# PD IEC/TS 62607-4-1:2015 # **BSI Standards Publication** # Nanomanufacturing — Key control characteristics Part 4-1: Cathode nanomaterials for nano-enabled electrical energy storage — Electrochemical characterisation, 2-electrode cell method #### **National foreword** This Published Document is the UK implementation of IEC/TS 62607-4-1:2015. It supersedes PD IEC/TS 62607-4-1:2014, which is withdrawn. The UK participation in its preparation was entrusted to Technical Committee NTI/1, Nanotechnologies. A list of organizations represented on this committee can be obtained on request to its secretary. This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application. © The British Standards Institution 2015. Published by BSI Standards Limited 2015 ISBN 978 0 580 89147 2 ICS 07.030 Compliance with a British Standard cannot confer immunity from legal obligations. This Published Document was published under the authority of the Standards Policy and Strategy Committee on 30 September 2015. # Amendments/corrigenda issued since publication Date Text affected # IEC TS 62607-4-1 Edition 2.0 2015-08 # TECHNICAL SPECIFICATION Nanomanufacturing – Key control characteristics – Part 4-1: Cathode nanomaterials for nano-enabled electrical energy storage – Electrochemical characterisation, 2-electrode cell method INTERNATIONAL ELECTROTECHNICAL COMMISSION ICS 07.030 ISBN 978-2-8322-2852-4 Warning! Make sure that you obtained this publication from an authorized distributor. # CONTENTS | F | DREWO | RD | 3 | |---------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------|----| | IN | TRODU | ICTION | 5 | | 1 | Scop | e | 6 | | 2 | Norn | native references | 6 | | 3 | Term | is, definitions, acronyms and abbreviations | 6 | | | 3.1 Terms and definitions | | | | | 3.2 | Acronyms and abbreviations | 7 | | 4 | Sam | ole preparation methods | 7 | | | 4.1 General | | 7 | | | 4.2 | Reagents | 7 | | | 4.2.1 Cathode foil | | 7 | | | 4.2.2 | Anode | 8 | | | 4.2.3 Solvents and separator | | 8 | | | 4.3 | Pre-treatment of the cathode nanomaterial | | | | 4.4 | Preparation of the screw cell | | | | 4.5 | Disassembly of the screw cell | | | 5 | Mea | surement of electrochemical properties | 10 | | | 5.1 | General | 10 | | | 5.2 | Open circuit voltage (OCV) | | | | 5.2.1 | | | | | 5.2.2 | F F | | | | 5.3 | Potentiostatic electrochemical impedance spectroscopy (EIS) | | | | 5.3.1 | | | | | 5.3.2 Experimental procedures and measurement conditions | | | | | 5.4 Charge-discharge experiment (constant current constant voltage, CCCV) | | | | | 5.4.1 | | | | ^ | 5.4.2 | | | | 6 | | analysis / interpretation of results | | | | 6.1 | Open circuit potential | | | | 6.2 | Electrochemical impedance spectroscopy | | | ۸ | 6.3 | Constant current constant voltage (CCCV) charging-discharging | | | Ar | | (informative) Case study | | | | A.1 | Sample preparation | | | | A.2 | Results for a LFP electrode | 15 | | Fi | gure A. | 1 – Components for the cell | 12 | | Fi | gure A. | 2 – Construction steps a to g | 15 | | Fi | gure A. | 3 – Open circuit voltage/potential time graph | 15 | | | _ | 4 – Electrochemical impedance graph | | | Figure A.5 – Constant current / constant voltage – Charge-discharge cycle | | | | | | _ | 6 – Capacity per cycle | | | | - | | | | Та | able 1 – | Spring force and pressure | 9 | # INTERNATIONAL ELECTROTECHNICAL COMMISSION #### NANOMANUFACTURING - KEY CONTROL CHARACTERISTICS - # Part 4-1: Cathode nanomaterials for nano-enabled electrical energy storage – Electrochemical characterisation, 2-electrode cell method #### **FOREWORD** - 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations. - 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees. - 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user. - 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter. - 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies. - 6) All users should ensure that they have the latest edition of this publication. - 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications. - 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication. - 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights. The main task of IEC technical committees is to prepare International Standards. In exceptional circumstances, a technical committee may propose the publication of a Technical Specification when - the required support cannot be obtained for the publication of an International Standard, despite repeated efforts, or - the subject is still under technical development or where, for any other reason, there is the future but no immediate possibility of an agreement on an International Standard. Technical Specifications are subject to review within three years of publication to decide whether they can be transformed into International Standards. IEC 62607-4-1, which is a Technical Specification, has been prepared by IEC technical committee 113: Nanotechnology standardization for electrical and electronic products and systems. This second edition cancels and replaces the first edition published in 2014. This edition constitutes a technical revision. Following discussions between IEC TC 113 and IEC TC 21/SC 21A: Secondary cells and batteries containing alkaline or other non-acid electrolytes, this edition includes the following significant technical changes with respect to the previous edition: - a) The title of IEC 62607-4-1 has been modified. - b) The scope has been revised to clarify that this Technical Specification deals with a standardized method for the determination of electrochemical properties of cathode nanomaterials of, for example, lithium-ion batteries utilizing lithium iron phosphate. - c) In 3.1.1, the definition of "cathode nanomaterial" has been revised to be more specific. The text of this Technical Specification is based on the following documents: | Enquiry draft | Report on voting | |---------------|------------------| | 113/238/DTS | 113/261A/RVC | Full information on the voting for the approval of this Technical Specification can be found in the report on voting indicated in the above table. This publication has been drafted in accordance with the ISO/IEC Directives, Part 2. A list of all parts in the IEC 62607 series, published under the general title Nanomanufacturing – Key control characteristics, can be found on the IEC website. The committee has decided that the contents of this publication will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be - transformed into an International Standard. - reconfirmed, - withdrawn, - replaced by a revised edition, or - amended. A bilingual version of this publication may be issued at a later date. IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer. #### INTRODUCTION The future utilization of renewable energy technologies depends significantly on the development of efficient systems for energy storage. Conventional approaches exist for the storage of electrical energy from stationary power plants, currently fuelled by many new ideas in conjunction with the emerging "Smart Grid". For future e-mobility for individual transportation there is only one attractive solution: a battery that can store enough energy to allow all-electric driving with a range of several hundred kilometres. The current solutions already on the market can only be regarded as temporary solutions. From today's perspective, lithium-ion batteries and their derivative innovative concepts are regarded as the most promising candidates. Electrodes made from nanoscale composites will play a key role in the future. Innovative materials will be developed and systematically optimized, which implies testing of a large number of different materials. Characterization of the electrochemical properties of cathode nanomaterials used in electrical energy storage devices is important for their customized development. This part of IEC 62607 provides a standard methodology which can be used to characterize the electrochemical properties of new cathode nanomaterials that will be employed in electrical energy storage devices. Following this method will allow comparison of different types of cathode nanomaterial and comparison of the results of different research groups. This part of IEC 62607 introduces a 2-electrode cell method for the electrochemical characterization of nano-enabled cathode materials for electrical energy storage devices. This standardized method is intended for use in comparing the characteristics of cathode nanomaterials in the study stage, not for evaluating the electrode in end products. The method is applicable to materials exhibiting function or performance only possible with nanotechnology, intentionally added to the active materials to measurably and significantly change the capacity of electrical energy storage devices. In this context it is important to note that the percentage content of nanomaterial of the device in question has no direct relation to the applicability of this part of IEC 62607, because minute quantities of nanomaterial are frequently sufficient to improve the performance significantly. The fraction of nanomaterials in electrodes, electrode coatings, separators or electrolyte is not of relevance for using this method. #### NANOMANUFACTURING - KEY CONTROL CHARACTERISTICS - # Part 4-1: Cathode nanomaterials for nano-enabled electrical energy storage – Electrochemical characterisation, 2-electrode cell method ## 1 Scope This part of IEC 62607 provides a standardized method for the determination of electrochemical properties of cathode nanomaterials of, for example, lithium-ion batteries utilizing lithium iron phosphate to enable customers to: - a) decide whether or not a cathode nanomaterial is usable, and - b) select a cathode nanomaterial suitable for their application. This part of IEC 62607 includes: - definitions of terminology used in this part of IEC 62607, - recommendations for sample preparation, - outlines of the experimental procedures used to measure cathode nanomaterial properties, - methods of interpretation of results and discussion of data analysis, and - case studies. #### 2 Normative references The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. ISO/TS 80004-1, Nanotechnologies - Vocabulary - Part 1: Core terms #### 3 Terms, definitions, acronyms and abbreviations #### 3.1 Terms and definitions For the purposes of this document, the terms and definitions given in ISO/TS 80004-1 and the following apply. #### 3.1.1 #### cathode nanomaterial material used as a cathode in nano-enabled energy storage devices which contains a fraction of nanomaterial and exhibits function or performance made possible only with the application of nanotechnology Note 1 to entry: The cathode is a multilayered foil consisting of (1) an aluminium current collector, (2) an optional adhesion promoting carbon layer (to enhance cathode layer adhesion if necessary) and (3) the cathode layer. This cathode layer consists of the active phase (e.g. lithium containing mixed oxides or phosphate, as LFP), a conducting phase (carbon black) and an organic binder (PVDF). ## 3.1.2 #### screw cell cell providing the geometrical conditions in the 2-electrode arrangement Note 1 to entry: The electrochemical characterization of the cathode nanomaterial is carried out in screw cells. The cell setup includes springs and metallic spacers and the electrode package with anode, the separator impregnated with electrolyte and the cathode. For this purpose, various cell designs are possible. The case study in Annex A shows a cell design based on a half-inch PFA Swagelok fitting. 1 #### 3.1.3 #### cell voltage difference of the electrochemical potentials of the cathode and the anode #### 3.1.4 ## cell ohmic loss ohmic losses due to electrolyte resistance and contacting Note 1 to entry: R<sub>al</sub> is the sum of the ohmic resistivities (e.g. electrolyte, contact resistance) within the cell. #### 3.1.5 #### charge-discharge cycle procedure which includes charging and discharging of the testing cell Note 1 to entry: The freshly assembled cell is completely discharged. During charging, the lithium anode is biased negatively above the zero current potential, lithium cations are reduced and metallic lithium is deposited at the surface of the lithium anode. During galvanic discharge through an external circuit (load) metallic lithium is in turn oxidized at the anode, which shows a negative potential while the cathode potential is positive. Now metallic lithium oxidizes to lithium ions and dissolves in the electrolyte. Lithium ions incorporate into the crystal lattice of the cathode material. The charging/discharging processes are reversible within certain limits. #### 3.2 Acronyms and abbreviations LFP lithium iron phosphate, LiFePO<sub>4</sub> **PVDF** polyvinylidene fluoride EC ethylene carbonate DEC diethyl carbonate PΕ polyethylene OCV open circuit voltage ## Sample preparation methods #### 4.1 General For the electrochemical characterization of the cathode, nanomaterial screw cells are used. The main aspects for preparation of these measuring cells are: - a) pre-treatment of the electrodes, - b) selecting a proper electrolyte / electrolyte volume, and - c) applying a defined and valid pressure on the electrode package. #### 4.2 Reagents #### 4.2.1 Cathode foil The cathode material is put into an argon-filled glove box immediately after preparation/delivery to avoid contact with atmospheric moisture. PFA Swagelok fitting is an example of a suitable product available commercially. This information is given for the convenience of users of this document and does not constitute an endorsement by IEC of this product. #### 4.2.2 Anode Metallic lithium is used as anode material. The lithium foil (thickness d = 0.25 mm) should be unpacked in an argon-filled glove box and then used as delivered. #### 4.2.3 Solvents and separator The material testing should be carried out in an electrolyte of comparable composition. Currently LiPF $_6$ -containing electrolytes are usually applied in commercial batteries. For the investigation, commercial electrolyte of the type LP40 (1M LiPF $_6$ in 1:1 EC:DEC) with a defined purity and water content < 5 µg/g or equivalent is recommended. Use of the alternative electrolyte is possible; however, in this case the wettability of separator and electrode material by alternative electrolyte should be proven in separate tests. Viledon $^8$ 2, a PE-nonwoven by company Freudenberg, is the chosen separator material. Other separator material can also be used; however, in this case the wettability of separator electrolyte should be proven in separate tests. If the separator sample is fully wetted out by the electrolyte in a set amount of time, for example within 2 s to 3 s, then the separator is said to have good wettability properties. #### 4.3 Pre-treatment of the cathode nanomaterial The cathode foil is dried in a vacuum oven to achieve water contents of <100 $\mu$ g/g in the active material. Exemplary drying conditions are: T = 120 °C, p = 1 mbar to 5 mbar, t = 12 h. It is suggested to control the water content of the cathode by drying to the constant mass. The drying procedure should be proven to achieve water content of <100 $\mu$ g/g by Karl-Fischer titration for the first five cathode samples. After that the drying to the constant mass can be applied as a standard. The electrodes used in the Swagelok cell are punched out or laser cut from the foil coated with cathode layer. The mass of the punched electrodes is determined by subtracting the mass of uncoated foil from the mass of coated foil. From the mass of the electrodes the theoretical capacity Q is estimated as follows: ``` m_{ m Activ} = x \times (m_{ m Electrode} - m_{ m Substrate}) n_{ m Li} = m_{ m Activ} / M_{ m Activ} [mmol] Q = n_{ m Li} \times F \times z / 3\,600 [mAh] (z = 1, F = 96\,485\, {\rm C/mol}) q_M = Q / m_{ m Electrode} [mAh/g] q_A = Q / m_{ m Activ} [mAh/g] q_F = Q / A [mAh/cm<sup>2</sup>] ``` For these calculations the following material data shall be given: - a) mass of the electrode (mass of coated foil), $m_{\rm Electrode}$ ; - b) mass of the substrate (mass of uncoated foil), $m_{\text{Substrate}}$ ; - c) stoichiometry/molar mass of the active material, M (can be proven by chemical analysis, for example inductively coupled plasma mass spectrometry (ICP-MS) analysis); - d) mass fraction of the active material in the electrode, x; - e) electrode area, A. Viledon® is the tradename of a product supplied by Freudenberg Nonwovens. This information is given for the convenience of users of this standard and does not constitute an endorsement by IEC of the product named. Equivalent products may be used if they can be shown to lead to the same results. ## 4.4 Preparation of the screw cell The cell components are cleaned with ethanol and water in an ultrasonic bath and afterwards dried in a compartment dryer. The components are stored in the compartment dryer at 70 °C to 80 °C for at least 30 min. During such heat treatment of cell components the occasionally adsorbed water from the surface of components will be removed. The warmed up components of the cell are mounted as shown in A.1. Afterwards they are put into the glove box to assemble the electrochemical package under argon atmosphere. All materials under this section shall be handled under argon atmosphere in a glove box. In the glove box the maximum $O_2$ content is 50 $\mu$ g/g and the maximum $H_2O$ content is 10 $\mu$ g/g. The cathode is placed inside the cell body and impregnated with LP40 electrolyte (5 drops, for cell area $1,27~\text{cm}^2$ and cathode thickness of $50~\mu\text{m}$ ). The separator with thickness of $190 \, \mu m$ is punched out and 2 layers are placed onto the cathode. A defined amount of LP40 electrolyte (300 mg or 5 drops dispensed from a micropipette per separator layer) is put on the separator. The lithium anode is punched out and mechanically pressed onto a stainless steel or titanium spacer to minimize contact resistance. Afterwards it is put on the separator. By use of stainless steel spacer, the corrosion-free spacer operation should be proven after disassembling the cell. Stainless steel spacers should be replaced by titanium spacers if corrosion is observed. Finally the cell body is equipped with the stainless steel spring (k = 2.87 N/mm) and a valid number of stainless steel spacers (see Table 1), and the cell is screwed under pressure. Spring Spring + 1 spacer Spring + 2 spacers Spring + 3 spacers Spring force, N 14,87 19,23 23,59 27,95 Pressure, kNm<sup>-2</sup> 117 151 186 220 Table 1 - Spring force and pressure A brief function test is performed by determining the cell voltage with a multimeter: $U = (3 \pm 0.5) \text{ V (specific value of the materials)} \rightarrow \text{correct}$ $U < 1.6 \text{ V} \rightarrow \text{fail}$ In case the open circuit voltage of the cells with the same type of cathode is between 1,6 V and 2,5 V, such cells can be cycled for 5 to 10 times. If the discharge capacity of electrode is <80% of theoretical capacity Q ( $<0.8\times Q$ , see 4.3) or strong degradation (>50% after 10 cycles or >10% per cycle after the third cycle) of capacity is observed, the results should be disregarded and the sample preparation optimized. #### 4.5 Disassembly of the screw cell The disassembly of the cell has to be carried out under argon atmosphere to avoid any contact with toxic decomposition products, e.g. hydrofluoric acid. The used cell components have to be stored and disposed of in conformity with industrial health and safety standards. ## 5 Measurement of electrochemical properties #### 5.1 General The cell is connected as follows for the measurement of charge-discharge characteristics: the working electrode (WE) of the potentiostat/galvanostat is connected to the cathode and the anode is piggyback connected to the counter and reference electrode. During the charging of the cathode, the positive bias potential (pole) is applied to the cathode and the negative bias potential (pole) to the anode. #### 5.2 Open circuit voltage (OCV) #### 5.2.1 Demarcation of method The OCV of an electrochemical 2-electrode cell is the potential measured in currentless state. It can be considered equivalent to the open cell potential. #### 5.2.2 Experimental procedures and measurement conditions The cell is connected to a potentiostat by banana jacks. The OCV is detected over 5 min; stabilization of the value should be verified. For common cathode materials the value is set in the range $(3 \pm 0.5)$ V (see also 4.3). #### 5.3 Potentiostatic electrochemical impedance spectroscopy (EIS) #### 5.3.1 Demarcation of method Electrochemical impedance spectroscopy is the method of measurement of complex impedance of the cell using periodically oscillating voltage for resolving the polarization losses at the electrodes and ohmic losses due to electrolyte resistance and contacting. #### 5.3.2 Experimental procedures and measurement conditions The cell is connected to a potentiostat with frequency response analyser by banana jacks. The EIS measurement is performed under the conditions given below: DC = OCV AC = 10 mV f = 100 kHz - 0.01 Hz The cell ohmic loss $R_{\rm el}$ corresponds to the real part of impedance at the highest frequency $R_{\rm real}(100~{\rm kHz})$ . If $R_{\rm real}(100~{\rm kHz}) < 20~\Omega$ , the cell is suitable for charge-discharge experiments. Otherwise a new cell should be manufactured. # 5.4 Charge-discharge experiment (constant current constant voltage, CCCV) #### 5.4.1 Demarcation of method Constant current constant voltage method is a method of battery charge-discharge where at first galvanostatic cell control (CC) is applied and at the end the potentiostatic cell control (CV) is used for charging/discharging. ## 5.4.2 Experimental procedures and measurement conditions The cell is connected to a potentiostat as described in Clause 5. The potential and current limits of the CCCV procedure depend on the cathode material, the values below being valid for LFP cathodes: - a) $I_{\text{charge}} = 0.1 \text{ C}$ (0.1 C = Q/10) with C discharge capacity of the electrode - b) $U_{\text{upper limit}} = 3.8 \text{ V}$ #### PD IEC/TS 62607-4-1:2015 IEC TS 62607-4-1:2015 © IEC 2015 – 11 – c) $t_{potstat} = 3600 s (1 h)$ - d) $I_{limit} = 0.01 \text{ C} (10 \% \text{ of } I_{charge})$ - e) $I_{\text{discharge}} = -0.1 \text{ C}$ - f) $U_{\text{limit}} = 2.5 \text{ V}$ - g) 10 cycles # 6 Data analysis / interpretation of results # 6.1 Open circuit potential a) Calculation: None b) Chart: voltage vs. time (see Figure A.4) c) Target value: cell voltage = stable open circuit potential # 6.2 Electrochemical impedance spectroscopy a) Calculation: $Z_{\text{real}}$ , $Z_{\text{imag}}$ normalized: $Z \times A = Z_{\text{norm}} [\Omega \text{cm}^2]$ b) Chart: "Nyquist-Plot" $-Z_{\text{imag}}$ vs. $Z_{\text{real}}$ (see Figure A.5) c) Target value: internal resistance $R_{el} = Z_{real}$ (at 100 kHz) (see Figure A.6) # 6.3 Constant current constant voltage (CCCV) charging-discharging a) Calculation: I normalized: $i = I/A \text{ [mA/cm}^2\text{]}$ sum of measuring times: $t_{ges} = t_{step1} + t_{step2} + t_{stepN}$ [s] capacity $q_F$ : integration $Q_f = \int i dt$ mass capacity $q_A$ : $q_A = q_F \times A/m_{Activ}$ [mAh/g] b) Chart: CCCV-diagram: U vs. t and i vs. t (see A.2) capacity development: $q_A/q_F$ vs. number of cycles c) Target value: discharge capacities $q_F$ and $q_A$ IR-drop ∆*U* IR-drop is defined as a voltage change ( $\Delta U$ ) during switching between charging mode ( $I \neq 0$ mA) to discharging mode (OCV value at I = 0 mA) during CCCV procedure. # Annex A (informative) # Case study # A.1 Sample preparation Components for the cell are shown in Figure A.1. Figure A.1 – Components for the cell Components which are required: - 1 cell body (inner diameter = 1,27 cm, outer diameter = 2,53 cm); - 2 aluminium current collectors; - 2 screw caps; - 2 low gaskets; - 2 high gaskets; - 2 stainless steel spacers; - 1 cathode; - 2 separators; - 1 anode; - 1 spring; - electrolyte. The warmed up components of the cell are put into a glove box to assemble the electrochemical package under argon atmosphere. # Construction steps are shown in Figure A.2. Figure A.2 - Construction steps a to g # A.2 Results for a LFP electrode Results for a LFP electrode are shown in Figure A.3 to Figure A.6 Figure A.3 presents the results of open circuit voltage/potential (OCV/P) Figure A.3 - Open circuit voltage/potential time graph Figure A.4 presents the results of electrochemical impedance spectroscopy (EIS) Figure A.4 – Electrochemical impedance graph Figure A.5 presents the results of constant current constant voltage (CCCV) charging-discharging Figure A.5 - Constant current / constant voltage - Charge-discharge cycle Figure A.6 illustrates the capacity per cycle. The figure shows results of CCCV charge-discharge at 0,1 C. Figure A.6 - Capacity per cycle # British Standards Institution (BSI) BSI is the national body responsible for preparing British Standards and other standards-related publications, information and services. BSI is incorporated by Royal Charter. British Standards and other standardization products are published by BSI Standards Limited. #### About us We bring together business, industry, government, consumers, innovators and others to shape their combined experience and expertise into standards -based solutions. The knowledge embodied in our standards has been carefully assembled in a dependable format and refined through our open consultation process. Organizations of all sizes and across all sectors choose standards to help them achieve their goals. #### Information on standards We can provide you with the knowledge that your organization needs to succeed. Find out more about British Standards by visiting our website at bsigroup.com/standards or contacting our Customer Services team or Knowledge Centre. #### **Buying standards** You can buy and download PDF versions of BSI publications, including British and adopted European and international standards, through our website at bsigroup.com/shop, where hard copies can also be purchased. If you need international and foreign standards from other Standards Development Organizations, hard copies can be ordered from our Customer Services team. ### **Subscriptions** Our range of subscription services are designed to make using standards easier for you. For further information on our subscription products go to bsigroup.com/subscriptions. With **British Standards Online (BSOL)** you'll have instant access to over 55,000 British and adopted European and international standards from your desktop. It's available 24/7 and is refreshed daily so you'll always be up to date. You can keep in touch with standards developments and receive substantial discounts on the purchase price of standards, both in single copy and subscription format, by becoming a **BSI Subscribing Member**. **PLUS** is an updating service exclusive to BSI Subscribing Members. You will automatically receive the latest hard copy of your standards when they're revised or replaced. To find out more about becoming a BSI Subscribing Member and the benefits of membership, please visit bsigroup.com/shop. With a **Multi-User Network Licence (MUNL)** you are able to host standards publications on your intranet. Licences can cover as few or as many users as you wish. With updates supplied as soon as they're available, you can be sure your documentation is current. For further information, email bsmusales@bsigroup.com. #### **BSI Group Headquarters** 389 Chiswick High Road London W4 4AL UK #### **Revisions** Our British Standards and other publications are updated by amendment or revision. We continually improve the quality of our products and services to benefit your business. If you find an inaccuracy or ambiguity within a British Standard or other BSI publication please inform the Knowledge Centre. # Copyright All the data, software and documentation set out in all British Standards and other BSI publications are the property of and copyrighted by BSI, or some person or entity that owns copyright in the information used (such as the international standardization bodies) and has formally licensed such information to BSI for commercial publication and use. Except as permitted under the Copyright, Designs and Patents Act 1988 no extract may be reproduced, stored in a retrieval system or transmitted in any form or by any means – electronic, photocopying, recording or otherwise – without prior written permission from BSI. Details and advice can be obtained from the Copyright & Licensing Department. #### **Useful Contacts:** #### **Customer Services** Tel: +44 845 086 9001 Email (orders): orders@bsigroup.com Email (enquiries): cservices@bsigroup.com # Subscriptions Tel: +44 845 086 9001 Email: subscriptions@bsigroup.com #### **Knowledge Centre** Tel: +44 20 8996 7004 Email: knowledgecentre@bsigroup.com #### **Copyright & Licensing** Tel: +44 20 8996 7070 Email: copyright@bsigroup.com