PD IEC/TS 62257-9-3:2016

BSI Standards Publication

Recommendations for renewable energy and hybrid systems for rural electrification

Part 9-3: Integrated systems

— User interface

National foreword

This Published Document is the UK implementation of IEC/TS 62257-9-3:2016. It supersedes DD IEC/TS 62257-9-3:2006 which is withdrawn.

The UK participation in its preparation was entrusted to Technical Committee GEL/82, Photovoltaic Energy Systems.

A list of organizations represented on this committee can be obtained on request to its secretary.

This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application.

© The British Standards Institution 2016. Published by BSI Standards Limited 2016

ISBN 978 0 580 91981 7 ICS 27.160; 27.180

Compliance with a British Standard cannot confer immunity from legal obligations.

This Published Document was published under the authority of the Standards Policy and Strategy Committee on 31 October 2016.

Amendments/corrigenda issued since publication

Date Text affected

IEC TS 62257-9-3

Edition 2.0 2016-09

TECHNICAL SPECIFICATION

Recommendations for renewable energy and hybrid systems for rural electrification –

Part 9-3: Integrated systems - User interface

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ISBN 978-2-8322-3587-4

Warning! Make sure that you obtained this publication from an authorized distributor.

CONTENTS

FOREWORD					
IN	TRODU	ICTION	5		
1	Scop	e	6		
2	•	native reference			
3	Terms and definitions				
4					
_	4.1	Equipment			
	4.1	System voltages			
5		tional description			
6		gn and erection			
U	6.1				
	6.2	System earthing Implementation of interface functions			
	6.2.1	•			
	6.2.2	·			
	6.2.3				
	6.2.4				
	6.2.5	·			
	6.2.6	~			
	6.2.7				
	6.3	Insulation requirements	11		
	6.4	Selection of electrical equipment	11		
	6.5	Housing	11		
	6.6	Protection against fraudulent use	11		
7	Infor	mation to be given and marking	12		
8	Verif	ication and acceptance	12		
	8.1	General	12		
	8.2	Verification by inspection	12		
	8.3	Commissioning tests	13		
		- General configuration of an electrification system			
Fi	gure 2 -	- Interface for user installations supplied from an a.c. or a d.c. source	9		
		- Interface for user installations supplied locally from a.c. or d.c. sources (not crogrid)	10		
т,	ahla 1	Functions ensured by various types of user interfaces	0		
1 0	1010 I —	Tanonono ondurou by various typos of user internaces	9		

INTERNATIONAL ELECTROTECHNICAL COMMISSION

RECOMMENDATIONS FOR RENEWABLE ENERGY
AND HYBRID SYSTEMS FOR RURAL ELECTRIFICATION –

Part 9-3: Integrated systems - User interface

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

The main task of IEC technical committees is to prepare International Standards. In exceptional circumstances, a technical committee may propose the publication of a technical specification when

- the required support cannot be obtained for the publication of an International Standard, despite repeated efforts, or
- the subject is still under technical development or where, for any other reason, there is the future but no immediate possibility of an agreement on an International Standard.

Technical specifications are subject to review within three years of publication to decide whether they can be transformed into International Standards.

IEC 62257-9-3, which is a technical specification, has been prepared by IEC technical committee 82: Solar photovoltaic energy systems.

This second edition cancels and replaces the first edition issued in 2006. It constitutes a technical revision.

The main technical changes with regard to the previous edition are as follows:

- Changing the voltage range covered by the technical specification to a.c. nominal voltage below 1 000 V and d.c. nominal voltage below 1 500 V (introduction).
- Deleted below 100 kVA from upper limit.
- Including 240 V and 220 V 1-Ø in the voltage levels (scope).
- Deleted the terms microgrid and micropowerplants from terms and definitions.
- Stated the requirement for segregation between a.c. and d.c circuits in housing (6.5).
- Stated that the protection devices for overcurrent are always accessible (6.6).

The text of this technical specification is based on the following documents:

Enquiry draft	Report on voting
82/1030/DTS	82/1089/RVC

Full information on the voting for the approval of this technical specification can be found in the report on voting indicated in the above table.

This part of IEC 62257-9 is to be used in conjunction with the IEC 62257 series.

This document has been drafted in accordance with the ISO/IEC Directives, Part 2.

A list of all parts in the IEC 62257 series, published under the general title *Recommendations* for renewable energy and hybrid systems for rural electrification, can be found on the IEC website.

Future standards in this series will carry the new general title as cited above. Titles of existing standards in this series will be updated at the time of the next edition.

The committee has decided that the contents of this publication will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- · transformed into an International standard,
- · reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- · amended.

A bilingual version of this publication may be issued at a later date.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

INTRODUCTION

The IEC 62257 series intends to provide to different players involved in rural electrification projects (such as project implementers, project contractors, project supervisors, installers, etc.) documents for the setting up of renewable energy and hybrid systems with a.c. nominal voltage below 1 000 V and d.c. nominal voltage below 1 500 V.

These documents are recommendations:

- · to choose the right system for the right place,
- · to design the system,
- to operate and maintain the system.

These documents are focused only on rural electrification concentrating on but not specific to developing countries. They should not be considered as all inclusive to rural electrification. The documents try to promote the use of renewable energies in rural electrification; they do not deal with clean mechanisms developments at this time (CO_2 emission, carbon credit, etc.). Further developments in this field could be introduced in future steps.

This consistent set of documents is best considered as a whole with different parts corresponding to items for safety, sustainability of systems and at the lowest life cycle cost as possible. One of the main objectives is to provide the minimum sufficient requirements, relevant to the field of application that is: small renewable energy and hybrid off-grid systems.

RECOMMENDATIONS FOR RENEWABLE ENERGY AND HYBRID SYSTEMS FOR RURAL ELECTRIFICATION –

Part 9-3: Integrated systems – User interface

1 Scope

This part of IEC 62257, which is a technical specification, specifies the general requirements for the design and the implementation of the interface equipment within the user's installation which connects to a microgrid or the generating part of a standalone system.

This interface is a part of the user's installation as shown in Figure 1.

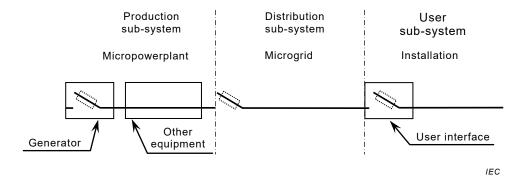


Figure 1 - General configuration of an electrification system

This part of IEC 62257 applies to simplified user's interfaces (distribution board) in electrical installations with maximum power of 500 VA in Decentralized Rural Electrification Systems (DRESs).

NOTE For installations above 500 VA in decentralized electrification systems, IEC TS 62257-5 applies.

This part of IEC 62257 applies to an interface equipment within the user's installation and which connects the user's installation to:

- 240 V or 230 V or 220 V or 120 V a.c. microgrid,
- the generating part a.c. or d.c. of a standalone installation.

This equipment provides protection, isolation, and distribution functions.

2 Normative reference

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 61439-3, Low-voltage switchgear and controlgear assemblies – Part 3: Distribution boards intended to be operated by ordinary persons (DBO)

IEC 62257 (all parts), Recommendations for renewable energy and hybrid systems for rural electrification

IEC TS 62257-9-3:2016 © IEC 2016

-7-

IEC TS 62257-5, Recommendations for renewable energy and hybrid systems for rural electrification – Part 5: Protection against electrical hazards

IEC TS 62257-9-2, Recommendations for renewable energy and hybrid systems for rural electrification – Part 9-2: Integrated systems – Microgrids

IEC TS 62257-9-4, Recommendations for renewable energy and hybrid systems for rural electrification – Part 9-4: Integrated systems – User installation

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- IEC Electropedia: available at http://www.electropedia.org/
- ISO Online browsing platform: available at http://www.iso.org/obp

3.1

carrier

messenaer

wire or rope, the primary function of which is to support the cable in aerial installations, which may be separate from or integral with the cable it supports

3.2

block

part of a line between two consecutive stoppage poles

3.3

earth

conductive mass of the earth, whose electric potential at any point is conventionally taken as equal to zero

3.4

equipotential bonding

provision of electric connections between conductive parts, intended to achieve equipotentiality

Note 1 to entry: The role of the equipotential bonding is to decrease the difference in potential that can exist between two exposed-conductive parts of an installation.

3.5

protective conductor identification: PE

conductor provided for purposes of safety, for example protection against electric shock

[SOURCE: IEC 60050-195:1998, 195-02-09]

3.6

PEN conductor

conductor combining the functions of a protective earthing conductor and a neutral conductor

[SOURCE: IEC 60050-195:1998, 195-02-12]

3.7

power line

overhead or underground line installed to convey electrical energy for any purpose other than communication

3.8

section <of an overhead line>

part of a line between two tension poles

Note 1 to entry: A section generally includes several spans.

3.9

selectivity

protection coordination

the ability of a protection to identify the faulty section and/or phase(s) of a power system

[SOURCE: IEC 60050-448:1995, 448-11-06]

3.10

service connection line

conductors between the supplier's mains and the customer's installation

Note 1 to entry: In the case of an overhead service connection, this means the conductor between a supply-line pole and the customer's installation.

3.11

span

part of a line between two consecutive poles

3.12

stay

steel wire, rope or rod, working under tension, that connects a point of a support to a separate anchor

3.13

supply point

contractual limit between the grid and the user's installation

Note 1 to entry: In rural electrification systems, it is generally located on the input terminals (microgrid side) of the user's interface.

3.14

surge arrester

device designed to protect the electrical apparatus from high transient overvoltages and to limit the duration and frequently, the amplitude of the follow-on current

3.15

Surge Protective Device

SPD

device intended to protect the electrical apparatus from transient overvoltages and divert surge current; it contains at least one non-linear component

4 Electrical characteristics

4.1 Equipment

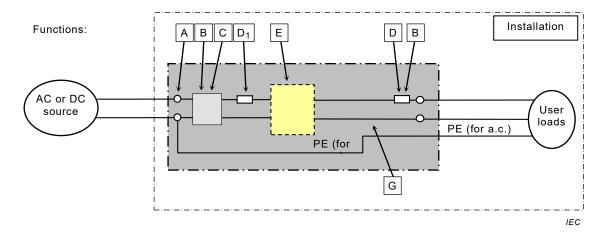
The user interface is recommended to be a type-tested assembly which satisfies the requirements of IEC 61439-3.

The user interface can be either a manufactured product or assembled on site according to the manufacturer's instructions.

4.2 System voltages

The user interface can be used for user's installations supplied from:

- an a.c. microgrid or an a.c. stand-alone generator supplying 240 V or 230 V or 220 V or 120 V,
- a d.c. generator (for example, a photovoltaic installation) supplying 12 V or 24 V,
- an a.c. generator supplying 240 V or 230 V or 220 V or 120 V.


5 Functional description

The functions to be ensured by the user interface in accordance with the IEC TS 62257-9-4 are listed in Table 1.

Table 1 – Functions ensured by various types of user interfaces

Function	Description
Α	Connection to electricity sources (microgrid or generator)
В	Isolation from the electricity sources
С	Protection against electric shocks
D, D1	Protection against overloads and short-circuits
E	Contract management if relevant
F	Earthing terminal
G	Distribution of circuits-

Figure 2 and Figure 3 are examples of installation and functions ensured by the user interface. (Technical functions represented are not contractually binding.)

NOTE $\,$ Function D_1 can be ensured by the unit ensuring functions A, B and C, or by a special unit, or by the unit ensuring function E.

Figure 2 - Interface for user installations supplied from an a.c. or a d.c. source

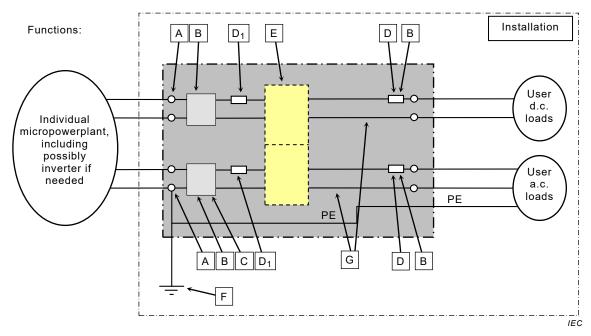


Figure 3 – Interface for user installations supplied locally from a.c. or d.c. sources (not from a microgrid)

6 Design and erection

6.1 System earthing

In accordance with IEC TS 62257-5, IEC TS 62257-9-2 and IEC TS 62257-9-4, only TN-S user installations are considered in this part of IEC 62257.

6.2 Implementation of interface functions

6.2.1 Function A: connection to electricity sources

Function A is a connection point between the microgrid (or micropowerplant) and the user's installation. It comprises terminals able to accept:

- Installation connected to a microgrid (Figure 2)
 - The terminal shall be able to connect cables up to 6 mm².
- Installation connected to a micropowerplant (Figure 3)
 - For a.c.: the terminal shall be able to connect cables up to 6 mm²,
 - for d.c.: the terminal shall be able to connect cables up to 10 mm².

6.2.2 Function B: isolation

This function is to electrically isolate the user's installation from the microgrid or from the micropower plant.

NOTE Function B can be incorporated in the devices dedicated to functions C or D.

6.2.3 Function C: protection against direct and indirect contact

A residual current protective device with a rated operating residual current less than or equal to 30 mA should be used (a.c).

NOTE It can be combined with the device dedicated to Function D (see IEC 61009 series).

6.2.4 Function D: protection against overcurrents

Protection of property against short-circuits and overloads in the user's installation shall be performed by one or several magnetic-thermal circuit breakers or by one or several fuse(s) as specified in IEC TS 62257-9-4.

6.2.5 Function E: contract management

The aim of the function is to ensure that the contractual arrangement with the operator is fulfilled. For example, electricity meter, power limiter, power and energy limiter, etc.

6.2.6 Function F: earthing

This function is to provide a connection point for earthing conductor. The connection terminals should allow for connection of cables according to IEC TS 62257-9-4.

The same terminal may be used for connection of the earthing conductor, the PE and the neutral conductor, provided it has been designed for.

6.2.7 Function G: distribution of circuits

This function is to allow the connection of several circuits of the user's installation, including overcurrent protective devices.

It should allow for the connection of cables up to 6 mm² in accordance with the technical specification governing user's installations (see IEC TS 62257-9-4).

6.3 Insulation requirements

Internal assembly and connections shall be performed such that clearances and creepage distances between the live parts (accessible or not) and the chassis/ground are never less than 3 mm.

The integrity of the insulation shall be checked by measurements in reference to IEC 61439-3.

6.4 Selection of electrical equipment

The components shall comply with the applicable standards by which they are concerned whenever such standards exist.

6.5 Housing

All the equipment for the user's interface whose functions are described in 6.2. shall be in one container, including the interfaces for the set of cables connecting the electrical power source and the user's circuits. Segregation shall be provided between d.c. and a.c. circuits.

The housing shall not be in contact with the active parts of the equipment which it contains; the housing shall satisfy the requirements of protection index IP54 and IK4 for mechanic impact.

The protection index of the housing shall not be affected by the mounting system or by penetration of the cables. The housings shall be equipped with pre-shaped inputs equipped with fittings for passage of the cables.

6.6 Protection against fraudulent use

The interfaces shall be sealable by the local power distribution operator by means of approved seal fitting pliers. The seal shall prevent the user's from accessing the power

connection terminals and the protective conductor terminals. If necessary, on operator request, access will be prohibited to the front panels of the function blocks.

The housing shall be designed such that the seals can be easily installed and the protection devices for overcurrent are always accessible.

7 Information to be given and marking

Information and marking shall be provided according to IEC 61439-3. The information may be given on a nameplate or by other means provided that it is legible and durable.

The assembly shall carry at least the following information and marking:

- manufacturer's trademark,
- type reference,
- identification of neutral circuit (by N or light-blue color code),

In standalone installations, for combined individual electrification systems producing both d.c. and a.c. power from a d.c. generator, the markings shall clearly identify the types of circuits with no possible ambiguity. The following shall be identified:

- d.c. circuit and poles,
- a.c. circuit (Ph / N / PE),
- earthing circuit.

Where equipment has compliance marking or monograms indicating compliance with standards or with distinctive manufacturer's number serving as manufacturer's trademark, these monogram/marking shall remain visible even after the conductors have been connected.

The markings and indications shall be long-lasting and easily readable.

8 Verification and acceptance

8.1 General

The verification and commissioning shall be carried out by a qualified technician.

The simplified user's interface diagrams shall be provided to the technician in charge of the verification procedure.

The safety rules shall be observed during the verification and commissioning procedure to avoid any danger to persons, animals and property.

When performing extensions or modifications to the user's installations, the necessary measures shall be taken to verify that the modifications satisfy the specifications of the simplified user's interface and do not compromise the safety or service life of the existing installation.

8.2 Verification by inspection

This verification shall be conducted prior to the commissioning.

This procedure is intended to verify that the simplified user's interface and the equipment connected to it comply with the applicable specifications. These requirements can be verified by examination of the markings or compliance certificate.

The inspection procedure shall verify, at least the following conditions to the extent that they apply:

- appropriateness of the protection against electrical shocks and overcurrents,
- identification of various circuits and conductors,
- identification of equipment and terminals,
- appropriateness of conductor cross-sectional area and connections,
- accessibility for verification and maintenance,
- correct operation of the contract management device.

8.3 **Commissioning tests**

With the equipment powered up, these tests shall consist in verifying the compatibility of all the components of the simplified user's interface and operation of all the devices, as well as the contract or energy manager operating points.

British Standards Institution (BSI)

BSI is the national body responsible for preparing British Standards and other standards-related publications, information and services.

BSI is incorporated by Royal Charter. British Standards and other standardization products are published by BSI Standards Limited.

About us

We bring together business, industry, government, consumers, innovators and others to shape their combined experience and expertise into standards -based solutions.

The knowledge embodied in our standards has been carefully assembled in a dependable format and refined through our open consultation process. Organizations of all sizes and across all sectors choose standards to help them achieve their goals.

Information on standards

We can provide you with the knowledge that your organization needs to succeed. Find out more about British Standards by visiting our website at bsigroup.com/standards or contacting our Customer Services team or Knowledge Centre.

Buying standards

You can buy and download PDF versions of BSI publications, including British and adopted European and international standards, through our website at bsigroup.com/shop, where hard copies can also be purchased.

If you need international and foreign standards from other Standards Development Organizations, hard copies can be ordered from our Customer Services team.

Copyright in BSI publications

All the content in BSI publications, including British Standards, is the property of and copyrighted by BSI or some person or entity that owns copyright in the information used (such as the international standardization bodies) and has formally licensed such information to BSI for commercial publication and use.

Save for the provisions below, you may not transfer, share or disseminate any portion of the standard to any other person. You may not adapt, distribute, commercially exploit, or publicly display the standard or any portion thereof in any manner whatsoever without BSI's prior written consent.

Storing and using standards

Standards purchased in soft copy format:

- A British Standard purchased in soft copy format is licensed to a sole named user for personal or internal company use only.
- The standard may be stored on more than 1 device provided that it is accessible
 by the sole named user only and that only 1 copy is accessed at any one time.
- A single paper copy may be printed for personal or internal company use only.

Standards purchased in hard copy format:

- A British Standard purchased in hard copy format is for personal or internal company use only.
- It may not be further reproduced in any format to create an additional copy.
 This includes scanning of the document.

If you need more than 1 copy of the document, or if you wish to share the document on an internal network, you can save money by choosing a subscription product (see 'Subscriptions').

Reproducing extracts

For permission to reproduce content from BSI publications contact the BSI Copyright & Licensing team.

Subscriptions

Our range of subscription services are designed to make using standards easier for you. For further information on our subscription products go to bsigroup.com/subscriptions.

With **British Standards Online (BSOL)** you'll have instant access to over 55,000 British and adopted European and international standards from your desktop. It's available 24/7 and is refreshed daily so you'll always be up to date.

You can keep in touch with standards developments and receive substantial discounts on the purchase price of standards, both in single copy and subscription format, by becoming a **BSI Subscribing Member**.

PLUS is an updating service exclusive to BSI Subscribing Members. You will automatically receive the latest hard copy of your standards when they're revised or replaced.

To find out more about becoming a BSI Subscribing Member and the benefits of membership, please visit bsigroup.com/shop.

With a **Multi-User Network Licence (MUNL)** you are able to host standards publications on your intranet. Licences can cover as few or as many users as you wish. With updates supplied as soon as they're available, you can be sure your documentation is current. For further information, email subscriptions@bsigroup.com.

Revisions

Our British Standards and other publications are updated by amendment or revision.

We continually improve the quality of our products and services to benefit your business. If you find an inaccuracy or ambiguity within a British Standard or other BSI publication please inform the Knowledge Centre.

Useful Contacts

Customer Services

Tel: +44 345 086 9001

Email (orders): orders@bsigroup.com **Email (enquiries):** cservices@bsigroup.com

Subscriptions

Tel: +44 345 086 9001

Email: subscriptions@bsigroup.com

Knowledge Centre

Tel: +44 20 8996 7004

 $\textbf{Email:} \ knowledge centre @bsigroup.com$

Copyright & Licensing

Tel: +44 20 8996 7070 Email: copyright@bsigroup.com

BSI Group Headquarters

389 Chiswick High Road London W4 4AL UK

