PD ISO/PAS 20065:2016 # **BSI Standards Publication** Acoustics — Objective method for assessing the audibility of tones in noise — Engineering method #### National foreword This Published Document is the UK implementation of ISO/PAS 20065:2016. The UK participation in its preparation was entrusted to Technical Committee EH/1, Acoustics. A list of organizations represented on this committee can be obtained on request to its secretary. This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application. © The British Standards Institution 2016. Published by BSI Standards Limited 2016 ISBN 978 0 580 93282 3 ICS 17.140.01 Compliance with a British Standard cannot confer immunity from legal obligations. This Published Document was published under the authority of the Standards Policy and Strategy Committee on 31 July 2016. #### Amendments issued since publication Date Text affected # PUBLICLY AVAILABLE SPECIFICATION PD ISO/PAS 20065:2016 ISO/PAS 20065 First edition 2016-07-01 # Acoustics — Objective method for assessing the audibility of tones in noise — Engineering method Acoustique — Méthode objective pour évaluer l'audibilité des tons dans le bruit — Méthode d'expertise PD ISO/PAS 20065:2016 ISO/PAS 20065:2016(E) #### COPYRIGHT PROTECTED DOCUMENT #### © ISO 2016, Published in Switzerland All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester. ISO copyright office Ch. de Blandonnet 8 • CP 401 CH-1214 Vernier, Geneva, Switzerland Tel. +41 22 749 01 11 Fax +41 22 749 09 47 copyright@iso.org www.iso.org | Con | tent | S | Page | |--------|---------------------------|--|----------------| | Forev | vord | | iv | | 1 | Scope | e | 1 | | 2 | Norn | native references | 1 | | 3 | Term | is and definitions | 1 | | 4 | | General Measurement instruments Merging the basic spectra | 5
5 | | 5 | Eval u 5.1 5.2 5.3 | General information | 677789101010 | | 6 | Calcu | ılation of the uncertainty of the audibility ΔL | 13 | | 7 | 7.1
7.2
7.3
7.4 | mmendations on the presentation of results Measurement Acoustic environment Instruments for measurement, recording and evaluation Acoustic data | 16
16
16 | | Anne | x A (inf | formative) Window effect and Picket fence effect | 17 | | | and g | formative) Resolving power of the human ear at frequencies below 1 000 Hz geometric position of the critical bands — corner frequencies | | | Anne | x C (inf | formative) Masking, masking threshold, masking index | 22 | | Anne | x D (inf | formative) Iterative method for the determination of the audibility, ΔL | 23 | | Anne | x E (inf | formative) Example for the determination of the tonal audibility | 27 | | Riblic | granh | V | 33 | #### Foreword ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives). Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents). Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement. For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see the following URL: www.iso.org/iso/foreword.html. The committee responsible for this document is ISO/TC 43, Acoustics, Subcommittee SC 1, Noise. # Acoustics — Objective method for assessing the audibility of tones in noise — Engineering method #### 1 Scope This Publicly Available Specification describes a method for the objective determination of the audibility of tones in environmental noise. This Publicly Available Specification is intended to augment the usual method for evaluation on the basis of aural impression, in particular, in cases in which there is no agreement on the degree of the audibility of tones. The method described can be used if the frequency of the tone being evaluated is equal to, or greater than, 50 Hz. In other cases, if the tone frequency is below 50 Hz, or if other types of noise (such as screeching) are to be captured, then this method cannot replace subjective evaluation. The method presented herein can be used in continuous measurement stations that work automatically. #### 2 Normative references The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. ISO 1996-1, Acoustics — Description, measurement and assessment of environmental noise — Part 1: Basic quantities and assessment procedures IEC 61672-1, Electroacoustics — Sound level meters — Part 1: Specifications #### 3 Terms and definitions For the purposes of this document, the terms and definitions given in ISO 1996-1 and the following apply. #### 3.1 #### tonalitv presence of a tone in a noise, the level of which is below that of the remaining noise components in the *critical band* (3.5) about the *tone frequency* (3.2) by less than the value of the *masking index* (3.16), a_v #### 3.2 #### tone frequency $f_{\rm T}$ frequency of the *spectral line* (3.23) (or mid-band frequency of the narrow-band filter), to the level of which the tone contributes most strongly #### 3.3 #### tone level $L_{\rm T}$ energy summation of the *narrow-band level* (3.22) with the *tone frequency* (3.2), f_T , and the lateral lines about f_T , assignable to this tone Note 1 to entry: If the *critical band* (3.5) for the frequency, f_T , under consideration contains a number of tones, then the tone level, L_T , is the energy sum of these tones. This level, L_T , is then assigned to the frequency of the participating tone that has the maximal value of *audibility* (3.4), ΔL . Note 2 to entry: The method for the determination of the tone level, L_T , of a tone in a critical band is described in 5.3.3. #### PD ISO/PAS 20065:2016 ISO/PAS 20065:2016(E) #### 3.4 #### audibility ΔL difference between the tone level (3.3), $L_{\rm T}$, and the masking threshold (3.15), $L_{\rm T}'$ Note 1 to entry: The method for the determination of the *decisive audibility* (3.24), ΔL_j , of a *narrow-band spectrum* (3.12) is described in 5.3.8. #### 3.5 #### critical band frequency band with a *bandwidth* (3.17), Δf_c , within which the auditory system integrates the sound intensity in the formation of loudness and within which it integrates the sound intensity in the formation of the *masking threshold* (3.15) Note 1 to entry: This characteristic of a critical band (see also References [3] and [4]) holds only for a restricted sound level range. This dependence is neglected here. #### 3.6 #### mean narrow-band level of the critical band Ls energy mean value of all *narrow-band levels* (3.22) in a *critical band* (3.5) that (as a rule) does not exceed this mean value by more than 6 dB Note 1 to entry: The method for the determination of the mean narrow-band level L_S of the masking noise is described in 5.3.2 and Annex D (iterative method). #### 3.7 #### critical band level L_{G} level of noise that is assigned to the *critical band* (3.5) that describes the masking characteristic of the noise for one or more tones of the noise in this critical band Note 1 to entry: See narrow-band level (3.22) and Annex C for masking. Note 2 to entry: For the definition formula for L_G , see Formula (12). #### 3.8 #### sampling frequency f_{S} number of samples taken per second Note 1 to entry: The analogue data provided continuously are converted into samples through sampling at discrete time intervals for digital processing. Note 2 to entry: To ensure the reproducibility of a digitized signal, the Shannon theorem requires that the sampling frequency, f_S , is at least 2 times the highest frequency of the signal components used for evaluation in the time signal $[f_S \ge 2 f_N]$, see also aliasing (3.9),
antialiasing filter (3.10) and useable frequency (3.20)]. The algorithm of a Fast Fourier Transform analysis (the variant of a discrete Fourier Transform used typically and optimized for calculation) only permits block lengths (3.11), N, that correspond to a power of two. FFT analyzers thus need a sampling frequency that is at least 2,56 times the maximum frequency to be analysed. #### 3.9 #### aliasing reflection in the *line spectrum* (3.12) of frequency components from the range above the *sampling frequency* (3.8) divided by two ($f_S/2$) in the range below $f_S/2$ Note 1 to entry: Antialiasing filters (3.10) are used to avoid errors through such reflections. Note 2 to entry: Half the sampling frequency ($f_S/2$) is also known as the Nyquist frequency. #### 3.10 #### antialiasing filter #### low-pass filter ideal filter that allow frequencies below half the *sampling frequency* (3.8) to pass through completely (without influencing the signal), but completely block all higher frequencies Note 1 to entry: To prevent *aliasing* (3.9), the noise under investigation shall be filtered using an antialiasing filter before analogue-to-digital conversion. Note 2 to entry: Real aliasing filters have a final damping (generally 120 dB/octave) within the blocking range, i.e. signal components in this transition range are reflected (damped). For example, in the transformation of 2 048 (2 k) data points, 1 024 frequency lines are calculated and 800 lines shown. A component in the line number 1 248 is folded back into the line number 800. With a low-pass filter of 120 dB/octave the damping of these components is approximately 75 dB. Note 3 to entry: The usual commercial FFT analyzers have an antialiasing filter, the limit frequency of which can be switched automatically with the selectable sampling frequency. The reflection of simulated *narrow-band levels* (3.22) is suppressed. #### 3.11 #### block length Λ block of sampling values that in discrete form represents a time-limited range of the time signal to be analysed Note 1 to entry: In contrast to frequency analysis with analogue and digital filters, the noise with the Fast Fourier Transform is processed in data blocks. In general, these blocks embrace only a part of the noise recording. The block length, N, expresses the number of data points processed at the same time. Due to the nature of the Fast Fourier Transform, the value of N has the integer of power of 2. It has a value, for example, of $N = 2^{10} = 1024$ data points. #### 3.12 #### line spectrum narrow-band spectrum frequency spectrum plot of the sound pressure level (*narrow-band level*) (3.22) as a function of the frequency in frequency bands of constant *bandwidth* (3.17) (*line spacing*, Δf) (3.13) Note 1 to entry: A-weighting of the level is assumed in this Publicly Available Specification. Note 2 to entry: Frequency analysis delivers a line spectrum, in which each line represents the output of a filter, the mid-frequency of which corresponds to the frequency of the *spectral line* (3.23). #### 3.13 #### line spacing frequency resolution distance between neighbouring spectral lines (3.23), where the line spacing in the FFT is given by $$\Delta f = f_{\rm S} / N$$ where f_S is the sampling frequency (3.8); *N* is the *block length* (3.11). Note 1 to entry: In this Publicly Available Specification, the line spacing is 1,9 Hz $\leq \Delta f \leq$ 4,0 Hz. # PD ISO/PAS 20065:2016 ISO/PAS 20065:2016(E) #### 3.14 #### time window time data set of the signal segment ($block\ length$) (3.11) that is multiplied by a weighting function (window function) Note 1 to entry: In accordance with the definition of the Fourier integral, a prerequisite of the FFT analysis is that the time data set is periodic. If this is not the case (as with stochastic signals), cut-off effects at the edges of the time window will lead to distortion of the spectrum. These distortions are avoided through weighting functions such as the Hanning Function. Note 2 to entry: For more information on window and weighting functions, see, for example, Reference [5] and Annex A. #### 3.15 #### masking threshold L_{T}' audibility (3.4) threshold for a specific sound in the presence of a masking sound (masker) Note 1 to entry: See Annex C for more information on the audibility threshold and the masking noise. #### 3.16 #### masking index a_{v} difference between the masking threshold (3.15), $L_{\rm T}'$, and the critical band level (3.7), $L_{\rm G}$, of the masking noise Note 1 to entry: For frequency-dependent masking index, a_v , masking and masking noise, see Annex C. #### 3.17 #### bandwidth frequency bandwidth frequency range of a number of neighbouring spectral lines (3.23) Note 1 to entry: If the width of a frequency band is calculated for which its beginning or end does not correspond to the boundary between two spectral lines, then only the spectral lines that lie in their full width within the calculated frequency range are assigned to the frequency band. #### 3.18 #### distinctness clarity ratio of the conspicuousness of a tone based on a bandpass noise to the conspicuousness of a sinusoidal tone of the same *tone frequency* (3.2), f_T , and same *tone level* (3.3), L_T #### 3.19 #### edge steepness ratio of the level difference between the maximum *narrow-band level* (3.22) of a tone, L_{Tmax} , and the narrow-band levels of the first line below/above the tone to the corresponding frequency difference #### 3.20 #### useable frequency f_N upper limit frequency of the signal components used for evaluation #### 3.21 #### investigation range range within which tones are investigated in the *line spectrum* (3.12) #### 3.22 #### narrow-band level averaged level within a spectral line (3.23) #### 3.23 #### spectral line frequency band of bandwidth (3.17), Δf (line spacing) (3.13), in a line spectrum (3.12) #### 3.24 #### decisive audibility ΔL_i maximum *audibility* (3.4), ΔL , in the individual spectrum, j #### 4 Measurement procedure #### 4.1 General The measurement procedure will depend on the aims. The requirements for the measurement and assessment procedure in terms of the choice of measurement point, measurement time and duration of measurement, extraneous noise, etc. shall be satisfied. The variable for determination of audibility of prominent tones is the sound pressure p(t). For frequency analysis, the A-weighted equivalent continuous sound pressure level, L_{Aeq} , as given in ISO 1996-1, is to be established for the respective spectral lines. If the spectrum is unweighted (linear), then it shall be corrected to A-weighting in accordance with IEC 61672-1. #### 4.2 Measurement instruments Sound level meters that meet, or exceed, the requirements of Class 1 in IEC 61672-1 shall be used. These have a frequency weighting "A"/"LIN" or "A"/"Z" with a lower limit frequency equal to, or below, 20 Hz. Additional instruments such as recording instruments (digital or magnetic tape) may also be used. The measured values derived through recording instruments shall lie within the tolerance range given in IEC 61672-1. Analysis of frequency components in the measurement signals is performed using a frequency analyzer. The constant line spacing, Δf , shall lie in the range 1,9 Hz to 4 Hz (inclusive). The use of the Hanning window is mandatory in this Publicly Available Specification. For further processing, it shall be ensured that the digitalization of the sound pressure signal across the entire dynamic range used has a resolution of at least 0,1 dB. Before it is processed further, the analogue measurement signal shall be passed through a steep low-pass filter (antialiasing filter) to avoid errors in frequency analysis. The sampling frequency (see 3.8) shall be at least two times the maximum usable frequency present (see 3.20). The Hanning window is to be used as time window to reduce lateral bands (see 3.14). #### 4.3 Merging the basic spectra The spectra for the prominent tone assessment shall have an averaging time of approximately 3 s. Due to the line spacing of 1,9 Hz to 4 Hz (see 4.2) and the typical frequency range, f, of a few kHz, the basic spectra given by the frequency analyzer will have an averaging time below 1 s. To get the averaging time of approximately 3 s, a number of basic spectra shall be merged. This shall be done line by line with Formula (1): $$L_{i} = 10 \lg \left(\frac{1}{N} \sum_{j=1}^{N} 10^{0.1 L_{i,j} / dB} \right) dB$$ (1) where $L_{i,j}$ is the level of the *i*th spectral line for the *j*th spectrum; *N* is the number of merged spectra. #### 5 Evaluation #### 5.1 General information The aim of evaluation is to establish the audibility, ΔL . The procedure is the same for stationary and non-stationary noises. For tones that can only just be perceived, a quaver (eighth note) is to be adopted as a base time that is adequate for hearing. However, comprehensive studies have shown that the lower limit for use of the procedure is reached at averaging times of approximately 3 s. Lower averaging times lead to unjustified values of audibility, ΔL (too high, but also too low). Signals that have a very high level dynamic and/or frequency dynamic that no longer correspond with a 3-second averaging can, therefore, not be evaluated using this Publicly Available Specification. The following conditions shall be satisfied for the measurements. - The extended uncertainty, U, of the audibility, ΔL , with a coverage probability of 90 % in a bilateral confidence interval (see <u>Clause 6</u>) shall not exceed ±1,5 dB. This is generally the case with evaluation of at least 12 time-staggered narrow-band averaged spectra. If there are less than 12 averaged spectra then the uncertainty shall be taken into consideration as given in <u>Clause 6</u>. - Where there are alternating operating states, all of the operating states shall be covered
by the averaging spectra used (see <u>Annex E</u>). Tonal components in different critical bands are evaluated separately. To arrive at a decision on whether a tonal audibility has to be made, only the most pronounced tone is considered. If a number of tones are present within a critical band, then an energy summation of their tone levels, L_{Ti} , is carried out to yield a tone level, L_{T} (see 5.3.8). A tonal audibility is performed for a tone only if its distinctness (see 3.18) is at least 70 %. This means a maximal bandwidth, Δf_R , dependent on the tone frequency [see Formula (9)] and necessitates edge steepness (see 3.19) of at least 24 dB/octave. NOTE 1 For the distinctness of a tone, see <u>5.3.4</u>. NOTE 2 Harmonic multiples of a tone are evaluated, independently of that tone, similarly to all other components of the spectrum. A sample program to determine audibility can be downloaded from http://standards.iso.org/iso/20065 #### 5.2 Width Δf_c of the critical band The width Δf_c of the critical band about the tone frequency f_T is given by Formula (2): $$\Delta f_{\rm c} = 25,0 \,\text{Hz} + 75,0 \left[1,0 + 1,4 \left(\frac{f_{\rm T} / \text{Hz}}{1000} \right)^2 \right]^{0,69} \text{Hz}$$ (2) Assuming a geometric position of the corner frequencies of the critical band (see Annex B), these corner frequencies, f_1 and f_2 , are derived as follows: $$f_{\rm T} = \sqrt{f_1 \times f_2} \tag{3}$$ $$f_1 = \frac{-\Delta f_c}{2} + \frac{\sqrt{(\Delta f_c)^2 + 4f_T^2}}{2} \tag{4}$$ $$f_2 = f_1 + \Delta f_c \tag{5}$$ #### 5.3 Determination of prominent tones #### 5.3.1 General information The audibility of a tone is determined using the tone level, $L_{\rm T}$, and the critical band level, $L_{\rm G}$, of the masking noise in the critical band about the tone frequency, $f_{\rm T}$. The frequency of all maxima of the spectrum is considered as the tone frequency. The use of the Hanning window is recommended in <u>Annex A</u>. With window functions (except for rectangular windows), the effective analysis bandwidth, Δf_e , is greater than the bandwidth, Δf_o of an ideal filter (see <u>3.13</u>), i.e. the individual bands are thus superimposed. In the summation process, the energy components are counted a number of times (see <u>Annex A</u> for more information). In a frequency analyzer, this influence of summation (number of lines >1) is taken into consideration through a correction value; if the level addition is simulated by the analyzer program, then this correction value has to be considered in the computing program, both in the formation of the tone level [see Formula (8)] and in the calculation of the masking noise [see Formula (12)]. #### 5.3.2 Determination of the mean narrow-band level L_S of the masking noise The mean narrow-band level, L_S , [see Formula (6)] is derived in an iterative procedure from the lines of the critical band about the line under investigation. The procedure commences with the energy averaging of all lines of the critical band with the exception of the line under investigation itself. In the subsequent steps, the levels of the lines of the critical band under consideration are no longer taken into consideration in the averaging procedure if their level exceeds the energy mean value determined beforehand by more than 6 dB. The iterative procedure is discontinued, if in an iteration step, the new energy mean value is equal within a tolerance of $\pm 0,005$ dB to that of the previous iteration step or if the number of lines contributing to the mean narrow-band level to the right or left of the line under investigation falls below a value of 5. In this case, the energy mean value from the last iteration step, at which the number of energy averaged levels on both sides of the line under investigation in each case was still at least 5 is used to form the mean narrow-band level. For determination of the mean narrow-band level, the entire critical band about the line under investigation is used. Consequently, the range under investigation (see 3.21) is limited relative to the useable frequency f_N such that the upper limit of the uppermost critical band being considered does not exceed the useable frequency f_N . A corresponding condition also applies in principle for the lower limit of the lowest critical band considered. Since the use of this Publicly Available Specification is restricted #### PD ISO/PAS 20065:2016 ISO/PAS 20065:2016(E) to tone frequencies greater than or equal to 50 Hz and the usual analyzers generate line spectra starting at 0 Hz, it is not generally necessary to take any special precautions. The mean narrow-band level L_S is given by Formula (6): $$L_{\rm S} = \left[10 \lg \left(\frac{1}{M} \sum_{i=1}^{M} 10^{0,1} L_i / dB \right) + 10 \lg \left(\frac{\Delta f}{\Delta f_{\rm e}} \right) \right] dB$$ (6) where L_i is the narrow-band level of the *i*th spectral line, in decibels (dB); *M* is the number of spectral lines to be averaged in the critical band; Δf is the line spacing, in Hertz (Hz) (see 3.13); Δf_e is the effective bandwidth in Hz; if a Hanning window is used then the effective bandwidth, Δf_e , is 1,5 times the frequency resolution (line spacing), Δf (see Annex A). If the spectrum is unweighted (linear), then it shall be A-weighted in accordance within IEC 61672-1. NOTE 1 If the iteration is discontinued, because the remaining number of spectral lines to be averaged on one or both sides falls below 5, then the audibility may be somewhat greater than the audibility calculated with this mean narrow-band level. NOTE 2 The iteration procedure is described in Annex D. NOTE 3 Using a digital calculation program, the equal condition in the iteration procedure is typically given by the resolution of the number format (high resolution should be used). #### 5.3.3 Determination of the tone level L_T of a tone in a critical band The tone level $L_{\rm T}$ is determined from the individual levels of the spectral lines in the critical band about $f_{\rm T}$ that contain energy to be assigned to the tone. In principle, a tone may only be present if the level of the spectral line considered is at least 6 dB greater than the corresponding mean narrow-band level $L_{\rm S}$. In general, a number of spectral lines have to be taken into consideration, since, for instance, because of the Picket fence effect (see <u>Annex A</u>), or actual small frequency fluctuations during data capture, the tone energy is represented through the levels of a number of spectral lines. Neighbouring spectral lines should be used for summation purposes if - they differ from the narrow-band level at a frequency, f_T , by less than 10 dB, and - they differ from the mean narrow-band level, L_S , of the masking noise within the critical band about the tone by more than 6 dB. In case K = 1: $$L_{\rm T} = L_{\rm T} \tag{7}$$ In case K > 1: $$L_{\mathrm{T}} = \left[10 \, \lg \left(\sum_{i=1}^{K} 10^{0.1 L_i / \mathrm{dB}} \right) + 10 \, \lg \left(\frac{\Delta f}{\Delta f_e} \right) \right] \mathrm{dB}$$ (8) where L_i is the narrow-band level of the *i*th spectral line of this critical band with tone energy, in decibels (dB); *K* is the number of spectral lines with tone energy; Δf is the line spacing, in Hertz (Hz) (see 3.13); Δf_e is the effective bandwidth, in Hertz (Hz) (see <u>5.3.2</u>). NOTE The individual levels of the spectral lines with tone energy [see Formula (8)] also contain energy components of the masking noise. These can generally be neglected. #### 5.3.4 Distinctness of a tone The distinctness of a tone depends on the bandwidth of the tone and its edge steepness; if the corresponding criteria are not satisfied then the tone is not audible to individuals with normal hearing. If a tone based on bandpass noise has a distinctness of 70 % relative to that of a sinusoidal tone then the maximum permitted bandwidth Δf_R as a function of the tone frequency f_T is approximated (see Figure 1 in Reference [8]) by $$\Delta f_{\rm R} = 26.0 (1.0 \,\mathrm{Hz} + 0.001 f_{\rm T})$$ (9) The bandwidth of a tone with a frequency f_T is derived from the number of spectral lines K [see Formula [8]], multiplied by the line spacing, Δf . First criterion: The bandwidth of the tone shall not exceed the maximum permitted bandwidth given by Formula (9). Second criterion: The edge steepness shall be at least 24 dB/octave. This yields the level differences between the maximum narrow-band level of the tone, L_{Tmax} , and the narrow-band levels of the first spectral line below the tone L_{u} /above the tone L_{o} as follows: The lower level difference $\Delta L_{\rm u}$ is given by Formula (10): $$\Delta L_{\rm u} = \frac{f_{\rm T}}{2} \frac{L_{\rm Tmax} - L_{\rm u}}{f_{\rm T} - f_{\rm u}} \ge 24 \, \text{dB}$$ (10) where $f_{\rm u}$ is the frequency of the first spectral line below the tone, in Hertz (Hz); $f_{\rm T}$ is the frequency of the maximum narrow-band level, in Hertz (Hz). The upper level difference ΔL_0 is given by Formula (11): $$\Delta L_0 = f_{\rm T} \frac{L_{\rm Tmax} - L_0}{f_0 - f_{\rm T}} \ge 24 \, \text{dB}$$ (11) where f_0 is the frequency of the first spectral line above the tone, in Hertz (Hz); $f_{\rm T}$ is the frequency of the maximum narrow-band level, in Hertz (Hz). #### 5.3.5 Determination of the critical band level, L_{G} , of the masking noise The level L_G is given by Formula (12): $$L_{\rm G} = L_{\rm S} + \left[10 \lg \left(\frac{\Delta f_{\rm c}}{\Delta f} \right) \right] dB \tag{12}$$ where $L_{\rm S}$ is the mean narrow-band level, see <u>5.3.2</u>; $\Delta f_{\rm c}$ is the width of the critical band about the tone frequency, $f_{\rm T}$, in Hertz (Hz) (see 5.2); Δf is the line spacing (frequency resolution), in Hertz (Hz). ####
5.3.6 Masking index The masking index, a_v , is given by Formula (13): $$a_{\mathbf{v}} = \left\{ -2 - \lg \left[1 + \left(\frac{f / \operatorname{Hz}}{502} \right)^{2,5} \right] \right\} d\mathbf{B}$$ (13) where *f* is the frequency, in Hertz (Hz). NOTE For information on the masking index, a_v , see Annex C. #### 5.3.7 Determination of the audibility, ΔL The audibility ΔL between the tone level L_T (see <u>5.3.3</u>) and the level of the masking threshold (see <u>3.15</u>) is given by Formula (14): $$\Delta L = \left(L_{\rm T} - L_{\rm G} - a_{\rm v}\right) \tag{14}$$ where $L_{\rm T}$ is the tone level, in decibels (dB) (see <u>5.3.3</u>); L_G is the masking noise, in decibels (dB) (see 5.3.5); $a_{\rm v}$ is the masking index, in decibels (dB) (see <u>5.3.6</u>). NOTE Formula (14) holds correspondingly if all the parameters of that formula are given. #### 5.3.8 Determination of the decisive audibility, ΔL_i , of a narrow-band spectrum To determine the audibility ΔL of a noise a number of narrow-band spectra (see Annex D), staggered in time, of the noise with the same line width and same number of lines are used. The measurement time for such a spectrum should be approximately 3 s. The decisive audibility ΔL_j of an individual spectrum is determined in the following four steps. For simplification purposes the run index j is not given. #### Step 1 Each spectral line, *i*, is investigated in ascending sequence to establish whether it represents a potential tone. A narrow-band level is a potential tone if the following conditions are satisfied: $$L_i > L_{i+1} \text{ and } L_i > L_{i-1}$$ (15) and $$L_i > L_{Si} + 6 \text{ dB} \tag{16}$$ NOTE 1 Mean narrow-band level, L_{Si} , see <u>5.3.2</u>. #### Step 2 The tone levels, L_{Tk} , (see <u>5.3.3</u>) of all the potential tones (run index k across all potential tones) is determined. The masking noises, L_{Gk} (see <u>5.3.5</u>), and the masking index, a_{vk} (see <u>5.3.6</u>), are determined for the tone levels at which the condition of distinctness of a tone (see <u>5.3.4</u>) is satisfied. These parameters are used to calculate the corresponding audibilities, ΔL_k [see <u>5.3.7</u>, Formula (14)]. If $\Delta L_k > 0$, then a tone is present. #### Step 3 Critical bands with the width Δf_{cm} are formed about each of these audible tones, L_{Tm} (run index m across all audible tones) of frequency f_{Tm} . If a number of tones are present in a critical band, then their tone levels, $L_{Tm,n}$ (run index n across all tones in the critical band; H is the number) are summed in terms of energy. $$L_{\text{T}m} = \left[10 \, \lg \left(\sum_{n=1}^{H} 10^{0.1 L_{\text{T}m,n} / \text{dB}} \right) \right] \text{dB}$$ (17) where *H* is the total number of all tones in the critical band; $L_{Tm,n}$ is the tone level with the run index m across all audible tones and the run index n across all tones in the critical band, in decibels (dB). It is possible for the energy of individual spectral lines to be assigned to a number of neighbouring tones at the same time. Upon addition of the tone levels of neighbouring tones, the energy of these individual spectral lines may not be summed more than once. The tone frequency, f_{Tm} , is the frequency of the most pronounced tone, i.e. the tone with the greatest audibility, $\Delta L_{m,n}$. The mean narrow-band level of the masking noise is that mean narrow-band level that was calculated in the iterative procedure in <u>5.3.2</u> [see <u>Formula (6)</u>] from the lines about the tone with this tone frequency. The level of the masking noise is the critical band level, $L_{Gm,n}$, calculated with this mean narrow-band level in accordance with 5.3.5. This tone level, L_{Tm} , is used to recalculate the decisive audibility, ΔL_k (see Step 2). #### PD ISO/PAS 20065:2016 ISO/PAS 20065:2016(E) If exactly 2 tones with tone frequencies, f_{T1} and f_{T2} , appear in one critical band, then they are evaluated separately if both tone frequencies lie below 1 000 Hz and the frequency difference, f_D . $$f_{\rm D} = \left| f_{\rm T1} - f_{\rm T2} \right| \tag{18}$$ where f_{T1} , f_{T2} < 1 000 Hz. Formula (18) exceeds the following value (see Annex B): $$f_{\rm D} = 21 \times 10^{1,2} \left[\left| \lg \left(\frac{f_{\rm T}/Hz}{212} \right) \right|^{1,8} \right]$$ Hz (19) where $50 \text{ Hz} < f_{\text{T}} < 1000 \text{ Hz};$ $f_{\rm T}$ is the frequency of the more pronounced tone (the tone with the greater audibility, ΔL_k). NOTE 2 If precisely 2 tones are present in a critical band below 1 000 Hz, then the human ear can distinguish differences less than half the critical bandwidth (see Reference [6] and Annex B). #### Step 4 The audibility with the maximum value, ΔL_k , is the decisive audibility, ΔL_i , of the individual spectrum. #### 5.3.9 Determination of the mean audibility ΔL of a number of spectra As given in <u>5.3.8</u>, the decisive audibility ΔL_j is calculated for each narrow-band averaged spectrum (run index j, J is the number). These J audibilities, ΔL_j , are averaged in energy terms to yield a ΔL : $$\Delta L = 10 \lg \left(\frac{1}{J} \sum_{j=1}^{J} 10^{0.1 \Delta L_j / dB} \right) dB$$ (20) where ΔL_i is the decisive audibility, in decibels (dB); *i* is the run index; *J* is the number of spectra. The tone frequencies are the frequencies of the tones to which the audibilities are assigned. To ensure a sufficient distance from the positive audibilities, ΔL_j , for all spectra in which no tone is found, the following value is used for ΔL_j : $$\Delta L_i = -10 \text{ dB} \tag{21}$$ No tone frequencies are stated for this ΔL_i . NOTE The audibilities, ΔL_j (and not the tone levels, L_{Tj}), are averaged in energy terms since the tones in the individual spectra have different tone frequencies, and thus, different masking index, a_v [see Formula (13)] and masking noises [see Formula (12)] have to be calculated. #### 6 Calculation of the uncertainty of the audibility ΔL The mean audibility, ΔL , between the tone level and the level of the masking threshold of a noise is calculated using Formula (20) from the decisive audibilities, ΔL_j , of the individual narrow-band spectra (see 5.3.8 and 5.3.9): $$\Delta L = 10 \lg \left(\frac{1}{J} \sum_{j=1}^{J} 10^{0,1\Delta L_j/dB}\right) dB$$ ΔL_i is calculated through the use of Formula (14) and Formula (12): $$\Delta L_{j} = L_{\mathrm{T},j} - L_{\mathrm{S},j} - 10 \lg \left(\frac{\Delta f_{\mathrm{c}_{j}}}{\Delta f} \right) \mathrm{dB} - a_{\mathrm{v},j}$$ with the expressions of Formula (8): $$L_{\mathrm{T}} = \left[10 \, \lg \left(\sum_{i=1}^{K} 10^{0.1 L_i / \mathrm{dB}} \right) + 10 \, \lg \left(\frac{\Delta f}{\Delta f_e} \right) \right] \mathrm{dB}$$ Formula (6): $$L_{\rm S} = \left[10 \lg \left(\frac{1}{M} \sum_{i=1}^{M} 10^{0.1 L_i / \text{dB}}\right) + 10 \lg \left(\frac{\Delta f}{\Delta f_{\rm e}}\right)\right] \text{dB}$$ Formula (13): $$a_{v} = \left\{ -2 - \lg \left[1 + \left(\frac{f / Hz}{502} \right)^{2,5} \right] \right\} dB$$ NOTE All frequencies are expressed in Hertz. A normal distribution within the level zone is to be assumed for the term $10 \lg \left(\frac{\Delta f_{c_j}}{\Delta f} \right)$. No uncertainty is assumed for the masking index, $a_{\rm v}$ The $L_{\mathrm{T},j}$ values are derived through summation and the $L_{\mathrm{S},j}$ values through averaging of intensities. It is therefore necessary to assume a normal distribution of these values within the intensity range. To simplify the procedure, however, a normal distribution within the sound level range is assumed for all summands. Since, for the consideration of uncertainty, it is of interest to know the probability of determining a tonal audibility that is too low, and for the upper limit of the confidence interval the consideration in the level zone yields greater uncertainties than a corresponding consideration in the intensity zone, the agreement can be regarded as a safe estimation. A number of sound sources act on the emission point and may be regarded as incoherent. Their emitted output levels are uncorrelated in their statistical behaviour. The uncertainty consideration of L_T and L_S is based only on the uncertainty of the level of the spectral lines involved. The question as to which spectral lines contribute to L_T/L_S is neglected in the consideration of uncertainty herein. These assumptions are used to determine the uncertainty of the audibility, ΔL_j , using the Gaussian uncertainty propagation principle: $$\sigma_{\Delta L_{j}}^{2} = \sum_{i=1}^{K} \left(\frac{\delta \Delta L_{j}}{\delta L_{T_{j,i}}} \sigma_{L_{T_{j,i}}} \right)^{2} + \sum_{i=1}^{M} \left(\frac{\delta \Delta L_{j}}{\delta L_{S_{j,i}}} \sigma_{L_{S_{j,i}}} \right)^{2} + \left(\frac{\delta \Delta L_{j}}{\delta \Delta f_{c_{j}}} \sigma_{\Delta f_{c_{j}}} \right)^{2}$$ $$(22)$$ The three expressions above are determined in Formula (23) to Formula (25): First expression: $$\frac{\delta \Delta L_{j}}{\delta L_{T_{j,i}}} \sigma_{L_{T_{j,i}}} = \frac{10^{0.1 L_{T_{j,i}}/\text{dB}}}{\sum_{i=1}^{K} 10^{0.1 L_{T_{j,i}}/\text{dB}}} \sigma_{L_{T_{j,i}}}$$ $$\sum_{i=1}^{K} \left(\frac{\delta \Delta L_{j}}{\delta L_{T_{j,i}}} \sigma_{L_{T_{j,i}}}\right)^{2} = \frac{\sum_{i=1}^{K} \left(10^{\frac{0.1 L_{T_{j,i}}}{\text{dB}}} \sigma_{L_{T_{j,i}}}\right)^{2}}{\left(\sum_{i=1}^{K} 10^{\frac{0.1 L_{T_{j,i}}}{\text{dB}}}\right)^{2}} \tag{23}$$ where K is the number of all tone-containing narrow-band levels that result in the tone level, $L_{\rm T}$, in accordance with 5.3.3 and 5.3.8. If, in accordance with 5.3.8 Step 3, a number (N) of tone levels are summated then the sum of all tone-containing narrow-band levels in the affected critical band is to be used for K.
Second expression: $$\frac{\delta \Delta L_{j}}{\delta L_{S_{j,i}}} \sigma_{L_{S_{j,i}}} = \frac{10^{0.1 L_{S_{j,i}}/dB}}{\sum_{i=1}^{M} 10^{0.1 L_{S_{j,i}}/dB}} \sigma_{L_{S_{j,i}}}$$ $$\sum_{i=1}^{M} \left(\frac{\delta \Delta L_{j}}{\delta L_{S_{j,i}}} \sigma_{L_{S_{j,i}}}\right)^{2} = \frac{\sum_{i=1}^{M} \left(10^{0.1 L_{S_{j,i}}/dB}} \sigma_{L_{S_{j,i}}}\right)^{2}}{\left(\sum_{i=1}^{M} 10^{0.1 L_{S_{j,i}}/dB}}\right)^{2}} \tag{24}$$ *M* is the number of narrow-band levels that contribute to the formation of the mean narrow-band level in the critical band in question. Third expression: $$\frac{\delta \Delta L_j}{\delta \Delta f_{c_j}} \sigma_{\Delta f_{c_j}} = \frac{4,34 dB}{\Delta f_{c_j}} \sigma_{\Delta f_{c_j}}$$ (25) The uncertainty of the critical bandwidth Δf_c maximally corresponds to the line spacing Δf . No uncertainty is assumed for this line spacing. It follows from this that $$\sigma_{\Delta f_{c_{j}}} = \Delta f$$ $$\frac{\delta \Delta L_{j}}{\delta \Delta f_{c_{j}}} \sigma_{\Delta f_{c_{j}}} = 4,34 \frac{\Delta f}{\Delta f_{c_{j}}} dB$$ (26) A uniform value of $\sigma_{L,j} = 3$ dB is assumed for the uncertainty of all narrow-band levels. Formula (23) to Formula (25) can be used to calculate the uncertainty, $\sigma_{\Delta L_j}$, of the audibility. ΔL_j : $$\sigma_{\Delta L_{j}} = \sqrt{\frac{\sum_{i=1}^{K} \left(10^{0.1L_{T_{j,i}}/dB}\right)^{2} + \frac{\sum_{i=1}^{M} \left(10^{0.1L_{S_{j,i}}/dB}\right)^{2}}{\left(\sum_{i=1}^{K} 10^{0.1L_{T_{j,i}}/dB}\right)^{2} + \frac{\sum_{i=1}^{M} \left(10^{0.1L_{S_{j,i}}/dB}\right)^{2}}{\left(\sum_{i=1}^{M} 10^{0.1L_{S_{j,i}}/dB}\right)^{2}}} \sigma_{L_{j}}^{2} + \left(4.34 \frac{\Delta f}{\Delta f_{c_{j}}} dB\right)^{2}$$ (27) The uncertainty of the mean audibility, ΔL , is given by Formula (28): $$\frac{\delta \Delta L}{\delta \Delta L_n} \sigma_{\Delta L_n} = \frac{10^{0.1 \Delta L_n / \text{dB}}}{\sum_{j=1}^{l} 10^{0.1 \Delta L_j / \text{dB}}} \sigma_{\Delta L_n}$$ $$\sigma_{\Delta L} = \frac{\mp \sqrt{\left(\sum_{j=1}^{l} 10^{0.1 \Delta L_j / \text{dB}}\right)^2}}{\sum_{j=1}^{l} 10^{0.1 \Delta L_j / \text{dB}}} \tag{28}$$ For $\sigma_{\Delta L_i}$ see Formula (27) *I* is the number of narrow-band spectra. The extended uncertainty is: $$U_{\rm o}, U_{\rm u} = k\sigma_{\Delta L} \tag{29}$$ The coverage factor, k, for a 90 % coverage probability in a bilateral confidence interval has a value of 1,645. The experience also shows that with fluctuating noise, one achieves an extended uncertainty, U, of the audibility, ΔL , of about $\pm 1,5$ dB with 12 averages. NOTE To ensure the above-mentioned uncertainty, it is necessary to have a minimum number of spectra with an averaging time of approximately 3 s. The number of spectra necessary to achieve the above-mentioned uncertainty will depend on the variability of the noises. Investigations have shown that even with strongly fluctuating noises (e.g. wind turbines), the number of spectra necessary does not generally exceed 12. #### 7 Recommendations on the presentation of results #### 7.1 Measurement a) Date and place of measurement. #### 7.2 Acoustic environment - a) Description of the measurement environment with the position of the source and the measurement point, a sketch of the surrounding area, including a physical description of the measurement environment. - b) Air temperature in degrees Celsius, air pressure in Pascal and relative air humidity. - c) Mean wind speed and direction. - d) Any special information, e.g. dominant sources, fluctuating sources. #### 7.3 Instruments for measurement, recording and evaluation - a) The manufacturer. - b) Designation/model. - c) Serial number. #### 7.4 Acoustic data - a) Line spacing (see 3.13). - b) Range investigated (see 3.21). - For noise spectra for which a decisive audibility, $\Delta L_j > 0$, was calculated, the tone frequencies, $f_{\mathrm{T}j,k}$, of all tones and the corresponding audibilities, $\Delta L_{j,k}$ (see 5.3.8). - d) For the averaged noise spectrum - 1) the mean audibility, ΔL (see 5.3.9), and - 2) if less than 12 spectra have been averaged, the extended uncertainty (see <u>Clause 6</u>). - e) A diagrammatic representation of the narrow-band levels across the frequency of the 3-second averaged spectrum with the greatest ΔL . ### Annex A (informative) #### Window effect and Picket fence effect In the Fast Fourier Transform (FFT), the noise is determined in data blocks of block length N of the time window. N corresponds to the number of sampling values, e.g. $2^{10} = 1024$. In accordance with the definition of the Fourier integral, a pre-requirement of the FFT analysis is that the time data set is periodic. An unchanged further processing of the data points, as with the use of the rectangular time window, will only lead to correct results with transient signals and signals that fit exactly in the time window with a whole number of full periods. With stochastic noises, it can lead to severe distortions of the spectrum as the signal is cut off at the edges of the time window. To counter this "smearing" of the frequency lines (leakage effect), the signal is multiplied by a weighting function that sets the amplitude values to zero at the limits of the time window and thus overcomes discontinuities in the signal course within the window. The weighting functions, w(t), are as follows: - for the rectangular window: w(t) = 1 for $0 \le t < T$ and w(t) = 0 for all other values of t; - for the Hanning window: $w(t) = 1 \cos(2\pi t/T)$ for $0 \le t < T$ and w(t) = 0 for all other values of t. NOTE T corresponds to the width of the time window. The use of the Hanning window is mandatory in this annex. Depending on the window function chosen (weighting function), the bands of the individual filters are superimposed to varying degrees corresponding to the edge steepness; the resultant so-called "effective bandwidth", $\Delta f_{\rm e}$, with the Hanning window is 1,5 times the frequency resolution, $\Delta f_{\rm e}$. This means that each frequency band always has energy components of the neighbouring bands (where present). Power components are therefore counted more than once in the summation process. Because of the leakage effect (see above) for determination of the level with the Hanning window, it is necessary to add at least three lines. These influences are taken into consideration through a correction value in the summation process (number of lines > 1) in the frequency analyzer. With the Hanning window, this value is $10 \log (1/1,5) \, \mathrm{dB} = -1,76 \, \mathrm{dB}$. If the level addition is simulated in a program, then this correction value has to be taken into consideration in the computing program — both in the derivation of the tone level and in the calculation of the masking noise. If a noise is analysed with discrete filters, then it is as if viewed through a lattice fence, hence the expression "picket fence effect". The analysis of individual tones provokes different amplitude and frequency errors (see Figure A.1), depending on the correspondence of the analysis frequency of the FFT spectrum with the frequency of the individual tone. With the Hanning window, this amplitude error, ΔL , lies between 0 dB (if both frequencies correspond exactly) and 1,42 dB, if the analysis frequency falls exactly between two lines. As the two following examples show, this error is corrected through summation over a number of lines and subsequent Hanning correction of the errors. Exception: If all lateral bands are discarded because of the low difference to the mean and only a tone containing narrow-band level of frequency, f_T , forms the tone level, L_T , then no Hanning correction is carried out. EXAMPLE 1 The analysis frequency corresponds to the tone frequency. As shown in Figure A.1 a), left, the difference Δ between the maximum level and the lateral level is 6 dB, and the difference ΔL between the (measured) original level of the tone frequency and the analyzer value is 0 dB; the following values result. #### PD ISO/PAS 20065:2016 ISO/PAS 20065:2016(E) Level of the tone frequency (original and analyzer value): 80 dB The level of the two lateral lines in the analyzer (80 dB – 6 dB): 74 dB Level sum without correction: 81,77 dB Hanning correction, 10 lg (1/1,5): -1,76 dB The result of the level sum with correction corresponds to the level of the tone frequency. EXAMPLE 2 The tone frequency lies exactly mid-way between two analysis frequencies. As shown in Figure A.1 b), middle, the maximum level is divided into two lateral levels with a difference Δ = 0 dB. The difference ΔL between the (measured) original level of the tone frequency and the analyzer value is 1,42 dB. The following values result. Original level of the tone frequency distributed over four lateral lines: 80 dB Of which the two highest (80 dB – 1,42 dB): 78,58 Level sum of the two lateral lines without correction: 81,59 dB Hanning correction, 10 lg (1/1,5): -1,76 dB The result of the level sum with correction corresponds approximately to the level of the tone frequency. Figure A.1 is derived from Reference [5] and a brief explanation is given below. Figure A.1 a) shows three different cases (from left to right): - the analysis frequency corresponds to the tone frequency; - the tone frequency (indicated by the dashed line) lies midway between two analysis frequencies; - the tone frequency (indicated by the dashed line) lies displaced towards the analysis frequency. The designation B is identical to the line spacing, Δf (see 3.13), of this Publicly Available Specification. In Figure A.1 a), Δf represents the difference between the tone frequency and the analysis frequency: - a) in the first case: $\Delta f = 0$; - b) in the second case: $\Delta f = 0.5 \times B$; - c) in the third case: $0 < \Delta f < 0.5 \times B$. #### Key - B line spacing, in Hertz (Hz) -
Δ difference, in decibels (dB) - ΔL difference between the real narrow-band level with the tone frequency, f_T , and the level of the direct lateral band with the greater of the two levels, in decibels (dB) - Δf difference between the tone frequency and the analysis frequency, in Hertz (Hz) Figure A.1 — Frequency correction and level correction for the Picket fence effect using the Hanning window # Annex B (informative) # Resolving power of the human ear at frequencies below 1 000 Hz and geometric position of the critical bands — corner frequencies At a frequency below 1 000 Hz, if there are several tones in a critical band, the human ear is able to distinguish between differences in the tone frequencies that are lower than the half width of the critical band. If the critical band has two or more tones, then the ear can detect differences as shown by the points or dashed lines in Figure B.1. #### Key - critical bandwidth as a function of frequency - ··· noise that comprises two tones - --- noise that comprises more than two tones in the critical band under consideration - f frequency, in Hertz (Hz) - $f_{\rm D}$ frequency difference, in Hertz (Hz) Figure B.1 — Frequency differences between the tones of complex noises that the human ear can still resolve[6] Two tones of tone frequencies, f_{T1} and f_{T2} , are evaluated separately if both tone frequencies lie below 1 000 Hz and the frequency difference, f_D : $$f_{\mathrm{D}} = \left| f_{\mathrm{T1}} - f_{\mathrm{T2}} \right| \tag{B.1}$$ where $f_{\rm T1}$, $f_{\rm T2}$ < 1 000 Hz. Formula (B.1) exceeds the following value: $$f_{\rm D} = 21 \times 10^{1,2} \left[\left| \lg \left(\frac{f_{\rm T}/Hz}{212} \right) \right|^{1,8} \right]$$ (B.2) where $50 \text{ Hz} < f_{\text{T}} < 1\ 000 \text{ Hz};$ $f_{\rm T}$ is the frequency of the more pronounced tone, in Hertz (Hz). In this Publicly Available Specification, the critical band is modelled as an ideal rectangular filter with a mid-frequency, f_T (tone frequency), the lower corner frequency, f_1 , and the upper corner frequency, f_2 , with these two corner frequencies having a geometric position to the tone frequency [see References [1],[2]; all frequencies in Hertz (Hz)]. $$f_{\rm T} = \sqrt{f_1 f_2} \tag{B.3}$$ $$f_2 - f_1 = \Delta f_c \tag{B.4}$$ With the quadratic supplement, it follows from Formula (B.3) and Formula (B.4): $$f_1 = -\frac{\Delta f_c}{2} + \frac{\sqrt{(\Delta f_c)^2 + 4f_T^2}}{2}$$ (B.5) $$f_2 = f_1 + \Delta f_c \tag{B.6}$$ # Annex C (informative) ### Masking, masking threshold, masking index Masking is the raising of the audibility threshold for a sound as a result of the influence of another sound.[3] The masking threshold, $L_{\rm T}'$, is that sound pressure level of a sinusoidal test tone that is required for it to be just perceivable in the presence of a masking noise (critical band level, $L_{\rm G}$). The masking threshold is determined in repeated tests in which a group of subjects with normal hearing can just perceive the tone in 50 % of the cases. The masking index, $a_{\rm v} = L_{\rm T}' - L_{\rm G}$, is the difference between the level of the test tone, $L_{\rm T}'$, and the critical band level, $L_{\rm G}$. At low frequencies, the masking index has a value of approximately -2 dB. Above a transition range between 0,2 kHz and 1 kHz, it falls at a constant logarithmic rate to -6 dB at 20 kHz. Figure C.1 — Masking index, a_v , as a function of frequency, f The masking index, a_v , is given by Formula (C.1): $$a_{\mathbf{v}} = \left\{ -2 - \lg \left[1 + \left(\frac{f / \operatorname{Hz}}{502} \right)^{2,5} \right] \right\} dB \tag{C.1}$$ where *f* is the frequency, in Hertz (Hz). # **Annex D** (informative) ### Iterative method for the determination of the audibility, ΔL Figure D.1 shows an iterative method for calculation of the tonal audibility. Figure D.1 — Iterative method #### Detailed diagram 1 The mean narrow-band level, L_S , and auxiliary quantities to determine the uncertainty are calculated for all spectral lines (see Figure D.2). Figure D.2 — Detailed diagram 1 #### Detailed diagram 2 The tone level, $L_{\rm T}$, and the auxiliary quantities to determine the uncertainty is calculated for the first/next spectral line of frequency, $f_{\rm T}$. In addition, the tone is checked for distinctness (see Figure D.3). Figure D.3 — Detailed diagram 2 #### **Detailed diagram 3** A number of tones in one critical band are grouped together and auxiliary quantities for determination of uncertainty are calculated. The maximum ΔL of the spectrum is identified (see Figure D.4). Figure D.4 — Detailed diagram 3 # **Annex E** (informative) ### Example for the determination of the tonal audibility The noise examples are derived from Reference [7]. #### Key f frequency, in Hertz (Hz) $\Delta f_{ci}~$ width of the critical band with the run index, i, in Hertz (Hz) Δf_i line spacing independent from the run index, *i*, in Hertz (Hz) K_i number of spectral lines with tone energy of the tone with the run index, i L_A A-weighted sound pressure level, in decibels (dB) NOTE The spectrum contains further tonal components beyond the range shown. Figure E.1 — Narrow band spectrum of a combustion engine (Spectrum 1 of 5) The uniform noise of a combustion engine was recorded on a tape machine, then five narrow-band spectra were derived. As stated in 5.1, a lower number of narrow-band averaged spectra is sufficient if the value of the extended uncertainty, U, of the mean audibility, ΔL , is lower than or equal to $\pm 1,5$ dB. The extended uncertainty, U, of this audibility, ΔL , in this case, has a value of $\pm 1,38$ dB (see below). #### Step 1: Determination of the line spacing and range to be investigated Line spacing: $\Delta f = 2.7$ Hz. Range investigated: 91,5 Hz $\leq f_{\rm T} \leq$ 3 676,8 Hz. Step 2: Determination of the tone frequencies, $f_{Tj,k}$, of the tone level, $L_{Tj,k}$, of the mean narrowband level, $L_{Sj,k}$, and the audibilities, $\Delta L_{j,k}$, for all spectra (j is the run index of the spectrum, k is the run index of the tone frequency) The mean narrow-band levels, $L_{Sj,k}$, of the masking noise are calculated in each case in accordance with 5.3.2 [see Formula (6)] in an iterative procedure from the narrow-band levels of the critical band about the tone frequencies, $f_{Tj,k}$. The tone levels, $L_{Tj,k}$, are calculated in accordance with 5.3.3 [see Formula (8)] from the narrow-band levels that lie 6 dB above the mean narrow-band level, $L_{Sj,k}$, and less than 10 dB below the narrow-band levels of the tone frequencies. These levels are given, by way of example, in Table E.1 for the first of the five spectra (the spectrum with the greatest decisive audibility, ΔL_i). Table E.1 — Frequencies f_i and A-weighted narrow-band levels L_i in the critical band with the centre frequency 137,3 Hz of the first spectrum | f_i in Hz | 96,9 | 99,6 | 102,3 | 105,0 | 107,7 | 110,4 | 113,0 | 115,7 | 118,4 | 121,1 | 123,8 | 126,5 | 129,2 | |-------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | L_i in dB | 49,40 | 50,68 | 50,09 | 53,37 | 44,47 | 50,91 | 51,41 | 59,40 | 64,54 | 57,57 | 51,02 | 50,76 | 59,93 | | f_i in Hz | 131,9 | 134,6 | 137,3 | 140,0 | 142,7 | 145,3 | 148,0 | 150,7 | 153,4 | 156,1 | 158,8 | 161,5 | 164,2 | | L_i in dB | 62,94 | 58,49 | 65,87 | 62,66 | 50,25 | 51,32 | 52,30 | 52,58 | 53,15 | 67,04 | 67,27 | 57,40 | 57,17 | | f_i in Hz | 166,9 | 169,6 | 172,3 | 175,0 | 177,6 | 180,3 | 183,0 | 185,7 | 188,4 | 191,1 | 193,8 | 196,5 | | | L_i in dB | 52,56 | 51,39 | 52,49 | 47,68 | 51,26 | 49,03 | 61,42 | 59,52 | 48,43 | 50,84 | 48,20 | 55,95 | | NOTE 1 The values in bold represent the frequencies and narrow-band level that contribute to the tone levels, L_{Tk} , in the critical band about the tone with the greatest audibility, ΔL , and are thus the frequencies and narrow-band level that, in the iterative procedure, lie more than 6 dB above the mean A-weighted narrow-band levels, L_{Sk} , and less than 10 dB below the narrow-band levels for the corresponding tone frequencies. For the three tones, it follows that - the narrow-band level at the tone frequency, f_{T1} = 118,4 Hz: L_2 = 64,54 dB; L_{S1} = 49,91 dB, - the narrow-band level at the tone frequency, $f_{T2} = 137.3$ Hz: $L_2 = 65.87$ dB; $L_{S2} = 49.22$ dB, and - the narrow-band level at the tone frequency, $f_{T3} = 158.8$ Hz: $L_3 = 67.27$ dB; $L_{S3} = 49.90$ dB. NOTE 2 The values with a grey background represent the frequencies and narrow-band levels that, in the iterative procedure, lie more than 6 dB above the mean A-weighted narrow-band level, L_S , of the tone at the tone frequency $f_{T2} = 137,3$ Hz with the greatest audibility, ΔL (>54,22 dB), and thus do not contribute to this level, L_S . The Hanning correction shall be used for the calculation of the tone level from the narrow-band levels, L_i . To determine the audibilities, $\Delta L_{j,k}$, in accordance with 5.3.7 [see Formula (14)], the critical band levels, $L_{Gj,k}$, shall be calculated using Formula (12) given in 5.3.5, and the masking index, $a_{vj,k}$, shall be calculated using Formula (13) given in 5.3.6. In this case, there are 5 spectra with 6 to 10 tones, and j thus has a value of 1 to 5 and k the values 6, 7, 9 and 10 (see Table E.3). All the parameters of the spectrum j = 1 necessary to calculate the audibilities $\Delta L_{j,k}$ and the 9 tones k = 1 to 9 are presented in Table E.2. In addition to the determination of the audibility, ΔL , of a tone, it is also necessary to evaluate its distinctness. Table E.2 — Parameters for calculation of the audibilities $\Delta L_{j,k}$ of the first spectrum (j=1) | lal
m | | | | | | | | | | | | | |
--|---------------------------|--------|--------|--------|--------|--------|--------|--------|--------|----------|--------|--------|--| | Uncertainty of the individual spectrum | U
in dB | 3,66 | 2,79 | 3,51 | 2,46 | 3,09 | 2,82 | 2,67 | 3,56 | 2,27 | 3,21 | 3,24 | | | Masking
index
Formula (13) | $a_{v1,k}$ in dB | -2,01 | -2,02 | -2,02 | -2,12 | -2,23 | -2,40 | -2,44 | -2,46 | -3,27 | -2,02 | -2,40 | 8 dB | | A-weighted level of the masking noise Formula (12) | $L_{ m G~1,k}$ in dB | 64,66 | 64,98 | 66,28 | 68,84 | 74,52 | 76,16 | 76,44 | 78,74 | 73,60 | 64,98 | 76,16 | andihility AL1 of 97 | | A-weighted tone level Formula (7) and Formula (8) | $L_{\rm T1,\it k}$ in dB | 64,56 | 96'29 | 68,63 | 68,50 | 73,17 | 78,31 | 75,00 | 79,75 | 71,07 | 72,15 | 81,11 | vields the decisive | | A-weighted
averaged level
Formula (6) | $L_{ m S~1,\it k}$ in dB | 48,91 | 49,22 | 20,50 | 52,85 | 58,29 | 59,53 | 59,71 | 61,98 | 54,16 | 49,22 | 59,53 | NOTF. The tone with the run index $k = 2$ FG (FG means a number of tones in one critical hand) at 137.3 Hz yields the decisive audibility ΔL_1 of 9.18 dB. | | Upper limit
frequency of
the critical
band
Formula (5) | $f_{21,k}$ in Hz | 177,60 | 196,50 | 215,30 | 371,40 | 492,60 | 656,80 | 694,40 | 707,90 | 1 703,80 | 196,50 | 656,80 | ftones in one critica | | Lower limit
frequency of
the
critical band
Formula (4) | $f_{11,k}$ in Hz | 80,70 | 06'96 | 118,40 | 266,50 | 382,20 | 535,60 | 570,60 | 584,10 | 1 469,60 | 06'96 | 535,60 | G means a number o | | Audibility AL
Formula (14) | $\Delta L_{1,k}$ in dB | 1,92 | 4,99 | 4,37 | 1,78 | 0,87 | 4,55 | 1,01 | 3,47 | 0,73 | 9,18 | 9,12 | $\frac{1}{1}$ index $k = 2$ FG (Fi | | Tone
frequency | $f_{\mathrm{T}1,k}$ in Hz | 118,4 | 137,3 | 158,8 | 314,9 | 433,4 | 592,2 | 629,8 | 643,3 | 1 582,7 | 137,3 | 592,2 | ne with the rur | | Run index
of the tone | k
_ | 1 | 2 | 3 | 4 | 2 | 9 | 7 | 8 | 6 | 2 FG | 6 FG | NOTE The tor | # Step 3: Determination of the decisive audibility, ΔL_j , of each spectrum and the mean audibility, ΔL , of all spectra The steps necessary to determine the decisive audibility, ΔL_j , of each individual spectrum are given in 4.3.8. The mean audibility, ΔL , of the noise in accordance with 5.3.9 [see Formula (20)] is the energy mean value of the 8 decisive audibilities, ΔL_j . The tone frequencies, $f_{\text{T}j,k}$, and audibilities, $\Delta L_{j,k}$, of all 5 spectra are presented in Table E.3 and the decisive audibilities, ΔL_j , are presented in bold. Table E.3 — All tonal components in the five measured spectra of a combustion engine | Run index of the spectrum, j | 1 | | | | | | | | | | |---|-------|-------|-------|-------|---------|---------|---------|---------|---------|---------| | Run index of the tone, k | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | _ | | Tone frequencies, $f_{\mathrm{T}j,k}$ | 118,4 | 137,3 | 158,8 | 314,9 | 433,4 | 592,2 | 629,8 | 643,3 | 1582,7 | _ | | Audibilities, $\Delta L_{j,k}$ | 1,92 | 4,99 | 4,37 | 1,78 | 0,87 | 4,55 | 1,01 | 3,47 | 0,73 | _ | | Audibilities, $\Delta L_{\mathrm{FG}j,k}$ | _ | 9,18 | _ | _ | _ | 9,12 | _ | _ | _ | _ | | Run index of the spectrum, j | 2 | | | | | | | | | | | Run index of the tone, k | 1 | 2 | 3 | 4 | 5 | 6 | _ | _ | _ | _ | | Tone frequencies, $f_{\mathrm{T}j,k}$ | 156,1 | 430,7 | 465,7 | 963,6 | 1 512,7 | 1 590,8 | _ | _ | _ | _ | | Audibilities, $\Delta L_{j,k}$ | 0,52 | 6,04 | 0,60 | 4,11 | 0,27 | 3,42 | _ | _ | _ | _ | | Audibilities, $\Delta L_{\mathrm{FG}j,k}$ | _ | _ | _ | _ | _ | 3,52 | _ | _ | _ | _ | | Run index of the spectrum, j | 3 | , | | | | | | | | | | Run index of the tone, k | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | _ | | Tone frequencies, $f_{\mathrm{T}j,k}$ | 118,4 | 137,3 | 158,8 | 433,4 | 589,5 | 643,3 | 963,6 | 1 512,7 | 1 580,0 | _ | | Audibilities, $\Delta L_{j,k}$ | 1,77 | 2,99 | 2,71 | 1,78 | 2,56 | 1,40 | 0,34 | 2,44 | 3,48 | _ | | Audibilities, $\Delta L_{\text{FG}j,k}$ | _ | 7,46 | _ | _ | _ | _ | _ | _ | 4,48 | _ | | Run index of the spectrum, j | 4 | | | | | | | | | | | Run index of the tone, k | 1 | 2 | 3 | 4 | 5 | 6 | 7 | _ | _ | _ | | Tone frequencies, $f_{\mathrm{T}j,k}$ | 156,1 | 433,4 | 465,7 | 643,3 | 707,9 | 963,6 | 1 580,0 | _ | _ | _ | | Audibilities, $\Delta L_{j,k}$ | 0,65 | 2,67 | 0,25 | 0,40 | 0,35 | 1,61 | 2,14 | _ | _ | _ | | Audibilities, $\Delta L_{\mathrm{FG}j,k}$ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Run index of the spectrum, j | 5 | | | | | | | | | | | Run index of the tone, k | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | | Tone frequencies, $f_{\mathrm{T}j,k}$ | 118,4 | 137,3 | 156,1 | 433,4 | 640,6 | 699,8 | 942,1 | 960,9 | 1 512,7 | 1 590,8 | | Audibilities, $\Delta L_{j,k}$ | 1,48 | 2,95 | 1,50 | 0,93 | 2,63 | 1,73 | 0,00 | 1,88 | 0,37 | 2,52 | | Audibilities, $\Delta L_{\text{FG}j,k}$ | _ | 7,17 | _ | _ | _ | _ | _ | 2,32 | _ | 2,82 | | NOTE The values for the decisive differences are presented in bold. | | | | | | | | | | | The mean audibility $\Delta L = 6.96$ dB. The individual parameters for calculation of the decisive audibilities, ΔL_j , of the five measured spectra are presented in Table E.4. Table E.4 — Parameters for calculation of the decisive audibilities, ΔL_j , of the five measured spectra of a combustion engine | <u>, </u> | 1 | | | | | | |--|---|--------|--------|--------|--------|--------| | Uncertainty of
the individual
spectrum | <i>U</i>
in dB | 3,21 | 2,95 | 2,44 | 2,52 | 2,14 | | Masking
index
Formula (13) | $a_{\rm vj}$ in dB | -2,02 | -2,23 | -2,02 | -2,23 | -2,02 | | A-weighted
level of the
masking noise
Formula (12) | L_{Gj} in dB | 64,98 | 71,29 | 66,16 | 71,35 | 66,46 | | A-weighted tone level Formulae (7) and (8) | $L_{\mathrm{T}j}$ in dB | 72,15 | 75,11 | 71,61 | 71,79 | 71,61 | | A-weighted
averaged level
Formula (6) | L_{Sj} in dB | 49,22 | 55,06 | 50,40 | 55,12 | 50,70 | | Upper limit frequency of the critical band Formula (5) | f_{2j} in Hz | 196,50 | 489,90 | 196,50 | 492,60 | 196,50 | | Lower limit
frequency of
the critical
band
Formula (4) | f_{1j} in Hz | 06'96 | 379,50 | 06'96 | 382,20 | 06'96 | | Decisive audibility of an individual spectrum Formula (14) | $\begin{array}{c} \Delta L_j \\ \text{in dB} \end{array}$ | 9,18 | 6,04 | 7,46 | 2,67 | 7,17 | | Tone
frequency | $f_{\mathrm{T}j}$ in Hz | 137,3 | 430,7 | 137,3 | 433,4 | 137,3 | | 3-second
spectrum | Run index
j | 1 (FG) | 2 | 3 (FG) | 4 | 5 (FG) | ## Step 4: Determination of the extended uncertainty of the mean audibility, ΔL , in accordance with Clause 6 If at least 12 spectra are evaluated, then a check of the uncertainty of the mean audibility, ΔL , is not necessary (see <u>5.1</u>). Since there are only 5 spectra in this case, it is necessary to check that the uncertainty margin does not exceed a value of $U = \pm 1.4$ dB. The value of the uncertainty margin is calculated as given in <u>Clause 6</u> and has a value $U = \pm 1,38$ dB. Since U is less than the maximum specified value of $\pm 1,5$ dB, the number of measured spectra is sufficient (in view of the uniformity of the noise). #### Step 5: Documentation of the acoustic data In accordance with <u>7.4</u>, the following acoustic data are to be documented: - line spacing and investigation range (Step 1); - tone frequencies, $f_{T_{i},k}$, and corresponding audibilities, $\Delta L_{i,k}$, for all spectra (see <u>Table E.3</u>); - mean audibility, ΔL_i (Step 3); - extended uncertainty (Step 4); - diagrammatic representation of the narrow-band level of the averaged spectrum with the dominant tone. The other information specified in <u>Clause 7</u> on the measurement procedure, the acoustic surroundings and on the measurement, recording and evaluation instruments are not given in this example. #### **Bibliography** - [1] ECMA-74:2003-12, Measurement of airborne noise emitted by information technology and telecommunications equipment - [2] ANSI S1.13,¹⁾Measurement of sound pressure levels in air - [3] ZWICKER E., & FASTL H. Psychoacoustics Facts and Models. Springer, 1999 - [4] ZWICKER E., FLOTTORP G., STEVENS S.S. Critical Band Width in Loudness Summation. *J. Acoust. Soc. Am.* 1957, **29** pp. 548–557 - [5] RANDALL R.B. Frequency analysis. Brüel & Kjaer, 1987 - [6] PLOMB R. The ear as a frequency analyzer. J. Acoust. Soc. Am. 1964, 36 pp. 1628–1636 - [7] POMPETZKI W. Vergleich der Tonhaltigkeit nach DIN 45681 mit subjektiven Bewertungen, Fortschritte der Akustik DAGA '98. Deutsche Gesellschaft für Akustik e.V., Oldenburg, S. 224 225 - [8] Wiesmann N., & Fastl H. Ausgeprägtheit der Tonhöhe und Frequenzunterschiedsschwellen von Bandpass-Rauschen, Fortschritte der Akustik DAGA '91. Deutsche Gesellschaft für Akustik e.V., Oldenburg, S. 505508 ¹⁾ Reaffirmation of ANSI S1.13-1995. # British Standards Institution (BSI) BSI is the national body responsible for preparing British Standards and other standards-related publications, information and services. BSI is incorporated by Royal Charter. British Standards and other standardization products are published by BSI Standards Limited. #### About us We bring together business, industry, government, consumers, innovators and others to shape their combined experience and expertise into standards -based solutions. The knowledge embodied in our standards has been carefully assembled in a dependable format and refined through our open consultation process. Organizations of all sizes and across all
sectors choose standards to help them achieve their goals. #### Information on standards We can provide you with the knowledge that your organization needs to succeed. Find out more about British Standards by visiting our website at bsigroup.com/standards or contacting our Customer Services team or Knowledge Centre. #### **Buying standards** You can buy and download PDF versions of BSI publications, including British and adopted European and international standards, through our website at bsigroup.com/shop, where hard copies can also be purchased. If you need international and foreign standards from other Standards Development Organizations, hard copies can be ordered from our Customer Services team. #### Copyright in BSI publications All the content in BSI publications, including British Standards, is the property of and copyrighted by BSI or some person or entity that owns copyright in the information used (such as the international standardization bodies) and has formally licensed such information to BSI for commercial publication and use. Save for the provisions below, you may not transfer, share or disseminate any portion of the standard to any other person. You may not adapt, distribute, commercially exploit, or publicly display the standard or any portion thereof in any manner whatsoever without BSI's prior written consent. #### Storing and using standards Standards purchased in soft copy format: - A British Standard purchased in soft copy format is licensed to a sole named user for personal or internal company use only. - The standard may be stored on more than 1 device provided that it is accessible by the sole named user only and that only 1 copy is accessed at any one time. - A single paper copy may be printed for personal or internal company use only. Standards purchased in hard copy format: - A British Standard purchased in hard copy format is for personal or internal company use only. - It may not be further reproduced in any format to create an additional copy. This includes scanning of the document. If you need more than 1 copy of the document, or if you wish to share the document on an internal network, you can save money by choosing a subscription product (see 'Subscriptions'). #### **Reproducing extracts** For permission to reproduce content from BSI publications contact the BSI Copyright & Licensing team. #### **Subscriptions** Our range of subscription services are designed to make using standards easier for you. For further information on our subscription products go to bsigroup.com/subscriptions. With **British Standards Online (BSOL)** you'll have instant access to over 55,000 British and adopted European and international standards from your desktop. It's available 24/7 and is refreshed daily so you'll always be up to date. You can keep in touch with standards developments and receive substantial discounts on the purchase price of standards, both in single copy and subscription format, by becoming a **BSI Subscribing Member**. **PLUS** is an updating service exclusive to BSI Subscribing Members. You will automatically receive the latest hard copy of your standards when they're revised or replaced. To find out more about becoming a BSI Subscribing Member and the benefits of membership, please visit bsigroup.com/shop. With a **Multi-User Network Licence (MUNL)** you are able to host standards publications on your intranet. Licences can cover as few or as many users as you wish. With updates supplied as soon as they're available, you can be sure your documentation is current. For further information, email subscriptions@bsigroup.com. #### Revisions Our British Standards and other publications are updated by amendment or revision. We continually improve the quality of our products and services to benefit your business. If you find an inaccuracy or ambiguity within a British Standard or other BSI publication please inform the Knowledge Centre. #### **Useful Contacts** **Customer Services** Tel: +44 345 086 9001 **Email (orders):** orders@bsigroup.com **Email (enquiries):** cservices@bsigroup.com Subscriptions Tel: +44 345 086 9001 Email: subscriptions@bsigroup.com Knowledge Centre **Tel:** +44 20 8996 7004 Email: knowledgecentre@bsigroup.com Copyright & Licensing Tel: +44 20 8996 7070 Email: copyright@bsigroup.com #### **BSI Group Headquarters** 389 Chiswick High Road London W4 4AL UK