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Foreword

This British Standard has been prepared under the direction of the Advanced 
Manufacturing Technology Standards Policy Committee.

This standard is intended for use by manufacturers of coordinate measuring 
machines (CMMs)  and software writers within the CMM industry.

It covers the assessment of geometric form of workpieces measured with a CMM.  
It gives information and guidance to promote the better use of CMMs for this 
purpose by the adoption of reliable software that provides well presented 
comprehensive information.

This British Standard contains mathematical concepts and notation;  therefore it 
is assumed that the execution of its guidance is entrusted to appropriately 
qualified and experienced personnel.

A British Standard does not purport to include all the necessary provisions of a 
contract.  Users of British Standards are responsible for their correct application.

Compliance with a British Standard does not of itself confer immunity 
from legal obligations.

Summary of pages

This document comprises a front cover,  an inside front cover,  pages i and ii,  
pages 1  to 17 and a back cover.

This standard has been updated (see copyright date)  and may have had 
amendments incorporated.  This will be indicated in the amendment table on the 
inside front cover.
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1  Scope

This British Standard provides information and 
guidance to manufacturers of coordinate measuring 
machines (CMMs),  and particularly software 
writers within the CMM industry.  It contains 
recommendations for determining the position,  size 
and departure from nominal form of geometric 
features,  given measurements of coordinates of 
points on a workpiece.  The features covered 
correspond to the following geometric 
elements: lines,  planes,  circles,  spheres,  cylinders 
and cones.

This standard is concerned with software 
implementations of algorithms based on sound 
mathematical and computational principles,  rather 
than automated versions of manual or graphical 
assessment procedures.

This standard does not provide detailed guidance on 
methods for treating data gathered in an unstable 
environment.

This standard does not cover secondary attributes,  
i.e.  measures derived from departures from form of 
the above geometric elements,  such as parallelism,  
concentricity or orthogonality.

This standard primarily relates to CMMs that 
operate with a right-handed Cartesian coordinate 
system.  It also relates to other measurement 
systems that provide such coordinates.  Some of the 
guidance provided also applies to other coordinate 
systems.

2 Definitions

For the purposes of this British Standard the 
following definitions apply.

2.1  
algorithm

a step-by-step description in mathematical or other 
unambiguous terms of a process for solving a 
particular problem,  e.g.  the determination of the 
parameters describing a geometric feature

2.2 
centroid

the point described by coordinates which are the 
arithmetic means of the corresponding coordinates 
of the data points

2.3 
circularity

measure of departure from nominal form for a 
mathematical circle

2.4 
cylindricity

measure of departure from nominal form for a 
mathematical cylinder

2.5 
data point

either a raw data point or a raw data point that has 
been processed in some way

2.6 
departure from nominal form

overall measure of the deviation of a workpiece from 
nominal form

NOTE The departure from nominal form is defined as the 
spread,  or in terms of the spread.

2.7 
deviation

the straight-line (Euclidean)  distance of a data point 
from the reference,  measured normal to the 
geometric element.  The distance is regarded as 
positive or negative according to which side of the 
element the point lies.  Where appropriate it is 
negative if the point lies in the material of the 
workpiece,  and positive otherwise.  In the case of a 
line in two dimensions or a plane all points on one 
side are taken to have a positive deviation and those 
on the other a negative deviation.  The deviation for 
the ith data point is denoted by ei

2.8 
direction cosines (of a line)

the cosines of the angles between a line and the 
Cartesian axes

2.9 
geometric element

line,  plane,  circle,  cylinder,  cone or sphere

2.10 
geometric feature

(part of)  an object nominally in the shape of one of 
the geometric elements

2.11  
line

a straight line in two or three dimensions

2.12 
measurement procedure

a strategy for obtaining a representative set of 
points on a workpiece

2.13 
nominal form

the ideal geometric object of which the geometric 
feature under test is a machined or otherwise 
manufactured manifestation,  e.g.  sphere

2.14 
normal

a line passing through a point on a curve or surface 
and perpendicular to the tangent line or plane at the 
point
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NOTE A normal conventionally points out of the material.

2.15 
outlier

a data point that is not regarded as a member of a 
set of data points representative of the geometric 
feature

NOTE An outlier may arise from malfunction of the CMM or an 
error on the part of its operator.

2.16 
parameters

algebraic variables representing the size and 
position of a geometric element,  e.g.  the radius and 
centre coordinates of a circle

2.17 
parameter values

numerical values of parameters

2.18 
parametrization

a choice of algebraic variables to represent a 
geometric element

2.19 
pre-processing

operations upon measured data intended to render 
it more suitable for purposes of assessment of form

2.20 
range of the deviations

the difference between the largest and smallest 
signed deviations,  i.e.  maxi  ei  – mini  ei

2.21  
raw data

measured coordinates of points on the boundary or 
surface of the geometric feature

2.22 
reference

a computed geometric element to be used as a basis 
for assessment

2.23 
representative set of points

a set of points that,  for the purposes of the 
assessment,  adequately represent the geometric 
feature

2.24 
residual

a measure of the error of fit of a reference or trial 
reference at a point.  At the ith point the residual is 
denoted by resi

2.25 
root mean square (r.m.s.)  deviation

the square root of the quotient of the sum of the 
squares of the deviations and the number of degrees 
of freedom v,  i.e.  Æ (Ciei

2/v)

2.26 
software, software implementation

a computer implementation of an algorithm

2.27 
spread

a measure of the scatter of the deviations

NOTE Two useful definitions are the range of the deviations 
and the root mean square deviation.  A further measure of spread 
is a suitable multiple of the root mean square deviation.

2.28 
uniform pseudorandom number generator

an algorithm or software for producing a sequence of 
numbers that,  according to statistical tests,  appear 
to be samples from a rectangular distribution

2.29 
workpiece

the object or component under test,  containing the 
geometric feature being assessed

3 Symbols and abbreviations

For the purposes of this British Standard the 
following symbols and abbreviations apply.  Several 
meanings are given to some of the symbols and the 
specific meaning is implied in each case by the 
context in which the symbols are used.

a Direction cosine for x.

b Direction cosine for y.

c Direction cosine for z.

c Constant in circle equation.

C Circle.

C Cylinder.

C Cone.

d Distance of a point from a geometric 
element.

ei Deviation of the ith data point from a 
reference.

E Objective function used in computing a 
reference.

f Parameter in circle equation.

f Intermediate variable in distance 
formulae.

F Measure of departure from nominal form.

g Parameter in circle equation.

g Intermediate variable in distance 
formula.
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4 Outline of guide

In order to obtain a reliable assessment of geometric 
form in any particular case,  the corresponding 
geometric element should first be represented,  
i.e. parametrized,  in a mathematically sound way.  
Recommended parametrizations are given in 
clause 5.  It is recommended that the assessment 
process itself be carried out in four stages:

a)  apply an appropriate measurement procedure,  
i.e.  a strategy for obtaining a representative set of 
measurements on the workpiece (see clause 6);

b)  (optionally)  pre-process the data,  i.e.  replace 
the measured data by modified values in order,  
for example,  to smooth the data,  to remove 
inappropriate points or to compensate for 
environmental effects (see clause 7);

c)  compute the reference (e.g.  an approximating 
circle in terms of its centre coordinates and 
radius),  to give position and size (see clause 8);

d)  assess,  in terms of the reference,  the departure 
from nominal form (see clause 9).

Once the assessment has been carried out,  it is 
recommended that the software provides the 
information detailed in clause 10 .  To avoid 
unnecessary numerical inaccuracies during the 
assessment,  software writers should adopt the 
recommendations given in clause 11 .

G Point on L  or P closest to the centroid of 
the data points.

h Distance between two parallel planes.

h Height of frustum of cone.

i Subscript for data point.

l Length of generator of frustum of cone.

L Straight line.

n Number of parameters necessary to 
describe a geometric element,  which 
normally is also the same as the 
mathematical minimum number of points 
required to define the element.

nc Number of approximately uniformly 
spaced parallel planes.

np Number of measurements on or near a 
plane.

N Number of measured points on a 
workpiece.

P Plane.

q Number of lobes on a nominally circular 
feature.

r Radius of circle,  sphere or cylinder.

r Radial coordinate in a cylindrical or 
spherical coordinate system.

r1,  r2 Radii of ends of frustum of cone.

ri Distance of ith data point from centre of 
reference circle.

resi Residual evaluated at the ith data point.

s Difference between number of 
measurements on successive planes in a 
measurement procedure for a cone.

s Distance from the surface of a cone to a 
point on its axis.

S Sphere

S Set of data points.

t Parameter proportional to distance.

u,  v,  w Intermediate variables in distance 
formulae.

x First Cartesian coordinate.

Arithmetic mean of values of xi  (= Ci  xi i/N).

x0,  x1,  x2 x-coordinates of locating points for a 
straight line or axis of a cylinder or a 
cone.

xp x-coordinate of a general point on a 
geometric feature when computing 
distance from the point to a geometric 
element.

y Second Cartesian coordinate.

Arithmetic mean of values of yi  (= Ciyi i/N).

x

y

y0,  y1,  y2 y-coordinates of locating points for a 
straight line or axis of a cylinder or a 
cone.

yp y-coordinate of a general point on a 
geometric feature when computing 
distance from the point to a geometric 
element.

z Third Cartesian coordinate.

Arithmetic mean of values of zi  (= Cizi i/N).

z0,  z1,  z2 z-coordinate of locating points for a 
straight line or axis of a cylinder or a 
cone.

zp z-coordinate of a general point on a 
geometric feature when computing 
distance from the point to a geometric 
element.

Ú Bearing angle for cylindrical or spherical 
coordinates.

v Number of degrees of freedom,  given by 
N – n.

Ì Azimuth angle for spherical coordinates.

Ò Apex angle of cone (equal to twice the 
angle between the cone’s generator and 
axis).

z
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NOTE Appendix A gives mathematical formulae for the 
distance of a point to a geometric element described by one or 
other of the parametrizations given in clause 5 .  These formulae 
should be useful to the software writer in preparing algorithms 
for assessing departure from nominal form when using the 
recommended parametrizations.

5 Parametrization of geometric 
elements

5.1  General

This clause is concerned with the manner in which 
the position and,  where relevant,  orientation and 
size of each geometric element considered in this 
standard should be described in mathematical 
terms.  For a reliable assessment to be carried out 
the workpiece should be adequately represented by 
a set of measured data points in a Cartesian 
coordinate system (see 6.2).  The geometric element 
that is to act as a reference for the data is described 
in terms of this system.  The description consists of 
assigning numerical values to parameters that 
define the geometric element.

It is possible to parametrize each of the geometric 
elements in more than one way.  The 
parametrizations given here are recommended as 
being generally applicable.  They have the property 
that small changes in the geometric element usually 
result in correspondingly small changes in the 
parameter values.  Certain other parametrizations 
may be equally sound,  although it should be noted 
that the use of some parametrizations can yield 
unreliable results.

Example.  It is possible to parametrize a cone in 
terms of position of the vertex,  direction of the 
axis and the angle that the cone generator makes 
with the axis.  For cones with only a gentle taper,  
e.g.  a tapered shaft,  the vertex position may be 
far from the data points.  Slight changes in the 
data could result in large changes in the vertex 
position of the computed reference.  Therefore 
this parametrization is not recommended.

NOTE For lines and circles nominally in a specified plane,  the 
data points should first be projected into an (x,  y)  Cartesian 
coordinate system in that plane.  The recommendations in 5.2  
then apply to that coordinate system.  Following computation,  the 
description of the geometric feature should then be transformed 
to the original coordinate system.

5.2 Specific geometries

5.2.1  Lines in a specified plane

5.2.1.1  General.  A line should be specified by either:

a)  one point on the line and information about the 
orientation of the line;  or

b)  two points on the line.

In the recommendations given in 5.2.1.2  and 5.2.1.3  
the data itself is used to determine the points to 
take.

NOTE 1 It is  not recommended to use the gradient of the line 
and the intercept with a coordinate axis because of numerical 
difficulties that occur when the line is parallel or nearly parallel 
to the axis.

NOTE 2 It is  not recommended to use distance of the line from 
the origin and the gradient of the line because this 
parametrization is numerically unstable,  particularly when the 
span of the data points is  small compared with the distance of the 
points from the origin.

5.2.1.2 One point and the direction cosines.  A line L,  
related to a set of data points,  should be specified by:

a)  a point (x0,  y0)  on L;  and

b)  its direction cosines (a,  b).

NOTE 1 The point (x0,  y0)  should be taken at or near G,  the point 
on L  closest to the centroid of the data points.

NOTE 2 Any point (x,  y)  on L  satisfies the equation:

(x,  y)  = (x0,  y0)  + t  (a,  b)

for some value of t.

5.2.1.3 Two points on the line.  A line L,  related to a 
set of data points,  should be specified by two points 
(x1,  y1),  (x2,  y2)  that:

a)  lie on L;  and

b)  are such that all data points lie between the 
two lines perpendicular to L  passing through 
(x1, y2)  and (x2,  y2),  respectively;  and

c)  are as close together as (reasonably)  possible.

NOTE Any point (x,  y)  on L  satisfies the equation:

(x,  y)  = (1  – t)  (x1,  y1)  + t(x2,  y2)

for some value of t.

5.2.2 Lines in three dimensions

5.2.2.1  General.  The parametrization of lines in 
three dimensions is very similar to that of lines in 
the plane (see 5.2.1).  The parametrization of a 
cylinder or cone requires the specification of an axis,  
so this clause will have relevance to 5.2.7  and 5.2.8.

5.2.2.2 One point and the direction cosines.  A line L,  
related to a set of data points,  should be specified by:

a)  a point (x0,  y0,  z0)  on L;  and

b)  its direction cosines (a,  b,  c).

NOTE 1 The point (x0,  y0,  z0)  should be taken at or near G,  the 
point on L  closest to the centroid of the data points.

NOTE 2 Any point (x,  y,  z)  on L  satisfies the equation:

(x,  y,  z)  = (x0,  y0,  z0)  + t(a,  b,  c)

for some value of t.

5.2.2.3 Two points on the line.  A line L,  related to a 
set of data points,  should be specified by two points 
(x1,  y1,  z1),  (x2,  y2,  z2)  that:

a)  lie on L;  and

b)  are such that all data points lie between the 
two planes perpendicular to L  passing through 
(x1,  y1,  z1)  and (x2,  y2,  z2),  respectively;  and

c)  are as close together as (reasonably)  possible.

NOTE Any point (x,  y,  z)  on L  satisfies the equation:

(x,  y,  z)  = (1  – t)  (x1,  y1,  z1)  + t(x2,  y2,  z2)

for some value of t.
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5.2.3 Planes

5.2.3.1  General.  A plane should be specified by a 
point on the plane and either:

a)  the direction cosines of the normal to the plane;  
or

b)  a point on the normal to the plane passing 
through the first point.

5.2.3.2 Point on the plane and direction cosines of 
the normal.  A plane P,  related to a set of data points,  
should be specified by:

a)  a point (x0,  y0,  z0)  on P;  and

b)  the direction cosines (a,  b,  c)  of the normal to P.

NOTE 1 The point (x0,  y0,  z0)  should be taken at or near G,  the 
point on P closest to the centroid of the data points.

NOTE 2 Any point (x,  y,  z)  on P satisfies the equation:

a(x  – x0)  + b(y  – y0)  + c(z  – z0)  = 0

5.2.3.3 Point on the plane and a second point on the 
normal.  A plane P,  related to a set of data points,  
should be specified by:

a)  a point (x0,  y0,  z0)  on P;  and

b)  a point (x1,  y1,  z1)  on the normal to P at 
(x0, y0, z0).

NOTE 1 The point (x0,  y0,  z0)  should be taken at or near G,  the 
point on P closest to the centroid of the data points.

NOTE 2 The point (x1,  y1,  z1)  should be determined such that its 
distance from P is  comparable with the span of the data points.

NOTE 3 Any point (x,  y,  z)  on P satisfies the equation:

(x1  – x0)  (x – x0)  + (y1  – y0)  (y  – y0)  + (z1  – z0)  (z – z0)  = 0

5.2.4 Circles in a specified plane

5.2.4.1  Centre and radius.  A circle C in the plane 
should be specified by its centre (x0,  y0)  and its 
radius r.

NOTE 1 Any point (x,  y)  on C satisfies the equation:

(x – x0)
2  + (y  – y0)

2  = r2

NOTE 2 Numerical inaccuracies are likely to arise in the use of 
this parametrization for a circle related to a set of data points 
lying on or near an arc whose length is much smaller than its 
radius.

5.2.5  Circles in three dimensions

5.2.5.1  General.  A circle in three dimensions should 
be specified by its centre and radius,  and the plane 
in which it lies.  Since the centre of the circle lies in 
the plane,  this point should be used in specifying the 
plane.

5.2.5.2 Centre,  radius and plane.  A circle C should 
be specified by:

a)  its centre (x0,  y0,  z0);  and

b)  its radius r;  and either

1)  the direction cosines (a,  b,  c)  of the normal to 
the plane containing C;  or

2)  a point (x1,  y1,  z1)  on the normal at the centre 
of C to the plane containing C.

NOTE 1 The point (x1,  y1,  z1)  should be chosen such that its 
distance from the centre is comparable to the radius.

NOTE 2 Numerical inaccuracies are likely to arise in the use of 
this parametrization for a circle related to a set of data points 
lying on or near an arc whose length is much smaller than its 
radius.

5.2.6 Spheres.  A sphere S should be specified by its 
centre (x0,  y0,  z0)  and its radius r.

NOTE 1 Any point (x,  y,  z)  on S satisfies the equation:

(x – x0)
2  + (y  – y0)

2  + (z  – z0)
2  = r2

NOTE 2 Numerical inaccuracies are likely to arise in the use of 
this parametrization for a sphere related to a set of data points 
that span a region whose area is small compared with the surface 
area of the sphere.

5.2.7 Cylinders.  A cylinder C,  related to a set of data 
points,  should be specified by:

a)  the axis of C,  specified according to 
either 5.2.2.2  or 5.2.2.3 ;  and

b)  its radius r.

NOTE 1 If the axis is  specified according to 5.2.2.2 ,  the point 
(x0,  y0,  z0)  should be taken close to the midpoint of the part of the 
axis that is enclosed by the data.

NOTE 2 Numerical inaccuracies are likely to arise in the use of 
this parametrization for a cylinder related to a set of data points 
that,  when orthogonally projected onto a plane perpendicular to 
the cylinder axis,  lie on or near an arc whose length is much 
smaller than the cylinder radius.

5.2.8 Cones

5.2.8.1  General.  A cone should be specified by its 
axis,  angle,  and information about where on the axis 
the cone is situated.  The use of the vertex is not 
recommended in general (see example in 5.1).

5.2.8.2 Axis,  angle and distance from a point on the 
axis to the cone surface.  A cone C,  related to a set of 
data points,  should be specified by:

a)  the axis of C,  specified according to 
either 5.2.2.2  or 5.2.2.3 ;  and

b)  the apex angle Ò  of the cone;  and

c)  the distance s  to the surface of C from a point 
(x0,  y0,  z0)  on the cone axis.

NOTE 1 If the axis is  specified according to 5.2.2.2 ,  the point 
(x0,  y0,  z0)  should be taken close to the midpoint of the part of the 
axis that is enclosed by the data.

NOTE 2 Numerical inaccuracies are likely to arise in the use of 
this parametrization for a cone related to a set of data points that,  
when projected from the cone vertex onto a plane perpendicular 
to the cone axis,  lie on or near an arc whose length is much 
smaller than the radius of the intersection of the cone and plane.

6 Measurement procedure

6.1  General

The set of measured values made on the workpiece 
constitute the data upon which calculations are 
carried out to determine position,  size and 
departure from nominal form.  Data collection may 
be under manual or automatic control.
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To obtain reliable results the gathered data should 
be representative of the geometric feature.  The use 
of too few data points or data points inappropriately 
distributed may provide an unreliable reference.  
The provision by the manufacturer of well-defined 
and explicit measurement procedures (appropriate 
for the computations to be carried out)  should be of 
value in this respect to the user.

Example.  As a result of the machining process 
used,  a nominally cylindrical component may 
have an elliptical cross-section.  The use of too 
few data points,  e.g.  three in any position on a 
profile,  or four in positions on a profile that are 
symmetric with respect to the axes of the ellipse,  
on the profiles of a number of cross sections may 
be insufficient to permit a reliable estimate of 
the true departure from an ideal cylinder to be 
made.

Documentation should accompany the 
manufacturer’s software to give advice on the 
number and locations of measuring points.  Where 
possible the manufacturer should guide the user 
through decision processes that lead to the selection 
of a suitable measurement procedure.  Alternatively,  
the software itself should assist in this respect.  No 
absolute guidance can be given because the points 
chosen should take account of the nature of the 
machining process and the intended function of the 
workpiece.  Some tests of the adequacy of a set of 
data points should be made by appropriate software 
provided by the manufacturer.

The user of a coordinate measuring machine may 
know the likely deformations of a particular 
workpiece.  The measurement procedure should take 
account of that knowledge.  The procedures 
recommended in 6.3  and 6.4  are not intended to be 
substitutes for such “in-house” procedures.  Rather,  
they should be regarded as a minimal requirement.

6.2 Coordinate systems

Any,  well-defined,  coordinate system may be used.  
Common coordinate systems are:

Rectangular axes should usually form a 
right-handed Cartesian set.  (In the rectangular set 
xyz,  the x-axis rotated to y  in the xy-plane would 
cause a right-hand screw to progress along and in 
the direction of the positive z-axis.)

A left-handed set is sometimes convenient when 
workpieces occur in mirror-imaged pairs.

For the purposes of a particular assessment,  there 
will usually be at least two defined coordinate 
systems:  one fixed in the CMM,  the other fixed in 
the workpiece.  By their nature,  measurements are 
made in terms of the CMM’s coordinate system.  
Computed results should be quoted in terms of a 
workpiece coordinate system,  which is normally 
defined in a calculated reference.  It is often 
convenient and generally numerically desirable for 
the calculations to be performed in other coordinate 
systems (see 11.5).

6.3 Distribution of points

6.3.1  General.  The distribution of measured data 
points should normally aim for a uniform coverage 
of the workpiece.  This will help to ensure that the 
points provide a genuine representation of the 
geometric feature.  However,  the distribution should 
not be so regular that it is possible for it to follow 
systematic or periodic deformations.  For example,  if 
a “circle” has three equal lobes,  a distribution of six 
points equally spaced around the circle may fail 
completely to detect the lobing effect.  A certain 
amount of randomness and lack of regularity in the 
distribution of points is therefore generally 
desirable.

Where periodic distortions (lobes)  are suspected,  the 
measured points should not approximate the same 
position in each period.  For a closed feature,  e.g.  a 
circle,  this can be avoided by having no common 
factor in the number of measured points,  N,  and the 
likely number of periods.  In particular,  the use of a 
prime number for N should be satisfactory.

rectangular x,  y,  z;

cylindrical r,  Ú,  z;

spherical r,  Ú,  Ì.

Example.  N = 5.

NOTE One point is  chosen at random in each subinterval 
marked with an asterisk.

Figure 1  — A distribution of points on a line
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6.3.2 Lines.  To achieve a nearly uniform 
distribution of N points on a line segment,  the line 
segment should be divided into N subintervals of 
equal length and one point placed in each 
subinterval.  If the “line” is likely to suffer a periodic 
distortion the chosen points should not conform to a 
regular pattern.  One way to ensure this is to choose 
the point in each subinterval at a “random” position.  
A uniform pseudorandom number generator should 
be used for this purpose.  To avoid the possibility of 
having points too close together this process should 
be refined by dividing the line segment into 
say 3N – 2 subintervals of equal length and 
choosing a random point in each of 
the 1st, 4th, 7th, . . . ,  (3N – 2)nd subintervals 
(see Figure 1).

6.3.3 Planes.  To achieve a nearly uniform 
distribution of (approximately)  N points on a 
rectangular segment of a plane,  the rectangle 
should be divided into N1  ×  N2  sub-rectangles by a 
regular mesh of lines,  where N1  N2  is  approximately 
equal to N,  and one point placed in each 
sub-rectangle (see Figure 2).  The sub-rectangles 
should be as near to square as convenient.  If the 
“plane” is likely to suffer a periodic distortion the 
chosen points should not conform to a regular 
pattern.  This can be achieved by an extension of the 
device described in 6.3.2 .  If it is more convenient to 
gather data on straight lines across the plane,  then 
these should ideally be irregularly spaced and the 
points on each line spaced according to 6.3.2.

If only a small number of points is to be measured 
the number of sub-rectangles should be doubled and 
the points distributed in alternate sub-rectangles in 
a “chess board” fashion (see Figure 3).

6.3.4 Circles.  To achieve a nearly uniform 
distribution of N points the circle should be divided 
into N equal arcs and one point placed on each arc.  
If the “circle” is likely to be lobed,  a regular 
distribution should not be used.  If it is known that 
there are likely to be q  lobes,  N should be chosen so 
that N and q  have no common factor.  (N should 
always be chosen to be greater than q. )  If N is  
divisible by q  the information gathered from the 
measurements may be severely limited.

Example.  Six points equally spaced on a 3-lobed 
“circle” may completely fail to detect the lobing.

Seven points equally spaced on such a circle will 
detect at least 79 % of the amplitude of the 
lobing (see Figure 4).

Example.  N = 20:  choose N1  = 4,  N2  = 5  to 

give 4 × 5 subrectangles.

NOTE One point is chosen at random in every subrectangle.

Figure 2  — A distribution of points 
in a plane

Example.  N = 10:  choose N1  = 4,  N2  = 5 to 

give 4 × 5 subrectangles and “chess board” 
distribution of points.

NOTE One point is  chosen at random in each subrectangle 
marked with an asterisk.

Figure 3 — A “chess board” distribution of 
points in a plane

(a)  six uniformly spaced points with complete 
failure to detect lobing

(b)  seven uniformly spaced points with at 
least 79 % of the lobing detected

Figure 4 — A distribution of points on a 
lobed circle
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6.3.5  Spheres.  The following strategy achieves a 
nearly uniform coverage with (approximately)  N 
points on the surface of the sector of a sphere of 
radius r  enclosed between two parallel planes which 
are a distance h  apart.

nc  should be determined as an integer close 
to Æ {Nh/(2;r)}  and np  as an integer close to N/nc.  For 
each of nc  approximately uniformly spaced planes 
parallel to and including the given planes,  np  
approximately uniformly spaced measurements 
should be taken at (or near)  the intersection of the 
plane and the sphere.

NOTE 1 The strategy is based on the fact that the surface area 
of the sector of the sphere is equal to that of a cylinder of radius 
r and height h.

NOTE 2 For a complete sphere,  h  = 2r,  in which case nc  is 
determined as an integer close to Æ (N/;),  with a single point at 
each pole.

6.3.6 Cylinders.  Achieving a nearly uniform 
distribution of N points on a cylinder of height h  and 
radius r  is similar to producing a nearly uniform 
distribution of N points on a rectangular plane 
segment of length h  and breadth 2;r.  Thus the 
distribution for such a plane,  as given in 6.3.3 ,  may 
be used for the cylinder by “wrapping the plane 
around the cylinder”.

Alternatively,  the points can be placed on parallel 
circles on the cylinders,  with the circles roughly 
uniformly spaced.  nc  should be determined as an 
integer close to Æ {Nh/(2 ;r)}  and np  as an integer 
close to N/nc.  For each of nc  approximately uniformly 
spaced planes approximately perpendicular to the 
cylinder axis,  np  approximately uniformly spaced 
measurements should be taken at the intersection of 
the plane and the cylinder.

It should be beneficial for the number of points to 
alternate between odd and even on the circles,  
e.g. in the example,  seven points on the first,  eight 
on the second,  seven on the third,  etc.  This will help 
detect any lobing effect on the circular cross section.

If the straightness of the cylinder is important more 
circles should be used with fewer points on each 
circle.  If the circularity of the cross section is more 
important more points on each of a smaller number 
of circles should be used.

If it is convenient for the probe to move along a helix 
then substitute “circuit” for “circle” in the above 
paragraphs.

6.3.7 Cones.  A nearly uniform distribution of N 
points on (a frustum of)  a cone can be produced in 
much the same way as on a cylinder with points 
placed on parallel circles.  However,  the number of 
points on the circles should decrease towards the 
vertex of the cone.  If the cone is of height h,  side l 
and radii r1  and r2  (r2  > r1)  at its ends,  then 
l = Æ {h2  + (r2  – r1)

2}.  nc  should be determined as an 
integer close to Æ [IN/{;(r1  + r2)]  and s  as an integer 
close to 2;  (r2  – r1)/l.  For each of nc  approximately 
uniformly spaced planes,  approximately 
perpendicular to the cone axis,  approximately 
uniformly spaced measurements should be taken at 
the intersection of the plane and the cone.  The 
number of measurements on successive planes 
decreases by s  for a plane nearer the vertex of the 
cone.

If few points are to be measured the number of 
circles should be doubled and the number of points 
on the circles halved,  e.g.  in Figure 7 circles with 
five,  five,  six,  six,  seven,  seven points on the circles 
could be taken,  with the points conforming to a 
“chess board” pattern.

Example.  For a sphere where r  = 100 mm,  
h = 150 mm and N = 30 choose nc  = 3 and np  = 10.

Figure 5  — A distribution of points on a 
sphere

Example.  For a cylinder where h  = 30 mm,  
r = 10 mm and N = 30 choose nc  =  4,  np  = 7 or 8.

Figure 6 — A distribution of points on a 
cylinder
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If the circularity of the cone is important,  more 
points on the circles should be used.  If the 
straightness or angle of the cone is more important,  
more circles should be used.

6.4 Number of points

There is a mathematical minimum number of points 
necessary to determine each geometric element,  
e.g. for a circle three points are needed.  To gain 
information about departure from nominal form 
more points are required.  Increasing the total 
number of measurements can be expected to have a 
statistically beneficial effect.  This point is 
particularly important if the error of measurement 
is comparable to the machining error.

Table 1  shows the mathematical minimum number 
n  and the recommended minimum number of points 
that should be used for the various geometric 
objects,  taking into account the recommendations 
of 6.3.

It cannot be overemphasised that the greater the 
number of appropriately distributed measured 
points the more reliable the assessment is likely to 
be.

6.5 Environment

This standard does not provide detailed guidance on 
methods for treating data gathered in an unstable 
environment.  Either environmental conditions such 
as temperature and humidity should be held 
sufficiently constant for their effects on the 
computed results to be negligible,  or appropriate 
corrections should be made to the raw data as part 
of the pre-processing stage (see clause 7).

7 Data pre-processing

7.1  General

If the gathered data is considered of sufficiently 
high quality for purposes of the assessment it 
should be left unaltered.  Alternatively,  if it contains 
random or systematic errors that,  it is judged,  would 
adversely affect the results of the assessment,  the 
data should be pre-processed.  Pre-processing can be 
used to remove outliers,  to reduce data errors by 
smoothing,  to operate on data according to the 
functional requirements of the workpiece under 
tests,  to account for flexing of the probe support arm 
and the finite dimensions of the probe,  and to make 
corrections for the effects of temperature,  humidity 
and vibration.

For example,  the presence of dirt on the surface of 
the workpiece may yield erroneous,  unrepeatable,  
measurements.  Carefully constructed 
pre-processing software should normally be able to 
detect those data points which are so affected,  and 
to make appropriate corrections.  The provision of 
such software by the manufacturer should be 
accompanied by diagnostic information which 
indicates the data modifications and deletions 
made.

Table 1  — Minimum number of points (see 6.3)

Example.  For a cone where r1  = 10 mm,  

r2 = 15 mm,  h  = 20 mm and N = 35,  so that 

l = 20.6 mm,  choose nc  = 3,  s  = 2 and take,  

successively,  10,  12 and 14 measurements on the 
three circles.

Figure 7 — A distribution of points 
on a cone

Element Minimum number of points Comment

Mathematical  (n) Recommended

Line 2 5

Plane 3 9 Approximately three lines of three

Circle 3 7 To detect up to six lobes

Sphere 4 9 Approximately three circles of three in parallel planes

Cylinder 5 12 Circles in four parallel planes for information on 
straightness

15 Five points on each circle for information on roundness

Cone 6 12 Circles in four parallel planes for information on 
straightness

15 Five points on each circle for information on roundness
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7.2 Techniques

The manufacturer should provide techniques for 
pre-processing the measured data.  He should also 
provide sufficient information to allow the user of 
the coordinate measuring machine to implement his 
own techniques;  in particular,  a complete 
description of data storage should be given.

8 Establishing a reference

8.1  General

The manufacturer should provide software for 
computing the reference which gives position and 
size of the geometric element and which is to be used 
in the assessment of the workpiece.

Example.  The reference for circularity should 
normally be the centre coordinates and radius of 
a computed circle.  For instance,  this circle may 
be the smallest circle enclosing the data points.

It is possible to compute the reference in any one of 
a number of ways.  In any case the criterion by which 
the reference has been computed should be stated 
clearly and unambiguously.

The manufacturer should employ computer 
implementations of mathematical algorithms in 
determining the reference.  The conditions under 
which the software will work correctly should be 
clearly stated.

Example.  A particular cylindricity assessment 
procedure might require a statement of the 
following form.

“The method used to compute the reference for a 
cylinder assumes that the first three and the last 
three data points lie respectively on two 
approximately circular sections,  and the 
remaining data points lie on these sections or 
sections between these.”

NOTE 1 The knowledge that the first and the last few 
measured points lie at the opposite ends of the cylindrical object 
permits an initial estimate of the cylindrical element to be 
computed rapidly by the software.  Such an estimate will speed 
convergence of some algorithms in computing the best-fit 
cylinder.

NOTE 2 Some problems have multiple solutions,  all of which 
are mathematically correct.  A restriction such as that above may 
be necessary to ensure that the physically correct solution is 
selected (see 11.3  and 11.4) .

8.2 Computation of the reference

The reference is defined by the parameters of the 
corresponding geometric element that best fits the 
measured points.  The fit is represented by the 
values of its parameters,  e.g.  radius and centre 
coordinates of a circle.  Many different criteria for 
specifying the best fit are possible.  In general,  the 
criterion should be to make some combination of the 
residuals as small as possible.  In mathematical 
terms,  the reference is obtained by optimizing the 
chosen combination of the residuals with respect to 
the parameters.

Examples.  Examples of criteria for specifying 
best fit are:

Here,  the residual,  resi,  is a measure of the 

departure of the ith point from the fit.  The 
residual is conventionally defined as the distance 
of the point from the reference.  However,  when 
calculating a reference circle by least squares,  a 
particularly simple algorithm can be obtained if 
the residual is taken to be the difference between 
the squared distance of the point from the circle 
centre and the squared radius of the circle 
(see example in 10.2).  

Not all criteria are of this general form,  e.g.  the 
minimum circumscribing circle (or sphere)  is 
given by:

minimize radius r  subject to 
resi  u  0,  i = 1, 2, . . . ,  N

Frequently used criteria are least squares,  
minimax,  maximum inscribed and minimum 
circumscribed.

In all cases,  the criterion used to compute the 
reference and the manner in which the residuals are 
defined should be stated.

9 Departure from nominal form

9.1  General

Once the reference has been determined,  the 
deviation of the measured workpiece from nominal 
form can be assessed.  The departure from nominal 
form is defined as the spread of the measured data 
about the reference.  First,  the deviation,  ei,  of a 
single measured point from the reference should be 
taken as the distance from the point to the 
reference.  (Where appropriate,  the distance is given 
a sign according to which side of the reference the 
data point lies.)  The spread of the deviations is then 
computed from these ei  (see 9.2).

Since the departure from nominal form is derived 
from the reference and the data points,  points that 
have been modified or deleted in the pre-processing 
stage of the assessment process should be included 
in assessing departure.  The manufacturer should 
provide a clear indication of which points have been 
included.

least squares min Ci  resi i
2;  and

minimax min maxi  | resi|
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9.2 Measures of spread

The output from assessment software should 
explicitly state the definition of spread used.  For a 
given reference,  different definitions of spread will 
in general give rise to different values,  even for the 
same data.  Also,  using the same definition can give 
different values if different criteria are used to 
determine the reference.  The choice is essentially 
independent of the criterion used to determine the 
reference figure,  but some definitions will be more 
appropriate to a particular criterion.  For example,  
where measurement errors are significant,  least 
squares should be suitable when computing the 
reference and in these circumstances the root mean 
square residual or some other related measure of 
departure should be appropriate.  If the minimum 
zone criterion is used to obtain the reference,  the 
range is immediately available without further 
computation.

Example.  This example is about assessing 
circularity in a predefined plane.  Let r  denote 
the computed radius of the reference circle and ri  

the distance of the ith data point from the centre 
of the reference circle;  then ei  = ri  – r.  The spread 

of the deviations may be taken as:

i.e.  the (positive)  difference between the distance 
of the point furthest from the centre of the 
reference circle and that of the point nearest to 
the centre of the reference circle.  Alternatively,  
the spread may be taken as the root mean square 
deviation:

Æ {Ci  ei
2/(N – 3)}  = Æ {Ci  (ri  – r)

2/(N – 3)}

where

N is the number of data points and has to be 
greater than three.

9.3 Statistics

If manufacturers provide statistics associated with 
the computed results,  the assumptions under which 
they have been calculated should be stated.

10 Information to be provided by an 
assessment

10.1  General

Once the data has been processed on the computer 
to obtain an assessment of a geometric feature,  
information relating to the assessment should be 
provided to the user.  Subclauses 10.2  and 10.3  
recommend ways in which this can be done.

10.2 Statement of results

An assessment of geometric form is valid only if the 
nature of the assessment is explicitly stated.  A 
single number,  e.g.  0.035 mm used to represent 
circularity,  is by itself meaningless.  Conversely,  if it 
is explicitly described and mathematically sound,  
any convenient assessment should be acceptable.

The definition of the residuals and the fitting 
criterion used in determining the reference should 
both be clearly stated,  as should the measure used 
in calculating the departure from nominal form.

Example.  Consider the determination of a 
reference by fitting a circle to a set of data points 
by least squares.  The use of the term “least 
squares” by itself is ambiguous.  It could,  for 
instance,  refer to solutions obtained in (at least 
two)  different ways.

The so-called linear least-squares solution may 
be obtained by applying least squares to the 
“standard” circle equation:

x2  + y2  + 2gx + 2  fy  +  c  = 0

Another solution is the circle obtained by 
applying least squares to the equation:

Æ {(x – x0)
2  + (y  – y0)

2}  – r  = 0

Both forms of circle are valid mathematical 
representations.  However,  in general,  different 
least-squares circles and hence different 
geometric assessments will be produced by their 
use.  There are circumstances in which either of 
these forms is valid.

10.3 Information

10.3.1  General.  Information made available by 
assessment software should be as full as possible 
consistent with economy of use.  Even if the 
application is within an automated process,  details 
of the assessment should be available for human 
interpretation.  In general,  the information provided 
need not be immediately visible to the user but 
should be readily accessible.  It may be given in any 
of a number of forms including printed computer 
output,  displays on VDU screens,  and filed 
computer records.

Two “levels” of information can be identified.  The 
first is “essential” information,  which should always 
be provided where appropriate.

10.3.2 Essential information.  The following 
information should always be provided:

a)  nature of the assessment;

b)  identification of the workpiece (e.g.  serial 
number,  type);

c)  details of assessment (parameters of reference,  
departure from form,  etc.).
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NOTE If the software fails to complete the assessment,  the 
details of the assessment should contain a statement to that 
effect together with a reason for failure,  e.g.  too few data points 
provided.

10.3.3 Optional information.  The following 
information is optional and should be provided 
where appropriate:

a)  job title;

b)  place,  date and time;

c)  environmental details;

d)  user;

e)  any other information considered relevant.

Example.  An example containing both essential 
and optional information is:

Circularity assessment

Workpiece No.  123

Edinburgh Works,  3.00 pm,  
31 December 1999

20 °C,  50 % humidity

User:  A.  B.  Clark

No pre-processing applied

10 points approximately uniformly spaced 
around the workpiece

Smallest circumscribing circle

Centre coordinates – 357.653 mm,  
484.922 mm

Radius 24.993 mm

Out of roundness (greatest departure of data 
points from circle)  0.035 mm

NOTE Ideally the coordinates of the points used should also be 
included.

11  Numerical considerations

11.1  General

Numerical software inaccuracies in providing an 
assessment can arise from a number of sources.  
Adoption by software writers of the 
recommendations given in 11.2  to 11.7  should help 
to avoid many of these.

11.2 Data errors

The data points that are taken as representative of 
an object under test contain two types of error.

a)  Form error.  This error is in the object itself and 
is a consequence of the inability of the machining 
process to produce a workpiece that is “perfect”,  
e.g.  cylindrical in a mathematical sense.

b)  Measurement error.  This error is due to the 
inability of the coordinate measuring machine to 
provide exact values of the coordinates of points 
on the object.

The measured data may have errors which are 
dominated by one of the above types or it may 
contain errors of comparable size from both sources.  
The way in which the assessment is undertaken 
should take this into account.  For example,  if the 
measuring accuracy is much greater than the 
machining accuracy,  the measurements can be 
taken as accurate information about the form of the 
component and it is recommended that methods 
based on largest inscribed,  smallest circumscribed 
or minimum zone forms be used.  However,  if the 
opposite applies then much of the information about 
form will be obscured by measurement error.  In this 
case,  least-squares analysis of the data is 
recommended.  For cases between these extremes it 
is recommended that a combination of the 
least-squares and other approaches is used.  The 
data should initially be smoothed as part of the 
pre-processing stage (see clause 7)  and then a 
reference computed (see clause 8).

This standard does not advocate a single approach,  
but urges the use of methods which are appropriate 
to the task in hand.  In particular (see 10.2  
and 10.3),  any software that carries out geometric 
form assessment should,  in addition to the usual 
numerical output,  provide information indicating 
clearly the method of analysis used.

11.3 Nonuniqueness of reference

For a particular set of measured data and a given 
criterion for specifying the reference,  there may not 
be a unique best fit reference.  That is,  the criterion 
can be satisfied by more than one set of parameter 
values.

Example.  Data symmetrically placed on the 
(exaggerated)  profile shown in Figure 8 gives rise 
to two distinct circles with (the same)  maximum 
radius:  one centred at A,  the other at B.

Figure 8 — Example of a profile with two 
equal maximum inscribed circles, centred 

at A and B
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Under these circumstances,  the same reference will 
not necessarily be calculated by different 
implementations,  depending on,  for example,  the 
choice of starting values in an iterative 
computation.  This is particularly important if the fit 
is to be used subsequently in a secondary 
calculation,  when some means should be found to 
choose between the alternative solutions.  An 
algorithm should indicate when there is more than 
one solution and,  where applicable,  the method used 
to select a particular solution.

11.4 Local optima

Many algorithms use iterative processes that can 
converge to solutions that are only locally best.  That 
is to say that although small changes to the 
computed parameter values will worsen the fit,  
larger changes may achieve a better optimum value.

Example.  An algorithm seeking the maximum 
inscribed circle to data on the (exaggerated)  
profile shown in Figure 9,  and starting from an 
initial estimate near A for the centre would be 
likely to converge to a circle centred at A,  
whereas a larger circle,  centred at B,  can be 
inscribed.

It is recommended that manufacturers’ software 
indicate possible difficulties of this type.

11.5  Data transformations

Software for computing a reference should,  where 
appropriate,  first carry out simple transformations 
of the data such as shifting,  scaling and rotation.  
Such operations serve the purpose of making the 
magnitudes of the numerical values involved of 
more manageable size.  As a result the risk of 
computer underflow and overflow is reduced,  and 
loss of precision in the computations due to 
unnecessary correlations and common leading 
digits is avoided.  After the reference has been 
computed account should be taken of the 
transformations carried out in order to refer the 
results to a coordinate system defined in the 
workpiece (see 6.2).

NOTE One of the most valuable transformations is a simple 
shift or translation involving the centroid of the measured 
data.  If the measured coordinates are (xi,  yi,  zi),  i  = 1 ,  2,  . . . ,  N,  
then xi  – ,  yi  – and zi  – ,  where  = Ci  xi/N,  = Ciyi/N and 
= Ci  zi/N,  should be used in place of xi,  yi  and zi,  respectively.  

Once the reference has been computed,  the relevant reference 
parameters are adjusted accordingly.  For example,  in the case 
of a sphere,  the computed centre (x0,  y0,  z0)  would be replaced by 
(x0  +  ,  y0  + ,  z0 + ) .

11.6 Self-validation

In the case of any particular assessment,  most of the 
work is involved in computing the reference.  In 
some cases it should be possible for the software 
itself to determine whether it has functioned 
correctly on this stage of the computation.  This 
should be carried out by testing whether the 
computed reference satisfies appropriate properties.

Example.  For the smallest circumscribing circle 
let S denote the measured set of data points and 
C the circumscribing circle for S.  C is  unique and 
satisfies the following conditions:

a)  all points in S lie in or on C;  and

b)  either

i)  there are three points of S which lie on C 
and which form an acute-angled triangle;  or

ii)  there are two points of S which lie on C 
such that the line joining them is a diameter 
of C.

A circle satisfying these conditions is the 
circumscribing circle for S.  Conversely,  a circle 
not satisfying these conditions is not the 
circumscribing circle for S.

NOTE Account should be taken of computer rounding errors in 
validating a computed reference.

11.7 Diagnostic information

The manufacturer should ensure that an algorithm,  
if necessary,  reports that it is unable to carry out the 
computation required rather than produce an 
incorrect result or fail in an unexpected way.

Additionally,  the algorithm should inform the 
operator that a computed solution is not unique in 
cases where this circumstance arises.

NOTE The global maximum is centred at B.

Figure 9 — Example of a profile with a locally 
maximum inscribed circle, centred at A

x y z x y
z

x y z
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Appendix A Formulae for distance of a point to a geometric element

A.1  Introduction

In computing a reference or in assessing departure from form it is necessary to make use of appropriate 
formulae for the distance of a point from a geometric element.  The following formulae,  given in terms of the 
recommended parametrizations of geometric elements,  are recommended for this purpose.

The point is denoted by (xp,  yp)  in two dimensions and (xp,  yp,  zp)  in three dimensions,  and the distance of 
the point from the geometric element is denoted by d.

A.2 Line specified by one point and the direction cosines (see 5.2.1.2)

The distance d  of a point from a line specified as in 5.2.1.2  by one point and the direction cosines can be 
expressed by the following formulae:

a)  for a point lying in the plane containing L:

b)  for a point not lying in the plane containing L:  

A.3 Line specified by two points on the line (see 5.2.1.3)

The distance d  of a point from a line specified as in 5.2.1.3  by two points on the line can be expressed by 
the following formulae:

i)  for a point lying in the plane containing L:  

or,  equivalently,  formula 3 with xp  – x1  replaced by xp  – x2  and yp  – y1  by yp  – y2;

ii)  for a point not lying in the plane containing L:  

or,  equivalently,  formula 4 with xp  – x1  replaced by xp  – x2  and yp  – y1  by yp  – y2.

A.4 Line in three dimensions specified by one point and the direction cosines (see 5.2.2.2)

The distance d  of a point from a line in three dimensions specified as in 5.2.2.2  by one point and the 
direction cosines can be expressed by the following formula:

where

A.5 Line in three dimensions specified by two points on the line (see 5.2.2.3)

The distance d  of a point from a line in three dimensions specified as in 5.2.2.3  by two points on the line 
can be expressed by the following formula:

where

d  = b(xp  – x0)  – a(yp  – y0) (1)

d  = Æ [{b(xp  – x0)  – a(yp  – y0)}
2  + zp

2] (2)

(3)

(4)

d  = Æ (u2  +  v2  + w2) (5)

u  = c(yp  – y0)  – b(zp  – z0) (6)

v  = a(zp  – z0)  – c(xp  – x0) (7)

w  = b(xp  – x0)  – a(yp  – y0) (8)

(9)

u  = (z2  – z1)  (yp  – y1)  – (y2  – y1)  (zp  – z1) (10)

v  = (x2  – x1)  (zp  – z1)  – (z2  – z1)  (xp  – x1) (11)

w  = (y2  – y1)  (xp  – x1)  – (x2  – x1)  (yp  – y1) (12)
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or,  equivalently,  formulae 10,  11 and 12 with xp  – x1  replaced by xp  – x2,  yp  – y1  by yp  – y2  and zp  – z1  by 
zp – z2.

A.6 Plane specified by a point on the plane and the direction cosines of the normal (see 5.2.3.2)

The distance d  of a point from a plane specified as in 5.2.3.2  by a point on the plane and the direction 
cosines of the normal to the plane can be expressed by the following formula:

A.7 Plane specified by a point on the plane and a point on the normal (see 5.2.3.3)

The distance d  of a point from a plane specified as in 5.2.3.3  by a point on the plane and a point on the 
normal to the plane can be expressed by the following formula:

A.8 Circle specified by its centre and radius (see 5.2.4.1 )

The distance d  of a point from a circle specified by its centre and radius can be expressed by the following 
formulae:

i)  for a point lying in the plane containing C:  

ii)  for a point not lying in the plane containing C:  

where

A.9 Circle in three dimensions specified by its centre and radius and the direction cosines of 
the normal or a point on the normal (see 5.2.5.2)

The distance d  of a point from a circle in three dimensions specified as in 5.2.5.2  by its centre and radius 
and the direction cosines of the normal to the plane containing the circle or a point on the normal can be 
expressed by the following formulae:

where

a)  for a circle specified by its centre and radius and the direction cosines:

b)  for a circle specified by its centre and radius and a point on the normal to the plane 
containing C:

d  =  a(xp  – x0)  + b(yp  – y0)  + c(zp  – z0). (13)

(14)

d  = Æ {(xp  – x0)
2  + (yp  – y0)

2}  – r (15)

d  = Æ {zp
2  + (f – r)2} (16)

f = Æ {(xp  – x0)
2  + (yp  – y0)

2} (17)

d  = Æ {g2  + (f – r)2} (18)

g = a(xp  – x0)  + b(yp  – y0)  +c(zp  – z0) (19)

f = Æ (u2  +  v2  + w2) (20)

u  = c(yp  – y0)  – b(zp  – z0) (21)

v  = a(zp  – z0)  – c(xp  – x0) (22)

w  = b(xp  – x0)  – a(yp  – y0) (23)

(24)

(25)

u  = (z1  – z0)  (yp  – y0)  – (y1  – y0)  (zp  – z0) (26)

v  = (x1  – x0)  (zp  – z0)  – (z1  – z0)  (xp  – x0) (27)

w  = (y1  – y0)  (xp  – x0)  – (x1  – x0)  (yp  – y0) (28)
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A.10 Sphere specified by its centre and radius (see 5.2.6)

The distance d  of a point from a sphere specified as in 5.2.6  by its centre and radius can be 
expressed by the following formula:

A.11  Cylinder specified by its axis and radius (see 5.2.7)

The distance d  of a point from a cylinder specified as in 5.2.7  by its axis and radius can be 
expressed by the following formulae:

a)  for a cylinder axis specified as in 5.2.2.2:

where

b)  for a cylinder axis specified as in 5.2.2.3:

where

or,  equivalently,  formulae 35,  36 and 37 with xp  – x1  replaced by xp  – x2,  yp  – y1  by yp  – y2  and zp  – z1  by zp  – z2.

A.12 Cone specified by its angle, axis and the position of the cone on its axis (see 5.2.8)

The distance d  of a point from a cone specified as in 5.2.8  by its angle,  axis and the position of the 
cone on its axis can be expressed by the following formula:

where

a)  for a cone axis specified as in 5.2.2.2 ;

b)  for cone axis specified as in 5.2.2.3;

d  = Æ {(xp  – x0)
2  + (yp  – y0)

2  + (zp  – z0)
2}  – r (29)

d  = Æ (u2  +  v2  + w2)  – r (30)

u  = c(yp  – y0)  – b(zp  – z0) (31)

v  = a(zp  – z0)  – c(xp  – x0) (32)

w  = b(xp  – x0)  – a(yp  – y0) (33)

(34)

u  = (z2  – z1)  (yp  – y1)  – (y2  – y1)  (zp  – z1) (35)

v  = (x2  – x1)  (zp  – z1)  – (z2  – z1)  (xp  – x1) (36)

w  = (y2  – y1)  (xp  – x1)  – (x2  – x1)  (yp  – y1) (37)

(38)

g = a(xp  – x0)  + b(yp  – y0)  + c(zp  – z0) (39)

f = Æ (u2  +  v2  + w2) (40)

u  = c(yp  – y0)  – b(zp  – z0) (41)

v  = a(zp  – z0)  – c(xp  – x0) (42)

w  = b(xp  – x0)  – a(yp  – y0) (43)

(44)

(45)

u  = (z2  – z1)  (yp  – y1)  – (y2  – y1)  (zp  – z1) (46)

v  = (x2  – x1)  (zp  – z1)  – (z2  – z1)  (xp  – x1) (47)
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or,  equivalently,  formulae 46,  47 and 48 with xp  – x1  replaced by xp  – x2,  yp  – y1  by yp  – y2  and zp  – z1  by 
zp  – z2.  In the formulae for g,  it is assumed that the vectors (a,  b,  c)  and (x2  – x1,  y2  – y1,  z2  – z1)  point along 
the cone axis in the direction of decreasing radius.

w  = (y2  – y1)  (xp  – x1)  – (x2  – x1)  (yp  – y1) (48)
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