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Foreword

This Part of BS 5760 has been prepared by Technical Committee DS/1. It supersedes
DD 198 : 1991, which is withdrawn.

This Part of BS 5760 describes some of the techniques available for assessing the
reliability of systems containing software. It provides guidance to developers and
procurers of such systems on how to apply some of the better established methods of
assessment, and on which to avoid. The methods can be applied to any type of system,
regardless of its intended function (although there are certain limitations in the case of
high-integrity systems).

It is intended that these guidelines should be applied (in addition to any other
necessary techniques) even for applications where extremely high reliability is
required, in case the assessed level turns out to be inadequate.

Clause 4 identifies the basis on which this Part of BS 5760 is founded. It describes the
fundamental concepts associated with software reliability and is intended to provide
an easily understandable introduction for the non-specialist reader.

Clause 5 provides an overview of software reliability issues for those who need to
understand the results of modelling software reliability and a non-technical summary
of the available methods. It addresses the high-level issues associated with the
measurement of software reliability. The different categories of model and the
management of issues associated with their application are described. The relationship
between reliability and integrity is introduced, and limits of the levels of reliability
which can justifiably be claimed for software are discussed.

Clause 6 contains a more detailed technical description of the methods under the
headings of process measurement (assessment of the quality of the software
development process) and product measurement (assessment of the delivered
software product).

Clause 7 contains a more detailed technical description of the procedures for
application of the methods.

Annex A contains examples of forms used in data collection. Annex B contains
mathematical descriptions of some of the better-known software reliability models.
Annex C contains mathematical descriptions of some techniques which can be used to
assess the accuracy of the predictions obtained from software reliability models,
correct for bias in the estimates, and combine estimates obtained from using different
models. Annex D contains a bibliography of the documents referred to in this Part of
BS 5760. Numerals in square brackets throughout the text refer to items in the
bibliography. Annexes A to D are informative.

Summary of pages

This document comprises a front cover, an inside front cover, pages i to iv, pages 1
to 88, an inside back cover and a back cover.
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Introduction
Techniques for measuring and predicting the
reliability of hardware are already widely applied.
With the increasing use of computers there is a need
to establish equivalent methods for evaluating the
reliability of systems containing software.

The failure mechanism of software is not a physical
process. A system containing software can fail when
a latent fault within a software component is
activated. Such faults are introduced by human error
in the definition, design or development of the
software, and are activated when particular
circumstances are encountered during the operation
of the system. Latent faults may also be present in
the design of hardware, but are usually assumed to
have been removed before the system is put into
service, and are therefore discounted in the
prediction of reliability. However in complex
hardware, such as a microprocessor chip, design
faults also contribute significantly to failure, and
such complex designs pose similar problems of
reliability assessment to those encountered with
software.

This Part of BS 5760 describes the methods that are
currently available for assessing the reliability of
systems with respect to failures due to software
faults. Many of these methods can also be used to
assess system reliability with respect to the
activation of design faults in hardware. Suppliers and
users need to be able to specify and measure the
reliability of all kinds of systems containing software
ranging from commercial billing systems to
automotive electronic control units, nuclear reactor
control systems and computer controlled missiles. In
some cases the probability of failure of such systems
due to software faults is of greater concern than the
probability of their failure due to physical causes. An
assessment of the total reliability of any such system
cannot afford to ignore the effect of latent design
faults.

This British Standard provides a structure within
which software reliability assessment issues can be
addressed from the early stages of system
requirements definition, through design, development
and testing, until the actual reliability can be
assessed during system trial and operation. The
setting of achievable reliability targets and the
prediction of reliability in the early phases of
development requires the use of expert judgement
based on experience and historical data. The
monitoring of the ongoing development process and
the assessment of the level of reliability achieved
requires careful measurement. All of the relevant
data should be collected and then analysed using
statistical methods.

Guidance is given on all of these aspects of the
prediction and assessment of system reliability with
respect to the manifestation of software faults.

Guide

1 Scope
This Part of BS 5760 gives guidance on the
assessment of reliability of systems containing
software with respect to those failures that are due
to the activation under certain environmental
circumstances of latent design faults located in
software items.
NOTE. Latent software design faults are due to human error
during the definition, design and development phases of system
production.

Guidance is provided on the assessment of system
reliability both by assessment of the product (the
software) and by assessment of the process (the
means by which the software is developed). This
guidance applies to any system containing software
regardless of its intended function. There are limits
to the level of reliability that can be assessed
quantitatively.

This Part of BS 5760 seeks to classify some of the
more established methods and to provide guidance
to the practitioner in applying them.

A bibliography is provided in annex D.

2 Normative references
This Part of BS 5760 incorporates, by dated or
undated reference, provisions from other
publications. These normative references are made
at the appropriate places in the text and the cited
publications are listed on the inside back cover. For
dated references, only the edition cited applies; any
subsequent amendments to, or revisions of the cited
publications apply only when incorporated in the
reference by amendment or revision. For undated
references, the latest edition of the cited publication
applies, together with any amendments.

3 Definitions
NOTE. These definitions cover the field of software reliability
measurement. They have been made as consistent as possible with
the terms employed in general reliability, availability and
maintainability work, and in particular with the definitions in
BS 4778. In some cases it has been necessary to extend or modify
the BS 4778 definitions slightly, since it does not take into account
some aspects of systems containing software. Where this has been
necessary, the BS 4778 definition is quoted with a note or
amendment (see for example 3.11).

3.1 activation (of a fault)

The event in which a latent fault gives rise to a
failure in response to a trigger.
NOTE. Also referred to as `manifestation of the fault'.

3.2 attribute

Any observable property of an entity.

3.3 baseline

A major version of a system selected for release to
customers and/or for the purpose of measuring some
attribute, e.g. reliability.

Copyright British Standards Institution 
Provided by IHS under license with BSI

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



2  BSI 1998

BS 5760 : Part 8 : 1998

3.4 bug

Synonymous with design fault, usually in software.

3.5 calendar time

Time as commonly recorded by clocks and
proportional to the rotation of the Earth.
NOTE 1. Also known as elapsed time, or real time, or wall-clock
time.

NOTE 2. This time is `public' in the sense that all observers can
agree on it, except that geographical time zones may need to be
taken into account.

NOTE 3. Reliability measurement usually requires the use of
`operating time', which is a measure of the total time during which
a defined sample of systems has been in use or on trial. Operating
time is generally not the same as real time.

NOTE 4. Measurement of software reliability requires a measure
of execution time, which is the operating time of a software item.

3.6 direct measurement

Measurement which can be made by empirical
observation of a single attribute and does not
depend on the measurement of other attributes.

3.7 entity

Any object, event or process in the real world.

3.8 execution profile

A measurement of the proportion of total execution
time that is spent executing code within each
subsystem or module of a software item.

3.9 execution time

A measure of the amount of execution undergone by
a software item.
NOTE. The measure chosen will depend on the type of system.
Generally, it will not be equivalent to real time. Possible measures
are processor time consumed, number of instructions
executed, etc.

3.10 external attribute

An attribute of a system which characterizes its
interaction with its environment.

3.11 failure

The event of an item ceasing to perform a required
function or provide a required service in full or in
part.
NOTE 1. The term `item' may refer to a complex system,
consisting of hardware, software, or both.

NOTE 2. A failure is an event in time. A fault is a state of the
system.

NOTE 3. A failure may be due to physical failure of a hardware
component, activation of a latent design fault or an external
failure.

NOTE 4. Following a failure, an item may recover and resume its
required service after a break, partially recover and continue to
provide some of its required functions (fail degraded) or it may
remain down (complete failure) until repaired.

NOTE 5. The definition of failure in BS 4778 is inadequate for the
purposes of this standard since it does not explicitly allow for
transient failures. Also the notes to the definition may be
interpreted to imply that the definition excludes events due to the
activation of pre-existing latent design faults and in particular
events due to the activation of software faults.

NOTE 6. The definition used in this standard is consistent with
the definition in BS 4778 but addresses the inadequacies described
in Note 4 above (see 4.2 and 4.3.1).

3.12 failure mode

The effect by which a failure is observed.

NOTE. This definition is identical with 14.5.4 of BS 4778 :
Section 3.1 : 1991.

3.13 failure severity

The seriousness of the effect of a failure.

3.14 incident

An event during operation of an item which may
indicate that a failure has occurred.

3.15 index of merit

Non-dimensional value used to compare the
reliability of two or more systems.

3.16 inspection

The comparison of the output products of a
development phase with the input products in order
to ensure that the former are a correct
transformation of the latter.

NOTE 1. The purpose is to detect and correct instances of
non-conformance (see 3.23) before they become faults in the
delivered system.

NOTE 2. The technique is an example of verification (see 3.37).

NOTE 3. A particularly formal and thorough method of inspection
in common use is that known as Fagan inspection, after its
inventor M.E. Fagan.

NOTE 4. Measurements of instances of non-conformance detected
by inspection can be used as indicators of quality of delivered
software (e.g. defect density, see 6.2.2.3).

3.17 installation

A single hardware machine capable of running one
or more instances of a software product.

3.18 instance

A single copy of a software product in operation or
on test on a single installation.

3.19 measurement

The process of empirical, objective assignment of
numbers (or symbols) to properties of entities
(objects and events) in the real world in such a way
as to describe them.

NOTE 1. A measure is a defined mapping of the entities in the real
world onto a scale of numbers or symbols. In order for a measure
to be meaningful, the relationships among the entities should be
represented by corresponding relationships among the associated
numbers or symbols (see 4.4).

NOTE 2. Measurement is the activity of applying a measure to a
property of an entity in the real world by establishing its actual
value for an entity.

3.20 modification (change)

Alteration to the design of an item.

NOTE 1. Changes may be made for reasons of corrective, adaptive
or perfective maintenance.

NOTE 2. The definition in 191-01-13 of BS 4778 : Section 3.2 : 1991
is `The combination of all technical and administrative actions
intended to change an item'.
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3.21 modification state

A specification of which modifications have been
carried out on a particular example of an item in use
on a given installation.

NOTE 1. The item may be a piece of hardware or an instance of a
software component.

NOTE 2. The modification state should specify both the baseline
version of the item, and all minor modifications that have been
carried out.

3.22 module

A self-contained software item with a specified
function and a defined interface to the rest of the
system.

3.23 non-conformance

Incorrect, incomplete or superfluous implementation
of an input product by an output product at some
phase of system development.

NOTE. Among practitioners of inspections the term `defect' is
used synonymously. However `defect' is deprecated since it might
have legal connotations in some contexts and will not be used in
this British Standard without qualification.

3.24 operational profile (usage)

A characterization of the conditions of use of a
system.

NOTE 1. The term is generally applied to software. The profile can
sometimes be defined by a partitioning of the input space and
estimate of the probability of encountering an input from each
class. For highly complex systems, e.g. computer operating
systems, this may not be possible, and a less precise
characterization should be used, such as the `mix' of types of job
being processed.

NOTE 2. Definition of conditions of use is essential for
measurement of reliability (and other dependability attributes),
since a system will generally exhibit different levels of reliability
under different conditions. A system trial should therefore be
performed using a realistic operational profile.

3.25 random test (statistical test)

The strategy of selecting test cases at random
according to the probability with which they are
expected to be encountered in operation, in order to
ensure that the operational profile used in test and
trial is a reasonable approximation to reality.

3.26 real time software

Software that has to return an output within a
certain time interval, in order to be able to affect
some social or physical process.

3.27 safety

The freedom from unacceptable risks of personal
harm.

NOTE 1. Safety is defined in the context of risk of personal harm.
It is traceable quantitatively in decision-making on acceptable
risks.

NOTE 2. This definition is identical with 11.2.1 of BS 4778 :
Section 3.1 : 1991.

3.28 software

Computer program code and its associated data,
documentation and operational procedures.

3.29 software failure

System failure due to the activation of a design fault
in a software component.
NOTE 1. All software failures are design failures, since software
consists solely of design, and does not wear out or suffer from
physical failure.

NOTE 2. Since the triggers that activate software faults are
encountered at random during system operation, software failures
also occur randomly.

3.30 software fault

A design fault located in a software component.

3.31 software fault-tolerance

A design feature of software that enables error
recovery to be performed after the manifestation of a
software fault.

3.32 software reliability

The probability that no latent fault in a software
component of a system will be activated during a
given time interval in the operation of the system
under given conditions of use.

3.33 specification fault

A fault of an item that results from a required
function having been incorrectly or incompletely
defined.
NOTE. Specification faults often give rise to usability problems in
operation, but can lead to other types of incident also. They can
only be detected by validation, not verification.

3.34 trial

Exercising of a system under conditions as close as
possible to the expected operating conditions.
NOTE 1. This is necessary to measure dependability attributes
such as reliability.

NOTE 2. A trial may require some form of random testing
(see 3.25).

3.35 trigger

The particular combination of circumstances that
activates a latent fault.
NOTE 1. Most design faults remain latent for a long time.

NOTE 2. The term applies particularly to software faults. (All
software faults are design faults.)

NOTE 3. The circumstances include selection of particular inputs
together with a certain internal state of the system.

NOTE 4. In the case of software, the internal state is defined by
the module being executed, the execution point reached and the
values of internal variables and pointers.

3.36 validation

Steps taken to ensure that a system meets the
requirements of the user.
NOTE 1. Validation answers the question: `Are we building the
correct system?'

NOTE 2. Validation may require a trial of some kind.

NOTE 3. See 2.18 of BS EN ISO 8402 : 1995

3.37 verification

Steps taken to ensure that the output products of
any development phase are a correct transformation
of the input products.
NOTE 1. Verification answers the question: `Are we building the
system correctly?'

NOTE 2. Verification includes such activities as inspection, proof
of correctness, etc.

NOTE 3. See 2.17 of BS EN ISO 8402 : 1995.
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4 Basic concepts

4.1 System reliability

When considering a system, all factors (software,
electronic, mechanical and human) likely to
influence the reliability of that system have to be
addressed. Certainly, it is not possible to generate a
system consisting solely of software. Fortunately
many of the fundamental tools, such as reliability
block diagrams, fault tree analysis, reliability growth
monitoring etc. which are applied at the system level
can accommodate these diverse factors. Reliability
techniques and their impact on hardware, software
and human interfaces are given within BS 5760 :
Part 2.

Advances in component miniaturization and
improved component reliability have resulted in
systems becoming more and more complex. To
maximize the benefits that these improvements in
technology can provide, greater emphasis is being
placed upon the design process. Currently, reliability
predictions are very much concerned with the
elimination of design faults as early in the design
process as possible. Metrics (software measures), for
example, can be applied equally to a hardware
design as they can to a software design.

In the case of a highly complex system, the system is
usually subdivided into simple modules that can be
readily understood by individual designers, although
the ensuing interface specifications can be highly
complex. For very simple modules within the
complex structure, there is a tendency for the
rigorous design controls to be relaxed. However,
experience has shown that these simple modules can
sometimes cause the greatest problems, the degree
of care taken to eliminate design faults is a major
factor that determines the reliability of the system.

Software and hardware faults can cause system
failure directly but it can also be caused indirectly as
shown below:

± software faults that generate software faults that
cause system failure;

± software faults that generate hardware faults
that cause system failure;

± hardware faults that generate hardware faults
that cause system failure.

The chain reaction effect such as those given in the
above examples can be difficult to detect. Consider
the case of a power management subsystem
(hardware or software controlled) that incorrectly
permits an occasional small voltage spike down the
power line. However, the spike is insufficient to
cause a component to immediately fail, but has a
weakening effect. After about a hundred spikes the
component fails. In these cases, the component is
replaced and the root cause usually remains
undetected until either the frequency of spikes
increases for some reason or a less robust
component is substituted in the design.

It should always be remembered that the user of a
system is concerned with the adequacy of
performance, the frequency of failure and the ease
and cost of repair. Whether the failure is due to
software, hardware or even a combination of them
both is, from the user's viewpoint, completely
irrelevant.

4.2 Physical failure and design failure

Complex systems can fail for two fundamentally
different reasons.

a) Physical failure: a hardware component fails,
for example a resistor `shorts', or a logic gate
`sticks'. After its individual failure, the component
is faulty; there is a fault in the system. Repair
consists of replacement of the faulty component to
restore the system to its previous functioning
state. After repair the system should continue to
function and should not necessarily fail again on
encountering the same circumstances as those that
led to the previous failure. Failures of this kind are
often called from a statistical viewpoint `random
failures'.

b) Design failure: a fault in the design of the
system is activated in response to certain
conditions. The fault may have been present for
some time, although latent. Repair consists of a
modification to the design of the system to remove
the fault. Although such `corrective maintenance'
may introduce new faults, it generally improves
the design (and increases the reliability) of the
system. This kind of failure is often called
`systematic' because unless the design is changed
to remove the fault, the same failure will recur if
the same circumstances arise.

Failure in manufacture is normally attributable to
hardware and will not therefore be considered in the
context of software. A software failure is a system
design failure due to a fault that is located in a
software component. Since software is a part of the
design of the system (although once compiled and
loaded, it has a physical representation), it can only
undergo design failure. Many failures of modern
complex digital systems are associated with software
failures.

4.3 Software failure

4.3.1 Usage of terms
The relationship between mistakes, faults, errors and
failures, even the meaning of the terms in relation to
software, is a matter on which there is apparent
inconsistency in existing standards. As a result it is
essential that the way in which the terms are used in
this British Standard is clearly understood.

This Part of BS 5760 uses definitions for mistake,
fault, error and failure which correspond with those
used in BS 4778, though they are not all identical.
This Part of BS 5760 takes the view that these
definitions are applicable to software, provided that
they are interpreted appropriately.

Figure 1 illustrates the relationship between mistake,
fault, error and failure based on these definitions [1].
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Figure 1. Mistake, fault, error, failure relationship

4.3.2 Mistake, fault, error, failure

This Part of BS 5760 uses the definitions of mistake,
fault and error given in BS 4778 and the definition of
failure given in 3.11.

A mistake (i.e. human error) during some phase of
software development can lead to a
non-conformance between the input product and
output product of that phase. For example a mistake
during the coding phase can lead to source code
which is not a correct implementation of the detailed
design specification. Unless such a non-conformance
is detected (e.g. by inspection) and removed, it can
be propagated during the succeeding phases and
eventually lead to one or more faults in the delivered
software. (The same applies to the creation of latent
design faults in hardware.)

A software fault remains latent until a particular
combination of inputs, operator actions, other
environmental circumstances and internal states
referred to as the trigger coincide during test, trial or
operation and activate the fault. The immediate
effect is a local error within the component
containing the fault, i.e. a discrepancy between its
actual internal state and the `correct' state. If this
propagates across the component interface then that

component will have failed and a fault at a higher
level will now exist within the system leading to a
more widespread error, and so on until a failure
occurs at the system interface, i.e. the system ceases
to behave as required.

This is illustrated in figure 2 for a simple
system structured hierarchically in three levels so
that components at the higher levels invoke those at
lower levels in order to obtain some required
service. The following list which corresponds to
figure 2 details the software failure mechanism.

a) The system S invokes subsystem SS1 which in
turn invokes module M1.2 (S constitutes the
`environment' of SS1 and SS2. SS1 in turn
constitutes the environment of M1.1, M1.2
and M1.3). S is processing input from its
environment. When S invokes SS1 it passes down
certain information whose nature depends on its
input and internal state. SS1 in turn passes to M1.2
information which depends on that received
from S. M1.2 is therefore being invoked in a
particular way which depends ultimately on the
environment of the overall system S. Suppose now
that M1.2 contains a latent fault which is activated
under the particular set of circumstances that it
now experiences.
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Figure 2. Software failure mechanism in a simple hierarchical system

b) The activation of the fault gives rise to a local
error within M1.2 which is therefore unable to
perform its required function on behalf of SS1.
M1.2 has now failed and this constitutes an active
fault within SS1.

c) This active fault in SS1 now leads to an error in
the internal state of SS1 so that it in turn cannot
perform its required function on behalf of S. SS1
has now failed and an active fault now exists at
the level of the system S.

d) Finally an error propagates at the system level
and S is no longer able to perform all of its
required functions. A failure occurs at the
interface between the system S and its
environment. This failure can be recognized by a
certain failure mode or set of observable
symptoms. It may also have a detrimental effect on
its environment (including human users and other
systems which depend on its service) and its
severity is a measure of the magnitude of its
effect.

Figure 2 assumes that the system is not fault
tolerant. It might be possible to design a system so
that it can detect and contain internal errors and
recover from them automatically, so preventing a
system level failure although local failures of one or
more components might occur.

If the system S encounters the same operational
circumstances again a similar failure will recur. In
order to prevent this it is necessary to carry out a
modification to remove the fault from module M1.2.
This involves following the causal chain of
`fault-error-failure' backwards in order to diagnose
the nature and location of the fault. The process of
fault diagnosis and removal is referred to as
corrective maintenance or debugging.

A simple example has been chosen for purposes of
illustration. Any real system is likely to be much
more complex and might not be structured in a
straightforward hierarchy. However, the same
principles apply.
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4.3.3 Nature of software failure

Software failures generally have the following
characteristics.

a) They are due to latent design faults in software
components of the system. These design faults are
caused by human error during development or
maintenance of the system. A failure occurs when
a fault is activated by a particular set of
operational circumstances, referred to as the
trigger for that fault.

b) They are transient. If the trigger is removed the
system can recover and resume normal service.
Often it is possible to reload the software and
restart the system following a failure.

c) They are systematic since until the latent fault
is removed by corrective maintenance the system
will fail again in a similar mode whenever the
trigger is encountered.

d) They are random since the trigger for each fault
is encountered at random (see 4.3.4).

e) They tend to be infrequent since the trigger is
usually a very rare combination of operating
circumstances. (Faults which are activated very
frequently would be likely to be detected and
removed in early testing.)

f) Their modes and effects tend to be
unpredictable so that it is difficult to provide
fault-tolerant design features or safety devices to
guard against them automatically.

g) Although they tend to be infrequent their
consequences can be catastrophic.

Failures due to faults in hardware design share many
of these characteristics.

4.3.4 Random software failures

Software failures are systematic because they can be
reproduced at will by replicating the trigger.
(Debugging frequently involves reproducing a failure
condition by deliberately subjecting the system to
the same operating conditions that were established
when a failure was observed during operation.)
Systematic failures are often considered to be purely
deterministic.

Physical hardware failures generally occur at random
and hardware reliability can therefore be measured
using a probabilistic or stochastic approach, e.g. by
estimating a mean time to failure (MTTF) or failure
rate for the stochastic process of failure. Software
reliability can be measured in the same way only if
software failures can be considered to occur
randomly.

There are two main approaches to describing
probability.

In the frequentist approach the probability of an
event is defined as the limit of the frequency of its
occurrence as the number of identical experiments
of which the event might be an outcome increases
without limit. For example, as the number of tosses
of a fair coin increases the proportion of heads
should approach 0.5, which is the probability that a
given toss will result in a head.

In the Bayesian approach the probability of an event
is defined as a measure of the observer's uncertainty
that it will occur. The probability assigned to an
event depends on the observer's knowledge and
might change as the observer gains information from
further observation. This approach allows a
probability to be assigned to a unique event, e.g. the
probability of a given individual dying within a
certain time can be estimated for the purpose of
setting a life assurance premium.

Either approach may be used to describe hardware
reliability.

Activation of any given software fault is a unique
event in the operational life of the system. Therefore
in order to describe software failure as a random
process the Bayesian approach is appropriate.

A software failure mode can only be reproduced
once the trigger for the corresponding fault is
known. The number and nature of the software
faults in a system in operation are generally not
known and their triggers will be encountered at
random with a certain frequency which depends on
the environment. Therefore the process of activation
of software faults is also random and stochastic
methods can be applied in order to measure
software reliability [2].

4.4 Measurement

4.4.1 General

A development or manufacturing process is a set of
activities which takes place over time, consumes
resources and generates a product. In order to
manage development or manufacture it is necessary
to measure the process itself, the expenditure of
resources and the quality of the delivered product
(see 5.2).

4.4.2 Fundamental measurement theory

The following is a very brief and simplified summary
of fundamental measurement theory as applied to
systems containing software [3] (although similar
considerations apply to the development or
manufacture of other types of equipment).
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Measurement makes observation more precise as
follows.

a) Measurement assigns a number to each entity
depending on the degree to which it possesses the
attribute. The `number system' used in this
mapping may be real numbers, integers or a set of
labels of categories.

b) The representation condition requires that
relationships between entities, determined by the
attribute, are modelled by corresponding
relationships among the numbers assigned. If this
holds then the assignment of numbers to entities
can constitute a measure of the attribute and the
number system used is referred to as a scale.

c) The following types of scale are commonly used
and all occur in connection with software
reliability assessment:

1) nominal: entities are assigned to one of a set
of labelled categories, e.g. classification of
software faults as `incorrect logic', `uninitialized
variable', etc.;

2) ordinal: entities are assigned to one of a set
of ordered categories, e.g. classification of
failures as `critical', `major', or `minor' based on
the attribute `severity';

3) interval: a real number is assigned to each
entity but both the units and origin are arbitrary,
e.g. calendar time can be measured in years
since 00.00 hours on 1 January in the year 0
Common Era (CE) or in days since the start of a
project;

4) ratio: a real number is assigned to each entity
with arbitrary units but a fixed origin,
e.g. testing time can be measured in operating
hours or CPU seconds but the start of testing
always corresponds to 0 testing time;

5) absolute: counting of entities, e.g. counting
the number of faults activated during a given
period of testing.

4.4.3 Entities

Meaningful measurement requires the selection of
appropriate entities, the clear definition of attributes
in such a way that they can be quantified and the
choice of appropriate scales such that the
representation condition holds. Not every assignment
of numbers to entities constitutes a meaningful
measure.

Entities that can be measured in software
development (or in other production or
manufacture) can be classified as one of the
following three types.

a) Product: output of a process, e.g. specification
document, source code, delivered system.

b) Process: activity which consumes resource and
generates product, e.g. writing specification,
coding, system testing.

c) Resource: something of value consumed by a
process, e.g. effort.

4.4.4 Attributes

4.4.4.1 Classification of attributes

Attributes can be classified as one of the following
two types.

a) Internal attributes: describe the entity in
isolation, e.g. size (attribute) of a software
component (entity) might be measured by `number
of lines of source code' (measure).

b) External attributes: describe the interaction of
the entity with its environment, e.g. reliability
(attribute) of a system (entity) could be measured
by `average number of failures per operating hour'
(measure).

In most cases internal attributes can be observed for
a system without the need for it to operate and are
said to be static, whereas external attributes can
only be observed for a system in operation and are
said to be dynamic.

4.4.4.2 Measurement of attributes
Measurements can be made at any of the following
three levels.

a) Raw data collection is immediate observation,
e.g. completion of incident report, recording hours
worked on job sheet.

b) Direct measurements might require the
extraction of refined data from raw data but do
not depend upon the measurement of any other
attribute, e.g. counting incident reports, totalling
hours worked.

c) Indirect measurements are derived from other
measures by calculation or analysis, e.g. failure
rate (number of failures/running time),
productivity (number of lines of code/hours
worked).

Where a measure of one attribute is found to be
correlated with that of a different attribute, the first
is referred to as an indicator of the second. To
establish the predictive value of an indicator it is
first necessary to measure both attributes
independently in a sample of entities and deduce the
degree of correlation. The sample should be both
large enough and sufficiently representative to
establish the correlation with a high level of
confidence.

4.5 Software reliability

4.5.1 Using the concepts underlying system
reliability (see 4.1), physical failure and design
failure (see 4.2), software failure (see 4.3), and
measurement (see 4.4), the following summarizes the
basic concepts of software reliability and its
assessment.

In simple hardware systems, it is possible to
eliminate virtually all design faults prior to the
working life of the system. Most methods of
hardware reliability prediction therefore ignore
design faults as a source of unreliability. However,
software is almost inevitably complex (as are the
processes of designing and developing it) and may
dominate the contribution of physical failure.
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4.5.2 The meaning of software reliability can best
be understood from the viewpoint of a user. Having
taken the system containing software into service,
the user may observe later that it does not perform
as required. If the precise condition that reveals such
unexpected performance had existed as a test case,
then the software could have been corrected. Since
it is not possible during testing to reproduce all the
conditions that may be experienced during a lifetime
of use, there are likely to be occasions when the
system does not perform as required.

Users, suppliers and maintenance organizations are
interested in methods of predicting the likelihood of
such unexpected performance. The user's criteria for
deciding whether system performance is not
acceptable may well influence the prediction method
used and the nature of the data input to it. The
classification of performance into these categories
should be made on an individual basis since a major
`fault' to one user may be merely a minor nuisance
to another. A software fault that causes the system
to stop functioning may be considered acceptable by
one user (providing the cause is known) but to
another user running a system controlling an
industrial process, the same fault may be a severe
embarrassment.

4.5.3 Faults in documentation (that could affect
speed of modification or repair) may also affect
users to different degrees. In some systems, certain
parts of the software may be used more intensively
than others and the user may wish to focus interest
on those areas in which faults are most likely to be
present. The importance of a fault to a user will be
governed by such factors as the accessibility of the
software for correction and the severity and
immediacy of the consequences. The following list
gives examples of applications where such factors
are important:

a) software unavailable for correction, e.g. guided
missiles, computer microcode;

b) software not readily available for correction,
e.g. washing machines;

c) software which could mislead users,
e.g. teaching software for safety critical systems;

d) systems in which software failure could lead to
major malfunction, e.g. railway switching systems;

e) software which has to function when required,
e.g. nuclear reactor shutdown.

NOTE. In order to cater for various users it may be appropriate
when delivering the results of a reliability assessment to place the
various types or areas of failure into distinct categories so that
each user can classify the significance and severity as appropriate
to the case.

4.5.4 The reliability of a system [4] is the probability
that it will operate without failure for a given period
of time under given conditions of use. It is an
external attribute of the product, and should be
measured by observing the system in use or under
test in an environment that closely approximates to
those conditions of use that will be experienced in

service (referred to as a trial).

Measures of reliability include failure rate, mean
time to next failure and probability of successful
operation during a given period. Such measures are
defined on ratio scales. They are indirect measures
and should be derived from statistical analysis of
direct measures of the occurrence of failure over
operating time (either times between individual
failures or counts of failures and accumulated
operating time in successive periods). These in turn
should be extracted from raw data consisting of
records of each failure and operating time logged in
some convenient way.

Where design failure is concerned, reliability growth
is normally observed as the system is progressively
modified to remove the design faults which give rise
to failure, so that its reliability improves. Software
failure is a particular category of design failure, in
which the underlying design fault is located in a
software module or interface. Normally records of
second and subsequent failures due to a fault which
has previously been activated are removed from the
raw data and the assessment of reliability is based
solely on the records of the first activation of each
fault. The two following important points should be
noted regarding the assessment of software
reliability based on failure data.

a) The accuracy of the estimates depends crucially
on the extent to which the environment used
during trial is representative of the environment in
service. The same software product in different
environments may exhibit very different levels of
reliability. An environment may be characterized
by an operational profile or set of probabilities of
encountering various classes of input. This governs
the probability of encountering the trigger for any
given fault and hence its rate of activation
(see 6.4.16).

b) It is not possible to assess a very high level of
reliability based solely on failures observed during
a trial of reasonable length. However if there are
no failures, the trial duration is insufficient to
confirm, with a reasonable level of confidence, the
required reliability. Increasing the trial duration (in
some cases to several years) would be impractical
from a cost and programme viewpoint.

Measures of certain process attributes and internal
product attributes might correlate with the level of
reliability observed in operation. These may be used
as indicators to predict reliability during early
development before a complete system is available
for trial. However, evaluating such indicators is not
equivalent to measuring reliability, and their
predictive ability should be independently assessed.
Examples of types of indicator are process
characteristics (see 6.2), inspection statistics
(see 6.2.2), and software properties (see 6.3).
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Table 1. Management overview table

Subclause
in this
Part of
BS 5760

Subclause title Software life cycle phase

Definition/
feasibility

Design and
development

Implementation Installation
and
commission

Operation
and
maintenance

5.1 A management
framework for software
reliability assessment

A A A A A

5.2 Purposes of
measurement

Ð A A A A

5.3 Data collection Ð L A A A

5.4 Product-based software
reliability assessment

Ð L A A A

5.5 Process-based software
reliability assessment

L A A L A

5.6 Product models L A A A A

5.7 Process models L L L L L

5.8 Applicability and
limitations of methods

A A A A A

5.9 Procedures L A A A A

NOTE. A = applicable; L = limited applicability.

4.5.5 The procedures outlined in this British
Standard deal exclusively with the contributions to
unreliability of failures due to the activation of latent
faults in software. These in turn are due to mistakes
in its design and development. The contribution to
unreliability of physical failure of components is
covered by BS 5760 : Part 2. In order to predict the
reliability of the complete system, the estimate of
unreliability due to faults in software design should
be combined with the results of applying the
methods described in BS 5760 : Part 2. Care should
be taken to employ compatible measures of
reliability for the two factors and to ensure that they
are correctly combined.

5 Management overview

5.1 A management framework for software
reliability assessment

There are reliability assessment needs at all stages of
the software life cycle (see table 1). The purpose and
nature of the assessment methods which can be used
vary from stage to stage, but all contribute towards
building confidence in the level of reliability that can
be claimed for the final system. The aim should be to
build confidence in the reliability as the software is
being developed: it is unwise to wait until the end of
development to discover that the level of reliability
achieved is inadequate.

People in several roles (e.g. user, customer,
certification agency, reliability manager, business
manager, programmers and other technical staff,
quality manager and project manager) can be
expected to take an interest in reliability
assessments of a software based system.

To satisfy the needs of these roles, software
reliability assessment should be carried out at all
stages of the life cycle, in parallel with and often
based on existing verification and validation
activities. The degree of precision and quantification
associated with these assessments varies a great deal
through the development cycle. The success of early
software reliability assessment is dependent on
finding ways to make visible what is happening
within the development team; all too often, the
inherently abstract nature of software and its
development process serves to obscure the reliability
of the developing product.

In the earliest stages of development, reliability
assessment can be carried out mainly by studying
the development process since there are only
intermediate products to evaluate, and no final
software of which to measure the reliability. Later,
assessment can also be end product based, making
use of static properties of the software, and of its
dynamic failure behaviour. The aim of all these
assessments is to build confidence by ensuring that a
development strategy appropriate to a given
achievable target is properly carried out, and by
examining the end product and its behaviour when
executed.

Sometimes, assessment needs to be applied to
systems that already exist, and the need is for
retrospective reliability assessment. This situation
should be avoided if possible, as the benefits of
carrying out assessment in parallel with development
(e.g. earlier knowledge of problem areas) will be
lost. Where retrospective assessment is unavoidable,
the underlying principles still apply, but some of the
detail may need to be adapted as appropriate.
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5.2 Purposes of measurement

5.2.1 Assessment and certification
Before a product is delivered to the customer the
developer should ascertain that it is fit for its
intended purpose. This applies to systems containing
software just as to other types of product. Certain
quality goals are normally included in (or implied by)
the requirement specification and may be stated in
the development contract.

The developer should measure the system during a
trial to ensure that it meets the reliability goals. The
goals should be defined quantitatively so that
conformance to the requirements can be established
without doubt.

For a system containing software, the contribution to
unreliability of the software components should be
measured in addition to other factors. If it is found
that the system does not (or will not) achieve its
reliability goals due to unreliable software then
measurement of the reliability actually achieved is
useful in determining what action to take,
e.g. estimating the further testing time required to
reach the goal.

Regulatory requirements for certain levels of
reliability may be imposed on the developer by
external agencies, and these will often be legal
obligations. This is particularly the case with
safety-critical applications, such as nuclear reactor
control systems and avionics systems on board
aircraft. In such cases, the regulatory authority will
often independently review measurements made
during software development before awarding a
certificate.

5.2.2 Maintenance cost estimation
After delivery software usually requires maintenance.
Faults found in operation need to be corrected and
the software may need to be enhanced or adapted to
new environments. Measurements of reliability and
maintainability will form the basis of all commercial
decisions regarding maintenance contracts, warranty
periods, estimation of size of support teams, etc. This
is usually the case with large commercial
applications, operating systems and similar software.

5.2.3 Improvement of the development process
Having measured the reliability of the software
produced using particular development methods, and
compared this to the levels of reliability achieved
using different methods, the developer can assess the
relative effectiveness of the various methods used,
and adopt the better ones for future projects.

5.2.4 Control of the project
In addition to knowing if the project is staying
within its constraints regarding budget and schedule,
the developer should also take steps to find out if
the system is likely to be adequately reliable when
delivered. This requires the measurement of such
things as non-conformances found in inspection and
faults found in early testing which might be
indicators of the eventual reliability of the delivered
system.

5.2.5 Estimation of future projects

Estimates of the reliability of the delivered system
that can be expected from any proposed new
development should be based on experience of
previous projects. This is only possible if
measurements are made of the levels of reliability of
earlier systems in service. This constitutes part of
the `corporate memory' of the development
organization, along with records of the cost and
schedule and development methods employed.

5.3 Data collection

The gathering of evidence about software reliability
implies data collection and storage, and the varying
nature of the through-life activity implies wide
diversity in the kind of data that is to be used. Most
organizations will benefit from harmonizing these
data collection procedures, both across projects, and
with other related activities like configuration
management and change control: some data needed
for software reliability assessment purposes
(e.g. fault reports, version numbers) have their
natural origin in such existing systems.

5.4 Product-based software reliability
assessment

5.4.1 General

Various product-based methods may be used to
assess the contribution of software to system
reliability; these make use of three main types of
information: software properties, fault data, and
failure data. Most current work on reliability
assessment uses fault or failure data, but there are
some methods which use software properties and a
few which combine the various types of data.

The main features of these approaches are outlined
in 5.4.2 to 5.4.4.

5.4.2 Software properties

Assessment based on software product properties
analyses the form, structure, content and complexity
of the software itself (and other kinds of
intermediate and final products of the development
process) for consistency with the targeted level of
reliability. In particular, knowledge of the software
and system structure together with estimates of the
reliability of individual parts (possibly gained from
previous experience in service, for example in cases
where the parts have been reused) can be used to
produce a combined assessment of total software
and system reliability.

These methods often form part of a more general
quality assurance activity, intended to predict and
assess quality factors other than reliability such as
maintainability, portability, etc. They depend upon
various measures, which are measurable attributes of
the product, such as number of lines of source code,
decision points, operators, or faults found in
inspections.
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Some of the models are intended to predict
reliability, etc. at an early stage of the life cycle, such
as requirements specification or high level design. In
order to be used predictively, the relationship
between the observed metric values and the
achieved level of reliability needs to be established
statistically with reference to preceding similar
products. This gives rise to the following two main
problems:

a) deciding the criteria to be used to judge that an
earlier product is similar to the current one;

b) the practical problem that a large amount of
data needs to be available from earlier
developments.

5.4.3 Early fault data

Fault data, like software property data, can be
available early in software development, and has
been found useful by many organizations for
predicting the fault and failure levels likely to be
experienced later in development, and in the use of
the software following delivery. For example, an
abnormally high number of faults found in design
review of a software component could result from a
complex design, which could in turn lead to further
problems at later stages.

Organizations which have taken the trouble to
collect and analyse data about faults discovered at
various development stages, and data about achieved
reliability levels, have derived relationships which
help them in predicting not only fault and failure
frequencies, but in allocating resources to (for
example) testing activities, in the light of likely fault
levels.

Unfortunately, there are no `off-the-shelf' solutions,
enabling predictions on the basis of generic models.
Software engineering is still at the stage where each
organization's processes are unique to that
organization, and even within the organization,
relationships observed on one set of projects will be
applicable only to other `similar' projects. Thus, the
use of fault data methods is dependent on the
availability of data from previous projects.
Nonetheless, the value and effectiveness of such
approaches is increasingly seen as worth the
investment.

5.4.4 Failure data

Once the software has reached the stage of being
executable, statistical methods can be used to assess
current reliability and predict future reliability
growth from records of system failure and the extent
of use of the system. This should be done both
during a trial (a period of testing in a realistic
environment after system integration) and also in
service.

Failure data methods can only be used when a
system already exists and is exhibiting failure. They
are therefore unsuitable during the early life of a
system and on very highly reliable systems since the
failure sample is likely to be too small to permit
meaningful analysis. This is one of the reasons that
confidence building throughout development is so
important.

One approach to predicting reliability before a
system exists has relied on knowledge of its parts
and their levels of reliability estimated from testing a
large population of identical parts. The combining
theory usually assumes that these parts fail
independently, i.e. the presence of one does not
modify the reliability of another. Unfortunately in
complex items such as software, mutual
independence is the exception rather than the rule.
Even if the performance in service of two systems
containing software is known, coupling them
together with any degree of complex data
interchange is likely to give significantly worse
reliability than normal statistical combination would
predict. Any structural calculation in the software
case should take account of this lack of
independence of failure, and achieved reliability
should ultimately be assessed from observation of
the total system functioning in its intended
environment.

5.5 Process-based software reliability
assessment

Assessment of software reliability based on
examination of the planned and actual processes
employed is an immature and imprecise discipline.
None the less, it is vital that some view is formed
during development of the reliability likely to be
achieved by a given software-based system, and of
whether this is likely to meet the requirements that
have been established.

In the absence of specific methods and tools to
perform this task, this document provides a structure
within which the software reliability assessment
issue can be addressed at early stages, before the
software itself exists as a product. Inevitably, the
structure implies the use of expert judgement (based
on experience and historical data) concerning the
achievability of reliability targets, the credibility of
plans and in monitoring ongoing development
processes. The underlying aim is to enable
confidence in reliability to be built in parallel with
the building of the software product.
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5.6 Product models

5.6.1 General

Software product properties describe the state of a
system at any point in time without regard as to how
it was achieved. Examples of software product
properties that can be expected to affect reliability
include the following:

a) code size;

b) degree of conformance to accepted or
predefined notions of good structure;

c) type of software, such as that constrained to
real time operation;

d) language characteristics.

Data such as these are used by software product
property models to estimate the level of reliability
likely to be achieved by a given piece of software.

5.6.2 Use of fault data
Fault data in their simplest form provide a record of
the numbers of faults identified in a software
component by fault-finding activities (such as design
reviews, Fagan inspections (see 3.16, note 3), or
testing) during each of a number of phases of the
software development cycle. Often this basic scheme
is refined to include categorizations to show the
severity of each fault and its origin (e.g. specification
fault, design fault).

Whatever level of detail is chosen for fault recording,
it is vital that the scheme is applied consistently
across a range of projects. Only in this way can a
valuable body of historical data be assembled, for
use in predicting reliability.

The predictive method has two stages. First, past
data should be analysed to identify patterns of
possible predictive use. Commonly found patterns
include a tendency for fault-prone components to
continue to be so, and for levels of faults found at
early stages to be correlated with later fault and
failure levels; the strength of these relationships and
their exact nature varies considerably between
organizations, which is why data specific to the
organization is so important. Stronger (and thus
more useful for predictive purposes) relationships
are usually found where there is a high degree of
consistency in the processes which are used for
software development.

The second stage of the predictive process is to
apply predictive relationships derived in the first
stage to the current project, so obtaining reliability
(or other related) predictions, on the basis of early
life fault data. The accuracy of these predictions
depends on the current project being broadly
comparable with those whose data were used to
derive the relationships used, and can be expected to
increase as more data from the current project
accumulates, as development progresses. However,
these methods can never be as accurate as those
based on analysing specific failure data from the
program in question (see 5.6.3); their value lies in
having objective reliability-related information at a
relatively early stage of development.

5.6.3 Failure data models

Failure data comprise either a sequence of the times
at which failures have been observed, or (less
precisely) counts of the numbers of failures observed
in each of a consecutive sequence of time intervals.
Data should be analysed statistically, to measure
quantities such as failure rate at the current time,
and to predict future levels by extrapolating forward
any observed reliability growth achieved during
testing, as a result of fault removal.

There are many statistical models for dealing with
this problem, but no single model can be relied upon
to give accurate predictions in every particular
context; rather, a number of different models need to
be used in each case, and their performance
analysed to establish which should be given the
greatest credence for that particular set of data.

The practical implications of applying these models
are as follows.

a) Testing should be carried out in a way which
(at least approximately) satisfies the assumptions
underlying the statistical models.

b) Failure data should be collected from testing.

c) Some expertise may be required to carry out
the analyses.

5.7 Process models

5.7.1 General

Process-based assessment of software reliability aims
to use information available at whatever stage of the
development cycle has been reached, to establish
confidence (or otherwise) in the reliability of the
software being developed. Clearly, the amount of
information available grows as development
proceeds, and the nature of the information varies a
great deal. Moreover, there is no standard method
for approaching the task, which inevitably involves
judgement to supplement and make use of the
available data.

In the earliest stages of development, assessment
involves establishing the feasibility or reliability
targets set for the software, and the credibility of
plans drawn up to achieve the target reliability.
Later, assessment focuses on ensuring that the plan
is being carried out in a way consistent with the
target, and that intermediate products are of the
requisite quality. Finally, failure data methods can be
applied to measure reliability of the final product.

5.7.2 Assessing target reliability

The first possible assessment point is when a target
has been set for the contribution which software is
required to make to system reliability. At this point,
the concern is to show that the target which has
been set is achievable; it is better to discover at the
outset that a target is unlikely to be achieved, than
to spend a lot of money discovering this. Assessing
target achievability is an application of the `look
before you leap' philosophy.
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Targets should be expressed in quantitative terms, as
for example a failure rate or a probability of failure
on demand, or an integrity level.

Once a target has been set, its achievability should
be assessed by analogy with existing systems, and
the level of reliability that they have achieved. At
moderate levels of reliability, it should be relatively
easy to find systems which are sufficiently similar
and sufficiently reliable to establish confidence in
the achievability of the target. For very high integrity
systems, this will often not be the case, especially if
there are few similar software-based systems with
which to compare. In these cases, careful judgement
should be exercised to establish whether the
available evidence generates sufficient confidence to
proceed with the development. In all cases, a certain
degree of judgement is unavoidable, since there will
never be a perfect analogy for a new software-based
system.

5.7.3 Assessing the planned process

Once a target has been established to be achievable,
plans of various kinds can be produced to describe
the process by which the software will be developed.
These plans should now be assessed, to establish
that the planned approach represents a credible way
of achieving the target reliability. Planning a
development which is believed to have a strong
chance of success can make it easier later on to
show that the target reliability has indeed been
achieved.

The use of process models as the basis of project
plans is recommended, as these not only show the
component tasks, etc., but make very clear how they
relate to each other.

There are no special techniques for establishing the
credibility of a plan. In the ideal situation, data will
be available to show how past projects using the
same or sufficiently similar process models were
carried out, and the achieved levels of reliability.
Comparison of the plan with these historical records
can be used to build confidence in the plan.

More realistically, either very little data will be
available, or the data will not be from sufficiently
similar projects. In these situations, a review of the
plan by appropriate experts is the best substitute.

NOTE. An `expert' does not necessarily have to be a `highly paid
external consultant'. More often than not a colleague who has
worked on a similar project is suitable.

5.7.4 Assessing the actual process

During development, the process should be
monitored to ensure its adequacy with respect to the
reliability target. The aim should be to assure that
plans are adhered to, and the quality of the work
carried out. Inevitably, there will be some changes of
plan during development; when this happens,
assessment should focus on assuring that the
changes do not adversely affect reliability.

The time to think about monitoring is when the
project is being planned. This enables reviewing
during the project to ensure that the plan is being
adhered to, and that where divergences become
necessary, they do not prejudice achievement of
reliability targets.

Similarly, the definition of adequacy should be
agreed beforehand, as should methods by which the
quality of the work will be assessed during
development.

It is impossible to define precise relationships
between quality achievements during development,
and reliability at the end of development.
Nevertheless, intermediate targets should be set
which are acknowledged to be consistent with the
targeted level of reliability.

5.7.5 Other uses of process models

In addition to the assessment issues discussed above,
which relate to the reliability of a specific system,
process models may be used to help generate other
types of information. These include the following:

a) the relative merits of various software
techniques relating to achieved reliability, e.g. the
relative merits of particular languages for
particular applications;

b) the significance of different activities during the
software life cycle in achieving reliability, e.g. it
might be concluded that the coding activity has
less significance than the specification activity.

5.8 Applicability and limitations of methods

5.8.1 General criteria

Methods of predicting and assessing software
reliability fall into one of three main categories
according to the type of measurements required and
the times at which they are made (see 6.1).

a) Assessment of development process (see 5.8.2
and 6.2).

b) Assessment of product properties (see 5.8.3
and 6.3).

c) Assessment of software failure (see 5.8.4
and 6.4).

Criteria for selecting methods in each category are
described in 5.8.2 to 5.8.4 respectively.

Methods in the three categories complement one
another and are not mutually exclusive. However the
ultimate aim should be to measure the achieved
reliability of the software before it is put into
service. Selection of methods depends upon whether
the assessment is being made by a developer or for
purposes of procurement, the phase in the
development life cycle which has been reached, the
required level of system integrity, and the availability
of the necessary data.
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Methods which provide a quantitative assessment of
reliability should be preferred to those that provide
an index of merit or qualitative assessment, however
the latter may still be useful, for example in helping
to improve achieved reliability. It is important that
any method chosen should be theoretically sound.

5.8.2 Process models

5.8.2.1 Criteria for selecting process models

Development process models (see 6.2) do not assess
reliability as defined in this standard but may
evaluate certain indicators which correlate with
eventual software reliability. Even methods which
provide no quantitative evaluation may be useful in
improving achieved reliability by providing a
qualitative assessment of factors which can be
controlled by management during development and
are known to affect reliability.

5.8.2.2 Regulatory requirements

For certain applications, particularly safety critical
systems, development process assessment is
mandatory. For example, the application of [5] to
civil avionics software is required by the Joint
Airworthiness Authority (JAA) regulations, and the
use of the HSE Guidelines [6] may also be mandatory
in some circumstances.

5.8.2.3 Recommendations for process model
selection

During early development before a product is
available, process models are the only type of
assessment available. Process measurement is
recommended as a means of quality management.
Methods which yield quantitative predictions should
be given preference.

Certain published approaches, e.g. [7] are highly
flexible, require the setting of quantitative targets in
the requirements definition phase and the
assessment of the relevant attributes for comparison
on completion of the project, and can incorporate
other forms of reliability assessment, e.g. one based
on failure data.

Inspections are recommended as a means of
achieving reliable software and also as a means of
quality control. Statistics of instances of non-
conformance found by inspection may be used to
identify software components which are likely to be
problematic later on. Measures derived from these
statistics, e.g. non-conformance density (usually
referred to in the context of inspections as `defect
density'), might be found to be useful indicators of
reliability, but predictions can be based on these
indicators only by reference to an adequate database
of previous projects, and such predictions should be
treated with caution.

The recommendation here is that any process
measurement (whether imposed by regulations or
otherwise selected) is followed by a reliability
assessment based on observation of the system in
operation, and that the accuracy of predictions based
on early indicators is evaluated from such
observations.

5.8.3 Software properties models

5.8.3.1 Criteria for selecting properties models

Software properties models (see 6.3), like process
models, do not assess reliability as defined in this
standard but may evaluate indicators, which in the
case of properties models are usually measures of
internal static attributes.

Quantitative methods should be preferred.

Any measure chosen should be theoretically sound,
i.e. the attribute which is being measured should be
well-defined and measurement should be made on a
meaningful scale (see 4.4).

The correlation of the indicator value with the
achieved level of reliability should be well
established with reference to earlier products whose
operational reliability has been assessed.

5.8.3.2 Recommendations for properties model
selection

Measurements of the `structuredness' of software
may be useful, and in any case require that
configuration management is practiced, which is an
essential prerequisite for both the achievement and
assessment of operational reliability.

Methods which purport to yield measures of
`complexity' as a single number should be treated
with caution, since recent work has shown that
complexity is a composite attribute [3] and that some
published measures have less predictive capability
than a count of lines of code [8].

As in the case of process models, the accuracy of
predictions based on any indicator derived from
internal static product measures should be
established by subsequent measurement of software
reliability in operation.

5.8.4 Stochastic reliability models

5.8.4.1 Criteria for selecting stochastic reliability
models

Stochastic reliability models provide indirect
measures of reliability derived from direct measures
of failure over operating time. The data from which
these direct measures are extracted should be
collected during system operation or during a
realistic trial (see 6.4).

Such models can be classified into one of three main
categories: general statistical techniques, black-box
models or structural models (see 6.4.2).
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There are many different software reliability models.
The following criteria are recommended as a basis
for evaluating a model for a particular application.

a) Predictive accuracy describes the capability of
the model to predict future failure behaviour and
should be determined by comparing failure rates
and failure intervals predicted by the model with
actual values observed.

b) Usefulness refers to the ability of the model to
estimate quantities needed by managers and
engineers in planning and managing software
development projects. The degree of usefulness
needs to be assessed from the importance of the
measures provided.

c) Quality of assumptions implicit in the model
should be checked by determining the degree to
which it is supported by actual data. The clarity
and explicitness of an assumption should be
judged to determine whether a model applies to
particular circumstances.

d) Applicability indicates the potential for use of
the model across a range of different systems and
different development environments. If a model
gives outstanding results but for only a narrow
range of systems or environments the model
should not necessarily be discounted.

e) Simplicity of a model has three aspects. The
most important is that it should be simple to
collect the data that is required for the model.
Secondly, the model should be simple in concept
so that personnel without extensive mathematical
backgrounds are able to understand the nature of
the model and its assumptions. Finally a model
should be easy to implement as a program that is
a practical management and engineering tool.

5.8.4.2 Recommended general statistical techniques

The application of general statistical techniques
(see 6.4.3) for preliminary data analysis is
recommended but it should be noted that most such
methods cannot give long-term predictions. Isotonic
regression is a useful method of estimating
instantaneous failure rate and is simple to apply.
Graphical analysis of data is always advisable
(see 6.4.5).

5.8.4.3 Recommendations for black-box models

5.8.4.3.1 Accuracy of black-box models

It is very important to appreciate that `All models are
wrong, but some are more wrong than others!' In
other words, no model makes completely correct
assumptions about the failure process, and all are
therefore theoretically suspect. Some models have
been found to give acceptably accurate results on
some data sets, but none have been found to be
consistently better than others over all data sets.
Users are therefore advised not to trust a single
model but to apply several and judge their predictive
accuracy as described in 6.4.20.

It should be noted that adaptive modelling
(see 6.4.20.5) may remove much of the bias from the
estimates, and that a weighted combination of
several estimates (see 6.4.20.6) may be more
accurate than a single estimate.

It should also be emphasized that the successful
application of failure data models depends crucially
on adequate data collection and on the use of
realistic operational profiles during trials. It should
also be noted that little work has been done to
validate long-term estimates of reliability growth and
such estimates should therefore be treated with
caution.

5.8.4.3.2 Usefulness of black-box models

Most black-box models potentially provide useful
estimates such as expected time to next failure,
failure rate, expected number of faults that will be
found, etc.

`Input domain' models (see 6.4.19.2) estimate
probability of failure per input. They may be useful
given a well-defined operational profile, and where
`probability of failure per demand' is a quantity of
interest.

Some models in the `miscellaneous' sub-category
(see 6.4.19) are limited to estimating the `number of
faults in the product' and cannot be used directly to
predict reliability. An example is fault `seeding'
which also has the disadvantage that it depends
upon a sample of faults which is likely to be atypical
of the population.

Availability models (see 6.4.19.4) are useful where
system requirements include a certain maximum
length of down-time, but where recovery from
software failure is concerned, down-time should be
measured by time to restore service, not time to
repair.

5.8.4.3.3 Quality of assumptions of black-box
models

Black-box software reliability growth models based
on incorrect assumptions, such as a uniform fault
activation rate, e.g. Jelinski-Moranda (see 6.4.12.2),
should be treated with caution. This applies to many
of the early published models.

Models which allow for imperfect and delayed
debugging are preferable but careful data extraction
may still permit useful estimates to be obtained from
models which assume perfect and immediate fault
removal.

Most models assume that operating conditions are
constant, and will give totally inaccurate estimates if
this is not the case. The various `environmental
factors models' (see 6.4.16) provide a promising but
relatively untried approach to overcoming this
limitation.
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5.8.4.3.4 Applicability of black-box models

Black-box models can be applied to almost any type
of software, provided that adequate data are
collected and that the operating conditions are as
assumed by the model (i.e. in most cases, they are
assumed constant and representative of the service
environment).

An important exception is the assessment of very
high reliability, for which stochastic reliability
models are not suited since they depend upon
analysis of a reasonably large sample of failure data,
whereas the observation of any failure of a system
with a very high reliability requirement means that it
is inadequately reliable (see 6.5).

5.8.4.3.5 Simplicity of black-box models

Given the availability of a software tool to carry out
the numerical search to estimate the parameters
from the failure data, the use of black-box models is
fairly straightforward, but the initial design and
construction of such tools is a major task.

5.8.4.4 Recommendations for structural models

Structural models (see 6.4.21) are recommended in
cases where software components whose reliability
can be estimated from previous operational
experience are being re-used or where parts of a
system are being modified and it is necessary to
estimate the reliability of the new version, taking
into account the operational reliability of the
unchanged parts together with the reliability of the
new or modified components as measured during
trial. However, the use of such models requires
measurement of the extent to which each component
is exercised relative to the total system operating
time. This is not always easy, and may require
instrumentation of the software.

5.9 Procedures

5.9.1 General

A variety of procedures are needed to support and
enable software reliability assessment. A summary of
the important management implications follows;
details about procedures are contained in clause 7.

5.9.2 Data collection procedures

The data collection to be carried out should be
derived from specific assessment objectives
established for each project, and wherever possible
in accordance with existing practices and
procedures.

Procedures are needed to ensure the proper
management of this potentially wide-ranging data
collection and storage activity, some of which may
be properly regarded as a project activity, but some
of which may be co-ordinated. It is preferable that
the overall control of data collection is co-ordinated
to ensure consistency of approach and quality
management of data, but much of the data will
necessarily be provided by project resources; this
should be allowed for when determining project
budgets and time-scales.

Data required will typically include:

a) failure and fault data, including times and
circumstances of failure and details of actual or
potential consequences;

b) process data, such as methods and techniques
used and resources employed;

c) product data, i.e. information about size,
structure, languages used and the version which
failed, for example.

Data will have many sources, including personnel
employed at various stages of development, existing
management systems and system users (i.e. those
who fill in failure reports).

5.9.3 Project management procedures

Software reliability assessment is an activity which
should occur throughout system development and
use from the earliest stages. The only exceptions to
this are where conscious decisions are taken not to
carry out any reliability assessment activity. Even in
these cases, a management framework is needed to
ensure that the decisions are taken in a timely and
proper fashion.

Project management criteria and procedures should
address software reliability assessment, indicating
the need for assessment activities at all stages, as
outlined in 5.1 and providing organization-specific
guidance on how the various actions needed should
be documented and approved. The guidance
provided should not be prescriptive, as selected
techniques should reflect the nature of particular
systems and the uses to which they will be put; also,
the range of techniques available will change as the
subject area matures. However, the guidance given
should cover product-based assessment as described
in 5.4 and process-based assessment as outlined
in 5.5.

Emphasis should be given to the need for evidence
to support any claims for reliability, whether they
are in response to stated requirements, or are made
for other management, marketing or licensing
purposes. It is equally important to stress that the
activity should start very early in the process so that
reliability targets can be set and reviewed, and
corresponding procedures put in place to ensure that
any necessary data are collected in a timely fashion.

5.9.4 Maintenance considerations

After release, systems will be subject to maintenance
activities during their operational life. With software,
it is not uncommon for the maintenance processes
employed to differ from those employed during
initial development. The potential for relaxation of
discipline and rigour, from the high levels present
during initial development, represents a significant
threat to the benefits gained from adopting a
rigorous approach in the first instance. With the
accompanying scope for structural deterioration
within the software design as a consequence of less
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disciplined maintenance this may impact upon the
continuing achievement of the systems target
reliability. In particular, where an external
certification requirement may exist, e.g. for safety,
the effects of a relaxed maintenance environment
may transcend the issues of reliability.

It is important to recognize that the maintenance of
software requires elements of the initial development
process if it is to be effective. Therefore, adoption of
the same degree of rigour in maintaining software as
in its initial development would be highly desirable.
Where such rigour cannot be adopted, for whatever
reasons, all changes to the maintenance process
should be recorded in detail, in order that
management can observe their effects and, if
necessary, ensure that any corrective action required
is taken.

6 Software reliability assessment
techniques

6.1 Classification of techniques

Reliability is an external dynamic attribute of a
product and is measured indirectly (see 4.4.4.2).
Methods of assessing software reliability can be
divided into the following categories, based on the
other types of measure from which they derive the
measures of reliability.

a) Software development process models use
measures of intermediate products
(e.g. specification and design documents)
generated during software development, or
measures of the development process itself.

b) Software property models use internal measures
of static attributes (i.e. properties) of the source
code of the delivered software.

c) Stochastic reliability models use statistical
analysis of past failure data, or of information
about the levels of reliability of individual models.

Internal measures and process measures that are
correlated with the reliability of the delivered
software are referred to as indicators of reliability.
Most property and process models predict reliability
from the values of certain indicators measured for
the particular product in question on the basis of the
correlation observed between past values of the
indicators and past levels of reliability for a sample
of previous software developments. (Some do not
predict reliability as defined in this standard but
predict other quantities such as `defect density' or
`number of faults in the product'.)

To validate such a model, i.e. to establish how
accurately the indicators predict reliability, it is
necessary to measure the degree of correlation. This
requires the measurement of the reliability of each
software product in the sample, which in turn
requires the application of stochastic reliability
models to the records of behaviour in trial and
operation of those sample products.

Stochastic reliability models base their estimates on
the observed behaviour of the product in question,
and so provide reliability measures more directly
than process or property models, whose estimates of
reliability are more indirect and are derived from
imperfect correlation.

A few models combine features of more than one
class, e.g. the Musa calendar time model
(see 6.4.13.6) combines a stochastic reliability
growth model with measures of the development
process, and structural models (see 6.4.21) combine
elements of stochastic reliability models with
measures of software structure.

6.2 Software development process models

6.2.1 Introduction to process models

6.2.1.1 Characteristics of process models

Software development process models attempt to
derive measures of the quality of the delivered
software product from measures of the development
process. Most do not provide measurements of
reliability as defined in 4.5. At best they are capable
of estimating the values of indicators whose
correlation with operational reliability should be
established separately.

There are two main approaches that depend on
process measurement.

a) Inspection statistics (see 6.2.2) are collected
during formal inspection of intermediate
development products and can be used to estimate
defect density which is a possible reliability
indicator.

b) Qualitative assessment of good practice
(see 6.2.3) analyses documentary evidence that
certain techniques which may be expected to yield
high quality software have been applied during
development.

6.2.1.2 Data required by process models

Process models require process and resource
measurement. These may include measurements of
elapsed time and effort expended on particular
development activities and counts of defects
detected in the intermediate or end products. From
these the values of certain indicators can be
estimated.

In order to correlate the indicator measurements
with operational reliability, these models additionally
require measurements of the same indicators
together with measurements of operational reliability
for a sample of previous similar software products.

6.2.1.3 Estimates provided by process models

Not all process models deliver estimates of reliability
indicators. Most provide only measurements of static
quality attributes, or simply extra confidence that the
developers have done a good job.
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6.2.1.4 Advantages of process models

Given that adequate `corporate memory' exists to
validate such models as predictors of reliability,
process models are in theory capable of providing
predictions early in the software development life
cycle. They can indicate if it is feasible to meet a
given reliability target and provide warning of
potential `hot-spots' within the system (e.g. particular
modules which are likely to cause problems) so that
management attention can be focused on these with
the aim of avoiding future problems due to
unreliable system components.

Where very high reliability is required in software,
stochastic reliability models are not capable of
providing the necessary degree of confidence, and
process assessment is often the best that can be
achieved, at the expense of having no quantitative
estimate of software reliability. This is discussed in
more detail in 6.5.

6.2.1.5 Disadvantages of process models

Process models only estimate software reliability
very indirectly, if at all. Any estimate based on a
process model should always be followed by
observation of the delivered system in trial and
operation.

6.2.2 Inspection statistics

6.2.2.1 Introduction to inspection statistics

Formal inspections as originally described by
Fagan [9] have been found to be an effective method
of achieving reliable software, and are in routine use
by many developers. Inspections are carried out at
the end of each phase of the development life cycle.
The intermediate output products from the phase are
read by at least two inspectors (neither of whom is
the author of the material under inspection) during a
carefully organized series of inspection meetings
carried out by a structured team with well-defined
roles. The objective of each meeting is to compare
the output products of the phase with the input
products from which they were developed and note
any instance of non-conformance. (These are
commonly referred to as `defects' by those who
practice inspections and this term will be used here
in discussing inspections, although it is generally
deprecated.) For example the detailed design is
inspected against the high-level design, and the
source code is inspected against the detailed design.

The author of the material then re-works it to
remove any defects and the re-work is signed off by
the `moderator' (who heads the inspection team)
before the next phase of development may begin. If
too many defects are found, the material should
undergo re-inspection after re-work. By this means a
reasonable fraction of defects are removed at each
phase so that only a small percentage survive to
become faults in the delivered product.

The method requires the careful collection of
statistics of defects found in each inspection, the size
of the material inspected and the effort expended in
inspection and re-work. Statistical norms are
established by the organization, and an anomalous
count of defects may mean that management action
is required. For example a low count might indicate
an inadequate inspection, or a high count might
indicate a difficult module.

Although measures of product quality are derived
from these statistics, the method depends on
observation of the development process, and so is
classed as a software development process model
rather than as any other type.

6.2.2.2 Data required for inspection statistics

6.2.2.2.1 The following data are collected for each
inspection.

a) Count of defects broken down as follows.

1) Severity

Ð Major: could have led to system failure in
operation.

Ð Minor: could not have led to system failure
in operation, e.g. a misleading comment in
source code.

2) Category

Ð Missing: something specified at the higher
level was omitted from the material under
inspection.

Ð Wrong: something specified at the higher
level was implemented in the material under
inspection, but incorrectly.

Ð Extra: something was included in the
material under inspection which was not
specified at the higher level.

3) Type

Ð A code for the type of non-conformance as
defined in the inspectors' detailed checklist.

b) Size of material inspected. Usually measured as
thousands of lines of source code (KLOC). (Sizes
of other intermediate products, e.g. high-level and
detailed design specifications, are usually
converted into the number of KLOC they are
expected to generate after coding.)

c) Size of material re-worked. Also measured in
KLOC, broken down into material added, modified
and deleted.

a)Effort. Usually measured in person-hours,
broken down into preparation, inspection and
re-work time.
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6.2.2.2.2 In order to use inspection statistics to
predict the behaviour in service of a product
currently being developed, the total data required are
as follows:

a) the data detailed in 6.2.2.2.1a) to d) for
inspections in the current development project;

b) the data detailed in 6.2.2.2.1a) to d) for all the
inspections during the developments of a sample
of previous similar products;

c) records of the numbers of faults activated
during the entire service life for each previous
similar product in the sample; and

d) total amount of execution time during its entire
service life for each previous similar product in
the sample.

6.2.2.3 Estimates provided by inspection statistics

The following measures are commonly derived from
inspection data.

a) Inspection and re-work rates: (size of
material)/(effort).

b) Defects detected: counts of defects found and
removed by re-work. These may be broken down
by inspection and by module, and further broken
down by type, category and severity.

c) Detected defect density: (count of defects
detected)/(size of material).

d) Defects remaining: estimated counts of defects
still remaining after inspection. These may be
broken down as in b).

e) Density of defects remaining: (Estimated count
defects remaining)/(Size of material).

f) Defect removal efficiency: The percentage of
defects originally present which are detected in a
given inspection and removed by re-work.

Inspection and re-work rates (see item a)) measured
for previous inspections are useful for planning
future inspections. Their derivation is
straightforward and poses no conceptual difficulties.

Defects detected (see item b)) and their densities
(see item c)) as measured for the current project and
compared with previous projects (or among various
modules within the current project) are useful
indicators of the following problems:

Ð inspections which may be inadequate
(unexpectedly low count);

Ð modules which may be problematic
(unexpectedly high count);

Ð types of mistakes to which development
personnel are prone, or to which the methods of
development are conducive (unexpectedly high
proportions of certain types of defect).

These measures can be used to improve the skill of
personnel (by learning to avoid common mistakes),
the effectiveness of development (by selection of
methods which are not conducive to common
mistakes) and the efficiency of inspections (by
including on the inspectors' check-lists the more
frequently found types of defect).

NOTE. It is axiomatic in Fagan inspection that the statistics
should not be used to judge the abilities of personnel, due to the
effect of the rigour of inspections and inherent difficulty of the
material produced on the statistics.

Estimates of defects remaining (see item d)) and
their densities (see item e)) are often used as
measures of software quality. It is extremely
important to note that such estimates are not
measures of reliability as defined in this standard.
Their usefulness is reviewed in detail in 6.2.2.5.

It has been claimed [10] that inspection statistics can
be used to predict the number of faults that will be
activated during the service life of the product. Such
predictions are based on estimates of defect removal
efficiency and counts of faults detected in service for
previous similar products. The validity of such
predictions is also discussed in 6.2.2.5.

It is possible that the careful extrapolation of trends
in non-conformance counts may yield useful
predictions of reliability in service, and examples of
attempts to do this have been published [11].

6.2.2.4 Advantages of inspection statistics

Inspections have been found to be cost-effective in
achieving high quality software. Case studies have
shown that software modules that have been
inspected tend to be more reliable than those which
have not [12], and that the average effort in
man-hours required to detect defects during
inspection is less than one fifth of that required to
detect a fault during testing [12]. Given a sufficiently
comprehensive corporate memory covering a period
of many years during which inspections have been
used consistently and including records of
experience of the resulting products in service, it
may be possible to correlate trends in density
defects detected with operational reliability.

6.2.2.5 Disadvantages of inspection statistics

Estimates of defects remaining and their densities
(6.2.2.3d) and e)) are at best static measures of
software source code attributes which may be
indicators of software reliability. Even considered as
such, they are very indirect measurements and
should be derived from correlation with data from
previous similar projects. Estimates of defect
removal efficiency (see 6.2.2.3f)) are also of dubious
value since they depend upon estimates of 6.2.2.3d)
and e) from earlier projects.
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In particular 6.2.2.3d) is often referred to in the
literature on inspections as the `number of defects
delivered', and 6.2.2.3e) as the `error rate' or `defect
rate'. This usage of terms is seriously misleading and
should be avoided for the following reasons:

a) they are static measures and not rates over
time;

b) many defects are in the `minor' category and by
definition cannot cause failure in operation, so are
not faults (or `defects') in the delivered product;
and

c) defects which are easily detected in inspection
are not necessarily similar to faults which are
easily activated in operation.

Predictions of the number of delivered faults using
simplistic methods require very strong assumptions.
For example it is assumed in [10] that there are only
two inspection stages and that these both have the
same defect removal efficiency. This has been
observed to be false [13]. It is also assumed that
previous products now at the end of their operational
life are similar to the product currently in
development and that all of their defects have been
discovered by the ends of their operational lives.

Such methods should be regarded with the deepest
suspicion.

The `number of delivered defects' sometimes
estimated using inspection statistics is similar to the
`total number of faults in the product' which some of
the early stochastic reliability models purport to
estimate. Such estimates (of total number in a
population based on observation of a small sample)
pose notoriously difficult statistical problems [14] and
in the context of software reliability it is doubtful if
they are meaningful measures of anything at all.

6.2.3 Qualitative assessment of good practice

6.2.3.1 Introduction to assessment of good practice

Several standards and guidelines adopt an approach
which is based on a qualitative assessment of good
development practice. Examples are the European
Organization for Civil Aviation Electronics
guidelines [5] which apply to airborne avionics
software, and the Health and Safety Executive
guidelines [6] which apply to process control
systems.

Such guidelines usually recommend certain practices
which should be adopted in order to deliver software
of a given level of integrity, depending on the
criticality of its application, i.e. the likely severity of
the consequences of a failure in the worst case. For
example, [5] defines five levels of integrity of
software depending on whether it is executed in a
system whose failure may have `catastrophic',
`hazardous', `major', `minor' or `negligible'
consequences for the flight of the aircraft.

In many cases (e.g. [5]) the guidelines are used as a
basis for certification by a regulatory authority
(e.g. Joint Airworthiness Authority) that the system
(including the software) is adequately reliable.

6.2.3.2 Data required for assessment of good
practice

Such guidelines often provide checklists for recording
the presence or absence of desirable practices, or
define documents that are to be provided by the
manufacturer to the certifying agency as evidence of
having followed the guidelines. This evidence may
include specifications, test plans, test reports and a
`statement of achievement'.

6.2.3.3 Estimates provided by assessment of good
practice

A review of the documentary evidence may confirm
that an adequate development process has been
carried out. Essentially the assessment is
bureaucratic. A given document either does or does
not exist and if it exists has been read and assessed
independently to be of adequate quality. This in turn
is evidence that a given development function has or
has not been performed adequately.

Predictions of operational reliability can be deduced
only by appeal to previous successful service of
similarly assessed software products.

6.2.3.4 Advantages of assessment of good practice

Assessment of good practice can take place from the
earliest stages of software design and development
and provides information in advance of operation. In
cases where a high integrity is required assessment
of good practice provides one important method of
gaining confidence in the software but it should not
be used on its own.

6.2.3.5 Disadvantage of assessment of good practice

Such guidelines are usually concerned with the
achievement of high integrity software rather than its
assessment, and provide no quantitative assessment
of operational reliability with respect to software
failure. In many cases such a quantitative assessment
is deliberately not required. For example, although
the higher level guidelines [15] which invoke [5]
recommend that (in most cases) the system level
reliability is estimated quantitatively, they specifically
preclude the incorporation of probability of software
failure in the calculation of system reliability.

6.2.4 Formal methods

The set of techniques known as formal methods is a
means of verification that is applied mainly to
software which is required to exhibit very high
reliability. The software requirements specification is
written in a mathematical language. The specification
includes a precise definition of conditions to which
its internal state is to conform at each stage of
execution, referred to as preconditions (which
should be satisfied on entry to any module or code
segment) and post-conditions (which should be
satisfied on exit). A proof of correctness is then
constructed to demonstrate that when the code is
executed, each post-condition is a logical
consequence of the preceding precondition. This
proves formally that the code is a correct
implementation of its specification.

Copyright British Standards Institution 
Provided by IHS under license with BSI

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



22  BSI 1998

BS 5760 : Part 8 : 1998

The fact that formal methods have been used is
often cited as a demonstration that the software is
certain to be free of certain classes of faults.

6.3 Software property models

6.3.1 Introduction to software property models

6.3.1.1 Characteristics of software property models

Software property models evaluate static measures
of the software product. These methods often form
part of a more general quality assurance activity,
intended to assess quality measures other than
reliability such as maintainability, portability, etc.
and may be classified as follows:

a) software science is a well-known approach
proposed by Halstead [16] which can derive
reliability indicators from source code;

b) complexity measures represent how difficult a
piece of source code is to understand, and have
been used as reliability indicators.

Quality factors for software include `reliability' but
defined as a combination of more basic static
properties.

6.3.1.2 Data required by software property models

These usually consist of direct measures of the
source code and may be evaluated by analysis of the
code using a compiler or static analyser.

6.3.1.3 Estimates provided by software property
models

These include estimates of such quantities as
`number of faults in the delivered source code' and
numerical measures of `complexity'.

6.3.1.4 Advantages of software property models

Static analysis of source code may provide valuable
information in advance of operation, and may reveal
potential faults that are unlikely to be activated in
testing. The measures derived may be indicators of
operational reliability.

6.3.1.5 Disadvantages of software property models

The measures derived are not measures of reliability
as defined in this standard but are at best only
indicators of reliability. As with process models, the
predictive usefulness of these indicators should be
established separately, which requires the application
of stochastic reliability models to failure data
obtained in operation, and correlation over a sample
of products.

Most of the models apply solely to imperative
programming languages.

Many published software property models have been
found to have little value for predicting reliability in
practice.

6.3.2 Software science

6.3.2.1 Introduction to software science

Halstead [16] proposed an approach named `software
science', in which quantitative relationships between
various direct measures collected from the source
code are hypothesized.

6.3.2.2 Data required by software science

The number of distinct operators used and the
number of distinct operands used are added to give
the `vocabulary size'. The total number of operators
used and total number of operands used are added
to give the `program length'.

The `program volume' is a measure of the total
amount of information contained in the source code,
and is given by the length multiplied by the
logarithm of the vocabulary size. Many other direct
measures are used.

6.3.2.3 Estimates provided by software science

The `number of faults in the delivered code' is then
estimated as `(program volume)/3000', since 3000 is
assumed to be the `number of elementary
discriminations between errors'.

Many other quantities can be estimated, but are not
relevant to reliability.

6.3.2.4 Advantages of software science

It is capable of providing estimates before testing,
and the necessary direct measures are easy to
evaluate using a static analysis tool. It is intuitively
appealing that the number of mistakes a programmer
is likely to make should depend upon the amount of
information contained in the code.

6.3.2.5 Disadvantages of software science

The theoretical foundations of `software science' are
now generally regarded as being unsound, and the
apparent experimental support for the theory initially
reported is thought to be due to poor experimental
design. Hamer and Frewin [17] have criticized the
theory on these grounds, and also point out that the
prediction is solely of coding faults, not of all
possible types of fault.

6.3.3 Complexity measures

6.3.3.1 Introduction to complexity measures

Models of this type all attempt to formalize the
common sense expectation that the larger and more
complicated software is, the more likely it is to
contain faults. Lipow and Thayer [18] and
Akiyama [19] have applied regression to establish
quantitative relationships between such measures as
code size and the number of branches in a program,
to the number of faults delivered. The McCabe
complexity metric [20] is also claimed to correlate
with the number of faults in a piece of software.
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6.3.3.2 Data required by complexity measures

Complexity measures are usually derived from the
analysis of source code. Most approaches depend
upon the graphical representation of the program
structure. A graph consists of a set of points or
nodes connected by line segments or edges. In a
directed graph each edge is assigned a direction
indicated by an arrow on the diagram, and the
number of edges which arrive at or leave a given
node are referred to respectively as the in-degree
and out-degree of that node. A control-flow graph or
flowgraph is a directed graph which includes a start
node which has in-degree zero and a stop node
which has out-degree zero.

If each node represents a software instruction, then
any execution of the software is represented by a
walk through the flowgraph beginning at the start
node and ending at a stop node. Any node with
out-degree greater than one represents a decision
point in the code. For any flowgraph other than the
simplest, there are many possible walks or paths
through it.

6.3.3.3 Estimates provided by complexity measures

McCabe's complexity measure [20] is defined by the
equation:

Vg = e 2 n + 2

where:

Vg is the complexity measure;

e is the number of edges;

n is the number of nodes.

It measures the number of linearly independent
walks through the graph. McCabe recommended that
no software module should have a complexity
number greater than 10.

Fenton [3] discusses and compares several
approaches to measuring `complexity' (including
McCabe). A method is recommended which also
uses the flowgraph approach but in a less simplistic
way which depends on decomposing the flowgraph
into prime subgraphs (i.e. those which cannot be
decomposed further). It is then possible to ask more
penetrating questions about the nature of control
flow complexity, but it is pointed out that
`complexity' is not a simple attribute and cannot be
measured as a single scalar number.

A number of testing tools use the flowgraph
representation to guide testing and in particular to
measure test coverage. This may be measured at
various levels. For example, the test effectiveness
ratio (TER) may be calculated in the following ways.

a) Proportion of all statements executed
(i.e. nodes visited).

b) Proportion of all edges visited.

c) Proportion of all possible paths executed.

6.3.3.4 Advantages of complexity measures

Theoretically, complexity measures can indicate
which modules are too complex and will therefore
exhibit a high density of faults. These may then be
redesigned or decomposed into simpler modules.

The test effectiveness ratios provide a measure of
the thoroughness with which a given set of test data
exercises the code.

6.3.3.5 Disadvantages of complexity measures

Simple metrics such as McCabe's are not meaningful
measures of what is generally understood as total
`complexity'. The complexity of a piece of software
might reside in its data structure rather than its
control flow. A simple example is given in [3] of a
program designed in two different ways to perform
the same required functions as follows.

a) Using a simple data structure and a fairly
complex flow of control gives a McCabe number
of 7.

b) Using a complex data structure and a `straight
through' flow of control, the McCabe number is 1.

It is obvious that the McCabe metric does not
capture all aspects of what is intuitively understood
by the attribute `complexity' and that this is in fact a
composite characteristic which needs to be
decomposed into several more well-defined
attributes in order that these can be measured.

In one case study [21] the actual `difficulty' of each
module in a sample was measured by the number of
times it had to be re-worked before release. It was
found that the correlation between that measure and
the McCabe number of the module was slightly
worse than its correlation with the count of lines of
source code in the module. (The same study
reported a similar finding for the Halstead `volume'
metric). It appears that such metrics provide little
more information than `lines of code'.

A high level of test coverage is obviously desirable,
but attempts to predict the reliability of the delivered
system from the achieved value of the TER measures
have proved to be ineffective. TER measures are
therefore poor candidates as reliability indicators.

6.3.4 Quality factors

6.3.4.1 Introduction to quality factors

Another approach which has been widely used and
copied is that of Walters and McCall [22]. This
depends upon the definition of a number of quality
factors, as originally proposed by Boehm et al. [23],
and McCall et al. [24].

6.3.4.2 Data required by quality factors

Each factor depends upon a number of quality
criteria (denoted primitive characteristics by Boehm
et al. [23]). Reliability depends upon completeness,
accuracy and consistency (Boehm et al. [23]), or
consistency, accuracy, error tolerance and simplicity
(McCall et al. [24]). The criteria depend in turn upon
a number of measures which are directly observable.
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For example, Walters and McCall [22] measure
simplicity by counts of product components which
are independent of all others and which have single
entry and exit points. They define functions to
combine the basic measures in order to derive
measures for the criteria and these in turn are
combined to give a rating for each quality factor.

6.3.4.3 Estimates provided by quality factors

Boehm et al. [23] define the following quality factors:
portability, reliability, efficiency, human engineering,
testability, understandability and modifiability.

McCall et al. [24] suggest the following: correctness,
reliability, efficiency, integrity, usability,
maintainability, testability, flexibility, portability,
reusability and interoperability.

The end result is an index of merit which is intended
to be a measure of the overall quality of the software.

6.3.4.4 Advantages of quality factors

Like complexity metrics, quality factors theoretically
purport to be static product measures which are
indicators of operational reliability. They could
therefore be used prior to system trial or operation
to predict the behaviour of the system. They might
also enable the project manager to `trade-off' one
factor (e.g. reliability) against another
(e.g. efficiency) in the detailed design and coding
phase if development resources were limited.

6.3.4.5 Disadvantages of quality factors

The quality factors are often not defined in a
measurable way, so that validation of the postulated
correlation between these metrics and a measure of
reliability is difficult, if not impossible. No strong
relationship between the values of these metrics (or
an `index of merit' derived from them) and operational
reliability has been established. Kitchenham [8] has
criticized this approach both for this reason and
because it provides no clear indication of what the
relationships are between different factors that might
be `traded-off' against each other.

6.3.5 Fault tolerance

Fault tolerant design of software is a means of
protecting the system from the effects of activation
of residual latent faults. The software is designed to
include several independently written versions of
each module. The outputs of all versions are
compared and the value upon which a majority of
the versions agree is taken to be the `correct' overall
output (referred to as N version programming). An
alternative approach is to submit the outputs of the
different versions to an adjudicator which checks
that essential integrity constraints have not been
violated. Versions are invoked in turn until the
output of one of them satisfies the adjudicator
(referred to as the recovery block scheme). The
intention is that the error resulting from the
activation of a fault within one version will be
detected and corrected by reference to the outputs
of other versions so that it does not propagate and
result in a system failure.

Evidence of the use of fault tolerance is often cited
as a reason for having confidence that the software
will exhibit high reliability.

6.4 Stochastic reliability models

6.4.1 Introduction

6.4.1.1 Nature of stochastic reliability models

Stochastic reliability models represent the
mechanism of system failure in a probabilistic (or
`stochastic') way and have been used for some time
to estimate the levels of reliability of hardware
systems with respect to both physical failure and
design failure (see 4.2). They can also be used to
estimate system reliability with respect to software
failure, and many of the models can be applied both
to hardware design failure and to software failure.

Stochastic reliability models which apply to software
can be classified hierarchically (see 6.4.2). The
characteristics of each class, sub-class and individual
model, the data that is needed in order to apply
them, the quantities that they estimate, and the
advantages and disadvantages of each, are described
in 6.4.3 to 6.4.5. Methods for comparing the
accuracy of the estimates obtained from different
models, for recalibrating estimates to improve their
accuracy, and for combining different estimates into
a single quantity, are described in 6.4.6.

Technical detail has been kept to a minimum in 6.4,
but a few mathematical terms are unavoidable. More
detailed mathematical descriptions of some
important classes of model and of individual models
are contained in annex B and in the referenced
sources, e.g. [25]. The statistical methods used to
assess the accuracy of estimates, and to recalibrate
and combine them, are contained in annex C.

6.4.1.2 Data required by stochastic reliability
models

All stochastic models derive their estimates of
reliability from data which should be collected while
the system is being used in a way which is as similar
as possible to that in which it will be used in service.
In practice, this means during a realistic trial, or
during actual service. There are a few exceptions,
e.g. seeding and tagging models (see 6.4.19.3).

General statistical techniques (see 6.4.3) and black-
box parametric models (see 6.4.9) derive their
estimates from the failure history of the system. The
following data are required.

a) Records of system operating time and/or
software execution time. It is extremely important
that the measure of time used is meaningful,
i.e. that it is a true measure of the extent to which
the software has been exercised and any latent
faults in it exposed to the possibility of activation.
Calendar time is rarely adequate.
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b) Records of all failures, including both calendar
time at which they occurred and how their
occurrences are distributed over execution time.
Type of failure (symptoms observed), severity
(seriousness of the consequences) and location
(which installation was affected) may also be
required.

c) For each failure, the identity of the latent fault
which was activated. There is a crucial distinction
between the first activation of a hitherto
undetected fault, and a failure due to a subsequent
activation of a fault which is already known. Data
should be collected in such a way that these two
types of event can be separated.

d) The identity of the product which failed and its
baseline version number.

e) Information about the operating environment
and the way in which the product was being used
when it failed. In order to predict software
reliability in service on the basis of observations of
failure during test or trial, random testing should
be used during the test or trial. This means that
the input cases should be selected according to
the probability distribution which governs the
relative frequencies with which they will be
encountered in service. A definition of such a
distribution is referred to as an operational profile.
Random testing does not mean selection of input
cases with equal probability.

Again there are a few exceptions, e.g. input domain
models (see 6.4.19.2) analyse the distribution of
failure over the set of possible inputs, instead of
over execution time.

Availability models (see 6.4.19.4) also require
records of system recovery times and/or of times to
diagnose and correct faults. Other particular models
have specific additional data requirements.

Structural models (see 6.4.21) require the following
data.

± The reliability of each individual software
module, and of each interface.

± Information about the execution time spent in
executing each individual software module. For
most models, a measure of the execution profile,
i.e. the proportion of total execution time spent
within each module, will suffice.

6.4.1.3 Estimates provided by stochastic reliability
models

Stochastic models estimate values of various
reliability measures for the system. The following are
some examples.

a) Probability that the software will not fail in a
given period of operation.

b) Mean time to next activation of a new software
fault.

c) Current failure rate.

d) Predicted failure rate after a given further
period of trial and fault correction.

e) Expected number of faults that will be activated
in a given further period of operation.

f) Further time required for trial and fault
correction in order to achieve a defined target
value for any of a) to e).

Not all classes of model are capable of estimating all
of these quantities.

6.4.1.4 Advantages of stochastic reliability models

Stochastic models estimate reliability measures for
the particular system being studied. They are
dynamic, i.e. they estimate measures of the
behaviour of the product in service.

Although all reliability measures are indirect
(see 4.4) stochastic models are less indirect than
other techniques, and do not depend upon data from
previous similar projects, nor upon correlation with
indicators (see 6.1).

Statistical tests are available (see 6.4.20) to assess
objectively the accuracy of the estimates, and
techniques are available to improve their accuracy by
recalibration and combination of different estimates.

Stochastic models are the only means of estimating
the reliability of the product in operation in order to
validate the more indirect predictions obtained from
process models (see 6.2) and software property
models (see 6.3).

6.4.1.5 Disadvantages of stochastic reliability
models

Since stochastic models analyse data collected while
the system is being used in a realistic way, they can
be applied only very late in the development
life-cycle, when the system is complete (or nearly
so). They cannot be used to predict system reliability
in the early phases of development, e.g. requirements
specification and high level design.

Although stochastic models provide the most direct
estimate of reliability measures, these estimates have
often been found in practice to be inaccurate. In
particular, a bias towards optimism has been
observed. (However, note the methods for assessing
and improving accuracy described in 6.4.20.1.)

It is crucial that the failure history is observed under
realistic conditions. The reliability of a system
containing software is notoriously sensitive to
changes in operating conditions. In practice it is not
easy and may not be possible to ensure that a trial is
conducted under conditions which are representative
of the operating environment that will be found in
service. If the conditions are not representative the
reliability estimates derived cannot be expected to
be accurate and may be wildly misleading.
Furthermore it is often precisely the unexpected or
unusual conditions which give rise to software
failures in service. (Environmental factors models
(see 6.4.16) which specifically predict the effect of
environment, are an exception.)
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Figure 3. Classification of stochastic reliability models

6.4.2 Classification of stochastic reliability
models

6.4.2.1 Basis of classification

Stochastic reliability models can be classified as
shown in figure 3 according to the assumptions made
regarding the mechanism of failure and the ways in
which the process of failure is modelled
mathematically.

At the top level, stochastic models can be classified
into the following major categories.

a) General statistical techniques (see 6.4.3) are
general purpose methods of statistical analysis,
and can be applied to many types of data, not
solely to failure histories. They make no
assumptions about the mechanism of failure, and
so do not really qualify as `models'.

b) Black-box parametric models (see 6.4.9)
disregard the internal structure of the system and
represent only its externally observable failure
behaviour. They model the mechanism of failure
using formulae which incorporate parameters,
i.e. unknown quantities which are estimated from
the failure data.

c) Structural models (see 6.4.21) mathematically
represent the internal interactions between
components of the system and combine their
individual levels of reliability to estimate total
system reliability. Since structural models treat the
components as black-boxes, they are dependent on
black-box models.

The classes of model within each of these major
categories are very briefly described in 6.4.2.2
to 6.4.2.4.

6.4.2.2 Classification of general statistical
techniques

Most of these methods of analysing failure data fall
into one of the following classes.

a) Graphical analysis is used to picture the failure
data and reveal important features (see 6.4.5).

b) Exploratory data analysis (EDA) applies a
battery of standard statistical tests to search for
patterns in the data (see 6.4.6).

c) Monotonic regression fits the most appropriate
completely monotone function to the failure rate
(see 6.4.7).

d) Time series analysis is a set of standard
statistical techniques for studying stochastic
processes (see 6.4.8).
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Graphical methods, EDA and a simple type of
monotonic regression are useful for preliminary
analysis of failure data, as described in 6.4.4.

6.4.2.3 Classification of black-box parametric
models

Most black-box models fall into one of the following
classes.

a) Fault activation models (see 6.4.11) represent
failures as being due to the activation of latent
design faults within the system, each fault being
activated at random with a certain rate. There are
three main types as follows.

1) Deterministic models assume that the
activation rates are all identical or are
determined by a given mathematical function.

2) Random activation rates models assume that
the activation rates themselves are random
variables.

3) Random number of faults models assume that
the number of faults in the system is a random
variable.

b) Failure trend models (see 6.4.14) are not
concerned with fault activation, but model the
failure rate or interfailure times directly. The two
main types are as follows.

1) Failure rate trend models fit an exponential
function to the trend and the failure rate of the
system (see 6.4.15).

2) Random interfailure time models represent
times to system failure as random variables
(see 6.4.15.3).

c) Environmental factors models (see 6.4.16) take
account of the influence of variations in operating
conditions on system reliability. The two main
types are as follows.

1) Explanatory variables models estimate a base
failure rate for the system, and adjust this using
`explanatory variables' to take account of the
extent to which various environmental factors
that might affect the failure rate are present
(see 6.4.17).

2) System parameters models correlate the
values of certain measures of the
hardware/software system with the software
failure rate (see 6.4.18).

d) Miscellaneous models (see 6.4.19) comprise a
few approaches which do not fit readily into the
categories above, including some which do not
estimate `reliability' as defined in this standard.
The three types described in this standard are as
follows.

1) Input domain based models estimate
reliability with respect to the space of possible
inputs, from the proportion of a sample of
inputs which cause the system to fail, instead of
analysing the occurrence of failure over
operating time (see 6.4.19.2)

2) Seeding and tagging methods estimate the
number of faults in the system from the number
found during testing, by applying statistical
methods originally used to estimate size of
animal populations from the sizes of samples of
tagged animals recaptured (see 6.4.19.3).
3) Availability models incorporate the time to
restore service or time to diagnose and correct
faults so as to estimate availability as well as
reliability (see 6.4.19.4)

Fault activation models and failure trend models are
collectively referred to as stochastic reliability
growth models since they take account of the
improvement in system reliability as software faults
are activated and corrected.

6.4.2.4 Classification of structural models
Structural models combine the levels of reliability of
individual components to produce an estimate of the
reliability of the whole system (see 6.4.21). Most
such models which apply to software fall into one of
the following four classes:

a) modular software models represent system
behaviour as a random transfer of control between
a set of modules with certain average lengths of
time for each visit and certain probabilities of
failure of each module;
b) hierarchical models represent system behaviour
as the invocation of lower modules in a
hierarchical structure by modules in the level
immediately above;
c) simplified structural models make no detailed
assumptions about the transfer of control between
modules, but simply assume that each module
occupies a given proportion of system operating
time;
d) hardware/software models represent the
behaviour of a mixed hardware/software system,
with each hardware or software component
sharing a certain proportion of total system
operating time.

6.4.3 General statistical techniques

6.4.3.1 Characteristics of general statistical
techniques
These are standard techniques used for statistical
analysis of many types of data and are not restricted
solely to failure data. They are used to investigate
general features of data such as trend over time,
clustering of data points, evidence of
non-randomness such as cyclic correlation, and the
presence of `outliers' or other anomalies.

6.4.3.2 Data required by general statistical
techniques
The general statistical techniques described here are
of use on the same type of data that is used by
black-box parametric models, i.e. history of failure
over execution time. The data sets in question
typically exhibit reliability growth as faults are
removed from the system, i.e. a graph of the
accumulated number of faults activated against
execution time will show a decreasing slope,
indicating a decreasing failure rate.
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Such failure data may be in either of the following
two forms.

a) time to failure: a record of the execution time
between each activation of a new fault; or

b) failure count: the number of new faults
activated, and the amount of execution time, in
each of several successive periods.

These are illustrated in figures 4 and 5 respectively.

It is extremely important to note that reliability
growth is generally observed only with respect to the
activation of new faults. This is illustrated by the
example of a data set collected from a real software
product shown in figure 6.

Unless repeated activations of faults already detected
are removed from the data before analysis, the main
trend may be obscured. A history of all failures
collected from a product which is executed under
operating conditions which remain constant over
time, and which is not undergoing fault correction,
would be expected to show a constant failure rate.

6.4.3.3 Estimates provided by general statistical
techniques

The different techniques provide many different
types of estimate. Examples are:

a) estimates of instantaneous failure rate at given
points in time or of average failure rate over given
time intervals;

b) measures of trend which indicate if reliability
growth or decay is present, if the failure rate is
constant, or if there are short periods of locally
increasing failure rate. Most software reliability
growth models assume the presence of reliability
growth and will yield meaningless estimates in
other cases. A preliminary evaluation of a trend
may therefore be used to decide whether software
reliability growth models should be applied
(see 6.4.4);

c) detection of clustering or periodicity in the data
which may indicate that the operating conditions
are changing or that other factors are influencing
system behaviour;

d) detection of outliers: data points which differ
greatly from the majority, for example an
interfailure time which is several orders of
magnitude greater than all the other interfailure
times observed. The causes of these may require
investigation.

6.4.3.4 Advantages of general statistical techniques

The general techniques described here can
investigate features of the data which are ignored by
black-box parametric models. Their lack of
assumptions means that they are useful in detecting
anomalies in the data which may violate the
assumptions of parametric models and so invalidate
results of applying them.

Graphical analysis, EDA and isotonic regression are
simple to apply, particularly given the ready
availability of statistical and graphical software tools
on personal computers.

6.4.3.5 Disadvantages of general statistical
techniques

The lack of modelling of the mechanism of failure
means that these techniques are not suitable for
making long term predictions of future reliability
growth.

Although they are capable of revealing anomalies in
failure data, they give no indication as to their cause,
which should be established by independent
investigation.

6.4.4 Preliminary analyses

It is advisable to use several general techniques to
perform a preliminary analysis before applying
black-box parametric models, since these may reveal
features of the data set which would render the
parametric models inapplicable. Simple methods of
analysis which do not require sophisticated statistical
techniques including the following:

a) Graphical presentation (see 6.4.5): data such as
accumulated faults found and empirical failure rate
are plotted against accumulated operating time.
Important features such as obvious trend can often
be detected by eye.

b) Exploratory data analysis (see 6.4.6):
straightforward statistical tests are applied to
search for features of the data, such as trend,
cyclic correlation, clustering, or periods of
increasing failure rate.

c) Isotonic regression: This is a straightforward
graphical technique for estimating failure rate
where reliability growth is evident. Some faults are
more likely to be activated than others, so that the
faults observed will tend to be ordered by their
individual activation rates. The term isotonic
indicates that this ordering is taken into account.
Graphically, isotonic regression can be performed
by drawing the smallest envelope of straight line
segments that lies above the graph of accumulated
faults found plotted against operating time. This
envelope is referred to as the least concave
majorant (LCM), and its slope provides an
estimate of the failure rate at that point in time.
Isotonic regression is a special case of monotonic
regression (see 6.4.7).

Figure 6 is an example of a graphical representation
of a real data set showing the LCM and also the
expected accumulated number of faults activated
and the expected failure rate as estimated by one of
the black-box parametric models described in 6.4.9.
The data set is of the `failure count' variety. The
numbered points are those at which the LCM
touches the graph of the actual data, at which the
LCM slope changes.
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NOTE. x1 = t1, x2 = t1 + t2, etc.

Figure 4. Fundamental reliability assessment problem: time to failure

NOTE. c1 = k1, c2 = k1 + k2, etc.

Figure 5. Fundamental reliability assessment problem: failure count data
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Figure 6. Example of failure history graphs and use of LCM
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6.4.5 Graphical analysis

The following are examples of useful graphs that
may be plotted:

a) accumulated number c(x) of faults activated
plotted against accumulated execution time, x;

b) the logarithm of the accumulated number c(x)
of faults activated plotted against the logarithm of
the accumulated execution time, x;

c) for failure count data, the empirical failure rate
estimated by ki/ui, where ki is the number of
faults activated and ui is the execution time in the
ith period, for successive periods i = 1, 2, 3..., etc.,
plotted against accumulated execution time, x;

d) for time to failure data, the empirical failure
rate in successive intervals of equal execution time
u, estimated by [c(xi) 2 c(xi21)]/u, where xi is the
accumulated execution time up to the start of the
ith interval, plotted against accumulated execution
time, x, or against failure number, i;

e) for time to failure data, the ith times between
failure (TBF), ti, plotted against accumulated
execution time, x, or against failure number, i.

6.4.6 Exploratory data analysis (EDA)

EDA employs many techniques, including the
graphical methods listed in 6.4.5 and numerical
statistical tests. It can reveal features of the data
such as the following:

± trend, e.g. by using the Laplace test, or by fitting
a regression line to the graph of log [c(x)] against
log (x) to investigate how well a function of the
form c(x) = axb fits the data (b < 1 indicates
reliability growth and b > 1 indicates increasing
failure rate);

± serial correlation among times between failures,
e.g., by plotting ti against ti21 (or against ti22,
ti23, etc.) to see if the result is a random scatter
plot;

± cyclic failure behaviour;

± clustering of failures;

± marked periods of increasing failure rate.

Anomalies in the data may be due to problems with
the conduct of the trial, with the definition of
measures, or with data collection procedures. The
following are a few common examples:

± changes in the operating conditions are often
revealed by increases in failure rate;

± imperfect fault correction (either not completely
removing a fault, or introduction of new faults
during modification) may lead to a cluster of faults
being activated;

± inadequate measures of execution time may
result in cyclic patterns of failure, e.g. if failures
are recorded over calendar time the occurrence of
weekends may be apparent;

± problems with data collection. Incomplete
recording of execution time may show itself by an
apparent increase in failure rate. The presence of
several failures due to activations of the same fault
before removal may appear as clustering.

If such anomalies are observed, the cause should be
investigated. It may be necessary to review the way
in which the trial is conducted, or to filter the data
before further analysis.

6.4.7 Monotonic regression

This method of non-parametric analysis involves
fitting the best completely monotone function to the
failure data by minimizing the sum of the mean
square deviations between the function and the
results of applying backward difference operators to
the empirical failure rate over a succession of
intervals [26]. It has been successfully applied to real
data [27]. Isotonic regression (see 6.4.4) is a special
case of monotonic regression.

6.4.8 Time-series analysis

Time-series analysis comprises a set of techniques
for the statistical study of series of events, usually
occurring over time, although other measures may
be used in place of the time dimension. Their
application is quite general and they are the subject
of many publications. No assumptions are made
about the nature of the process which generates the
events. A general description of the techniques is
given in Box and Jenkins [28].

The application of time-series analysis to software
reliability growth data has been suggested by Dale
and Harris [29] and Dale et al. [30]. Singpurwalla has
attempted this [31].

Soyer [32] described a Fourier series model which is
useful for investigating clustering of failures, and a
random coefficient autoregressive model which is
used to handle reliability growth or decay. Both are
based on time-series analysis. Soyer concludes that
the techniques constitute a potentially powerful tool,
and that they can be used to predict future software
failure.

6.4.9 Black-box parametric models

These models treat the system as a `black-box'
whose internal structure and interactions between
components are unknown, and represent only its
external behaviour. They are classified into fault
activation (see 6.4.11), failure trend (see 6.4.14),
environmental factors (see 6.4.16) and miscellaneous
(see 6.4.19) models as described in 6.4.2.

Fault activation and failure trend models deal with
the growth in software reliability as faults are
removed and are referred to as software reliability
growth (SRG) models. Similar models have been
used to estimate hardware reliability growth during
design fault removal and many SRG models apply
equally well to hardware or software.

The fundamental problem for any SRG model is to
estimate the future pattern of failure from data of
past failures observed during a period of realistic
operation, using conceptual models of the
mechanism of failure and of the fault correction
process.
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An SRG model is a method of prediction which
comprises three elements as follows.

a) A probabilistic model which specifies the
probability distribution of future times to failure or
of counts of failures activated in future periods of
operation of a given length. These distributions are
expressed as mathematical formulae which include
parameters.

b) A statistical inference procedure to estimate the
values of the parameters from past recorded
failure data.

c) A prediction procedure which combines the
mathematical formulae and the estimated values of
the parameters to make quantitative estimates
about the future probability of failure of the
system.

SRG models are mainly classified on the basis of
their probabilistic model as described in 6.4.2.3a)
and b). Their inference procedures and prediction
procedures are sufficiently similar to merit a
common description (see 6.4.10).

However another important criterion of classification
is the way in which the model represents the
correction of faults after activation, sometimes
referred to [33] as the repair model. This cuts across
the classification illustrated in figure 3 and includes
the following possible assumptions.

1) Effect of fault correction. This can be any of
the following.

i) Perfect correction. All corrective actions are
assumed to be completely successful.

ii) Imperfect correction. A corrective action
removes a fault only with a certain
probability.

iii) Fault introduction. Mistakes may be made
during fault correction leading to the
introduction of new faults.

2) Timing of fault correction. This may be as
follows.

i) Immediate. Each fault is assumed to be
corrected immediately after its first activation.

ii) Delayed. A fault may be activated
repeatedly several times before being
corrected.

Failure trend models can handle imperfect or
delayed fault correction or fault introduction without
needing to make any explicit assumptions. Fault
activation models have to represent delayed and
imperfect fault correction explicitly, and become
more complicated by doing so [34]. If failure data is
collected carefully and filtered so that only first
activations of faults are input to the stochastic
reliability model, it is usually possible to use a
`perfect immediate correction' model with accurate
results even though the actual corrections are
imperfect and delayed. Most of the models described
in 6.4.11 to 6.4.14 assume `perfect immediate
correction', but can be extended to model imperfect
and delayed fault correction.

6.4.10 Estimation of stochastic reliability
growth model parameters

6.4.10.1 Data required by stochastic reliability
growth models

SRG models require the same data as described for
general statistical analysis (see 6.4.3 and 6.4.4).

The data may be in either `time to failure' or `failure
count' format (see figures 4 and 5), except that some
failure trend models require `time to failure' data.

Most SRG models require records of the first
activation of each fault, since they assume `perfect
and immediate' fault correction. The time measure
should be system operating time or software
execution time. It is generally assumed that the
failure data is collected during a period of trial or
operation in which the operating conditions are the
same as those which will be obtained during the
period for which predictions are being made, and
this may require random testing (see 6.4.1.2).

6.4.10.2 Inference procedure

During the trial or operation of the system SRG
models are applied repeatedly and the parameters
are continually re-estimated as the data set of
failures observed over execution time grows.
Therefore there is no fixed value of the parameters
from which reliability predictions are derived, since
their estimated values change. In fact the instability
of these estimates is a problem with many of these
models.

The statistical inference procedure referred to
in 6.4.9b) is a method of estimating the value of the
parameters. The methods commonly used are the
following.

a) Optimization of an objective function as
follows.

1) Maximum likelihood estimation (MLE); the
objective function is an expression which
represents the likelihood that the data will have
been observed given that the assumptions of the
model are `true' and that the parameters have a
particular value.

2) Least square distance (LSD); the sum of the
squares of the differences of the observed data
point from the corresponding values of a
function derived from the model, such as m(x)
the expected number of faults activated by total
execution time x, or r(x) the failure rate after
total execution time x.

3) The optimum value of the objective function
(maximum for MLE, minimum for LSD) has to
be found over all possible parameter values. No
analytical solution is generally available i.e. there
is no straightforward mathematical formula from
which the optimum values can be calculated. It
is therefore necessary to do a numerical search.
Since most models have several parameters, this
search is multi-dimensional and the procedure
poses problems of its own.
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b) Bayesian inference; a prior probability
distribution function (PDF) for the values of the
parameters is transformed into a posterior PDF
that is conditional on the observed data, using
Bayes' theorem (see annex B for the mathematical
details). The calculations involve multidimensional
integration of complex expressions so this method
tends to be computationally intensive and has
been limited in practice to a few of the simpler
models.

c) Model specific methods; methods which can be
used only for particular models, e.g. the estimation
of the `failure intensity per failure' parameter in
the Musa-Okumoto logarithmic Poisson model
(see 6.4.13.7). Okumoto [35] demonstrates how
this can be estimated by linear regression of
failure intensity (estimated from the data) against
the accumulated number of faults activated.

Various procedures are available for performing
numerical searches, e.g. the Nelder-Mead simplex
search [36], and an adaptation of Newton-Raphson
iteration [37].

Several problems can arise in optimizing an objective
function.

1) An optimum value of the objective function
may not exist so that the search does not
terminate. This problem has been studied for
some particular models [38]. These cases need
to be detected and the lack of solution reported
by the software package used to perform the
search.

2) The search may settle on a local maximum
and not yield the best overall value.

The search procedure is independent of whether
time to failure data or failure count data is in use.
Model parameters can be estimated from either type
of data, provided a slight adaptation is made to the
objective function.

6.4.10.3 Estimates provided by SRG models

Once the values of the parameters have been
inferred, they can be substituted into various
formulae derived from the model in order to
calculate numerical measures of future failure
behaviour. (Where Bayesian inference is being used,
a Bayesian procedure for estimating these measures
is desirable. See annex B.)

Examples of quantities that can be estimated are
listed in 6.4.1.3. The following points should be
noted.

a) Although the inference procedure is based on
first activation only, the prediction procedure in
most models can easily be made to estimate the
occurrence of repeated failures due to activations
of the same fault.

b) Whether time to failure or failure count data is
available (see figures 4 and 5) affects only the
inference procedure. Once the values of the
parameters have been estimated, the prediction
procedure can estimate either future times to
failure or number of failures in a given future
period of operation with equal ease (for nearly all
models).

6.4.10.4 Advantages of SRG models
SRG models are specifically designed to cope with
reliability growth, which is normally observed in
software failure data. In theory SRG models are
capable of predicting long term behaviour of the
product under the same conditions of operation and
fault correction. For example they could be used to
predict the cost of corrective maintenance of a
software product over its entire life.

Statistical confidence intervals can be placed around
the estimates. Provided a large set of failure data is
available on which to base the estimates, a high
degree of confidence can be placed in them. SRG
models are therefore very useful for predicting the
behaviour of ordinary commercial software where a
modest level of reliability is acceptable.

6.4.10.5 Disadvantages of SRG models
In practice the estimates may not be accurate, and if
several different models are applied they may lead to
different estimated values for the same measure.
Therefore the accuracy of the estimates should be
assessed and they should be recalibrated if necessary
and estimates from different models may be
combined as described in 6.4.20.

Little confidence can be placed in estimates which
are based on a very small set of data, and great
caution should be exercised when attempting to
make long term predictions from a short period of
observation. This has particular implications for the
assessment of very high levels of reliability. If high
integrity software such as is used in safety-critical
applications is under scrutiny, then either it will
exhibit no (or very few) failures, in which case only
a low confidence is justified that its reliability is
sufficiently high, or else it will exhibit many failures,
in which case there is a high degree of confidence
that it is inadequately reliable. SRG models are
therefore not suitable for the assessment of high
integrity software.

6.4.11 Fault activation models
Fault manifestation models regard software failure as
due to the activation of latent faults. Models in this
class make the following assumptions.

a) The software contains a set of latent faults.

b) Each fault is activated independently of all the
others.

c) Each fault is activated at its own particular rate.

d) Failures due to the activation of a single fault
occur at random, and on average are
homogeneous over operating time.

e) On activation, a fault is immediately and
perfectly removed from the system.
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Figure 7. System failure due to activation of latent faults

Assumption d) means that time to activation of a
single fault is a random variable, and successive
activations constitute a random process which is
stable over time (on average, the frequency of
activation does not change). Assumption e) means
that the times to failure of the whole system are the
times of first activation of each fault. This is
illustrated in figure 7.

The faults shown in figure 7 are activated at different
rates. Faults with higher rates of activation tend to
give rise to system failure before those with lower
rates, and are detected and corrected earlier in the
life of the system. However since faults are activated
at random, this is true only on average, e.g. fault 5 is
detected before fault 2, fault 3 and fault 4 although it
is activated less frequently overall. In mathematical
terms, the time to activation of an individual fault is
said to be an exponentially distributed random
variable, and the times to failure of the whole system
are said to be order statistics from a set of
independent random variables. Models in this class
are therefore known as exponential order statistic
(EOS) models (see annex B).

Assumption c) means that the faults in a system are
characterized by a set of activation rates. Each
different sub-class of model is distinguished by the
way in which the distribution of these rates over the
faults is modelled. Individual models are
distinguished by their assumptions about the precise
distribution, and about the number of faults in the
system.

Most models in this class include a parameter which
represents the number (or the expected number) of
faults in the system, and either one or two other
parameters which represent the distribution of
activation rates.

6.4.12 Deterministic activation rate models

6.4.12.1 Introduction

In a deterministic model the activation rates of each
individual fault are assumed to be identical or to be
specified by a formula. The reliability of the whole
system increases as faults are activated and
corrected. Most deterministic models assume that
faults are corrected perfectly and immediately upon
activation.
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Figure 8. Fault activation and correction in Jelinski-Moranda

6.4.12.2 The Jelinski-Moranda model (JM)

6.4.12.2.1 Introduction

The Jelinski-Moranda [39] is the best known
deterministic model. It assumes a fixed (but
unknown) number, n, of faults, all with the same
activation rate, z. The failure rate of the whole
system is proportional to the number of remaining
faults, so that, after c faults have been activated and
removed, the rate is given by (n2 c)z. The system
failure rate is constant between failures, as
illustrated in figure 8.

The JM model therefore has two parameters, n and
z, which are estimated from previous failure data
using MLE (see 6.4.10).

6.4.12.2.2 Data required by the Jelinski-Moranda
model
Like most other fault activation models, JM requires
data of the first activation of each fault over
execution time.

It was one of the first software reliability growth
models to be published. The authors took as their
examples two data sets, one from the space shuttle
and one from the US Navy. The measure of time that
they used was, in fact, calendar time. They state that
they would expect better results using an
appropriate measure of execution time but that this
was not available to them.

6.4.12.2.3 Estimates provided by the
Jelinski-Moranda model

The JM model can be used to estimate all of the
quantities listed in 6.4.1.3. In particular, since it
assumes a fixed number of faults, theoretically it can
estimate the expected time at which the last fault
will be removed and the software will be `perfect'.

6.4.12.2.4 Advantages of the Jelinski-Moranda
model

Because of the simplicity of its assumptions, the JM
model is easy to use, and the objective function for
the inference procedure to estimate the values of the
parameters is simple.

6.4.12.2.5 Disadvantages of the Jelinski-Moranda
model
In practice it has been found that the estimation of
the parameters causes great difficulty, particularly
that of n, the number of faults in the program. The
main problems are that an optimum value for n does
not always exist, so that the search does not
terminate. Also the estimated value of n is unstable,
so that successive estimates vary widely as the set of
failure data grows. In particular the estimate tends to
take a value equal to `the number of faults found so
far plus a few'.

The model tends to yield optimistic estimates of the
time to next system failure.
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Figure 9. Illustration of why the assumption of uniform fault size leads to optimistic estimates

The assumption of a uniform manifestation rate for
all faults is thought now to be grossly unrealistic.
For example Adams [40] reported data collected
during the operation of an operating system on a
large sample of installations which showed fault
activation rates that differed by many orders of
magnitude. This incorrect assumption is possibly
responsible for the optimistic predictions frequently
obtained from the Jelinski-Moranda model (see
figure 9). In assuming a uniform manifestation rate
for all faults, the model is essentially attempting to
fit a straight line to the graph of the system failure
rate (i.e. rate of activation of new faults) against the
cumulative number of faults activated. If later faults
contribute less to the system failure rate than earlier
faults, so that the actual shape of the graph is as
shown in figure 9, the regression line will decrease in
slope as the data set grows, but will always meet the
`rate = 0' axis just ahead of the last data point.

6.4.12.3 Other deterministic activation rate models

Several other early models described in the literature
are of the deterministic class. Most are of historical
interest only but a few examples are outlined below.

a) The Goel-Okumoto imperfect debugging
model [34] makes the same assumptions as JM,
including uniform fault manifestation rate, but
models imperfect fault correction by assuming that
a corrective modification corrects a fault with
probability p, and fails to correct it with
probability 12 p. It derives expressions for
distribution of time to completely debugged
program, distribution of time to a specified
number of remaining faults, distribution of number
of remaining faults, expected number of faults
detected by a given time and system availability.

b) The Shooman model [41] assumes that the
failure rate is proportional to the number of faults
remaining. The number of faults is normalized
with respect to the number of machine language
instructions in the program, and so the formulae
deal with the number of faults per instruction.
Since program size is assumed to be constant, this
is only a minor difference from JM. A more
significant difference is that the model assumes
that the number of faults corrected depends on
months of debugging effort, so that reliability is
expressed as the probability that a given number
of failures will be observed in operating time t,
given that e months of effort have been spent on
debugging.

c) Schick and Wolverton [42] assume that the
failure rate is proportional to the number of faults
remaining and to the debugging time since last
failure. This implies that the failure rate is linearly
increasing between failures, which is rather odd.
(The authors also describe a variant of the model
in which the failure rate is proportional to a
quadratic function of the debugging time. The
result is that debugging time between failures
follows a distribution referred to as the Rayleigh
distribution.)

d) Moranda [43] devised a model to overcome the
uniform fault activation rate assumption of JM.
The failure rate after a fault correction is assumed
to bear a constant ratio (less than 1) to the
previous rate, so that the rates decrease
geometrically as faults are removed. This is
equivalent to assuming a deterministically
decreasing set of fault activation rates.
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e) The generalized Poisson model [44][45] is a
generalized model of which JM and Schick and
Wolverton are special cases. It requires `failure
count' data. Testing is divided into a number of
intervals, and it is assumed that faults are
corrected only at the ends of intervals. The basic
assumption is that the number of faults activated
in each interval has a random (Poisson)
distribution whose expected value is proportional
to the number of faults remaining at the start of
the interval and to some power of the time length
of the interval. Why detection efficiency should
depend on interval length is not clear, but it has
been argued that it reflects increased test coverage
achieved during a longer interval. If the power
parameter is 1, the model reduces to JM. If it is 2,
it reduces to the `quadratic' variant of the Schick
and Wolverton model.

f) The binomial model [45] also uses failure count
data except that the number of faults activated in
each interval follows a binomial distribution with a
given probability of activation of each fault. Again
the activation rate is uniform over faults. The
authors also consider a function other than the
usual exponential function as an alternative to
represent the probability of activation of an
individual fault in each interval (see annex B).

g) Brooks and Motley [46] assume that the number
of faults at risk of activation in each test is
proportional to the number of faults remaining. It
allows imperfect correction by assuming that the
number of faults reinserted is proportional to the
number corrected. It uses failure count data, and
represents individual modules, so that the data
consists of the numbers of faults detected in each
module in each test. It assumes that faults are
distributed homogeneously over the product (a
dubious assumption).

It will be seen that most of these models are
attempts to refine the JM model by including
additional assumptions regarding fault correction, or
adapting the approach specifically to failure count
data. Most fail to overcome the basic limitation of
JM, which is to assume that all faults are activated at
the same rate.

6.4.13 Random activation rate models

6.4.13.1 Introduction
Models in this class assume (like those in the
deterministic activation rate class) that the system
contains a finite but unknown number n of faults at
the start of the period of observation. However
instead of assuming that fault activation rates are
defined deterministically, these models represent the
rates as realizations of a set of random variables.
This represents uncertainty about the set of fault
activation rates within the system. A consequence is
that, during a period of failure-free operation, the
failure rate of the whole system can decrease,
representing increased confidence that few faults
remain or that those that do remain have low
activation rates (see figure 10).

Since the number of faults activated in any given
interval is binomially distributed, random activation
rate models (and deterministic models) which
assume a finite fixed but unknown number of faults
are sometimes referred to as binomial models.

6.4.13.2 Littlewood stochastic reliability growth
(LSRG)

6.4.13.2.1 Introduction

The LSRG model [47] is a well-known example of
this class. It models individual fault activation rates
as independent identically distributed random
variables. The rates are assumed to follow a
probability distribution known as the gamma
distribution, which has two parameters, a `scale'
parameter denoted by h and a `shape' parameter
denoted by s.

The model therefore has three parameters, n (the
number of faults), h and s. It is capable of
representing the fact (noted by Adams [40]) that
large software products tend to contain very many
faults each of which has a very small individual rate
of activation, and that the activation rates differ by
many orders of magnitude. The distribution of rates
assumed by LSRG is such that if any fault is selected
at random it is probable that it will have a very low
activation rate and extremely improbable that it will
have a high rate.

As the software is executed and debugged, the
number of remaining faults decreases and also those
that remain tend to be those with smaller activation
rates. The formula for the distribution of rates is
modified during execution to reflect this (see
annex B for the mathematical details).

6.4.13.2.2 Data required by LSRG

The parameter values can be estimated from the data
by MLE or LSD. Either time to failure or failure
count data (see 6.4.3.1.2) can be used. Only the
objective function needs to be rearranged to enable
the model to be used with failure count data.

6.4.13.2.3 Estimates provided by LSRG

The LSRG model is capable of estimating all of the
measures listed in 6.4.1.3, and a few more besides
(e.g. expected individual fault activation rate after a
given amount of execution time).

However one exception is that the mean time to
failure (MTTF) does not always exist. (The
mathematical function which represents MTTF yields
a meaningless value for certain values of the
parameters). The use of the median value of time to
next failure instead of mean time to failure is
therefore recommended. This always exists and can
be derived easily from the model.
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Figure 10. Fault activation and correction in LSRG

6.4.13.2.4 Advantages of LSRG

The assumption of the LSRG model regarding the
distribution of activation rates is intuitively
appealing, and may be expected to correspond well
with reality. Although not as simple as JM, it is still
highly mathematically tractable. The fact that it has
three parameters makes the MLE or LSD
optimization slightly more complicated, but
mathematical techniques can be used to reduce the
number of degrees of freedom for the search to two
(see annex B). It is capable of estimating almost all
reliability measures that are likely to be of interest.

6.4.13.2.5 Disadvantages of LSRG

Despite the improved realism of its assumptions, the
LSRG model has still been found to yield optimistic
estimates in practice. There is a tendency for the
parameter estimates to be either of the `large n,
small s' or else of the `small n, large s' variety. In the

latter case, it is usually found that the estimate of n
is `the number of faults seen so far, plus a few', as
tends to happen with JM. Again, assessment of
predictive accuracy is required (see 6.4.20).

6.4.13.3 Other random activation rate models

The Weiss model [48] is a hardware reliability growth
model whose application to software was suggested
by Thayer et al. [49]. It also treats fault manifestation
rates as having individual values taken from a
probability distribution. It assumes a constant failure
rate between failures but allows for imperfect repair
by assuming a certain (fixed) probability of a repair
action successfully removing a fault.

The Ramamoorthy-Bastani stochastic model [50]
makes an equivalent assumption, by treating the size
of the decrease in failure rate following a repair
(assumed perfect) as being random, with an
appropriate distribution.
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6.4.13.4 Random number of faults models

6.4.13.4.1 Characteristics of random number of
faults models

Models in this class also generally assume that the
individual fault activation rates are randomly
distributed, but in a slightly different way. In
mathematical terms, they are assumed to be a
realization of a non-homogeneous Poisson process
(NHPP). Also, the `number of faults in the system' is
treated as a random variable with a certain expected
value.

This means that the overall process of system failure
is a random process with a rate which varies over
time, i.e. it is a NHPP, hence models in this class are
sometimes referred to as NHPP models.

It can be shown [51] that any binomial model can be
transformed into a NHPP variant by treating the
number of faults as a Poisson-distributed random
variable rather than as a fixed but unknown quantity.
The binomial and NHPP variants will be
indistinguishable from the analysis of a single set of
failure data.

6.4.13.4.2 Data required by random number of
faults models

These models all require data of first activations of
faults over execution time in either time to failure or
failure count format (see 6.4.3.2).

6.4.13.4.3 Estimates provided by random number
of faults models

These models can estimate all of the quantities listed
in 6.4.1.3.

6.4.13.4.4 Advantages of random number of faults
models

Models in this class possess all the advantages of
random activation rate models, as well as being
slightly more mathematically tractable.

6.4.13.4.5 Disadvantages of random number of
faults models

As with other classes, caution should be exercised in
using these models since they might give optimistic
estimates. Some models in this class have an
assumption of uniform fault activation rates built
into them in a less than obvious way.

6.4.13.5 Goel-Okumoto model
The Goel-Okumoto (GO) model [52] is a fairly early
and well-known example of its type. It assumes that
the cumulative number of faults activated by any
given execution time is a random quantity. In
mathematical terms it follows a Poisson distribution
whose mean value m(t) = n[12exp(2zt)] where n is
the expected number of faults that will be activated
as execution time t tends to infinity, and z is a
constant of proportionality which can be interpreted
as the mean activation rate of an individual fault. It
will be seen that this is equivalent to assuming a
uniform activation rate. Data required, methods of
parameter estimation, etc., are similar to other
models in this class.

6.4.13.6 Musa model

The Musa model [53] is more or less identical to GO
in its basic assumptions. However Musa generalizes
the basic model in several ways. First, an `error
reduction factor' is introduced to allow for delayed
fault correction, and a `test compression factor' to
represent accelerated detection of faults during test
as opposed to during service. Execution time is then
related to real time by a calendar time model. The
development life-cycle is divided into three phases,
in which the constraints are the limited availability
of fault identification effort, fault correction effort
and computer time respectively. Different methods
are used in each of the three phases to relate
execution time to real time. Sixteen parameters are
used to establish this relationship in terms of
features of the development organization. It is then
possible to make predictions of various reliability
measures in real time, so that the model can be used
to manage the development process.

As with most such models, the assumptions should
be applied with caution, when the model is used
outside the organization in which they were devised.

6.4.13.7 Musa-Okumoto logarithmic Poisson model

The Musa-Okumoto logarithmic Poisson (MO)
model [54] is a recent and fairly representative
example of its type. It has two parameters, r(0), the
failure intensity at time 0, and z.

The counting process of cumulative faults activated
is a NHPP with intensity function given by
r(x) = r(0)exp[2zm(x)] so that the decrement in the
system failure rate per fault corrected decreases
exponentially with each fault removed.

The model uses the same type of data as others in its
class. One advantage is that the parameter z can be
estimated by linear regression of the empirical
failure rate (estimated from the data) against
cumulative number of faults activated.

6.4.13.8 Other random number of faults models

Some examples of such models that are described in
the literature are the following:

a) a variant of the Duane model [55] assumes that
the number of faults activated at any point is a
random (Poisson distributed) quantity whose
expected value is proportional to some power of
the execution time. In addition to MLE or LSD, the
graphical approach described in 6.4.5 can also be
used to estimate the parameters. The original
Duane model is described in 6.4.14;

b) Rushforth, Staffanson and Crawford [56]
devised a random fault number variant of the JM
model which uses failure count data. Faults are
repaired at the ends of intervals of testing, and
imperfect repair is modelled by assuming that only
a proportion of faults are corrected, and that new
faults may be created;
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c) The Schneidewind model [57] is similar, but
assumes an exponentially decaying failure rate
function. Imperfect repair is modelled by assuming
a fault correction rate proportional to, but not
equal to, the fault activation rate;

d) Langberg and Singpurwallah [58] adopted an
approach that seeks to unify many of the other
models described. This is essentially a Bayesian
modification to the JM model. It is shown that, if
the `number of faults' parameter in the JM model
is treated as a random (Poisson distributed)
variable, then the model becomes identical to GO.
This is similar to the unification achieved by
Miller [59], but the model is also claimed to
generalize the LSRG and Littlewood-Verrall
models.

6.4.14 Failure trend models

6.4.14.1 Characteristics of failure trend models

Failure trend models treat either the failure rate or
the inter-failure times of the system as these evolve
over time as their basic elements, rather than
modelling them as consequences of more
fundamental assumptions about the activation of
latent faults.

They are divided into failure rate trend models
(see 6.4.15) and random inter-failure time models
(see 6.4.15.3).

6.4.14.2 Data required for failure trend models

Failure trend models require records of failure over
execution time. They are mostly capable of using
either time to failure or failure count data except
that some specifically require data in time to failure
format and the requirement to be able to separate
out first activations of each fault is not as stringent.

6.4.14.3 Estimates provided by failure trend
models

Most of the quantities listed in 6.4.3.1 that are
concerned with times to failure or failure rate can be
estimated by this class of model. However some of
them are not capable of estimating certain measures
concerned with faults, e.g. expected number of faults
remaining in the system after a given amount of
execution time. This is a consequence of the fact
that models in this class do not possess a parameter
which can be interpreted as the number of faults in
the system.

6.4.14.4 Advantages of failure trend models

Most of these models are capable of representing
imperfect and delayed fault correction without being
explicitly enhanced to incorporate additional
assumptions. Some of them have been found to have
less of the tendency to optimism often found in
estimates from fault activation models.

6.4.14.5 Disadvantages of failure trend models
The restriction on the type of estimates provided is a
slight disadvantage. Although these models are less
prone to optimistic estimation, the accuracy of their
predictions still needs to be checked (see 6.4.20).

6.4.15 Failure rate trend models

6.4.15.1 Introduction to failure rate trend models

These models are fairly simple in their assumptions
and are usually based on trends in failure rate
observed empirically. The main example is the
Duane model.

6.4.15.2 Duane model

At its simplest, this model fits a power law to the
cumulative failure rate or cumulative number of
faults activated. It was originally devised from the
observation that graphs of these data tend to follow
a straight line when plotted on logarithmic graph
paper [60]. The cumulative number m(t) of faults
activated by time t is given by m(t) = atb, and the
failure rate r(t) = abtb21. A NHPP variant of the
model has been applied to software and is briefly
described in 6.4.13.8, where the use of log-linear
regression to estimate the parameters a and b is
referred to.

The data required is the occurrence of failure over
execution time. The model makes no assumptions
about the first activations of faults as opposed to
other failures. In fact, one of the justifications for the
power law is precisely that fault correction is
imperfect so that new faults are introduced and
repeated failures are observed, without which a law
of the form log [r(t)] = c2 dt might be expected.

The main advantages of the model are the simplicity
of its assumptions and the ease of inferring the
parameter values. The nature of log-linear regression
means that later data points are much more heavily
weighted in the inference procedure than earlier
points. This is both an advantage (early failure data
may be less representative) and a disadvantage (the
inference procedure is sensitive to outliers).

The inference procedure can detect either reliability
growth (b < 1) or decay (b > 1) and so is useful in
preliminary analysis of data (see 6.4.4).

6.4.15.3 Random inter-failure time models

6.4.15.3.1 Introduction to random inter-failure
time models

Random inter-failure time models treat the times
between failure of the system as their basic
elements, modelling them as independent random
variables. By using a sufficiently flexible time-varying
parametric family of distributions to represent these,
reliability decay as well as growth may be modelled,
automatically taking account of imperfect repair.

Their disadvantages include certain restrictions in
the reliability measures that they can estimate, and
the fact that they cannot be used easily with failure
count data.
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6.4.15.3.2 Littlewood-Verrall model (LV)
The Littlewood-Verrall model [61] is the best known
example of an inter-failure time model. It assumes
that following each failure some corrective
modification to the system is attempted which alters
the reliability, so that the times to failure Ti after the
ith fault correction are distributed differently. The Ti
are in fact assumed to be independent exponentially
distributed random variables whose rates are
themselves random variables with a gamma
distribution. The model has three parameters; the
shape parameter s of the gamma distribution, and b1
and b2, which define a family of scale parameters
h(i) = b1 + b2i for that distribution. If the
modifications on average improve the reliability
(although imperfect corrections may occur) then
b2 > 0.

Like the LSRG model (see 6.4.13.2), the LV model
represents increasing confidence in the system
during periods of failure free operation by predicting
a decreasing failure rate between failures, and later
corrective modifications cause a lesser decrement in
failure rate than earlier ones.

6.4.15.3.3 Other random inter-failure time models
The Keiller-Littlewood model [62] is similar to the
Littlewood-Verrall except that reliability growth (or
decay) is induced on the shape parameter of the
gamma distribution of the failure rates, i.e. s is a
decreasing function of the failure number i, in order
to model reliability growth (or a decreasing function
in order to model decay).

The Ramamoorthy-Bastani Bayesian model [50] is a
modification of the Littlewood-Verrall model that
assumes that the successive failure rates are order
statistics from a single distribution instead of being
independent. This effectively prevents the model
from dealing with imperfect repair which is one of
the main advantages of Littlewood-Verrall.

6.4.16 Environmental factors models

6.4.16.1 Characteristics of environmental factors
models
The definition of reliability includes the phrase `under
given conditions of use'. The reliability of a hardware
item depends on such factors as the temperature and
voltage at which it is run, and the reliabilities of
software products have been observed to depend
upon the way in which they are used. For example it
is often seen that the failure rate of a software
product increases suddenly at the end of its trial
when it is released for general use. It is also found
that different installations report widely differing
levels of reliability for the same software product.

Certain factors such as system loading (number of
concurrent processes, number of terminals
on-line, etc.), hardware configuration, processor
power, and type of user are all thought to alter the
perceived reliability of software, sometimes by
several orders of magnitude, but it is difficult to
separate the effects of different factors and quantify
them systematically.

A number of approaches have been proposed to
tackle this problem. Essentially they estimate a
`baseline' failure rate which would be observed from
the product if all factors had some nominal value
and adjust it using a mathematical function which
represents the effects of various factors in the
environment.

6.4.16.2 Data required by environmental factors
models

In addition to records of faults activated over
execution time, environmental factors models require
the data to be broken down by installation, and
measurements of the chosen factors for each to be
made. (The data may also be broken down over
time, with different values of the factors applying to
different periods of operation.)

Some of the factors may be simply either present or
absent. For example, if an operating system kernel is
being studied, then the presence of a database
management system (DBMS) running on top of it
might be expected to affect its reliability (and this
has been observed in practice). The DBMS is either
running or not running on each installation at any
point in time.

Other factors may be present to varying degrees,
e.g. the number of users accessing the system via
on-line terminals at any time on each installation.

6.4.16.3 Estimates provided by environmental
factors models

Most such models estimate the basic failure rate
under nominal usage, together with the values of
certain weighting parameters which represent the
degree to which each environmental factor affects
the basic failure rate when it departs from its
nominal value. Using the estimated parameter values
and the measured values of the factors for a given
installation or period of operation, the expected
failure rate under the given conditions can be
predicted.

Environmental factors models are not primarily
concerned with estimating reliability growth, but
they are not restricted to dealing with a constant
baseline failure rate.

6.4.16.4 Advantages of environmental factors
models

These classes of model are the only ones which
purport to allow estimation of software reliability
under varying operating conditions. All others
previously described have a stringent requirement
that data is collected under operating conditions
which will continue to hold over the period (and
over the installations) for which predictions will be
made.
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6.4.16.5 Disadvantages of environmental factors
models

In practice, the choice of factors that are likely to
affect reliability is not easy. There may be very
subtle differences in the ways in which software is
used on different installations which affect reliability
but which are not easy to define. Even if they can be
defined, they may prove difficult to measure. There
are few published examples of the successful
application of this approach.

6.4.17 Explanatory variables models

This approach uses a variation of the Cox
proportional hazard model [63]. This was originally
devised to model the effect of various factors on the
failure rate of some item and has found its main
application so far in medicine and biology, where the
items are people or animals, the failure rate is the
mortality rate, and the factors are treatment
received, drugs administered, etc.

Its application to software reliability is only recent.
Since what is being modelled is a continuing failure
rate, rather than simply the probability of death, a
variation of the approach referred to as `proportional
intensity' has been suggested, in which the values of
the explanatory variables are used to adjust the
failure intensity of the system.

The application of the Cox proportional hazard
approach to software reliability was suggested by
Nagel and Skrivan [64], and by Dale and Harris [29].
Its use has been investigated by Wightman and
Bendell [65]. Studies so far have been hampered by
lack of appropriate data. This is still an experimental
approach, but should be considered where a single
software product shows different failure rates under
varying usages.

The mathematical details of the model are described
in annex B.

6.4.18 System parameters models

Iyer [66] investigated the effect of the values of
certain measurable parameters such as percentage
utilization of CPU, rate of transfer of data over
input/output channels, etc., on the reliability of large
operating system software. Using cluster analysis he
was able to define a manageable number (around 10)
of operational profiles for the operating system, and
correlate these with the observed failure rate. He
concluded that the use of the profile to adjust the
baseline failure rate did have predictive value.

6.4.19 Miscellaneous models

6.4.19.1 Types of miscellaneous models

There are a few black-box stochastic models which
do not fit easily into the classification scheme
of 6.4.2. Some of the main types of these are the
following:

a) input domain based models;

b) seeding and tagging;

c) availability models.

Many of these models are summarized by Dale and
Harris [67] and by Dale [68] (see 6.4.19.2
to 6.4.19.4).

6.4.19.2 Input domain models

Instead of analysing the occurrence of failure over
execution time, these models estimate reliability
from the proportion of a sample of inputs which
cause a software product to fail. There are a number
of problems associated with this approach as
follows:

a) the validity of the result depends upon the
method of choosing the sample. One possibility is
to choose the sample at random from the input
space. This amounts to a requirement for random
testing similar to that required for the correct
application of software reliability growth models
(see 6.4.1.2 and 6.4.10.1);

b) since the repair of faults is ignored, reliability
growth is not modelled;

c) unless the number of inputs submitted is taken
to be a measure of execution time, the measure of
`reliability' obtained does not conform to the usual
definition of probability of no failure in a given
period of operation. However, on many systems
such as a protection device on industrial plant, it
is the probability of success on demand which is
of interest and for this the number of input cycles
may be an adequate measure of execution time;

d) the input sample needs to be large in order to
yield a reasonable confidence in the results.

Examples are the Nelson model [69], which requires
random input selection, The Duran and
Wiorkowski [60] approach, which deals with
assessment in the case of no observed failures and
the Ramamoorthy-Bastani input domain based
model [71], which attempts to assess the probability
of correctness of a program with respect to various
equivalence classes within the input domain.

6.4.19.3 Seeding and tagging models

The seeding and tagging method purports to estimate
the number of faults in the product from the number
found during testing, by applying statistical methods
originally used to estimate animal populations from
the sizes of tagged samples captured. No estimate of
reliability as defined in this British Standard is
provided, since the models take no account of
execution time.

The basic statistical method is described in
Feller [72] and elsewhere. For example, a sample of
fish is captured, tagged and released. A second
sample is taken later, after the tagged fish have
mingled with the rest, and the proportion of tagged
fish in the second catch is taken to be the same as
the proportion of the total number in the first catch
to the entire population. The estimate is biased, but
improved estimators have been suggested by
Chapman [73].
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Mills [74] suggested inserting faults into a program,
and observing the proportion of these seeded faults
in the total sample found during debugging. One
problem here is that the seeded faults are artificial,
and may have a greater probability of being found,
leading to an optimistically low estimate. Rudner [75]
suggested that two debuggers, A and B, should work
independently, and that the faults discovered by
debugger A should be regarded as the tagged faults
in the sample discovered by debugger B.

6.4.19.4 Availability models

Most software reliability prediction models take no
account of repair time and its effect on availability
on the grounds that when a failure occurs it is often
possible to resume operation immediately and carry
out diagnosis and fault correction off-line. However
availability is of concern to many users of software,
particularly those using on-line and real-time systems
such as industrial process control, avionics systems,
telephone exchanges and on-line financial
transaction systems. In these systems, it is the time
to restore service after a failure which is of interest,
rather than the time to diagnose and correct the
fault. Restoration of service may involve reloading
the system software and application programs,
re-establishing communication with sensors,
actuators and terminals, restoring corrupted data
files, etc. In many cases this will be automatic and
very fast compared to fault diagnosis and repair, but
may still be significant, and will vary according to
the type of system and mode of failure. There is
therefore a need for models which can predict
availability by incorporating a realistic restoration
time distribution function with an appropriate failure
model.

An example of such a model is the Trivedi-Shooman
availability model [76] which treats software as
having two states (up and down) and represents the
transitions between these states. It estimates the
probability that the system is up at any given time.
Starting with n faults, the system is initially up and
goes down when the first fault is activated. It
remains down until the fault is corrected, when it
reverts to its up state, but with (n2 1) faults, and so
on. The model requires data of the estimated failure
rate and fault correction rate. The assumptions on
which the model is based do not distinguish between
time to restore service and time to correct fault.

6.4.20 Accuracy of stochastic reliability growth
models

6.4.20.1 Introduction to assessment of accuracy of
SRG models

The main criterion by which the value of any
technique of reliability assessment is judged is the
accuracy with which it predicts the future failure
behaviour of the system under scrutiny. Stochastic
reliability growth (SRG) models are no exception,

even though they are the most direct means of
assessing software reliability under fault correction
and their estimates are required in order to validate
the more indirect predictions obtained from process
models (see 6.2) and product property models
(see 6.3). Note that any assessment of reliability is a
statement about the future. It states how long the
system is likely to operate before future failure, or
how frequently failures will occur during future
operation.

To check the accuracy of prediction of a SRG model
it is necessary to take the estimated distribution of
the measure that is being predicted, such as time to
next failure, or number of failures that will be
observed in a future interval of operating time,
observe the realization (the actual value), and see
where it lies within the predicted distribution. Where
reliability growth is occurring, the problem is to do
this systematically and efficiently for a series of
many observations as the amount of accumulated
data increases.

Several statistical techniques are available for
making such assessments objectively [77][78][79].
The basic method is to take the first i observations
and predict the i + 1st observations for as many i as
the data set allows. Several types of inaccuracy may
be found in the predictions. Different tests are used
to detect the following different types of inaccuracy:

a) bias: the predicted times to failure or failure
rates tend to be consistently optimistic or
pessimistic (see 6.4.20.2);

b) failure to capture trend: the successive
predictions do not increase or decrease to the
same extent as the observed values (see 6.4.20.3);

c) other sources of inaccuracy: the predictions
may show a greater or lesser variation between
successive estimates than the observations
(see 6.4.20.4).

After the several models have been compared,
several steps may be taken:

± selection: the model that has given the most
accurate predictions so far is adopted to the
exclusion of its rivals;

± recalibration: the predictions are adjusted in
order to correct the previously observed bias
(see 6.4.20.5);

± combination: the predictions from several
models are combined to give a `consensus'
(see 6.4.20.6).

It is important to note that in practice no single
model has been found to give the most accurate
predictions for all data sets. The model that
predicted the failure rate of system A very accurately
yesterday may fail miserably when applied to the
data collected from system B tomorrow. Therefore
predictive accuracy should always be assessed
whenever SRG models are applied.
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Figure 11. Example of a u-plot: assessment of bias in predictions

Most of the methods described in the literature can
be used with failure time data and predictions only,
but similar methods are being devised for failure
count data [80]. Other statistical techniques may be
applied to make similar assessments of other types
of model, e.g. environmental factors or structural
models.

6.4.20.2 Detection of bias: u-plots

Probability plots or `u-plots' are used to detect bias
in the predictions of times to next failure, based on
the analysis of the preceding times. The following is
an informal description of the method (see annex C
for a mathematical description).

For each data point the probability distribution of
the time to the next failure is estimated. The
observed failure time is substituted into this
mathematical function giving a number ui which is
the probability that the random variable representing
inter-failure time is less than the actual observed
value. The point of the `u-plot' method is that if the
estimates are unbiased then the ui numbers for all of
the observations will be uniformly distributed in the
range 0 to 1.

This in turn can be tested by a simple graphical
method by carrying out the following:

a) sort the ui values into ascending order;

b) denote the sorted numbers by uj;

c) draw a graph of the points (uj, j/c) where c is
the total number of ui values.

If the values of ui are uniformly distributed, the
points will lie on the line of unit slope through the
origin. Any bias in the predictions will show as a
systematic deviation from that line.

Figure 11 shows u-plots for two models predicting
next time to failure on the same data set.

The maximum departures from the line of unit slope
(distances d1 and d2) measure the bias in the
predictions of the two models. Model 1 is pessimistic
(it tends to predict times to failure less than those
actually observed), while model 2 is optimistic, and
more biased than model 1.
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6.4.20.3 Trend capture: y-plots

A set of ui values is calculated as defined
in 6.4.20.2. They are further transformed using a
logarithmic formula (see annex C) such that if the
inter-failure times were predicted accurately the
resulting set of numbers can be treated as if they
were the inter-event times of a random process with
a constant rate. Trend in the estimates will show
itself as a non-constant rate for this process. A
graphical method similar to the u-plot can again be
used to test for this. Deviation from the line of the
unit slope in this case reveals trend in the predictive
accuracy.

Alternative methods of testing for trend in the
transformed ui values are the Laplace test for trend,
or drawing the scatter plot of ui against i and
observing any grouping of points.

6.4.20.4 Other sources of inaccuracy: prequential
likelihood

This technique is fully described by Dawid [81].

It derives a number referred to as the `prequential
likelihood' for the set of predictions of times to
failure. This is defined as the product of a number of
terms, one derived from each predicted distribution
and observed value.

Suppose that two models A and B are being used,
and these have prequential likelihood's PA and PB
respectively for the given data set. The prequential
likelihood ratio (PLR) between the estimates
produced by the two models is given by PA/PB. It
can be shown that, if this ratio tends to infinity as
the set of observed data grows, then model A is
discredited as a predictor relative to model B. The
PLR can therefore be used to judge between each
pair of models being applied, and it can be
interpreted as the odds that a rational gambler would
offer on one model being true against the other,
given the observed data set. This is a good test for
undue noise in the estimates, as well as other
sources of inaccuracy. Other tests for noise include
the Braun statistic, median variability and rate
variability tests [77][79].

6.4.20.5 Recalibration

Predictions can be recalibrated to correct for bias
revealed by the u-plot. The technique is referred to
as `adaptive modelling' [78][82] and can be used to
adapt the predictions from a model which has a
good y-plot but poor u-plot on the data set in
question, i.e. is exhibiting a stable bias in its
estimates.

The basis of the method is to construct a u-plot at
each stage as the data set grows, and to use the
actual shape of the u-plot to transform the estimates.
The whole procedure is repeated for each
observation, with a new u-plot being calculated at
each stage.

It should be noted that the adapted predictions are
true predictions in that they depend solely on
previous data. The adaptive procedure has been
found effectively to remove bias from predictions of
time to next failure, and when applied to the
estimates from several models which disagree, it
tends to bring their estimates into closer agreement.

6.4.20.6 Combination of model predictions

Instead of using the measures of predictive accuracy
to adapt the predictions of a single model
(see 6.4.20.5), it is possible to combine the
predictions from several models using appropriate
weighting factors.

One approach suggested [29][67] is a technique used
in actuarial work and known as `credibility theory'.
Suppose that estimates of some quantity such as
failure rate have been obtained using two different
methods. The two estimates r1 and r2 are combined
using the formula wr1 + (12 w)r2 where the
weighting factor w is referred to as the credibility
factor, and represents the confidence of the user in
estimate r1 as compared to r2. It should be noted
that w, and the resulting preference of one estimate
over the other, will usually change over time as more
information is acquired.

Estimating w presents a problem. If r1 and r2 were
obtained from different reliability growth models,
then a possible approach would be to derive w from
the prequential likelihood ratio between the two
models [83], which can be interpreted as the odds of
one model being true, compared to the other
(see 6.4.20.5).

It has also been suggested [29] that r1 may be an
estimate based on a process model or product
properties model, and r2 may be an estimate based
on a stochastic reliability model. As more failure
data is acquired, w would decrease to represent the
shift in confidence from r1 to r2.

6.4.21 Structural models

6.4.21.1 Introduction to structural models

6.4.21.1.1 Characteristics of structural models

Structural models combine the levels of reliability of
individual components to produce an estimate of the
reliability of the whole system. The expected levels
of reliability of complete hardware systems have
been estimated in this way for some time. Similar
approaches have been applied recently to estimate
the reliability of software from information about the
levels of reliability of its individual modules, and to
estimate the reliability of a complete system from
information about the levels of reliability of its
individual hardware or software components.
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6.4.21.1.2 Data required by structural models
The reliability levels of the individual components
should be estimated. One possibility is the use of
black-box models at the software module level. In
order to combine the module reliability levels,
information is required about the proportion of total
system execution time spent executing each
component, referred to as an execution profile. In
practice, some type of code instrumentation is
needed in order to measure this.

6.4.21.1.3 Estimates provided by structural models
Structural models estimate the failure rate of a
complete system obtained by integrating a set of
components. They do not generally estimate
reliability growth.

6.4.21.1.4 Advantages of structural models
Structural models complement black-box stochastic
models by allowing total system failure rate to be
predicted given that the individual component failure
rates are known. This approach could be used to
predict system behaviour prior to integration where
the components have already undergone individual
trials and their levels of reliability have been
estimated. It might also be useful where software
components whose reliability levels are known from
previous service history are to be reused.

6.4.21.1.5 Disadvantages of structural models
The estimates are crucially dependent on the
execution profile assumed. In practice this is difficult
to measure and has been found to depend in turn on
the operational profile of the system. In fact, one
reason for the sensitivity of software reliability to
usage is that usages affect the extent to which
different modules are executed.

6.4.21.2 Parameter estimation for structural models
There are four aspects to the estimation of
parameters for most structural models, as follows.

a) Failure rate of each individual module.

This may be measured by applying a black-box
stochastic reliability growth model to each
individual module. This in turn requires the first
activation of each fault in the module to be
recorded together with the amount of execution
time it has undergone for a representative period
of operation. The resulting data is then analysed
statistically.

b) Average execution time in each individual
module.

This requires the execution time spent within each
module to be recorded for a number of calls to the
module over a representative period of operation,
and the average to be calculated from these
statistics.

c) Frequency of transition across the interface
between every pair of modules.

d) Probability of failure on transition across the
interface between every pair of modules.

This requires the identification of system failures
due to interface faults.

Before recording these, it is necessary to define the
level of granularity, i.e. the sizes of the modules into
which the system is decomposed, and what actually
constitutes a `module' for the purpose of the
investigation.

Items b) and c) above require code instrumentation
for their measurement, i.e. the software should be
executed on a test-bed or with probes compiled or
linked into it in order to record execution times by
automatically reading the hardware clock. This will
affect the performance of the system, but it should
be possible to estimate at least the average of
execution time in a module relative to the total
software execution time. The average execution time
can then be scaled to allow for any improved overall
system performance after removal of the probes.

6.4.21.3 Modular software models

Modular software models represent the transfer of
execution between software modules. This is
generally treated as a random process. The main
example is the Littlewood structural model,
described in 6.4.21.4.

6.4.21.4 Littlewood structural model

6.4.21.4.1 Characteristics of the Littlewood
structural model

The Littlewood structural model [84] makes the
following assumptions:

a) the system consists of a finite set of discrete
modules;

b) failure within each module occurs as a random
(Poisson) process;

c) each module has its own failure rate;

d) at any time, system execution occupies one
module;

e) system execution is transferred between
modules at random (in mathematical terms,
according to a semi-Markov scheme);

f) each interface between a pair of modules has a
given probability of failure.

Two conditions need then to be assumed:

1) system behaviour is observed over a period of
time which is long compared to the average
sojourn time within each module, i.e. the time
which system execution spends within a module
before transfer to another;

2) the module and interface failure probabilities
are low (as they should be during later
integration testing and trial).

Given these two conditions, the failure process of
the total system can be shown to be a random
(Poisson) process whose rate is given by a fairly
simple expression involving the module failure rates
and the average execution time spent in each, and
the probability of failure on transfer and frequency
of transfer across each interface.
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6.4.21.4.2 Data required by the Littlewood
structural model

This model requires all of the four types of data
listed in 6.4.21.2a) to d).

6.4.21.4.3 Estimates provided by the Littlewood
structural model

The model estimates the failure rate of the whole
system, assumed to be constant on average over a
long period.

6.4.21.4.4 Advantages of the Littlewood structural
model

Like most structural models, it allows software
component reliability levels to be combined to give a
measure of the reliability of the whole system. The
expression derived for the system failure rate is
simple in form.

6.4.21.4.5 Disadvantages of the Littlewood
structural model

a) The model is rather abstract and theoretical. In
reality, software systems do not usually transfer
control between modules at random, but proceed
by invocation of one module by another, followed
later by return of control from the module invoked
to the calling module.

b) Despite the simplicity of the mathematical
expression for the failure rate of the whole system
it involves a large number of parameters (2n2,
where n is the number of modules). Although this
might be reduced by the fact that certain pairs of
modules never call one another, the practical
application of the model is difficult.

c) The probability of failure of the interface on
transfer does not need to be treated as a separate
parameter, since transfer of control can be
regarded as part of the function of the calling
module.

The practical problems posed by instrumenting code
in order to measure the execution profile, and the
effect of operational profile on execution profile
have already been mentioned above.

6.4.21.5 Hierarchical structural models
A number of published models treat software as
being constructed from a strict hierarchy of modules
such that any module may be called only by one
module in the layer above (which `owns it') and may
call in turn several modules in the layer below.
Following successful completion of its function each
module returns control to its `owner'.

One example [85] is similar to the Littlewood model
but mathematically simpler due to the hierarchical
assumption. The execution profile is characterized by
a set of branching probabilities representing control
flow down the hierarchical tree, and the overall
behaviour of the software can then be modelled as a
random process of transfer among a number of states
(a `Markov process') i.e. several `transient' states
corresponding to the execution within any one of the
modules, plus two `absorbing' states representing
`successful completion', and `failure'.

The reliability of the software is the probability of
reaching the `successful completion' state. This
model is more applicable to software which works in
discrete cycles, each with a defined stopping point,
rather than continuously operating software such as
an operating system.

The assumption of a strict hierarchy is restrictive.
Real software is often designed in such a way that
low-level `general purpose' subroutines may be
invoked by any other module at any level, so that
there is no hierarchy.

6.4.21.6 Simplified structural models

Despite the problems due to the microscopic detail
of the published structural models, it is of value to
take account of the structure of software at the
macroscopic level. Instead of starting with
probabilities of transfer and distributions of sojourn
times, it is possible to deal directly with proportion
of total execution time spent in each module,
measured over long periods of execution.

The simplified model requires the following
intuitively appealing assumptions.

a) Each module generates failures at its own rate.

b) Total system execution time is the sum of the
individual module execution times, each of which
is small compared to the total.

c) The failure process of the whole system is the
superposition of the individual module failure
processes.

d) If these are random then so is the overall
failure process, and its rate is the sum of the rates
of the component processes, weighted by the
proportion of execution time spent in each
module. (This corresponds to one term in the
formula of the Littlewood model).

The execution profile is then characterized solely by
the proportion of time spent in each part of the
software. Such a model requires only very weak
assumptions, and no data of interface failure rates
are required. Its simplicity renders it more widely
applicable than several published models, and it can
be extended easily to parallel systems, shared
code, etc. It is also not necessary to assume that any
part of the system has a constant failure rate.

6.4.21.7 Hardware/software structural models

6.4.21.7.1 Introduction to hardware/software
structural models

The nature of a `module' in the structural models is
loosely defined, and there is no reason why
hardware components should not be dealt with using
a similar conceptual framework. To do this it is
usually necessary to loosen certain assumptions,
e.g. that execution only takes place within one
module at any point in time, in order to allow for
parallel operation of components.
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6.4.21.7.2 X-ware models

A number of recent models, e.g. [86][87][88], deal
with hardware/software systems, reliability growth
within structural software and the effects of fault
tolerant software design.

These approaches have removed many of the
restrictions of the earlier models. In particular they
incorporate software reliability measurement within
overall system reliability assessment.

6.5 Assessment of high reliability for software

6.5.1 Introduction to high reliability
assessment

The problem of assessing very high reliability in
software is that the observation of any failure during
test indicates that the product is inadequate.
Methods are required that can yield an assessment
on the basis of no observed failures during trial. This
observation on its own provides only limited
confidence in the reliability of the product, however.
Other sources of evidence should be used to assess
high reliability software.

Several techniques are described in this British
Standard for the assessment of reliability of software
with `normal' requirements. These are classified as
follows:

a) Software development process models (see 6.2).

1) Inspection statistics (see 6.2.2).

2) Qualitative assessment of good practice
(see 6.2.3).

3) Formal methods (see 6.2.4)

b) Software property models (see 6.3).

1) Software science (see 6.3.2).

2) Complexity measures (see 6.3.3).

3) Quality factors (see 6.3.4).

4) Fault tolerance (see 6.3.5).

c) Stochastic reliability models (see 6.4).

1) General statistical techniques (see 6.4.3).

2) Black-box parametric models (see 6.4.4).

3) Structural models (see 6.4.5).

Recent work [2][89] has cast serious doubt on the
ability of all of these approaches to provide adequate
confidence that a very high level of reliability has
been achieved. Their shortcomings are described
in 6.5.2 to 6.5.4.

6.5.2 Assessment of high reliability from
process data

The argument from `good practice' is based upon
experience with the application of particular
development methods or design techniques to
previous similar products and knowledge that in
those cases a very reliable product resulted.
Unfortunately this evidence is rather weak for the
following reasons.

a) It is not easy to judge the degree of `similarity'
of the earlier products to the present one. By
definition, the comparison will be made with
products which are several years old. Both the
type of requirement (even within the same
application domain) and the available development
methods are likely to have changed.

b) Even given a high degree of `similarity', the fact
that a given process was successful in the past
gives only limited confidence that it will be
successful in the current product. There are many
other factors which may confound such a
judgement, e.g. skill of personnel, difficulty of
current task, `accidental' factors such as sickness
or staff turnover which adversely affect
quality, etc. Given n successful trials of a method
and in the absence of other evidence, the best
prediction is that the method has a probability
p = (n + 1)/(n + 2) of succeeding again [89]. Since n
is likely to be small, so is the level of confidence.

c) Specifically regarding the use of `proof of
correctness', this may not yield the desired level of
reliability for the following reasons.

± If the requirements specification does not
capture the `real' requirements, the system may
not perform adequately in service. Studies have
found that the proportion of software faults in
safety-critical systems that arise from problems
in defining or understanding requirements may
exceed 70 % [90]. A proof of correctness against
such incorrect requirements would not be
helpful.

± The application of proof of correctness
requires a high level of expertise on the part of
the development team and a large amount of
effort. A written proof is around 10 times the
length of the source code being proven. The
likelihood of a mistake in the proof is significant.

± Unless the compiled object code is the subject
of the proof, there is a probability that a fault in
the compiler may result in a fault being inserted
in the compiled code although the source code
has been proven `correct'.

± The system as a whole might fail due to the
software not interacting correctly with the
hardware because the hardware platform on
which the software is executed may itself
contain design faults.

d) The use of inspection statistics to derive a
measure of residual `fault density' in the delivered
software also depends on comparison with
`previous similar products' and so is subject to
similar problems to those described in a) and b)
above. Density of delivered faults is only an
indicator of reliability. Although there is no doubt
that inspections have a beneficial effect on
software reliability, safety-critical software which
has been subjected to careful inspection has still
been found to contain faults which were activated
in service.
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6.5.3 Assessment of high reliability from
software properties

It has been proposed that evidence of `good design',
and specifically the use of fault tolerance, may be
cited in support of a high reliability assessment. This
argument fails for the following reasons.

a) Little evidence is available on which to base a
correlation of `good structure' or `low complexity'
with high reliability. This is an instance of the
more general problem of lack of sound
experimental evidence for the efficacy of accepted
software engineering practices, although it may
seem intuitively obvious that these practices are a
`good thing' and are likely to improve software
quality. As a result evidence of `good structure' or
`low complexity' can give little confidence in
themselves that high reliability will be achieved.

b) Specifically where the use of fault tolerant
software design is concerned, there is good
evidence that independently written versions of a
software module do not fail independently
[91][92][93]. This seems to be due to the fact that
certain parts of any requirements specification are
`difficult' and all the developers are likely to make
mistakes in these areas (and hence introduce
similar faults). As a result (although it is well
established that use of fault-tolerance does
improve reliability) such designs should not be
relied upon to provide very high levels of
reliability, since the probability of a common-cause
failure is sufficiently large to swamp the extremely
low probability of failure required.

6.5.4 Assessment of high reliability by
stochastic models

The basic problem with assessing very high levels of
reliability based on stochastic reliability models is
that such models require a data set containing a
fairly large number of fault activations in order to
yield estimates within reasonable confidence limits.
Unfortunately, the detection of a number of faults
during trial or operation is strong evidence that the
system is insufficiently reliable, whereas conversely
the observation of a long period of failure-free
operation constitutes only weak evidence of high
reliability.

It has been shown [89] on the basis of a Bayesian
analysis that, given no other information about the
product, the time of failure-free operation which has
been observed is the median of the residual time to
first failure, i.e. if a product has operated
for 1000 hours without failure, there is only
a 50/50 chance that it will continue to operate
successfully for a further 1000 hours. In order to
arrive at high reliability after a period of failure-free
testing, it is necessary to start with a similarly high
prior belief, e.g. based on expectation from previous
experience that the process or design used will yield
high reliability.

A similar analysis [94] has shown that, under random
testing (representative of actual use), to achieve
a 99 % confidence that the failure probability is less
than 1029 per input case requires 43 1010 test cases.
In considering the effect of prior belief in reliability
Miller cites an example in which the prior belief is
that there is a probability of 0.01 that there is a fault
in the product with a manifestation rate of 1026 per
input case. This means that the prior mean
probability of failure is 1028 per test case. He points
out that to give a posterior probability of 0.99995 that
no failure will occur in 1028 input cases still
requires 1027 failure-free test cases.

In other words, using the Bayesian approach, if the
a priori belief is that the product is `good enough',
no data are needed, but if it is slightly less than good
enough, a very large test sample is required.

6.5.5 Conclusions on assessment of very high
reliability

There are two distinct but related problems with
very high reliability: how to achieve it and how to
know that it has been achieved. For software neither
of these problems is readily resolved at present.

It is possible to produce software based systems
which are of adequate reliability for most
applications. However, the state of the art does not
permit the production of software which can
justifiably be claimed to exhibit a very high level of
software reliability. This does not mean that software
based systems cannot be produced for which very
high reliability can be claimed for the system.

The production and assessment of high integrity
systems containing software is an issue on which
much guidance is becoming available. References [5]
and [6] are examples. The reader should consult
these sources for further guidance.

From the point of view of reliability the best
recommendation that can be made is that the aim
should be to design systems so that it is not
necessary to claim high reliability for the software.
In particular, a software component should not be
allowed to provide a single point of failure in a
system for which high reliability is required.

7 Application procedures

7.1 Introduction

7.1.1 Overview

Application procedures are referred to briefly in 5.9.
This clause details actions which should be carried
out in order to apply the methods described in 6.1
to 6.5, and covers the following aspects of the
procedures.

a) Types of data that should be collected for use
with the various methods of assessment.

b) Procedures for the collection of raw data so
that meaningful measurements can be made.
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c) Database structures for the storage of raw
software failure data, and methods of extracting
direct measurements.

d) Various procedures for the maintenance of
software and recommendations on their relative
effectiveness.

The principles of measurement as they apply to
software reliability are summarized in 4.4, and the
purposes of measuring software reliability in 5.2.
Direct measurements required for each method of
software reliability assessment are summarized
within the description of the method in 6.1 to 6.5.
These subclauses detail the minimum raw data
required, particularly the data needed to apply
stochastic reliability models (see 6.4).

7.1.2 Fundamental principle of data collection

Data should be collected with a clear purpose in
mind, and with a clear knowledge of the ways in
which they will be analysed in order to yield the
desired information.

The methods of assessment to be applied should be
chosen in advance of setting up any data collection
programme. The measures that are to be evaluated
should be defined precisely. These will usually be
indirect measures. The direct measures from which
they are derived should be determined from their
definitions. These in turn will determine what raw
data is required.

7.1.3 Means of data collection

Data may be collected in one of two ways.

a) On paper forms which are completed by
development personnel or by users of the
software.

b) Using automatic facilities such as those
provided by CASE tools, compilers, editors, etc.,
during development, and by software
instrumentation or by recording facilities in the
operating system during trial and operation.

The use of paper forms requires effort on the part of
the data providers, and renders the data collection
procedure susceptible to human error, to incomplete
reporting due to pressure of work and to falsification
of data for various reasons. Good form design may
alleviate these problems. The resulting measurements
should be fed back to the data providers in order to
motivate them.

Some types of data, e.g. inspection statistics, can
only be collected manually, and automatic data
collection facilities may not be available in other
cases.

Data should be collected automatically whenever
possible. Some types of data, e.g. module execution
times for the extraction of an execution profile
(see 6.4.21.1.2), cannot be collected manually.

A central data collection function (CDCF), should be
set up to coordinate the collection of data. Its
responsibilities are as follows.

a) Ensuring that all data required is provided. This
may involve chasing human data providers and
ensuring that the contents of automatic data
repositories are gathered.

b) Checking that paper forms are correctly
completed and referring back to the originators
any that are in error. It has been found that,
without such a check, a substantial proportion (as
high as 50 %) of forms may be incorrect.

c) Enforcing formats of reporting. The data to be
collected should be defined consistently across the
company so that different projects may be
compared. Specified formats should be used for
dates, times, identifiers, etc.

d) Entering data into the company database and
maintaining its integrity.

e) Giving feedback to data providers.

The size and structure of the CDCF will obviously
depend upon the size and structure of the company
or other organization which is collecting the data
and upon the type of data being collected.

7.1.4 Means of data storage

Software reliability data is an important part of
corporate memory (see 5.2). To facilitate data
extraction and analysis, an electronic database
should be used where possible. Its structure will
depend on the methods of assessment chosen and
the data needed for these, and no all-purpose data
model can be defined. However, in the specific case
of software failure data for stochastic reliability
modelling, a basic database structure can be
recommended (see 7.4.7).

7.1.5 Configuration management

It is necessary to be able to identify clearly each
software entity whose reliability is to be measured.
In the course of development, each sub-system or
module will be modified repeatedly, and several
versions of each component will exist. It is
important to know which version of each component
is included in a given version of the total system.
Configuration management is the set of procedures
and practices concerned with keeping track of the
modification level of the system and its components.
Proprietary CASE tools may be used to assist in this
task. (For a system including both software and
hardware, the hardware modification level should be
identified also.)

The formalized methods for retaining configuration
control of computer-based systems are described in
BS 6488, and these procedures should be followed.
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It is essential to know which version of a system has
been released for use, and to ensure that it
incorporates the appropriate version of each
component and the corresponding version of
documentation. An important consideration is that
the reliability of a system will usually change when it
is modified, so that any measurement of the
reliability of a system applies to a specific version.
However if every small change resulted in a new
version which was treated as if it were a new
product, this would preclude the use of reliability
growth models. It is therefore necessary to define a
baseline version whose identity only changes
following a substantial modification. Effectively the
version identifier has two parts, the baseline
identifier and a further identifier for the detailed
modification state. It is important that the
identification of baselines is kept simple to permit
easy referencing, e.g. in failure reports.

Engineering judgement should be used to determine
what constitutes a baseline change. The modification
of a large part of the software or the addition of new
modules to enhance its function would almost
certainly necessitate a new baseline. The correction
of a few faults while retaining the original functional
specification and software architecture would be
unlikely to justify changing the baseline.

Configuration management CASE tools control the
source code for each module, record all faults
reported and all changes made, assign and update
version identifiers, and construct build lists for
system compilation and integration. They are
therefore useful sources of automatically recorded
data.

7.1.6 Software item data

All software items whose levels of reliability are to
be assessed should be identified. Software item data
is fundamental to reliability assessment based on
software properties or on stochastic reliability
models, and is also important for assessment based
on process models. A software item may be any of
the following.

a) System: a complete software entity such as an
application program, utility program, tool,
operating system, embedded control program, etc.
It is free-standing in that it is not essentially part
of a larger system (although it will have interfaces
to other hardware and software items). It may be
regarded by the developer as a separate
commercial product.

b) Sub-system: a self-contained part of a larger
system, with a defined function and a defined
interface to other sub-systems. For some purposes
a sub-system may be regarded as a system in its
own right, and may consist of smaller sub-systems.
A system may therefore have a hierarchical
structure, consisting of many levels of sub-system.

c) Module: the smallest self-contained unit of
software. A module is the lowest level of
sub-system. It may possess its own internal
structure but is regarded as atomic for purposes of
reliability assessment. The level of structure below
which the system is not further decomposed
depends on the level of detail at which it has been
decided to perform the assessment.

For some types of software, e.g. object-oriented,
client-server based, window-based, etc. the parts may
be described differently, e.g. `class of object' may be
used in place of sub-system or module.

Certain documents, e.g. functional specifications,
user manuals, etc., are part of the software product
and should be recorded as such, with appropriate
identifiers, version numbers, titles, etc. Documents
may be regarded as `sub-systems' for recording
purposes.

Any software is executed as part of a larger
hardware/software system. Where reliability of a
complete system is assessed similar data should be
recorded for hardware items.

The following data should be collected for all
software items.

1) Identifier: a unique means of referring to the
item.

2) Baseline version identifier (see 7.1.5).

3) Minor modification level identifier (see 7.1.5).

4) Name and function: a readable description of
the item.

Other data recorded for software items will depend
on the type of system, on the chosen methods of
assessment and on the indicators selected for
comparison in order to establish which are
significant for reliability. Several types of data should
be considered for analysis such as the following:

± severity of consequences if item fails during
operation, e.g. minor inconvenience to user,
possible loss of human life, major economic
losses;

± size, e.g. in the case of program code, lines of
code;

± structure, e.g. the degree of conformity to
accepted or pre-defined notions of good structure;

± complexity, (see 6.3.3).

7.2 Procedures for use with process models

7.2.1 Introduction to process model procedures

Software development process models (see 6.2) yield
estimates of the reliability of the delivered software
based on the evaluation of certain indicators during
development. These may be measurements of
intermediate products such as statistics collected
during inspections (see 6.2.2), or of an assessment
of good practice. (see 6.2.3).
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The overall procedure should be as follows.

a) Define in advance the indicator measures which
might be expected to correlate with reliability.

b) Design data collection forms for use by
development personnel.

c) Train personnel in the use of the forms and
ensure the CDCF is ready to receive and check
them.

d) Analyse the data collected and feed back the
measurements to the development personnel.

e) Measure the actual level of reliability of the
delivered software in trial or operation in order to
establish the degree of correlation with the chosen
indicators.

7.2.2 Procedures for use with inspection
statistics

The procedures for carrying out inspections,
recording instances of non-conformance, and
analysing the statistics are described in 6.2.2. Other
than the general recommendations for application
procedures in 7.1, no further recommendations are
needed.

7.2.3 Procedures for assessment of good practice
In order to evaluate the effectiveness of a particular
process, it is necessary to know what methods were
used and how rigorously they were applied. Some
items of process data which could be recorded are
as follows:

a) the development method, e.g. name of structural
design technique;

b) the development control, e.g. quality assurance
procedures used;

c) the development mode, e.g. host/target working;

d) the testing approach, e.g. strategy, techniques,
method and type.

It is beyond the scope of this British Standard to
make detailed recommendations regarding all of the
development practices that may be recorded, since
these are too numerous. The forms used for data
collection and the structure of the database used for
storage are dependent on the practices selected for
recording, and similarly no detailed
recommendations can be made.

7.3 Procedures for use with product property
models

Product property models (see 6.3) base their
estimates of reliability on the evaluation of
indicators. The general recommendations in 7.2.1
therefore apply.

Various proprietary CASE tools are available to
assist in the automatic evaluation of quantities such
as program size and complexity (see 6.3.3). Static
analysers can display the structure of the software as
a flowgraph and assist the user in detecting
undesirable features of this structure. Test-beds can
automatically record the coverage achieved by a
given set of test cases (see 6.3.3.3).

Software properties should be recorded as part of
software item data (see 7.1.6).

7.4 Procedures for use with stochastic
reliability models

7.4.1 Introduction to stochastic reliability
model procedures

To estimate software reliability using stochastic
reliability models the following types of data should
be collected.

a) Products: the identity and baseline version of
each software item to be assessed (see 7.1.6).

b) Installations: A record of each physical set of
hardware equipment on which a copy of the
software to be assessed is being executed.

c) Failures: A record of every occasion on which
the system departed from its required behaviour
(see 4.3).

d) Faults: A record of every software fault which
has been detected (see 4.3).

e) Changes: A record of every modification made
to each software item either to remove a fault or
for other purposes (see 4.3).

f) System use: A record of the amount of use of
each software item on each installation.

These data should be collected during a trial under a
realistic operational profile (see 4.5.4a)) and during
operation. The overall procedure should be as
follows.

1) Identify the software items to be assessed.
Ensure these are under configuration control
and define their product and baseline version
identifiers (see 7.1.6).

2) Identify all installations from which data is to
be collected and define means of referring to
them unambiguously.

3) Define the reliability measures to be assessed
(see 6.4.1.3).

4) Define forms and procedures for recording
failures, train data providers in their use, and
ensure CDCF is ready to process them.

5) Define meaningful measures (see 7.4.6) of
software use and procedures for recording this
on each installation.

6) During trial or operation, CDCF receives
failure reports from the installations. Each
report is recorded on the database and passed
to the support team for diagnosis.

7) The support team diagnoses the fault
responsible for the failure, devises a change to
correct the fault, and responds to CDCF with
this information.

8) CDCF records the fault and the change in the
database, inserts a cross-reference from the
failure record to the fault record, and responds
to the originator of the failure report at the
installation.
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9) CDCF collects records of software use from
all installations and enters these into the
database.

10) After a certain period of trial or operation,
time to failure or failure count data
(see 6.4.3.1.2) are extracted from the database.
These are analysed using stochastic reliability
models (see 6.4) to provide estimates of the
chosen measures of reliability.

The above is a broad outline of the procedure. It
should be adapted to particular circumstances of
trial or operation and to different types of software
product as necessary. Some ways in which this may
be done are described in 7.4.2 to 7.4.6 where the
data to be collected is described in more detail.

7.4.2 Recording installations

An installation is a self-contained set of hardware
equipment on which one or more copies of the
software being assessed are executed. The following
data should be recorded for each installation.

a) Identifier: a unique code used to refer to the
installation.

b) Geographical location: the address of the site
holding the installation.

c) Contact name: an individual on the site with
whom CDCF may communicate.

d) Dates on which the hardware equipment was
commissioned, modified, and decommissioned.

e) Dates on which the software being assessed
was delivered for trial or operation, modified, and
withdrawn from service.

f) Configuration: the current hardware and
software environment should be identified
including the make, model and modification level
of all processors and peripherals, and of the
operating system and other software used in
conjunction with that being assessed. Any changes
to the configuration should be recorded along with
the dates and times at which they are effective.
This information may assist diagnosis of the
causes of failure.

This applies where software is in use on a number of
fixed installations. Other scenarios may require the
adaptation of the data to be collected.

1) Bespoke software: this is developed under
contract for a specific customer and may be
used on a single installation.

2) Distributed systems: these require special
care in recording the amount of use of the
software, since many users may have
simultaneous access to it, and copies of the
software itself may be downloaded into several
nodes of the network.

3) High volume products: these are sold into a
very large market-place, typically to very small
users, e.g. home computer users, and it may not
be feasible to record details of all installations
and the amount of use of the product on each.
In this case, reliability should be assessed during
a trial on a manageable sample of controlled
systems (sometimes referred to as a beta test).

4) Mobile installations: where software is
installed on a vehicle or on portable equipment,
the geographical location may not be applicable,
but each set of hardware equipment should still
be identified.

7.4.3 Recording failures

Users should record perceived failures on an
incident report form. This should be referred to as
an incident report (rather than failure report) since it
may be found on diagnosis that no failure actually
occurred and the user was mistaken, or that the
incident was actually due to something other than
failure of a software item. The term fault report
should not be used since the user is reporting an
event, and the underlying fault (if any) may only be
determined by investigation. The user should provide
the following information.

a) Incident identifier: a reference code for the
incident unique to the given installation.

b) Installation identifier: so that responses can be
sent to the correct place.

c) Originator's name: for receipt of responses and
in case further information is requested.

d) Product and version identifier of the software
item which is thought to have failed.

e) Date and time of incident, to an appropriate
precision.

f) Symptoms observed: a description, and possibly
a classification, of the incident.

g) Circumstances: a description of what was
occurring at the time of the incident, to assist in
identifying the trigger (see 4.3.3).

h) Severity: a measure of how serious the
consequences were for the users. This may
determine the priority with which the support
team process the report.

The report should be accompanied by any relevant
evidence, e.g. memory dumps, screen printouts, file
listings, etc. It may be possible to automate the
recording of failure in some cases, e.g. where the
operating system detects that an application program
has issued an illegal instruction and records it
automatically in a file. It may be possible to assist
the reporter by providing on-line entry into an
incident log. Generally the reporting of incidents
requires human observation, however.
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Following receipt of the report, CDCF should assign
an incident identifier unique within the whole
organization. After diagnosis, further information
should become available. Data that should be
recorded for each incident is as follows.

1) Incident identity: code assigned by CDCF,
unique within the organization, as well as the
code assigned by originator, local to the
installation.

2) Product and version: the identity, baseline
version, and minor modification level (see 7.1.5,
7.1.6) of the software item which failed, as
established by diagnosis.

3) Location: identity of installation on which the
incident occurred (see 7.4.2).

4) Time: real time at which the incident
occurred. This is needed to identify the first
activation of each fault on a sample of
installations. Where time to failure data can be
collected, e.g. where software is in use on a
single installation, amount of system use up to
the incident may be entered in the incident
record also. Where failure count data is the best
available, i.e. in most cases where software is in
use on several installations, system use may
need to be recorded separately (see 6.4.3.2).

5) Mode: the set of symptoms which was
observed. A textual description of the symptoms
should be included. A classification of the
symptoms on a nominal scale may be given also,
e.g. where a system may output one of a defined
set of exception messages. Classification
schemes for prominent symptoms such as
`system dead' or `screen blank' may also be
devised.

6) Effect: description and classification of the
consequences for the environment in which the
system is in use, e.g. `operating system crash',
`application program aborted', `slow response',
`loss of data file', `wrong output', etc.

7) Mechanism: description and classification of
the causal chain leading from the initial
activation of the fault to the eventual mode of
failure observed.

8) Causes: description and classification of the
failure causes, i.e. type of trigger, description of
trigger, type of fault, and identity of the fault.

9) Severity: measures of the cost of the incident
to the user. This may be a classification on an
ordinal scale, e.g. critical, major, minor,
negligible, or a measure on a ratio scale,
e.g. length of time to restore service, or financial
loss consequent upon failure.

10) Cost: a measure of the effort and other
resources expended by the developer in
responding to the incident report.

The above scheme for describing incidents is
intended to provide measurements on independent
scales. Each item of data may be seen as answering
a certain question: `What failed?', `Where did it fail?',
`When did it fail?', `What happened?', `What were the
consequences?', `How did it happen?', `Why did it
happen?', `What was the cost to the user?', `What was
the cost to the developer?'.

The reporter of the incident should only be asked to
provide information which is known at the time of
occurrence: `Who am I?', `Where am I?', `What is the
date and time?', `What has just happened?', `What
was I doing immediately beforehand?', `What were
the consequences?'.

The reporter may be one of the developer's staff
where data is collected during trial, or a user where
data is collected during live operation. The collection
of software failure data should begin as soon as a
recognizable system is available. This will generally
be after software integration when system testing
begins. Reliability assessment using stochastic
reliability models should be based on data collected
during a period of realistic use. Prior to actual
operation, this will involve some form of trial.
Failure data collected during this phase can help to
indicate when the system is ready for release, and
may form part of the evidence gathered from the
acceptance test. The procedures for processing
incident reports during trial should be the same as
those that will be used during operation, so that the
trial may be used to validate these procedures as
well as to estimate reliability.

The product identity in the failure record should
refer to the system level software item (see 7.1.6).
The precise location of the fault within a certain
sub-system, module or document should be part of
the fault record (see 7.4.4).

There are four aspects to the cause of an incident.

i) Type of trigger: classified on a nominal
scale, e.g. physical hardware failure, operating
conditions, malicious action, user error,
erroneous report, `unexplained'.

ii) Description of trigger: a description of the
precise circumstances which activated the
fault, as reported by the user and confirmed
by diagnosis.

iii) Type of fault: classified on a nominal
scale, e.g. physical hardware fault, design
fault, interface problem, `no fault found'.

iv) Identity of fault: a coded identifier to serve
as a cross-reference to the fault record
(see 7.4.4).

In a complex system, it may be far from obvious at
the time of reporting whether an incident is a
manifestation of a software fault, hardware design
fault, or physical hardware fault. Also, a hardware
failure may activate a latent software fault, or vice
versa.

Copyright British Standards Institution 
Provided by IHS under license with BSI

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



 BSI 1998 55

BS 5760 : Part 8 : 1998

1) Code designed to cause damage to the system/data on or after a predetermined date.

Incidents due to malicious actions may also be
indistinguishable initially from those due to
unintentional causes. Examples are the symptoms of
infection by a computer virus, of activation of a
`logic bomb',1) or of unauthorized access by an
attacker. Such incidents are relevant to security
rather than to reliability.

Another class of incident is often diagnosed as `user
error', and the underlying fault as an unfriendly user
interface design or deficiency in documentation.
Such incidents are relevant to usability rather than to
reliability.

Faults may be introduced at any phase of system
development. In addition to faults due to mistakes in
design or in writing source code, it is important to
include problems caused by inadequate definition of
system requirements. Although the system behaves
according to specification, the user may still have
justifiable grounds for complaint.

All of these categories of fault and trigger should
therefore be allowed as causes of incident by the
recording and classification scheme. There is a
danger that important shortcomings of the system
may be ignored if the definition of fault is restricted
simply to accidental lack of conformance to
specification.

In a certain proportion (typically around 10 %) of
incidents, even detailed investigaton will fail to
diagnose the cause (trigger `unexplained', and `no
fault found'). It is recommended that all such
incidents are treated as manifestations of a fault in
design.

Some incidents will turn out to be due to mistaken
reporting, but caution should be exercised when
consigning a report to the `erroneous report'
category, in case this conceals a genuine usability or
requirements problem.

The sets of categories used for detailed classification
of mode, effect, cause and severity are specific to
the type of system, and it is beyond the scope of this
British Standard to provide an all-purpose
classification scheme.

Severity (cost to user) should be distinguished from
cost of response (cost to developer) since there may
be a large disparity between these, e.g. where the
user loses large amounts of essential data as a result
of a failure, with serious consequential financial loss,
but the resolution of the report requires only a few
hours of effort from the developer's support team.

In addition to measuring reliability, it may be
required to measure recoverability, availability, and
maintainability, during trial or in operation.

Recoverability is the ability of the system to resume
service following a failure, and may be measured as
mean time to restore service (i.e. mean down time)
following failure. Availability may be measured as
the proportion of time during which the system is
able to provide its required service, and is estimated
by combining measures of reliability and
recoverability. Length of down time should therefore
be recorded as a measure of severity for each
incident if recoverability and availability are to be
measured.

Maintainability is distinct from recoverability where
software failure is concerned (see 7.6). It may be
measured as mean cost to respond to an incident
report. This is required in order to estimate cost of
support of a software item. Cost to developer of
responding to the report should therefore be
recorded for each incident if maintainability is to be
measured.

Incidents in certain categories may be extracted and
counted for analysis, e.g. incidents of given mode,
effect, or severity, incidents occurring within a given
time interval, incidents due to faults in a given
software item, etc.

7.4.4 Recording faults

Data on faults can only be collected after diagnosis
and is therefore recorded by the developer's support
team. The following information should be recorded
for each fault.

1) Fault identity: a code to enable the fault to be
identified uniquely.

2) Location: identifier and version of the
software item in which the fault lies (where this
can be definitely established: interface and
requirements deficiencies may be difficult to
locate precisely).

3) Time: a fault is a condition not an event.
However the times of three events which define
its lifetime may be of interest: time of creation;
time of detection; and time of correction. These
may be recorded as the phases of development
in which they occurred, or as calendar times.
The earlier a fault is introduced into the system
and the later it is detected, the greater its total
cost is likely to be to the developer.

4) Mode: classification and description of what
is wrong in the system that constitutes the fault.
A fault may be categorized as something
missing, incorrect or extra, and assigned a
detailed type specific to the type of system,
e.g. `logic error' or `uninitialized variable', in a
scheme consistent with that used to classify
`defects' found in inspection (see 6.2.2).

5) Effect: the mode of the failure likely to occur
if the fault is activated.
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6) Mechanism: the type of activity which led to
the creation, detection, and correction of the
fault. A fault may be created by a human
mistake during development activities such as
requirements definition, design or coding, or
during maintenance (either perfective, adaptive,
or corrective). It may be detected during
inspection, test, trial, or operation. It may be
corrected by code change, documentation
change, work-around, etc. (see 7.6). The
correction mechanism should include a
cross-reference to the relevant change record.

7) Cause: classification and description of the
type of human error which led to the inclusion
of the fault, e.g. communication error,
misunderstanding of application domain, clerical
error, etc.

8) Severity: a measure of the severity of the
failure which could occur in the worst case if
the fault were activated.

9) Cost: a measure of the total cost to the
developer of responding to all incidents due to
the fault, of diagnosing the fault, and of
correcting the fault. This can be extracted from
the incident records cross-referred to the fault,
and the change records.

7.4.5 Recording changes

All modifications to the software should be recorded,
and configuration control should be maintained. As
part of reliability data collection the following data
should be recorded for each change.

a) Change identity: a code to enable the change to
be identified uniquely.

b) Location: the identity and version of the
software item which is modified.

c) Time: the time at which the change was
released to users.

d) Effect: for corrective change. Was the fault
rectified? Were any other faults introduced?

e) Cause: reason for the modification identified as
corrective (to remove a fault), adaptive (to
customize the system to a particular user's
requirements or to port it to a new platform) or
perfective (to enhance the function of the system).

f) Cost: effort and other resources consumed in
devising the change, regression testing, and issuing
a corrected version of the system.

7.4.6 Recording execution time

It is not possible to apply a stochastic reliability
model without a meaningful measure of the extent to
which the software has been used and the faults
within it exposed to the possibility of activation. This
is usually a measure of execution time. The measure
chosen should be appropriate to the type of software
as follows.

a) Elapsed time (i.e. real time or wall-clock time):
This is meaningful only for software which is in
use 24 hours a day, seven days a week. For
software which is in use for a fixed period every
day, e.g. during prime shift, elapsed time may be
proportional to the amount of use.

b) System operating time: for software which is
executed the whole time that the installation is in
operation, e.g. real-time control software,
embedded software, or operating system software.

c) Normalized system operating time: where
software is in use on several installations which
incorporate hardware processors of different
speeds, the operating time from each installation
may be corrected by a factor to take account of
the power of the processor.

d) Program loaded time: for software which is in
use in a single programming environment in which
it is intermittently loaded, executed, and then
deleted.

e) Processor time: for software in a
multi-processing environment, where the operating
system has the facility to record the amount of
processor time consumed by each process.

f) Hands-on time: for interactive software where
idle time is of no interest, or where the class of
failures being recorded are those due to problems
experienced by the user as a result of
human±computer interface faults.

g) Transaction count: for interactive software
which sends a response to each query from the
user.

h) Object instruction count: where a profiling
facility is available to record the number of object
code instructions executed.

i) Source instruction count: where software
instrumentation in the form of recording probes
compiled into the software at various points has
been implemented, or where the software is run
on a test-bed which records the number of source
instructions executed.

j) Number of demands: for `one-shot' software
which is called upon periodically to perform a
specific task, e.g. safety protection system software
monitoring an industrial process.

Where a software item is in use on several
installations, measurements of its use should be
collected from all installations in the sample being
studied and then combined to give the total use in
each defined period, e.g. the total use may be
recorded week by week, or day by day, depending
on the precision required. This will yield failure
count data (see 6.4.3.2).

Automated recording is desirable to ensure that
records are complete. Where structural models are
being applied, automated recording using software
instrumentation or similar is required in order to
measure an execution profile (see 6.4.21).
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7.4.7 Software reliability data storage and
extraction

7.4.7.1 Use of corporate database

It is strongly recommended that all software
reliability data that are collected are held in an
electronic database for ease of extraction and
analysis. This should be done preferably on a
company-wide basis so that information about
different development projects and their delivered
software products can be compared easily. Such a
database is an important part of corporate memory.

The reliability modelling activity requires the
accumulation of records over long periods of time,
longer generally than the life of an individual item.

The database should be administered by a CDCF so
that data integrity and comparability across projects
can be maintained. Past projects to set up data
repositories to which many companies or other
organizations could contribute have experienced
difficulties due to the different practices of data
collection in use in different companies.

The database may contain any or all of the following
types of data described in this British Standard.

a) process data, e.g. cost, duration, quality of
personnel, development practices used;

b) product properties, e.g. size, complexity,
structure, design type;

c) failure data: software items, installations,
incidents, faults, changes, execution time.

There are several uses for this data, including
assessment of achieved software reliability,
management of software support, improving the
development process by modelling the effects of
different development processes on achieved
software reliability, control of current projects using
measured values of indicators, and making estimates
for future projects based on historical data (see 5.2).

Reliability models based on development process
attributes (see 6.2) or software properties (see 6.3)
evaluate indicator measures (see 4.4) whose
correlation with achieved reliability in operation
should be established independently. A corporate
database including all types of data (process,
properties, and failure) is a prerequisite for the
development of such models.

The following clauses describe recommended data
structures for storage of raw software failure data in
two simple cases, and procedures for the extraction
of time to failure and failure count data (see 6.4.3.2).

7.4.7.2 Relational database concepts

The recommended structures are defined using the
relational approach. A relational database consists of
several named tables, each of which contains data
about an entity type, e.g. incident, fault, etc. A table
is referred to as a relation, hence the term relational
database.

A table has a fixed number of columns, each of
which represents an attribute of the entity type,
e.g. incident identifier and location are attributes of
the entity type incident, and are represented by
columns in the incident table. Any attribute takes
values of a fixed data type, e.g. integer, character,
decimal, etc.

An occurrence of an entity, e.g. a record of a
particular incident, is represented by entering a data
value for each attribute under the appropriate
column in a single row of the table. Where the value
of an attribute is unknown or inapplicable, a null
value is entered. Each table has a primary key,
which is a set of attributes whose combined value is
unique within all the rows of a table, e.g. incident
identifier is the primary key of incident. Since the
value of the primary key is used to refer
unambiguously to the rows in a table, no attribute in
a primary key may contain a null value.

Any piece of data in the whole database, i.e. the
value of any attribute of any occurrence of any entity
can then be accessed by giving the table name,
column name, and the value of the primary key.

The structure of a relational database consists of
several many-to-one mappings between pairs of
tables. Each mapping is established by a foreign key,
which is a set of attributes in one table whose
combined value is required to match the value of the
primary key in one row of another, so acting as a
cross-reference between the two tables, e.g. fault
identity is a foreign key from the incident table to
the fault table, representing the fact that several
incidents may be due to activations of a single fault.

Mappings may be into or onto the target table. If
table A is mapped into table B, then with each row
in A one row in B is associated, but there may be
rows in B which are not associated with any row
in A. If in addition every row in B is associated with
at least one row in A, then the mapping is said to be
from A onto B.

A foreign key may be allowed to take a null value in
some cases, e.g. before the cause of an incident has
been diagnosed, it may be recorded in the incident
table with a null value in the fault identity column.

To represent a many-to-many relationship between
the rows of two tables, a linking table is inserted
between them. This consists solely of pairs of
primary key values from the two related tables.

Foreign keys provide cross-references which are
followed during data extraction, and facilitate
consistency checks to preserve the integrity of the
data structure during insertion, amendment, and
deletion of data. The relationships between the
tables represent relationships between the
corresponding real-world entities.

Structures such as these may be implemented by
using any proprietary relational database
management systems (RDBMS).
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Figure 12. Graphical notation for relationship database structure

Figure 13. Database structure: single product on single installation

The database structures described here are
illustrated by implication diagrams, in which
mappings into are denoted by single arrows between
tables, and mappings onto by double arrows, as
illustrated in figure 12.

Figure 14 illustrates tables and attributes for single
installation data. The different types of table
attribute are denoted by different formatting as
follows.

TABLE (primary_key: foreign_key; other attributes)

Where an attribute is both a primary key and a
foreign key, it is displayed in bold italic.

Figure 13 illustrates a simple structure, from which
time to failure data may be extracted (see figure 4),
and figure 15 illustrates a simple structure from
which failure count data may be extracted (see
figure 5).
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Figure 14. Tables and attributes for single installation data

Key to abbreviations:

INS installation
IS installation session
PROD product
PV product version
VER version

Figure 15. Database structure: multiple products on several installations
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7.4.7.3 Data structure for single installation

Figure 13 illustrates the structure of a database
intended to hold the raw failure data collected from
a single software product executed on a single
installation. Figure 14 illustrates the tables and
attributes. Only attributes used in data extraction are
shown, although other descriptive attributes may be
included.

The software may pass through several baseline
versions in the course of trial or operation. Its
operation consists of a series of sessions. In each
session, only one version of the product is used, and
is subjected to one particular usage, or operational
profile. A session is deemed to be terminated either
by a shift to another usage or by an incident.
Sessions do not overlap, and therefore a session can
be uniquely identified by its date and time of
termination, referred to as end, which is the primary
key of SESSION. Each incident is therefore
cross-referred to one session (that which it
terminates) by the foreign key end (which is also the
record of when it occurred), and each session is
cross-referred to one version and to one usage by
the foreign keys version_id and usage_id. (It is
assumed that each usage can be identified by a
simple code.)

Execution time in each session (not necessarily the
same as the elapsed time of the session) is recorded
in the attribute SESSION.execution.
NOTE. `A.b' denotes `attribute b of table A'.)

Each fault may be present in more than one version
of the software. There is therefore a many-to-many
relationship between FAULT and VERSION, via the
linking table FAULT_VER. An incident is due to the
activation of a fault in a particular version, and so
INCIDENT is cross-referred to FAULT_VER by the
multiple foreign key (fault_id, version_id). Each of
fault_id and version_id may also be considered as
separate foreign keys to FAULT and VERSION.

Figure 14 illustrates the connections between the
keys.

7.4.7.4 Extraction of time to failure data

The procedure for extracting time to failure data for
a given version of the software under a given usage
is as follows.

a) From INCIDENT select all incidents for which
the record in SESSION whose key is
INCIDENT.session_id contains values in
SESSION.version_id and SESSION.usage_id which
match the version and usage chosen for analysis.

b) Group the resulting subset of incidents by
INCIDENT.fault_id and sort by INCIDENT.end, to
give groups of incidents, each group due to
activations of the same fault and ordered by time
of occurrence.

c) Select the first incident in each group, to give a
list of first activations of each fault in the given
version under the given usage, ordered by time of
occurrence.

d) For each incident in this list, sum
SESSION.execution where SESSION.version_id
matches the version, SESSION.usage_id matches
the usage chosen for analysis and SESSION.end is
less than or equal to INCIDENT.end.

The result is a list of execution times from start of
operation to first activation of each fault. This can
be converted to a list of inter-failure times by taking
the difference between successive entries.

7.4.7.5 Data structure for multiple installations

Figure 15 illustrates a database structure to hold
software failure data collected from a number of
separate software products, any version of any one
of which may be in operation on any one of several
installations. This situation is frequently encountered
by developers of commercial software who sell a
range of products into a large marketplace. Failure
count data (see 6.4.3.2) is the best that can be
collected in such cases.

Figure 16 shows the tables and attributes of this
database, and the foreign keys which establish the
relationships between the tables. As in the previous
example, only attributes which establish this
structure, or are used in the example of data
extraction which follows (see 7.4.7.6) are shown.
Other attributes to contain other data contained in
incident reports (see 7.4.3) and fault records
(see 7.4.4) will normally be included.

PRODUCT is a table of the products whose
reliability is to be assessed, and PROD_VER is a
table of all the extant baseline versions of these
products.

INSTALLATION is a table of all the installations on
which the products may be executed, and PV_INS
records that a given baseline version of a product is
present on a given installation between given dates
of delivery and withdrawal (PV_INS.deliver,
PV_INS.withdraw).

PERIOD contains the start and end dates
(PERIOD.startp, PERIOD.startp) of each of several
successive periods of calendar time. Failure counts
and execution time are accumulated period by
period, and it is assumed in this example that these
periods are the same for all products. (This
constraint could be relaxed, however.)

PV_IS contains the start and end calendar times
(PV_IS.starts, PV_IS.ends) of each session of use of
each version of each product on each installation,
with the amount of execution time (PV_IS.execution)
measured during the session. Each session is
assumed to lie wholly within a single period.

FAULT contains a record of each fault that has been
detected in each product. Since a fault may be
present in more than one baseline version of a
product, there is a many-to-many relationship
between FAULT and PROD_VER, via the linking
table FAULT_PV.
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Figure 16. Tables and attributes: multiple products and installations
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INCIDENT is a table of each incident recorded
during the use of any of the products, with a record
of its calendar date and time of occurrence
(INCIDENT.when). Its relationship to execution time
is established by the fact that it contains a foreign
key into PV_IS.

7.4.7.6 Extraction of failure count data

The procedure for extracting a set of failure count
data which can be analysed to measure the reliability
of a single baseline version of a single product over
all installations is as follows.

a) From INCIDENT select records for which
INCIDENT.product_id and INCIDENT.version_id
correspond to the product baseline chosen for
study, to give a table of relevant incidents.

b) Group the relevant incidents by
INCIDENT.fault_id and sort them within each
group by INCIDENT.when.

c) Select the first incident from each group, to
give a table of relevant first activations of each
fault.

d) Count the first activations in each period as
determined by INCIDENT.when lying between
PERIOD.startp and PERIOD.endp.

e) Sum PV_IS.execution where PV_IS.product_id
and PV_IS.version_id match the product baseline
chosen for study, grouping the records for
summation according to PV_IS.period_id.

The result is a list of pairs of numbers, the total
execution time and count of new faults detected in
each of the successive periods.

7.4.7.7 Enhancements to basic structures

Simple examples have been given for purposes of
illustration. They may be extended as follows.

a) Include records of system usage for each
product in the multiple installation structure.

b) Record changes as well as incidents and faults.

c) Include records of down-time and maintenance
effort, and extract data for the assessment of
recoverability, maintainability, and availability.

d) Incorporate facilities to manage the handling of
incident reports, including recording report status,
issue of responses, etc.

e) Include full software item data, breaking down
the software structure into sub-systems and
modules, and cross-referring faults to the modules
in which they are located.

f) Additionally record execution profile in the
structured case to extract data for use with
structural models.

Any actual data collection exercise is likely to pose
its own specific problems, and require the adaptation
of the basic approach recommended.

7.5 Data collection forms

7.5.1 General guidance on forms

Forms used for data collection should be simple to
use and collect only that data which an organization
has decided is needed for set purposes. This clause
provides guidance on data collection by illustrating
how basic information may be captured. Extra
information which may be necessary depending on
the method and models to be used is described but
not shown on the example forms.

The three basic forms described in this clause are
intended to be used in collecting data concerning the
occurrence of incidents and the amount of software
use (typically measured by execution time). Such
data are needed for many types of model, e.g. for
assessment of reliability, for estimating project
support costs, and for analysis of the causes,
methods of detection, categories, consequences and
sources of faults (see 5.2).

7.5.2 Form 1: incident report

The term incident denotes an unforeseen event
occurring during the test phase or during normal
operation. An incident may or may not amount to a
failure (see 7.4.2).

This form normally comprises two parts (see
figure A.1). The first part is to be completed by the
user of the system and the second by the producers
or maintainers of the system, or by the CDCF
(see 7.1.3). The first part of the form contains the
following information.

a) Organization. The name of the organization
which is reporting the incident.

b) Incident identifier. A code to identify the
incident uniquely within the installation.

c) Date and time of incident.

d) Installation identifier and configuration. The
name or code by which the installation is formally
identified together with its configuration (if
known).

e) Version. The revision level of the installation
platform.

f) Report completed by. The name of the person
who has completed the incident report.

g) Date report completed. The date the report was
completed which may not be the same as the date
of the incident.

h) Description of incident. A description of the
incident as perceived by the user of the system.

i) Perceived impact/severity. The effect that the
incident has had on the user. Where possible the
severity should be classified into different
categories such as minor, major, severe.
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The second part of the form contains:

1) Responder. Name of the person who replies
to the incident.

2) Date of response.

3) Action to be taken. This should contain
details of activities necessary to avoid a
recurrence of a similar incident. In cases where
it has been established that no failure has
occurred, this may simply be to correct a user
misunderstanding.

4) Status (open/closed). The status of the
incident report should be stated for the
information of the originator. `Open' and `closed'
are a suggested minimum set. Many
organizations may have a wider set or may use
different categories depending on their needs.

The above items are a suggested minimum set.
Depending on the organization's needs other items as
described earlier such as cross-references to other
reports, location and source of fault will need to be
recorded (see 7.4.2 to 7.4.4).

7.5.3 Form 2: software item use log (calendar
time)

Systems containing software may employ many
different types of interface with the user. The
software use log (calendar time), is used to record
the amount and nature of use (see figure A.2).

a) Life cycle phase. The phase of the software life
cycle to which the use applies. Examples of such
phases are: unit test; integration test; system test;
and system trial. The precise description used will
depend on the particular software life cycle
definition employed.

b) System/installation. This is the identity of the
specific equipment in use.

c) Date/time. The start time of each session of a
particular mode of use should be recorded.

d) Mode of use. This should be taken from a list of
agreed codes or abbreviations representing all the
possible modes of use. These should include
`power on', `power off' and `idle', so that only the
start of each session needs to be recorded. (The
end of a session is the start of the next, which
may be a session of `idle' time.) The modes of use
will in many cases be the name of the particular
item of software being run. Many different items
may therefore have their time recorded on a single
form, but if necessary, a different set of forms may
be used for each item;

e) Incident identifier. When an incident occurs, the
time should be recorded together with the incident
number, which is a cross-reference to the
associated incident report. Any incident is deemed
to terminate the session in which it occurs. This
may be followed by a session of `recovery'. When
work is resumed, the start of a new session is
entered.

f) Comment. This should record any relevant
observations on the session or incident.

7.5.4 Form 3: software item use log (use time)

This is intended to record the amount of use of a
single item at a single installation in each of a
succession of pre-defined calendar time periods.
Together with the incident reports, it allows the
recording of failure count data (see 6.4.3.2). It
should contain the following.

a) Life cycle phase. The phase of the software life
cycle to which the use applies. The precise set of
phases used will obviously depend on the
definition of the software life cycle in use within
the organization.

b) Units of use. The chosen measure of use, for
example, the execution time in CPU seconds, or a
count of transactions processed by an interactive
program. The units of measurement chosen should
be specified.
NOTE. A suitable means of recording should be available, for
example, automatic monitoring by the operating system of CPU
time consumed by each process, or instrumentation code to
maintain a count of transactions.

c) System/installation. This is the identity of the
particular equipment in use.

d) Software item/version. This is the name of the
item and its version.

e) Period (length). The period is some appropriate
length of calendar time. It might be, for example, a
day, week, or month.

f) Period (identification). A period may be
identified in any convenient way, for example date
of week ending (or the international week
number), the organization's accounting period
number, etc. If the item is in use on several
installations, the periods should be identical for
analysis to be possible. The length of the period,
and its means of identification, should be
recorded.

g) Period versus use. The period identifier and
amount of use are recorded in pairs in the
columns, reading from top to bottom and left to
right. No cross-references to incidents are made
on this form. Incidents can be allocated to period
by matching the date and time on the incident
report with the pre-defined start and end date of
each period.

7.6 Logistics of software maintenance

7.6.1 Overview of software support

Following the release of a software product to the
customer(s) for use, support is normally provided.
The main objective of software support is to gain
marketing advantage by increasing customer
satisfaction. It may include answering queries,
providing advice and training, responding to incident
reports, and progressively improving the product.
Improvement requires modification of software in
the field, usually referred to as maintenance, and
poses logistical problems whose management
requires an assessment of software reliability. There
are three types of maintenance, performed for
different reasons.
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a) Corrective. Removal of faults after release.
These may be detected either by diagnosis of the
causes of incidents reported by users, or by other
means, e.g. re-inspection of source code.
Corrective maintenance does not normally require
a change of baseline. Reliability growth is usually
observed as faults are removed.

b) Adaptive. `Customizing' the product to the
requirements of a particular user or group of
users, or adapting it to cope with a new
environment, e.g. a new hardware/software
platform. Adaptive maintenance may not require a
change of baseline, but leads to different
modification levels on different installations,
needing careful configuration management.
Adaptation may also cause an initial decrease in
reliability.

c) Perfective. Enhancement of the product to
perform new functions that were not stated in the
original requirement, in order to meet changes in
the needs of the customer(s) following experience
with the previous version, or to gain a marketing
advantage by improving the product. Perfective
maintenance usually requires a change of baseline,
and the new version may be treated as a new
product for purposes of reliability assessment.
Initially the enhanced software may be less
reliable than the original version due to the
inclusion of new code containing new faults.

Management of software support involves several
activities.

1) Support cost estimation prior to release. This
will affect commercial decisions such as setting
the price of the product and of any maintenance
contract, whether to offer a warranty, etc.

2) Assessment of customer satisfaction in terms
of the estimated cost of ownership to the
customer, reliability and availability as perceived
by the users on each installation, and whether
support is seen to be adequate.

3) Choice of methods and organization of
support, including the number of staff to be
employed, how to organize the support teams,
which techniques to use, and when to release
new versions of software, with the aim of
maximizing customer satisfaction while
minimizing support cost.

4) Forecasting. `What if...?' exercises to forecast
the effects on support cost and profits of growth
or shrinkage of the market, of growth or decay
in the reliability of the product, of variations in
the size and organization of the support
teams, etc.

Measurement of software reliability (and also
recoverability, maintainability and availability) is
necessary for all of these.

It has been found that up to 70 % of the cost of
producing software is expended on maintenance.

7.6.2 Logistical considerations

7.6.2.1 Factors affecting software support

Maintenance of hardware requires the equipment to
be brought to the support personnel or the personnel
to visit the installation. Transport and storage of
spare parts are major logistical considerations.

Maintenance of software generally requires only the
movement of information. `Evidence' (memory
dumps, etc.) is sent to the support teams with every
incident report. Modifications (software `patches',
new software releases, `work-around'
procedures, etc.) are sent to the customer in
response. Recording failures, faults and changes, and
configuration management, are the main logistical
problems.

Four factors that affect the software support
operation should be considered.

a) Software reliability. The reliability of the
product (and also its recoverability, maintainability
and availability), and whether reliability growth
under corrective maintenance is rapid or gradual.

b) Field characteristics. Number of installations,
and the rate of increase or decrease, types of
installation and how the environment affects the
perceived reliability of the software product on
each type of installation.

c) Support organization. Incident reporting and
response procedures, number and size of support
echelons, tendency for queues to build up during
the processing of incident reports, etc..

d) Maintenance techniques. Use of `fix-on-fail',
fault clearance release, and publication of known
faults. These techniques differ in their
effectiveness, and the timing of certain actions
may be important.

The effects of each of these factors are considered in
more detail in 7.6.2.2 to 7.6.2.5.

7.6.2.2 Effect of reliability

The rate at which incident reports are received is
driven by the perceived reliability of the software on
customer installations. This may be seen as the
interaction between an `inherent' reliability and
environmental factors specific to the various
installations.

The inherent reliability should be measured using the
methods of 6.1, and should include an assessment
based on records of failure and execution time
collected during a trial under realistic conditions.
This assessment may be used to predict the failure
rate of the system in operation.

Allowance should be made for the fact that the
failure rate in operation is often found to be higher
than that observed in trial, since the trial conditions
may be an imperfect representation of conditions in
the field.
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Black-box software reliability growth models can
also predict the change in the failure rate as faults
continue to be removed after release. The change
will be gradual if the product contains a large
number of small faults (i.e. with small individual
activation rates), but more rapid if it contains
relatively few large faults, since in the former case,
the removal of each fault has only a slight effect on
the total failure rate.

During trial, the effort to diagnose and correct each
fault should be recorded, since this is the other main
cost driver for corrective maintenance. The recovery
time of the system following each failure should also
be recorded, so that the impact on the customer may
be predicted.

The failure rate at release, the degree of change
expected, the expected recovery time, and the
expected cost of diagnosis and correction of each
fault may be used to predict the cost of corrective
maintenance. These predictions should be validated
by continued measurement during operation.

7.6.2.3 Effect of field characteristics

The cost to the developer of performing corrective
maintenance depends on the rate of receipt of
incident reports from the whole field. This in turn
depends on the number of installations, which may
be predicted from expected sales figures.

It has been observed that the rates of submission of
incident reports relating to the same product may
differ by factors up to 10 between different
installations. The causes of such variation are
sometimes obscure, but factors that affect it may
include the following.

a) Workload. The number of users on-line to the
installation, number of application processes being
run, total throughput of work, etc., constitute a
`stress factor'.

b) Usage. The way in which the product is used
varies between installations, e.g. on one
installation the customer may be developing
software in-house whereas on another the
customer may be running only off-the-shelf
applications.

c) Responsiveness. On some installations, users
may be more willing to report incidents than on
others, e.g. pressure of work may mean that there
is little time to complete report forms, or a high
degree of concern about reliability may mean that
users are unusually conscientious about making
reports.

Such variations are difficult to predict prior to
release. It is recommended that data is collected
during operation so that reporting rates from
individual installations may be compared and these
empirical observations used to refine predictions.

7.6.2.4 Effect of support organization

A developer's support organization usually consists
of a number of echelons, i.e. teams organized
hierarchically, each with a defined function. The
following levels are commonly found.

a) Service desk. This is a point of contact for
customer queries. It performs an initial scan of
incident reports and responds to those which can
be answered immediately.

b) Support centre. Incident reports which require
deeper investigation are passed to a team of
specialists in fault diagnosis and removal.

c) Design authority. Difficult problems which
cannot be solved at the preceding levels are
investigated by the development staff responsible
for the original design of the product.

The flow of incident reports between the echelons
should be controlled by the CDCF (see 7.1.3).

The effectiveness of the echelons will depend on the
maintenance techniques in use. Typically the lowest
echelon will respond to reports of incidents due to
repeated manifestations of faults which have been
detected previously. The symptoms observed when a
fault is activated should be recorded on the company
database to assist in the recognition of any future
activation.

A report of an incident due to a hitherto
undiscovered fault will be passed up to the higher
echelons, and may cost 100 times as much to process
as a report of a repeated manifestation of a known
fault. When supporting large system software in the
support centre echelon, a specialist may be expected
to deal with around three incident reports per week.

Queues of reports building up in the various
echelons will affect the speed of response, and
hence customer satisfaction and the improvement in
product reliability in operation. The processing of
the workload will depend on the level of priority
assigned to each report. This should be assigned by
the CDCF based on the severity of the incident as
perceived by the customer but revised to ensure that
a uniform classification of priority is applied to the
whole field.

Commercial decisions regarding the terms on which
support is offered will also affect the cost to the
developer of providing a service. Examples of such
commercial decisions are given below.

1) Free service. All incidents reported are
investigated and any faults discovered are
removed without charge. This has the advantage
of maximizing the level of reporting and hence
the quality of data collected and the growth in
product reliability in operation. The
disadvantage is that a high failure rate may
result in the developer making a loss on the
product.
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2) Warranty period. Incident reports are
investigated free of charge for a defined period
following delivery. The advantage is that the
customer gets a free service for that period. The
disadvantage is that data collection and product
improvement are cut off afterwards.

3) Maintenance contract. For a defined recurrent
charge all incident reports are investigated. The
advantage is that the developer covers the cost
of the service. Disadvantages are that customers
may be deterred by the charge and that data
collection and product improvement are
restricted to those customers who decide to
take up the maintenance option. The cost of the
contract should be determined to be acceptable
to customers and to cover the amount of
support activity expected. A maintenance
contract may be offered by the original supplier
or by a third party maintenance organization.

4) Charge per call. The customer pays a
handling charge for every incident report or
enquiry. Again the developer covers the cost of
the service. Reporting of incidents may be
biased towards those with higher levels of
severity.

5) No service. For high volume off-the-shelf
products no maintenance is usually offered,
except that customers may report incidents, and
faults diagnosed may be made available in the
form of a public list of `declared deficiencies'.
Fault removal may be done when the next
release is made available, and customers are
required to buy this as if buying a new product.
Reliability assessment in operation under these
conditions is a hit-or-miss affair.

7.6.2.5 Effect of maintenance techniques

Several techniques of providing corrective
maintenance are commonly used and have different
degrees of effectiveness as follows.

a) Fix-on-fail. After investigation of a reported
incident a response is sent to the customer
describing the fault which was diagnosed (if any)
and the modification required to remove the fault
(or in some cases a work-around procedure) and
prevent a repeated activation. (With many
software products the customer has the facility to
apply a patch or modification on site.) Advantages
are that the customer is kept satisfied by the rapid
response. Disadvantages are that this practice only
removes one instance of the fault from a single
installation, and so has a very slight effect on the
flow of incident reports into the support
organization from the whole field, particularly
where the product is in use on many installations.
In addition, this practice rapidly leads to individual
installations being at different modification levels
and poses configuration management problems.

b) Known faults database. The corporate database
(see 7.4.7) should include a record of every fault
detected in every product. To this should be
cross-referred the records of all incidents
diagnosed as being due to the fault being
activated, and records of any modification devised
to remove the fault. This information may be made
available to customers. Advantages are the
following:

1) following an incident, the customer may
compare the circumstances in which it occurred
and the mode of failure observed with the
trigger and expected symptoms of activation
recorded against each fault, and so diagnose the
fault responsible without recourse to the
support teams;

2) the customer may also follow the
cross-reference from the fault record to the
record of the modification which removes the
fault and apply this modification on site;

3) the customer may apply corrective
modifications before observing any incident due
to the relevant faults, as a form of preventive
maintenance;

4) this improves product reliability as perceived
by all customers and reduces the rate at which
the support organization receives incident
reports from the whole field. It is a far more
effective strategy than fix-on-fail.

Disadvantages are the following:

i) incidents other than those due to the
activation of a hitherto undiscovered fault
tend not to be reported. Most black-box
software reliability growth models require
only records of first activation of each fault,
however;

ii) issues of confidentiality may arise if
customers have access to each others'
incident reports. This may be avoided by
appropriate access restrictions.

c) Fault clearance release. A new baseline version
of the product from which all known faults have
been removed is released to the whole field. This
has a dramatic effect both in improving customer
perceived reliability and on the flow of incident
reports to the support organization.

The timing of such a release is important.
Sufficient time should be allowed for the number
of faults discovered in the field to accumulate,
otherwise the release will not be as effective as it
might otherwise be. If it is delayed too long, then
customer-perceived reliability and support team
workload will suffer. A new release to provide
functional enhancement will have the opposite
effect, since new faults will be delivered with the
new code.
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Figure 17. Interaction of support cost drivers

7.6.3 Interaction of support cost drivers

Figure 17 illustrates the interaction of the various
drivers of support cost. Sales revenue and
maintenance charge drive up both the developer's
profit and the customer's cost of ownership. Market
growth tends to increase the various levels of `stress'
to which the product is exposed, and this, combined
with the inherent failure rate, drives up the
perceived failure rate in the field. The queue of
incident reports in the support organization
increases with the number of installations (which in
turn is driven by market growth) and the perceived
failure rate. This increases support cost, but the
effect on the developer's profits will depend on the
terms of support.

The larger the queues of incident reports, the longer
the average time that will elapse before any given
report is investigated and a response made. This

delay will make both the known faults database and
any fault clearance release less effective and lead to
further reports of incidents due to repeated
activation of faults. A vicious circle of increasing
queues and increasing delays will exist, and may be
exacerbated by product enhancement, which tends
to drive up the inherent failure rate.

Successful management of software support depends
upon having adequate support effort available to
cope with the expected workload (particularly just
after release when workload is likely to be greatest)
and so avoid such a vicious circle developing.

Queuing theory may provide a means of predicting
the behaviour of a support organization, but in such
cases (multiple servers, multiple queues,
prioritization and non-constant arrival times) a
closed-form solution is unlikely to be possible. The
use of simulation may be considered.
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Annex A (informative)

Forms used in data collection
Examples of forms used in data collection are shown in figures A.1 to A.3

Organization...........................................................................................................................................................................

Incident identifier ................................................................................. Date and time of incident...............................

System identifier and configuration ................................................... Version ..............................................................

Report completed by ........................................................................... Date report completed ....................................

Description of incident .........................................................................................................................................................

................................................................................................................................................................................................

................................................................................................................................................................................................

................................................................................................................................................................................................

Perceived impact/severity.....................................................................................................................................................

................................................................................................................................................................................................

................................................................................................................................................................................................

................................................................................................................................................................................................

................................................................................................................................................................................................

................................................................................................................................................................................................

................................................................................................................................................................................................

For office use only

Responder .......................................................................... Date of response......................................................................

Action to be taken ................................................................................................................................................................

................................................................................................................................................................................................

................................................................................................................................................................................................

................................................................................................................................................................................................

................................................................................................................................................................................................

................................................................................................................................................................................................
Current status (open/closed)................................................................................................................................................

Figure A.1 Form 1: incident report
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Page no...................................................................................

Life cycle phase ................................................................

System/Installation.................................................................

Device.....................................................................................

Date/time Mode of use/incident identifier Comment

Figure A.2 Form 2: software item use log (calendar time)
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Page no. ..............................................

Life cycle phase ................................. Units of use......................................... System/Installation .............................

Period.................................................. Period .................................................. Software

(length) (identification) item/version ........................................

Period Use Period Use Period Use Period Use Period Use

Figure A.3 Form 3: software item use log (usage time)
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Annex B (informative)

Mathematical descriptions of stochastic
reliability models

B.1 Introduction

This annex contains mathematical descriptions of some
of the software reliability models introduced in 6.4. It
is intended to assist users of the standard to apply the
models using custom-written or off-the-shelf' statistical
software. The descriptions are terse, since they
supplement the more discursive descriptions in the
body of the standard. Important formulae are quoted,
but proofs are not included. Its structure follows the
classification of stochastic reliability models illustrated
in figure 3, although not all classes of models are
covered.

B.2 Definitions of terms

NOTE. The acronyms and mathematical terms defined below are
used in both annex B and annex C.

B.2.1 Abbreviations

CDF Cumulative distribution function

DU Duane model

(E)OS (Exponential) order statistic

G-O Goel-Okumoto model

IID Independent identically distributed

J-M Jelinski-Moranda model

L-V Littlewood-Verrall model

LCM Least concave majorant

(L)LF (Log) likelihood function

(L)LFC (Log) likelihood function (failure count
data)

(L)LFT (Log) likelihood function (time to failure
data)

LSD Least squared distance

LSE Least squares estimation

LSRG Littlewood stochastic reliability growth
model

MeTTF Median time to failure

MLE Maximum likelihood estimation

M-O Musa-Okumoto model

MTBF Mean time between failures

MTTF Mean time to failure: E{T}

MTTR Mean time to repair (i.e. to remove fault)

MTTRS Mean time to restore service

(N)HPP (Non-) homogeneous Poisson process

PDF Probability density function

P-G Poisson-gamma model

PL(R) Prequential likelihood (ratio)

ROCOF Rate of occurrence of failure

RV Random variable

B.2.2 Mathematical notation

Random variables are denoted by upper case letters,
and their realizations by the corresponding lower case
letters. Both are given below where some models treat
a given quantity as a random variable, while others
treat it as a fixed but unknown quantity.

A(xáb) denotes the value of a function A(x) of x
conditional on event b, or on RV B having realized
value b. Ai denotes the value of variable or function A
at the end of the ith period or at the ith failure, or for
the ith fault, depending on the context.

The use of the variables t, x, k, c, and u, and the
corresponding RVs, in describing the process of failure,
is illustrated in the body of the standard. Note the
distinction between `time to failure' data (figure 4) and
`failure count' data (figure 5). Unless otherwise stated,
it will be assumed in annex B that each `failure' is the
first activation of a fault, and that `time' is a measure
of system operating time or of software execution
time.

xÃ Estimated value of x

P{a} Probability of event a

P{aáb} Probability of event a, conditional on event b

pdf(x) Probability density function of RV x

cdf(x) Cumulative distribution function of RV x

E{x} Expected value of RV x

E{xáb} Expected value of RV x, conditional upon
event b

T, t Time to next failure

Ti, ti Inter-failure time between failures (i2 l) and i

X, x Accumulated operating time

Uj, uj In the context of failure count data,
operating time in period j

ui In the context of predictive accuracy
assessment, statistic ui = FÃ i(ti), where FÃ i(t)
is predictor CDF of the ith TTF

N, n Number of faults in the system

Kj, kj Number of failures in period j

C, c Cumulative number of failures

M, m Expected cumulative number of failures,
E{C}

L, l Rate of occurrence of failure

Z, z Activation rate of individual fault

S Survival probability (i.e. reliability)

a! Factorial a (not necessarily an integer):

ya exp(2y)dy⌠⌡
0

`

Gamma notation is often used:
G(a) = (a2 1)!
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gamd
(z, a, b) Gamma density function for RV Z:

ba z(a21) exp(2bz)/(a2 1)!
a, b are the shape and scale parameters,
respectively.

U(0,1) Uniform distribution on interval (0,1)

N(m, s) Normal distribution with mean m, and
standard deviation s

N(0,1) Standard normal distribution

(cn) Binomial coefficient: number of possible
selections of c items from n.

p Vector of parameters

B.3 General statistical techniques

B.3.1 Graphical analysis

B.3.1.1 Time to failure data

This type of data consists of a sequence of c
inter-failure times {t1, ..., tc}, possibly followed by a
failure-free interval of length te up to the end of the
observation. ti denotes the inter-failure time, and xi the
accumulated time, up to failure number i. c(x) denotes
the count of failures at accumulated operating time x.
c denotes the total count of failures, and xe the total
operating time, up to the end of observation.

The data set may be partitioned into successive
periods j of equal amounts of operating time u.
kj denotes the count of failures in period j, xj the
accumulated time, and c(xj) the accumulated failure
count up to the end of period j. kj = c(xj)2 c(xj21). (If
kj = 0, then successive periods may be combined until
a non-zero count is obtained, at the expense of having
periods of unequal lengths uj.) The data set may also
be partitioned into p periods j containing equal failure
counts k, so that

p21

[0,xe] = [xk(j21), xkj] [xk(p21), xe]

j=1

where xkj denotes the time of kjth failure. (Strictly
speaking, each interval apart from the first is open on
the left.) x0 = 0, and the last interval contains
[c2 k(p2 1)] failures, which may be less than k.

The following graphs may be useful:

a) cumulative failure counts:

1) c(xi) against xi;

2) log [c(xi)] against xi;

b) empirical failure rate (ROCOF):

1) kj/u against xj;

2) log (kj/u) against log (xj);

3) k/(xkj 2 xk(j21)) against xkj under the partition
into equal failure counts k described above. x0 = 0,
and the last point is {[c2 k (p2 1)/[xe 2 xk(p21)],
xe};

4) logarithmic version of B.3.1.1b)3);

c) empirical cumulative MTTF:

1) i/xi against i;

2) i/xi against x;

3) log (i/xi) against log (xi);

d) empirical instantaneous MTTF:

1) 1/ti against i;

2) 1/ti against xi;

3) log (1/ti) against log (xi);

4) reciprocal of empirical failure rate
in B.3.1.1b)3) above against xkj;

5) logarithmic version of B.3.1.1d)4).

B.3.1.2 Failure count data

Here, the observations consist of failure counts kj, and
amounts of use uj, in each of several successive
periods j. cj is the accumulated count of failures and xj
the accumulated time, up to the end of period j. (If kj
or uj = 0 for any period, successive periods should be
combined and renumbered, so that all failure counts
and times are non-zero.) The following graphs may be
useful.

a) cumulative failure counts:

1) cj against xj;

2) log (cj) against log (xj);

b) empirical failure rate (ROCOF):

1) kj/uj against xj;

2) log (kj/uj) against log (xj);

c) empirical MTTF in each period:

1) kj/uj against xj;

2) log (kj/uj) against log (xj).

B.3.1.3 Isotonic regression

Isotonic regression is performed on the graph of
accumulated failure count plotted against accumulated
operating time. It consists of drawing a set of straight
line segments to envelope the data plot, in such a way
that each line touches the plot at two points and lies
completely above it. The segments constitute the least
concave majorant (LCM) for the data set and the slope
of the lowest segment above any point is the `best'
estimate of the failure rate at that point. The result is a
sequence of estimated rates lÃ s for the successive
intervals s topped by each of the segments, subject to
the monotonicity constraint that lÃ s $ lÃ s+1 for all
values of s. This is illustrated in figure 6.

If the data set is terminated by a period of failure-free
operation, one failure should be added at the end to
avoid a segment with zero slope. This graphical
procedure is equivalent to monotonic regression
(see B.3.3 below) with a maximum difference
degree of 1.
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B.3.2 Exploratory data analysis (EDA)

B.3.2.1 Techniques used in EDA

EDA is not a single method. It uses general-purpose
statistical techniques to search for features of the data,
making few assumptions about the underlying process.

Some of the techniques test hypotheses. The general
procedure is as follows.

a) Define the null hypothesis H0 and its
alternative(s).

b) Define the level of significance a at which H0 is
to be rejected.

c) Define the test statistic T, and the rejection region
R for the distribution of T given H0.

d) Evaluate T from the data and reject H0 if T is in
R.

Examples of features of the data are trend,
independence and randomness. Each has its associated
null hypothesis and statistics.

Some of the tests described here are also of use in
assessing predictive accuracy of a model (see
annex C).

B.3.2.2 Trend analysis

The Laplace test is applied to a sequence of
inter-failure times {t1, ... , tc}. xe denotes the total time
of observation. Note that, if this ends with a period of
failure-free operation, then

xe > xc = ti∑
i=1

c

The procedure is as follows.

a) H0 is `no trend' (sequence {ti} is HPP). HRG is
`reliability growth' (sequence {ti} is stochastically
increasing). HRD is `reliability decay' (sequence {ti} is
stochastically decreasing).

b) Statistic L = /

 xi2 xec/2∑
i=1

c 
 xe√c/12

c) Under H0: L → N(0,1) as c → `
d) Where K12a/2 is the (12a/2) percentile of the
normal distribution, this leads to conclusions as
follows.

áLá < K12a/2 ⇒ H0.

L#2 K12a/2 ⇒ HRG.

L + K12a/2 ⇒ HRD.

The Laplace test is adequate at a 5 % level of
significance for c$ 4.

Another test is the MIL-HDBK 189 test, for which the
procedure is as follows.

1) H0, HRG, and HRD are as for Laplace.

2) Statistic MH189 = 2 1n(xe/xi)∑
i=1

c

3) Under H0, MH189 is distributed as x2

with 2(m2 1) degrees of freedom.

4) Reference to values of x2 is used to accept or
reject H0 in favour of HRG or HRD at the desired
level of significance.

The MIL-HDBK 189 test is optimum against trend as
exhibited under the Duane type of NHPP model (see
below).

A further technique is to attempt to fit an NHPP model
such as the Duane (or power-law) model. This may be
done graphically or computationally as follows.

It has been observed that accumulated failures c(x) or
empirical failure rates kj /uj tend to lie on a straight
line when plotted on log-log paper against accumulated
operating time x. This gives the relationship:

m(x) = axb

where m(x) is the expected accumulated number of
failures observed at time x. log (a) is the intercept, and
log (b) the slope, of the regression line of log [c(x)] on
log (x). b < 1 implies growing, b = 1 implies constant,
and b > 1 implies decaying, reliability.

This technique may be used with `time to failure' or
`failure count' data.

The regression is sensitive to early data, e.g. a short
period of increasing failure rate at the start of
observation may result in an estimate of b > 1.

For `time to failure' data (where c is the total number
of failures, xi is time up to ith failure, and xe is time to
end of observation, as above) then MLEs of the
parameters, where the data are `time truncated' so that
xe > xc, are as follows.

bÃ = c/ 1n[xe/xi], aÃ = c/xe
bÃ∑

i=1

c

If the data are `failure truncated' so that xe = xc, the
estimators are as follows.

bÃ = c/ 1n[xc/xi], aÃ = c/xc
bÃ∑

i=1

c

Pearson's chi-squared statistic (see B.3.2.5 below)
may be used to test for uniform distribution (i.e. lack
of trend) in data, as well as for `goodness of fit' of
more general models.

There are many other tests for trend, and many of the
graphical techniques described in B.3.1 above provide
a qualitative assessment of trend.

B.3.2.3 Independence tests

Many black box models assume that successive
inter-failure times are independent, or that each fault is
activated independently of all others. It is therefore
important to check that these assumptions are not
violated before applying such models.
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For `time to failure' data, a serial correlation test may
be applied. A simple graphical technique is to plot
points (ti, ti2k), where k is the lag. Any correlation
between TTFs at that lag will be visible as a departure
from an even scatter. The serial correlation coefficient
rk for lag k may also be calculated as follows. (c is the
number of TTFs.)

rÃk =

titi+k2 (c2 k) t0tk∑
i=1

c2k

√ 
 ti

22 c2 k) t0
2∑

i=1

c+k 



 2 (c2 k) tk

2∑
i=1

c2k

ti+k
2 


where

t0 = ti / (c2 k), tk = ti+k / (c2 k)∑
i=1

c2k

∑
i=1

c2k

2 1# rÃk# 1. When rÃk = 0, this implies independence,
when rÃk = 1, this implies perfect positive correlation
and when rÃk =21, this implies perfect negative
correlation. Independence is rejected at significance

level a if , the upper a/2 point of theárÃk á > Ka/2√c21
standard normal distribution.

If a data set exhibits reliability growth, this will show
as a correlation. Non-stationary behaviour may be
removed prior to examining serial correlation. One
method is to use the first differences of logarithms of
TTF instead of raw TTF, i.e. to plot points
{[ln(ti)2 ln(ti21)], [ln(ti2k)2 ln(ti2k21)]}, or to use
the same transformed values to compute rÃk.

A further graphical method is to draw a correlogram,
which is a plot of points (k, rÃk) for k = 1, ... c/4 (i.e. up
to the greatest integer # c/4). If the correlogram is
based on raw TTFs exhibiting reliability growth then
rÃk will be large for small k, and decrease linearly as k
increases. A correlogram based on TTFs from which
non-stationary behaviour has been removed and in
which no serial correlation is present will show
random scattering about zero, with all rÃk lying within
the approximate confidence interval .±2/√c
In some cases, it may be meaningful to adapt these
procedures to apply to the empirical TTF or failure
rate for `failure count' data.

B.3.2.4 Tests for randomness
Tests for randomness are applied either when a set of
raw data is expected to consist of randomly distributed
values, or when a transformation which should remove
non-random variation from the data has been applied,
so that the residuals should be random.

Reliability growth data usually exhibits trend, and so
would not be expected to be random. However, it may
be transformed to remove trend, e.g. by the
log-difference method described for serial correlation
tests in B.3.2.3. Also, the predictions from reliability
growth models may be used to generate statistics that
should be randomly distributed if the predictions are
accurate. Important examples of the last category are
the u and y statistics used to check the accuracy of
the predictor CDF FÃ i (t) derived from preceding TTFs
{t1, ..., ti21}.

NOTE. u in this context should not be confused with u as a
measure of operating time in a given period.

Realizations ti of the RVs Ti are substituted into the
formulae for CDFs FÃ i (t) for i greater than a certain
starting value s to obtain statistics as follows.

a) ui = FÃ i (ti) for s < i# c

b) xi =2ln(l 2 ui) for s < i# c

c) for s < i < cyi = xj / xj∑
j=s+1

i

∑
j=s+1

c

If the FÃ i (t) are accurate, then the ui and yi are
realizations of U(0,1) IID RVs, and the xi constitute a
realization of an HPP (see annex C for further details).

The following tests for randomness are described for
an arbitrary set of quantities {q1, ..., qm}. In each case
the assumption of randomness is the null hypotheses
H0.

Assume that the values of qi are normalized in the
range [0,1] and ranked q1# q2# ...# qm. The
Kolmogorov distance provides an assessment of the
closeness of the distribution to U(0,1) as follows.

1) The empirical sample CDF is:





0, q<q1

Fm(q) = j/m, qj # q < qj+1

1, q > qm

2) The Kolmogorov distance is:

Dm = maxi {áFm(qi)2 qi21á,áFm(qi)2 qiá}
3) If Dm > Dm

a, then randomness is rejected at
significance level a where Dm

a is the (12 a)
percentile of the Kolmogorov distribution.

A method of assessing this distance graphically using a
probability plot or `u-plot' is described in annex C.

The Cramer-von-Mieses distance also assesses the
closeness of the distribution to U(0,1) as follows.

i) Distance Mm = +
21

2m ∑
i=1

m  2 qi
2i21

2m


ii) If Mm > Mm
a, then randomness is rejected at

significance level a, where Mm
a is the (12 a)

percentile of the Cramer-von-Mieses distribution.

Many other statistical tests of randomness are
available.

B.3.2.5 Tests for goodness of fit

Tests of this type assess the level of significance at
which observations agree with the predictions of a
model. The x2 test is frequently used for this purpose.

Pearson's chi-squared statistic provides an
approximate significance test where there are k
expected values Ei (predicted by the model) and
corresponding observed (discrete) values Oi.
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The test assumes that there are underlyingn = Oi∑
i=1

k

`trials', and a complete set of k events {Ai} with a set of
probabilities {ui} of `success of trial' associated with
each, so that each Oi is an observed realization of a RV
Ni, the `count of successful trials', where:

.E{Ni} = nui, and ui = 1∑
i=l

k

a) H0 is `the model adequately describes the
observations'. (The model assigns a set of values {pi}
to the set of probabilities {ui}, so that
Ei = E{NiáH0} = npi.)

b) Pearson's statistic x2 = (Oi2 Ei)
2 / Ei∑

i=1

k

c) For large n, Pearson's statistic approximately
follows a x2-distribution with (k2 1) degrees of
freedom. (The distribution is strictly followed only
as n → `. A rule of thumb for the test to be valid is
that Ei$ 2 for all i.)

d) H0 is rejected at significance level if x2 > xa
2

(k2 1), the upper 100a% point of the x2 distribution
with (k2 1) degrees of freedom.

Pearson's test may be applied to a continuous RV X
whose distribution is predicted by a model by defining
Ai as ai# x < ai+1, so grouping the observations into a

set of intervals such that . (Thispi = pdf (x)dx⌠⌡
ai

a i+1

can easily be extended to the case where each
observation is of the realizations of several RVs.)

An important special case is that of a prediction of a
U(0,1) distribution. This may be tested by partitioning
[0,1] into k intervals of equal length 1/k, and using
Ei = c/k, where c is the total number of observations.
This may be used to test the uniformity of the statistics
ui and yi defined in B.3.2.4.

The Braun statistic (see annex C) may also be used to
assess the accuracy of certain predictions.

B.3.3 Monotonic regression

The necessary and sufficient condition for a function
l(x) to be completely monotone is that it possesses
derivatives of all orders, and (21)ndnl(x)/dxn$ 0,
where x$ 0, n$ 0.

Any completely monotone function may be used as the
failure intensity function (see B.4.1.1) of a
doubly-stochastic EOS model (see B.4.1.3 and B.4.1.4).
Conversely, any EOS intensity function is completely
monotone.

A set of failure data can be analysed using the
monotonicity of the hypothesized underlying failure
intensity. The technique can be applied to `failure
count' data, or to `time to failure' data which has been
divided into p periods of equal time u (see B.3.1.1).

A completely monotone function is fitted to the
sequence of monotonically decreasing failure rates by
defining a set of difference operators De of various
degrees e up to some maximum d as follows:

D0(lj) = lj = kj/uj = [c(xj)2 c(xj21)]/uj

D1(lj) = D0(lj)2 D0(lj21) = lj 2 lj21

D2(lj) = D1(lj)2 D1(lj21)

Dd(lj) = Dd21(lj)2 D(lj21)

Estimated rates lÃ which constitute the `best fit' are
obtained by minimizing the sum of the squared
deviations [lj 2 lÃ j]

2 over all periods j, 1# j# p,
subject to the monotonicity constraints:

(21)e De (lÃ j)$ 0, for all e, 1# e#d

For d = 1, the technique is equivalent to isotonic
regression (see B.3.1.3), and can be performed
graphically. In this case, the rate at the end of the data
set tends to be underestimated. A degree d of 2 or 3
has been found to give less biased estimates. For
degree d > 1, numerical optimization is required, and
will generally require a computer program.

B.4 Black-box models

B.4.1 Black-box reliability assessment

Any black-box model comprises three parts as follows.

a) A probabilistic model: a set of formulae for
reliability functions such as m(x), l(x), or S(t á c,x)
incorporating a set of parameters p.

b) An inference procedure to estimate the values of
p by analysis of failure data.

c) A prediction procedure to combine the values of
p with the formulae to predict future times to failure
or failure counts.

Together these constitute a prediction system, and any
part may affect the quality of prediction from the
whole.

The data consists of a set of observed inter-failure
times {t1, t2, ..., ti} or of observed counts of failures {k1,
k2, ..., kj} in periods of operation in which system use
was {u1, u2, ..., uj}. The task is to obtain CDFs or PDFs
for the future times to failure (RV) {Ti+1, Ti+2, ...} or
failure counts (RV) {Kj+1, Kj+2, ...}, or the means,
variances, medians and percentiles of these
distributions.

The inference procedure (see B.4.5) may employ
several methods such as MLE (which searches for
values to maximize the probability of the
observations), or LSE (which searches for values to
minimize the LSD between observed and expected
values).

The prediction procedure may involve the simple
substitution of the inferred parameter values in the
model formulae, but in some cases Bayesian estimation
can be used.
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B.4.2 Fault activation models

B.4.2.1 EOS models

Most fault activation models assume that each
individual fault has an exponential time to activation,
and that the process of failure observed from the
whole system consists of the order statistics of the
activation processes, hence such models are known as
exponential order statistic (EOS) models. It is useful to
consider individual models as special cases of a
general EOS model.

The assumptions of the general EOS model are:

a) the system contains a set of faults initially;

b) each fault gives rise to failure (i.e. is activated)
independently of all others;

c) each fault is activated with its own characteristic
rate;

d) the process of activation of each fault is a
homogenous Poisson process (HPP), i.e. it is
constant over time, and inter-activation times are
exponentially distributed RVs;

e) on activation, a fault is immediately and perfectly
removed from the system.

The failure process of the system is therefore
determined by the set of activation rates {z1, z2, ...}.

Without loss of generality, it can be assumed that:

1) z1$ z2$ ... etc.;

2) there are infinitely many faults. The case of a
finite number, n, of faults is dealt with by
assuming zi = 0 for i > n.

An EOS model is uniquely defined by any one of the
following four functions:

i) mean value function, m(x): expected number
of faults activated by accumulated time x;

ii) failure intensity function, l(x): expected
ROCOF at accumulated time x, given the
expected number of faults activated by that
time. l(x) = m9(x);

iii) activation rate distribution function, G(z):
number of faults with rate zi > z. (Where the
number of faults is treated as a RV N, or the
activation rates are treated as realizations of a
RV Z, G(z) is the expected number.);

iv) activation rate generating function, g(z):
g(z) =2G9(z).

These are related by the following equations:

(B.1)G(z) = g(z)d z⌠⌡
z

`

(B.2)m(x) = (12 exp(2zx))g(z)d z⌠⌡
0

`

(B.3)l(x) = z exp(2zx)g(z)d z⌠⌡
0

`

The ROCOF l(x) above is not conditional on the
number of faults removed, but only on the total time x.
Other formulñ can be derived for the hazard intensity
after time x and c faults found for particular models.

B.4.2.2 Deterministic EOS models

In a deterministic EOS model (DET/EOS) model the
set of activation rates {zi} is specified by a
deterministic formula, instead of being defined
randomly. G(z) is therefore the actual number of faults
with rates zi > z.

The best known example of a DET/EOS model is
Jelinski-Moranda (JM). It assumes a fixed but unknown
number of faults, n, each with the same activation rate
f, so that ROCOF is proportional to the number of
remaining faults.

Hence:

zi = f for 1# i# n; zi = 0 for i > n

G(z) = n for 0# z# f; G(z) = 0 for z > f

m(x) = n[12 exp(2fx)]

x(x) = f n exp(2fx) = [n2m(x)] f

PDF of time to next failure t, after c faults have been
activated, is given by:

pdf(tác) = f (n2 c)exp[2f (n2 c)t]

and survival probability (reliability) is as follows:

S(tác) = 12 exp [2f (n2 c) t]

Hazard intensity is constant between failures.

x(c) = (n2 c) f

MTTF = E {Tác} = 1/l(c) = 1/(n2 c)f

The pth percentile, tp, of the distribution of TTF is as
follows.

tp =
2ln(12 p)

f(n2 c)t

LF for `time to failure' data is as follows.

LFT(n, f át1, ...,tc)

= f (n2i + 1)exp[2 f(n2 i + 1)t]∏
i21

c

B.4.2.3 IID doubly-stochastic models

These are classified in 6.4 as `random activation rate'
models. Since they treat individual fault activation rates
as realizations of independent identically distributed
random variables, they are referred to as IID/EOS
models. They make the same set of assumptions as all
EOS models, together with the following.

a) The set of faults initially present in the system
contains a fixed but unknown number of faults, n.

b) Each activation rate zi of an individual fault is a
realization of a RV Zi. Each Zi is independent of all
others, with PDF pdf(z) (the same for all Zi), i.e. the
Zi are IID RVs.

The hazard intensity after c of the initial n faults have
been found is therefore a RV L.

L = Zi∑
1

n2c

For an IID/EOS model, the fault generating function is
g(z) = n pdf(z).
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An example of an IID/EOS model is the Littlewood
stochastic reliability growth (LSRG) model. In LSRG,
the common PDF of the Zi is gamd(z, a, b), hence:

g(z) = nba z(a21) exp(2 bz)/(a2 1)!

The model has three parameters, n, a and b, where a
and b are the shape and scale parameters of the
gamma distribution.

The nature of the activation rate distribution is
determined by a. For a < 1, gamd(z, a, b) tends to
infinity as z → 0. This models the case of very many
faults with very small activation rates. For a > 1, the
gamma distribution is unimodal, which models the
case of rates clustering around some moderate value.

From equations (B.2) and (B.3) the expected failure
count and ROCOF are as follows.

m(x) = n
12

a


b

b + x




l(x) = n

a+1

a

b





b

b + x



= = n
anaba

(b + x)a+1



a

b + x





b

b + x



Survival probability (reliability) after time x (not
conditioned on count c of faults found) is as follows.

S(táx) =
12

a

+
a


b

b + x






b

b + x + t




Since when IID RVs with gamma distributions are
added, the shape parameters are added to obtain the
distribution of the sum, it follows that, after c of the
initial n faults have been removed, L is distributed as
follows.

pdf(l) = gamd[l,(n2 c)a,b]

Another basic result is that the PDF of time to
activation for faults remaining after operating time x is
as follows.

pdf(záfault not activated in [0,x])

=
(b + x)a za21 exp[2(b + x)z]

(a2 1)!

= gamd(z, a, b + x)

This represents mathematically the intuitive confidence
that, the longer a system has been operated without
failure, the smaller the fault activation rates are likely
to be. (Note that the average rate of activation of an
individual fault is a/b initially, and a(b + x) after time
x.)

From these results, the following equations can be
derived for the failure intensity, survival probability
(i.e. reliability), PDF of time to failure, and MTTF,
during a future period of operation of length t,
conditional on the system already having been used for
time x during which c faults have been removed.

l(táx, c) =
(n2 c)a

(b + x + t)

(The behaviour of this failure intensity function is
illustrated in figure 10.)

S(tác, x) =
(n2c)a

b + x
b + x + t


pdf(tác, x) =

(n2 c)a (b + x)(n2c)a

(b + x + t)(n2c)a+1

MTTF = E{Tác, x} =
(b + x)

(n2 c)a2 1

Time to failure T follows a Pareto distribution and
does not always possess moments. If n2 c# 1/a, the
equation for MTTF is meaningless. MeTTF always
exists.

The LF in the case of `time to failure' data at the cth
failure is as follows.

LFT(n,a,b) = pdf(Tiát1,...,ti21)∏
i=1

c

=

(n2 i + 1)a(b + xi21)(n2i+1)a∏
i=1

c

(b + x i21 + ti)
(n2c+1)a+1

For `failure count' data, the LF is as follows.

P {any given fault not activated in interval i}

= qi = [(b + ui21)/(b + ui)]
a

P {any given fault is activated in interval i}

= pi = 12 qi

The LF for m intervals is as follows

LFC(n, a, b) = pi
ki qi

(n2ci)∏
i=1

m 

n2 ci21

ki




B.4.2.4 NHPP doubly-stochastic models

These models are referred to in 6.4 as `random number
of faults' models, since some of them model the
`number of faults in the system' as a RV N with a
Poisson distribution. However, a NHPP model also
results if the activation rates zi are modelled as a
realization of a NHPP with intensity function g(z),
which is the fault generating function in this case.

In either case, the process of system failure over time
x is modelled as a NHPP with intensity l(x).

An example of a NHPP model is Goel-Okumoto (G-O).
This was originally derived as a `failure count' model,
based on the assumptions that the cumulative number
of faults activated by time t is a RV with a Poisson
distribution with mean m(t) and that the number of
faults activated in a short interval is proportional to the
number of faults present at the start of the interval.
With the boundary condition m(0) = 0, the mean value
function:

m(x) = N[12 exp(2 fx)]

is obtained as the solution of the differential equation
for the failure intensity:

l(x) = m9(x) = f[N2m(x)]

where N is the expected value of RV N and m(x) → N
as x → `. As in J-M, zi = f for all i.
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The likelihood function based on p periods of
observation is as follows.

LFC(N, f) =

∏
j=1

p
[m(xj)2m(xj21)]kj exp[m(tj21) =2m(tj)]

kj!

A NHPP model that avoids the `uniform activation rate'
assumption made implicitly by G-O is Musa-Okumoto
(M-O), which assumes that hazard intensity decrement
per fault removed decreases exponentially with
cumulative faults found:

l(c) = l0 exp[2uc] = l0 [exp(u)]2c

where l0, the initial hazard intensity, and u are the
parameters of the model. The mean value function
(expected failure count at time x) is as follows.

E{C(x)} = m(x) =
1n[l0ux + 1]

u

The count of failures c(x) at time x follows a Poisson
distribution.

P{c(x)} =
[m(x)]c(x) exp(2m(x))

c(x)!

The unconditional ROCOF is as follows.

l(x) = m9(x) =
l0

l0ux + 1

(The same formula for l(x) is obtained if the formula
for m(x) is substituted for c in the expression for l(c)
above, i.e. l(x) is the expected ROCOF.)

Conditional on the previous failure having occurred at
time xi21, the reliability (survival probability), hazard
intensity, and MTTF describing the behaviour over
TTF Ti are as follows.

S(tiáxi21) =
1/u

l0uxi21 + 1

l0u(ti + xi21) + 1


l(tiáxi21) =
l0

l0u(ti + xi21) + 1

E{Tiáxi21} =
l0uxi21 + 1

l0(12 u)

For `time to failure' data, the LF conditional on c
failures observed at TTFs {xi} and total time at end of
observation xe is as follows.

LFT(u,l0áx1, ..., xc, xe) = = l(xi)
c!

[m(xe)]
c ∏

i=1

c

=
c!(l0u)c

[1n(l0uxe + 1)]c (l0uxi + 1)∏
i=1

c

For `failure count' data, the LF conditional on c failures
observed in p periods with failure count kj in each
period (xj21, xj] is as follows.

LLC(u, l0 á c, {kj, xj})

=
c!

[m(xp)]c ∏
j=1

p
[m(xj) = m(xj21)]kj

kj

=
kjc!

[1n(l0uxp + 1)]c ∏
j=1

p
1

kj

1n



l0uxj + 1

l0uxj21 + 1




The above LFs may be transformed by substituting
f = ul0 and taking logarithms. By setting the first
derivatives of the LLFs so obtained equal to zero,
equations are obtained which can be solved
numerically to give a point estimate fÃ , and uÃ (and
hence lÃ 0) is derived from the mean value function.

uÃ = 1n (fÃ xe + 1) / c or 1n (fÃ xp + 1) / c

lÃ 0 = fÃ / uÃ

Generally, a NHPP/EOS model may be constructed by
hypothesizing any suitable intensity function (or mean
value function) for the NHPP. In particular, there is a
NHPP/EOS model corresponding to each DET/EOS or
IID/EOS model, e.g. G-O is a NHPP version of J-M.

In the Duane (DU) model, the functions are:

m(x) = axb

l(x) = m9(x) = xbxb21

where a and b are parameters. (Methods of
estimating these are discussed in B.3.2.2.)

The Poisson-gamma (PG) model is the NHPP version
of LSRG, with intensity function

l(x) = naba/(b + x)a+1

B.4.3 Failure trend models

Models in this class represent the inter-failure times
directly as a parametric family of functions. An
example is the Littlewood-Verrall (L-V) model. This
assumes that the time to failure Ti after each failure i
is an exponential RV with intensity Li, which is itself
an RV with a gamma distribution.

pdf (tiáLi = li) = li exp(2liti)

pdf(li) = gamd (li, a, b(i))

The Ti are assumed to be independent. The scale
parameter b(i) of the gamma distribution determines
reliability growth (if increasing in i) or decay (if
decreasing in i). A parametric family b(i) = b1 + b2i is
hypothesized so that growth or decay depends on the
sign of b2. (a, b1, b2 are the three parameters of the
model.)

Other parametric families for b(i) are possible. The
model assumes two sources of uncertainty: failures
occur randomly, and a repair action following a failure
only causes a decrease in failure rate with a certain
probability, so allowing the possibility of imperfect
repair. The criterion for reliability growth on average
is:

P{li+1 < r} $ P {li < r} for all i, r > 0

Combining these two types of uncertainty using
Bayesian techniques, a distribution of Ti is obtained
which is Pareto in form.

pdf(ti) =
a[b1 + b2i]a

[ti + b1 + b2i]a+1

Hazard intensity after i failures is decreasing in t.

l(tái) = a/(t + b(i))

Survival probability (reliability) has the following form.

S(tái) = [b(i)/(t + b(i))]a

MTTF = E{Ti+1ác} = b(i)/(a2 1)
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This exists if, and only if, a > 1.

The pth percentile tp of the distribution of TTF is as
follows:

tp = b(i)/[(12 p)21/a2 1]

The likelihood function (for `time to failure' data, with
a total of c failures) is:

LF (a, b1, b2) =

ac [b1 + b2i]a∏
i=1

c

[ti + b2 + b2i]a+1∏
i=1

c

B.4.4 Environmental factors models

Accounting for environmental factors requires a model
whose estimates can be modified using measurements
of those factors. The proportional intensity approach
hypothesizes that the system possesses a `baseline'
failure intensity l0 which is modified by an expression
incorporating such measurements to give the actual
rate l:

l(x, c, p) = l0 (x, c, p)exp

 biei∑
i=1

v 


where:

a) each of the v `explanatory variables' ei is a
measurement of the deviation of a defined attribute
of the operating environment from some `nominal'
value. These may be real numbers, integers, or (to
indicate that a factor is either present or absent)
binary (0 or 1), and are evaluated by observation of
the environment independently of the observation of
the failure of the system;

b) each quantity bi is a parameter of the model and
represents the extent to which the corresponding ei
affects the failure rate. (It is a weighting factor.) The
bi are estimated from observation of system failure
in environments for which the ei are known. (A zero
value obtained for a bi indicates that the factor
measured by ei has no effect.);

c) l0(x, c, p) is the `baseline' failure rate which
would be obtained if all factors were nominal, i.e. if
all ei were zero. This is also measured by
observation of system failure in known
environments. (It may vary over operating time x,
with faults found c, and/or with respect to a set of
other parameters p, such as occur in stochastic
reliability growth models.);

d) l(x, c, p) is the failure rate expected to be
observed in an environment characterized by the
given set of ei (and may also vary with x, c, and p).

The baseline hazard function may be distribution-free,
or may follow a distribution defined by parameters. In
particular, a version of PHM has been proposed in
which the baseline function is the hazard function of
one of the stochastic reliability growth models.

B.4.5 Black-box parameter inference

B.4.5.1 Types of inference method

The second part of a black-box prediction system
(see B.4.1) is the inference procedure which calibrates
the model to a data set by evaluating the parameters.
The methods commonly used are described in general
terms in 6.4.10.2. They are as follows.

a) maximum likelihood estimation (MLE) searches
for parameter values which maximize the probability
of the observations;

b) least squares estimation (LSE) searches for
parameter values which minimize the least squared
distance (LSD) between the data points and
corresponding predicted quantities;

c) Bayesian inference transforms a prior distribution
of parameter values into a more accurate posterior
distribution using the information contained in the
data set;

d) model specific methods take advantage of the
mathematical properties of a particular model to
derive estimates.

B.4.5.2 Objective function

MLE and LSE usually involve optimizing an `objective
function'.

In the case of MLE, this is a likelihood function (LFT
in the case of `time to failure' data, LFC for `failure
count' data). The general form of these is as follows.

LFT(pá{ti}c) = pdf (tiáp, {tj}i21)∏
i=1

c

LFC(pá{kj, uj}p) = P{kiáp, uj, {ki, ui}j21}∏
j=1

p

where {tj}c denotes the sequence of observations t1, ...,
tc (and similarly for the sequence of pairs of
observations {kj, uj}p) and p is the vector of
parameters of the model.

Several examples of these are given above. Both a LFT
and a LFC can be derived for most models. For
optimization, the logarithms of these functions, LLFC
or LLFT, are normally used, and the extended products
become extended sums.

For LSE, the general form of the distance function is,
for time to failure data:

[m(xiáp) 2 i]2∑
i=1

c

or, for failure count data:

[m(xiáp)2 c (xi)]
2∑

i=1

p

The empirically estimated {li} and the expected
{l(xiáp)} may be used similarly.
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B.4.5.3 Search procedure

In most cases, the LF or DF are too complicated to
permit a closed form expression to be derived for the
optimum value of p. (There are exceptions with some
simple models, such as Duane. See B.3.2.2.)

A numerical search is required over possible parameter
values. To reduce the number of dimensions in which
the search is performed, it is usual to partially
differentiate the objective function with respect to one
of the parameters, set the result to zero, and solve the
resulting equation for one of the parameters in terms
of the others.

The Newton-Raphson algorithm is a procedure which
converges rapidly to a minimum value (once in the
neighbourhood of such an optimum value) of an
objective function f(f) in a series of iterative steps:

fn+1 = fn2 f9(fn) / f"(fn)

This depends upon being able to find a reasonable
starting value fo such that the iteration does converge.
Such a value may be estimated from the data, taking
account of model characteristics, and no general rule
can be given here.

B.4.5.4 Bayesian inference

A prior pdf(p) is transformed into a posterior PDF
using Bayes' theorem:

pdf(pádata) = A pdf (p) P {dataáp}

where A is a constant of proportionality:

A = 1/ pdf(p) P{dataáp}dp⌠⌡
p

and the integration is over all values of all parameters.

B.4.5.5 Model specific methods

An example is a possible method of estimation in M-O
(see B.4.2.4). This depends upon the form of the basic
equation for the hazard intensity after c failures:

l(c) = lo exp[2uc]

This implies that the empirical failure rate l(i) has a
log-linear relationship to i:

ln [l(i)] = ln (lo)2 ui for all i

The empirical failure rates can be estimated from the
data, e.g. as 1/ti, and linear regression used to estimate
the parameters.

B.4.5.6 Interval estimates

The discussion of parameter estimation here has
concentrated on making point estimates. In addition,
interval estimates are required. However, a
presentation of the methods for doing this is beyond
the scope of this annex.

B.5 Structural models

B.5.1 Modular structural models

Modular structural models treat the execution of
software as a process of passing control between a
number of discrete parts or `modules' with certain
probabilities of failure occurring on transfer of control
or during execution of a module. This is modelled as a
markov or semi-markov process.

An example is the Littlewood model. This assumes:

a) the system consists of a finite number of modules,
n. At any time, one and only one module is being
executed. Probability pij of transfer of control from
module i to module j is independent of the time of
entering i (semi-markov property);

b) each module i fails exponentially while execution
is within it, at its own rate li;

c) distribution of sojourn time in i before transfer to
j depends only on i and j, and its mean mij and
second moment are known;

d) transfer of control from i to j has a probability vij
of failure.

Assuming that li << mij and mij is small compared to
system operating time for all i, j, then asymptotically
as system time increases, the total system failure rate
tends to a value ls given by:

lS = aili + bijvij∑
i=1

n

∑
i=1

n

∑
i=1

n

where ai is the limiting proportion of total system
operating time spent executing module i, and bij is the
limiting frequency of transfer of control from i to j. ai
and bij are complicated functions of uij and pij.

B.5.2 Hardware/software system models

Many structural software models assume that at any
time during system operation one, and only one,
module is being executed. In a more general system
(e.g. one containing several processors) several
modules may be executed simultaneously, and several
hardware components will also be active. (It is often
assumed that all hardware components are active at all
times during operation.) A more general formulation of
the problem is therefore necessary for a system
including both hardware and software.

One approach is to model the behaviour of the system
as a markov chain with S states and mean sojourn
time mj in state j, j = 1, ..., S. Define pjk = P{transition
from state j to state k}. (A state transition will involve
the start or end of execution of one or more
components.) If there are C components and li is the
failure rate of component i, and if dij takes the
value 1 if component i is active in state j, and
value 0 otherwise, then the system failure rate in state
j, jj is as follows:

jj = dijli∑
i=1

C
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If Pj(t) = P{system is in state j at time t}, then system
failure rate l(t) at time t is as follows.

l(t) = jjPj(t)∑
j=1

S

Assuming that, in each state, the mean sojourn time is
large compared to the time to failure, i.e. mj >> 1/jj, and
denoting the steady-state probability of being in state j
by aj, then the steady-state failure rate l of the system
is as follows.

l = ajjj = aj dijli = li dijaj∑
j=1

S

∑
j=1

S

∑
i=1

C

∑
i=1

C

∑
j=1

S

The term

pi = dijaj∑
j=1

S

is the average proportion of system execution time for
which component i is active, and pili is the
contribution of component i to the failure rate of the
whole system under the execution profile defined by
the vector P = [pi]. Since the execution profile
depends on the operational profile of the system, this
approach provides another possible starting point for
modelling the effect of environment on system
reliability.

This formulation is indifferent as to whether any
component consists of hardware or software. It is
capable of being extended to allow variation of
component failure rates over time (e.g. reliability
growth of software components) to incorporate
hierarchical structure among the components and to
allow inclusion of times to restore service (e.g.
MTTRS) in order to model system availability. These
extensions are beyond the scope of this annex.

Annex C (informative)

Predictive accuracy of stochastic
reliability growth models

C.1 Introduction

The software reliability growth models described
in 6.4.9 to 6.4.15 are used to predict various measures
related to reliability, e.g. probability of system failure
within a given time, failure rate, mean time to
failure, etc. The accuracy of these predictions should
be assessed. If they are found to be biased, it is
possible to improve their accuracy by `recalibrating'
them, or by combining predictions from different
models.

This annex contains mathematical descriptions of some
of the techniques for assessment, recalibration and
combination. It is intended to assist users of the
standard to apply these techniques (using
custom-written or `off-the-shelf' statistical software as
necessary). The descriptions are brief and technical,
and reference should be made to 6.4.20 for more
general information. Mathematical results are generally
quoted without proof, but these are available from the
references in the bibliography cited in 6.4.20.

See annex B for mathematical terms and definitions,
and for the mathematical descriptions of the prediction
systems. Each prediction system consists of a
stochastic reliability model, an inference procedure,
and a prediction procedure (see B.4.1). Since any one
of the three parts may affect the accuracy of the
predictions from the whole, the term `prediction
system' is used in this annex in preference to `model'.

C.2 Assessment of predictive accuracy

C.2.1 Definition of `u' and `y' statistics

Future time to failure (TTF) is uncertain and is
modelled as a random variable (RV) Ti. This has a
certain cumulative distribution function (CDF) Fi(t),
which is unknown but can be estimated by applying a
prediction system to the sequence of previously
observed inter-failure times {t1, t2, ..., ti21} (assuming
`time to failure' data is available). The result is a
predictor CDF FÃ i(t) for the RV Ti , from which other
measures such as failure rate, MTTF, MeTTF, etc., can
be derived. The criterion for a prediction to be
accurate is that the predictor CDF FÃ i(t) should be
close to the `true' CDF Fi(t).

The accuracy of the prediction may be checked by
observing a realization ti of the RV Ti and substituting
this into the formula for the predictor CDF FÃ i(t) to
obtain the statistic ui = FÃ i(ti).

By definition, the true CDF of Ti is Fi(t) = P{Ti < t},
i.e. the probability that the realized value of Ti will be
less than any given value. Hence, if FÃ i(t) is identical to
the `true' CDF Fi(t), of Ti, then ui is a realization of a
RV with a U(0,1) distribution.

In `one step ahead' prediction of software reliability,
only one realization ti of each RV Ti is observed.
(Under reliability growth, FÃ i(t) is different for each i.)
However, stochastic reliability models assume that
successive TTFs are independent, or that each fault is
activated independently of all others. Given this, if the
predictor CDF is close to the true CDF for all i, the
sequence {ui}, i = s + 1, ..., c should constitute a
sequence of realizations of IID U(0,1) RVs, and so
should be evenly distributed in the interval (0,1) and
show no evidence of trend with increasing i. s s)
NOTE. A certain minimum number of data points s (generally
around 20) is necessary before the prediction system can be used
to begin the `one step ahead' prediction process, so that if there
are c observed ti, only (c 2 s) ui values can be obtained.

To test the sequence of ui for trend, it may be
transformed logarithmically into a sequence of xi.

xi =2ln(12 ui) for s < i# c
If the ui are realizations of U(0,1) IID RVs, then the xi
are realizations of exponential IID RVs, i.e. the
sequence constitutes a realization of a HPP.

Another transformation may be used to normalize the
xi into a sequence of yi.

yi = xj / xj for s < i < c∑
j=s+1

i

∑
j=s+1

c

If the ui are realizations of U(0,1) IID RVs, then the yi
are the order statistics of (c2 s) U(0,1) IID RVs. (Note
that only (c2 s2 1) values yi can be obtained.)
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Various statistical tests may be used to check that the
statistics ui, xi and yi conform to the distributions that
are expected if the predictions are accurate.

C.2.2 Tests for even distribution of u

Any departure of the ui from U(0,1) indicates
inaccurate prediction. In particular, a preponderance of
small values indicates optimistic bias, i.e. the FÃ i(t) tend
to predict a TTF larger than the observed ti.
(Conversely, large values indicate pessimistic bias.)

Techniques that may be used to assess this include
scatter plots, box plots, u-plots, and the use of
Pearson's chi-squared statistic.

A scatter plot is a plot of points (i,ui). Distribution can
be checked simply, e.g. around 50 % of points should lie
above u = 0.5, around 25 % above u = 0.75, etc. Since
the points are ordered by time along the horizontal
axis, this check may be performed for different time
intervals, to judge trend also.

A box plot is constructed by plotting points (0, ui),
along a line and marking the median and quartiles. The
positions of these relative to the end points 0 and 1 will
reveal any skewing of the distribution.

Pearson's chi-squared statistic (see B.3.2.5) may be
used to test the distribution of the ui by partitioning
the interval [0,1] into k intervals of equal length 1/k,
and using the fact that the expected number of ui in
each interval is Ei = (c2 s)/k.

The procedure to construct a probability plot or `u-plot'
is as follows.

a) Compute the ui (s + 1# i# c) as above.

b) Rank the ui in ascending order. Denote the sorted
sequence uj, j = 1, ..., (c2 s).

c) Plot the points (uj, j/(c2 s + 1)), i.e. as each uj is
plotted against the horizontal axis, a constant step
1/(c2 s + 1), is taken up the vertical axis.

d) Locate the point of maximum deviation of the
plot from the line of unit slope from (0,0) to (1,1),
and measure the vertical distance of the plot from
the line at that point. This is the
Kolmogorov-Smirnoff (K-S) distance (see B.3.2.4).
(Note that the u-plot procedure destroys the
time-ordering of the points.)

e) The deviation of the ui from U(0,1) is shown by
the deviation of the plot from the line of unit slope.
If the point of maximum vertical distance lies above
the line, then the FÃ i(t) are biased optimistically. If it
lies below the line, the bias is pessimistic. The K-S
distance is a measure of the significance of the
deviation (the degree of confidence that it is not due
to random variation).

A typical u-plot is illustrated in figure 11.

C.2.3 Assessment of trend in predictions

Any trend in the ui with increasing i indicates that the
prediction system is not adequately capturing some
trend in the observed ti, e.g. degree of reliability
growth. This is most easily detected as a trend in the
xi or yi.

Tests for trend such as the Laplace test (see B.3.2.2)
may be applied to the xi. Since the sequence of xi
should be HPP, the hazard intensity of the underlying
process may be estimated in order to assess if it is
constant over time.

Another technique is to construct a probability plot or
`y-plot' of points (yi, i/(c2 s)) following the same
procedure as for the u-plot. (Note that there are only
(c2 s2 1) yi values.)

In this case, deviation from the line of unit slope
indicates departure of trend in the predictor
distributions FÃ i(t) from trend in the observed ti. Again,
its significance is measured by the K-S distance.

C.2.4 Assessing other types of inaccuracy

C.2.4.1 Other causes of inaccuracy

Predictive inaccuracy may arise from other causes than
bias or failure to capture trend. One possibility is
`noise', i.e. predictions may be unstable in i
(e.g. pessimistic in one case, optimistic in the next) so
that the predictor CDF FÃ i(t) varies widely around the
`true' CDF Fi(t), but in such a way that (although each
individual prediction is poor) predictions are unbiased
on average, and follow overall trend.

Another possibility is that accuracy varies for different
parts of the distribution, e.g. predictions may be
pessimistically biased in the left tail, fairly accurate
around the mean, and optimistically biased in the right
tail. (This could be observed in the u-plot, which
would lie below the line of unit slope to the left, cross
it around the mid-point, and lie above it on the right.)

Other subtle variations in accuracy may be found.

Inaccuracy due to excessive variability in predictions
(i.e. variability that does not model a real underlying
variability in the data) can be detected by median
variability and rate variability tests. Differences in
the accuracy of two prediction systems due to any
cause may be detected by trend in prequential
likelihood. These tests are described in C.2.4.2
and C.2.4.3.

C.2.4.2 Variability tests

Variability of the predicted MeTTF may be assessed by
plotting it (together with the upper and lower quartiles
of predicted TTF) against failure number i or
accumulated operating time x. Any instability of the
estimates should be obvious to the eye. Where `time to
failure' data is available, the actual ti may be plotted
on the same diagram. Around 50 % of the actual points
should lie between the upper and lower quartiles.

Variability of the predicted ROCOF may be detected in
similar plots. In this case, the values to be plotted
might include the empirical failure rate estimated
by 1/ti, ci/ui, or some suitable rolling average of these.
(Here, ci/ui is used with the meaning of B.3, i.e. ui is
the operating time in period i.)
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The variability of any sequence of predicted values qÃ j
(over j data points, after s initial observations) may be
measured by the statistic:

vary{qÃs+1, ..., qÃ j} = á á∑
i=s+1

j21
qÃi+12 qÃi

qÃi

This represents the variability of the predictions, but
provides no level of significance. In addition, it does
not compare the predictions with the actual values. (It
is often observed that actual TTF is very unstable, and
fluctuates widely around the predicted median, with
many points outside the predicted inner quartiles.) The
Braun statistic (see C.2.4.4) and relative error
measures may also reveal inappropriate variability.

C.2.4.3 Prequential likelihood

Prequential likelihood makes use of the predictor PDF
fÃi(t), where the predictor CDF:

FÃ i(t) = fÃi(t)dt⌠
⌡

0

t

It depends upon the fact that, if the predictor PDF fÃi(t)
is `close to' the `true' PDF fi(t), then the values fÃi(ti)
and fi(ti), for the realization ti will be close, i.e. the

ratio fÃi(ti) / fÃi(ti) will tend to lie close to 1. The
prequential likelihood (PL) of a prediction system A is
defined as:

plA(s,c) = x fÃi
A(ti)∏

i=s+1

c

where c is the number of observations and s is the
minimum number required for prediction to begin (as
in C.2.1 above). (The superscript A on the predictor
PDF fÃi

A(t) indicates that it is derived from prediction
system A.)

The prequential likelihood ratio (PLR) for two
prediction systems A and B is defined as follows.

plrA,B(s,c) = plA(s,c) / plB(s,c)

If plT(s,c) denotes the PL for the `true' PDFs fi(t), then
the trend in plrA,T(s,c) as c increases could indicate
how close A is to the truth, but the fi(t) are unknown.
However, it can be shown that, if plrA,B(s,c) → 0 as
c → `, then prediction system A is discredited as a
predictor compared to prediction system B (and
conversely, B is discredited if plrA,B(s,c) → `). The
trend in plrA,B(s,i) as i increases from (s + 1) to c can
therefore be used to compare the predictive accuracy
of A and B. (In practice, the trend is usually very
marked. Due to the sizes of the quantities involved, it
is usual to calculate the logarithm of the PLR.)

If more than two prediction systems are to be
compared, then one system can be chosen to act as a
reference, and the trends in the PLRs for the others
can be compared relative to it.

C.2.4.4 Other measures of accuracy

The accuracy of any predicted value qÃ may be
measured by the relative error as follows.

rele{qÃ} = (EÃ {q}2 q)/q

where q is the actual value eventually observed.

This may be applied to predictions of TTF, c(x), etc.
Plots of relative error may be used to show trend in
the accuracy of a sequence of predictions, and
comparison of the relative error in predictions from
two prediction systems may be used to compare them,
but it does not provide an assessment of the
significance of the error.

The Braun statistic may be used to assess the accuracy
of a sequence of predicted mean times to failure EÃ {Ti}.
It is defined as follows.

braun{EÃ {Ts+ 1}, ..., EÃ {Ti}}

=

(i2 s2 1) (tj 2 EÃ {Tj})
2∑

j=s+1

i

(i2 s2 2) (tj 2 t)2∑
j=s+1

i

Here, s is the number of initial TTFs used as the basis
for the first prediction (as previously), tj is the jth
inter-failure time, and t is the average of all the
observed inter-failure times up to and including ti. The
smaller the value of the Braun statistic, the better the
prediction system is judged to be. In particular, a value
greater than 1 would indicate a very poor prediction
system.
NOTE. The average of the observed inter-failure times is not a
particularly meaningful statistic where reliability growth is
occurring. However, the term

(tj2 t)2∑
j=s+1

i

in which it occurs may be regarded as a normalizing constant, and
the Braun statistic may be used to compare prediction systems,
rather than as an absolute indicator of accuracy. (The prediction
system with the lower Braun value is preferred.)

For `failure count' predictions, the following form of
the Braun statistic may be used.

braun{EÃ {Ks+1}, ..., EÃ {Kp}}

=

(kj 2 EÃ {Kj})
2uj∑

j=s+1

p

(kj 2 k)2uj∑
j=s+1

p

Here, p is the number of periods, and s is the number
of periods used as the starting point for the first
prediction. uj is the amount of operating time in the
jth period, and k is the average of the counts kj of
failures in each period.

C.3 Recalibration of predictions

If the inaccuracy of a prediction system on a given
data set is due mainly to bias (i.e. if it yields a `poor'
u-plot, but a `good' y-plot), then its predictions may be
improved by recalibration to reduce the bias. This is
referred to as `adaptation' of the prediction system or
model to the data set, and a procedure for doing this
in the case of `one step ahead' prediction on a `time to
failure' data set is described here.

As before, denote the `true' and predictor distributions
of Ti respectively by Fi(t) and FÃ i(t). The problem of
adaptation is solved if a function Gi:(0,1) → (0,1) can
be found for each i such that Fi(t) = Gi(FÃ i(t)), and
which fulfils two conditions as follows.
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a) In order for Gi(FÃ i(t)) to be a genuine predictor,
Gi(.), like FÃ i(.), should be derived solely from {t1, ... ,
ti21} and not depend on any later observations;

b) In order for Gi(.)to be an effective adaptor, the
bias in FÃ i(.) should be similar to that observed in
FÃ i21(.) and earlier predictor CDFs, i.e. the extent
and direction of the bias should be `stationary'.

This is an ideal solution only, since Fi(t) is inherently
unknowable. However, the u-plot (see C.2.2) is defined
for j = s + 1, ..., c as a function:

Gc
U:{FÃ j(tj)}→{(j2 s) / (c2 s + 1)}

where (as before) c is the total number of observations
and s is the minimum number needed for the first
prediction. The u-plot is the sample CDF of the
{us + 1, ..., uc}, and maps FÃ j(tj) onto the U(0,1)
realization corresponding to Fj(tj). If its domain
included all FÃ j(t) instead of just a discrete subset, it
could approximate to the adaptor function Gi(.)
sought.

The `adaptive modelling' procedure to estimate Ti(i > s)
is therefore as follows.

1) The predictor CDFs {FÃ s+1(.), ..., FÃ i21(.)} are
derived from the prediction system.

2) The {ts+1, ... , ti21}, are substituted into the
predictor CDFs to give the (i2 s2 1) values uj
and the u-plot is constructed.

3) The corresponding y-plot is constructed and
trend capture is assessed.

4) If the u-plot shows significant bias but the
y-plot shows reasonable capture of trend, then
adaptation is likely to be beneficial and may
proceed.

5) To interpolate between the uj values {FÃ s+1
(ts+1), .., FÃ i21 (ti21)}, successive points (uj,
j/(i2 s)), (uj+1, (j + 1)/(i2 s)), are connected on
the u-plot. (0,0) is connected to (us+1,
(s + 1)/(i2 s)) and (ui21, (i2 1)/(i2 s)) is
connected to (1,1). This defines a function Gi

C(.)
which is continuous, but consists of a sequence of
straight-line segments and so has a discontinuous
first derivative.

6) Gi
C(.) is smoothed by fitting a spline curve to

give a function Gi
*(.) with a continuous first

derivative gi
*(.). The adapted predictor CDF for Ti

is then FÃ i
*(t) = Gi

*(FÃ i(t)) and its corresponding

PDF is fÃi
*(t) = gi

*(FÃ i(t)).fÃi(t).
The adaptive procedure applied to any existing
prediction system A provides a new prediction
system A* whose accuracy can be assessed by the
same techniques as used on the original, in particular
u-plots, y-plots, and prequential likelihood. (The reason
for not using Gi

C(.) as the adaptor function is that its
discontinuous first derivative means that PL cannot be
used, since it makes use of the predictor PDF.)

Generally, on a set of adapted predictions {FÃ i
*(t)} and a

set of corresponding observations {ti} (i = s + 1, ..., c),
the u*-plot shows minimal bias, the y*- plot is no worse
than the original y-plot, and the PLR plrA*A(s,c)
discredits the original prediction system A compared
with the adapted system A*. It is often found that

predictions from several prediction systems applied to
the same set of observations differ widely. In such
cases, adaptation is also found to bring the differing
estimates into closer agreement.

C.4 Combination of predictions

Another way of improving predictions is to combine
the results of applying several different prediction
systems. A linear combination of m prediction systems
at each step j in `one step ahead' predictions may be
defined as follows.

FÃ j
C(t) = wj

r FÃ j
r(t) where wj

r = 1∑
r=1

m

∑
r=1

m

wj
r is the weighting factor for prediction system r{1, ...,

m}at step j. One way in which these weights may be
chosen is to use prequential likelihood ratios as
follows.

wj
r = plr1,r(s, j21) / plr1,k (s, j2 1)∑

k=1

m

It is assumed that prediction system 1 is used as the
reference against which the PLR of each other system
is calculated. Note that the combined predictor
distribution is a true predictor, since it depends only
upon information obtained up to failure j21.

Such combinations of prediction systems have been
found to be give improved results compared to those
of the individual raw predictors.

C.5 Discrete predictions

Some of the methods of assessing predictive accuracy
are applicable to discrete predictions, i.e. predictions of
`failure count' in future intervals of given length.
Examples are the use of the Pearson (see B.3.2.5) and
Braun (see C.2.4.4) statistics, variability tests
(see C.2.4.2) and measures of relative error
(see C.2.4.4).

Other techniques are restricted to `time to failure'
predictions, since they depend upon the continuous
nature of the predictor distribution. In particular, the u-
and y-statistics (see C.2.1) are limited in this way, and
the PLR (see C.2.4.3) may not perform well if the
predictions and realizations are each of a small number
of failures (e.g. 2 or 3 per interval).

This also restricts the use of recalibration (see C.3) or
combination (see C.4) of predictions which depend on
the use of the u-plot as a recalibration function or of
the PLR as a weighting factor.

Extensions to the u-plot and y-plot techniques to cope
with discrete predictions have been devised, but a
description is beyond the scope of this annex.

C.6 Long-term predictions

The methods in this annex (particularly u-plots, y-plots
and PLR) have been described with reference to `one
step ahead' prediction. They can be extended in a fairly
obvious way to longer-term predictions. The most useful
assessment of a long-term prediction is probably the
relative error in the predicted failure count. Ideally, this
should take account of confidence limits expressed in
terms of percentiles, rather than a simple point estimate.
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