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ii
Foreword

This Published Document has been prepared by Technical Committee SS/6. This 
part of PD 6461 fulfils an identified need to provide clear guidance to scientists, 
engineers and technicians, who might not be fully conversant with detailed 
statistical techniques, on how to perform an uncertainty evaluation.

Reports on measurement uncertainty have accompanied test results produced by 
National Standards Laboratories for many years where highly accurate 
measurements are required. Furthermore, this practice has recently been 
extended to results produced by accredited calibration and test facilities.

However, as processes become more efficient, performance specifications become 
tighter and, with the increasing requirement for traceable measurements, more 
and more engineers and technicians find they are faced with the task of carrying 
out an uncertainty evaluation on their reported measurement results.

Guidance on measurement uncertainty exists at a very high level in the form of a 
document entitled Guide to the expression of uncertainty in measurement (GUM) 
and is available from BSI as PD 6461-3:1995.

This document is intended to provide guidance to practising engineers where no 
other guidance is available. This document is directed at the practising engineer 
and others who wish to perform a relatively simple evaluation. It does not replace 
or supersede any published technical or sector-specific standards on the subject, 
nor does it replace the GUM, which is regarded as the ultimate authority in the 
area.

This publication does not purport to include all the necessary provisions of a 
contract. Users are responsible for its correct application.

Compliance with a Published Document does not of itself confer 
immunity from legal obligations.

This Published Document is not to be regarded as a British Standard.
Summary of pages

This document comprises a front cover, an inside front cover, pages i and ii 
pages 1 to 41 and a back cover.

The BSI copyright notice displayed in this document indicates when the 
document was last issued.
© BSI 20 August 2004



PD 6461-4:2004
1 Scope

This Published Document sets out the procedures to be followed in evaluating the uncertainty in the result 
of a measurement. It follows the principles set out in the document Guide to the expression of uncertainty 
in measurement, known as the GUM (PD 6461-3). It is intended for use by the practising measurement 
professional who seeks a practical guide to the application of the GUM’s methodology to industrial 
measurement problems. This Published Document is applicable to situations where a formula or 
mathematical model is available for the required quantity in terms of input (or influence) quantities. It 
does not cover circumstances where reproducibility studies are required to provide a full statement of 
uncertainty. 

Where this Published Document stops short of the rigorous approach advocated in the GUM, reference is 
made to the appropriate clause in the GUM for those requiring details of the full analysis. 

Short examples illustrating the individual steps in the procedures are given in the body of the standard 
and a fuller example of the application of the procedures is given in Annex A.

2 Normative references
The following referenced documents are indispensable for the application of this document. For dated 
references, only the cited edition applies. For undated references, the latest edition of the referenced 
document (including any amendments) applies.

PD 6461-1, General metrology — Part 1: Basic and general terms (VIM).

PD 6461-3, General metrology — Part 3: Guide to the expression of uncertainty in measurement (GUM).

3 Terms and definitions
For the purposes of this Published Document, the terms and definitions given in PD 6461-1 (VIM) 
and PD 6461-3 (GUM) and the following apply. References are given to the appropriate clauses of the VIM 
or the GUM. A small number of additional terms are used in this Published Document and these are 
defined in 3.2, 3.4 and 3.11 to 3.13.

3.1  
uncertainty
parameter, associated with the result of a measurement, that characterizes the dispersion of the values 
that could reasonably be attributed to the measurand (VIM 3.9)

3.2  
relative uncertainty
uncertainty expressed as a proportion or percentage of the measurement result

3.3  
standard uncertainty
u(x)
uncertainty of the result of a measurement expressed as a standard deviation (GUM 2.3.1)

3.4  
relative standard uncertainty
u*(x)
standard uncertainty expressed as a proportion or percentage of the measurement result

3.5  
combined standard uncertainty
uc(y)
standard uncertainty of the result of a measurement when that result is obtained from the values of a 
number of other quantities, equal to the positive square root of a sum of terms, the terms being the 
variances or covariances of these other quantities weighted according to how the measurement result 
varies with changes in these quantities (GUM 2.3.4)
© BSI 20 August 2004 1
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3.6  
expanded uncertainty
U = kuc(y)
quantity defining an interval about the result of a measurement that may be expected to encompass a large 
fraction of the distribution of values that could reasonably be attributed to the measurand (GUM 2.3.5)
NOTE The fraction may be viewed as the coverage probability or the level of confidence of the interval.

3.7  
coverage factor
k
numerical factor used as a multiplier of the combined standard uncertainty in order to obtain an expanded 
uncertainty (GUM 2.3.6)
NOTE k is typically in the range 2 to 3. 

3.8  
type A evaluation of uncertainty
method of evaluation of uncertainty by the statistical analysis of a series of observations (GUM 2.3.2)

3.9  
type B evaluation of uncertainty
method of evaluation of uncertainty by means other than the statistical analysis of a series of observations 
(GUM 2.3.3)

3.10  
sensitivity coefficient
ci
equal to the partial derivative, ·f/·Xi, of the functional relationship, f, between the input quantities, x1…xN, 
and the output quantity, y, evaluated at the nominal values of the input quantities (GUM 5.1.3)
NOTE ci is used as a weighting factor used to convert uncertainty in an input quantity, xi, into the resulting uncertainty in the 
output quantity, y.

3.11  
relative sensitivity coefficient
c*i
weighting factor used to convert relative uncertainty in an input quantity, xi, into the resulting relative 
uncertainty in the output quantity, y
NOTE c*i is equal to cixi/y.

3.12  
contribution to uncertainty
product of the standard uncertainty u(xi) in input quantity xi and the absolute value of the sensitivity 
coefficient ci

3.13  
contribution to relative uncertainty
product of the relative standard uncertainty u*(xi) in input quantity xi and the absolute value of the relative 
sensitivity coefficient c*i
2 © BSI 20 August 2004
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4 Symbols

5 The evaluation of uncertainty
The analysis of most measurement uncertainties can be reduced to a common, simple and logical, 
step-by-step procedure. This procedure is equally applicable to a simple measurement such as the length 
of a machined component and to an evaluation of the uncertainty in the National Standard for length; the 
difference between the two analyses lies only in the number, nature and magnitude of the uncertainties to 
be considered.

The procedure comprises the following steps:

a) definition of the relationship between all the input measurements and the measurand (Clause 6);

b) for each quantity, compilation of a list of all the factors that contribute to uncertainty in that input 
(Clause 7);

c) for each of the input uncertainty sources, estimation of the magnitude of the uncertainty (Clause 8);

d) from the relationship defined in step a), estimation of the effect that each quantity has on the 
measurement result (Clause 9);

e) combining the uncertainties in all the input quantities to obtain the uncertainty in the output quantity 
(Clause 10);

f) expressing the expanded uncertainty as an interval about the measurement result within which it is 
anticipated, with a stated level of confidence, that the measurand will lie (Clause 11).

ai estimated half-width of a component of uncertainty associated with input estimate xi

b1,b2 lower and upper bounds respectively of an asymmetric distribution (8.3.6)
ci sensitivity coefficient for input quantity xi

c*i relative sensitivity coefficient for input estimate xi

f mathematical relationship between the measurand Y and the input quantities Xi on which Y 
depends

 ·f/·xi partial derivative with respect to input quantity Xi of the mathematical relationship f between 
the measurand and the input quantities, given by evaluating ·f/·Xi at X1 = x1, …, XN = xN

k multiplier or coverage factor used to calculate the expanded uncertainty U
n number of repeat readings or observations
N number of input quantities Xi on which the measurand depends
s(xj) experimental standard deviation of a random variable Xj determined from n repeated 

observations
experimental standard deviation of the arithmetic mean 

U expanded uncertainty associated with the output estimate y
U* relative expanded uncertainty associated with the output estimate y
u(xi) standard uncertainty associated with the input estimate xi

uc(y) combined standard uncertainty associated with the output estimate y
u*(xi) relative standard uncertainty associated with the input estimate xi

uc*(y) combined relative standard uncertainty associated with the output estimate y
xi,j j-th observation of random quantity Xi

arithmetic mean or average of n repeated observations xi,j, j = 1,…n of input quantity Xi or 
randomly varying quantity Xi

xi estimate of the input quantity Xi

y estimate of the measurand Y
%xi change in xi used to calculate the sensitivity coefficient numerically
%y change in y determined when calculating the sensitivity coefficient numerically
v degrees of freedom in the experimental standard deviation of a random variable x determined 

from n repeated observations. v is equal to n – 1

s x( ) x

xi
© BSI 20 August 2004 3
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6 Defining the relationship between the input quantities and the output 
quantity

6.1 It is rare that the required value of a measurand, Y, is obtained directly and in most cases the result is 
obtained from a measurement of a number, N, of other measurements, X1, X2, …, XN, that are combined 
through a functional relationship, f, to arrive at the required value. Thus

Y = f(X1, X2, …, XN)

In practice the input quantities, X1, X2, …, XN, can only be estimated and the result of the measurement is 
an estimate of Y given by

y = f(x1, x2, …, xN)

The uncertainties, ux,1, ux,2, …, ux,N, in the input estimates then give rise to the uncertainty in the output 
estimate, y.

6.2 The functional relationship, or model, can vary enormously in its complexity, from that of the simple 
traditional balance in which the measurand is compared directly with reference weights to that of a 
multiphase flow meter measuring a flow of oil, water and gas from an oil well and requiring measurements 
of pressures, temperatures and densities to derive the flow rates. However complex the relationship, the 
purpose of setting it down at the start of the uncertainty analysis is to draw up a definitive list of the input 
quantities. In some cases, the relationship will be defined by the theory of the instrument; in others, it will 
be defined by the calibration process and the resulting calibration equation; in the most complex cases the 
calibration process may involve computational techniques such as neural networks and the relationship 
will then be embedded within the resulting software; the input quantities are then, as with any calibration, 
the inputs to the calibration process.

6.3 In many cases, it will become apparent that the functional relationship involves quantities that 
themselves are the result of several measurement inputs. At first sight this might appear to complicate the 
analysis of the measurement process but, in reality, it is easily handled by reviewing each quantity and 
defining its relationship to its own inputs. In this way, the most complex measurement process can be 
sub-divided into manageable stages and the result of each sub-analysis can be carried forward to the next 
stage. An example of this process is given in Annex A.
NOTE Information on reproducibility studies is available in ISO/TS 21748.

7 Listing the factors affecting each input quantity

7.1 General

Modern industrial instrumentation covers the whole range of scientific measurement, from length, mass 
and time to electrical capacitance and radiation intensity. The presentation here of a definitive list of 
sources of uncertainty is therefore not possible. However, it is vital to a rigorous uncertainty analysis that 
it is recognized that the sources extend far beyond the simple reading of an instrument and indeed in a 
modern well-calibrated instrumentation system the basic instrument uncertainties might well prove 
to be relatively small in comparison with some of the other sources of uncertainty. The following 
subclauses (7.2 to 7.10) provide an indication of the sorts of influences that need to be considered in listing 
the sources of uncertainty in each quantity.

7.2 The measured quantity itself

Some quantities such as mass might well be stable during the measurement process but others can vary 
considerably; for example, a flowrate might vary as a pump speed varies due to fluctuations in the electrical 
input to the motor, or a temperature might be affected by changes in some process upstream of the 
measurement point. In such cases, it is necessary to consider how well the value measured represents the 
mean of the fluctuating signal. When dealing with periodic signals, it is important to consider the frequency 
of the variation and ensure that the measurement frequency is significantly greater (typically at least four 
times as great) to ensure that the measurement is not biased, for example, by repeatedly taking the 
readings close to the maximum or minimum of the signal. Batch sampling presents special problems and 
when, for example, drawing a sample of chemical feedstock for a purity analysis, it is important to consider 
how well the sample taken represents the bulk of the material.
4 © BSI 20 August 2004
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7.3 The instrument itself

An instrument only provides an estimate of the value of its input. The quality of that estimate depends on 
many aspects of the instrument; for example, non-linearity, hysteresis, resolution, bias, and drift. Some of 
these, such as bias, drift and non-linearity, can be reduced by calibration (see 7.4). Resolution can be 
subsumed into the spread of values obtained to define a fluctuating signal. Others, like hysteresis, can be 
difficult to eliminate. Even when an instrument is carefully calibrated, it is important to recognize that the 
drift process continues and drift between calibrations should be considered.

7.4 Calibration uncertainties

When an instrument is first brought into service, the relationship between the quantity being measured 
and the instrument output is defined in a calibration experiment. This may range in rigour and complexity 
from a simple two-point check, zero and one other point, at the end of the production line to a careful 
definition of a complex calibration curve through many reference points and with many repeats. However, 
as noted in 7.3, even when defined by the most rigorous initial calibration, the relationship between input 
and output will change with time and use and, as a result, uncertainties will increase. These can be reduced 
by routine periodic calibrations, the purpose of which is to re-establish the relationship between input and 
output and so replace the unknown uncertainties of a measurement with a quantifiable uncertainty from 
a defined and controlled calibration experiment. In transferring the uncertainty of the calibration process 
to the service instrument it should be recognized that, no matter how rigorous the calibration, the 
uncertainty of the service instrument can never be smaller than the uncertainty of the calibration. It is 
therefore important that the uncertainty of the calibration is defined, stated on the calibration certificate 
and included in the uncertainty budget when the instrument is used in normal service.

7.5 Environmental influences 

A great many instruments involve electrical measurements and so can be influenced by electromagnetic 
interference and instabilities in the electrical input. Meters can also be affected by changes in pressure, 
temperature, humidity and vibration.

7.6 Usage effects 

The calibration process is frequently carried out in a test laboratory where the instrument is not 
necessarily subjected to many of the factors that it will encounter in service. For example, a temperature 
probe will be calibrated in an indoor environment but, in service, may be employed in a position exposed to 
the weather and so may be subjected to cooling by wind or heating by solar radiation; or, when being 
calibrated, a flow meter will be presented with ideal flow conditions, whereas, in service, pipe bends or 
valves upstream of the meter may introduce asymmetry or swirl into the flow and these may affect its 
performance. In situ calibration may be possible in some situations but, where this is not the case, it is 
important either to replicate the service conditions in the calibration laboratory or to have a good 
understanding of the additional effects, so that the effect of the differences between the calibration 
situation and in-service conditions can be assessed.

7.7 The measurement process 

Quality procedures should define the way in which measurements are performed, but there might be 
circumstances in which measurements have to be taken at a different time or with a different instrument 
from that defined in the procedures. Such changes in procedure will result in a change in uncertainty.

7.8 Data acquisition and processing 

Computer-based data acquisition systems introduce their own sources of uncertainty; analogue-to-digital 
converters introduce a resolution uncertainty, inter-channel multiplexers have a settling time that can 
introduce uncertainties into high-speed data logging. Round-off with computer software routines can 
introduce uncertainty in the processing of data, as can the values of physical constants taken from 
reference books. When physical property data is taken from published tables or equations, it should be 
remembered that the uncertainties of the original experiments and of the fitted equations are carried 
forward into the calculations.
© BSI 20 August 2004 5



PD 6461-4:2004
7.9 Operator effects

Although automated data-logging is now common practice, there are still many situations where 
instruments are read by a human operator. Faced with a flickering needle or a changing digital display 
every operator will have his own technique for determining the mean reading. Even the differences in 
parallax resulting from changes in eye level can introduce variations between the results obtained by 
different operators.

7.10 Additional sources 

The classifications of uncertainty sources listed in 7.2 to 7.9 are intended only as a guide to the possible 
sources of uncertainty within any measurement. In undertaking an uncertainty analysis, it is important 
to consider whether there are special sources that pertain to the particular measurements being made.

8 Assessing the magnitude of the uncertainty in each source

8.1 General

The sources of uncertainty listed in 7.2 to 7.10 are many and disparate and there is no one method that can 
be used to assign numerical values to such a wide variety of effects. The GUM recognizes two basic 
approaches. The first is based on a statistical analysis of a series of readings: an approach referred to in 
the GUM as a Type A evaluation of uncertainty (GUM 4.2). The second uses past experience and 
professional judgement to arrive at numerical limits: an approach referred to in the GUM as a Type B 
evaluation of uncertainty (GUM 4.3). The GUM definitions will be used in the remainder of this Guide 
when referring to methods of evaluating uncertainties.

8.2 Type A evaluation of uncertainties 

8.2.1 Best estimate of a measurand from a series of readings 

When the value of a measurand is determined by taking a series of measurements, the best estimate of the 
measurand is taken to be the arithmetic mean of the values recorded. Thus, if the readings of measurand, 
Xi, are xi,1, xi,2, xi,3, …, xi,j, … xi,n, the best estimate of Xi is

Example 1: The diameter of a cylinder is determined by measuring the diameter across two mutually 
perpendicular diameters at each of three planes equally spaced along the axis of the cylinder. The values 
obtained are

83.17 mm, 83.19 mm, 83.16 mm, 83.17 mm, 83.18 mm, 83.17 mm

The best estimate of the mean diameter is obtained from the values recorded as follows:

Example 2: The temperature within an environmental test chamber is recorded at two-hourly intervals 
during a 24 h test cycle. The values obtained are

20.9 °C, 19.1 °C, 20.4 °C, 21.2 °C, 20.5 °C, 20.6 °C, 18.6 °C, 19.8 °C, 21.1 °C, 18.8 °C, 19.6 °C, 19.4 °C

(1)
,1 ,2 ,

,
1

1 ni i i n
i i j

j

x x xx xn n =

+ + +
= = ∑

K

1 2

1

1

1 (83.17 83.19 83.16 83.17 83.18 83.17)
6

83.173 mm

n
n j

j

x x xx xn n =

+ + +
= =

= + + + + +

=

∑K
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The best estimate of the mean temperature during the 24 hour period is obtained from the values recorded 
as follows:

8.2.2 Standard deviation of a series of measurements

While the mean of the values recorded can be expected to give a better estimate of the true value than any 
individual value, the fact that a range of values was obtained raises the question of whether the same mean 
would have been obtained if more values had been recorded and therefore how well the current mean 
represents the true value. What is therefore needed is a definition of an interval about the current mean 
within which the true value might be expected to lie. The range could be defined by the highest and lowest 
values recorded but this would ignore the majority of the values available and would also be vulnerable to 
errors, which are likely to result in extreme high or low values. The statistical approach is to calculate the 
deviation di of each value from the mean of the set, , and from these values to calculate a 
statistical parameter called the estimated standard deviation, s, of the sample (or set of values).

The use of n – 1 in the denominator corrects for the fact that the value of s is only an estimate of the true 
value of the standard deviation and is based on a limited sample of readings.

Note that some spreadsheet packages can use a further form of equation (2) that is unsuitable for use when 
the scatter is small and can lead to significant errors when the experimental scatter is less than one part 
per million of the mean. The solution is to calculate the individual deviations from the mean and use the 
second form of equation (2).

Example 3: The standard deviation of the cylinder diameters of example 1 is obtained from the second 
form of equation (2) as follows

(2)

1 2

1

o

1

1 (20.9 19.1 20.4 ..... 19.6 19.4)
12

20.00 C
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n j
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= =
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=
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Example 4: The standard deviation of the measurements of the temperature in the environmental 
chamber of example 2 is obtained from the second form of equation (2) as follows

In many measurement situations it is easier to envisage the standard deviation when it is expressed as a 
proportion of the mean. This statistic is called the coefficient of variation CV and is defined as

It can also be expressed as the percentage deviation or relative deviation RD,

Although the expression of the standard deviation in relative terms can be of value in many measurements, 
it should be recognized that some measurements, such as temperatures, have arbitrary zero points and 
these may lead to nonsensical relative deviations (see example 6).

Example 5: Consider the series of temperature measurements in example 2 with a mean value of 20 °C 
and a standard deviation of 0.9 °C. The relative deviation would then be (0.9/20) × 100 = 4.5 %. But if 
the data had been recorded in Kelvin, the mean value would have been (20 + 273.15) = 293.15 K and 
the standard deviation would have remained at 0.9 °C, giving a relative deviation 
of (0.9/293.15) × 100 = 0.31 %.

Example 6: The environmental test chamber of example 2 is used for a low temperature test and the 
temperature readings are

0.9 °C, –0.4 °C, 1.1 °C, –0.9 °C, 0.5 °C, 0.4 °C, 0.6 °C, 1.2 °C, –1.4 °C, –0.6 °C, –0.2 °C, –1.2 °C

With a mean of 0 °C and a standard deviation of 0.9 °C, the relative deviation would be 0.9/0 × 100 =Z %.

In most industrial measurement situations s will be obtained from a special function on a calculator or 
from a function within a spreadsheet program. Care is needed when applying these functions as the 
alternative form using n as the denominator is often also available to give the standard deviation 
assuming that the set of data form the entire population – a parameter required for entirely different 
statistical purposes. If it is unclear which function is available, a useful check is to calculate the standard 
deviation of the numbers 1 and 2: if the answer given is 0.707, the function is the correct one, but the 
answer 0.5 indicates that the n denominator is being used and all calculations of the standard deviation 

will need to be corrected by multiplying by .

(3)

(4)
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8.2.3 Standard uncertainty of a mean

The standard deviation of the sample provides a statistical description of the variability of the data values 
within the sample and, by implication, an estimate of the variability of the data within any other sample 
drawn from the same overall population. So that, for example, if the cylinder of example 1 were to be 
re-measured across a different set of diameters one might expect the values to have roughly the same 
variability as those already recorded. However, the means of the two sets of data might reasonably be 
expected to vary to a much smaller extent and this is reflected in the statistical calculation of the standard 
deviation of the mean given by

The statistical dispersion of likely values for the mean defined by the standard deviation is then taken to 
be the standard uncertainty of the mean. Thus,

Example 7: The standard uncertainty of the mean diameter of the cylinder of example 1 is calculated as 
follows

Example 8: The standard uncertainty of the mean test temperature of example 2 is calculated as follows

8.2.4 Standard uncertainty of a single value

In some measurement situations there might only be a small number of observations of the measurand. 
This subclause deals with single observations; the treatment of small samples is dealt with in 8.2.8. With 
a single observation, the evaluation of the uncertainty can be based on measurements taken earlier, 
provided the conditions of the measurement remain unchanged. It might be, for example, that a sample 
component is subjected to detailed measurement but that components from the production line are 
subjected to only a single measurement. In this case, the standard uncertainty is derived from the detailed 
measurement set as follows: the standard deviation of the set of measurements is obtained from 
equation (2) using n for the number of measurements in the set. The standard uncertainty of the mean is 
then obtained from equations (5) and (6) using n = 1 as the mean is that of a single value.

(5)

(6)

( ) ( )s xs x
n

=

( ) ( )u x s x=

( ) ( )( )
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s xu x s x
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=

=

( ) ( )

o

( )
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12

0.261 C

s xu x s x
n

= =

=

=
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Example 9: Having made the detailed set of measurements of cylinder diameter set out in example 1, the 
inspection manager decides that he will accept a larger uncertainty for an individual cylinder from the 
production line and orders that all production cylinders will be measured across only one diameter. The 
standard uncertainty of the diameter of the production cylinders is then calculated as follows:

s(x) is obtained from the data of examples 1 and 3 as 0.010 3 mm and

Example 10: The research manager responsible for the environmental test chamber of example 2 decides 
that the effort involved in taking temperatures from the chamber at two-hourly intervals throughout the 
night is unjustified and that it will be sufficient to take a single reading of the temperature at the end of 
the evening shift. This increases the uncertainty of the test temperature, which is calculated as follows:

s(x) is obtained from the data of examples 2 and 4 as 0.905 and

8.2.5 Degrees of freedom in a standard deviation 

As described in 8.2.2, the standard deviation is a statistical description of the scatter of the data and, as 
with any description, the more data the description is based on the more reliable the description will be. 
The reliability of the standard deviation as a description of the scatter is defined by a statistic called the 
degrees of freedom, which is one less than the number of data points, thus

Example 11: The degrees of freedom in the standard deviation of the cylinder diameter measurements 
of example 3 are calculated as follows

Example 12: The degrees of freedom in the standard deviation of the temperature measurements in the 
environmental chamber of example 4 are calculated as follows

(7)
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8.2.6 Expanded uncertainty of a sample mean

Unless there is evidence to the contrary, it is common practice to assume that a series of experimental 
values will be scattered according to the normal or Gaussian distribution and, as will be seen in 8.3.2, this 
implies that 68 % of the data will lie within one standard deviation of the mean. In the case of a sample 
mean, there is therefore an approximately one-in-three chance that the true mean will lie outside the 
uncertainty interval defined as one standard deviation either side of the sample mean. This is a level of 
risk that is unacceptable in almost all measurement situations. To increase the confidence that the true 
value will lie within the defined interval, that interval is increased by multiplying the standard uncertainty 
by a factor, k, based on the degrees of freedom in the standard deviation and on the level of confidence 
required. The resulting value is called the expanded uncertainty, U, and, in the case of a mean of a series 
of readings, is defined as follows:

The value of the multiplier k is obtained from the Student’s t table (Table 1) for the appropriate degrees of 
freedom and level of confidence.

Example 13: The inspection manager responsible for the manufacture of the cylinder of example 1 
requires to know the expanded uncertainty of the mean diameter of the test cylinder at the 95 % confidence 
level. The standard uncertainty of the mean of the readings is 0.004 2 mm (example 7) and entering        
Table 1 with 5 degrees of freedom (see example 11) and 95 % confidence level, k = 2.57; the required 
expanded uncertainty is therefore given by

Example 14: The research manager responsible for operating the environmental chamber of example 2 
requires to know the expanded uncertainty of the mean test temperature derived from the two-hourly 
readings at the 99 % confidence level. The standard uncertainty of the mean of the readings is 0.261 °C 
(example 8) and entering Table 1 with 11 degrees of freedom (see example 12) and 99 % confidence 
level, k = 3.11; the required expanded uncertainty is therefore given by

8.2.7 Expanded uncertainty of a single value

When the standard uncertainty is that of a single value and is derived from an earlier set of data, the 
standard uncertainty is calculated as set out in 8.2.4, but the degrees of freedom associated with the 
standard deviation are those of the original set of data. It is this value of the degrees of freedom that is used 
in selecting the k factor from Table 1.

Example 15: Having decided to measure each cylinder across only one diameter, the inspection manager 
responsible for the manufacture of the cylinders of example 1 requires to know the expanded uncertainty 
of the diameter of the production cylinders at the 95 % confidence level. The standard uncertainty of the 
single reading is 0.010 3 mm (example 9) and entering Table 1 with five degrees of freedom 
(see example 11) and 95 % confidence level, k = 2.57; the required expanded uncertainty is therefore given 
by

(8)( ) ( )U x ku x=

( ) ( )
2.57 0.0042
0.0108 mm

U x ku x=

= ×
=

( ) ( )

o
3.11 0.261
0.812 C

U x ku x=

= ×

=

( ) ( )
2.57 0.0103
0.0265 mm

U x ku x=

= ×
=
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Example 16: The research manager responsible for operating the environmental chamber of example 2 
requires to know the expanded uncertainty of the test temperature at the 95 % confidence level for those 
tests where the temperature is recorded only at the end of the evening shift. The standard uncertainty of 
the mean of the readings is 0.905 °C (example 10) and entering Table 1 with 11 degrees of freedom 
(see example 12) and 95 % confidence level, k = 2.20; the required expanded uncertainty is therefore given 
by

Table 1 — Table of Student’s t values

Degrees of freedom Confidence level

%

90 95 99

1 6.31 12.71 63.66
2 2.92 4.30 9.92
3 2.35 3.18 5.84
4 2.13 2.78 4.60
5 2.02 2.57 4.03

6 1.94 2.45 3.71
7 1.89 2.36 3.50
8 1.86 2.31 3.36
9 1.83 2.26 3.25

10 1.81 2.23 3.17

11 1.80 2.20 3.11
12 1.78 2.18 3.05
13 1.77 2.16 3.01
14 1.76 2.14 2.98
15 1.75 2.13 2.95

16 1.75 2.12 2.92
17 1.74 2.11 2.90
18 1.73 2.10 2.88
19 1.73 2.09 2.86
20 1.72 2.09 2.85

25 1.71 2.06 2.79
30 1.70 2.04 2.75
40 1.68 2.02 2.70
60 1.67 2.00 2.66

100 1.66 1.98 2.63
Z 1.64 1.96 2.58

( ) ( )
2.20 0.905
1.99 C

U x ku x=

= ×
= °
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8.2.8 Reducing the expanded uncertainty by the use of past data

Inspection of Table 1 shows that the value of the multiplier, k, used to derive the expanded uncertainty, 
depends strongly on the degrees of freedom associated with the standard deviation on which the standard 
uncertainty is based. The degrees of freedom can be increased, and k decreased, by using more data from 
past experience, and when several previous batches of data are available they may all be used to obtain the 
estimated standard deviation, provided that the measurements were taken under similar conditions. In 
this procedure, it is the variations about the mean of each set that are combined rather than the data sets 
themselves, and the method can still be employed if the batch means vary with time. It is, however, 
important that the dispersion of individual values about their batch mean remains essentially constant. 
The pooled standard deviation, sp, is given by

where ni and si are the number of readings and the standard deviation of the i-th data set.

The degrees of freedom of a pooled standard deviation are the sum of the degrees of freedom of the pooled 
data sets. Thus,

Example 17: The inspection manager responsible for the manufacture of the cylinders of example 1 
recognizes that the expanded uncertainty of the production cylinders is strongly dependent on the high 
value of k that results from having only 5 degrees of freedom in the standard deviation. To reduce this 
value he decides to select two more cylinders at random from the production line and measure one of these 
across 2 diameters at three planes and the other across 3 diameters at three planes. The resulting values 
are

83.18 mm, 83.17 mm, 83.19 mm, 83.20 mm, 83.19 mm, 83.17 mm, and

83.16 mm, 83.15 mm, 83.18 mm, 83.17 mm, 83.16 mm, 83.16 mm, 83.17 mm, 83.18 mm, 83.17 mm

The standard deviations of the two new sets are calculated from equation (2) as 0.012 1 mm 
and 0.010 0 mm. These are pooled with the original set to give an overall standard deviation of

The total degrees of freedom are given by

(9)

(10)
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For 18 degrees of freedom and 95 % confidence Table 1 gives k as 2.10, and the expanded uncertainty of the 
diameter of the production cylinders is then

8.3 Type B evaluation of uncertainties

8.3.1 Overview of the Type B evaluation method

While the Type A evaluation of uncertainty set out in the preceding subclause provides a measure of the 
uncertainty due to random variations in the measurand, it cannot readily be applied to the analysis of such 
parameters as the calibration of an instrument or the drift between calibrations. Such sources of 
uncertainty should instead be evaluated on the basis of the information available, which may come from a 
calibration certificate, manufacturers’ specifications or professional judgement and past experience. These 
non-statistical sources of information lead to a Type B uncertainty evaluation.

Perhaps the most important difference between Type A and Type B evaluations of uncertainty is that, 
whereas the standard deviation of the Type A evaluation specifies an interval within which the measurand 
is expected to lie with a defined level of confidence, in a Type B evaluation the instrumentation expert has 
to specify not only the interval but also the level of confidence that the value of the measurand will lie 
within the defined interval, and whether it is more likely to lie in one region of the interval than in another. 
Having made these decisions, it is necessary to reduce the interval to a standard uncertainty so that the 
component uncertainties are brought to a common basis for combination.

Fortunately, the vast majority of measurement situations can be adequately represented by a very limited 
number of distributions and for these the standard uncertainty can be calculated easily.

8.3.2 Normal distribution

The normal distribution, for which a plot of probability density against value results in the bell-shaped 
curve of Figure 1, is the commonest distribution for a set of experimental readings obtained for a Type A 
evaluation. 

Key
1 Probability density
2 Percent of readings in interval
3 Intervals – standard deviations either side of mean
4 Standard

Figure 1 — The standard normal, or Gaussian, distribution

( ) ( )
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However, this distribution is also encountered in Type B evaluations for such sources as calibration 
uncertainties where the expanded uncertainty at a quoted level of confidence will usually be obtained from 
an evaluation of the standard uncertainty of the calibration, based on the contributing sources, and a 
coverage factor based on an assumption of the normal distribution. If the calibration certificate quotes the 
coverage factor used, the calculation of the standard uncertainty is straightforward but if the certificate 
quotes a confidence level, it is necessary to obtain the value of k from Table 1; it is assumed, unless 
otherwise stated, that the degrees of freedom will be infinite. The standard uncertainty can then be 
calculated from the expanded uncertainty from

Example 18: A voltmeter is calibrated by a UKAS-accredited calibration laboratory. The calibration 
certificate states that

“the expanded uncertainty of the calibration is 0.1 % of full scale reading over the range 1 to 100 volts at 
the 95 % confidence level.”

Although the uncertainty is quoted in percentage terms it should be noted that this is a percentage of full 
scale (or 100 volts). The expanded uncertainty is therefore 0.1 × 100/100 = 0.1 volts throughout the 
calibrated range.

The uncertainty statement requires the user to make an assumption about the underlying distribution in 
order to determine the k factor: in the absence of any further information it is common practice to assume 
a normal distribution. Since the stated confidence level is 95 % Table 1 gives a value of k = 1.96 and the 
standard uncertainty is 

Example 19: A digital bore micrometer is supplied with a calibration certificate stating that

“the measurement uncertainty is 0.005 mm (k = 2) over the range 100 to 125 mm.”

As the k factor is quoted in the uncertainty statement no assumption about the distribution is required. 
The standard uncertainty is therefore

(11)( ) ( )i
i

U xu x k=

( ) ( )

0.1
1.96
0.05 V

i
i

U xu x k=

=

=

( ) ( )

0.005
2

0.0025 mm

i
i

U xu x k=

=

=
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Example 20: A laboratory pH meter is supplied with a calibration certificate stating

“the measurement uncertainty is 0.02 pH at a 99 % confidence level.”

As with example 19, this uncertainty statement requires its user to make an assumption about the 
distribution and again the assumption is that the normal distribution will apply. For 99 % confidence  
Table 1 gives k = 2.58 and the standard uncertainty is therefore

8.3.3 Rectangular distribution

The rectangular distribution (Figure 2) applies to those sources of uncertainty where the true value can lie 
anywhere within a specified range with equal probability. Unlike the normal distribution, the limits of the 
rectangular distribution provide 100 % coverage. The standard uncertainty can be shown to be given by

where a is the semi-width of the distribution.

The two most common situations represented by the rectangular distribution are instrument and data 
acquisition resolution, and acceptance criteria in calibration. 

In the first of these, a reading on a digital display could represent any value of the measurand that lies 
between the smallest value that gives the displayed output rather than one digit less and the largest value 
that gives the displayed value rather than one digit greater. There is no way of determining where in this 
range the true value lies and all values must therefore have the same probability. The expanded 
uncertainty is half this range and is therefore half the least significant digit in the display. 

In addition to digitally displayed outputs the effect is seen in data logged by computer, with the resolution 
of the analogue-to-digital converter contributing to the uncertainty of the measurement. The limits in this 
case are half the value represented by one bit of the digital value.

(12)

Key

1 Probability density

2 Quantity Xi

Figure 2 — Rectangular distribution
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It is common practice in metrology to accept an instrument’s output without correction provided the meter 
error in the calibration falls within some specified limit, the acceptability criterion. This practice gives rise 
to an uncertainty with a rectangular distribution since the meter error can lie anywhere within the 
specified range with equal probability.

Example 21: The pH meter of example 20 displays the pH value to 0.01 pH.

The limits due to the resolution of the display are therefore 0.01/2 = 0.005 pH and the standard uncertainty 
is

Example 22: The output of the voltmeter of example 18 is to be recorded by a computer data acquisition 
system. The analogue-to-digital converter is a 12-bit device giving a full-range resolution of 
1 part in 212 = 4 096 and this is set up to cover the full 0 to 100 volt output of the meter.

A single bit on the A-D converter then represents 100/4 096 = 0.024 V and the resolution limit is 
0.024/2 = 0.012 V.

The standard uncertainty is thus

Example 23: The digital bore micrometer of example 19 is checked on a weekly basis in the Production 
Inspection Department by measuring the diameter of a ring gauge. Provided that this weekly measurement 
lies within 0.01 mm of the ring gauge certificate value, the bore micrometer is used without correction. If 
the measurement is outside this range, the instrument is returned to the manufacturer for adjustment and 
re-calibration.

The check measurement can lie in the range 0.01 mm either side of the certificate value and the acceptance 
limit is therefore 0.01 mm. As any value in the range is acceptable, this source of uncertainty is assumed 
to have a rectangular distribution and the standard uncertainty arising from the acceptance criterion is 
therefore
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8.3.4 Triangular distribution

The rectangular distribution can be applied to any quantities where it is only possible to set limits but 
where there is no information on the likely distribution of possible values. There might be cases where 
there is good reason to believe that values close to the assigned limits are less likely than those close to the 
centre of the range. In these circumstances, the rectangular distribution would give too pessimistic a value 
for the standard uncertainty and it might be more realistic to assume a triangular distribution, Figure 3. 
For this, the standard uncertainty is given by 

where a is the semi-width of the distribution.

8.3.5 Two-valued distribution

Some instruments are affected by hysteresis or internal friction and this results in a quantity that takes 
one of two values (Figure 4). In this case the standard uncertainty is given by 

where a is half the interval between the two possible values.

(13)

(14)

Key
1 Probability density
2 Quantity Xi

Figure 3 — Triangular distribution

Key
1 Probability density
2 Quantity Xi

Figure 4 — Two-valued distribution
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8.3.6 Handling asymmetry

The upper and lower bounds of a distribution might in some circumstances not be symmetrical about the 
best estimate (Figure 5) and, in extreme cases, the interval might even be distributed entirely to one side 
of a limiting value. For example, in measuring the height of a storage vessel any deviation of the 
measurement from the vertical will result in an over-estimation of the true height.

The GUM illustrates an approximate method for handling this type of uncertainty using a rectangular 
distribution (GUM 4.3.8). The distribution is assigned a full range equal to the range from the lower to the 
upper bound and the standard uncertainty is then given by

where b1 and b2 are defined in Figure 5.

This approach underestimates the uncertainty on the side with the larger bound and a more conservative 
approach would be to assume a distribution based entirely on the larger bound, giving 

A similar approach can be applied based on a triangular distribution when this is deemed appropriate.

If the asymmetric element of uncertainty is large in comparison with the uncertainty due to other sources, 
it might be appropriate to perform two analyses and calculate two values for the combined uncertainty, one 
based on the larger asymmetric bound and the other on the smaller. The two values would then be quoted 
in the uncertainty statement.

(15)

(16)

Key

1 Probability density

2 Mean

3 Quantity Xi

Figure 5 — Asymmetric distribution
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9 Estimating the effect of input uncertainties on the result

9.1 Sensitivity coefficients

The input quantities, Xi, to a measurement can contribute in different ways to the output quantity, Y, and 
it would be inappropriate to consider the uncertainties in the input quantities without considering the 
impact of each input quantity on the final measurement result. Consider, for example, the volume of liquid 
stored in a cylindrical vessel standing with its axis vertical. The volume is given by

Rewriting this as 

it can be seen that the diameter appears twice and, if the uncertainties are of similar magnitude, 
uncertainties in the diameter might therefore be expected to contribute more to the uncertainty in the 
volume than those in the depth, which only appears once.

Before the input uncertainties can be combined they should be translated into the resulting uncertainties 
in the output quantity. The relationship between an input uncertainty and its contribution to the 
uncertainty in the output quantity is given by the sensitivity coefficient. Defined as the partial derivative, 
·f/·xi, of the functional relationship, f, between the input quantities, x1…xN, and the output quantity, y, 
evaluated at the nominal values of the input quantities, the sensitivity coefficient can be obtained in two 
ways, analytically or numerically.

Just as uncertainties can be expressed in absolute or relative terms, so sensitivity coefficients can be 
absolute or relative, and it is important to ensure that absolute coefficients are used with absolute 
uncertainties and relative coefficients with relative uncertainties.

9.2 Deriving the sensitivity coefficients analytically 

From its definition as the partial derivative of the output estimate y with respect to the input estimate xi 
at the nominal value of all the input quantities x1 …, xN, the sensitivity coefficient ci is given by

The relative sensitivity coefficient c*i is then given by

where
d is the internal diameter of the vessel; and
h is the depth of the liquid.

(17)
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Example 24: The volume of liquid in an upright cylindrical vessel is given by

The sensitivity coefficient for d is given by

and the relative sensitivity coefficient for d is given by

The sensitivity coefficient for h is given by

and the relative sensitivity coefficient for h is given by

Example 25: The torsional stiffness of a solid shaft is given by 

The sensitivity coefficient for d (N/rad) is given by

and the relative sensitivity coefficient for d is given by

where
d is the diameter equal to 2.100 m; and
h is the height equal to 3.600 m

where
d is the diameter equal to 0.050 m
G is the modulus of rigidity equal to 8 × 1010 Pa; and
L is the length equal to 0.750 m

2

4
d hV π

=

2 2.1 3.6 11.88 mm
4 2 2d

V dh dhc d
∂ π π π× ×

= = = = =
∂

*
2

4 2 2
4d

d V d dhc V d d h
∂ π

= = =
∂ π

2 2(2.1) 3.46 mm
4 4h

V dc h
∂ π π

= = = =
∂

2
*

2
4 1

4h
h V h dc V h d h
∂ π

= = =
∂ π

4

32
d GS L
π

=

3 3 104 4 0.050 8 10 5236000
32 32 0.750d

S d Gc d L
∂ π π × ×

= = = =
∂ ×

3
*

4
32 4 4

32d
d S Ld d Gc S d Ld G

∂ π
= = =

∂ π
© BSI 20 August 2004 21



PD 6461-4:2004
The sensitivity coefficient for G (m3) is given by

and the relative sensitivity coefficient for G is given by

The sensitivity coefficient for L (N·m/rad) is given by

and the relative sensitivity coefficient for L is given by

Examination of the relative sensitivity coefficients calculated in examples 24 and 25 shows that, in the 
particular case of functional relationships that take the form of simple products, the relative sensitivity 
coefficient for each input quantity is given by the power applied to that quantity in the functional 
relationship.

9.3 Deriving the sensitivity coefficients numerically 

While the analytical method of deriving the sensitivity coefficients is straightforward for simple 
relationships, it can quickly become unmanageable for more complex relationships. The alternative 
approach is to obtain the sensitivity coefficients by a simple numerical technique that can be coded into a 
spreadsheet or other software for almost any defined relationship (see B.1).

The technique involves calculating the output estimate y for two possible values of the input quantity Xi 
and deriving the sensitivity as follows. If the result of the calculation using an input value of xi – %xi is y– 
and using xi + %xi is y+ then

and

The choice of the increment %xi is important. The technique calculates the mean gradient of the functional 
relationship over the interval 2%xi, and if the functional is non-linear the use of too large a value of %xi will 
give a wrong value for ci. Choosing too small a value can, in some circumstances, result in problems with 
round-off error in the calculation. It is also necessary to retain enough digits at each stage of the calculation 
to ensure that ci is calculated with sufficient accuracy. The value of ci of interest is that due to the effect of 
the uncertainty in xi and the recommendation is that the value chosen for %xi should be close to the 
standard uncertainty of the input. 
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Example 26: The sensitivity coefficients for the diameter and depth of the cylindrical vessel of example 24 
can be calculated numerically as follows:

The sensitivity coefficient for diameter is then given by equation (19)

and the relative sensitivity coefficient is given by equation (20)

The sensitivity coefficient for depth is then given by equation (19)

and the relative sensitivity coefficient is given by equation (20)

The minor difference in the value for ch* from that obtained in example 24 is due to round-off in the 
calculation in the numerical method.

Example 27: The sensitivity coefficients for the diameter, modulus of rigidity and length of the solid shaft 
of example 25 can be calculated numerically as follows:

Volume for diameter 2.100 m and depth 3.600 m = 12.468 98 m3

Assume an increment of 1 mm in both depth and diameter

Volume for diameter 2.099 m and depth 3.600 m = 12.457 11 m3

Volume for diameter 2.101 m and depth 3.600 m = 12.480 86 m3

Increment in volume = 12.480 86 – 12.457 11 = 0.023 75 m3

Increment in diameter = 0.002 m

Volume for diameter 2.100 m and depth 3.599 m = 12.465 52 m3

Volume for diameter 2.100 m and depth 3.601 m = 12.472 44 m3

Increment in volume = 12.472 44 – 12.465 52 = 0.006 92 m3

Increment in diameter = 0.002 m

Assume an increment of 0.05 mm in diameter, 0.5 × 109 Pa in modulus of rigidity and 0.5 mm in length
Torsional stiffness for nominal values = 65 449.9 N·m/rad
Torsional stiffness for 50.05 mm diameter = 65 712.0
Torsional stiffness for 49.95 mm diameter = 65 188.4
Increment in stiffness = 65 712.0 – 65 188.4 = 523.6 N·m/rad
Increment in diameter = 0.000 1 m
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= = =
∆

* 2.1 0.02375 2.000
12.46898 0.002d
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The sensitivity coefficient for diameter (N/rad) is then given by equation (19)

and the relative sensitivity coefficient is given by equation (20)

The sensitivity coefficient for modulus of rigidity is then given by equation (19)

and the relative sensitivity coefficient is given by equation (20)

The sensitivity coefficient for length (N·m/rad) is then given by equation (19)

and the relative sensitivity coefficient is given by equation (20)

9.4 Contribution to uncertainty

Having obtained the sensitivity coefficients, the next step is, for i = 1, …, N, to calculate the 
contribution, ui(y), that the uncertainty u(xi) makes to the uncertainty in the final result. This is defined 
as the component of the combined standard uncertainty uc(y) of the output estimate y generated by the 
standard uncertainty u(xi) of the input estimate xi and is given by equation (21), or in relative form by 
equation (22).

Torsional stiffness for modulus of rigidity 80.5 × 109 Pa = 65 858.9 N·m/rad

Torsional stiffness for modulus of rigidity 79.5 × 109 Pa = 65 040.8 N·m/rad
Increment in stiffness = 65 858.9 – 65 040.8 = 818.1 N·m/rad

Increment in modulus of rigidity = 1.0 × 109 Pa

Torsional stiffness for length of 0.750 5 m = 65 406.2 N·m/rad
Torsional stiffness for length of 0.749 5 m = 65 493.5 N·m/rad
Increment in stiffness = 65 406.2 – 65 493.5 = –87.3 N·m/rad
Increment in length = 0.001 m

(21)

(22)
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Example 28: If the standard uncertainties of the vessel diameter and liquid depth in examples 24 and 26 
are 1 mm = 0.001 m, the contributions to volume uncertainty are given, in absolute terms (m3), by 
equation (21) as

When working in relative terms the relative uncertainty in diameter is 0.001/2.100 = 0.000 476 and in 
depth is 0.001/3.6 = 0.000 278. Equation (22) then gives the contributions to relative uncertainty in the 
volume as 

Example 29: If the standard uncertainties of the shaft diameter, modulus of rigidity and shaft length in 
examples 25 and 27 are 0.5 mm = 0.000 5 m, 2 × 109 Pa, and 1 mm = 0.001 m respectively the contributions 
to the uncertainty of the torsional stiffness are given, in absolute terms (N·m/rad), by equation (21) as

When working in relative terms, the relative uncertainty in diameter is 0.000 5/0.050 = 0.01, in modulus 
of rigidity is 2 × 109/ 80 × 109 = 0.025 and in length is 0.001/0.750 = 0.001 333. Equation (22) then gives the 
contributions to relative uncertainty in the torsional rigidity as 

( ) ( ) 11.875 0.001 0.0119d du V c u d= = × =

( ) ( ) 3.464 0.001 0.00346h hu V c u h= = × =

( ) ( )* * * 2 0.000476 0.000952d du V c u d= = × =

( ) ( )* * * 1 0.000278 0.000278h hu V c u h= = × =

( ) ( ) 5235988 0.0005 2618d du S c u d= = × =

( ) ( ) 7 98.1812 10 2 10 1636.41G Gu S c u G −= = × × × =

( ) ( ) 87266.5 0.001 87.26L Lu S c u L= = × =

( ) ( )* * * 4 0.01 0.04d du S c u d= = × =

( ) ( )* * * 1 0.025 0.025G Gu S c u G= = × =

( ) ( )* * * 1 0.001333 0.001333L Lu S c u L= = − × = −
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10 Combining the input uncertainties

10.1 Defining correlations between input quantities

Before combining the contributions from the various sources of uncertainty, it is important to consider 
whether or not there are any links between those sources. Where sources are linked their uncertainties 
should be treated differently from those of unlinked sources.

Consider the measurement of the volume of a cube. If the same tape rule is used for all three 
measurements, any error in the calibration of the rule will be transferred to all three measurements in the 
same way and the sources of uncertainties due to calibration will be linked. If the rule measures short, it 
will under-read all three measurements and the measurements are said to be correlated. However, each 
measurement will also be subject to a resolution uncertainty and these sources of uncertainties will not be 
linked since each is essentially random; such sources of uncertainty are described as uncorrelated.

Correlated quantities will either all be high at the same time or all be low at the same time; however, it is 
unlikely that all uncorrelated quantities will be high, or low, at the same time.

Examples of likely correlated sources are:

a) the use of the same instrument to perform more than one measurement, because this will result in the 
calibration sources of uncertainty being correlated;

b) environmental effects: readings affected by ambient conditions of temperature and humidity will 
experience the same influence over a wide area of a process plant unless shielded from the environment.

Examples of uncorrelated sources are:

a) resolution and data acquisition effects, including those data acquisition uncertainties arising from 
analogue-to-digital converter resolution; and

b) acceptance criteria in calibration.

10.2 Combining uncertainties in uncorrelated input quantities

The method of combining uncertainties associated with uncorrelated effects recognizes that they are 
unlikely all to be high (or low) simultaneously and that it is therefore likely that the combined uncertainty 
will be less than the sum of the individual sources. The combination is by the root-sum-square technique 
(GUM 5.1.2) and the combined uncertainty is given by

or in relative terms

It is vitally important to remember that absolute and relative uncertainties cannot be mixed and that 
therefore either all contributions should be combined using absolute sensitivity coefficients and source 
uncertainties, equation (23), or all should be combined using relative sensitivity coefficients and source 
uncertainties, equation (24).

(23)

(24)

( ) ( )( )22
c

1 1
( )

N N
i i i

i i
u y u y c u x

= =
= =∑ ∑

( ) ( )( )22* * * *
c

1 1
( )

N N
i i i

i i
u y u y c u x

= =
= =∑ ∑
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10.3 Combining uncertainties in correlated input quantities

In recognition of the fact that, being correlated, they will all be high (or low) simultaneously and that the 
combined uncertainty will therefore be equal to the sum of the component uncertainties, the summation of 
correlated inputs is obtained by the simple arithmetic summation of the individual correlated contributions 
(see Note to GUM 5.2.2). Thus

or in relative terms

In applying equations (25) and (26), it is important that the sign of the individual sensitivity coefficients, 
ci or c*i, is retained to ensure that the impact of the correlation is properly reflected in the summation. 
Again it is vital to realize that the summation should be either entirely in absolute or entirely in relative 
terms.

10.4 Handling combinations of correlated and uncorrelated uncertainties

While all sources in a measurement system could be uncorrelated it is highly unlikely that they will all be 
correlated. Where some sources are correlated and others uncorrelated, the combination proceeds as 
follows.

a) Identify the correlated sources and sum these arithmetically. There might be several groups each 
correlated by a different mechanism; each group is then summed separately using equation (25) or (26) 
as appropriate.

b) The results of the different correlated-group summations are then uncorrelated with each other and 
their combination with the remaining, wholly uncorrelated, sources of uncertainty proceeds using 
equation (23) or (24) as appropriate.

The preceding subclause deals with components of measurement that are either wholly correlated or 
wholly uncorrelated. In some measurement situations, the components might be partially correlated. In 
these circumstances, the analysis is more complicated (GUM 5.2) and the best approach is to perform two 
analyses, the first on the basis of the relevant components of the measurement being wholly uncorrelated 
and the second on the basis of them being wholly correlated. A comparison of the two answers will then 
show whether the extent of the correlation is important or not. If this approach suggests that the overall 
uncertainty is sensitive to the assumptions regarding correlation, 5.2 of the GUM should be consulted. 

11 Expressing the result

11.1 Coverage factors

In Clause 8, all input uncertainties were reduced to standard uncertainties to provide a common basis for 
summation. The resulting combined uncertainty obtained from equations (23) to (26) is therefore also a 
standard uncertainty. It was seen in Clause 8 that the interval defined by one standard uncertainty either 
side of the mean covers only a limited range of the likely spread of values. This coverage is insufficient for 
most measurement purposes and a coverage of 95 % is normally required. 8.2.6 demonstrated the 
technique for obtaining an expanded uncertainty, with the required coverage, from a standard uncertainty 
when dealing with an input uncertainty obtained from a Type A evaluation. The same technique applies 
equally well to the calculation of an expanded combined uncertainty in the final result. Thus the expanded 
uncertainty at the required level is obtained from

(25)

(26)

(27)

( ) ( )( )c
1 1

( )
N N

i i i
i i

u y u y c u x
= =

= =∑ ∑

( ) ( )( )* * * *
c

1 1
( )

N N
i i i

i i
u y u y c u x

= =
= =∑ ∑

( ) ( )U y ku y=
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or in relative terms

where k in each case is selected from Table 1 for the required level of confidence, or coverage.

In selecting the value of k the probability distribution for the measurand Y is considered to follow the 
normal distribution even though many of the input uncertainties might have been assessed as rectangular. 
The reasoning behind this is that it can be shown that when several input quantities that follow 
rectangular distributions of the same or comparable width are summed, the result tends quickly (i.e. as the 
number of quantities increases) to a normal distribution. It can also be shown that a similar result is 
obtained when other distributions are combined. In selecting a k value from Table 1, it is also common 
practice to assume that the degrees of freedom in the final result are infinite as each input uncertainty 
contributes its own degrees of freedom resulting in a sufficiently large value for the final output for the 
assumption of infinity to hold with sufficient accuracy.

When the output uncertainty is dominated by a single input source that is derived from an evaluation of 
uncertainty based on very few readings or on a Type B evaluation where the limits are not defined with 
any degree of precision, it is necessary to adopt a more rigorous approach to the selection of the k factor. 
The approach is described in detail in the GUM Annex G.

11.2 The uncertainty statement

The purpose of the uncertainty evaluation is to define the result of the measurement in terms of three 
parameters: the mean value (the output estimate y), the expanded uncertainty U(y), and the confidence 
level or coverage factor k. For the result to be meaningful all three values should be stated and an 
uncertainty statement will typically be of the form:

— “The result of the measurement is y units with an expanded uncertainty at the 95 % confidence level 
of U(y) units”; or
— “The result of the measurement is y units with an expanded uncertainty (k = 2) of U*(y) %”.

In defining the coverage factor k to obtain the expanded uncertainty, it is acceptable to state either the 
confidence level as a percentage or the coverage factor as a k value. When the confidence level is quoted, it 
is implied that a normal distribution with infinite degrees of freedom has been assumed.

(28)( ) ( )* *U y ku y=
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Annex A (informative)
Example of an uncertainty analysis

A.1 General 

This example considers a theoretical piston prover used to calibrate liquid flowmeters. Flow is passed into 
a finely finished cylinder upstream of a piston. The flow carries the piston down the cylinder, expelling fluid 
from the outlet and through the flowmeter being calibrated. The quantity of fluid passing through the 
flowmeter is therefore measured by the travel of the piston combined with the cross-sectional area of the 
cylinder. In effect, after corrections, the volume of fluid passing through the meter is the volume displaced 
from the cylinder. The travel of the piston is measured using a rotary encoder driven by the piston 
movement. In this example, when the piston reaches the end of its travel, the flow is stopped and the piston 
returned to the start position. See Figure A.1.

A.2 Governing equation

Key

1 Cylinder

2 Encoder

3 Flow out

4 Piston

5 Tension weight

6 Flow in

Figure A.1 — Piston prover

(A.1)

1
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4
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2
4

4

ALQ t
d L

t
d mP

t

=

π
=

π
=
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The cylinder has a nominal diameter of 75 mm, a minimum of 5 000 pulses are collected in any test run 
and the minimum time of passage is 20 s. A full traverse of the piston covers 400 mm and results in 
20 000 pulses, giving a nominal value for m of 0.02 mm/pulse.

A.3 Contributory uncertainties

A.3.1 General

Uncertainties arise in the determination of d, m, P and t, and, as these four measurements are 
uncorrelated, the application of equation (23) yields

A.3.2 Uncertainties in diameter

Uncertainties in the diameter arise from three sources:

a) variations in the cylinder diameter due to out of roundness;

b) variations in the cylinder diameter along its length; and

c) the uncertainty of the calibration of the measuring instrument used to determine the diameter.

The first two sources are evaluated by measuring the diameter across three different diameters at each of 
four planes along the cylinder length. The values obtained in this exercise are given in Table B.1 and the 
metrology laboratory’s calibration certificate states that “the expanded uncertainty (k = 2) of the diameter 
determination is ±0.002 mm”.

A check test on the diameter measurements should be carried out at this point to show that they are 
random along the length, that the tube is not tapered and that it does not have significant differences in 
area along the length. A taper or wavy profile could lead to systematic differences in volume along the 
length. If this were the case, it would be necessary either to apply a correction or to increase the 
uncertainty.

In the example this check is assumed to give a random variation of diameter uncertainty.

Table A.1 — Measured diameters at various planes

where
Q is the volume of fluid displaced by the piston;
A is the cylinder cross-sectional area;
d is the cylinder diameter;
L is the distance moved by the piston, equal to mP;
m is the movement per pulse;
P is the number of pulses counted; and
t is the time taken to count P pulses.

(A.2)

Plane Diameter

mm

1 75.003 75.005 74.999
2 75.004 74.997 75.002
3 74.996 75.004 75.002
4 75.004 74.998 75.001

( )2 2 2 2 2 2 2 2 2
c ( ) ( ) ( ) ( )d m P tu Q c u d c u m c u P c u t= + + +
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The uncertainty due to variations in the diameter is obtained from a Type A evaluation of the 
measurements in Table A.1 as follows.

The mean diameter is given by equation (1) as

The standard deviation of the measurements is given by equation (2) as

and the standard uncertainty of the mean is then given by equation (5) as

The standard uncertainty associated with the calibration laboratory is obtained from equation (11) as

1 2

75.003 75.005 74.999 75.004 74.998 75.001
12

75.00125 mm

nd d dd n
+ + +

=

+ + + + + +
=

=

K

K

2 2 2
1 2

d

2 2 2

( ) ( ) ( )
( 1)

(75.003 75.00125) (75.005 75.00125) (75.001 75.00125)
(12 1)

0.003049

nd d d d d ds n
− + − + + −

=
−

− + − + + −
=

−

=

K

K

d
d

0.003049
12

0.000880

su
n

=

=

=

cal cal
cal
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2 2

U Uu k= = = =
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The uncertainties due to the variation in diameter and to the calibration of the measuring instrument 
should be combined to obtain the overall uncertainty in the diameter. The calculation of the combined 
uncertainty in the diameter is set out in Table A.2.

Table A.2 — Uncertainty budget for mean diameter measurement

A.3.3 Uncertainties in the movement per pulse

The distance moved for a single pulse output is derived by measuring the distance moved for successive 
counts of 1 000 pulses as the piston is moved from one end of its travel to the other. This process is repeated 
for each of four passages of the piston. The results obtained are given in Table A.3. The calibration 
laboratory undertaking the measurements states on the certificate that “the expanded uncertainty (k = 2) 
for the piston movement is 0.002”.

Other methods of establishing the calibration of the length measurement may be adopted depending on 
how the prover is to be used. Measuring the length at random intervals across the piston’s stroke or at 
random intervals at each end of a full travel may be considered. Similarly a check should be made in case 
there are cyclic variations in the encoder that could provide uncertainty not seen in a number of fixed 
1 000 pulse intervals. Again, for the purpose of this example, the method outlined has been assumed to 
account adequately for the uncertainties present.

Table A.3 — Measurements of piston movements for successive counts of 1 000 pulses

Source Expanded uncertainty k Standard uncertainty u2

U u

Calibration 0.002 2 0.001 0.000 001
Variations 0.000 88 0.000 000 77
Combined 0.002 66a 2a 0.001 33 0.000 001 77
a The calculation of an expanded uncertainty at the 95 % confidence level is not strictly necessary for use in the overall uncertainty 

evaluation but is included for completeness.

Passage of piston

mm

1 2 3 4

20.026 20.009 20.001 20.000
20.015 19.993 20.013 19.998
19.993 20.002 20.011 20.007
19.994 19.989 19.998 19.988
20.011 19.994 19.982 20.016
20.002 20.000 20.002 19.995
20.018 19.990 19.987 19.984
20.002 19.994 20.003 19.995
19.987 19.988 20.000 20.012
19.986 20.013 20.002 19.999
19.999 19.994 20.008 19.995
19.997 20.012 19.995 20.001
19.991 19.985 19.989 19.991
20.002 20.000 20.008 19.994
20.007 20.018 19.996 20.007
20.013 19.997 20.000 20.007
20.003 20.007 20.004 20.017
20.000 20.005 20.021 19.993
20.007 20.004 19.981 20.018
19.991 20.015 19.999 20.016
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The mean movement of the piston for a count of 1 000 pulses, , is then given by equation (1) as

giving a value for the mean movement per pulse of

The standard uncertainty of the individual measurements of the movement for a count of 1 000 pulses is 
given by equation (2) as

and the standard uncertainty of the mean movement is then given by equation (5) as

The calculation of the combined uncertainty in the mean movement for 1 000 pulses is set out in Table A.4.

Table A.4 — Uncertainty budget for mean movement for 1 000 pulses

Source Expanded uncertainty k Standard uncertainty u2

U u

Calibration 0.002 2 0.001 0.000 001
Variations 0.001 12 0.000 001 255
Combined 0.003a 2a 0.001 50 0.000 002 255
a The calculation of an expanded uncertainty at the 95 % confidence level is not strictly necessary for use in the overall 

uncertainty evaluation but is included for completeness.
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1 2
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The combined expanded uncertainty for the movement for one pulse is then given by

A.3.4 Uncertainty in pulse count

The pulse counter is verified against a reference counter and pulse train and shown to provide an exact 
count over repeated samples of 20 000 pulses. The uncertainty in the counting of whole pulses is therefore 
taken to be insignificant. However, when estimating the piston movement in a measured time interval, the 
pulse counter starts on receipt of the next pulse after the start signal is received from the timer and 
counting stops on receipt of the last pulse before the stop signal is received. The first pulse counted 
therefore represents only a part of a pulse and in fact represents any fraction of a pulse with equal 
probability. The range of possible values is therefore characterized by a rectangular distribution (k = Æ3) 
with a semi-range of 0.5 pulses. There is a similar uncertainty at the end of the pulse count.

The calculation of the combined uncertainty in the pulse count is set out in Table A.5.

Table A.5 — Uncertainty budget for pulses count

In calculating the expanded uncertainty of the pulse count, it could be argued that, with the two elements 
having rectangular distributions of equal size, the combined uncertainty will have a triangular distribution 
and k should be taken to be Æ6 giving an expanded uncertainty of 1. As the result is only used within the 
analysis of the overall uncertainty of the prover, it does not matter which approach is used as long as the 
k factor assumed is noted and used in the next stage to retrieve the correct standard uncertainty.

A.3.5 Uncertainty in the time measurement

The time taken is determined by an electronic timer circuit started and stopped from a manual signal. 
Uncertainties in the timing arise from:

a) the resolution of the timer display; and

b) the calibration of the timer circuit.

As the start–stop signal is also used to gate the pulse count, the operator reaction time plays no part in the 
timing. Additional uncertainty arises in theory from the differences in response of the timer circuit to the 
start and stop signals. This source is considered to be negligible.

The timer readout has a resolution of 0.001 s. The resolution is therefore characterized as a rectangular 
probability distribution having a semi-range of 0.000 5 s. 

The calibration certificate for the timer states that “at the 95 % confidence level, the timer is accurate 
to 0.01 % of the interval timed for intervals between 10 s and 1 000 s”. For a time interval of 20 s, the 
expanded uncertainty is therefore 

Source Expanded uncertainty k Standard uncertainty u2

U u

Start 0.5 Æ3 0.289 0.083 3
Finish 0.5 Æ3 0.289 0.083 3
Combined 0.816a 2a 0.408 0.166 6
a The calculation of an expanded uncertainty at the 95 % confidence level is not strictly necessary for use in the overall uncertainty 

evaluation but is included for completeness.

1000
0.003
1000
0.000003 mm

Mm
UU =

=

=

20 0.01 0.002 s
100tU ×

= =
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At the 95 % confidence level, the k factor to obtain the standard uncertainty is 2 and the standard 
uncertainty is therefore obtained from equation (11) as

The calculation of the combined uncertainty in the timing is set out in Table A.6. 

Table A.6 — Uncertainty budget for timing

A.4 Sensitivity coefficients

The sensitivity of the flow rate to the measurement of diameter, movement per pulse, pulse count and time 
can be obtained analytically by the application of equation (17) to the governing equation (A.1).

Thus

and for the collection of 5 000 pulses in 20 s 

and for the collection of 5 000 pulses in 20 s 

Source Expanded uncertainty k Standard uncertainty u2

U u

Resolution 0.000 5 Æ3 0.000 289 0.000 000 083 3
Calibration 0.002  2 0.001 0.000 001
Combined 0.002 08a  2a 0.001 041 0.000 001 083
a The calculation of an expanded uncertainty at the 95 % confidence level is not strictly necessary for use in the overall uncertainty 

evaluation but is included for completeness.

0.002 0.001 s
2
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Uu k= = =

2 2
4 4 2d

Q d mP dmP dmPc d d t t t
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= = = =  ∂ ∂  
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=
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and for the collection of 5 000 pulses in 20 s 

and for the collection of 5 000 pulses in 20 s 

A.5 Overall uncertainty in volume flow rate

The calculation of the overall uncertainty in the volume flow rate is set out in Table A.7.

Table A.7 — Uncertainty budget for volume flow rate

A.6 Additional uncertainties

To simplify the example for illustrative purposes, a number of other, potentially large, sources of 
uncertainty have not been accounted for in this example. The diameter of the cylinder has been established 
at a reference temperature. The resultant area will change due to temperature and pressure expansion of 
the tube. Similarly, the radius of the encoder pulley can change with temperature, hence changing the 
length measurement. As the purpose is to establish the volume flowrate through the meter under test, the 
effects of temperature and pressure expansion of the fluid between prover and meter should be added to 
the calculation. These effects carry uncertainties not accounted for in this example. Other sources of 
uncertainty may well be recognized in a full uncertainty evaluation of the application but are not included 
here.

U k u c cu (cu)2

diameter 0.002 66 2 0.001 33 589.09 0.784 75 0.615 837
move 0.000 003 2 1.502 × 10–6 1 104 500 1.658 7 2.751 31

pulse 0.816 2 0.408 4.418 2 1.803 7 3.253 46
time 0.002 08 2 0.001 041 –1 104.6 –1.149 7 1.321 72
Combined 5.636 4 2 2.818 2 7.942 33
Nom value 22 091
% uncertainty 0.026 

275.00125 0.020001
4 20
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=
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=

2 2
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Q d mP d mPc t t t t
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A.7 Uncertainty statement

The evaluation of Table A.7 applies only to the case when the minimum pulse count of 5 000 pulses is 
collected in the minimum time of 20 s. The volume collected is then 

and the flow rate is

The uncertainty of the flowrate can be expressed as follows:

When a volume of 440 ml is collected in 20 s, the expanded uncertainty (k = 2) in the flow rate is 6 mm3/s, 
or 0.026 %.

As resolution uncertainties will have different effects on the final uncertainty if larger volumes are 
collected or if the flow rate is slower and the collection time is longer, the analysis should ideally be 
repeated at the corners of the operating envelope and the final uncertainty statement should either quote 
the worst case uncertainty or specify individual uncertainties for various parts of the operating envelope.

2
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Annex B (normative) 
Setting out the calculation

B.1 Spreadsheet calculation of sensitivity coefficients

Table B.1 shows a spreadsheet set out to calculate the sensitivity coefficients for a measurement result, y, 
based on N input quantities, X1, X2,…,XN. The second row identifies the contents of each column and the 
third row shows the nominal values of each input quantity leading to the calculation in column 7 of the 
nominal value of the output estimate y. In subsequent rows column 2 contains the chosen increment for the 
calculation of the sensitivity coefficient. The rows are paired with the chosen increment added to the 
nominal value of the appropriate input in columns 3 to 6 in the first row and subtracted from it in the 
second. The result in column 7 is then the value of the output y resulting from the incremented input 
quantity. Columns 8 and 9 then contain the calculation of the absolute and relative sensitivity coefficients 
respectively. The table can be extended to any number of input parameters with each having its own row, 
its own increment in column 2 of that row and its own column of nominal values by inserting columns in 
the range 3 to 6. Problems with calculation round-off or non-linear responses resulting in erroneous values 
of c can easily be checked by altering the increment in column 2 and observing any change in the sensitivity 
coefficients in columns 8 and 9.

Table B.1 — Spreadsheet set out for the calculation of sensitivity coefficients

B.2 The uncertainty budget table

The simple step-by-step approach outlined in Clauses 5 to 10 allows the straightforward evaluation of the 
uncertainty of a measurement quantity associated with a complex functional relationship involving several 
input quantities. However, there may be many factors to be taken into account and care is needed to ensure 
that they have been properly accounted for. By using a computer spreadsheet, the entire process can be 
presented in a clear and logical progression. The approach recommended is commonly implemented in 
what is known as an uncertainty budget table and an example is shown in Table B.2. This approach will 
be seen later to have advantages when seeking to identify the major sources of uncertainty or to analyse 
the benefits of changes in parts of the system.

1 2 3 4 5 6 7 8 9

Sensitivity 
coefficient

Increment X1 X2 … XN Y c c*

— x1 x2 … xN ynom = f(x1, x2, …, 
xi, …, xN)

c1 %x1 . u(x1) x1 + %x1 x2 … xN y1+ = f(x1 + %x1, 
x2, …, xi, …, xN)

c1 %x1 . u(x1) x1 – %x1 x2 … xN y1– = f(x1 – %x1, 
x2, …, xi, …, xN)

c2 %x2 . u(x2) x1 x2 + %x2 … xN y2+ = f(x1, x2 + %x2, 
…, xi, …, xN)

c2 %x2 . u(x2) x1 x2 – %x2 … xN y2– = f(x1, x2 – %x2, 
…, xi, …, xN)

( )1 1
12∆

y y
x

+ −− 1 1
nom

c x
y

( )2 2
22∆

y y
x

+ −− 2 2
nom

c x
y
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Table B.2 — Sample layout of uncertainty budget table

1 2 3 4 5 6 7 8 9 10 11 12

I n Correlated 
group 

contribution

Contribution 
squared

Rank

(uxi·cxi)2

e.g.
cali

25  625 3

e.g.
cali
e.g.
res

3 179 1=

e.g.
res

3 179 1=

Cal D 6 983
NOT

NOT

NOT

NOT

NOT range = 200 000/1 024/2 = 98 Pa.

%

nput quantity Nominal 
value

Expanded 
uncertainty or 
limit relative

Expanded 
uncertainty 

or limit 
absolute

Probability 
distribution

Divisor Standard 
uncertainty

Sensitivity 
coefficient

Contributio
to 

uncertainty

xi k uxi or u*xi cxi or c*xi uxi·cxi

 pressure 1 
bration

105 000 1.0 % 1 050 Normal 2 525 –1 –525

 pressure 2 
bration

110 000 1.0 % 1 100 Normal 2 550 1 550

 pressure 1 
olution

105 000  98 Rectangular Æ3 56.4 –1 –56.4

 pressure 2 
olution

110 000  98 Rectangular Æ3 56.4 1 56.4

culated result 5 000 U*c(y) = 3.34 % Uc(y) = 167 D 2 uc(y) = 83.56 D =Æ6 983
E 1 Table is set out for the example of a differential pressure obtained by reading each pressure with the same transducer.

E 2 Functional relationship:

E 3 p2 = 110 000 Pa, p1 = 105 000 Pa.

E 4 Calibration uncertainty 1 % of reading given as an expanded uncertainty at 95 % confidence level.

E 5 Resolution uncertainty obtained from a-to-d converter resolution limit of 1 part in 1 024 with full scale = 2 bar = 200 000 Pa, Ü half

p p2= p1–
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The columns within the budget table are as follows:
Column 1: Source of uncertainty = input
Each source is assigned a separate row within the table and where several sources contribute to 
uncertainty in one input quantity these are grouped together.
Column 2: Nominal value of the input parameter = input
This column is included for use when some input uncertainties are available as percentages and some in 
absolute terms.
Column 3: Input expanded uncertainty relative = input (optional)
Column 4: Input expanded uncertainty absolute = input or column 3/column 2
In a practical evaluation some uncertainties might be available as absolute values and others as relative 
values. The inclusion of the nominal value in column 2 permits all uncertainties to be brought to a 
common basis for use in the analysis.

Column 5: Probability distribution

This column is used to record the distribution assumed for each source. Where the distribution to use is 
unclear, normal practice is to use a rectangular distribution.

Column 6: Divisor

Each probability distribution has its own divisor to obtain the standard uncertainty from the expanded 
value or limits (see 8.3).

Column 7: Standard uncertainty = column 3/column 6 (relative) or column 4/column 6 (absolute)

At this point, the decision should be made whether to use absolute or relative terms. The problem of 
arbitrary zeros (examples 5 and 6) can be avoided by using absolute terms throughout the analysis and 
converting to a relative value for the final answer, if required. As was highlighted in 10.2 and 10.3, all 
rows should be in the same terms.

Column 8: Sensitivity coefficients

It is vitally important to be consistent. If column 7 is absolute, so should column 8 be; if column 7 is 
relative, so should column 8 be; and again all rows should be in the same terms.

Column 9: Contribution to uncertainty = column 7 × column 8

This is the product of standard uncertainty and sensitivity coefficient.

Column 10: Correlated group uncertainty contribution

Where sources of uncertainty are correlated, perhaps through the use of the same instrument to take 
measurements, their contributions from column 9 can be added to provide a single entry in column 10.

Column 11: Contribution squared = (column 9)2

Entries in this column are the squares of the entries in column 9. However, when entries in column 9 
have been summed arithmetically in a correlated group in column 10, it is the column 10 entry that is 
squared and carried forward into column 11 and the relevant column 9 entries do not contribute directly 
to column 11.

The summation of all sources is then a matter of summing all entries in column 11, and the calculation 
proceeds back along the bottom row of the table from right to left. The standard uncertainty of the 
output, u(y), is then the square root of the column 11 summation. The divisor (column 6) becomes the 
multiplier appropriate to the confidence level required for the final uncertainty and the expanded 
uncertainty of the result [U(y) = ku(y)] appears at the foot of column 3 or 4 as appropriate.

Uncertainty evaluation often calls for judgement in assigning limits or distributions to an input 
uncertainty. When the layout of Table B.2 is used the effect of such decisions can be checked by changing 
the appropriate cell and observing the change in the final answer.

Similarly, when the extent of any correlation is unclear, the result can be recalculated by using or not using 
column 10 and comparing the final answers.

An uncertainty evaluation is often carried out to identify the aspects of a measurement system that need 
to be addressed to improve the measurement quality. The layout of Table B.2 is ideal for this purpose since 
columns 9 and 11 identify the principal contributions to the overall uncertainty. An extra column 
(column 12) can be added to show the ranking of the elements in column 9 or 11. 
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