model with two predictor variables is written as

y x x x x x x  
1 1 2 2 12 1 2 11 22

= + + + + + +β β β β β β ε
0 1

2

2

2

where ε is the random error. The associated assumptions on the random error could be either that individual 
random errors are uncorrelated with constant variance or independent and normally distributed. The 
deterministic part of the model is the second degree polynomial in the predictor variables x1 and x2

E   
1 1 2 2 12 1 2 11 22

y x x x x x x= + + + + +β β β β β β
0 1

2

2

2

which explains the mean (Ey) of the response variable as a function of the predictor variables.

2.5
factor
<design of experiments> feature under examination as a potential cause of variation

Note 1 to entry: Adapted from ISO 3534-3:2013, definition 3.1.5. (The notes are not reproduced here.)

Note 2 to entry: Generally the symbol k is used to indicate the number of factors in the experiment.

2.6
factor level
setting, value or assignment of a factor (2.5)

Note 1 to entry: Adapted from ISO 3534-3:2013, definition (3.1.12). (The notes are not reproduced here.)

2.7
coding of factor levels
<design of experiments> one-to-one relabelling of factor levels

Note 1 to entry: The coding of factor levels facilitates the identification of the design and the properties of the design.

Note 2 to entry: In response surface experiments the actual (or natural or operational) levels are relabelled such 
that the coded levels are numeric and symmetric around 0.

Note 3 to entry: A two-level factor is usually coded to have coded levels −1 and +1. A factorial design where all 
factors are two-level factors can be coded such that all runs are represented as factorial runs (2.9).

Note 4 to entry: In central composite designs numeric (or continuous) factors with five levels are considered, 
except for the face-centred central composite deigns, where only three levels are needed, see note 6 to 2.7. If the 
actual (or natural or operational) levels are l1 < l2 < l3 < l4 < l5 then the middle level l3 shall be the average of the 
lowest level l1 and the highest level l5, and, furthermore, l3 shall be the average of the intermediate levels l2 and l4. 
The form of the coding operation can be expressed as

coded value=
actual value− l

C
3

where C is half the distance from l2 to l4. With this coding of the factors each run (2.8) of a central composite 
design can be identified as either a factorial point (2.9), a centre point (2.10), or an star point (2.11). This is the 
coding used in textbooks for discussing central composite designs.
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Note 5 to entry: An alternative coding is sometimes applied in the computations in software programs. The form 
of the coding operation can be expressed as

coded value=
actual value− l

M
3

where M is half the distance from the lowest level l1 to the highest level l5. This coding will be referred to as 
software coding in this Technical Report.

Note 6 to entry: In the face-centred CCD, only three levels of each factor are needed, so l1 = l2 < l3 < l4 = l5, and l3 
shall be the average of the lowest level l1 and the highest level l5. This design could be of interest if it is difficult to 
select five levels of the factors. For the face-centred CCD, the possible coded values of a factor are only −1, 0, 1.The 
face-centred CCD is not rotatable, see 2.18.

Note 7 to entry: A class of designs that can be used to fit second order models and only require three equidistant 
levels of each factor are Box-Behnken designs. Box-Behnken designs are not central composite designs and are 
therefore not treated in this Technical Report. But they may be a useful alternative, if only three equidistant 
levels of each factor can be used, see References [5], [2] and [7].

2.8
run
experimental treatment
<design of experiments> specific settings of every factor (2.5) used on a particular experimental unit 
(2.15)

Note 1 to entry: Ultimately, the impact of the factors will be captured through their representation in the 
predictor variables (2.3) and the extent to which the model matches the outcome of the experiment (2.1).

EXAMPLE Consider a chemical process experiment (2.1) in which a high yield is the objective and the 
predictor variables are temperature, duration, and concentration of a catalyst. A run could be a setting of 
temperature of 350 °C, 30 min duration and 10 % concentration of the catalyst, assuming that all of these settings 
are possible and permissible.

Note 2 to entry: Adapted from ISO 3534-3:2013, definition 3.1.13.

2.9
factorial point
factorial run
cube point
cube run
vector of factor level settings of the form (a1, a2, ..., ak), where each ai equals −1 or +1 as a notation for 
the coded levels of the factors

Note 1 to entry: Adapted from ISO 3534-3:2013, definition 3.1.37. (The notes are not reproduced here.)

2.10
centre point
centre run
vector of factor level settings of the form (a1, a2, ..., ak), where all ai equal 0, as notation for the coded 
levels of the factors

Note 1 to entry: Adapted from ISO 3534-3:2013, definition 3.1.38. (The notes are not reproduced here.)
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2.11
star point
axial point
star run
axial run
vector of factor level (2.7) settings of the form (a1, a2, …, ak), where one ai equals α or −α and the other 
ai’s equal 0, as notation for the coded levels of the factors (2.6)

Note 1 to entry: For a k factor experiment, this process yields 2k-star points of the form: (±α, 0, …, 0), (0, ±α, 0, …, 
0), …, (0, 0, …, ±α).

Note 2 to entry: Star points are added to the design in order to estimate a quadratic response surface.

Note 3 to entry: Special values of α give a nice geometric structure. For a k factor experiment, if α = k  then the 
factorial points and the star points are all on the sphere with radius k . This design is therefore called a 
spherical CCD. If α = 1, the star points are on the faces of the unit cube and the design is a face-centred CCD.

2.12
residual error
error term
random variable representing the difference between the response variable (2.3) and its prediction 
based on an assumed model (2.4)

Note 1 to entry: Adapted from ISO 3534-3:2013, definition 3.1.6. (The notes are not reproduced here.)

2.13
pure random error
pure error
part of the residual error (2.12) associated with replicated observations

Note 1 to entry: Adapted from ISO 3534-3:2013, definition 3.1.9. (The notes are not reproduced here.)

2.14
misspecification	error
part of the residual error (2.12) not accounted for by pure random error (2.13)

Note 1 to entry: Adapted from ISO 3534-3:2013, definition 3.1.9. (The notes are not reproduced here.)

2.15
experimental unit
<design of experiments> basic unit of the experimental material

Note 1 to entry: Adapted from ISO 3534-3:2013, definition 3.1.24. (The notes are not reproduced here.)

2.16
designed experiment
experiment (2.1) with an explicit objective and structure of implementation

Note 1 to entry: The purpose of a properly designed experiment is to provide the most efficient and economical 
method of reaching valid and relevant conclusions from the experiment.

Note 2 to entry: Associated with a designed experiment is an experimental design (2.17) that includes the response 
variable (2.2) or variables and the experimental treatments (2.8) with prescribed factor levels (2.6). A class of 
models that relates the response variable to the predictor variables could also be envisaged.

Note 3 to entry: Adapted from ISO 3534-3:2013, definition 3.1.27.

2.17
experimental design
assignment of experimental treatments (2.7) to each experimental unit (2.15)

Note 1 to entry: Adapted from ISO 3534-3:2013, definition 3.1.28. (The notes are not reproduced here.)
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2.18
rotatability
characteristic of a designed experiment (2.16) for which the response variable (2.2) that is predicted 
from a fitted model (2.4) has the same variance at all equal distances from the centre of the design

Note 1 to entry: A design is rotatable if the variance of the predicted response at any point x depends only on 
the distance of x from the centre point (2.10). A design with this property can be rotated around its centre point 
without changing the prediction variance at x.

Note 2 to entry: Rotatability is a desirable property for response surface designs (2.25).

Note 3 to entry: Rotatability of a central composite design is obtained setting α equal to the fourth root of the 
number of factorial points, i.e

α = ( ) /n
F

1 4

where nF denotes the number of factorial points in a CCD.

Note 4 to entry: The definition and notes 1 and 2 are adapted from ISO 3534-3:2013, definition 3.1.40.

2.19
interaction
influence of one factor (2.6) on one or more other factors’ impact on the response variable (2.2)

Note 1 to entry: Adapted from ISO 3534-3:2013, definition 3.1.17. (The notes are not reproduced here.)

2.20
factorial experiment
designed experiment (2.16) with one or more factors (2.5) and with at least two levels applied for one 
of the factors

Note 1 to entry: Adapted from ISO 3534-3:2013, definition 3.2.1. (The notes are not reproduced here.)

2.21
full factorial experiment
factorial experiment (2.12) consisting of all possible combinations of the levels of the factors (2.6)

Note 1 to entry: Adapted from ISO 3534-3:2013, definition 3.2.2. (The notes are not reproduced here.)

2.22
fractional factorial experiment
factorial experiment (2.12) consisting of a subset of the full factorial experiment (2.21)

Note 1 to entry: Adapted from ISO 3534-3:2013, definition 3.2.3. (The notes are not reproduced here.)

2.23
randomization
process used to assign treatments to experimental units so that each experimental unit has an equal 
chance of being assigned a particular treatment

Note 1 to entry: Adapted from ISO 3534-3:2013, definition 3.1.26. (The notes are not reproduced here.)

2.24
replication
performance of an experiment more than once for a given set of predictor variables

Note 1 to entry: Adapted from ISO 3534-3:2013, definition 3.1.35. (The notes are not reproduced here.)
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2.25
response surface design
designed experiment (2.16) that identifies a subset of factors (2.5) to be optimized

Note 1 to entry: Adapted from ISO 3534-3:2013, definition 3.2.19. (The notes are not reproduced here.)

2.26
analysis of variance
ANOVA
technique which subdivides the total variation of a response variable (2.2) into components associated 
with defined sources of variation

Note 1 to entry: Adapted from ISO 3534-3:2013, definition 3.3.8. (The notes are not reproduced here.)

3 Symbols and abbreviated terms

3.1 Symbols

 y Response variable

ŷ Predicted response variable

ŷS
Predicted response variable at the stationary point

xS Stationary point of fitted response surface

DS Distance of stationary point to the design centre

A, B, C, D Factors

k Number of factors

2k Number of runs in a full factorial experiment with k factors all having two levels

2k−p Number of runs in a fractional factorial experiment with k factors and fraction 2−p

nF Number of factorial points in a CCD

nS Number of star points in a CCD

n0 Number of centre points in a CCD

ai, bi, li Levels of factors

+1, −1 High and low coded factorial levels

−α, α Axial levels of coded factors

σ Standard deviation

3.2 Abbreviated terms

ANOVA analysis of variance

CCD central composite design

DOE design of experiments
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RSM response surface methodology

R&R repeatability and reproducibility

4 Generic descriptions of central composite designs

4.1 Overview of the structure of the examples in Annexes A to D

This Technical Report provides general guidelines on the design, conduct and analysis of central 
composite designs consisting of a specified number of two-level factors, and illustrates the steps with 
four distinct applications given in the annexes. Each of the four examples in Annexes A through D 
follows the basic structure as given in Table 1.

Table 1 — Basic steps in CCD design

1 Overall objective(s) of experiment
2 Description of the response variable(s)
3 Identification of factors affecting the response(s)
4 Selection of levels for each factor
5 Identification of measurement systems

6
Layout plan of the CCD (depending upon which main effects and two factor 
interactions are to be studied) with “randomization” principle (if these 
are physical runs)

7 Analyse the results – numerical summaries and graphical displays
8 Present the results
9 Perform confirmation run

4.2 Overall objective(s) of a response surface experiment

Experiments may be conducted for a variety of reasons. Therefore, the primary objective(s) for the 
experiment should be clearly stated and agreed to by all parties involved in the design, conduct, analysis 
and implications of the experimental effort.

The main goal of response surface experiments is to create a model of the relationship between the 
factors and the response in order to explore optimum operating conditions. This involves choosing a 
design which allows the fitting of a quadratic function as the systematic part of the model. The Central 
Composite Design (CCD) can achieve this and this design has been popular since its introduction in the 
first paper on response surface methods in 1951.[1]

Although the fundamental method for fitting first order (linear) or second order (quadratic) function 
of the predictor variables to the response is regression, the focus is not on the individual regression 
coefficients but on the regression function, the response surface, as a whole. This emphasis is reflected 
in the name Response Surface Methodology. Strong arguments in favour of this approach are given on 
pages 508-509 of Reference [2].

Typically, the primary goal for the experiment is to find optimal operating conditions based on the 
estimated response surface, this could involve doing several experiments, using the results of one 
experiment to provide direction for what to do next. This next action could be to focus the experiment 
around a different set of conditions, or to collect more data in the current experimental region in order 
to fit a higher-order model or confirm what seemed to be the conclusion.

The CCD is an appropriate name because three types of design points can be identified after a coding 
of the factor levels: centre points (2.10), factorial points (2.9) and star points (2.11), and those design 
points are indeed centred at the origin of the design space after the coding of the factor levels (2.7).
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Response surface experiments traditionally involve a small number of continuous factors. Some 
software packages have an upper limit of 8 factors. Response surface experiments are typically used 
when the investigators already know which factors are important. One way to obtain this knowledge 
is to apply a screening experiment, for example a fractional factorial experiment as explained in 
ISO/TR 12845.[11]

4.3 Description of the response variable(s)

Associated with the objective of an experiment is a continuous outcome or performance measure. A 
response of interest could involve maximization (larger is better), minimization (smaller is better) or 
meet a target value (be close to a specified value), but, in all cases, that task is one of optimization.

The response variable (denoted by the variable y) should be closely related to the objective of the 
experiment. For some situations, there are more than one variable of interest to be considered, although, 
typically, only a primary response variable will be associated with the experiment. In other cases, 
multiple responses should be considered. In case of multiple responses, the approach taken in response 
surface methodology is to analyse and optimize each response separately. The fitted response surfaces 
will then be studied to find settings that meet the requirements of all the responses. The example in 
Annex C has three responses.

4.4	 Identification	of	measurement	systems

Assessment of repeatability and reproducibility of the measurement systems for factors and responses 
should be done prior to designing the experiment.

4.5	 Identification	of	factors	affecting	the	response(s)

Response surface experiments are usually not done in isolation. They rely on prior knowledge 
concerning important influential variables on the selected response. If this knowledge is not available, 
it is necessary to conduct a different type of experiment to identify the factors affecting the response.

During the final selection of factors, attention shall be paid to the ability to set the levels of each 
individual factor independently of the other factors.

4.6 Selection of levels for each factor

There are two aspects to the selection of factors. One is selecting the experimental region which is the 
multidimensional range of interest for the factors selected. The other is the exact selection of the factor 
levels in such a way that the design has desirable properties. The first one requires subject matter 
knowledge as to the impact of factors on the response. The second one is more straightforward once the 
factors and the type of design to be used are known. The second one is further discussed in this Clause.

The response surface methods considered in this Technical Report are about the second order centre 
models using the CCD. The CCD is an augmentation of 2k factorial experiments (or 2k−p fractional 
factorial experiments). In addition to the two factorial levels that are used in the (fractional) factorial 
experiments, the user selects three additional levels, one centre level which is the average of the two 
factorial levels, and two extreme levels which are chosen symmetrically around the centre level and 
typically outside the range of the two factorial levels.

When the experimenter selects the levels of each factor he will be thinking in terms of the operational 
levels of a factor, the exact setting of a temperature, for example. But when studying the properties of 
the design and also when analysing the data from the design coded levels of the design are used.
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If the actual (or operational) levels are l1 < l2 < l3 < l4 < l5 then the middle level l3 shall be the average of 
the lowest level l1 and the highest level l5, and, furthermore, l3 shall be the average of the intermediate 
levels l2 and l4. The form of the coding operation can be expressed as Formula (1):

coded value=
actual value− l

C
3  (1)

where C is half the distance from l2 to l4. The coded value of the upper extreme level, l5, will be denoted 
by α, and the coded value of the lower extreme level, l1, will be denoted by −α. It is very important to 
note that the value of α is the same for all the factors of the design. Thus, the coded levels of all the 
factors are (−α, −1, 0, 1, + α).

An alternative coding is sometimes applied in the computations in software programs. The form of the 
coding operation can be expressed as Formula (2):

coded value=
original value− l

M
3  (2)

where M is half the distance from the lowest level l1 to the highest level l5.or, equivalently, the distance 
from l3 to l5. This coding will be referred to as software coding in this Technical Report.

When the levels of the factors have been chosen, the levels of the individual factors have to be 
combined to define the runs of the experiment. A CCD has three types of experimental runs: factorial, 
centre and axial ones.

4.6.1 Factorial runs

A factorial run is a setting of all k factors to coded levels either −1 or +1. The factorial runs are the runs 
used in 2k−p fractional factorial experiments or 2k factorial experiments.

Written as a k-dimensional vector in coded levels, the factorial run has the form (±1, ±1,…, ±1,…, ±1). 
Considered as points in k-dimensional space, the factorial runs are the vertices of a cube and the 
factorial runs are for this reason also called cube points.

There are 2k different factorial runs with k factors.

4.6.2 Star runs

The star runs are those where one of the factors has its coded levels either −α or α and the remaining 
factors are at their coded level 0.

Written as a k-dimensional vector in coded levels, the star run has the form (0, 0,…, ±α,…, 0), having −α 
or α on the ith position and 0 on all other positions.

Viewed as points in k-dimensional space, the star runs are located on the coordinate axes, and for this 
reason, the star runs are also called axial runs.

There are 2k different star runs with k factors.

4.6.3 Centre run

The centre run is the one where all the factors are on their coded level 0. Written as a k-dimensional 
vector, it is the point (0, 0,…, 0).

There is only one centre run but the centre run may be replicated in a CCD. One reason for replicating 
the centre point is to get an estimate of pure error which can be used to check the fit of the model.
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4.7 Layout plan of the CCD with randomization principle

In a report, the full description of the design and the observed responses should be given. In addition to 
reporting the levels of the factors, as described in 4.6, this includes reporting the following:

— the number of replications of the three types of design points;

— the number of blocks;

— the randomization.

If the design has only a few factors, a table where each run is represented as a row is useful for this 
purpose. It is easier to grasp the design if coded levels are used. The randomization can be explained 
by including a column giving the order in which the runs have been performed. If blocking is applied, a 
column can similarly be added to explain the allocation of runs to blocks.

As an illustration, Table 3 provides a basic layout of a CCD for 2 factors with full factorial design in serial 
order. While there is a standard order for factorial designs there is no such thing for a CCD, so the term 
serial order is used for a way to write the runs in a CCD in such a way that the design is easily recognized. 
The serial order used in Table 3 and throughout this Technical Report lists the factorial runs in standard 
order, first, followed by the star runs and, finally, the centre runs. Each row of the table represents one 
set of experimental conditions that when run will produce a value of the response variable y. The two 
factors are designated as A and B. In this case, only one response variable is shown, but more columns 
should be added if more than one response variable is studied. In this case, it is readily seen that the 
design has five centre runs replicated. The last column shows the run order, i.e. the order in which the 
experimental conditions have been applied. This experiment has been performed in one block.

Table 3 — Layout of a generic Central Composite Design

Serial order A B y Run order
1 −1 −1 y1 6
2 1 −1 y2 4
3 −1 1 y3 13
4 1 1 y4 7
5 −1,41 0 y5 12
6 1,41 0 y6 8
7 0 −1,41 y7 9
8 0 1,41 y8 5
9 0 0 y9 2
10 0 0 y10 10
11 0 0 y11 1
12 0 0 y12 11
13 0 0 y13 3

4.8 Analyse the results — Numerical summaries and graphical displays

The second order model that can be fitted with the data from a CCD is a regression model and the 
usual output and graphs from a regression analysis are reported. This includes the table of estimated 
regression coefficients and associated t-statistics and p-values. A special feature of RSM regression is 
ANOVA tables that exploit the structure of the model.

For the design in Table 3, one such ANOVA table is shown in Table 4.
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Table 4 — ANOVA table for Central Composite Design

Response: y
Df Sum Sq Mean Sq F-value Pr(>F)

FO(x1, x2) 2 ddd,dd ddd,dd ddd,dd d,dd
TWI(x1, x2) 1 ddd,dd ddd,dd ddd,dd d,dd
PQ(x1, x2) 2 ddd,dd ddd,dd ddd,dd d,dd
Residuals 7 ddd,dd ddd,dd
Lack of fit 3 ddd,dd ddd,dd ddd,dd d,dd
Pure error 4 ddd,dd ddd,dd

Table 4 is given by most, if not all, statistical packages for RSM analysis. The names of the rows and the 
columns may differ between statistical packages, but they are easily understood. Here, FO, TWI and PQ 
are short for First Order, Two Way Interaction and Pure Quadratic. Examples are given in Tables A.5, 
B.6 to B.7, and D.5.

In this case, there is no data, so the table is filled in with ddd,dd or d,dd except for the degrees of 
freedom which are the correct ones for the design in Table 3. The four F-tests are of interest. Read from 
the bottom of the table, the first one is the ratio of the mean squares for Lack of fit and Pure error and is 
a check of the fit of the model. The second F-test is in the PQ line and it tests the need for pure quadratic 
terms in the model; in this case the hypothesis that β11 = β22 = 0. It is the ratio of the mean square in the 
PQ line to the mean square in the Residuals line of the table.

Another ANOVA table of potential interest tests for each predictor variable, the hypotheses that it is not 
needed in the model. For the example with two predictor variables in Table 3, this ANOVA table has two 
F-tests: One for the hypothesis that β1 = β12 = β11 = 0, and one for the hypothesis that β2 = β12 = β22 = 0. 
Note that β1, β12, and β11, for example, are the coefficients of all the terms in the model that involve x1. 
Examples can be found in Tables B.5 and C.7.

When looking at analyses of response surface experiments using different software, it is possible to 
identify two different approaches. One approach uses all the tools of regression analysis to find a model 
where only significant terms are included in the estimated systematic part of the model. The other 
approach focuses on the response surface and only tests the hypotheses described in the two clauses 
above, i.e. tests whether a linear model can be used instead of a quadratic model or tests whether a 
factor can be considered to be essentially inert. In this Technical Report, the second approach is taken 
and therefore individual non-significant terms are not removed from the model. Strong arguments in 
favour of the second approach are given on pages 508-509 in Reference [2].

4.9 Present the results

Of course, one presentation of the result of the analysis is to give the estimated systematic part of 
the model. Although the systematic part of the model is indispensable for calculating the predicted 
response for various settings, it is not very useful for understanding the nature of the response surface. 
In Annex E, four second order polynomials in two variables are given in Formulae (E.3), (E.4), (E.5) 
and (E.6). The four polynomials look very similar. They have the same distribution of signs among the 
coefficients and the coefficients are very similar. But the perspective and contour plots in Figures E.1 to 
E.4 show that the polynomials represent four very different response surfaces.

For two and three predictor variables, it is possible to get an understanding of the response surface 
from contour plots, but a more formal analysis called canonical analysis is always useful, because it 
gives a precise characterization of the surface that gives an understanding of the response surface even 
when the number of predictor variables is larger than 3.

Canonical analysis is a method of rewriting a fitted quadratic function of the predictor variables in a 
form which can be more easily understood. This is achieved by a rotation of the coordinate axes which 
removes all cross-product terms. This may be followed by a change of origin to remove first order terms 
as well. Details are given in E.3.
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Software packages for response surface methodology report the result of the canonical analysis. The 
result has the following parts:

— stationary point and predicted value at stationary point of the response surface;

— eigenvalues;

— eigenvectors.

The stationary point is the point where the fitted response surface has a maximum, a minimum or a 
saddle point, and the eigenvalues tell exactly which one is the case. Associated with each eigenvalue 
is an eigenvector. Moving away from the stationary point in the positive or negative direction of the 
eigenvector the response will decrease if the eigenvalue is negative, and it will increase if the eigenvalue 
is positive, so

— if all the eigenvalues are negative, the stationary point is a maximum,

— if all the eigenvalues are positive, the stationary point is a minimum, and

— if some eigenvalues are negative and some are positive, the stationary point is a saddle point or a 
minimax.

The situation is further complicated by the fact that one can only hope to approximate the response by 
the fitted second order model in the experimental region, so it should also be considered whether the 
stationary point is inside or outside the experimental region.

The situation is only simple, if the object is to maximize the response and if the stationary point is 
a maximum located inside the experimental region, or, alternatively, if the object is to minimize the 
response and if the stationary point is a minimum located inside the experimental region, and then 
the optimal settings is the stationary point. In all other cases, the optimal settings need to be found 
towards the boundary of the experimental region. The proprietary software packages provide a variety 
of tool for this purpose.

4.10	Perform	confirmation	run

After determining the optimal combination of levels of the factors and predicting the value of response 
variable for these factor levels, it is recommended that the user performs confirmation runs at the 
chosen settting to check whether the new observations confirm the predictions of the experiment.

If the computer output gives the standard deviation (std.dev) of a single observation and the standard 
error (std.err) of the predicted value at the optimum, then the following formulas apply for

a) a 95% confidence interval for the mean at the optimum: ˆ ( ),y t v std.err± ⋅
0 975

 and

b) a 95% prediction interval for a new observation at the optimum: ˆ ( ) .,y t v± ⋅ +
0 975

2 2
std.dev std.err

Here, v denotes the degrees of freedom for error.

The 95 % prediction interval is particularly useful for it explains what can be expected from future 
observations; if the model is good, 95 % of the observations will fall inside the 95 % prediction interval.

5 Description of Annexes A through D

5.1 Comparing and contrasting the examples

Four distinct examples of response surface designs are illustrated in Annexes A to D. Each of these 
examples follows the same general template as given in Table 1.
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5.2 Experiment summaries

Table 5 summarizes the four examples detailed in the annexes and indicates aspects of the analyses 
which were unique to each experiment.

Table 5 — Experiment summaries

Annex Experiment Problem-specific	aspects Software used for analysis

A Yield of a crop
Repetitions;
important 2-factor interaction; con-
tour plots

Minitab® 17a

B Button tactility Centre points; curvature in response SAS® 9.4a

C Semiconductor die deposition
Curvature in response; face-centred 
central composite design; three re-
sponses need to be optimized; trade-
off between three responses

JMP® 10a

D Palladium-copper catalysed C-C-
bond formation

Replication; central composite design destra®V11a

a This information is given for the convenience of users of this document and does not constitute and endorsement by 
ISO of these products. Equivalent products may be used if they can be shown to lead to the same results.
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Annex A 
(informative) 

 
Effects of fertilizer ingredients on the yield of a crop1)

A.1 Purpose of the experiment

An experiment was conducted to investigate the effects of three fertilizer ingredients on the yield of 
beans under field conditions. The fertilizer ingredients applied were nitrogen (N), phosphoric acid 
(P2O5) and potash (K2O). The response of interest was the yield in kg per plot.

Response surface methodology is often thought of as a sequential experimentation process which 
begins with a screening to determine the active factors. However, in this case, the active ingredients in 
the composition of the fertilizer were well understood and the purpose of the experiment was simply 
to find an optimal combination of the three ingredients. For this purpose, and because the surface was 
expected to be quadratic, a central composite design (CCD) was chosen.

A.2 Response variable

Only one response variable was considered in this experiment: Yield of beans measured in kg per plot.

A.3 Predictor variables

The three fertilizer ingredients were the predictor variables in the experiment. It was decided that the 
feasible amounts of the three fertilizer ingredients were within the ranges:

— N:  Nitrogen: 0,425 kg/plot to 2,833 kg/plot

— P2O5: Phosphoric Acid: 0,266 kg/plot to 1,326 kg/plot

— K2O: Potash: 0,278 kg/plot to 1,900 kg/plot

Special attention was given to the extreme settings and the scientist was confident that all combinations 
of extreme settings of the variables were within the region of operability.

All variables were continuous in the sense that all values within the chosen ranges were possible 
settings of the variables.

A.4	 Identification	and	estimation	of	measurement	systems

The repeatability and reproducibility of the measurement system for the associated response and 
predictor variables was deemed adequate for the objectives of this experiment, so no further work 
was initiated.

A.5 Selection of the settings of the predictor variables in the design

A.5.1 General considerations

To decide on the settings of the predictor variables in this experiment the following considerations 
were made. First, it was decided that the extreme levels of all variables should be the endpoints of the 

1)  Source: Renu Gupta, Bureau of Indian Standards, India.
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ranges above. Taking nitrogen as an example and using the notation of 4.6 where the actual levels are 
denoted by l1 < l2 < l3 < l4 < l5 implies that the lowest level is l1 = 0,425, the highest level is l5 = 2,833, and 
the middle level is l l l

3 1 5
2 1 629= + =( ) / , .  In order to find the values of l2 and l4, the value of α needs 

to be known. It was decided to use a rotatable design with k = 3 factors and 8 factorial points. By the 
formula in 2.18, Note 3, α is the fourth root of the number of factorial points, so α = =8 1 682

1 4/ , .  This 
means that α = 1,682 is the distance in coded units from the middle level to the highest level,

l l

C
C

l l
5 3 5 3

1 682

1 682

0 716

−
= =

−
=,

,
,  or   (A.1)

Now, the actual cube levels l2 and l4 are found as

l l C l l C
2 3 4 3

1 629 0 716 0 913 1 629 0 716 2 345= − = − = = + =+ =, , , , , ,  and  (A.2)

Similar calculations were used on phosphoric acid and potash with the results given in Table A.1.

Table A.1 — Coded and actual levels of the experimental factors. Coded levels are in the top row 
and actual levels are in the following rows. The actual levels of all variables are kg/plot.

Coded levels −1,682 −1,000 0,000 +1,000 +1,682
N 0,425 0,913 1,629 2,345 2,833

P2O5 0,266 0,481 0,796 1,111 1,326
K2O 0,278 0,607 1,089 1,571 1,900

Coded values of N, P2O5 and K2O are denoted by x1, x2 and x3 respectively, and the conversions from the 
actual levels given in Table A.1 to the coded levels are given as

x

x

x

1

2 5

3

2

2

1 629

0 716

0 796

0 315

1 089

0 482

=

=

−

−

=
−

N

P O

K O

,
,

,

,

,
,

,

,
.

 (A.3)

In a CCD, the settings or levels of the predictor variables are of three types to be considered next.

A.5.2 Factorial levels

The factorial levels are coded as −1 and +1, so the factorial levels in actual or natural units are given in 
the two columns labelled −1,000 and +1,000, in Table A.1. Factorial levels of the predictor variables in 
this experiment are the following:

— N: 0,913 and 2,345 (coded as −1 and 1 respectively);

— P2O5: 0,481 and 1,111 (coded as −1 and 1 respectively);

— K2O: 0,607 and 1,571 (coded as −1 and 1 respectively).

The factorial levels have been given their name because those levels are used to define a factorial 
design, which is an important building block in a CCD. The factorial design is typically a full two-level 
factorial design or a fractional two-level design if the number of factors is large.
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A.5.3 Axial levels

These are the extreme values for the predictor variables, so the axial levels in actual or natural units 
are given in the two columns labelled −1,682 and +1,682, in Table A.1. In this experiment, the axial 
levels are the following:

— N: 0,425 and 2,833 (coded as −1,682 and 1,682 respectively);

— P2O5: 0,266 and 1,326 (coded as −1,682 and 1,682 respectively);

— K2O: 0,278 and 1,900 (coded as −1,682 and 1,682 respectively).

A.5.4 Centre levels

The centre levels are the average of the two factorial levels, or the average of the two axial levels. Its 
coded value is 0. In this experiment, the centre levels were the nominal values of the predictor variables. 
But this is not a requirement. The experimenter is free to choose the region of experimentation where 
the response surface is being investigated. In this experiment, the centre levels are the following:

— N: 1,629 (coded as 0);

— P2O5: 0,796 (coded as 0);

— K2O: 1,089 (coded as 0).

A.6 Experimental design

A.6.1 General

The levels of the individual predictor variables defined in A.5 are combined to define the runs of the 
experiment. The three types of runs in the CCD are the factorial, the star (or axial) and the centre runs.

A.6.2 Factorial runs

In the factorial runs, all predictor variables are at their factorial levels. The factorial runs usually 
constitute a full factorial or a fractional factorial design. In this experiment, a full factorial design was 
chosen, so the number of factorial runs was 2k = 23 = 8. The factorial runs are given as serial numbers 1 
to 8 in coded levels in Table A.2.

A.6.3 Axial runs

In the axial runs, one of the predictor variables is at its upper or lower extreme level and the rest of 
the predictor variables are at their centre value. The total number of axial runs in the experiment was 
2k = 2 × 3 =6  The axial runs are given as serial number 9 to 14 in coded levels in Table A.2.

A.6.4 Centre runs

In the centre runs, all of the predictor variables are at their centre level. The centre runs were replicated 
six times in this experiment. The six centre runs are given as numbers 15 to 20 in the serial order in 
Table A.2. This is an agricultural experiment where the experimental units are plots of land. The time 
order of the recording of the yields is not relevant in this case, and for this reason there is no run order 
given in Table A.2. It is important to randomize allocation of treatments to plots, but the information of 
the randomization has not been made available.
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Table A.2 — Experiment layout in coded levels

Serial order x1 x2 x3

1 −1 −1 −1
2 1 −1 −1
3 −1 1 −1
4 1 1 −1
5 −1 −1 1
6 1 −1 1
7 −1 1 1
8 1 1 1
9 −1,682 0 0

10 1,682 0 0
11 0 −1,682 0
12 0 1,682 0
13 0 0 −1,682
14 0 0 1,682
15 0 0 0
16 0 0 0
17 0 0 0
18 0 0 0
19 0 0 0
20 0 0 0

A.7 Data generated by the experiment

The response variable from the experiment is given in the last column in Table A.3. The runs are given 
in coded levels in the first three columns and in actual levels in columns 4 to 6. The total amount of 
fertilizer applied is given in the seventh column and the yield is given in the last column.

Table A.3 — Data collected during the experiment. The Total Amount of Fertilizer is the row 
sum	of	N,	P2O5 and K2O columns.

x1 x2 x3 N P2O5 K2O
Total 

amount of 
fertilizer

Yield

−1 −1 −1 0,913 0,481 0,607 2,001 5,076
1 −1 −1 2,345 0,481 0,607 3,433 3,798

−1 1 −1 0,913 1,111 0,607 2,631 3,798
1 1 −1 2,345 1,111 0,607 4,063 3,469

−1 −1 1 0,913 0,481 1,571 2,965 4,023
1 −1 1 2,345 0,481 1,571 4,397 4,905

−1 1 1 0,913 1,111 1,571 3,595 5,287
1 1 1 2,345 1,111 1,571 5,027 4,963

−1,682 0 0 0,425 0,796 1,089 2,310 3,541
1,682 0 0 2,833 0,796 1,089 4,718 3,541

0 −1,682 0 1,629 0,266 1,089 2,984 5,436
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x1 x2 x3 N P2O5 K2O
Total 

amount of 
fertilizer

Yield

0 1,682 0 1,629 1,326 1,089 4,044 4,977
0 0 −1,682 1,629 0,796 0,278 2,703 3,591
0 0 1,682 1,629 0,796 1,900 4,325 4,693
0 0 0 1,629 0,796 1,089 3,514 4,563
0 0 0 1,629 0,796 1,089 3,514 4,599
0 0 0 1,629 0,796 1,089 3,514 4,599
0 0 0 1,629 0,796 1,089 3,514 4,275
0 0 0 1,629 0,796 1,089 3,514 5,188
0 0 0 1,629 0,796 1,089 3,514 4,959

A.8 Analysis of results

A.8.1 Software used for the analysis

Data acquired through the experiment are analysed using Minitab® 17.2)

A.8.2 Transfer function

The analysis was performed using the software coded versions of the predictor variables, but the 
estimated transfer function (the estimated systematic part of the model) for Yield of a crop (in kg) is 
more useful when expressed in the actual or natural units. The estimated transfer function in natural 
units in Table A.4 is taken from the Minitab® 172) output.

Table A.4 — Estimated transfer function in actual units

Yield = 6,08 + 1,559 N - 6,01 P2O5 - 0,90 K2O - 0,739 N*N + 2,116 P2O5*P2O5
 - 0,715 K2O*K2O - 0,142 N*P2O5 + 0,784 N*K2O + 2,411 P2O5*K2O

A.8.3	 Estimation	of	coefficients

The result of the estimation is displayed in Table A.5 using software coded units.

As explained in the last paragraph of 4.8, the approach to analysis adopted in this Technical Report is the 
one recommended by Box et al. on pages 508-509 in Reference [2]. Thus, it is not recommended to inspect 
the individual regression coefficients and trying to interpret whether some of the coefficients might fail 
to be significantly different from 0. The point is that a second order surface is being fitted and the least 
squares estimate of the fitted surface has the coefficients in the “Estimated Regression Coefficients for 
Yield” part of Table A.4 or Table A.5 depending on the coding of the predictor variables used.

Table	A.5	—	Estimated	regressions	coefficients	and	CCD	ANOVA	table	using	software	coded	levels

Estimated	regression	coefficients	for	yield
Term Coef SE Coef T P

Constant 4,692 60 0,145 4 32,282 0,000
N −0,129 18 0,162 2 −0,796 0,444

2)  This information is given for the convenience of users of this document and does not constitute and endorsement 
by ISO of these products. Equivalent products may be used if they can be shown to lead to the same results.
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P2O5 −0,130 21 0,162 2 −0,803 0,441
K2O 0,602 38 0,162 2 3,713 0,004
N*N −1,070 92 0,265 5 −4,033 0,002

P2O5*P2O5 0,594 49 0,265 6 2,238 0,049
K2O*K2O −0,470 01 0,265 6 −1,770 0,107
N*P2O5 −0,090 89 0,356 5 −0,255 0,804
N*K2O 0,765 69 0,356 5 2,148 0,057

P2O5*K2O 1,036 50 0,356 7 2,906 0,016
S = 0,356 408 PRESS = 7,324 51
R-Sq = 84,40 % R-Sq(pred) = 10,07 % R-Sq(adj) = 70,37 %
Analysis of variance for yield
Source DF Seq SS Adj SS Adj MS F P
Regression 9 6,874 26 6,874 26 0,763 81 6,01 0,005
Linear 3 1,913 51 1,913 51 0,637 84 5,02 0,022
Square 3 3,294 20 3,294 20 1,098 07 8,64 0,004
Interaction 3 1,666 54 1,666 54 0,555 51 4,37 0,033
Residual error 10 1,270 27 1,270 27 0,127 03
Lack-of-Fit 5 0,745 30 0,745 30 0,149 06 1,42 0,355
Pure error 5 0,524 97 0,524 97 0,104 99
Total 19 8,144 53

While it is inappropriate to change the values of individual estimated regression coefficients, it does 
make sense to look for model simplification where one answers questions like the following:

— Are the pure quadratic terms needed in the model?

— Is a first order model satisfactory?

This is where the “Analysis of Variance for Yield” part of Table A.5 is useful. Read from the bottom of 
the table, the first F-test of interest is the ratio of the mean squares for Lack-of-Fit and Pure Error which 
comes from the replication of the centre points and is a check of the fit of the model. In this case, the 
p-value is 0,355 and the model is not questioned. The second F-test is in the Square line and it tests 
the need for pure quadratic terms in the model; in this case, the hypothesis that β11 = β22 = β33 = 0. It 
is the ratio of the mean square in the Square line to the mean square in the Residual Error line of the 
table. The p-value is 0,004 and the hypothesis is strongly rejected, so quadratic terms are needed in the 
model. The F-test in the Interaction line tests the hypothesis β12 = β13 = β23 = 0 and this hypothesis is 
also rejected and so is the hypothesis β1 = β2 = β3 = 0 which is tested by the F-test in the Linear line.

A.8.4 Graph of residuals

Figure A.1 shows some standard model checking plots based on the residuals that are produced by 
Minitab®. The observation order that is used in the plot of residuals against observation order is the 
serial order in Table A.2. There is a strange pattern in this plot: large residuals in the factorial runs, 
small residuals in the axial runs and the first three centre runs, and finally large residuals in the final 
three centre runs. A plot of residuals against observation order is most useful if observations are 
made in a natural order, for example a time sequence. As mentioned in A.6.4, the experiment is a field 
experiment so, no single one-dimensional plotting order is relevant. In this case the information about 
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how the plots were laid out in the field is not available, so the plot is not particularly relevant here but is 
kept as an illustration of a potentially useful plot.

a) Normal probability plot b)	Versus	fits

c) Histogram d) Versus order

Key
X1 residual Y1 percent
X2 fitted value Y2 residual
X3 residual Y3 frequency
X4 observation order Y4 residual

Figure A.1 — Residual plots

A.9 Presentation of results — Optimization

A.9.1 General

Just looking at the transfer function (the estimated systematic part of the model), whether it is shown 
in actual units as in A.8.2 or in coded units, does not reveal the properties of the response surface. 
It is important to realize that the second order polynomial in two or more variables can represent a 
variety of surfaces. The stationary point can be a maximum, a minimum or a saddle point. Furthermore, 
the stationary point can be located outside as well as inside the experimental region. The situation is 
only simple, if the object is to maximize the response and if the stationary point is a maximum located 
inside the experimental region, or, alternatively, if the object is to minimize the response and if the 
stationary point is a minimum located inside the experimental region, and then the optimal settings is 
the stationary point. In all other cases, the optimal settings need to be found towards the boundary of 
the experimental region. If the number of predictor variables is two or three, then, contour plots can be 
of help as illustrated in A.8.3. Alternatively, numerical methods, such as the desirability function, can 
be used. An application of the desirability function is given in A.9.2.
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A.9.2 Application of the desirability function

The desirability function is most often presented as numerical tool that can solve conflicts where two 
or more responses have conflicting optimal settings, but it can also be used to find optimal settings 
with just one response as illustrated in this example.

Figure A.2 — Optimization plot given by Minitab’s® response optimizer

Using the response optimizer in Minitab® gives the optimization plot in Figure A.2. It indicates that a 
high value of yield can be achieved when N, P2O5 and K2O are set at 1,933 0, 1,32 6 and 1,90 (values in 
Red), respectively. The estimated predicted value of yield at these values is 6,395 2 (value in blue).

Note that both P2O5 and K2O are set at their extreme high values in the experiment. This means that the 
optimal setting suggested by Minitab’s® response optimizer is rather far from settings that are used in 
the experiment. It could be argued that it lies outside the experimental region.

Clicking on Predict in the optimization plot in Minitab® gives useful information shown in Table A.6. It 
is very useful that both the 95 % confidence interval and the 95 % prediction interval for the predicted 
yield are given.

Table A.6 — Optimal settings and predicted yield given by Minitab’s® response optimizer

Prediction for yield
Multiple response prediction
Variable Setting
N
P2O5

K2O

1,933 04
1,326
1,9

Response Fit SE Fit 95 % CI 95 % PI
Yield 6,395 0,540 (5,191; 7,599) (4,953; 7,837)

The estimated standard errors of the predicted response at a selection of settings have been calculated 
using the Prediction option in Minitab’s® Analyse response surface designs. The result is shown in 
Table A.7. The setting suggested by the response optimizer which is in the fourth row of Table A.7 is 
substantially larger than estimated standard errors at the other settings in Table A.7 which are all 
inside the experimental region.

A.9.3	 Application	of	contour	plots	to	find	optimal	settings

With three predictor variables, a series of contour plots of the response surface in two variables for a 
range of appropriately chosen values of the third value are needed to explore the response surface.
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a) b)

c) d)

e)

NOTE The design points are shown as dots in the contour plots.

Figure	A.3	—	Contour	plots	of	predicted	responses	for	five	fixed	values	of	P2O5
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The contour plots in Figure A.3 are slices cutting through the contours in three-dimensional space at 
the selected values of P2O5. The fixed values are selected as the values of P2O5 that are used in the 
experiment, see Table A.1. The design points are shown in the contour plots as dots. The highest 
expected responses are seen in the contour plots with the two extreme values of P2O5. But the single 
design points shown in those two plots are axial runs so moving away from this axial run in the slice 
means moving outside the design space. When interpreting regression models it is not recommended to 
extrapolate outside the region where one has data. So with this in mind the safe recommendation for an 
optimal setting would be to set N to a value between 1,5 and 1,7, set P2O5 to a value between 1,11 and 
1,25, say, and set K2O to a value close to 1,60 in actual units. Two example settings are given in the first 
two rows of Table A.7. The last column gives the distance in software coded units of the setting to the 
design centre. If this distance is larger than one, the setting is outside the experimental region.

Table A.7 — Settings of predictor variables and the corresponding estimated yield and the 
estimated	standard	error	of	the	estimated	yield.	The	first	two	rows	are	settings	suggested	by	
the inspection of contours in Figure A.3.	For	comparison,	the	centre	point	is	given	in	the	third	
row and the optimal setting suggested by the desirability function is given in the fourth row.

N P2O5 K2O Estimated yield Estimated 
standard error

Distance to de-
sign centre

1,692 1,184 1,512 5,50 0,236 0,900
1,699 1,233 1,540 5,67 0,276 0,996
1,629 0,796 1,089 4,69 0,145 0
1,933 1,326 1,900 6,40 0,540 1,437

A.9.4 Canonical analysis

Minitab® does not offer the results from a canonical analysis as part of the output from its Stat → DOE 
→ Response Surface → Analyze Response Surface Designs menu, but it is possible to use facilities in 
Minitab® to make the calculations using the formulas in Annex E. The matrix B in Formula (E.8) can 
be constructed manually and read into a matrix in Minitab® and then the Calc → Matrices → Eigen 
Analysis… menu can be used to obtain the eigenvalues and the eigenvectors. If the column matrix b 
in Formula (E.8) is also made available in Minitab®, the coordinates of the stationary point can be 
obtained using Formula (E.9).and the facilities for matrix manipulations in the Calc → Matrices → 
Arithmetic… menu.

The standard result from the canonical analysis is given in Tables A.8 and A.9. Table A.8 gives the 
coordinates of the stationary point in software coded units and in original units as well as the predicted 
response at the stationary point.

The software coded coordinates are particularly useful for judging whether the stationary point 
is inside or outside the experimental region. In this case, the stationary point is well within the 
experimental region. But if one or more coordinates approach 1 or −1, it may be helpful to calculate the 
distance from the stationary point to the centre point of the design. In this case, it is

D
S

1 7 264 438 0,52= + − + =0 0 0 0
2 2 2, ( , ) ,  (A.5)

Thus, the stationary point is well within the experimental region because points with a distance smaller 
than 1 measured in software coded units are considered to be inside the experimental region.
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Table A.8 — Canonical analysis of response surface: Stationary point

Stationary point
N P2O5 K2O

Software coded units 0,107 −0,264 0,438
Original units 1,758 0,656 1,444

Predicted value at the stationary point 4,835

Table A.9 contains information that characterizes the response surface. The first column gives the 
eigenvalues and two are negative and one is positive, which means that the stationary point is a saddle 
point or a minimax. The eigenvector corresponding to the positive eigenvalue of 0,811 is given in the 
same row. The labels N, P2O5 and K2O have been used for the coordinates even if the coordinates are in 
software coded units. The interpretation of the eigenvector is that, if moving away from the stationary 
point in increments proportional to the eigenvector, then, the response increases because the eigenvalue 
is positive. Similarly, if moving away from the stationary point in increments proportional to the other 
two eigenvectors, then, the response decreases because the eigenvalues are negative.

Table A.9 — Canonical analysis of response surface based on software coded variables: 
Eigenvalues and eigenvectors

Eigenvalues Eigenvectors
N P2O5 K2O

0,811 0,057 0,919 0,389
−0,458 0,513 −0,361 0,779
−1,299 0,856 0,155 −0,492

Stationary point is a saddle point

So there is no single maximum inside the experimental region, and the optimal setting should be found 
towards the boundary of the experimental region. Since there is only one positive eigenvalue, this 
optimum shall be found in the direction of the eigenvector corresponding to the positive eigenvalue. 
Note, from the coordinates of this eigenvector in Table A.9, that the dominating coordinate is the one 
that corresponds to P2O5, so moving in the negative direction of this eigenvector largely corresponds 
to decreasing the P2O5 component below the value in the stationary point, which is 0,66 in original 
units. Similarly, moving in the positive direction of this eigenvector corresponds to increasing the P2O5 
component above 0,66 in original units.

The findings here are reflected in the contour plots of Figure A.3. Note that P2O5 = 0,66 is between the 
second and the third contour plot. Comparing the first two contour plots with P2O5 = 0,27 and P2O5 = 0,48 
it is clear that the response increases when P2O5 decreases. Similarly, comparing the last three contour 
plots where P2O5 = 0,8, P2O5 = 1,11 and P2O5 = 1,33 it is clear how the response increases with P2O5.

A.9.5 Conclusion

The analysis has concentrated on finding settings of the predictor variables that would maximize the 
expected response while keeping the predictor variables within the experimental region. This is a 
problem that is often solved with response surface methods. The recommendations can be evaluated 
based on Table A.6. The nominal settings that were used before the experiment are in the third row 
of Table A.6. Suggested settings are in rows one and two. The increase in expected yield is about 
0,9 kg/plot, but this is at the cost of increasing the amount of fertilizer with almost the same amount. 
Fertilizers are expensive so this is hardly worthwhile.

But it is possible to answer another question with these data: Is it possible to increase the yield to 
5 kg/plot or above using different combinations of the three fertilizer components and reducing the 
total amount of fertilizer? This question can be answered using information from the canonical analysis 
and illustrated by an appropriate contour plot and this approach will be considered first. Alternatively, 
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the desirability function in Minitab’s® Contour Profiler can be used to guide to a solution. This approach 
is explained in connection with Figure A.6.

Recall that moving away from the stationary point in the opposite direction of the eigenvector 
corresponding to the positive eigenvalue would also increase the response. This is the eigenvector in 
the first row of Table A.9. Noting that the coefficient corresponding to N is very small, so the amount 
of N changes very slowly, the options are best described by a contour plot where N is held fixed at the 
value at the stationary point, i.e. N = 1,758. This contour plot is shown in Figure A.4. It shows how the 
yield increases most rapidly when moving away from the stationary point in increments proportional 
to (P2O5, K2O) = (0,919, 0,389). The solutions offered in Table A.6 were sought in the positive direction 
corresponding increasing the P2O5 and the K2O components, i.e. in the upper right hand corner. Now, 
focus is on decreasing the P2O5 and the K2O components while having an estimated yield of 5 kg/plot or 
above. It appears from the contour plot that quite a variety of settings of P2O5 and K2O in the left hand 
side of the contour plot might achieve this goal. These settings, however, are close to the boundary of 
the experimental region where the conclusions are less certain, as is being emphasized by the increase 
in the estimated standard errors of the predictions. So, the recommendation would be to confirm the 
expected results at desired settings by more experimentation. This could be simply some confirmation 
runs, or a more elaborate design, such as a new response surface design, for example.

If a more elaborate design is chosen, it would be advisable to consider blocking in an attempt to reduce 
the random variation. Advice on blocking in response surface experimentation can be found in the 
References [2] and [7].

The scatterplot of observed yields against fitted values in Figure A.5 shows a rather large variation 
around the regression line showing that reducing the variation should be a major concern.

NOTE The left hand side of the plot shows an area of settings where smaller amounts of K2O and P2O5 than 
at the nominal setting give a higher predicted yield than at the nominal settings.

Figure	A.4	—	Contour	plot	where	N	is	held	at	1,758
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Y

Key
X fitted values Y yield

NOTE For a perfect fit, the points would be on the blue line. The variation around the regression line is rather 
large. This plot is equivalent to the plot of residuals against fitted values in Figure A.1.

Figure	A.5	—	Scatterplot	of	observed	yield	against	fitted	values

Minitab’s® Response Optimizer can assist in solving the problem of having a predicted yield of 
5 kg/plot or above using combinations of the three fertilizer components and a reduction of the total 
amount of fertilizer used per plot. For this purpose the total amount of fertilizer (The variable Amount 
in Figure A.6) per plot is introduced as a response variable and a second order response model with 
predictors with N, P2O5 and K2O is fitted. This is a mere formality to make Amount available in the 
Response Optimizer. In the setup window, it is chosen to minimize Amount with target 0 and to 
maximize Yield with lower limit set to 5, reflecting the desire to have response above five, and target 
arbitrarily set to seven. The result is seen in Figure A.6. It should be noticed that the suggested settings 
of both P2O5 and K2O are at their extreme lower levels. So, just as was the case with the application of 
the desirability function leading to Figure A.2, the solution here is outside the experimental region. 
As always, when experimentation suggests that settings outside the experimental region might be 
optimal, such hypotheses should be confirmed with further experimentation.
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Figure A.6 — Optimization results based on the Desirability Function using two responses Yield 
and Total Amount of Fertilizer
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Annex B 
(informative) 

 
Optimization of the button tactility using central composite design3)

B.1 Purpose of the experiment

Button tactility (perceptibility by touch) is a critical requirement for wireless products such as two way 
radios and cellular phones. Poor button tactility will lead to customer complaints and dissatisfaction. 
The main purpose of this experiment is to provide good button tactility for two way radios by optimizing 
specification settings of the existing component using statistical tools.

The objective of the experiment is to achieve good button tactility on the emergency button. The study 
is focused on the emergency button due to higher customer complaints associated with this button on 
previous products.

Initially, a full factorial experiment using four factors was conducted to optimize the button tactility. 
The analysis of the full factorial experiment indicated that two of these factors were significant. The 
analysis also showed the presence of curvature which suggest that quadratic terms may be needed in 
the model. A response surface experiment was planned to estimate the quadratic terms.

B.2 Response variable

Only one response variable was considered in this experiment: button tactility. The button tactility is 
defined as snap ratio (%) = [(F1−F2)/F1] × 100 %, where

F1 is actuation force (gf) and

F2 is return force (gf).

To measure F1 and F2, a mechanical plunger is used to depress the button and the force curve graph is 
plotted (Figure B.1). The unit gf is gram force (9,806 65 × 10−3 Newton). The first peak on the graph is 
the actuation force and the lowest point after the first peak is the return force.

B.3 Predictor variables

As mentioned in B.1 an initial full factorial experiment with four factors was conducted. The four 
factors in the initial experiment were the following:

— A. Duro hardness button;

— B. Actuation force of dome;

— C. Air vent width;

— D. Plunger length.

The initial experiment was conducted using the above four factors each at two levels. The analysis of 
this full factorial experiment showed that factor A and factor B had significant impact on the response 
variable button tactility, while factors C and D and interactions involving those factors were non-
significant. The analysis also indicated the presence of interaction between A and B which suggested 
that quadratic terms needed to be included in the model.

3)  Source: Harry Shah, USA.
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Based on the results of the full factorial experiment, the two factors A, duro hardness button, and 
B, actuation force of dome, were selected for a response surface experiment. In the following, the 
shorthand notation DHB for duro hardness button and AFD for actuation force of dome will be used.

Key
X travel distance, in millimetres (mm)
Y force, in gram force (gf)

Figure B.1 — Button depress versus force curve

Table B.1 — Coded and actual levels of the experimental factors

Coded levels −1,25 −1,00 0,00 +1,00 +1,25
Duro hardness button 

(DHB) 40 44 60 76 80

Actuation force of 
dome (AFD) 120 128 160 192 200

NOTE Coded levels are in the top row and actual levels are in the following rows.

B.4	 Identification	and	estimation	of	measurement	systems

The repeatability and reproducibility of the measurement system for the associated response and 
predictor variables was deemed adequate for the objectives of this experiment, so no further work 
was initiated.

B.5 Selection of the settings of the predictor variables in the design

B.5.1 General considerations

Coded values of duro hardness button (DHB) and actuation force of dome (AFD) are denoted by x x
1 2

 and ,

respectively, and the conversions from the actual levels given in Table B.1 to the coded levels are given as

x
1

60

16
=

−Duro hardness button  (B.1)
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x
2

160

32
=

−Actuation force of dome  (B.2)

B.5.2 Factorial levels

The factorial levels are coded as −1 and +1, so the factorial levels in actual or natural units are given in 
the two columns labelled −1,00 and +1,00 in Table B.1. Factorial levels of the predictor variables in this 
experiment are the following:

— Duro hardness button (DHB): 44 and 76 (coded as −1 and 1 respectively);

— Actuation force of dome (AFD): 128 and 192 (coded as −1 and 1 respectively).

The factorial levels have been given their name because those levels are used to define a factorial 
design, which is an important building block in a CCD. The factorial design is typically a full two-level 
factorial design or a fractional two-level design if the number of factors is large.

B.5.3 Axial levels

These axial levels are the extreme values the predictor variables can have, so the axial levels in actual 
or natural units are given in the two columns labelled −1,25 and +1,625 in Table B.1. In this experiment, 
the axial levels are the following:

— Duro hardness button (DHB): 40 and 80 (coded as −1,25 and 1,25 respectively);

— Actuation force of dome (AFD): 120 and 200 (coded as −1,25 and 1,25 respectively).

B.5.4 Centre levels

The centre levels are the average of the two factorial levels, and it is also the average of the two 
axial levels. Its coded value is 0. In this experiment the centre levels were the nominal values of the 
predictor variables. But this is not a requirement. The experimenter is free to choose the region of 
experimentation where the response surface is being investigated. In this experiment, the centre levels 
are the following:

— Duro hardness button (DHB): 60 (coded as 0);

— Actuation Force of dome (AFD): 160 (coded as 0).

B.6 Experimental design

B.6.1 General

The levels of the individual predictor variables defined in B.5 are combined to define the runs of the 
experiment. The three types of runs in the CCD are the factorial, the star (or axial) and the centre runs.

B.6.2 Factorial runs

In the factorial runs, all predictor variables are at their factorial levels. The factorial runs usually constitute 
a full factorial or a fractional factorial design. In this experiment, a full factorial design is chosen, so the 
number of factorial runs is 22 = 4 The factorial runs are given as serial numbers 1 to 4 in Table B.2. Their 
coded levels are given in columns 3 and 4 while the actual levels are given in columns 5 and 6.

B.6.3 Axial runs

In the axial runs, one of the predictor variables is at its upper or lower extreme level and the rest of the 
predictor values are at their centre value. The total number of axial runs in this experiment is 4. The 
axial runs are given as serial number 5 to 8 in Table B.2. Their coded levels are given in columns 3 and 4 
while the actual levels are given in columns 5 and 6.
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B.6.4 Centre runs

In the centre runs, all the predictor variables are at their centre level. The centre runs were replicated 
three times in this experiment. The three centre runs are given as serial number 9 to 11 in Table B.2. 
Their coded levels are given in columns 3 and 4 while the actual levels are given in columns 5 and 6.

B.7 Data generated by the experiment

The response variable is measured once for each setting of the predictor variables. All the information 
about the predictor variables and the response is collected in Table B.2. The first column gives the order 
in which the runs were made in the experiment. The second column gives a so-called serial number of 
the runs which can be used to identify the type of run. The serial number of a run is the number in the 
serial order. In this experiment the factorial runs have serial numbers 1 to 4, followed by the axial runs 
which have serial numbers 5 to 8, and finally the three centre runs have serial numbers 9 to 11. The 
runs are given in coded levels in columns 3 and 4 and in actual levels in columns 5 and 6.

Table B.2 — Design and data collected during the experiment

Run
order

Serial
number

      x1       x2

Duro hard-
ness button 

(DHB)

Actuation 
force of dome 

(AFD)
Button tactil-

ity,	Y
1 11 0,00 0,00 60 160 31,86
2 1 −1,00 −1,00 44 128 21,15
3 4 1,00 1,00 76 192 33,07
4 3 −1,00 1,00 44 192 24,72
5 2 1,00 −1,00 76 128 30,39
6 10 0,00 0,00 60 160 31,09
7 6 1,25 0,00 80 160 26,74
8 7 0,00 −1,25 60 120 26,67
9 5 −1,25 0,00 40 160 14,79

10 8 0,00 1,25 60 200 33,84
11 9 0,00 0,00 60 160 33,08

B.8 Analysis of results

B.8.1 Software used for the analysis

The data are analysed with the rsreg procedure in SAS® 9.4.

B.8.2 Transfer function

The estimated transfer function (the estimated systematic part of the model) for Button Tactility is 
given by Formula (B.3), using actual or natural units

Button Tactility  74,848 895 3, 69 693 DHB  4 684 AFD = − + ∗ + ∗ −0 0 00, 00 000

0 0

, *

,

435 DHB AFD

                              22 624

( )
− ∗ DDHB DHB 275 AFD AFD∗ + ∗ ∗( ) ( )0 000,

 (B.3)

The coefficients of the transfer function in Formula (B.3) are found in Table B.3. The values of the 
predictor variables in actual units are rather large and so the estimated coefficient may become small. 
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This is one argument for using coded units. It is good practice to perform the analysis in terms of the 
coded or software coded variables. The transfer function in coded units is as follows.

Button Tactility  31,514 229 4,565263  2,135 88 2225
1 2

= + + −x x0 0 0, 00

0

∗ ∗
− ∗ +

( )

( ) ,

x x
x x

1 2

1 1
                           5,791 643  2881 957

2 2
( )x x∗

 (B.4)

The coefficients of the transfer function in Formula (B.4) are found in Table B.4.The analysis is 
often performed with coded variables and the results are subsequently interpreted in terms of the 
actual variables.

B.8.3	 Estimation	of	coefficients

Table	B.3	—	Estimated	regression	coefficients	using	actual	units

Parameter DF Estimate
Standard 

 error t Value Pr > |t|

Parameter 
estimate from 

Software Coded 
Data

Intercept 1 −74,848 895 38,487 109 −1,94 0,109 4 31,514 229
AFD 1 0,004 684 0,364 119 0,01 0,990 2 2,668 860
DHB 1 3,069 693 0,617 764 4,97 0,004 2 5,706 579
AFD*AFD 1 0,000 275 0,001 060 0,26 0,805 4 0,440 557
DHB*AFD 1 −0,000 435 0,002 167 −0,20 0,848 9 −0,347 656
DHB*DHB 1 −0,022 624 0,004 239 −5,34 0,003 1 −9,049 443

Table	B.4	—	Estimated	regression	coefficients	using	coded	units

Parameter DF Estimate Standard error t Value Pr > |t|

Parameter 
estimate from 

Software 
Coded Data

Intercept 1 31,514 229 1,256 212 25,09 <0,000 1 31,514 229
x2 1 2,135 088 0,831 129 2,57 0,050 1 2,668 860
x1 1 4,565 263 0,831 129 5,49 0,002 7 5,706 579
x2*x2 1 0,281 957 1,085 222 0,26 0,805 4 0,440 557
x1*x2 1 −0,222 500 1,109 254 −0,20 0,848 9 −0,347 656
x1*x1 1 −5,791 643 1,085 222 −5,34 0,003 1 −9,049 443

The analysis has been made using coded units, but for easy reference with the transfer function in 
actual units in in Formula (B.3) in B.8.2 the estimated regression coefficients for actual units are given 
in Table B.3. The rsreg procedure in SAS® presents some of the results in software coded units, but uses 
the term Coded Data. In order to avoid confusion, the term has been changed to Software Coded Data 
in the tables. Apart from this, the tables and figures in B.7 and B.8 have been produced by the rsreg 
procedure. Note that the coded variables x1 and x2 are called x1 and x2, respectively, in the tables.

Table B.5 shows the F-tests for the hypotheses that each predictor variable is not needed in the model. 
The test in the row labelled x2 is the test for the hypothesis that β2 = β12 = β22 = 0, i.e. the hypothesis 
that the coefficients of all the terms in the model that involve x2 are 0. These tests are the same whether 
coded variables, software coded variable or actual variables are used in the analysis. These tests should 
be used with caution. In this case, the hypothesis that x2 is not needed in the model is not rejected, the 
p-value being 0,202 0, but inspection of individual p-values in Table B.4 indicates that the hypothesis 
β2 = 0 should probably be rejected. The p-value is 0,050 1 in Table B.4 which is borderline.

Table B.5 however does give the information that most of the variation in the data are explained by x1 
(DHB).

 

32 © ISO 2015 – All rights reserved



PD ISO/TR 13195:2015

 

ISO/TR 13195:2015(E)

Table B.5 — Are all predictor variables needed?

Factor DF Sum of squares Mean square F-value Pr > F
x2 3 33,010 284 11,003 428 2,24 0,202 0
x1 3 288,875 252 96,291 751 19,56 0,003 4

Tables B.6 and B.7 are the ANOVA tables for the central composite design and they are often shown 
together as a single table, and indeed some of the entries rely on information from both tables. The 
F-value, 18,39, in the Linear row of Table B.6 is calculated using Formula (B.5).

180,976 619

4,921775
18,39

2












=  (B.5)

Here, the numbers in the numerator are found in the Sum of Squares and DF columns of Table B.6 and 
the denominator is the Total Error Mean Square from Table B.7.

Table B.6 is used to decide on the complexity of the model for the response surface. The most important 
question is whether a quadratic surface is needed. This question is answered by the F-value and the 
corresponding P value (Pr > F) in the Quadratic line of Table B.6. The P value is much smaller than the 
conventional significance level of 0,05. The conclusion is that a quadratic surface, or a second order 
model, is needed.

Table B.6 — ANOVA table for CCD for deciding the type of response surface

` DF Sum of squares R-Square F-value Pr > F
Linear 2 180,976 619 0,515 2 18,39 0,005 0
Quadratic 2 145,501 951 0,414 2 14,78 0,008 0
Crossproduct 1 0,198 025 0,000 6 0,04 0,848 9
Total model 5 326,676 595 0,929 9 13,27 0,006 5

Table B.7 gives information on the fit of the second order model. The F-value compares the Lack of Fit 
estimate of the error to the Pure Error estimate of the error which is this design comes from the three 
replicates at the centre point. The test does not question the model.

Table	B.7	—	ANOVA	table	for	CCD	for	lack	of	fit

Residual DF Sum of squares Mean square F-value Pr > F
Lack of Fit 3 22,595 077 7,531 692 7,48 0,120 2
Pure error 2 2,013 800 1,006 900
Total error 5 24,608 877 4,921 775

B.9 Presentation of results — Optimization

B.9.1 General

Just looking at the transfer function (the estimated systematic part of the model), whether it is shown 
in actual units as in Formula (B.3) or in coded units as in Formula (B.4), does not reveal the properties 
of the response surface. It is important to realize that the second order polynomial in two or more 
variables can represent a variety of surfaces. The stationary point can be a maximum, a minimum or a 
saddle point. Furthermore, the stationary point can be located outside as well as inside the experimental 
region. The situation is only simple, if the object is to maximize the response and if the stationary point 
is a maximum located inside the experimental region, or, alternatively, if the object is to minimize the 
response and if the stationary point is a minimum located inside the experimental region, and then 
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the optimal settings is the stationary point. In all other cases the optimal settings needs to be found 
away from the stationary point but within the boundary of the experimental region. If the number of 
predictor variables is two, then contour plots can be very useful as illustrated in B.9.3.

B.9.2 presents the canonical analysis of the fitted second order response surface. Canonical analysis has 
been the basic tool to gain a precise understanding of the response surface. Although modern computer 
software has various impressive graphical and analytical tools, the knowledge obtained from a canonical 
analysis helps to fully exploit the graphical tools. The results of the canonical analysis in this experiment 
are that the stationary point is a saddle point that is located far outside the experimental region.

B.9.2 Canonical analysis

The standard result from the canonical analysis is given is Tables B.8 and B.9. Table B.8 gives the 
coordinates of the stationary point, xS , in coded units and in original units as well as the predicted 
response at the stationary point. Mathematical details of canonical analysis can be found in E.3.

Table B.8 — Canonical analysis of response surface based on coded variables: Stationary point

Factor

Critical value
Software

coded Uncoded
x1 0,370 673 0,463 341
x2 −2,882 706 −3,603 382
Predicted	value	at	stationary	point:	28,725	098

As mentioned in B.8.3, the rsreg procedure in SAS® presents some of the results in software coded 
units, but uses the term Coded Data. Table B.8 has been taken from the SAS® output, but the column 
labelled Software Coded was originally labelled Coded in the SAS® output. The rsreg procedure gives 
some of the calculations in software coded units, which SAS® simply refer to as coded.

Table B.9 contains information that characterizes the estimated response surface. The first column 
gives the eigenvalues and they have different signs, so the stationary point is a saddle point. The 
eigenvector corresponding to the eigenvalue 0,443 740, for example, is given in the same row.

Table B.9 — Canonical analysis of response surface based on coded variables: Eigenvalues 
and eigenvectors

Eigenvalues
Eigenvectors

x1 x2
0,443 740 −0,018 308 0,999 832

−9,052 626 0,999 832 0,018 308
Stationary point is a saddle point.

It is worth noting that the eigenvalues given in Table B.9 by the SAS® procedure rsreg are calculated 
based on software coded variables, even if the predictor variables that are used in the analysis are the 
coded variables x1 and x2 from Table B.2.

The distance of the stationary point to the design centre in coded units is

D
S

463341 +( 3,6 3382) 3,63= − =0 0
2 2,  (B.6)

So the stationary point is in this case outside the experimental region because the extreme points of the 
design, the factorial points and the axial points in this design are at a distance from the design centre of 

2 1 41= , and α = 1 25, , respectively.
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It may be useful to refer to the contour plot of Figure B.2 in the discussion of the canonical analysis 
because it displays the design points. The stationary point is x

S S1 S2
463341 3 6 3382= = −( , ) ( , , , )x x 0 0  

so it is obvious that the stationary point is outside the experimental region. The eigenvector 
corresponding to the numerically largest eigenvalue, −9,052 626, is e

1
0 0 0 0= ( ), , ,999 832 183 8 , which 

is close to (1,0) and the eigenvector corresponding to the numerically smallest eigenvalue, 0,443 740, is 
e

2
0 0 0 0= −( , , , )183 8  999 832  which is close to (0,1).

Moving away from the stationary point in increments proportional to e1 will decrease the predicted 
response, and moving away from the stationary point in increments proportional to e2 will increase the 
predicted response. This means that in the design region the fitted response surface is a rising ridge. 
The rising ridge is a straight line through the stationary point and pointing in the direction of e2. The 
formula of the rising ridge is as follows:

x x
2 1
= −54,612 +21,7  (B.7)

The ridge intersects the line x2 = −1,25 (AFD = 120) at x1 = 0,420 24 (DHB = 66,724) and the line 
x2 = 1,25 (AFD = 200) at x1 = 0,374 46 (DHB = 65,991). In the experimental region the ridge is very well 
approximated by the vertical line x1 = 0,4 (DHB = 66,4).

B.9.3	 Application	of	contour	plots	to	find	optimal	settings

With only two predictor variables most conclusions can be drawn from a contour plot as in Figure B.2 
where coded values are used on the axes or in Figure B.3 where actual values are used on the axes. A 
high value of button tactility is desired, and it is obvious from the contour plots that a predicted response 
above 35 can be achieved with x1 around 0,3 (DHB around 65) and x2 around 1,25 (AFD close to 200).
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NOTE The shading is used to indicate the estimated standard error of the predicted response, see the colour 
code on the right hand side of the figure.

Figure B.2 — Contours of the estimated response surface for button tactility with the design 
points indicated by open circles
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NOTE Figure B.3 is the same as Figure B.2 except that Figure B.3 uses the actual values of the predictor 
variables on the axes.

Figure B.3 — Contours of the estimated response surface for button tactility with the design 
points indicated by open circles

B.9.4 Application of ridge analysis

With only two predictor variables, there is really no need to apply other techniques than contour plots 
or canonical analysis, but it may be useful to present a technique that is potentially useful with a large 
number of predictor variables. The method of ridge analysis was introduced by Hoerl in 1959, but a 
good introduction is given in Reference [8]. Mathematical details are given by Draper in Reference [9].

The SAS® procedure rsreg has implemented ridge analysis, which can be used to find a ridge of optimal 
responses. This ridge is not necessarily the same as the one found using canonical analysis. But it does 
give roughly the same answer in terms of optimal settings. The ridge starts at a given point x0 which 
is chosen well within the experimental region, and in this example the design centre is chosen as the 
starting point x0. The estimated response surface is then investigated on a series of circles centred 
at x0 and on each circle the setting that gives the optimal response is found. The ridge is the series of 
optimal settings.

The ridge analysis can be summarized both in tabular form as in Table B.10 and in graphical form as 
in Figure B.3. The Coded Radius column of Table B.10 gives the radius of the circle in software coded 
units. It makes good sense to use software coded units to calculate the radius; for in software coded 
units the circle with radius 1 can be considered to be the boundary of the experimental region. The 
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Estimated Response in the second column is the maximal response on the circle with the given radius. 
The Standard Error in the third column is the estimated standard error of the maximal estimated 
response. The standard error increases as the radius increases. Finally, the last two columns give the 
settings that correspond to the maximal estimated responses in column two. The settings are labelled 
“Uncoded Factor values” in Table B.10 but in the SAS® language this means the variables supplied by 
the user as predictor variables, and in the analysis presented here the coded variables were used as 
predictor variables.

Table B.10 — Summary of the ridge analysis in tabular form

Estimated ridge of maximum response for variable button tactility

Coded radius
Estimated 

response Standard error
Uncoded factor values

x2 x1
0,0 31,514 229 1,256 212 0 0
0,1 32,074 250 1,249 734 0,067 751 0,105 047
0,2 32,520 660 1,231 254 0,168 801 0,184 408
0,3 32,899 982 1,203 886 0,293 230 0,233 754
0,4 33,248 325 1,173 959 0,425 520 0,262 551
0,5 33,584 685 1,151 747 0,558 739 0,280 063
0,6 33,918 115 1,151 327 0,691 107 0,291 326
0,7 34,253 166 1,188 869 0,822 374 0,298 875
0,8 34,592 327 1,278 712 0,952 654 0,304 057
0,9 34,937 067 1,429 173 1,082 120 0,307 640
1,0 35,288 304 1,641 494 1,210 926 0,310 092

Figure B.4 is basically a summary of most of the information in Table B.10. The top panel in Figure B.4 
shows how the maximal estimated response in this case increases with the radius. The second panel 
shows the optimal settings as a function of the radius. Here software coded units are used which makes 
sense, because the software coded units always range from 0 to 1.

B.9.5 Conclusion

All the investigations of the estimated response surface in B.9.2 to B.9.4 conclude that the maximum 
value of button tactility is obtained when DHB is around 65 and AFD is around 200. AFD at 200 is the 
upper boundary of the experimental region, so higher values are not recommended without further 
investigation. Standard Duro Hardness is available in increments of 5, so the team selected a Duro 
Hardness Button of 65. Then the potential optimal values for DHB and AFD were as follows:

— Duro Hardness Button = 65

— Actuation Force of Dome = 200

This setting is close to the ridge of maximum response given in Table B.10. The point in the bottom line of 
Table B.10 corresponds to the actual values DHB = + =16 60 64 96

1
x , and AFD = + =32 160 198 75

2
x , ,  

which are indeed close to the chosen potential optimal values of DHB=65 and AFD=200.

Table B.11 — Estimated response and standard error at the potential optimal values 
DHB = 65 and AFD = 200

Estimated 
response

Standard 
error

Uncoded factor values
DHB AFD

35,397 786 1,718 440 65 200
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The estimated response at the potential optimal setting is ˆ ,y  35 397786=  with estimated standard 
error 1,718 440 as can be seen from Table B.11. Using these values, the 95 % confidence interval for the 
predicted response at the chosen setting can be calculated as

ˆ ( ) , , [.y t v std.err 35 397786 2,570 6 1 718 44 30,98, 39,± × = ± × =
975

0 882].

This is a fairly wide confidence interval, and there are a number of reasons for that. First, there are 
only v = 5 degrees of freedom, so the t-fractile is relatively large. Secondly, the chosen setting is at the 
boundary of the experimental region, so the standard error is larger than in the centre of the design.

Figure B.4 — Graphical summary of the ridge analysis

B.10	Confirmation

To validate the model, five confirmation test runs were conducted at the optimum settings. The 
Button Tactility was measured for these five runs. The average Button Tactility for the five runs was 
found to be 31,76 %.

Since the measured average value of Button Tactility (31,76 %) for the confirmation runs falls within 
the 95 % confidence interval of the predicted value, the team concluded that the response surface 
model adequately predicts future observations.

Actually, the deviation from the average of 5 observations and the predicted response could have 
been even bigger than the one seen here. The reason is that the relevant interval to consider is not 
the confidence interval of the mean, but the 95 % prediction interval of an average of 5 independent 
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observations. This prediction interval is wider than the confidence interval of the mean because it 
takes the variability of the new observations into account. This prediction interval is calculated as

ˆ ( ).y t v± × + = ± × +
975

2
2

5 5

std.dev
std.err 35,397 786 2,570 6

4,921775

11,718 440 30,30  40,50
2 = [ , ].

Here, the squared standard deviation is found as Total error mean square in Table B.7 and the standard 
error is found in Table B.11.
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Annex C 
(informative) 

 
Semiconductor die deposition process optimization4)

C.1 Purpose of the experiment

Semiconductor dies (chips) form an integral part of electronic devices such as satellites and cell phones. 
Numerous dies are manufactured simultaneously on a thin round silicon wafer.

In one of the manufacturing steps, a silicon dioxide (SiO2) layer is deposited over an aluminium layer 
to create an inter-level dielectric (insulator) between metals. The metals are patterned into strips 
(runners) that carry electrical current. The oxide layer is deposited using a PETEOS (Plasma Enhanced 
TetraEthylOrthoSilicate) process.

During the PETEOS deposition process, a wafer is heated in a chamber and gases are introduced through 
a shower head. A radio (high) frequency power strips electrons from TEOS molecules, ionizing them as 
they pass through a shower head and creating a plasma. The TEOS decomposes depositing a silicon 
dioxide layer on the wafer. A designed experiment was performed to

— keep the oxide deposition rate above 127 Ångstroms per minute,

— minimize the oxide deposition rate Non-Uniformity, and

— take stress to a target value of 1,5 × 109 dynes/cm2.

C.2 Response variable

Three experimental responses were considered.

a) Average oxide Deposition Rate.

b) Deposition rate Non-Uniformity.

c) Stress.

The oxide deposition rate (deposited thickness divided by deposition time) was measured at 13 sites on 
each experimental wafer, and the average x  and standard deviation s were calculated. The average 
oxide deposition rate x , which reflects throughput, should be maximized.

Non-Uniformity (or coefficient of variation), given by s
x

100%,  expresses the standard deviation as a 

percentage of the mean. Non-Uniformity should be minimized to reduce differences in oxide thickness 
across the wafer.

The underlying aluminium layer on the wafer has a higher expansion coefficient than the glass layer 
of silicon dioxide that is deposited above it. If the aluminium layer contracts with respect to the SiO2 
layer (tensile force) the wafer will become convex and the glass might crack, while if the aluminium 
layer expands relative to the SiO2 layer (compressive force) the wafer will become concave (bow) which 
might open up the aluminium leads. Stress measures the amount of pressure on a wafer resulting from 
all layers. It is desirable for stress to have a small positive value (slight wafer convexity).

4)  Source: Veronica Czitrom, Statistical Training & Consulting, USA/Singapore.
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C.3 Predictor variables

Two experimental factors were considered.

a) Pressure inside the chamber.

b) Spacing between the wafer and the shower head.

The range of the factor levels was restricted.

Pressure could only be varied between 8 torr and 9 torr, because pressure below 8 torr led to plasma 
arcing, and pressure above 9 torr led to high particle count due to gas phase reactions.

The process was expected to improve for higher spacing and worsen for lower spacing. The low level of 
Spacing was set at 180 mils (current operating conditions, where one mil is 1/1 000 of an inch), and the 
high level at 200 mils.

C.4	 Identification	and	estimation	of	measurement	systems

The repeatability and reproducibility of the measurement system for the associated response and 
predictor variables was deemed adequate for the objectives of this experiment, so no further work 
was initiated.

C.5 Selection of the settings of the predictor variables in the design

C.5.1 General considerations

Previous experimental results indicated curvature in Non-Uniformity. A central composite experimental 
design was selected to estimate curvature and optimize the process. Due to the restrictions on the 
factor levels, a face-centred design was chosen. A face-centred design requires only three levels of each 
factor and this may be an advantage when the range of factors is restricted.

Coded values of pressure and spacing are denoted by x1 and x2, respectively, and the conversions from 
the actual levels given in Table C.1 to the coded levels are given as

x

x

1

2

8 5

0 5

190

10

=

=

−

−

Pressure

Spacing

,
,

,

.
 (C.1)

C.5.2 Factorial levels

The factorial levels in this experiment were chosen as the extreme levels possible, see C.3.

The factorial levels are coded as −1 and +1, so the factorial levels in actual or natural units are given 
in the two columns labelled −1 and +1 in Table C.1. Factorial levels of the predictor variables in this 
experiment are the following:

— Pressure (A): 8 and 9 (coded as −1 and 1 respectively);

— Spacing (B): 180 and 200 (coded as −1 and 1 respectively).

The factorial levels have been given their name because those levels are used to define a factorial 
design, which is an important building block in a CCD.

C.5.3 Axial levels

In a face-centred design, the axial levels are the same as the factorial levels.
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C.5.4 Centre levels

The centre levels are the average of the two factorial levels, and they are also the average of the two 
axial levels. Its coded value is 0.

— Pressure (A): 8,5 (coded as 0)

— Spacing (B): 190 (coded 0)

In this experiment, the centre levels were not the nominal values of the predictor variables. It was 
undesirable to centre the design on the current operating conditions, because the process was expected 
to worsen for spacing below 180.

Table C.1 — Coded and actual levels of the experimental factors

Coded levels −1 0 +1
Pressure (A) 8 8,5 9
Spacing (B) 180 190 200

NOTE Coded levels are in the top row and actual levels are 
in the following rows. This is a face-centred design so each 
factor has three levels.

C.6 Experimental design

C.6.1 General

The levels of the individual predictor variables defined in C.5 are combined to define the runs of the 
experiment. The three types of runs in the CCD are the factorial, the star (or axial) and the centre runs.

C.6.2 Factorial runs

The factorial design is typically a full two-level factorial design or a fractional two-level design if the 
number of factors is large. In this case with only two factors the factorial runs constitute a replicated 
full 22 design. The factorial runs are shown in actual levels as the first 8 runs in Table C.2.
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Table C.2 — Face-centred central composite design in the two factors Spacing and Pressure

Run No. Pattern Pressure Spacing Run type
3 −− 8 180 Factorial run

13 −− 8 180 Factorial run
6 +− 9 180 Factorial run

10 +− 9 180 Factorial run
4 −+ 8 200 Factorial run

12 −+ 8 200 Factorial run
7 ++ 9 200 Factorial run

11 ++ 9 200 Factorial run
1 00 8,5 190 Centre run
8 00 8,5 190 Centre run

15 00 8,5 190 Centre run
9 0a 8,5 180 Axial run
2 a0 8 190 Axial run
5 A0 9 190 Axial run

14 0A 8,5 200 Axial run

C.6.3 Axial runs

In the axial runs, one of the predictor variables is at its upper or lower extreme level and the rest of 
the predictor values are at their centre value. The total number of axial runs in this experiment is 4. 
The axial runs are shown in actual levels as the last three runs in Table C.2. The axial runs are not 
replicated. Note that the axial levels are the same as the factorial levels showing that this design is a 
face-centred CCD.

C.6.4 Centre runs

In the centre runs, all the predictor variables are at their centre level. The centre runs were replicated 
3 times in this experiment. The 3 centre runs are given as Run no. 1, 8 and 15 in Table C.2. Their actual 
levels are given in columns 3 and 4.

C.7 Data generated by the experiment

The three response variables are measured once in each run. All the information about the predictor 
variables and the response is collected in Table C.3. The first four columns are the same as the first 
four columns of Table C.2, but in Table C.3 the runs are listed in the order in which they were made. 
The last three columns give the observations of the three response variables Deposition, Rate Non-
Uniformity, and Stress.
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Table C.3 — Experimental Results for two factors and three responses

Run no. Pattern Pressure Spacing Dep Rate Non-Uniformity Stress
1 00 8,5 190 128 1,01 1,56
2 a0 8 190 129 0,40 1,63
3 −− 8 180 131 1,22 1,68
4 −+ 8 200 128 0,61 1,45
5 A0 9 190 127 2,63 1,50
6 +− 9 180 128 3,19 1,57
7 ++ 9 200 127 1,37 1,32
8 00 8,5 190 129 0,94 1,58
9 0a 8,5 180 130 1,89 1,65

10 +− 9 180 129 3,13 1,52
11 ++ 9 200 126 1,45 1,30
12 −+ 8 200 129 0,74 1,47
13 −− 8 180 131 1,22 1,68
14 0A 8,5 200 127 0,50 1,43
15 00 8,5 190 128 0,97 1,58

C.8 Analysis of results

C.8.1 General

The essential feature of this experiment is that it investigates three responses where

— the oxide deposition rate must be above 127 Ångstroms per minute;

— the oxide deposition rate Non-Uniformity should be minimized;

— the stress must be set to a target value of 1,5 × 109 dynes/cm2.

Second order models will be fitted to the three responses, but only the analysis for stress will be presented 
in detail. The fitted response surfaces will be investigated to see if and how the three criteria can be met 
simultaneously. The analysis will be performed with coded variables x1 and x2 as predictor variables.

C.8.2 Software used for the analysis

The experiment was analysed using JMP®, version 10, SAS Institute Inc., Cary, NC, USA.

C.8.3 Transfer function

The transfer function is called the prediction expression in JMP®. The coefficients of the transfer 
function are found from Table C.4.

Stress  1 581 113  7  52= +− ∗ − ∗ − ∗ ∗ − ∗ ∗( ), , , , ,0 0 0 0 0 004 0 0
1 2 1 2 1

x x x x x xx x x
1 2 2

0 0( ) ( )− ∗ ∗, 27  
(C.2)

C.8.4	 Estimation	of	coefficients

The table of parameter estimates for stress with x1 and x2 as predictor variables is Table C.4. Note that 
x1 and x2 are labelled as x1 and x2 in output copied from JMP®. All estimates are significant except for 
the coefficient of x1x2, but this term is nevertheless kept in the model.
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Table C.4 — Parameter estimates

Term Estimate Std Error t Ratio Prob > |t|
Intercept 1,580 857 1 0,008 855 178,52 <0,000 1*
x1 −0,113 0,005 522 −20,46 <0,000 1*
x2 −0,07 0,005 522 −12,68 <0,000 1*
x1*x1 −0,052 143 0,010 436 −5,00 0,000 7*
x1*x2 −0,003 75 0,006 174 −0,61 0,558 6
x2*x2 −0,027 143 0,010 436 −2,60 0,028 7*

Table C.5 — Analysis of variance

Source DF Sum of squares Mean square F Ratio Prob > F
Model 5 0,192 095 36 0,038 419 125,9806 <0,0001*
Error 9 0,002 744 64 0,000 305
C. Total 14 0,194 840 00

Table	C.6	—	Lack	of	fit

Source DF Sum of squares Mean square F Ratio Prob > F
Lack of fit 3 0,000 827 98 0,000 276 0,864 0 0,509 2
Pure error 6 0,001 916 67 0,000 319
Total error 9 0,002 744 64

The analysis of variance table and the lack of fit tables are provided by JMP® and are copied to Table C.5 
and Table C.6, respectively.

In Table C.5 the very large and strongly significant F-test is noted. In Table C.6 the Error Mean Square 
is divided into its Lack of Fit and Pure Error components. The F-test for lack of fit is calculated and the 
p-value is reported as 0,509 2. The model is not rejected.

Tests that each of the explanatory variables is not needed in the model are called Joint Factor tests in 
JMP®, and they are given in Table C.7. The row x1 gives the test of the hypothesis that β1 = β12 = β11 = 0, 
and the row x2 gives the test for the hypothesis that β2 = β12 = β22 = 0. The results are not surprising in 
view of the tests of the individual parameters given in Table C.4.

Table C.7 — Joint factor tests – Are all predictor variables needed?

Term DF Sum of squares F Ratio Prob > F
x1 3 0,135 415 36 148,014 2 <0,0001*
x2 3 0,051 175 36 55,936 6 <0,0001*

The test reported in Tables C.4 to C.7 can be supplemented by some of regression plots used for model 
checking in multivariate regression. Figure C.1 shows the Actual by Predicted Plot which shows the 
actual observations plotted against the predicted values from the model.
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NOTE The observations are lying closely around the identity line showing a good fit of the model.

Figure C.1 — Actual observation plotted against predicted values

The residuals are plotted against fitted values in Figure C.2. The residuals are lying closely around the 
horizontal line through 0 indicating a satisfactory fit.

NOTE The residuals are lying symmetrically around the horizontal line through 0 indicating a satisfactory 
fit of the model.

Figure C.2 — Residuals plotted against predicted value

C.9 Presentation of results — Optimization

C.9.1 General

This example has three responses. In C.9.2, the fitted response surfaces are characterized using 
canonical analysis. In C.9.3 and C.9.4, the focus is on finding the settings where the different 
requirements of the three responses are met. These requirements are mentioned in C.1. C.9.3 illustrates 
the desirability function and C.8.4 illustrates the Contour Profiler.
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C.9.2 Canonical analysis

JMP® also gives the results of the canonical analysis under the headline Response surface. The stationary 
point is called Solution and is given in Table C.8. The stationary point is characterized as a maximum 
although this observation is based on the eigenvalues, which are given in Table C.9.

Table C.8 — Solution for stress

Variable Critical value
x1 −1,039776
x2 −1,217647
Solution is a Maximum
Critical values outside data range
Predicted Value at Solution 1,682 222 2

The critical value (stationary point) is given in coded units in Table C.8, but in actual units the critical value 
is Spacing = 179,602 2 and Pressure = 7,891 2. The critical value for stress is just outside the lower left 
hand corner of the experimental region, or the data range, as explained in the JMP® output in Table C.8.

Table C.9 — Canonical curvature

Eigenvalues and Eigenvectors
Eigenvalue −0,027 0 −0,052 3
x1 −0,074 38 0,997 23
x2 0,997 23 0,074 38

The eigenvalues are both negative, so stress is a maximum at the critical value. The contours of the 
predicted stress are ellipses centred at the critical value and with major axes in the directions given 
by the eigenvectors. The eigenvectors are almost proportional to (0,1) and (1,0), so the major axes 
are almost pointing in the directions of the coordinate axes. Three contour curves for the predicted 
stress are shown in Figure C.4. The information in the canonical analysis is that those contours are 
sections of ellipses centred right outside the lower left hand corner of the data range, more precisely at 
Spacing = 179,602 2 and Pressure = 7,891 2.

C.9.3 Application of the desirability function

The regression models for the three responses will be used to optimize the three responses simultaneously 
using two tools that are available in JMP®, the prediction profiler and the contour profiler. The prediction 
profiler will be illustrated in this Clause and the contour profiler will be illustrated in C.9.4.

The three responses are shown in the upper three rows of Figure C.3 and the response as a function 
of the two predictor variables are shown in the first two columns. The figure in the upper left corner 
shows the predicted Deposition Rate as a function of Spacing if Pressure is fixed at 8,5. The dashed lines 
above and below the predicted response are the 95 % confidence limits for the predicted response.

The prediction profiler can be used to obtain the optimal processing conditions via the desirability 
function. The right hand column of Figure C.3 shows how the experimental objectives are represented 
graphically as desirability functions.

— To maximize Deposition Rate, the desirability function in the upper right corner is 0 (undesirable) 
for values of Deposition Rate below 127 (the experimental objective), and 1 (most desirable) for high 
values of Deposition Rate.

— To minimize Non-Uniformity, the desirability function is 0 for high values of Non-Uniformity and 1 
for low values (line going down).
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— To take Stress to a target value of 1,5, the desirability function is 1 when Stress is 1,5, and decreases 
to 0 when Stress is higher or lower.

Figure	C.3	—	Prediction	Profiler	where	the	desirability	function	is	used	for	optimization

With equal weight (importance) given to all three responses, the graph shows that the optimal factor 
settings are predicted to be

— Spacing = 195,75

— Pressure = 8,5

with response values of

— Deposition Rate = 127,7

— Non-Uniformity = 0,71

— Stress = 1,50

Note that this is a numerical optimization using the regression models for the three responses.
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C.9.4	 Application	of	contour	plots	to	find	optimal	settings:	Contour	profiler

The contour profiler shown in Figure C.4 provides a better understanding of process behaviour and 
greater control over the factor settings during optimization.

The three cubes on the right show the three corresponding response surfaces as a function of the 
two factors in three dimensions. The graph at the bottom left shows overlaid contours of the three 
responses as a function of the predictor variables. A few details of the contours are as follows.

— The blue contour line for Stress is at the target value of 1,5. Two shaded areas were added with a 
Low Limit of 1,4 (shaded area in the lower left corner) and a High Limit of 1,6 (lower shaded area in 
the upper right corner), to indicate that the white area between them is close to target.

— The red area in the top right corner has a Deposition Rate below 127 (Low Limit), so the region 
below it satisfies the experimental objective of a Deposition Rate above 127. The red contour line 
going down from the upper left corner to the lower right corner is the 128,5 contour.

— The green contour lines for Non-Uniformity show that Non-Uniformity decreases in steps of 0,3 
from 3,1 in the upper left corner (low Spacing and high Pressure) to 0,7 in the lower right corner. 
The green contour curve in the lower right corner without a label is the 0,49 contour.

The optimal conditions can be selected taking into account the relative importance of the three 
responses. Deposition Rate (speed at which oxide is deposited on the wafer) affects throughput, and is 
satisfactory above 127 Å/min. On the other hand, both Stress (with a target value), and Non-Uniformity 
(which reflects differences in oxide thickness across the wafer), affect quality. There needs to be a 
trade-off between Stress and Non-Uniformity. Two operating conditions will be considered:

— the optimal conditions where Stress is on target even though Non-Uniformity is not minimized, and

— the optimal conditions where Non-Uniformity is minimized even if Stress is slightly off target.

The optimal processing conditions where Stress is on target and Non-Uniformity is low are at the 
crosshairs where the contour line for Non-Uniformity touches the contour line for Stress, namely

— Spacing = 197,5;

— Pressure = 8,19;

where the predicted responses are as follows:

— Deposition Rate = 128,2;

— Non-Uniformity = 0,49;

— Stress = 1,50.

The optimal processing conditions that minimize Non-Uniformity within the region even though Stress 
is slightly off-target are

— Spacing = 200;

— Pressure = 8,25;

where the predicted responses are as follows:

— Deposition Rate = 127,9;

— Non-Uniformity = 0,45;

— Stress = 1,45.
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Figure	C.4	—	Contour	profiler

C.9.5 Conclusion

The optimal factor settings for the PETEOS deposition process are the following:

— Spacing = 200 mils

— Pressure = 8,2 torr

at the following conditions.

— Non-Uniformity is predicted to be low (0,45 %) and robust, or insensitive, to changes in Pressure 
and Spacing.

— Stress is predicted to be 1,48 × 109 dynes/cm2, which is close to the target value of 1,5 × 109.

— Deposition Rate is acceptably high at 128 Å/min.

The predictions at the optimal factor settings were confirmed using several reactor runs. To ensure 
process behaviour in the region around the new processing conditions was satisfactory, a new designed 
experiment, centred on the new processing conditions, was performed. The new processing conditions 
were adopted.
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Annex D 
(informative) 

 
Process yield-optimization of a palladium-copper catalysed C-C-

bond formation5)

D.1 Purpose of the experiment

D.1.1 General purpose

This example shows the yield optimization of the main product in a chemical reaction. The considered 
reaction is a so called Sonogashira-reaction that is applied to form carbon-carbon bonds in the synthesis 
of complex molecules, e.g. with endiyne units. Since those compounds can be cytotoxic by creating single 
and double stranded DNA cuts, the substance is needed in several fields of pharmacy and medicine. The 
purpose of the described experiment is to find optimum reaction conditions in preparation of a higher 
scale production of the product described in D.1.2.

The principles of the reaction are well known and understood. However, when applying specific 
substrates, such as the chosen base and solvent, the reaction needs a fine tuning to maximize the 
yield. The Sonogashira-reaction is a cross-coupling reaction between terminal acetylene and a vinyl 
halide under mediation of a Palladium (0)/Copper (I) catalyst. For the employment of the catalyst, it 
is expected that an increase of catalyst by a small amount will lead to an increase of the yield up to 
a specific optimum value. A further increase of catalyst is expected to decrease the yield. The same 
applies for the reaction time and temperature. Optimal values for these influential factors are known 
for similar reactions.

The assumed nonlinear behaviour encourages applying a CCD in order to locate the setting for an 
optimum yield based on a response surface.

D.1.2 Chemical background and experimental setup

The reaction formula is given below.

X R X H R R R R− − + −≡ − ⇒ −≡ − −≡ −
1 2 2 1 2

2

1 2 3

 (D.1)

The used substrate (1) is 6,7-Dibromo-9,9-dimethyl-dioxa-spiro[4],[5]dec-6-ene.

The used substrate (2) is Trimethylsilylacetylene:

H Si CH−≡ − ( ) ( )
3 3

2

The main-product (3) is 9,9-Dimethyl-6,7-bis-silanyl-1,4-dioxa-spiro[4],[5]dec-6-ene.

This C(sp2)-C(sp) bond formation process is catalysed by Pd(0) species, mostly Pd(P(Ph)3)4 and co-
catalysed by Copper(I)iodine (CuI) in the anhydrous solvent benzene. Additionally, the reaction solution 
requires the presence of an amine base, and here piperidine was used. The reaction mixture comprises 
the following six components:

1. 6,7-Dibromo-9,9-dimethyl-dioxa-spiro[4,5]dec-6-ene [The substrate (1)];

2. Trimethylsilylacetylene [The substrate (2)];

5)  Source: Thomas Pfeilsticker.
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3. benzene as a solvent;

4. piperidine as a base;

5. Pd(0)tetrakis-(triphenylphosphin);

6. copper(I) iodine.

The experimental procedure is as follows.

Under inert atmosphere a 100 ml three-necked flask is charged with a solution of (1; (80 mmol)) in 
anhydrous benzene (freshly distilled), thermometer and refluxcondenser. Using inert gas technique 
the catalyst Pd(0)tetrakis-(triphenylphosphin) and the co-catalyst copper(I) iodine is added. After 
stirring the mixture for 30 min, anhydrous (distilled over CaH2) piperidine is added within 10 min. 
Now 170 mmol Trimethylsilylacetylene (2), dissolved in anhydrous benzene, are added dropwise via 
septum technique to the stirred solution of (1).

At the end of the reaction, the reaction-mixture is cooled and diluted with saturated chlorine, and 
extracted with ether four times. The combined extracts are dried and concentrated under reduced 
pressure. The crude product is purified by column chromatography (SiO2).

D.2 Response variable

Only one response variable was considered in this experiment: The process yield. The product is 
obtained as a colour-less oil, and the process yield is determined as a percentage (%) of the applied 
mass of substrates, see D.1.2.

D.3 Predictor variables

The Sonogashira-reaction which is being studied here is well known, so the experimenters were able to 
choose three predictor variables which were expected to have the strongest influence on the yield, and 
they were able to decide on feasible settings of those variables. The three variables were the following:

— Reaction-time (R): time inside the reaction flask in hours;

— Temperature (T): temperature during the reaction time in °C;

— Concentration (C): concentration of Palladium catalyst/copper(I) catalyst in mmol.

Although other predictor variables such as the amounts of solvent and base and the stirring speed were 
also expected to be active, it was decided to run an experiment where only the three predictor variables 
above were varied.

The chosen predictor variables can be varied in considerable ranges and a measurable result achieved.

The maximum value of the Reaction-time is 8 hours because the reaction has to be finished within one 
shift of the laboratory staff. In order to achieve a measurable amount of the main product, a minimum 
of 30 minutes is needed.

The maximum temperature is limited by the substrates. To avoid undesired side reactions, the 
temperature should not exceed 80 °C. A reasonable lower boundary is room temperature of 20 °C.

The minimum amount of Palladium catalyst is 5 mmol. In order to keep the cost for the reaction 
reasonable, 70 mmol (referred to Pd) should not be exceeded.

The description of the chemical reaction in D.1.2 mentions the co-catalyst Copper(I)iodine [Cu(I)], but 
the optimal Pd(0)/Cu(I) relation is well known in the literature and should be constant, thus Cu(I)-co-
catalyst was set to 20,2 mmol Cu(I)iodine in the case of 10 mmol Pd(0), and to 50,4 mmol Cu(I)iodine in 
the case of 25 mmol Pd(0), for example.
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D.4	 Identification	and	estimation	of	measurement	systems

The experiment will be conducted on laboratory scale. Thus, the measurement systems for controlling 
the predictor variables work under typical laboratory conditions. The systems are for the following:

— reaction time, R: simply an alarm clock, reminding the experimenter to stop the reaction;

— temperature, T: a thermometer with 0,01 °C resolution and 0,2 °C estimated expanded uncertainty 
of the measurement process;

— amount of catalyst, C: a weighing process resulting in a tested R&R value for mmol of 0,002 in the 
case of Pd(0).

These values have an influence on how precisely the settings of the predictor variables in the design can 
be realized. In order to assess whether the measurement systems are suitable, a reference is needed. 
In this example the defined factorial levels were used, see D.5.2. Since the reaction can be stopped in a 
few minutes there will be no problem with setting the values for R. Following the %R&R construction, 
relating 6⋅0,2 °C to the range of 25 °C for T (see D.5.2), the result will be 4,8 % which can be considered 
as acceptable. The same applies for the weighing process of Pd(0).

The process for the estimation of the yield comprises many steps and is more complicated. As stated 
in D.1.2, the reaction product is purified in a chromatography column. This separates the desired 
substance from all others by adsorption/desorption. Several compounds in the solution will be 
separated and appear in bands moving towards the bottom of the column. When the band of the desired 
product flows out, it needs to be detected and collected. Further steps for purification are to be carried 
out to isolate the desired main product from the solution. The mass of purified product is measured 
and set in relation to the amount of the applied reacting substrates. The measurement uncertainty for 
the combination of the weighing and purification processes is estimated to be ±7 % of the yield. With 
expected 80 % yield this is approximately ±5 to 6 % yield and considered to be quite high.

D.5 Selection of the settings of the predictor variables in the design

D.5.1 General considerations

A rotatable central composite design was chosen. Although for each factor variable a maximum range 
of variation is given in D.3 meaningful levels for factorial runs in the CCD are to be derived. Then the 
actual levels corresponding to the coded levels −1, 0, +1 are given. With the choice of a rotatable design 
α = 81/4 = 1,682 where 8 is the number of factorial runs. This means that α = 1,682 is the distance in coded 
units from the middle level to the highest level, so the axial levels are found from the factorial levels as

l l l l l l l l
1 3 2 43 5 3 3

1 682 1 682= − ⋅ − = + ⋅ −, ( ) , ( )  and   with C l l l l= − = −( ) ( )
3 2 4 3

This has to be taken into account when the levels l2 and l4 are to be defined. Since this is one of the most 
difficult decisions, the way how the values are derived here will be explained as follows.

From the most similar reaction the optimum point was used as a point of reference. This was 5 h for the 
reaction time, 35°C for the reaction temperature and 15 mmol for the amount of catalyst. Around this 
point the experimental region will be defined.

 

54 © ISO 2015 – All rights reserved



PD ISO/TR 13195:2015

 

ISO/TR 13195:2015(E)

The optimum for the Reaction Time (T) is expected to be found within ±2 hours. That defines the 
centre level as l3 = 5, and the factorial levels as l2 = 3 and l4 = 7. The axial levels are then calculated as 
Formula (D.2)

l l
1 5

5 1 682 5 3 1 636 5 1 682 7 3 8 364= − ⋅ − = = + ⋅ − =, ( ) , , ( ) , .  and   (D.2)

However, the upper axial level of 8,364 hours exceeds the upper limit of 8 hours given in D.3. Therefore 
one hour will be subtracted from the levels found above. The new factorial levels are l2 = 2 and l4 = 6. 
The new axial levels are then derived as:

l l
1 5

4 1 682 4 2 0 636 4 1 682 6 2 7 364= − ⋅ − = = + ⋅ − =, ( ) , , ( ) ,  and   (D.3)

The same approach was chosen for all other predictor variables.

The optimum temperature naturally depends on the substrates. Starting with 35 °C the best 
temperature for this reaction should be found within a range of approximately ±15 °C around this value. 
But in case of steric hindrance of the substance (1) higher reaction-temperatures may be useful. Thus, 
the centre of the experimental region is shifted by 10°C towards higher values. So the upper factorial 
level, l4, is set to 60 °C. In order to keep the reference point within the experimental region, the lower 
factorial level ,l2, is set to 35°C. The resulting levels are summarized in Table D1. It can be seen, that also 
the axial levels stay within the boundaries of operability given in D.4.

For the amount of catalyst l3 is set to the reference value of 15 mmol. Within a range ±10 mmol around 
l3 the optimum for this reaction is expected. By checking the axis levels again, it can be found that 
l
1

15 1 682 15 5 1 82= − ⋅ − = −, ( ) ,  mmol which cannot be realized. In order be able to achieve a 
measurable result from the experiment, l2 was set to 10 mmol, and l4 was kept at 25 mmol. All resulting 
levels are summarized in Table D1.

Special attention was given to ensure that in particular all combinations of extreme settings of the 
variables were within the region of operability.

All variables were continuous in the sense that all values within the chosen ranges were possible 
settings of the variables.

Table D.1 — Coded and actual levels of the experimental factors rounded to two digits after the 
decimal comma

Coded levels −1,68 −1,00 0,00 +1,00 +1,68
Reaction time (R) 0,64 2 4 6 7,36
Temperature (T) 26,48 35 47,5 60 68,52
Concentration (C) 4,89 10 17,5 25 30,11

NOTE Coded levels are in the top row and actual levels are in the following rows. The units of the actual levels are hours 
for Reaction Time, °C for temperature and mmol for Palladium concentration.

Coded values of R, T and C are denoted by x x x
1 32
, , ,  and  respectively, and the conversion from the 

actual levels given in Table D.1 to the coded levels are given as

x
1

4

2
=
−R  (D.4)

x
2

47 5

12 5
=
−T ,

,
 (D.5)
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x
3

17 5

7 5
=
−C ,

,
 (D.6)

In a CCD, the settings or levels of the predictor variables are of three types to be considered next.

D.5.2 Factorial levels

The factorial levels are coded as −1 and +1, so the factorial levels in actual or natural units are given in 
the two columns labelled −1,00 and +1,00 in Table D.1. Factorial levels of the predictor variables in this 
experiment are as follows:

— Reaction-time (R): 2 and 6 (coded as −1 and +1 respectively);

— Temperature (T): 35 °C and 60 °C (coded as −1 and +1 respectively);

— Concentration (C): 10 mmol and 25 mmol (coded as −1 and +1 respectively).

The factorial levels have been given their name because those levels are used to define a factorial 
design, which is an important building block in a CCD. The factorial design is typically a full two-level 
factorial design or a fractional two-level design.

D.5.3 Axial levels

These axial levels are the extreme values the predictor variables can have, so the factorial levels in 
actual or natural units are given in the two columns labelled −1,68 and +1,68 in Table D.1. In this 
experiment, the axial levels are as follows:

— Reaction-time (R): 0,64 h and 7,36 h (coded as −1 and +1 respectively);

— Temperature (T): 26,48 °C and 68,52 °C (coded as −1 and +1 respectively);

— Concentration (C): 4,89 mmol and 30,11 mmol (coded as −1 and +1 respectively).

D.5.4 Centre levels

The centre levels are the average of the two factorial levels, and it is also the average of the two axial 
levels. Its coded value is 0. It was explained in D.5.1 how the centre levels were chosen with a view 
to keeping all five levels inside the maximal range of the predictor variables given in D.3. In this 
experiment, the centre levels are as follows:

— Reaction-time (R): 4 h (coded 0);

— Temperature (T): 47,5 °C (coded 0);

— Concentration (C): 17,5 mmol (coded as 0).

D.6 Experimental design

D.6.1 General

The levels of the individual predictor variables defined in D.5 are combined to define the runs of the 
experiment. The three types of runs in the CCD are the factorial, the star (or axial) and the centre runs.

Under the given laboratory conditions a high variation in the yield of the reactions is expected. 
Furthermore, as explained in D.4, the measurement process of the yield is expected to increase the 
variation. In order to increase the precision of the predictions from the experiment an unusual high 
number of runs for the central composite design were chosen and the factorial and axial runs are 
replicated twice.
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D.6.2 Factorial runs

In the factorial runs, all predictor variables are at their factorial levels. The factorial runs usually 
constitute a full factorial or a fractional factorial design. In this experiment, a replicated full factorial 
design was chosen, so the number of factorial runs was 2 ×23 = 16 The factorial runs are given as serial 
numbers 1 to 16 in Table D.2. The factorial runs are given in actual levels in columns R, T, and C and in 
coded levels in columns x1, x2 and x3.

D.6.3 Axial runs

In the axial runs, one of the predictor variables is at its upper or lower extreme level and the rest of the 
predictor values are at their centre value. The minimum number of axial runs with 3 predictor variables 
is 6, but in this design the experimenters decided to replicate the axial runs, so the total number of axial 
runs in the experiment is 12. The axial runs are given as serial number 25 to 36 in Table D.2.

D.6.4 Centre runs

In the centre runs all the predictor variables are at their centre level. Eight centre runs were used in 
this experiment. The eight centre runs are given as serial number 17 to 24 in Table D.2. The number of 
centre runs in this experiment is rather large. Both factorial and axial runs are replicated, so this large 
number of centre runs is not needed to provide an estimate of pure error.

Table	D.2	—	Experimental	layout	in	actual	levels	of	variables	R,	T	and	C	and	in	coded	variables	
x1,	x2,	and	x3.The yield in each run is recorded in the last column.

Serial 
order Run order R T C

x1

(coded R)
x2

(coded T)
x3

(coded C)
Yield

1 28 2,00 35,00 10,00 −1,00 −1,00 −1,00 70,5
2 29 2,00 35,00 10,00 −1,00 −1,00 −1,00 69,8
3 6 2,00 35,00 25,00 −1,00 −1,00 1,00 68,3
4 18 2,00 35,00 25,00 −1,00 −1,00 1,00 67,3
5 15 2,00 60,00 10,00 −1,00 1,00 −1,00 70,4
6 31 2,00 60,00 10,00 −1,00 1,00 −1,00 68,9
7 1 2,00 60,00 25,00 −1,00 1,00 1,00 69,1
8 7 2,00 60,00 25,00 −1,00 1,00 1,00 68,1
9 23 6,00 35,00 10,00 1,00 −1,00 −1,00 74,2
10 33 6,00 35,00 10,00 1,00 −1,00 −1,00 74,5
11 21 6,00 35,00 25,00 1,00 −1,00 1,00 73,9
12 35 6,00 35,00 25,00 1,00 −1,00 1,00 74,1
13 8 6,00 60,00 10,00 1,00 1,00 −1,00 80,6
14 10 6,00 60,00 10,00 1,00 1,00 −1,00 81,2
15 5 6,00 60,00 25,00 1,00 1,00 1,00 80,2
16 32 6,00 60,00 25,00 1,00 1,00 1,00 77,9
17 4 4,00 47,50 17,50 0,00 0,00 0,00 77,5
18 12 4,00 47,50 17,50 0,00 0,00 0,00 75,2
19 14 4,00 47,50 17,50 0,00 0,00 0,00 77,6
20 20 4,00 47,50 17,50 0,00 0,00 0,00 76,5
21 22 4,00 47,50 17,50 0,00 0,00 0,00 75,6
22 27 4,00 47,50 17,50 0,00 0,00 0,00 76,6
23 30 4,00 47,50 17,50 0,00 0,00 0,00 74,4
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Serial 
order Run order R T C

x1

(coded R)
x2

(coded T)
x3

(coded C)
Yield

24 34 4,00 47,50 17,50 0,00 0,00 0,00 79,2
25 3 0,64 47,50 17,50 −1,68 0,00 0,00 70,1
26 25 0,64 47,50 17,50 −1,68 0,00 0,00 69,1
27 2 4,00 26,48 17,50 0,00 −1,68 0,00 68,6
28 24 4,00 26,48 17,50 0,00 −1,68 0,00 70,0
29 9 4,00 47,50 4,89 0,00 0,00 −1,68 74,4
30 26 4,00 47,50 4,89 0,00 0,00 −1,68 75,7
31 11 4,00 47,50 30,11 0,00 0,00 1,68 72,6
32 36 4,00 47,50 30,11 0,00 0,00 1,68 72,3
33 16 4,00 68,52 17,50 0,00 1,68 0,00 75,5
34 19 4,00 68,52 17,50 0,00 1,68 0,00 74,7
35 13 7,36 47,50 17,50 1,68 0,00 0,00 79,9
36 17 7,36 47,50 17,50 1,68 0,00 0,00 80,3

D.7 Data generated by the experiment

The response variable from the experiment is the process yield and it is given in the last column in 
Table D.2. The product is obtained as a colour-less oil, and the process yield is determined as a 
percentage (%). The purpose of the experiment is to maximize yield. The actual levels of variables R, T 
and C and the coded variables x1, x2 and x3 are given in the rows of Table D.2.

The second column of Table D.2 is the variable run order which gives the order in which the experimental 
runs were performed. The very important information from that column is first of all that the experiment 
was randomized. But it can also be seen that the replicates in the experiment are genuine. All the factorial 
and axial runs are replicated twice but only in one case are identical runs performed in sequence.

D.8 Analysis of results

D.8.1 Software used for the analysis

Data acquired through the experiment are analysed using destra®V11.

D.8.2 Transfer function

The estimated transfer function (the estimated systematic part of the model) for Yield (in %) is given 
by the following formula using actual or natural units

Yield  44,13 341 R  893 T  545 C 72 R R   = + ⋅ + ⋅ + ⋅ − ⋅ ⋅ +( )0 0 0 0 0 1 0, , , , , 00

0 0 0 0 0 0 0 000 0

57 R T

1 T T 1 R C 3 T C 19 C C

⋅ ⋅ −

⋅ ⋅ + ⋅ ⋅ − ⋅ ⋅ − ⋅ ⋅

( )
( ) ( ) ( ) ( ), , , ,

 (D.7)

The estimated coefficients are found in Table D.3.
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The values of the predictor variables in actual units are rather large and so the estimated coefficient 
may become small. This is one argument for using coded units. The transfer function in coded units 
is as follows:

Yield  76,59 3,645  1,586 731 687   1
1 2 3 1 1

= + ⋅ + ⋅ − ⋅ − ⋅ ⋅ +x x x x x0 0, , ( ) ,,413

1,626 15 25 1,

1 2

2 2 1 3 2 3

⋅ ⋅ −

⋅ ⋅ + ⋅ ⋅ − ⋅ ⋅ −

( )

( ) , ( ) , ( )

x x
x x x x x x0 0 0 0 0077

3 3
⋅ ⋅( )x x

 (D.8)

The estimated coefficients are found in Table D.4.

The analysis is performed in the next section with coded variables using the information in Table D.4 
and the results are subsequently interpreted in terms of the actual variables. In the calculations that 
are reported in the following sections the axial point values are rounded as given in Table D.2.The 
conclusion of the analysis is that a second order model fits the data and that quadratic terms are needed 
in the model.

D.8.3	 Estimation	of	coefficients

The result of the estimation is displayed in Table D.3 using actual levels and in Table D.4 using coded 
levels. It is the regression coefficients given in Table D.3 that are used to give the first representation 
of the transfer function in Formula (D.7) in D.8.2. It is not recommended to inspect the individual 
regression coefficients and trying to interpret whether some of the coefficient might fail to be 
significantly different from 0. The point is that a second order surface is being fitted and the least 
squares estimate of the fitted surface has the coefficients in the “bi” columns of Table D.3 or Table D.4 
depending on the coding of the predictor variables used. The column “sci” of Table D.3 and the column 
“sbi” of Table D.4 show the standard error of the coefficients. From columns ”bi […]”, “|ti|” and “P” can 
be seen, which coefficients are significantly different from 0. The asterisks in the text column “|ti|” 
summarize the degree of significance. One asterisk means that the coefficient is significant using 
a significance level of 0,05, two asterisks mean that the coefficient is significant using a significance 
level of 0,01, and three asterisks mean that the coefficient is significant using a significance level of 
0,005. The graphical column “|ti|” shows a bar graph of “|ti|” with the 0,05, 0,01, and 0,005 quantiles 
given as red lines. Thus it displays the information of significance graphically. The column “P” gives 
the commonly used p-value for the test statistic t. In column “bi[…]”, the 95 % confidence interval of 
the coefficients are shown. If the interval does not include the value 0 the coefficient is significantly 
different from 0 with significance level 0,05.
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Table	D.3	—	Estimated	regressions	coefficients	and	CCD	ANOVA	table	using	actual	units

Table	D.4	—	Estimated	regressions	coefficients	and	CCD	ANOVA	table	using	coded	levels

It is worth pointing out that the estimates of the regression coefficients depend on the coding of 
predictor variables used. Note for example that the estimated coefficient of R is 0,341 and it is non-
significant when actual levels are used (see Table D.3), while the estimated coefficient of x1 is 3,645 and 
is strongly significant when coded levels are used.
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While it is inappropriate to change the values of individual estimated regression coefficients it does 
make sense to look for model simplification where one answers questions like the following:

— Are the pure quadratic terms needed in the model?

— Is a first order model satisfactory?

This is where the ANOVA table in Table D.5 is useful. The ANOVA tables are the same regardless of 
which coding of the variables is being used. The first 12 lines in the table give the information based on 
the F-test whether a specific parameter βi, βij, βii or a combination of them is needed in the model. The 
line “Quadratic” indicates the need for pure quadratic terms in the model by giving the F-test for the 
hypothesis that β11 = β22 = β33 = 0 in the F0-column. The p-value of the F-test is smaller than 0,0001 and 
the hypothesis is strongly rejected, so the quadratic terms are needed in the model. The F-test in the 
“Two-factor-interaction” line tests the hypothesis β12 = β13 = β23 = 0 and this hypothesis is also rejected 
and so is the hypothesis β1 = β2 = β3 = 0 which is tested by the F-test in the “Linear” line.
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Table D.5 — CCD ANOVA table using coded levels

The last five lines concern the error estimate and a model check. The experiment has 36 observations 
and the model has 10 parameters, one for each of the 10 terms on the right hand side of the formulae for 
the transfer function in D.8.2. This gives an error estimate with 36 − 10 = 26 degrees of freedom (see the 
line “Error”). Because of the replications, 21 degrees of freedom can be identified for pure error (see line 
“Pure Error”). The 21 degrees of freedom are 7 degrees of freedom from the 8 replicates at the centre 
point and 14 degrees of freedom from the two replicates at each of the 14 design points (8 factorial 
points and 6 axial points). Calculating the sum of squares for Pure Error (line “Pure Error”, column “SS”) 
and subtracting it from the Total Error Sum of Squares (line “Error”, column “SS”) gives the Lack of Fit 
Sum of Squares in the line “Lack of Fit”. Dividing it by the remaining 5 degrees of freedom for the lack 
of fit, leads to the mean squares for Lack of Fit in column “MS”. The “Lack of Fit” F-test is the ratio of the 
mean square for Lack of Fit to the mean square for Pure Error. In this case the p-value is 0,250 and the 
model is not questioned. The test statistic is given in column “F0” together with the asterisks showing 
the degree of significance by comparing F0 with the F-quantiles for the α-values as stated above. The 
graphical “F0”-column shows again the comparison of F0 with F-quantiles for the different α-values. The 
filled diamond on left side in graphic in line “Lack of Fit” indicates that F0 falls below the F-quantile for 
α = 0,05. This leads to the same conclusion from the p-value: No significant Lack of Fit.
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D.8.4 Graphs of data and residuals

NOTE The plot in the upper panel shows the residuals against the serial order from the first column of 
Table D.2. The type of run can be identified on the plot noting that runs 1 to 16 are factorial runs, runs 17 to 
24 are centre runs, and runs 25 to 36 are star runs. The plot in the lower left hand panel shows a Q-Q plot of 
residuals. Finally the plot in the lower right hand panel shows the residuals plotted against the fitted value.

Figure D.1 — Selection of plots of the data and the residuals

The plot in the upper panel shows the residuals against the serial order of the runs from the first column 
of Table D.2. The plot gives an overview over the residuals and shows their ±3 s range. The eye-catching 
highest deviations from the model occur for No. 23 and 24 which are the last two replications of the 
centre points. The overall impression is that the deviations are equally spread around the model and 
no systematic trend is present which would indicate a systematic lack of fit. Comparing columns one 
and two of Table D.2 it is seen that the type of run can be identified from the serial order. Thus, the first 
16 points are the pairs of replicated factorial runs, they are followed by 8 replicated centre runs, and, 
finally, by 12 replicated star runs.

The plot in the lower left panel shows a Q-Q plot of residuals as a check for normal distribution. This plot 
does not contradict the assumption of a normal distribution. The two largest residuals in runs 23 and 24 
show up again. But they are not critical for the assumption of a normal distribution. Larger deviations 
from the straight line in a Q-Q plot are always expected for smaller and for larger observations.

In the plot in the lower right panel, the residuals are plotted against the fitted values. The values in the 
boxes show again the serial number in the design. If, for example, large standard deviations occurred 
with large responses, this plot would show a funnel shape. But again, only randomness can be seen. For 
the fitted value of 76,5 %, the replications in the centre point can easily been identified and the large 
residual in runs 23 and 24 are noted again.
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Comparing the range of residuals of less than ±3 % yield with a range of the explained yield in the 
experimental region of about 13 % the plot also indicates a good fit of the model as already noted in the 
ANOVA tables in Table D.5.

D.9 Presentation of results — Optimization

D.9.1 General

Just looking at the transfer function (the estimated systematic part of the model) whether it is shown 
in actual units as in Formula (D.7) or in coded units as in Formula (D.8) does not reveal the properties 
of the response surface. It is important to realize that the second order polynomial in two or more 
variables can represent a variety of surfaces. The stationary point can be a maximum, a minimum 
or a saddle point. Furthermore, the stationary point can be located outside as well as inside the 
experimental region. The situation is only simple, if the objective is to maximize the response and if the 
stationary point is a maximum located inside the experimental region, or, alternatively, if the objective 
is to minimize the response and if the stationary point is a minimum located inside the experimental 
region, and then the optimal settings is the stationary point. In all other cases, the optimal setting needs 
to be found away from the stationary point but within the boundary of the experimental region. If the 
number of predictor variables is two or three, then contour plots can be of help as illustrated in D.9.3.

D.9.2 presents the canonical analysis of the fitted second order response surface. Canonical analysis 
has been the basic tool to gain a precise understanding of the response surface. Although modern 
computer software has various impressive graphical and analytical tools, the knowledge obtained from 
a canonical analysis helps to fully exploit the graphical tools. The results of the canonical analysis in 
this experiment are that the stationary point is a maximum that is located far outside the experimental 
region. The analysis is not done with a user function of destra® V11.

In addition to the canonical and the graphical analyses, many software packages easily apply numerical 
search methods in order to find a local minimum or maximum of the response surface. D.9.3 gives the 
result of the search by destra® V11 applying Powell’s search algorithm within the experimental region.

D.9.2 Canonical analysis

D.9.2.1	 Eigenvalues,	eigenvectors	and	stationary	point

The standard result from the canonical analysis based on any software package is given is Table D.6. 
Table D.7 gives the coordinates of the stationary point, xS, in coded units and in original units as well 
as the predicted response at the stationary point. Mathematical details of canonical analysis can be 
found in E.3.

Table D.6 — Canonical analysis of response surface based on coded variables: Stationary point

 Stationary point
 R T C

Coded units 5,697 2,962 0,023
Original units 15,380 84,531 17,671

Predicted value at the stationary point
89,30

Table D.7 contains information that characterizes the estimated response surface. The first column 
gives the eigenvalues and all three are negative, which means that the stationary point is a maximum. 
The eigenvector corresponding to the eigenvalue −0,304, for example, is given in the same row. The 
labels R, T and C have been used for the coordinates even if the coordinates are in coded units. All 
eigenvalues are negative so the stationary point is a maximum.
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Table D.7 — Canonical analysis of response surface based on coded variables: Eigenvalues 
and eigenvectors

Eigenvalues Eigenvectors
R T C

      λ̂1 = −0,304 0,880 0,469 0,078

      λ̂2 = −1,079 −0,045 −0,081 0,996

      λ̂3 = −2,007 −0,474 0,879 0,050

Stationary point is a maximum

The distance of the stationary point to the design centre in coded units is

D
S

6,42.=

So the stationary point is, in this case, rather far outside the experimental region because the extreme 
points which are the factorial points and the axial points in this design are at a distance from the design 
centre of 3 1 73= ,  and α = 1 68, , respectively. The stationary point is a maximum so an optimum must 
be sought near the boundary of the experimental region and as close as possible to the stationary point.

The estimated response at the centre of the experimental region is 76,59 with a standard error of 0,396 
as can be seen from Table D.4, because the estimated response at the design centre is the intercept 
when coded variables are used. The estimated maximal response is 89,30 with a standard error of 9,08. 
This rather large standard error underlines that extrapolation outside the experimental region is futile.

D.9.2.2 Finding a recommended setting

In this example it is fairly easy to find points in the experimental region with higher estimated response 
than at the design centre. The vector x

S
  0,890, 0,463, 0,004= = ⋅( , , , , , ) , ( )5 697 2 961 0 023 6 4 is 

approximately proportional to the eigenvector of the numerically smallest eigenvalue 
( , , , ,0 0 0 0880, 469  78) , see Table D.7. This means that moving away from the centre point in increments 
proportional to xS will be the increase the response most quickly.

The point (1,54, 0,80, 0,006) has a distance of 1,74 from the design centre so it is located on the boundary 
of the experimental region. The expected response with these settings is 82,54 with a standard error of 
0,652 41. In original units the recommended setting is (R,T,C) = (7,08 h, 57,5 °C, 17,55 mmol).

D.9.2.3 Is the stationary point of the underlying true surface also a maximum?

There is no doubt that the estimated response surface has a single global maximum, and there is no 
doubt that the fit of the second order model is satisfactory as explained in D.8.2 and reported in the 
ANOVA table in Table D.5. But the eigenvalues, λ̂i , in Table D.7 that determine the properties of the 
estimated response surface are only estimates of the eigenvalues, λi that determine the properties of 
the underlying true surface. The estimated eigenvalues in Table D.7 are functions of the estimated 
coefficients of the transfer function and they are, therefore, subject to error. Their standard errors are 
roughly of the same size as those of the quadratic coefficients of the transfer function (0,223), see 
Table D.4. The estimated eigenvalues and their standard errors can provide confidence intervals for the 
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eigenvalues of the underlying true surface by the usual formulas. The formula for the 95% confidence 
interval for λi is

ˆ ( ˆ ) ( ) ˆ ( ˆ ) ( ), ,λ λ λ λ λi i i i ise t v se t v− ⋅ ≤ ≤ + ⋅
0 975 0 975

where v denotes the degrees of freedom for total error in the experiment. In this experiment v = 26 as 
can be seen in the first ANOVA table in Table D.5, so t v t

0 975 0 975
26 2 0555, ,( ) ( ) ,= = . The 95% confidence 

intervals for the three eigenvalues are as follows:

− − ⋅ ≤ ≤− ⋅
− ≤ ≤

0 0 0 223 2 0555 0 0 0 223 2 0555
1

1

, , ( , ) , , ( , )3 4 3 4+

0,762 0,

λ
λ 1154

 (D.9)

− − ⋅ ≤ ≤− ⋅
− ≤ ≤−

1 709 0 223 2 0555 1 709 0 223 2 0555

0

2

2

, , ( , ) , , ( , )λ
λ

+

1,537 ,,621
 (D.10)

− − ⋅ ≤ ≤− ⋅
− ≤ ≤

2 007 0 223 2 0555 0 2 007 0 223 2 0555

2 466

3

3

, , ( , ) , , , ( , )

,

λ
λ

+

−−1 549,
 (D.11)

The 95% confidence interval for the numerically smallest eigenvalue, λ1, contains 0 and extends into 
the positive numbers. While it is too pessimistic to conclude that the true surface has a saddle point 
rather than a global maximum, it does mean that there potentially is a slower increase in response as 
the settings are changed in the direction of the eigenvector corresponding to λ1, and it is exactly in that 
direction that the recommended settings were found.

D.9.3	 Application	of	contour	plots	to	find	optimal	settings

With three predictor variables a series of contour plots of the response surface in two variables for a 
range of appropriately chosen values of the third value are needed to explore the response surface.

The contour plots in Figure D.2 are slices cutting through the contours in three-dimensional space at 
the selected values of C. The fixed values in the first three contour plots are selected as the centre point 
as well as the extreme values of C that are used in the experiment, see Table D.1. The centre point is 
shown in the contour plots as a white cross that can be moved by sliding the red vertical lines in the 
three small graphics on the right side of the plot.

Just looking at the contour plots it is obvious that the high responses are found for large values of 
both R and T regardless of the value of C. The highest response seems to be found near a setting of 
C = 17,5 mmol which was the central value of C in the experiment. The experimenter who is basing the 
search for optimal settings on contour plots alone may feel a need for further contour plots with values 
of C around 17,5. This can easily been displayed by sliding the red line for variable C in the software 
graphic. The lower contour plots show the response surface for C = 5 mmol and C = 30mmol. It is obvious 
that the optimum for C should be in-between.
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C = 17,5 mmol:

C = 5 mmol: C = 30 mmol:

NOTE The top subplot shows the contour plot with C at its centre value C = 17,5. The lower two plots show 
the contour lines for C close to its extreme values.

Figure	D.2	—	Contour	plots	of	predicted	responses	for	three	fixed	values	of	C

In order to find the optimum graphically with the software, the experimenter can change C by setting 
the slider around the maximum of the red function (the cut through the response surface along C at 
values as set for R and T) in the respective right lower graphic for C.

Figure D.3 shows the location of the maximum of yield within the experimental region. The point can be 
found by R = 7,3 h, T = 63 °C and C = 16 mmol. The found optimum is obviously located at the border of 
the experimental region for the reaction time R. Thus, it can be concluded, that a longer reaction time, 
maybe exceeding 8 h, will lead to the maximum of yield.
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Figure D.3 — Contour plot showing the location of maximum within the experimental region 
marked	with	the	red	cross	at	R	=	7,36	h,	T	=	62,76	°C,	C	=	15,73	mmol

D.9.4	 Numerical	search	to	find	optimal	settings

The search for the location of the optimum can of course been numerically done by the software. This 
seach is carried out within the experimental region. The maximum point is as follows:

— R = 7,36 h

— T = 62,76 °C

— C = 15,73 mmol

— Yield = 83,25 % ; Standard error for the yield: 1,45 %

This analysis is based on the identified response surface but only within the experimental region. The 
goodness-of-fit of the model has only been assessed for settings within the experimental region. If the 
optimum point is found outside this region, accepting this point as identified optimum presumes that 
the model approach is true. This is not necessarily the case in practice. Often the response surface gives 
only a good approximation within the investigated region.

It is natural to compare the recommended setting given in D.9.2.2 with the so-called optimal setting 
found by numerical search in this clause. The recommended setting in D.9.2.2 is (R,T,C) = (7,08 h, 
57,5 °C, 17,55 mmol) with an expected yield of 82,54 % and a standard error of 0,65241 %. This setting 
has a slightly lower expected yield and a substantially lower standard error than the optimal setting 
of this clause. The explanation is that the optimal setting of this clause is further away from the design 
centre. In coded units, its distance from the design centre is 2,09 while the recommended setting of 
D.9.2.2 is 1,74 units from the design centre. It could be argued that the design region is a ball6) centred 
at the design centre and a radius equal to the larger of α and the distance of the factorial points from 
the design centre. In this case the radius is 1,74. With this definition of the design region, the so-called 
optimal point is located outside the experimental region.

6)  There seems to be some confusion concerning the meanings of a sphere and a ball. In mathematics, a sphere 
is defined as the set of points that are all the same distance, r (the radius), from a given point (the centre) in three-
dimensional space. A ball is the inside of a sphere. It may be a closed ball (including the sphere) or an open ball 
(excluding the sphere). These concepts are defined not only in three-dimensional space but also for lower and 
higher dimensions. In two-dimensional space, the plane, a ball is the same as a disc, and a sphere is the same as a 
circle. Informally, a solid sphere is used as a synonym for a ball.
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D.9.5	 Conclusion	and	confirmation	run

The experiment has been undertaken on a laboratory scale in preparation of up-scaling the reaction 
for a mass production. As a result an optimum has been found under restriction of eight hours reaction 
time. For the used substrates in the reaction it has been shown where the optimum concentration of the 
palladium-copper catalyst is located and what the optimum temperature is.

These findings can be taken as starting point for settings in mass production. Usually, conditions 
under up-scaled mass production differ from those in the laboratory. Thus, a further adjustment of the 
settings will necessarily be done in the production processes applying other optimization techniques 
(e.g. EVOP[3],[4]). For this reason, no confirmation runs have been made.

Although no confirmation runs were made, the 95 % prediction interval that should have been used to 
evaluate the predictions of the model is still interesting. If the predictions of the experiment are to be 
confirmed, 95 % of the future runs should give yields inside the 95 % prediction interval. The formula 
for the 95 % prediction interval is

ˆ ˆ( ) ( ), ,y yield yt v t v− ≤ ≤ +× + ×
0 975 0 975

2 2 2
std.dev std.err std.dev ++ std.err

2

where ŷ  is the predicted value at the chosen settings, v are the degrees of freedom for error, std.dev is 
the estimated standard deviation of an observation and std.err is the estimated standard error of the ŷ .

For the optimal settings found by the numerical search in D.9.4 the values are ˆ ,y = 83 25 , v = 26, 
std dev. ,2

1 263= (calculated as the Error SS divided by v), and std.dev = 1,45. The result is

83 25 83 252 06 1 263 1 45 2 06 1 263 1 45

79 5

2 2, ,, , , , , , ,

,

− ≤ ≤ +
≤

× + × +yield
yiield ≤ 87 0,

This interval is rather wide.
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Annex E 
(informative) 

 
Background on response surface designs

E.1 Sequential assembly of central composite designs for two predictor variables

The second order model in two predictor variables x1 and x2 is

y x x x x x x  
1 1 2 2 12 1 2 11 1

2

22 2

2= + + + + + +β β β β β β ε
0

 (E.1)

A central composite design is shown in the Table E.1. The columns with headers x1 and x2 contain the 
setting of the two factors in coded units. The first column is just an indexing of the runs for easy reference.

Table E.1 — Central composite design in two predictor variables

The shading of the rows in Table E.1 illustrates the three different types of runs in the design. The first 
four runs with the lighter shading are factorial points, the following two runs are centre points, and the 
last four runs are star points.

The model is fitted using linear regression with a set of predictor variables given in Table E.2. In 
addition to the design variables from Table E.1, x1 and x2, the predictor variables are a column of ones, 
denoted by e, the product of x1 and x2, denoted by x1x2, and the squares of x1 and x2 denoted by x

1

2  and 

x2
2 . The matrix in Table E.2 is called the design matrix in regression terminology, but when applied to a 

designed experiment this is a misnomer; for the design is determined by x1 and x2 and the rest of the 
variables in Table E.2 are calculated from x1 and x2 and they are added because the model is 
Formula (E.1). The term model matrix is also used for the matrix in Table E.2 and it makes more sense.

The shading corresponding to the three types of runs in a central composite design are kept in Table E.2.

The shading is also related to the sequential assembly of the central composite designs. Quite often, 
an experimenter starts out with many factors and therefore first performs a screening experiment to 
investigate which factors are locally active. This screening experiment is often a fractional factorial 
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and because of the projectivity properties of fractional factorials the experimenter ends up with a 
full factorial in a few factors. This is illustrated here with the full factorial design in the two two-level 
factors in the first four runs.

The model that can be fitted with this design is

y x x x x   
1 1 2 2 12 1 2

= + + + +β β β β ε
0

Table E.2 — Columns 2 to 7 are the model matrix for the second order model based on the 
central composite design given in Table E.1

If the experimenter has the second order model in mind but only has data from the factorial points of 
the design, it is clear that only four parameters can be estimated and if four parameters of the mean are 
estimated there is no estimate of the error variance. A look at the first four rows of the matrix in 
Table E.2 corresponding to the factorial points reveals that the columns e, x1, x2, and x1x2 are different, 
but e, x

1

2  and x2
2 are identical. This means that with the data from the factorial points only the 

parameters of the model

y x x x x   
1 1 2 2 12 1 2

= + + + +β β β β ε
0

 (E.2)

can be estimated. But it also means that if estimation is performed in the first order model Formula (E.2) 
and the true model is the second order model Formula (E.1), then the mean of b0, the estimate of β0, is

β β β
0 11 22
+ +

Now, if the experimenter adds two centre points, the design matrix will be the first 6 rows of Table E.2. 
The columns e, x1, x2, and x1x2 are still different, but now e is different from x

1

2  and x2
2 which are still 

identical. This means that the experimenter from these 6 runs can obtain unbiased estimates of β0, β1, 
β2, β12 and of β11 + β22. This is important, for the extra centre runs make it possible for the experimenter 
to evaluate whether it is worthwhile to perform extra runs in order to fit the full second order model 
Formula (E.1).
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If this is the, case the experimenter can add the last four runs of Table E.1 and now all the columns of the 
design matrix of Table E.2 are different and all the parameters of the second order model Formula (E.1) 
can be estimated.

E.2 The versatility of second order models

The success of the second order model in response surface methodology stems from the fact that very 
different surfaces can be approximated by second order polynomials. This can be illustrated with just 
two predictor variables with an example taken from Chapter 11.1 of Reference [2].

Choosing the coefficients in the second degree polynomial in the deterministic part of the second order 
model Formula (E.1) four polynomials representing estimated responses can be obtained as follows:

ˆ , , , , ,y x x x x x x  83,6
1 2 1 2

= + + − − −9 4 7 1 5 8 7 4 3 7
1

2

2

2  (E.3)

ˆ , , , , ,y x x x x x x  83,9
1 2 1 2

= + + − − −10 2 5 6 7 6 6 9 2 0
1

2

2

2  (E.4)

ˆ , , , , ,y x x x x x x  82,7
1 2 1 2

= + + − − −8 8 8 2 7 6 7 0 2 4
1

2

2

2  (E.5)

ˆ , , , , ,y x x x x x x  83,6
1 2 1 2

= + + − − −11 1 4 1 9 4 6 5 0 4
1

2

2

2  (E.6)

Note that the coefficients have the same sign and are of the same order of magnitude in all four 
polynomials, so the four polynomials seem to be very similar. In Figures E.1 to E.4 the four second order 
polynomials are represented as perspective plots of the estimated response surfaces over the range 
−1,41 < x1 < 1,41 and −1,41 < x2 < 1,41. In addition, contours of constant estimated response are plotted 
in the x1-x2 plane. Plots of the response surfaces over that range would be relevant had the coefficients 
of the polynomials been obtained by doing experiments with the design in Table E.1.
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NOTE The stationary point is a maximum located inside the experimental region.

Figure E.1 — Perspective plot and contour plot of the estimated response in Formula (E.3)
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NOTE The stationary point is a saddle point located inside the experimental region. But the eigenvalues are 
very different so over the experimental region the response surface is a stationary ridge.

Figure E.2 — Perspective plot and contour plot of the estimated response in Formula (E.4)
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NOTE The stationary point is a maximum lying outside the experimental region (x1,x2) = (−2,13, 5,08), so the 
over the experimental region the response surface is a rising ridge.

Figure E.3 — Perspective plot and contour plot of the estimated response in Formula (E.5)
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NOTE The stationary point is a saddle point located inside the experimental region.

Figure E.4 — Perspective plot and contour plot of the estimated response in Formula (E.6)

E.3 Canonical analysis of response surfaces

E.3.1 Location of the stationary point

Suppose the purpose is to find the values of x x xk1 2
, , ,… that optimize the predicted response. This 

point, if it exists, will be the set of x x xk1 2
, , ,…  for which the partial derivatives 

∂ ∂ ∂
∂
=
∂
= =

∂
=

ˆ ˆ ˆ
.

y
x

y
x

y
xk1 2

0�  This point, xS with coordinates x x x kS1 S2 S
, , ,… , is called the stationary 

point. The stationary point could represent the following:

a) a point of maximum response,

b) a point of minimum response, or

c) a saddle point.

The first and the third possibilities are shown in Figures E.1 and E.4 for the case k = 2.

Contour plots generated by computer software play an important role in the study of the response 
surface, if the number of factors is 2 or 3. By generating contour plots for a response surface under 
investigation, the experimenter can usually locate the optimum with reasonable precision. But a 
complete characterization is more difficult if only relying on contour plots. An example of the application 
of contour plots with three predictor variables is given in A.8.3.
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A general mathematical solution for the location of the stationary point of a second order response 
surface can be found. Writing the second order model in matrix notation, it has the form

ŷ b= + ′ + ′0 x b x Bx  (E.7)

where

x b=
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.  (E.8)

That is, b is a (k×1) vector of the first order regression coefficients and B is a (k×k) symmetric matrix 
whose main diagonal elements are the pure quadratic coefficients (bii), and whose off diagonal elements 

are one-half the mixed quadratic coefficients 
bij
2

. The derivative of ŷ  with respect to the elements of x 

and equated to 0 is

∂
∂
= + =
ˆ

.
y
x

b Bx2 0

The stationary point is the solution to this formula or

x B b
S
= − −1

2

1 .  (E.9)

Furthermore, by substituting this expression into the expression for the predicted response, the 
predicted response at the stationary point is

ˆ .y b
S S
= + ′

0

1

2
x b  (E.10)

The distance of the stationary point to the design centre is

D x i
i

k

S S
=

=
∑ 2

1

.  (E.11)

This distance is used to determine the location of the stationary point relative to the experimental 
region. If software coded variables are used it is customary to consider the experimental region as the 
ball with centre at the design centre and radius 1. If coded variables are used, the experimental region 
is the ball with centre at the design centre and radius equal to the larger of α or k .

E.3.2 Nature of the stationary point (canonical analysis)

Canonical analysis is a method of rewriting a fitted quadratic function of the predictor variables in a 
form in which can be more easily understood. This is achieved by a rotation of the coordinate axes which 
removes all cross-product terms. This operation gives the A-canonical form. If desired, this may be followed 
by a change of origin to remove first order terms as well. The result is called the B-canonical form.
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Let the k k× matrix P be the matrix whose columns are the normalized eigenvectors corresponding to 
the eigenvalues ˆ , , ˆλ λ1 … k of B. Then

′P BP = ΛΛ,  (E.12)

where Λ is a diagonal matrix containing the eigenvalues of B. The nature of the stationary point 
is determined from the signs of the eigenvalues of matrix B, and the relative magnitudes of these 
eigenvalues are helpful in further interpretation of the response surface.

The A-canonical form is obtained by rotating the coordinate system so the axes are the eigenvectors of 
B. If the rotated coordinates are called u their relationship to the x coordinates is

u P x Pu x= ′ =   or    .

Using this relationship and the fact that P is the matrix whose columns are the normalized eigenvectors 
so P’P = PP’ = I the A-canonical form follows from the model Formula (E.7)
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( ) ( )
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= + ′ ′ ′ + ′ ′ ′
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b a ak k

0

0 1 1

2 2

ΛΛ

λ λ�

 (E.13)

The first order terms are useful in determining the direction of movement along the rising ridge 
towards the optimum.

The model Formula (E.7) can be expressed in a new coordinate system that is centred at the stationary 
point x S and with coordinate axes that are parallel to the original axis, and this gives a simpler form of 
the model formula without a linear term. If the new coordinates are called z, the relation with the 
original coordinates x are

z = x x− S .  (E.14)

To see this substitute z + x S for x in Formula (E.7)

ˆ

( ) ( ) ( )

y b
b

b

= + ′ + ′

= + + ′ + + ′ +

= + ′ + ′


0

0

0

x b x Bx
z x b z x B z x

x b x Bx
S S S

S S S


+ ′ + ′ + ′

= + ′

z B z Bz z x

z Bz

B2
S

S
ˆ ,y

 (E.15)

because 2 ′ ′= −z x zB b
S

 from Formula (E.9) and the term in square brackets is ŷS . Rotating the 
coordinate system to axes that are parallel to the eigenvectors of B gives further simplification. If the 
rotated coordinates are called w the relationship with the z coordinates is

w P z Pw z= ′ =   or    .
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Substituting Pw for z in Formula (E.15) gives

ˆ ˆ
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ˆ ˆ ˆ ˆ

y y
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y w w wk k
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1 1

2

2 2

2 � 22,

 (E.16)

where the last step follows from Formula (E.12).The coefficients ˆ , , ˆλ λ1 … k  are the eigenvalues of B and 
the variables w1, w2, …, w3 are called canonical variables. The representation in Formula (E.16) is the 
B-canonical form.

It follows from the B-canonical form in Formula (E.16) that nature of the stationary point is determined 
from the signs of the eigenvalues ˆ , , ˆλ λ1 … k  of matrix B

a) If ˆ , , ˆλ λ1 … k  are all negative, the stationary point is a maximum.

b) If ˆ , , ˆλ λ1 … k  are all positive, the stationary point is a minimum.

c) If ˆ , , ˆλ λ1 … k  have mixed signs, the stationary point is a saddle point.

E.3.3	 Confidence	intervals	for	the	eigenvalues

It is important to realize that it is the properties of the fitted response surface that are determined by 
the eigenvalues ˆ , , ˆλ λ1 … k  of B. Although the fitted response surface may fit the underlying true surface 
well, it does not follow that the underlying true surface has the same properties as the fitted surface. 
The eigenvalues ˆ , , ˆλ λ1 … k  of B are only estimates of the eigenvalues λ λ1, ,… k of a matrix similar to B 
but with the estimates bij replaced by the parameters β ij . Fortunately, the standard errors of ˆ , , ˆλ λ1 … k
can be evaluated and can be used to calculate the confidence intervals for the eigenvalues of the 
underlying true surface. For rotatable or approximately rotatable designs the situation is simple; for 
the standard errors of ˆ , , ˆλ λ1 … k  are roughly of the same size as standard error of the estimates bii of 
the quadratic coefficients β ii .

The formula for the 95% confidence interval for λi is

ˆ ( ˆ ) ( ) ˆ ( ˆ ) ( ), ,λ λ λ λ λi i i i ise t v se t v− ≤ ≤ −
0 95 0 95

where se i(
ˆ )λ  denotes the standard error of λ̂i and v denotes the degrees of freedom for total error in 

the experiment.
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