PD IEC/TR 62351-13:2016 ### **BSI Standards Publication** # Power systems management and associated information exchange — Data and communications security Part 13: Guidelines on security topics to be covered in standards and specifications #### **National foreword** This Published Document is the UK implementation of IEC/TR 62351-13:2016. The UK participation in its preparation was entrusted to Technical Committee PEL/57, Power systems management and associated information exchange. A list of organizations represented on this committee can be obtained on request to its secretary. This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application. © The British Standards Institution 2016. Published by BSI Standards Limited 2016 ISBN 978 0 580 93723 1 ICS 33.200 ## Compliance with a British Standard cannot confer immunity from legal obligations. This Published Document was published under the authority of the Standards Policy and Strategy Committee on 31 August 2016. #### Amendments/corrigenda issued since publication Date Text affected ## IEC TR 62351-13 Edition 1.0 2016-08 ## TECHNICAL REPORT Power systems management and associated information exchange – Data and communications security – Part 13: Guidelines on security topics to be covered in standards and specifications INTERNATIONAL ELECTROTECHNICAL COMMISSION ICS 33.200 ISBN 978-2-8322-3571-3 Warning! Make sure that you obtained this publication from an authorized distributor. #### CONTENTS | | | RD | | |-----|--|---|----| | IN | | ICTION | | | 1 | Scop | e | 8 | | 2 | Norm | native references | 8 | | 3 | Term | s and definitions | 8 | | 4 | Abbr | eviated terms and acronyms | 9 | | 5 | Security requirements for users and applications interacting with automation systems | | | | | 5.1 | Risk assessment, security policies and security requirements | | | | 5.2 | User-focused cybersecurity procedures and techniques | | | 6 | | mation and communication technology (ICT) cryptographic techniques | | | | 6.1 | General | | | | 6.2 | Best practices for specifying cryptography | | | | 6.3 | Cryptographic methods | | | | 6.4 | Internet cryptography | | | | 6.5 | Wireless cryptography | | | | 6.6 | Key management using public key cryptography | | | | 6.7 | Multicast and group keys | | | | 6.8 | Device and platform integrity | | | | 6.9 | Design secure network configurations | | | | 6.10 | Network and system management (NSM) | | | | 6.11 | Defence-in-depth | | | | 6.12 | Security testing and validation procedures | 19 | | | 6.13 | Security interoperability | | | | 6.14 | Additional cybersecurity techniques | | | 7 | Engi | neering design and configuration management for grid resilience | 20 | | | 7.1 | Intertwining of cyber security and engineering to provide grid resilience | 20 | | | 7.2 | Security planning | | | | 7.3 | Engineering strategies for security | | | | 7.4 | System engineering practices and configurations | | | | 7.5 | Power system equipment monitoring, analysis, and control | | | | 7.6 | Centralized monitoring and control | 22 | | | 7.7 | Centralized power system analysis and control | 23 | | | 7.8 | Testing | 23 | | | 7.9 | Training | 24 | | 8 | Corre | elation of cyber security with information exchange standards | 24 | | | 8.1 | Concepts for correlating cyber security with information exchange standards | 24 | | | 8.2 | Security for different OSI reference model layers | 27 | | | 8.3 | Interrelationships between the IEC 62351 security standards and IEC communication standards | 28 | | Bi | bliograp | hy | | | | | | | | | | - Security requirements, threats, and possible attacks | | | Fi | gure 2 - | - Focus of different security standards and guidelines | 10 | | Fig | gure 3 - | - General security process – Continuous cycle | 20 | | PD IEC/TR 62351-13:2016 | | | | | |---------------------------------|------------|--|--|--| | IEC TR 62351-13:2016 © IEC 2016 | -3- | | | | | Figure 4 – ISO/OSI 7-Layer reference model and GWAC Stack reference model | 25 | |--|----| | Figure 5 – Core Smart Grid standards for utilities | 26 | | Figure 6 – Customer-focused Smart Grid standards | 26 | | Figure 7 – Interrelationships between the IEC 62351 security standards and certain IEC communication standards | 28 | #### INTERNATIONAL ELECTROTECHNICAL COMMISSION POWER SYSTEMS MANAGEMENT AND ASSOCIATED INFORMATION EXCHANGE – DATA AND COMMUNICATIONS SECURITY – ## Part 13: Guidelines on security topics to be covered in standards and specifications #### **FORFWORD** - 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations. - 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees. - 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user. - 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter. - 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies. - 6) All users should ensure that they have the latest edition of this publication. - 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications. - 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication. - 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights. The main task of IEC technical committees is to prepare International Standards. However, a technical committee may propose the publication of a Technical Report when it has collected data of a different kind from that which is normally published as an International Standard, for example "state of the art". IEC TR 62351-13, which is a Technical Report, has been prepared by IEC technical committee 57: Power systems management and associated information exchange. The text of this Technical Report is based on the following documents: | Enquiry draft | Report on voting | |---------------|------------------| | 57/1678/DTR | 57/1727/RVC | Full information on the voting for the approval of this Technical Report can be found in the report on voting indicated in the above table. This publication has been drafted in accordance with the ISO/IEC Directives, Part 2. A list of all parts in the IEC 62351 series, published under the general title *Power systems* management and associated information exchange – Data and communications security, can be found on the IEC website. The committee has decided that the contents of this publication will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be - reconfirmed, - withdrawn, - · replaced by a revised edition, or - amended. A bilingual version of this publication may be issued at a later date. IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer. #### INTRODUCTION This document provides guidelines on what security topics should be covered in standards and specifications (IEC or otherwise) that are to be used in the power industry. These guidelines cannot be prescriptive
for every standard, since individual standards and specifications may legitimately have very different focuses, but it should be expected that the combination of such standards and specifications used in any implementation should cover these security topics. These guidelines could therefore be used as a checklist for the combination of standards and specifications used in implementations of systems. The security requirements for human users and software applications are different from the purely technical security requirements found in many communication and device standards. For user security standards, more emphasis should be on "policy and procedures" and "roles and authorization" rather than "bits and bytes" cryptographic technologies that should be included in Information and Communications Technology (ICT). In addition, engineering practices and system configurations should be taken into account, since no cryptography can compensate for poor design. Figure 1 illustrates the relationships between security requirements, threats, and attacks. This document is structured into four sections: - Clause 5: Security requirements for standards and specifications which do not address specific cybersecurity technologies but where interactions between human users, software applications, and smart devices should be secured. - Clause 6: Security requirements for standards and specifications that address information and communication technologies (ICT). - Clause 7: Engineering design and configuration requirements that provide system reliability, defence in depth, and other security threat mitigations. - Clause 8: Security requirements related to the OSI reference model. Figure 1 - Security requirements, threats, and possible attacks ## POWER SYSTEMS MANAGEMENT AND ASSOCIATED INFORMATION EXCHANGE – DATA AND COMMUNICATIONS SECURITY – ## Part 13: Guidelines on security topics to be covered in standards and specifications #### 1 Scope This part of IEC 62351, which is a Technical Report, provides guidelines on what security topics could or should be covered in standards and specifications (IEC or otherwise) that are to be used in the power industry, and the audience is therefore the developers of standards and specifications. These guidelines cannot be prescriptive for every standard, since individual standards and specifications may legitimately have very different focuses, but it should be expected that the combination of such standards and specifications used in any implementation should cover these security topics. These guidelines are therefore to be used as a checklist for the combination of standards and specifications used in implementations of systems. Out-of-scope are explicit methods for cyber security in product development, implementations, or operations. #### 2 Normative references The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. IEC TS 62351-2, Power systems management and associated information exchange – Data and communications security – Part 2: Glossary of terms #### 3 Terms and definitions For the purposes of this document, the terms and definitions given in IEC TS 62351-2 and the following apply. ISO and IEC maintain terminological databases for use in standardization at the following addresses: - IEC Electropedia: available at http://www.electropedia.org/ - ISO Online browsing platform: available at http://www.iso.org/obp #### 3.1 #### end-to-end security reliance on security policies, procedures, and technologies which guarantees secure data exchange between a source (sender) and a sink (receiver), preventing third-parties from unauthorized access and/or modifications of these data while transferred from one end to the other through multiple devices #### 4 Abbreviated terms and acronyms | Acronym | Definition | |---------|--| | NISTIR | National Institute of Standards and Technology Internal Report | | NIST | National Institute of Standards and Technology | | NERC | North American Electric Reliability Corporation | | ISO | International Standards Organization | ## 5 Security requirements for users and applications interacting with automation systems #### 5.1 Risk assessment, security policies and security requirements The following general cyber security considerations should be covered in the standards and specifications as appropriate. - Do not re-invent security requirements if they can be found in well-established standards. Instead, use normative references to standards as much as possible, with the selection of alternatives or options normatively stated. Some high level security standards that focus on the electric power industry (see Figure 2¹) include: - ISO/IEC TR 27019: Information technology Security techniques Information security management guidelines based on ISO/IEC 27002 for process control systems specific to the energy industry - IEC 62443 series based on ISA99 series: Industrial communication networks Network and system security - ISA99 series: Security for Industrial Automation and Control Systems - NISTIR 7628: Guidelines for Smart Grid Cyber Security - NERC CIP 2-9: Critical Infrastructure Protection - IEC TS 62351-1: Power systems management and associated information exchange – Data and communications security Part 1: Communication network and system security Introduction to security issues - IEC TR 62351-10: Power systems management and associated information exchange Data and communications security Part 10: Security architecture guidelines - Figure 2 shows the applicability and scope of each of the standards as follows: - Guideline: The document provides guidelines and best practice for security implementations. This may also comprise pre-requisites to be available for the implementation. - Requirement: The document contains generic requirements for products, solutions or processes. No implementation specified. - Realization: The document defines implementation of security measures (specific realizations). Note, if distinction is possible, the level of detail of the document raises from left to right side of the column. - Vendor: Standard addresses technical aspects relevant for products or components. - Integrator: Standard addresses integration aspects, which have implications on the technical design, are relevant for vendor processes (require certain features to be supported), or require product interoperability (e.g., protocol implementations). See Bibliography for a more complete list of standards that include cybersecurity aspects, and for security assessments of some of those standards. - Operator: Standard addresses operational and/or procedural aspects, which are mainly focused on the service realization and provisioning on an operator site. - Any discussions or explanations that are used to help with understandings of security issues should be clearly identified as informative. - Use "shall" or "must" (only to be used to indicate constraints or obligations defined outside of a document) for normative statements, and use "should", "could", or "may" for informative statements. - Preferably normative and informative information should be in separate clauses, although simple introductory informative sentences are reasonable in a normative clause. Figure 2 - Focus of different security standards and guidelines - Start by identifying the major security threats and failure scenarios, including assessing their likelihood and their possible impacts (risk assessment): - Reference IEC TR 62351-12, Resilience and security recommendations for power systems with distributed energy resources (DER) cyber-physical systems, which describes security threats and their possible impacts, as well as providing recommendations on how to mitigate these threats. - Reference the SGIS Toolbox, NIST SP-800-30 Rev. 1, and other risk assessment documents. - Identify examples of security breaches and failure scenarios, and develop use cases that illustrate the failures and can be used to identify the most likely threats, impacts, and mitigations. - Which threats have highest likelihood? Which threats have the most serious impacts? Which threats may not be preventable but could be mitigated? How can successful attacks be coped with? What audit logs are needed to record possible or successful attacks? - Taking into account the possible cost of countermeasures, which threats are the most important to prevent, mitigate, cope with, and log? - The results of this step do not need to be included specifically in the standard, but may be very useful during its development to solidify the security requirements and/or may be included as informative. - Require or recommend that security policies and procedures be developed for all users covered in the standard (e.g. companies, vendors, implementers, employees, guests, contractors, customers) - NISTIR 7628 Volume 1, Chapter 3, Guidelines for Smart Grid Cybersecurity, provides a very useful list of areas that could be covered (depending upon the scope of the standard). - Require or recommend that security maturity models be used by users to assess the security requirements against the security options and alternatives in the standard. Documents that can be used as checklists include: - NISTIR 7628 Volume 1, Chapter 3, Guidelines for Smart Grid Cybersecurity - IEC 62443-3-3, System security requirements and security levels - IEC TR 62351-12, Resilience and security recommendations for power systems with distributed energy resources (DER) cyber-physical systems - State the major cyber security requirements the first six typically but not exclusively rely on cryptography and require key management methods, while availability may rely more on
engineering strategies and other non-cryptographic methods: - Authentication of the systems, devices, and applications that are sending and receiving data, is generally the most important security requirement. - Authorization ensures that the requesting system has the right to view, receive, update, create, and/or delete the data. This is usually provided by Role-Based Access Conteol (RBAC). - Non-repudiation ensures that some entity cannot deny having received or acted upon a message. - Accountability enhances non-repudiation by ensuring that all records of actions are traceable to their authors and are kept securely. - Data integrity of all interactions and of information within the systems, is also critical. Data integrity of messages usually implies the need for authentication of the source of the data, and the ability to detect tampering since it is not possible to prevent messages from being destroyed or modified, but it is possible to detect these actions. - Confidentiality is usually required for financial, market, corporate, or private data, but is not usually necessary for normal power system operational data exchanges. - Availability of the interactions can range from milliseconds to hours or days. Unlike the other cyber security requirements, availability generally relies on engineering design, configuration management, redundancy, functional analysis, communication network analysis, and engineering practices. - Require security to be end-to-end security, with reliance on security policies, procedures, and technologies to ensure the secure exchange of information between two entities by preventing unauthorized entities from accessing or interfering with the information in transit - Different security solutions and implementations by different vendors need to be interoperable. In particular, the interconnection of different security domains requires the mutual agreement between the parties about their security policies. Common minimum agreements on security policies will be required. - Interconnection of security domains will also require the mutual agreement between the parties about their security policies, with common minimum agreements on security policies. - Require security to use defence-in-depth techniques: the application of security controls in layers and at different levels. "Layers" imply multiple security barriers between the attacker and the target, while "levels" relate to the different levels in the communications infrastructure underlying any cyber system (transport, application, etc.). This concept ensures that if one security barrier is broken (for instance the lock on a door), the next layer may prevent the attack (the attacker does not have the correct password) or it may just deter the attack until it is detected (such as video surveillance or an alarm notifies personnel that an excess of passwords have been attempted). - Ensure a chain of trust: ensure that the entire supply chain, particularly for critical equipment and processes, are secured, from "birth" to "integration", to "implementation", to "testing", to "operation", to "maintenance and upgrade", and finally to "death". - Require security to be designed into the system from the beginning: security technologies should be designed into systems from the beginning, rather than being added "on top" of the system at a later date. Without such integrated security, the system will almost invariably have security "holes". See IEC 62443-4-1. #### 5.2 User-focused cybersecurity procedures and techniques The following items should be covered in standards and specifications that address the high level requirements, but do not need to get into cryptographic details. - Validate and register the identity of users and devices: - For authentication, trust should be established that the users are who they say they are. - Users need to be identified through the organization or group they belong to (company, vendor, customer, guest, etc.). - These organizations and groups should also establish their identities and be trusted by the other stakeholders in transactions. - Users provide passwords, biometric data, or other security mechanisms that tie the users to their identity in the organization/group. - Devices, usually when manufactured, should be provided with security certificates, preestablished secret keys, or other security tokens for establishing their identity. - All cryptographic keys and keying material, including certificates, should be chained from the "birth" security tokens, and should be capable of being generated and managed using the approved security policy of the organization. - These identifications can be used assigning users and devices to "roles". - Establish the authorizations and privileges of each role in Role-Based Access Control (RBAC) (reference IEC TS 62351-8): - Each (human) user, software application, and device should be assigned to one or more of the roles, thus acquiring the associated authorizations and privileges (read data, issue commands, write data, modify data, delete data, execute applications) that are assigned to those roles. - Some roles ought to be mutually exclusive in order to ensure the separation of duties, to eliminate conflicts of interest, and to ensure independence in the responsibilities. - Users, applications, and devices may be assigned to multiple roles so long as they are not mutually exclusive. - RBAC privileges should be linked to the data wherever it is located, such as in a device or a database. - Require the authentication of all interactions between users and applications, and between different applications, based on the trusted identities of these users and applications. - Authentication of interactions can include the use of passwords, application tokens, digital signatures, certificates, message authentication codes (MAC hashes), etc. All authentication relies on cryptography (even passwords if they are transmitted between systems) and thus necessitates key management (see 6.6). Public key infrastructure (PKI) is the most commonly used for key management, but may not be applicable in all situations. - Avoid specifying cryptographic algorithms (such as RSA) if the standard is focused only on user requirements, since there are many valid cryptographic methods. However, there should be a reference to a cryptographic standard that does cover the appropriate cryptographic technologies for these user requirements. - Whenever possible and appropriate, reference existing standards, such as the IEC 62351 series and the security-related IETF RFCs. - · Focus on the integrity of information: - Integrity of information relies on cryptography, specifically message authentication codes (MAC hashes) which use cryptographic keys to ensure that any tampering of information can be detected (not prevented). Often integrity cryptography is combined with authentication, such as with digital signatures with certificates. Integrity cryptography (MAC) is also usually included in confidentiality which combines tamper detection with encryption for prevention of eavesdropping. - Key management is required for integrity. - Data entry by users and software applications should be checked for validity as much as possible, including reasonability of values, and where possible, cross-checked by algorithms, visual displays, testing, or other mechanisms. - Integrity of information should apply also for message exchanges, database access, software patches, software updates, and configuration. - Identify those interactions that require confidentiality: - Confidentiality relies on encryption algorithms which use cryptographic keys to prevent eavesdropping. Usually these encryption algorithms are combined with integrity cryptography to ensure both confidentiality and integrity. - Key management is required for confidentiality. - These interactions usually involve corporate, financial, customer, and market information. - Privacy (personal information) can also be considered confidential, but may require additional management if aggregations are used for planning or other functions. - Avoid specifying cryptographic algorithms (such as RSA) if the standard is focused only on user requirements, but ensure some standard does cover the appropriate cryptographic technologies for all system designs. - Determine availability requirements for all types of interactions: - Availability is mostly affected by configuration design and management. Therefore, normally key management is not necessary for availability. - What timing latency is allowed for different types of interactions: milliseconds, seconds, minutes, or even days? - How closely monitored should that timing be? Issue an alarm? Log it? Ignore? - What kind of redundancy (or other methods) should be used to improve this availability? - What actions are required if those timing requirements are not met? - Determine if non-repudiation and/or accountability are necessary for different types of transactions: - Event logs can capture the fact that a transaction was initiated, while a similar, timesynchronized event log of the recipient of the transaction is necessary for nonrepudiation of that transaction. - Authenticated responses to transactions can also provide non-repudiation records. - Revoke user access and/or privileges when a user or an application's role changes: - Revoke access through RBAC and disable the user's passwords. - Ensure revocations are made available to all affected systems in a timely manner. - For temporary assignment of users to roles, ensure that a deadline is associated with that assignment and the user is revoked at the deadline. - Deregister applications and revoke any certificates or tokens if an application is decommissioned or its security is compromised: - Ensure revocations are made available to all affected systems in a timely manner, usually within a day or so. - Establish alarm and event logs content, accuracy of the timestamps,
synchronicity of timestamping, and security requirements: - Log and timestamp all anomalous events. - Ensure all alarms are assigned to one or more roles so that they will be viewable. - For higher priority alarms, ensure that at least one user has logged on in one of the assigned roles. - Track user interactions with applications and systems, as appropriate. - Synchronize the timestamps across all systems within the necessary accuracy (milliseconds or seconds). - Prevent or log all modifications to logs. - Archive logs for appropriate lengths of time. - Provide relevant logs to security personnel. - Provide methods for correlating different types of events sort/search. #### 6 Information and communication technology (ICT) cryptographic techniques #### 6.1 General In standards and specifications that focus on specific Information and Communication Technology (ICT) requirements such as communication protocols and interactions with "intelligent" equipment, the following security requirements could be directly included or could include normative references to other standards, as appropriate (this is just a checklist, so not all standards or specifications should include all items). #### 6.2 Best practices for specifying cryptography Some of the best practices for specifying cryptography used for confidentiality, authentication, and/or digital signatures are as follows. - Use normative references to cryptographic standards rather than describing the cryptography (except for informative purposes). If there are alternatives or options within the referenced standards, indicate which are mandatory, which are recommended, which are optional, and which are not to be used. - Cipher suites are always evolving, so specifying only one can be self-defeating over time. However, one cipher suite can be mandated for interoperability, with other cipher suites permitted and negotiated at startup. - Because cipher suites get broken or "weaken" over time as computer speeds increase and hacker capabilities improve, only cipher suites of "adequate strength" should be permitted. Options for improved cipher suites over time should also be permitted. - The permitted cryptographic algorithms should not be deprecated by leading security organizations, such as NIST. NIST lists the deprecation dates of certain cryptographic algorithms in NIST SP800-131A. - Legacy equipment may be allowed to use deprecated cryptographic algorithms so long as "mitigating" countermeasures are included. No new implementations should be permitted to implement deprecated cryptographic algorithms. - Key management and certificate management requirements should be included, either directly or by normative reference. - Implementation considerations include when "session" keys should be updated, how certificate expirations should be handled (ignored? Warning? Stop interactions?), and how certifications that have been revoked should be provided to affected systems. #### 6.3 Cryptographic methods The following cryptography methods are commonly specified. Normative references should be used in most cases to point to specific cryptographic requirements. More information on NIST cryptographic toolkit can be found at http://csrc.nist.gov/groups/ST/toolkit/index.html. - Cryptographic key pairs are secure because it is generally very difficult to derive one from the other, even though they are mathematically linked so that if one key encrypts a message, the other key can decrypt it. - RSA (Ron Rivest, Adi Shamir and Leonard Adleman) uses the fact that it is difficult to factor a large integer composed of two or more large prime factors. - ECC (elliptic curve cryptography) uses the fact that finding the discrete logarithm of a random elliptic curve element with respect to a publicly known base point is infeasible. ECC keys are becoming more popular because they can be smaller in length while still providing the same level of security as RSA keys. - Encryption consists in combining a cryptographic key with a block of plain text using a well-designed algorithm. The most common block cipher algorithm is the Advanced Encryption Standard (AES), usually either AES-128 or AES-256 (the number being the block length in bytes). NIST has identified AES as the preferred block cipher. Neither DES nor Triple DES (3DES) should be specified anymore. - Confidentiality (but not authentication) is provided by block cipher modes. Block ciphers only encrypt one block, so block cipher modes are used to string together the encryption of messages that are longer than one block while still using the same cryptographic key. The most common block cipher modes are cipher-block chaining (CBC) mode and counter (CTR) mode. - Authentication and integrity may be provided by digital signatures and/or by "hashing" messages with cryptographic keys. These methods do not provide confidentiality the messages can be read by anyone but they do provide authentication of the sender and the ability to determine if the message has been tampered with. They require less "compute" processing than the block cipher modes. - Digital signatures algorithms include RSA-based signature schemes, such as RSA-PSS or RSA ANS X9.31, and DSA and its elliptic curve variant ECDSA, for example ECDSA ANS X9.62. - The cryptographic hashing methods or "codes" are called Message Authentication Codes (MAC). To avoid some confusion with the term "Media Access Control (MAC)", they are sometimes called Message Integrity Codes (MIC). The most common MAC algorithms include the Keyed-Hash Message Authentication Code (HMAC), CBC-MAC (CMAC), and Galois/Counter Mode (GCM) and GMAC. These can be further specified as to which hashing ciphers and block sizes to use, such as HMAC-SHA256 or AES-GMAC-128. - Combinations of confidentiality and authentication modes are called authenticated encryption (AE). Examples of AE modes are CCM (NIST SP800-38C), GCM (NIST SP800-38D), CWC, EAX, IAPM, and OCB. - Certificates are issued by Certificate Authorities (CA) as a method for certifying the validated identity of a device or software application the equivalent to a birth certificate or passport for a human. Most certificates use the ITU X.509 format for public key certificates, which bind a public key to the certified device or application, which contains (and guards) the corresponding secret key. Public Key Infrastructure (PKI) is the most commonly used method. #### 6.4 Internet cryptography Internet cryptography uses cryptographic profiles defined in RFCs by the IETF. The predominant RFCs include the following. Transport Layer Security (TLS) was derived from Secure Sockets Layer (SSL) and specifies asymmetric cryptography for authentication of key exchanges via the Public Key Infrastructure (PKI), symmetric encryption for confidentiality, and message authentication codes for message integrity. As indicated by the name, TLS provides security for the transport layer. Although the most commonly implemented version is still TLS 1.0, the newest version TLS v 1.2, defined in RFC 5246, should be specified for new implementations. TLS includes many alternative cipher suites – these could or should be pared down to a few in specifications to ensure that implementations provide adequate security and interoperability. IEC 62351-3 provides such a specification. - Hypertext Transfer Protocol Security (HTTPS) is a combining of HTTP over TLS, and is formalized in RFC 2818. - Internet Protocol Security (IPsec) authenticates and encrypts each IP packet as well as providing mutual authentication at the start of a session, thus providing security at the network layer rather than at the transport layer. - Virtual Private Network (VPN) creates a "tunnel" through the Internet (or other network) in which the entire IP packet is encrypted and then encapsulated into another IP packet. IPsec is often used to create the secure tunnel, although TLS and other security protocols can also be used. #### 6.5 Wireless cryptography Wireless cryptography systems use the security provided by IEEE 802.11i WPA2, which establishes a Robust Security Network (RSN) that uses the Advanced Encryption Standard (AES) block cipher (as do most cipher suites at this time), requires the Counter Cipher Mode (CCM) with block chaining Message Authentication (Integrity) Code (MAC or MIC) Protocol (CCMP) for a 4-way handshake between two stations, and includes a group key handshake. Some suggestions for managing WiFi could include: - using centrally managed WiFi infrastructures and the authentication, - adopting the IEEE 801.1x authentication infrastructure, - adopting a rogue AP detection mechanism The Extensible Authentication Protocol (EAP) is an authentication framework frequently used in wireless networks and point-to-point connections. It is defined in RFC 3748 and was updated by RFC 5247. EAP is one of the possible authentication schema of the more general IEEE 801.1x standard that is the de-facto mandatory standard for WiFi enterprise deployment, and it is also applicable to wired LANs. When applied to wired LANs, 802.1x can allow a logical segregation of VLAN inside the same physical infrastructure. 802.1x is a role based network access control mechanism and brings the RBAC model to LAN access control. #### 6.6 Key management using public key cryptography Key management is a very extensive topic, and not all of its details can be captured in this summary. For more details, see IEC 62351-9 and the many RFCs of the IETF. However, this overview can provide the context for more detailed understandings. Public key cryptography is the cryptographic system that requires two keys, a public key and a private key that are mathematically linked so that when one key is used to encrypt a message, the other key can decrypt the message. The public key can be made widely available, whereas the private key should be kept secret. Although mathematically linked, if the keys are long enough the private key cannot be derived
from the public key, making it secure. The public keys used in the RSA system are the product of two very large prime numbers with the secret key being one of those prime numbers. A relatively new algorithm for creating keys, the Elliptic Curve Cryptography (ECC) system may permit shorter keys to be used. This public-private key concept is used in TLS and most other cryptographic methods. The Public Key Infrastructure (PKI) key management process entails a number of steps. IEC 62351-9, *Cyber security key management for power system equipment*, identifies and standardizes these techniques for the power industry: • Register with Registration Authority (RA): Entities (systems, devices, and software applications) should be "registered" usually through an RA to confirm their identities. This registration can occur on manufacturing, on installation, on connection to a network, or offline. Manufacturers often provide the initial registration of their entities using their corporate identity as proof. - Generate public/private key pair: Either the entity generates its own public/private key pair if it has that capability, or a key pair is (securely) installed in the entity. - Request certificate from a Certificate Authority (CA): Once entities are registered and have generated their key pairs, a CA can provide these entities with security certificates that bind their identity to their public cryptographic key. The CA verifies this binding by using its own digital signature. Certificates usually have an expiration date, so updated certificates should be requested before the previous certificate expires. - Chain subsequent certificates by enrollment: The identity of an entity can be chained from the initial registration by using the initial certificate to validate subsequent requests for additional certificates, as the entity's ownership or function is changed over time. Thus, the manufacturer's certificate can be used to create an integrator's certificate which can be used to create a utility's certificate, etc. This enrollment process may be through different CAs, so the CAs digital signatures are used to establish trust with each other. A common method for enrollment is the Simple Certificate Enrollment Protocol (SCEP) but this may be replaced in the near future by an updated method. - Assign RBAC roles: The enrolled devices and software applications should be assigned to their RBAC roles, identifying what permissions and privileges they have, and what actions they are permitted to take. - Create (and update) session keys: The public/private keys can be used by two (or more) entities to authenticate each to the other and to create session keys that are used to exchange information between the entities for the length of a session, for instance between a user and their on-line banking web site or between two protective relays. In the latter example, the session keys will need to be periodically updated to ensure the keys are not compromised over the many hours and years that the relays interact. - Use session keys: Session keys can be used to hash messages (authentication and integrity only), provide digital signatures (authentication, integrity, and non-repudiation), or encrypt the message payloads to provide confidentiality. Each of these processes has different cryptographic requirements and performance characteristics. - Revoke certificates: Certificates can be revoked if the private key has been compromised or if the entity should no longer be used in its current role. - Access Certificate Revocation Lists (CRL): CRLs are used for general revocation information when systems are able to access CA sites. - Provide Online Certificate Status Protocol (OCSP) servers for revoked certificates: For power system equipment, alternate methods should be used, such as OCSP servers. - White listing (namely only permitting access by entities on the white list) can also be used to verify the current status of an entity. In particular, self-signed certificates should usually be white listed as added authentication. - Some devices can use pre-shared keys installed (securely) to act as the source for managing their keys, so they do not undertake all the steps, but still need to be authenticated, enrolled, assigned RBAC roles, create and update their session keys, and include a method for revocating their participation in information exchanges. #### 6.7 Multicast and group keys For peer-to-peer or multicast interactions of entities which have stringent performance requirements, group key management is more efficient than pair-wise key management. The IETF has developed the Group Domain of Interpretation (GDOI) protocol (RFC 6407) which is going through an update process. The group key management process uses a combination of asymmetric and symmetric cryptography. The security process steps include the following. - One system or device is designated as group controller. - The group controller authenticates other entities via their certificates or pre-shared keys. - The group controller establishes a group-based key. • The group controller distributes the group key to all authenticated entities. #### 6.8 Device and platform integrity - · Tamper-resistant design. - · Digitally signed firmware images. - · Secure storage of cryptography credentials. - · Secure code development practices. - Device Identity. - Hardening, No backdoors. #### 6.9 Design secure network configurations Design network configurations for improved security. A more complete discussion of the issues is provided in IEC 62443-3-2: - Networks that are dedicated to different scopes should be physically and/or logically isolated (e.g. industrial networks and corporate networks). - Access points to the Internet should either be prevented or very carefully managed. - Firewalls should be used at "security boundaries" to permit only authorized traffic to go through. - Unused ports in routers should be disabled to prevent denial of service attacks and other malicious attacks. - Intrusion detection and/or intrusion prevention systems (IDS/IPS) should be deployed. - Redundant communication paths should be provided for applications that require high availability. - Service level agreements (SLA) with any third party communication providers should include very stringent security requirements. #### 6.10 Network and system management (NSM) Networks and systems should be monitored and managed with equal security as the grid is monitored and controlled. Therefore, it is vital to establish network and system management (NSM) for all communication networks (see IEC TS 62351-7). - Alarms and events from power system operations and equipment should be able to be time-synchronized and coordinated with security alarms and events, in order to provide a complete picture of possible threats and attacks. - Monitor the traffic flows and detect/alarm abnormal conditions, such as communication circuit temporary and permanent failures. - Provide intrusion detection and, for more critical circuits, intrusion prevention. - Detect both communication and end equipment operational anomalies, such as failures, internal alarms, security alarms. - Determine what automatic and/or manual actions should be taken for each type of equipment or circuit anomaly #### 6.11 Defence-in-depth Defence-in-depth and defence-in-breadth for Smart Grid systems are defined as using multiple layers of defence across many different potential attack vectors, including the use of traditional cybersecurity mechanisms combined with Smart Grid engineering and operational strategies. The concept behind defence-in-depth is that an attacker has to get through multiple security layers, each of which can prevent or at least delay the attack, while possibly providing notification of the on-going attack before it is successful. The concept behind defence-in-breadth is that an attacker could focus on breaching the security of a less important system that may not have as much security, but then could use that compromised system to launch an attack on his real goal from an unexpected direction. - Design and configure systems with redundancy, both from a cyber security perspective as well as a power grid reliability perspective. - Perform risk assessments using contingency analysis techniques, including detecting, coping, and recovering from n-1 scenarios for all critical systems. - Include non-critical systems in risk assessments if they could possibly be side doors to more critical systems. #### 6.12 Security testing and validation procedures Establish testing and validation procedures for all software applications and all interactions between users and applications, and between different applications. - Testing of all new systems and devices should include testing of security measures. - The validity of software applications should be tested to ensure they perform their functions correctly and do not have embedded malware or security vulnerabilities. - Testing requirements could include both static and dynamic code analysis. - Guidelines from the Open Web Application Security Project (OWASP) could be used to better ensure that web applications are secure. - The NISTIR report 7920 (2012) discusses software testing and references the software testing standard, ISO/IEC/IEEE 29119 (all parts). - Validation should include checking all data inputs at least as "reasonable", with possible cross-checking against other data or algorithms for higher priority data. - Testing should cover initial installations, and after any updates or patching. - Security procedures should also be tested and validated to ensure they perform the security functions they are designed for. #### 6.13 Security interoperability Clearly identify how the interoperability of the security requirements is to be managed. This is particularly important if different organizations or different security domains are involved. - What steps should each organization take? For instance is
there a pre-established list of certificate authorities that are trusted by each as well as all affected stakeholders? What will the different RBAC roles be and what are their privileges? What security testing is required? - What are the default security technologies? Which additional ones may be used? Which are deprecated? - Determine how time synchronizations across all organizations are to be handled. - What happens if suspicious actions are noted? Who should be informed? What actions are taken? How should people and systems cope with the impacts of suspected security attacks? #### 6.14 Additional cybersecurity techniques Some additional cybersecurity techniques include the following. - Network Address Translation (NAT) functions isolate systems from direct access by external systems. They are often included in WiFi network routers, in which a single Internet IP is provided to a site, and is shared by all networked devices at that site. The NAT handles all interactions with the Internet and passes only authorized messages to the systems behind the NAT router, thus providing security against unauthorized traffic. - Access Control Lists (ACL) are used in routers to limit which ports and/or IP addresses are permitted to be accessed by which entities. - Intrusion Detection and Prevention Systems (IDS and IPS) monitor networks for malicious or impermissible traffic. The IDS can detect such malicious traffic and notify users, while an IPS can actually block malicious traffic and support prevention of addition traffic from a suspect IP address. - The Group Domain Of Interpretation (GDOI) method defined in RFC 6407 supports the distribution of a symmetric group key to all pre-configured or otherwise enrolled entities, typically devices. #### 7 Engineering design and configuration management for grid resilience #### 7.1 Intertwining of cyber security and engineering to provide grid resilience Resilience of the grid is often associated with making the grid able to withstand and recover from severe weather and other physical events, but grid resilience can also be enhanced by the ability of the cyber security techniques to withstand and recover from both malicious and inadvertent events. And viewing the grid from the cyber security perspective, often the engineering strategies and operations used for grid security can directly enhance the cyber security policies, procedures, and technologies. Therefore it is critical to see both of these disciplines as part of the overall solution to providing grid resilience. IEC TR 62351-12, Resilience and security recommendations for power systems with distributed energy resources (DER) cyber-physical systems, discusses these issues in more detail. Figure 3 - General security process - Continuous cycle #### 7.2 Security planning Security should be planned and designed into systems from the start, including both cyber security design and engineering design, in order for power systems to be truly resilient to the wide variety of threats: natural threats, inadvertent mistakes, and deliberate attacks. Security functions, such as those focused on power system reliability, as well as those focused on mitigating cyber threats, are integral to the designs of systems. Planning for security in advance of deployment provides a more complete and cost effective solution. Additionally, advanced planning ensures that security services are supportable (may be cost prohibitive to retrofit into non-planned environments). This means that security needs to be addressed at all levels of the architecture. As shown in Figure 3, security is an ever evolving process and is not static. It takes continual work and education to help the security processes keep up with the demands that will be placed on the systems. Security will continue to be a race between corporate security policies/security infrastructure and hostile entities. The security processes and systems will continue to evolve in the future. By definition there are no communication connected systems that are 100 % secure, nor can equipment ever be fail-safe. There will always be residual risks that should be taken into account and managed. Thus, in order to maintain security, constant vigilance and monitoring are needed as well as adaptation to changes in the overall environment. #### 7.3 Engineering strategies for security Utilities have developed many different engineering practices, functions, configurations, checks, and operational methods to help ensure the reliability and safety of the power system. Although not strictly cybersecurity measures, they do provide mitigations against many of the same types of attacks, and indeed provide defence-in-depth and coping methods that cybersecurity measures cannot achieve. From a power system security perspective, it does not matter if cyber tools are used or if power system reliability tools are used — in fact they complement each other and should always be used in conjunction with each other. Just as with any engineering, the costs for including any particular protection should be weighed against the likelihood and possible impact of a failure that could have been prevented or mitigated by that protection. NISTIR 7628, Appendix B provides examples of these power system engineering practices and functions. The following items capture some of these engineering practices and configurations. #### 7.4 System engineering practices and configurations Utility systems are engineered and configured with reliability as a major design factor. Single smart systems and devices can include hardened or redundant components, while multiple systems can be deployed such that they can support or back each other up. Some examples of these system engineering practices and configurations include the following. - Redundant equipment (e.g. redundant automation systems, redundant components, spares). - Redundant communication networks (e.g. multiple communication paths, redundant wireless nodes, redundant interconnections to a backhaul network). - Redundant automation systems (e.g. redundant controllers, redundant master stations, redundant SCADA computers systems, backup systems that can be quickly switched in). - Validation of information input for format and reasonability, including that the input is in the correct format, that values are within limits, that the values are not beyond the capabilities of the automation system. - Redundant information sources (e.g. redundant sensors, voltage measurements from multiple sources such as at the ECP, the PCC, or even the feeder substation). - Redundant or backup control systems (e.g. multiple master stations that can be assigned to manage different intelligent electronic devices, SCADA systems in physically different locations). - Redundant power system configurations (e.g. networked grids, multiple feeds to customer site from different substations, microgrid formation). - Redundant logs and databases with mirrored or frequent updates. - DER generation and storage systems connected at different locations on the grid. - Reserve generation capacity (DER or bulk power) available to handle the rapid emergency changes in generation or load situations. - Configuration setting development procedures, including remedial relay settings. - Post-event engineering forensic analysis capabilities. #### 7.5 Power system equipment monitoring, analysis, and control Smart grid systems are part of the larger power system grid, and therefore the reliability of the grid is critical to the reliability of these systems. - Sensors on substation and feeder equipment monitor volts, VARs, current, temperature, vibrations, etc. eyes and ears for monitoring the power system. - Control capabilities for local control, either automatically (e.g. breaker trip) or manually (e.g. substation technician raises the voltage setting on a tap changer). - Volt/var regulation by local equipment to ensure voltages and vars remain within prescribed limits and are coordinated with DER systems volt/var settings. - Protective relaying to respond to system events (e.g. power system fault) by tripping breakers. - Reclosers which reconnect after a "temporary" fault by trying to close the breaker 2 to 3 times before accepting it as a "permanent" fault. Their actions need to be coordinated with DER "ride-through" settings. - Manual or automatic switching to reconfigure the power system in a timely manner by isolating the faulted section, then reconnecting the unfaulted sections. These actions need to be coordinated with DER microgrid formation and DER volt/var settings, since connection to different sections can necessitate different settings. - Device event logs capture all significant power system events, including DER status changes. - Digital fault recorders capture wave forms of anomalous behaviour of the grid. - Power quality (PQ) harmonics recorders. - Time synchronization to the appropriate accuracy and precision is used by all power system equipment to ensure that the events captured in logs can be synchronized across all locations. #### 7.6 Centralized monitoring and control Utility SCADA systems monitor the equipment that manages the power system and can issue control commands. These SCADA systems report alarms and anomalous events related to the power system. However, these alarms and anomalous events can also indicate automation equipment failures, communication problems, the status of facility equipment, and other automation problems, whether inadvertent or maliciously deliberate. - SCADA systems have approximately 99,98 % availability with 24/7 monitoring. - SCADA systems continuously monitor generators, substations, and feeder equipment (e.g. every second and/or report status and measurements "by exception"). - SCADA systems perform remote control actions on generators, substations, and feeder equipment in response to operator commands or software application commands. - Automatic Generation Control (AGC) issues
control commands to generators to maintain frequency and other parameters within limits. - Load shedding commands can drop feeders, substations, or other large loads rapidly in case of emergencies. - Load control commands can "request" or command many smaller loads to turn off or cycle off. - Disturbance analysis (rapid snapshots of power system during a disturbance for future analysis). - Alarm processing, with categorization of high priority alarms, "intelligent" alarm processing to determine the true cause of the alarm, and events. - Comparisons of device settings against baseline settings. #### 7.7 Centralized power system analysis and control Energy Management Systems (EMS) and Distribution Management Systems (DMS) (along with the DERMS and other control centre systems) use many software functions to analyse the real-time state and probable future state of the power system. These software functions include: - "Power flow" models of the transmission system, bulk generators, and loads simulate the real-time or future (or past) power system scenarios. - "Power flow" models of the distribution system simulate real-time or future power system scenarios, and include the characteristics and status of DER systems either individually or in aggregate. - State estimation uses redundant measurements from the field to "clean up" or estimate the real measurements from sometimes noisy, missing, or inaccurate sensor data. Since many smaller DER systems will not be directly monitored, state estimation can provide estimated values - Power flow applications use the state estimated data to better simulate real-time conditions. - Load and renewable generation forecasts based on weather, history, day-type, and other parameters will forecast the generation requirements. - Contingency analysis (security analysis) assesses the power flow model for single points of failure (n-1) as well as any linked types of failures, and flags possible problems. - Generation reserve capacity is available for instantaneous, short term, and longer term supply of generation in the event of the loss of generation. - Ancillary services from bulk generation are available to handle both efficiency and emergency situations (e.g. generator is set to "follow load" for improved efficiency, generator is capable of a "black start" namely to start up during an outage without needing external power). - Fault Location, Isolation, and Service Restoration (FLISR) analyse fault information in real-time to determine what feeder section to isolate and how to best restore power to unfaulted sections - Volt/var/watt optimization determine the optimal voltage, var, and generation levels usually for efficiency, but also to handle contingencies and emergency situations. - Direct control of DER and loads (load management) for both efficiency and reliability. - Indirect control of DER and loads (pre-established settings, broadcasts, demand response) for both efficiency and reliability. - Ancillary services from DER for both efficiency and reliability (e.g. var support from inverters, managed charging rates for PEVs). #### 7.8 Testing Testing of DER systems for their functionality, and their role in the power system once installed, is critical to reliable operations. Some types of testing include: - Laboratory and field testing of all power system and automation equipment minimizes failure rates. - Software system factory, field, and availability testing. - Rollback capability for database updates. - Configuration testing. - · Relay coordination testing. - Communication network testing, including near power system faults. #### 7.9 Training Training of operators and other stakeholders who are involved with DER systems is vital to ensuring that they are operated reliably and safely: - Dispatcher training simulator, using snapshots of real events as well as scenarios set up by trainers. - · Operational training using case studies, etc. - Training in using new technologies. - Security training. #### 8 Correlation of cyber security with information exchange standards #### 8.1 Concepts for correlating cyber security with information exchange standards Correlating cybersecurity with specific information exchange standards, including functional requirements standards, object modelling standards, and communication standards, is very complex. There is rarely a one-to-one correlation, with more often a one-to-many or many-to-one correspondence. First, communication standards for the Smart Grid are designed to meet many different requirements at many different "layers" in the reference model. Two commonly used reference models are the International Organization for Standardization (ISO)/Open Systems Interconnection model (OSI) 7-layer reference model² and the GridWise Architecture Council (GWAC) Stack³ (see Figure 4), where the OSI 7-layer model maps to the technical levels of the GWAC Stack. Some standards address the lower layers of the reference models, such as wireless media, fibre optic cables, and power line carrier. Others address the "transport" layers for getting messages from one location to another. Still others cover the "application" layers, the semantic structures of the information as it is transmitted between software applications. In addition, there are communication standards that are strictly abstract models of information – the relationships of pieces of information with each other. Cybersecurity is a cross-cutting issue and should be reflected in requirements at all levels: cybersecurity policies and procedures mainly cover the GWAC Stack organizational and informational levels, while cybersecurity technologies generally address those requirements at the technical level. ² ISO 7498-1:1994, Information technology – Open Systems Interconnection-Basic Reference Model: The Basic Model ³ The GWAC Stack is available at http://www.gridwiseac.org/ in the GridWise Interoperability Context-Setting Framework. Figure 4 - ISO/OSI 7-Layer reference model and GWAC Stack reference model Second, regardless of what communications standards are used, cybersecurity should address all layers and provide end-to-end security from the source of the data to the ultimate destination of the data. In addition, cybersecurity should address those aspects outside of the communications system in the upper GWAC Stack layers that may be functional requirements or may rely on procedures rather than technologies, such as authenticating the users and software applications, and screening personnel. Cybersecurity should also address how to cope during an attack, recover from it afterwards, and create a trail of forensic information to be used in post-attack analysis. Third, the cybersecurity requirements should reflect the environment where a standard is implemented rather than the standard itself – how and where a standard is used should establish the levels and types of cybersecurity needed. Communications standards do not address the importance of specific data or how it might be used in systems; these standards only address how to exchange the data. Standards related to the upper layers of the GWAC Stack may address issues of data importance. Fourth, some standards from different standards development organizations do not mandate their provisions using "shall" statements, but rather use statements such as "should," "may," or "could." Some standards also define their provisions as being "normative" or "informative." Normative provisions often are expressed with "shall" statements. Various standards organizations use different terms (e.g. standard, guideline) to characterize their standards according to the kinds of statements used. If standards include security provisions, they need to be understood in the context of the "shall," "should," "may," and/or "could" statements, "normative," or "informative" language with which they are expressed. Therefore, cybersecurity should be viewed as a stack or "profile" of different security technologies and procedures, woven together to meet the security requirements of a particular implementation, and consisting of policy, procedural, and communication standards designed to provide specific services. Ultimately cybersecurity, as applied to the information exchange standards, should be described as profiles of technologies and procedures which can include both "power system" methods (e.g. redundant equipment, analysis of power system data, and validation of power system states) and information technology (IT) methods (e.g. encryption, role-based access control, and intrusion detection). There can also be a relationship between certain communication standards and correlated cybersecurity technologies. For instance, if Transmission Control Protocol (TCP)/Internet Protocol (IP) is being used at the transport layer and if authentication, data integrity, and/or confidentiality are important, then transport layer security (TLS) should be used. Figure 5 and Figure 6 illustrate the profiles of some different communication standards against the GWAC Stack and the OSI reference model. Figure 5 - Core Smart Grid standards for utilities Figure 6 - Customer-focused Smart Grid standards IE #### 8.2 Security for different OSI reference model layers In some standards, the OSI reference model layers are pertinent to their specifications. Some considerations on the security at each of these layers is discussed below. - Physical layer (PHY) refers to the actual media such as wireless, cable, and power line carrier (PLC). Some security techniques are included in PHY layer, but are usually focused on checksums and parity bits for detecting and potentially correcting bit-errors during transmissions. Confidentiality, integrity, and authentication security generally relies on the data link layer (and higher layers). However, more secure PHY layer techniques can be incorporated for very sensitive transmissions, such as those used in the military. - Most types of PHY layer encoding of
0-1 bits to the media include cyclic redundancy check (CRC) to detect errors in this encoding, usually due to interference or other electrical noise. - Wireless LAN security uses techniques such as frequency hopping spread spectrum techniques both to minimize interference and to protect against eavesdropping. For instance, IEEE 802.11 (WiFi) uses direct-sequence spread spectrum (DSSS) and orthogonal frequency-division multiplexing (OFDM). - Data link (DLL) layer covers the node-to-node data link protocols and includes the media access control (MAC) sublayer that links to the PHY layer by defining the format of the data blocks. In some protocols, security is embedded in the DLL layers, but often the primary security is provided by the layers above the DLL layer while affecting the contents of the MAC data blocks and mandating some of the interactions between nodes, particularly those that establish a link. Thus the boundary between the data link layer and the network layer can be fuzzy when discussing security. Common data link layer protocols include: - Ethernet (IEEE 802.3) defines the media access control (MAC) of the PHY and DLL layers, using "carrier-sense, multiple-access with collision detection (CSMA/CD)" technology. It is used in most wired LANs and some WANs. Ethernet relies on security at the network layer and above. - Wireless protocols are defined in the IEEE 802.xx series, including 802.11 for wireless, 802.15.4 for Bluetooth, etc. The security requirements for these wireless protocols are defined in 802.11i. Although ostensibly for wireless communications, these security requirements can also be used over other media such as narrowband PLC. - Power line carrier data link layer security is covered in IEEE 1901, the wideband ITU G.9960 9961, and the narrowband ITU G.990x series (9902, 9903, and 9904). - Digital Subscriber Line (DSL) is used over telephone lines, usually to provide Internet access to individual homes. DSL relies on security at the network layer and above. - General packet radio service (GPRS) is a packet oriented mobile data service on the 2G and 3G cellular communications. GPRS relies on security at the network layer and above as defined by the Global System for Mobile Communications (GSM). - Network layer covers the interactions through networks from node to node. Virtually all networks now us Internet Protocol (IP), although there are three flavours of IP: - IPv4 is the current protocol used across the Internet, - IPv6 is the new protocol that uses longer IP addresses in order to provide unique address to the billions of new devices, - IPsec provides security as part of the network layer. - Transport layer covers the end-to-end management of messages. - TLS is the predominant transport security for establishing authenticated interactions across networks that use TCP/IP. - VPNs also provide network security through insecure networks by encrypting entire messages and tunnelling them through the network by encapsulating them. - Application layer covers the structure, format, and interaction sequences of messages. At this layer, the most important security issue is authentication of the actual software applications that are interacting. For power system communication protocols, particularly IEC TR 62351-13:2016 © IEC 2016 those that do not use the TCP transport layer and therefore cannot use TLS or other transport security techniques, protocol-specific security is necessary. Examples include: - IEC TS 62351-4 for the Manufacturing Message Specification (MMS) used in IEC 61850 and IEC 60870-6 (aka. TASE.2 or ICCP), - IEC TS 62351-5 for IEC 60870-5, - IEC TS 62351-6 for IEC 61850 GOOSE and SV, - IEEE 1815 for DNP3. - IEC 62351-11 for XML-based protocols (in development) - ANSI C12.22 for (North American) AMI systems. ## 8.3 Interrelationships between the IEC 62351 security standards and IEC communication standards There is not a one-to-one correlation between the IEC 62351 security standards and IEC communication standards, such as the IEC 60870-5 series, the IEC 60870-6 series, the IEC 61850 series, the IEC 61970 series, and the IEC 61968 series. This is because many of the communication standards rely on the same underlying standards at different layers. The interrelationships between the IEC 62351 security standards and these standards are illustrated in Figure 7. Figure 7 – Interrelationships between the IEC 62351 security standards and certain IEC communication standards #### Bibliography #### Cybersecurity standards / guides used in the Smart Grid ASAP-SG Security Profiles for: Third Party Data Access Advanced Metering Infrastructure (AMI) **Distribution Management** Wide-Area Monitoring, Protection, and Control (WAMPAC) Substation Automation (under development) CIGRE B5/D2.46, Application and management of cyber security measures for Protection & Control systems CIGRE D2.31, Security architecture principles for digital systems in Electric Power Utilities EPUs DHS Catalogue of Control Systems Security DHS Cyber Security Procurement Language for Control Systems DOE / DHS Cybersecurity Capability Maturity Model for the Electricity Subsector DOE/NIST/NERC Electricity Subsector Cybersecurity Risk Management Process Guideline DOE / DHS Electric Sector Cybersecurity Risk Management Maturity Initiative DOE Roadmap to Achieve Energy Delivery Systems Cybersecurity IEC 62351 (all parts), Power systems management and associated information exchange – Data and communications security IEC TS 62351-1, Power systems management and associated information exchange – Data and communications security – Part 1: Communication network and system security – Introduction to security issues IEC 62351-3, Power systems management and associated information exchange – Data and communications security – Part 3: Communication network and system security – Profiles including TCP/IP IEC TS 62351-4, Power systems management and associated information exchange – Data and communications security – Part 4: Profiles including MMS IEC TS 62351-5, Power systems management and associated information exchange – Data and communications security – Part 5: Security for IEC 60870-5 and derivatives IEC TS 62351-6, Power systems management and associated information exchange – Data and communications security – Part 6: Security for IEC 61850 IEC TS 62351-7, Power systems management and associated information exchange – Data and communications security – Part 7: Network and system management (NSM) data object models IEC TS 62351-8, Power systems management and associated information exchange – Data and communications security – Part 8: Role-based access control IEC 62351-9, Power systems management and associated information exchange – Data and communications security – Part 9: Cyber security key management for power system equipment⁴ IEC TR 62351-10, Power systems management and associated information exchange – Data and communications security – Part 10: Security architecture guidelines IEC 62351-11, Power systems management and associated information exchange – Data and communications security – Part 11: Security for XML files⁵ IEC TR 62351-12, Power systems management and associated information exchange – Data and communications security – Part 12: Resilience and security recommendations for power systems with distributed energy resources (DER) cyber-physical systems IEC 62443 (all parts), Industrial communication networks - Network and system security IEC 62443-3-3, Industrial communication networks – Network and system security – Part 3-3: System security requirements and security levels IEC 62443-4-1, Security for industrial automation and control systems – Part 4-1: Secure product development life-cycle requirements⁶ IEEE 1686, Substation Intelligent Electronic Devices (IEDs) Cyber Security Capabilities (being updated) IEEE 802 series IEEE 802.11i Wireless security IEEE 802.1X Port Based Network Access Control IEEE 802.1AE MAC security IEEE 802.1AR Secure Device Identity IETF Cybersecurity RFCs, including: RFC 5246 Transport Layer Security (TLS) RFC 6407 Group Domain of Interpretation (GDOI) RFC 4101, RFC 4102, RFC 4103 Base standards for IP Security (IPSec) RFC 6347 Datagram Transport Layer Security (DTLS) RFC 3711 Secure Real-time Transport Protocol (SRTP) RFC 4962 Authentication, Authorization, and Accounting RFC 5247 Extensible Authentication Protocol (EAP) Key Management Framework RFC 5746 Transport Layer Security (TLS) Renegotiation Indication Extension RFC 2818 HTTP over TLS ⁴ Under preparation. Stage at the time of publication: IEC CDV 62351-9:2016. ⁵ Under preparation. Stage at the time of publication: IEC FDIS 62351-11:2016. ⁶ Under preparation. Stage at the time of publication: IEC CDV/FDIS 62443-4-1:2016. IETF RFC 6272, Internet Protocols for the Smart Grid (identifies RFCs used in the Smart Grid) ISA SP99, Cybersecurity mitigation for industrial and bulk power generation stations (work in process) ISO/IEC TR 27019, Information technology – Security techniques – Information security management guidelines based on ISO/IEC 27002 for process control systems specific to the energy industry ISO/IEC/IEEE 29119 (all parts), Software and systems engineering - Software testing ISO/IEC 27000, Information technology – Security techniques – Information security management systems – Overview and vocabulary NERC, Critical Infrastructure Protection (CIP) 002-009 (multiple versions) NIST FIPS 140-2, Cryptographic Security NIST SP 500-267, Security Profile for IPv6 NIST SP 800-131A, Transitions: Recommendation for Transitioning the Use of Cryptographic Algorithms and Key Lengths (draft) NIST SP 800-53, Recommended Security Controls for Federal Information Systems and Organizations (rev 4 as draft) NIST SP 800-82, Guide to Industrial Control Systems (ICS) Security NIST Special Publication 1108, NIST Framework and Roadmap for Smart Grid Interoperability Standards NIST Special Publication 800-39, Managing Information
Security Risk: Organization, Mission, and Information System View NIST Special Publication 800-53, Recommended Security Controls for Federal Information Systems NISTIR 7628 Vol. 1 thru 3 Guidelines for Smart Grid Cyber Security NISTIR 7823, Advanced Metering Infrastructure Smart Meter Upgradeability Test Framework (draft) NISTIR 7628, Guidelines for Smart Grid Cybersecurity NISTIR 7920 (2012), Report on the Metrics and Standards for Software Testing (MaSST) OASIS WS-Security for web services #### Smart Grid standards that include or reference cybersecurity requirements ANSI C12.1-2008, Standard for Electric Meters Code for Electricity Metering ANSI C12.18-2006/IEEE P1701/MC1218, Protocol Specification for ANSI Type 2 Optical Port ANSI C12.19-2008/IEEE 1377/MC1219, Utility Industry End Device Data Tables ANSI C12.21/IEEE P1702/MC1221, Protocol Specification for Telephone Modem Communication ANSI C12.22/IEEE P1703/MC1222, Protocol Spec for Interfacing to Data Communications Networks ANSI/ASHRAE 135-2010/ISO 16484-5 BACnet ANSI/CEA 709.1-B-2002, Control Network Protocol Specification CEA 852.1:2009, Enhanced Tunneling Device Area Network Protocols ISO 15118, Road vehicles - Vehicle to grid communication interface ISO 7498-1:1994, Information technology – Open Systems Interconnection-Basic Reference Model: The Basic Model IEC 60870-5 (all parts), Telecontrol equipment and systems – Part 5: Transmission protocols IEC 60870-6 (all parts), Telecontrol equipment and systems – Part 6: Telecontrol protocols compatible with ISO standards and ITU-T recommendations (references IEC 62351) IEC 61850 (all parts), Communication networks and systems for power utility automation (references IEC 62351) IEC TR 61850-90-5, Communication networks and systems for power utility automation – Part 90-5: Use of IEC 61850 to transmit synchrophasor information according to IEEE C37.118 IEC 61968 (all parts), Application integration at electric utilities – System interfaces for distribution management (references IEC 62351) IEC 61970 (all parts), Energy management system application program interface (EMS-API) (references IEC 62351) IEC 62056 series, Electricity metering data exchange - the DLMS/COSEM Suite IEC 62443-3-2, Security for industrial automation and control systems – Part 3-2: Security risk assessment and system design⁷ IEC 62541 (all parts), OPC unified architecture IEC PAS 62559, Intelligrid methodology for developing requirements for energy systems8 IEEE 1588, Precision Time Protocol in Power System Applications IEEE 1815 DNP3 (Distributed Network Protocol) IEEE 2030.5 SEP2 (Smart Energy Profile 2.0) ⁷ Under consideration. ⁸ Withdrawn. IEEE 1901-2010, (Same as ITU-T G.9972) Inter-System Protocol (ISP)-based Broadband Power Line Carrier (PLC) IEEE 802 Family, specifically IEEE 802.11i IEEE C37.238, Profile of IEEE 1588 for Electric Power Systems IEEE C37.239, Standard for Common Format for Event Data Exchange (COMFEDE) for Power Systems IEEE P1642, Recommended Practice for Protecting Public Accessible Computer Systems from Intentional EMI IEEE P1775/1.9.7, March 2009, IEEE Standard for Power Line Communication Equipment -EMC Requirements - Testing and Measuring Methods IEEE P1901, Broadband Communications Over Power Lines MAC and PHY protocols IEEE P1901.2 (same as ITU-T G.9955/G.9956), Low frequency communications over power lines IEEE P2030, Guide for Smart Grid Interoperability of Energy Technology and Information Technology Operation With the Electric Power System (EPS), and End-Use Applications and Loads IETF RFC 6272, Internet Protocols for the Smart Grid IEEE 2030.5, Smart Energy Profile (SEP) 2.0 ITU-T G.9955/G.9956, Low frequency communications over power lines NEMA SG-AMI 1-2009, Requirements for Smart Meter Upgradeability Network Management Standards - including Internet based standards such as DMTF, CIM, WBEM, ANSI INCITS 438-2008, SNMP v3, Netconf, STD 62, and OSI-based standards including CMIP/CMIS NISTIR 7761 NIST, Guidelines for Assessing Wireless Standards for Smart Grid Applications NRECA MultiSpeak OASIS EMIX Energy Market Information eXchange SGIP SGTCC Interoperability Process Reference Manual (IPRM) UCAlug OpenADE Energy Service Provider Interface UCAlug Security Profile for AMI v.1.0 (AMI SEC) UL-1741 Static Inverters and Charge Controllers for use in PV Power Systems W3C Efficient XML Interchange (EXI) W3C Extensible Markup Language (XML) W3C Simple Object Access Protocol (SOAP) W3C Web Definition Service Language (WSDL) W3C XML Service Definition (XSD) ZigBee Smart Energy Profile (SEP) 1.0 and 1.1 ## British Standards Institution (BSI) BSI is the national body responsible for preparing British Standards and other standards-related publications, information and services. BSI is incorporated by Royal Charter. British Standards and other standardization products are published by BSI Standards Limited. #### About us We bring together business, industry, government, consumers, innovators and others to shape their combined experience and expertise into standards -based solutions. The knowledge embodied in our standards has been carefully assembled in a dependable format and refined through our open consultation process. Organizations of all sizes and across all sectors choose standards to help them achieve their goals. #### Information on standards We can provide you with the knowledge that your organization needs to succeed. Find out more about British Standards by visiting our website at bsigroup.com/standards or contacting our Customer Services team or Knowledge Centre. #### **Buying standards** You can buy and download PDF versions of BSI publications, including British and adopted European and international standards, through our website at bsigroup.com/shop, where hard copies can also be purchased. If you need international and foreign standards from other Standards Development Organizations, hard copies can be ordered from our Customer Services team. #### Copyright in BSI publications All the content in BSI publications, including British Standards, is the property of and copyrighted by BSI or some person or entity that owns copyright in the information used (such as the international standardization bodies) and has formally licensed such information to BSI for commercial publication and use. Save for the provisions below, you may not transfer, share or disseminate any portion of the standard to any other person. You may not adapt, distribute, commercially exploit, or publicly display the standard or any portion thereof in any manner whatsoever without BSI's prior written consent. #### Storing and using standards Standards purchased in soft copy format: - A British Standard purchased in soft copy format is licensed to a sole named user for personal or internal company use only. - The standard may be stored on more than 1 device provided that it is accessible by the sole named user only and that only 1 copy is accessed at any one time. - A single paper copy may be printed for personal or internal company use only. Standards purchased in hard copy format: - A British Standard purchased in hard copy format is for personal or internal company use only. - It may not be further reproduced in any format to create an additional copy. This includes scanning of the document. If you need more than 1 copy of the document, or if you wish to share the document on an internal network, you can save money by choosing a subscription product (see 'Subscriptions'). #### **Reproducing extracts** For permission to reproduce content from BSI publications contact the BSI Copyright & Licensing team. #### **Subscriptions** Our range of subscription services are designed to make using standards easier for you. For further information on our subscription products go to bsigroup.com/subscriptions. With **British Standards Online (BSOL)** you'll have instant access to over 55,000 British and adopted European and international standards from your desktop. It's available 24/7 and is refreshed daily so you'll always be up to date. You can keep in touch with standards developments and receive substantial discounts on the purchase price of standards, both in single copy and subscription format, by becoming a **BSI Subscribing Member**. **PLUS** is an updating service exclusive to BSI Subscribing Members. You will automatically receive the latest hard copy of your standards when they're revised or replaced. To find out more about becoming a BSI Subscribing Member and the benefits of membership, please visit bsigroup.com/shop. With a **Multi-User Network Licence (MUNL)** you are able to host standards publications on your intranet. Licences can cover as few or as many users as you wish. With updates supplied as soon as they're available, you can be sure your documentation is current. For further information, email subscriptions@bsigroup.com. #### Revisions Our British Standards and other publications are updated by amendment or revision. We continually improve the quality of our products and services to benefit your business. If you find an inaccuracy or ambiguity within a British Standard or other BSI publication please inform the Knowledge Centre. #### **Useful Contacts** **Customer Services** Tel: +44 345 086 9001 **Email (orders):** orders@bsigroup.com **Email (enquiries):** cservices@bsigroup.com Subscriptions Tel: +44 345 086 9001 Email: subscriptions@bsigroup.com Knowledge Centre **Tel:** +44 20 8996 7004 $\textbf{Email:} \ knowledge centre @bsigroup.com$ Copyright & Licensing Tel: +44 20 8996 7070 Email: copyright@bsigroup.com #### **BSI Group Headquarters** 389 Chiswick High Road London W4 4AL UK