PD CEN/TS 14418:2014 ### **BSI Standards Publication** Geosynthetic Barriers — Test method for the determination of the influence of freezing-thawing cycles on the permeability of clay geosynthetic barriers #### National foreword This Published Document is the UK implementation of CEN/TS 14418:2014. It supersedes DD CEN/TS 14418:2005 which is withdrawn. The UK participation in its preparation was entrusted to Technical Committee B/553, Geotextiles and geomembranes. A list of organizations represented on this committee can be obtained on request to its secretary. This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application. © The British Standards Institution 2014. Published by BSI Standards Limited 2014 ISBN 978 0 580 85550 4 ICS 59.080.70 Compliance with a British Standard cannot confer immunity from legal obligations. This Published Document was published under the authority of the Standards Policy and Strategy Committee on 31 October 2014. Amendments issued since publication Date Text affected # TECHNICAL SPECIFICATION SPÉCIFICATION TECHNIQUE TECHNISCHE SPEZIFIKATION #### **CEN/TS 14418** October 2014 ICS 59.080.70 Supersedes CEN/TS 14418:2005 #### **English Version** # Geosynthetic Barriers - Test method for the determination of the influence of freezing-thawing cycles on the permeability of clay geosynthetic barriers Géosynthétiques bentonitiques - Méthode d'essai pour la détermination de l'influence de cycles gel/dégel sur la perméabilité des géosynthétiques bentonitiques Geosynthetische Dichtungsbahnen - Prüfverfahren zur Bestimmung des Einflusses von Frost-Tau-Zyklen auf die Wasserdurchlässigkeit von geosynthetischen Tondichtungsbahnen This Technical Specification (CEN/TS) was approved by CEN on 21 July 2014 for provisional application. The period of validity of this CEN/TS is limited initially to three years. After two years the members of CEN will be requested to submit their comments, particularly on the question whether the CEN/TS can be converted into a European Standard. CEN members are required to announce the existence of this CEN/TS in the same way as for an EN and to make the CEN/TS available promptly at national level in an appropriate form. It is permissible to keep conflicting national standards in force (in parallel to the CEN/TS) until the final decision about the possible conversion of the CEN/TS into an EN is reached. CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kingdom. EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG CEN-CENELEC Management Centre: Avenue Marnix 17, B-1000 Brussels | Contents ForewordIntroduction | | _ | | | | |--------------------------------|--|---|---|----------------------|---| | | | | 1 | Scope | 5 | | | | | 2 | Normative references | 5 | | 3 | Terms and definitions | 5 | | | | | 4 | Principle | 5 | | | | | 5 | Apparatus | 5 | | | | | 6 | Reagent | 6 | | | | | 7 | Procedure | 6 | | | | | 7.1 | Specimen preparation | | | | | | 7.2 | Specimen hydration | | | | | | 7.3 | Specimen freezing | 7 | | | | | 7.4 | Specimen thawing | 7 | | | | | 7.5 | Repetition | 7 | | | | | 7.6 | Preparation of specimen for flux testing | | | | | | 8 | Calculation and expression of results | | | | | | 8.1 | Recording of data | | | | | | 8.2 | Calculation and expression of results | 8 | | | | | 9 | Test Report | 8 | | | | #### **Foreword** This document (CEN/TS 14418:2014) has been prepared by Technical Committee CEN/TC 189 "Geosynthetics", the secretariat of which is held by NBN. Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN [and/or CENELEC] shall not be held responsible for identifying any or all such patent rights. This document supersedes CEN/TS 14418:2005. According to the CEN-CENELEC Internal Regulations, the national standards organizations of the following countries are bound to announce this Technical Specification: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom. #### Introduction This Technical Specification defines a method for testing the influence of freezing-thawing cycles on the flux of clay geosynthetic barriers. Such resistance is a requirement for many uses of these products. The influence ratio is an indication of the behaviour of the product when exposed to repeated freezing and thawing cycles in earth constructions. The flux of saturated clay geosynthetic barriers may increase in consequence of repeated freezing-thawing cycles. The Technical Specification does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and to comply with any regulations or legislation regardless of the wording in the technical specification. The flux determined using this test method is not considered to be representative of the in-service flux of GBR-Cs. This test determines the influence of freezing-thawing cycles in the absence of any other phenomena, for example cation exchange. #### 1 Scope This Technical Specification describes an index test to determine the influence ratio of freezing-thawing cycles on the flux through saturated clay geosynthetic barriers. This test method is applicable to GBR-C products with no additional sealing layers attached. #### 2 Normative references The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. EN 16416, Geosynthetic clay barriers — Determination of water flux index — Flexible wall permeameter method at constant head EN ISO 3696, Water for analytical laboratory use — Specification and test methods (ISO 3696) EN ISO 10320, Geotextiles and geotextile-related products - Identification on site (ISO 10320) ISO 554, Standard atmospheres for conditioning and/or testing — Specifications #### 3 Terms and definitions For the purposes of this document, the following term and definition applies. #### 3.1 #### influence ratio ratio of the flux of a specimen exposed to freezing-thawing cycles to that of the flux through an unexposed reference specimen, expressed in percent #### 4 Principle The flux through 100 mm diameter clay geosynthetic barrier specimens is determined with a flexible wall permeameter both on specimens exposed to freezing-thawing cycles and on unexposed reference specimens. A specimen either square with an edge length not less than 200 mm or circular with a diameter not less than 200 mm to a tolerance of \pm 0,5 % is hydrated under a pressure of (4 \pm 0,2) kPa for 48 h at constant room temperature. After hydration, the specimen is stored in the freezer under a pressure of (4 \pm 0,2) kPa at -5 °C for 24 h. After the freezing period the specimen is allowed to thaw under a pressure of (4 \pm 0,2) kPa at room temperature for 24 h. Then the specimen is hydrated again for 24 h at room temperature. This freezing-thawing cycle is performed four times before cutting the test specimen. Eventually the test specimen and the unexposed reference specimen are tested in accordance with EN 16416. #### 5 Apparatus The apparatus shall consist of the following: - a template of known dimensions to a tolerance of \pm 0,5 % either square with an edge length not less than 200 mm or circular with a diameter not less than 200 mm, - a waterproof box large enough to accommodate the specimen, ## PD CEN/TS 14418:2014 **CEN/TS 14418:2014 (E)** - a rigid chemically inert pressure plate of the same dimensions as the specimen, and not less than 10 mm thick, - sufficient weights to exert a pressure of (4 ± 0.2) kPa on the specimen (allowing for the weight of the pressure plate), - a mechanically bonded nonwoven geotextile with a mass per unit area of (250 ± 50) g/m², - a freezer capable to maintain a temperature of (−5 ± 2) °C. #### 6 Reagent De-ionized water in accordance with EN ISO 3696, grade 3. #### 7 Procedure #### 7.1 Specimen preparation Inspect the bulk clay geosynthetic barrier specimen to be tested and record any disturbance, irregularity or damage. Choose two representative sections of the specimen for testing, one for the reference specimen and one for the test specimen to be submitted to the freezing-thawing cycles. Place the template on the selected section. Cut the specimens to the exact size of the template with a sharp knife or any other suitable instrument. Remove the specimens carefully to avoid loss of bentonite. The specimen size may be limited by safety restrictions on the total mass of the weights where these are to be transported manually. Seal the edges of the clay geosynthetic barrier specimens with waterproof tape or self-adhesive aluminium foil to prevent bentonite loss during further handling. #### 7.2 Specimen hydration Fill a waterproof box with water. Place a piece of mechanically bonded nonwoven geotextile with a mass per unit area of (250 ± 50) g/m² on the bottom of the box and manually remove any air bubbles. Place the GBR-C sample on the nonwoven and then put a further piece of similar nonwoven geotextile on top of the GBR-C and manually remove any air bubbles. Place a pressure plate on the "sandwich" of specimens. Place weights on the pressure plate to obtain a required pressure of (4 ± 0.2) kPa. #### Key - 1 dead load - 2 pressure plate - 3 GBR-C sample - 4 mechanically bonded nonwoven geotextile - 5 waterproof box Figure 1 — GBR-C hydration setup NOTE The use of drainage mats instead of nonwoven geotextile results in unevenness in the surface of GBR-Cs. This could lead to incorrect measurements. Add de-ionized water to the box so that the water level is not above the top of the pressure plate. In order to maintain the GBR-C specimen submerged, add water at the rate it is absorbed by the GBR-C specimen. Keep the specimen submerged at room temperature selected according to ISO 554 and at a pressure of (4 ± 0.2) kPa. #### 7.3 Specimen freezing After 48 h, remove the excess water from the box. Preset the freezer to a temperature of (-5 ± 2) °C prior to placing specimen inside it. Move the box containing the test specimen with the weights and the pressure plate to the freezer. Allow the test specimen to freeze for 24 h. The freezer temperature shall be (−5 ± 2) °C. #### 7.4 Specimen thawing After the freezing period allow the specimen to thaw for 24 h at room temperature selected according to ISO 554 without adding any water. Then add water again according to the procedure described in 7.2. Submerge the specimen again for a minimum of 24 h at room temperature selected according to ISO 554 without adding any water unless it can be shown that omitting this point has no influence on the test result. #### 7.5 Repetition Repeat steps from 7.2 to 7.4 a further three times. #### 7.6 Preparation of specimen for flux testing Remove the weights and the nonwoven geotextile pieces and the clay geosynthetic barrier specimen from the box and carefully place the specimen on a flat smooth surface. Take a (100 ± 2) mm diameter specimen and perform the test in accordance with EN 16416. Perform the test in accordance with EN 16416 on an unexposed reference specimen. #### 8 Calculation and expression of results #### 8.1 Recording of data The following data shall be recorded for each test: - a) the duration of the different conditioning periods (saturation, freezing, thawing); - b) the freezer temperature; - c) all flux values determined and the corresponding time periods. #### 8.2 Calculation and expression of results Calculate the influence ratio *R* of freezing-thawing cycles as follows: $$R = 100 \; (\frac{q_{\rm test}}{q_{\rm reference}})$$ where q_{test} is the flux value (in m³/(m².s)) of the test specimen after exposure to the wetting-drying cycles; $q_{\text{reference}}$ is the flux value in (m³/(m².s)) of the reference specimen. #### 9 Test Report The test report shall include the following particulars: - a) number and date of this standard; - b) identification of the sample in accordance with EN ISO 10320, date of receipt and date of testing; - c) conditioning atmosphere; - d) the results obtained, expressed in accordance with 8.2. # British Standards Institution (BSI) BSI is the national body responsible for preparing British Standards and other standards-related publications, information and services. BSI is incorporated by Royal Charter. British Standards and other standardization products are published by BSI Standards Limited. #### About us We bring together business, industry, government, consumers, innovators and others to shape their combined experience and expertise into standards -based solutions. The knowledge embodied in our standards has been carefully assembled in a dependable format and refined through our open consultation process. Organizations of all sizes and across all sectors choose standards to help them achieve their goals. #### Information on standards We can provide you with the knowledge that your organization needs to succeed. Find out more about British Standards by visiting our website at bsigroup.com/standards or contacting our Customer Services team or Knowledge Centre. #### **Buying standards** You can buy and download PDF versions of BSI publications, including British and adopted European and international standards, through our website at bsigroup.com/shop, where hard copies can also be purchased. If you need international and foreign standards from other Standards Development Organizations, hard copies can be ordered from our Customer Services team. #### **Subscriptions** Our range of subscription services are designed to make using standards easier for you. For further information on our subscription products go to bsigroup.com/subscriptions. With **British Standards Online (BSOL)** you'll have instant access to over 55,000 British and adopted European and international standards from your desktop. It's available 24/7 and is refreshed daily so you'll always be up to date. You can keep in touch with standards developments and receive substantial discounts on the purchase price of standards, both in single copy and subscription format, by becoming a **BSI Subscribing Member**. **PLUS** is an updating service exclusive to BSI Subscribing Members. You will automatically receive the latest hard copy of your standards when they're revised or replaced. To find out more about becoming a BSI Subscribing Member and the benefits of membership, please visit bsigroup.com/shop. With a **Multi-User Network Licence (MUNL)** you are able to host standards publications on your intranet. Licences can cover as few or as many users as you wish. With updates supplied as soon as they're available, you can be sure your documentation is current. For further information, email bsmusales@bsigroup.com. #### **BSI Group Headquarters** 389 Chiswick High Road London W4 4AL UK #### Revisions Our British Standards and other publications are updated by amendment or revision. We continually improve the quality of our products and services to benefit your business. If you find an inaccuracy or ambiguity within a British Standard or other BSI publication please inform the Knowledge Centre. #### Copyright All the data, software and documentation set out in all British Standards and other BSI publications are the property of and copyrighted by BSI, or some person or entity that owns copyright in the information used (such as the international standardization bodies) and has formally licensed such information to BSI for commercial publication and use. Except as permitted under the Copyright, Designs and Patents Act 1988 no extract may be reproduced, stored in a retrieval system or transmitted in any form or by any means – electronic, photocopying, recording or otherwise – without prior written permission from BSI. Details and advice can be obtained from the Copyright & Licensing Department. #### **Useful Contacts:** #### **Customer Services** Tel: +44 845 086 9001 Email (orders): orders@bsigroup.com Email (enquiries): cservices@bsigroup.com #### Subscriptions Tel: +44 845 086 9001 Email: subscriptions@bsigroup.com #### **Knowledge Centre** Tel: +44 20 8996 7004 Email: knowledgecentre@bsigroup.com #### **Copyright & Licensing** Tel: +44 20 8996 7070 Email: copyright@bsigroup.com