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INTRODUCTION 

Progress in design and technology has resulted in an increasing reliability of rotating 
electrical machines, but failures could not be eliminated completely. Since the demand for a 
high availability is permanently increasing, it is essential to detect deficiencies at an early 
stage and to recognize the origin and identify the severity of the fault in order to estimate the 
risk of a continuation of operation.  

It would be advantageous, if the signals which are obtained by the detection methods 
presented in this guide, were suitable to distinguish the different failures from each other. By 
this means, the signal analysis can be used as input data of a complete monitoring system. 

The aim of this guide is to present possible tools which are available for the intended purpose 
and to explain their advantages and disadvantages. The minimum requirements which shall 
be met by the various sensors will be discussed, whereas the detailed design rules are 
outside the scope of this technical specification.  

This guide deals with the detection of failures at the active parts of multi-phase rotating 
machines (all kinds of winding faults in stator and rotor, cage deficiencies, eccentricities) and 
of bearing currents. DD CLC/TS 60034-24:2011
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ROTATING ELECTRICAL MACHINES –  

Part 24: Online detection and diagnosis of potential failures  
at the active parts of rotating electrical machines  

and of bearing currents –  
Application guide 

1 Scope 

This part of IEC 60034 is applicable to the on-line detection and diagnosis of failures at the 
active parts of multi-phase rotating electrical machines (induction and synchronous machines) 
and of bearing currents. The failure analysis includes: 

– interturn faults; 
– phase-to-phase short-circuits; 
– double earth faults and single earth faults of motors with earth connection of the 

star-point; 
– static and dynamic eccentricities; 
– cage imperfection or defects (e.g. broken bars or end-rings); 
– bearing currents. 

This can be achieved by tools like search coils or other magnetic sensors or partly by 
the analysis of the terminal voltages and currents. 

The detection of the following effects is excluded from the scope: 

– vibration (covered by ISO standards, e.g. ISO 10816 and ISO 7919); 
– partial discharge (covered by IEC 60034-27); 
– single earth-faults of motors without earth connection of the star-point; 
– core imperfection. 

Also excluded are special methods applicable for specific applications only (e.g. turbo 
generators). 

2 Normative references 

There are no normative references in this technical specification. 

3 Terms and definitions 

For the purposes of this document, the following terms and definitions apply. 

3.1  
distribution factor 
the factor, related to a distributed winding, which takes into account the reduction in 
the generated voltage due to the phase difference between the voltages generated in the 
coils in different slots 

[IEV 411-38-37] 

DD CLC/TS 60034-24:2011
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3.2  
chording (pitch) factor 
the factor, related to a distributed winding, which takes into account the reduction in 
the generated voltage, when the winding pitch is not 100 % 

[IEV 411-38-38] 

3.3  
branch factor 
the factor, related to a distributed winding, which takes into account the reduction in 
the generated voltage due to the phase difference between the voltages generated in the 
series-connected branches 

4 Basis of the diagnosis 

The ability of electrical machines to operate is based on the existence of a magnetic field in 
the air-gap, which is looping in a cross-sectional area of the laminations of stator and rotor. 
Flux components in the end-portions of the machine outside the cores are of a parasitic 
nature. Therefore available signals suitable for the detection of potential faults originate from 
the magnetic field in the air-gap, which shall be analyzed in order to distinguish between 
those components which occur under regular operating conditions and those components 
which are attributed to a specific failure and which do not exist in a healthy machine. 

Since the winding producing the magnetic field consists of coils distributed symmetrically 
around the circumference and since the sum of the supplying currents is usually zero, the air-
gap field forms also a periodic function along the circumference. The wave of the flux density 
can be considered as the superposition of a sum of sinusoidally distributed waves, which are 
characterized by the following features: 

– amplitude, 
– number of pole-pairs, 
– angular velocity, 
– phase-angle, 
– type of wave (rotating or standing). 

Table 1 shows the composition of the air-gap field in the case of a three-phase cage induction 
motor, which is equipped with an integral slot winding. The table can easily be extended to be 
valid also for fractional slot windings. Similar tables can be developed for slip-ring motors and 
all kinds of synchronous machines. 

DD CLC/TS 60034-24:2011
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5 Kinds of electrical signal analysis 

5.1 General  

A valuable detection method shall be able to detect failures at an early stage. Therefore 
signals disclosing a rapid change in the case of small deficiencies, are optimal for the 
intended purpose. By contrast signals which vary only insignificantly should not be used as 
the basis of the diagnosis. 

The signal processing needs the availability of appropriate electronic equipment. Although the 
resolution of modern devices is high, signals which do not need excessive precision should be 
preferred in this respect.  

5.2 Stator current/voltage analysis 

The analysis of the terminal voltages or currents of a rotating machine allows identification of 

– different frequencies, 
– positive-, negative-, and zero-sequence components, 
– different amplitudes of the components. 

In general, all waves of induction in the air-gap field can induce voltages of certain 
frequencies in the stator winding and can cause currents of the same frequencies. The 
additional current components which are generated by a specific failure are superimposed to 
the supply values during undisturbed operation. All details shall be taken from the relevant 
table, that is Table 1 in the case of three-phase cage induction motors. 

Table 1 is worded for one single supply frequency f1. However, in case of a converter 
supplied machine, it is valid for each voltage/frequency component, which is contained in the 
output spectrum of the converter. 

Table 1 shows the components of the air-gap field. Whether a specific component induces a 
voltage in the stator winding, depends on its winding factor for the number of pole pairs under 
consideration. The winding factor is the product of the following terms: 

– the distribution factor, 
– the chording factor, 
– the branch factor. 

The branch factor is not generally known amongst engineers, but of fundamental importance 
for the problem under consideration. Each symmetrical three-phase integral slot winding 
consists of p (in case of a single-layer winding) or 2p (in case of a double-layer winding) 
identical coil groups (branches), which are distributed symmetrically around the 
circumference. They can be series-connected or connected to form parallel branches with the 
maximum number a = 2p. The connecting method considerably influences the branch factor of 
a specific number of pole pairs. 

It can be shown that the branch factor is zero for the eccentricity fields ν =  
p + 1 and ν = p – 1 for all windings with series-connection of the coil-groups. Consequently 
both types of eccentricity cannot be detected for such machines by stator current analysis. 

The branch factor of the harmonic fields according to item 1 to 4 of Table 1 depends also on 
the individual configuration and in addition on the number of rotor slots. The design of a given 
case is selected by the manufacturer of the machine for different reasons (e.g. to suppress 
unbalanced magnetic pull, to avoid nasty magnetic tones, etc.) and unknown to the user. It is 
therefore not advisable to use the harmonic rotor fields of items 3 and 4 as the signal for a 
stator current analysis. 

DD CLC/TS 60034-24:2011
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The group of winding faults in item 3 marks the most severe deficiencies at the active parts. 
They all produce magnetic fields of fundamental frequency. Thus winding faults cannot be 
detected by a frequency analysis of the stator currents. 

The field waves, produced by winding faults, are of elliptic nature, which means the 
superposition of two reverse rotating waves, having the same number of poles and the same 
frequency, but different amplitudes. In principle such failures can be detected by exploring the 
negative sequence component of the current of fundamental frequency. 

Especially in case of the most dangerous failure, an interturn fault of a high-voltage machine, 
when the high currents flow in only one of many turns per phase, this component is very 
small. A negative-sequence component of the current may also be caused by an unavoidable 
small asymmetry of the supply voltages (a negative sequence component of the voltage 
results in a negative sequence component of the currents, which is 6 to 10-times higher). 
Summing up, it is not recommendable to detect winding faults by means of a voltage/current 
analysis. 

Reliable detection of cage imperfection or defects (e.g. broken bars or end-rings) is 
possible by use of stator current analysis.  

Another disadvantage of the stator current analysis cannot be neglected. Statistics of 
insurance companies manifest that most of the winding faults occur during transient 
phenomena such as starting of motors, short-circuits at the terminals, etc., and cause high 
inrush currents. It is unfeasible to detect failures by current analysis during the interval of the 
transients. 

5.3 Induced voltages of auxiliary turns embedded into the stator slots or 
other magnetic sensors sensing the air-gap flux 

An ideal diagnostic signal would be zero during operation of a healthy machine under steady-
state and transient conditions, it would rise with the amount of the deficiency for all kinds of 
failures according to items 3 to 5 of Table 1 and would be able to distinguish between the 
failures. Solutions close to the optimum have been developed. 

These solutions are based on turns made by insulated wire, the diameter of which can be 
selected under solely mechanical aspects. Both coil-sides are incorporated in the stator slots 
of the main winding, usually during manufacturing of the machine between the upper layer of 
the winding and the slot wedge. The assembly at a later stage is possible. The end-
connections are led close to the end of the core. 

The same insight into the magnetic field at specific locations at the stator bore can eventually 
be achieved by other kinds of magnetic sensors instead of measuring turns. 

Usually several turns of the same pitch are series-connected and shifted against each other 
by a predetermined angle. It is aimed to get finally a system of auxiliary measuring coils, for 
which the resulting winding factor is zero for all air-gap fields, which exist during normal 
undisturbed operation, and for which the winding factor is maximum for a field with that 
number of pole pairs, which is intended to be used as the reference field of the diagnosis. 

If a system of auxiliary coils can be found which fulfills the condition explained above for a 
reference field, which is amongst the fields generated by all failures of items 3 to 5, the coil 
system would be complete. But there is one remaining difficulty: The fields produced by a 
winding fault according to item 3 of Table 1, are of an elliptic nature. If one of them is chosen 
as reference field, the induced voltage of the coil system would vary with the location of the 
fault at the circumference. Such a situation is of course unacceptable. 

The problem can be eliminated by use of a second identical coil system, which is shifted 
against the first one by the angle π/(2ν), when ν is the number of pole pairs of the reference 
field. Then both coil groups form a symmetrical two-phase system, which easily allows the 

DD CLC/TS 60034-24:2011
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calculation of the symmetrical components (SC) of the two measured voltages. The SCs 
are independent of the fault location. 

This guide is the inappropriate place to explain the design rules for the coil system in detail. It 
is mentioned only that the minimum number of turns per coil system usually varies between 6 
and 12 depending on the data of the relevant machine and the claims to the sensibility of the 
diagnosis. 

The reference field is taken from the list of air-gap fields, which are generated by the fault 
condition and which are zero during normal operation. Therefore the amplitude of the 
reference field is nearly unchanged during transients. This statement is proven by tests. 

The procedure of the diagnosis is executed in Table 2. Winding faults are characterized by 
the criterion that both (positive and negative sequence) symmetrical components do exist and 
have mains frequency. The voltages in case of static eccentricity have mains frequency too, 
but the negative-sequence component Un is zero. A dynamic eccentricity can be distinguished 
from other fault conditions by the typical frequencies of the induced voltages. Rotor 
asymmetries are marked by other typical frequencies; the induced voltages become zero, 
when the machine is running at synchronous speed (s = 0), because then the rotor currents, 
responsible for the reference field, disappear. 

It can be concluded that a professionally designed system of auxiliary coils forms a useful 
tool for the detection and diagnosis of faults. 

For the purpose of completeness it should be mentioned that other types of search coils were 
proposed in technical articles, which e.g. comprise one stator tooth only. They may be useful 
to investigate a specific effect, but they are unsuitable to form a complete diagnosis and were 
therefore not introduced into engineering practice. 

DD CLC/TS 60034-24:2011
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5.4 Induced voltages of search coils collecting axial fluxes 

Proposals were made to use either toroidal coils, fastened in front of the machine or coils 
surrounding the shaft of the machine. In both cases the axial flux produced by the machine is 
intended to be used for the detection of failures. Such approaches are generally not beneficial 
for the following reasons. 

Axial flux components are always parasitic and undesired, because the performance of the 
machine is based on flux components looping in the cross-sectional area of the laminations. 
The axial flux is very small because of the high magnetic resistance of air. The axial flux 
cannot be predicted by analytical methods. 

The flux produced by the most important winding faults is of fundamental frequency and 
the magnitude of its axial component is unforeseeable. 

Only for the case of eccentricities in 2-pole machines will the eccentricity field with the 
number of pole pairs p – 1 degenerate to a unipolar flux which successfully can be measured 
by a ring coil surrounding the stator bore and mounted at one core end. 

With this exception the use of search coils collecting axial fluxes is not recommended. 

5.5 Shaft voltage analysis 

Some authors allege the usefulness of the measurement of the shaft voltage in order to 
detect any distortion in the internal flux distribution of a machine. 

Shaft voltages are induced by a magnetic ring flux looping around the shaft. This ring flux is 
caused by irregularities of the stator yoke (e.g. clamping notches) and their distribution along 
the circumference in case of mains supplied machines. A ring flux is generated only, when the 
integral of the magnetic field strength around the circumference deviates from zero. The fields 
with number of pole pairs p and 3p play the most important role in this respect. This physical 
background demonstrates that the impact of winding faults on the shaft voltage is purely 
parasitic and too small to be used as a sensitive detection device. 

In the case of converter supplies, the shaft voltage may considerably increase due to ring flux 
components, which are caused by the common mode voltage of the converter. Consequently 
these components of the shaft voltage do not relate to the operational flux distribution of the 
machine and are totally unsuitable for the intended purpose. 

Summing up, failures at the active parts cannot reliably be detected by an analysis of 
the shaft voltage. 

6 Bearing currents 

Bearing currents can be produced by two sources: 

– irregularities of the core yoke, 
– common mode currents in case of converter supplied motors. 

When the yoke contains irregularities such as ventilation ducts, joints, dove-tailed clamping 
grooves, etc., their number and distribution along the circumference is decisive for the 
generation of shaft voltages which may result in bearing currents circulating through both 
bearings. The bearing currents usually contain predominantly the fundamental frequency, 
superimposed by a component of three-times the fundamental frequency due to saturation 
effects. Long-standing experience shows that the bearings are endangered when the shaft 
voltage exceeds 200 mV to 250 mV (r.m.s.). In this case it is the responsibility of the 
manufacturer to avoid bearing currents by the insulation of the bearing at the non-drive end 
(NDE). Several kinds of insulation are common. 
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When the non-drive end bearing is properly insulated, usually no further protection measure is 
necessary. However, when bridging of the insulation by inadvertent measures cannot be 
excluded, monitoring of the voltage across the insulation is advisable. 

If the rotating machine is supplied by a converter with an impressed d.c. voltage in the 
intermediate circuit, the common mode voltage (zero-sequence component) of the converter 
forms an additional source of bearing currents. Depending on details of the configuration, 
these currents may pass only one bearing (EDM (Electric Discharge Machining) and earth 
currents flow back to the converter via the grounding system) or they circulate through both 
bearings, when they are caused by the capacitive currents between the winding and the 
laminations. 

The common mode currents can be measured, but if they can take different paths from the 
machine frame to the ground, they cannot be taken as indication of the risk. It is the 
responsibility of the system designer/supplier to decide if the insulation of one bearing is a 
sufficient precautious measure or if both bearings must be insulated. 

The selection of the bearing insulation shall take into account that the frequency of the 
common mode currents is in the kHz range and that the analysis of the EDM breakdowns 
comprises much higher values. Capacitive currents cannot be suppressed by a thin insulation 
film in the range of hundred micrometers. 

In case a grounding brush is used, the current flowing through this brush can be analysed 
in order to find the origin of the current. 

A breakdown of the bearing insulation or a discharge through the oil film of the bearings can 
be monitored by measuring the shaft-to-ground voltage using a sensing brush. 

For test purposes contact pins can be installed at both sides of the insulation in order to 
measure the voltage across the insulation or the bearing current when the insulation is 
bridged by a strap. Such measurements necessitate the use of appropriate instrumentation 
and cabling with respect to the high frequencies. Currently, monitoring of these quantities is 
exceptional. 
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