BS 4140-12: 1986 ISO 1618:1976

Methods of test for

Aluminium oxide —

Part 12: Determination of vanadium content

[ISO title: Aluminium oxide primarily used for the production of aluminium — Determination of vanadium content — N-Benzoyl-N-phenylhydroxylamine photometric method]

NOTE $\,$ It is recommended that this Part be read in conjunction with the general information given in BS 4140-0 "General introduction" which is issued separately.

UDC 546.623 - 31:620.1

This British Standard, having been prepared under the direction of the Chemicals Standards Committee, was published under the authority of the Board of BSI and comes into effect on 31 January 1986

© BSI 11-1999

Amendments issued since publication

The committees responsible for this British Standard are shown in Part 0.
The following BSI references relate to the work on this standard:
Committee reference CIC/24
Draft for comment 85/52370 DC

ISBN 0 580 14928 5

	Amd. No.	Date of issue	Comments
1			
;			
		1	

Contents

		Page
Na	tional foreword	ii
1	Scope and field of application	1
2	References	1
3	Principle	1
4	Reagents	1
5	Apparatus	2
6	Procedure	2
7	Expression of results	3
8	Test report	3
An	nex ISO Publications relating to aluminium oxide	
primarily used for the production of aluminium		4
Publications referred to Inside back		Inside back cover

National foreword

This Part of BS 4140 is identical with ISO 1618:1976 "Aluminium oxide primarily used for the production of aluminium — Determination of vanadium content — N-Benzoyl-N-phenylhydroxylamine photometric method" published by the International Organization for Standardization (ISO).

This method supersedes clause **12** of Addendum No. 2 (1974) to BS 4140:1967. Part 11 to Part 16¹⁾ of this standard collectively supersede Addendum No. 2 (1974) to BS 4140:1967, which is withdrawn.

Terminology and conventions. The text of the International Standard has been approved as suitable for publication as a British Standard without deviation. Some terminology and certain conventions are not identical with those used in British Standards; attention is drawn especially to the following.

The comma has been used as a decimal marker. In British Standards, it is current practice to use a full point on the baseline as the decimal marker.

In British Standards it is current practice to use the symbol "L" for litre (and its submultiples) rather than "l".

Wherever the words "International Standard" appear, referring to this standard, they should be read as "British Standard".

Cross-references

International Standard	Corresponding British Standard	
	BS 4140 Methods of test for aluminium oxide	
ISO 802:1976	Part 1:1986 Preparation and storage of test samples (Identical)	
ISO 804:1976	Part 4:1986 Preparation of sample solution by alkaline fusion (Identical)	
ISO 2927:1973	Part 20:1980 Sampling (Identical)	

NOTE The other International Standards listed in the Annex are for information only. Their correspondence with British Standards is summarized in BS 4140-0 "General information".

This standard prescribes methods of test only, and should not be used or quoted as a specification defining limits of purity. Reference to this Part should indicate that the method of test used complies with BS 4140-12:1986.

A British Standard does not purport to include all the necessary provisions of a contract. Users of British Standards are responsible for their correct application.

Compliance with a British Standard does not of itself confer immunity from legal obligations.

Summary of pages

This document comprises a front cover, an inside front cover, pages i and ii, pages 1 to 4, an inside back cover and a back cover.

This standard has been updated (see copyright date) and may have had amendments incorporated. This will be indicated in the amendment table on the inside front cover.

ii © BSI 11-1999

¹⁾ Parts 14 and 15 are in preparation.

1 Scope and field of application

This International Standard specifies an *N*-benzoyl-*N*-phenylhydroxylamine photometric method for the determination of the vanadium content of aluminium oxide primarily used for the production of aluminium.

The method is applicable to products having a vanadium content, expressed as V_2O_5 , between 0,000 3 and 0,016 % (m/m), provided that the Cr_2O_3 and the TiO_2 contents do not exceed 0,002 and 0,006 % (m/m) respectively.

1.1 Special cases (under study)

 ${\rm Cr_2O_3}$ contents greater than 0,002 % (m/m) and ${\rm TiO_2}$ contents greater than 0,006 % (m/m).

2 References

ISO 802, Aluminium oxide primarily used for the production of aluminium — Preparation and storage of test samples.

ISO 804, Aluminium oxide primarily used for the production of aluminium — Preparation of solution for analysis — Method by alkaline fusion.

ISO 2927, Aluminium oxide primarily used for the production, of aluminium — Sampling.

3 Principle

Preliminary oxidation of the vanadium present in a test portion to vanadium (V) using potassium permanganate in a 4,5 N sulphuric acid medium.

Formation of the vanadium *N*-henzovl-*N*-phenylhydroxy

N-benzoyl-*N*-phenylhydroxylamine complex. Extraction of the (violet) coloured complex, by means of chloroform in a 3,5 N hydrochloric acid medium.

Photometric measurement of the coloured complex at a wavelength of about 524 nm.

4 Reagents

During the analysis, use only reagents of recognized analytical grade and only distilled water or water of equivalent purity.

- **4.1** Sodium carbonate, anhydrous.
- 4.2 Boric acid (H₃BO₃), or
- **4.2.1** Boron trioxide (B_2O_3) .
- **4.3** Sodium sulphate, anhydrous.

4.4 *Chloroform*, free from ethanol.

Purify the chloroform, ρ approximately 1,49 g/ml, by washing it five or six times with a volume of water equal to half the volume of the chloroform treated. Dry on anhydrous calcium chloride and distil, collecting the distillate in a dark glass container. Keep in a cool place (temperature below 25 °C) and away from the light.

- **4.5** Hydrochloric acid, ρ approximately 1,19 g/ml, about 38 % (m/m) solution.
- 4.6 Sulphuric acid, approximately 16 N solution.

Carefully pour 450 ml of sulphuric acid solution, ρ approximately 1,84 g/ml, about 96 % (m/m) solution, into 500 ml of water, cool, dilute to 1 000 ml and mix.

4.7 Sulphuric acid, approximately 8 N solution.

Carefully pour 225 ml of sulphuric acid solution, ρ approximately 1,84 g/ml, about 96 % (m/m) solution, into approximately 500 ml of water, cool, dilute to 1 000 ml and mix.

- 4.8 Potassium permanganate, 0,6 g/l solution.
- **4.9** *N-Benzoyl-N-phenylhydroxylamine*, 1 g/l solution in chloroform.

Dissolve 0,1 g of

N-benzoyl-*N*-phenylhydroxylamine in 100 ml of purified chloroform (4.4).

4.10 *Vanadium*, standard solution corresponding to 1,000 g of V₂O₅ per litre.

Weigh, to the nearest 0,001 g, 1 g of V_2O_5 , previously dried at 110 °C and cooled in a desiccator, transfer it to a beaker of suitable capacity (for example 250 ml) and add 20 ml of a 5 % (m/m) sodium hydroxide solution.

After dissolving, acidify with 12 ml of the sulphuric acid solution (4.6), transfer the solution quantitatively to a 1 000 ml one-mark volumetric flask, dilute to the mark and mix.

1 ml of this standard solution contains 1,0 mg of V_2O_5 .

4.11 *Vanadium*, standard solution corresponding to 0.10 g of V_2O_5 per litre.

Take 50,0 ml of the standard solution (4.10), transfer to a 500 ml one-mark volumetric flask, dilute to the mark and mix.

1 ml of this standard solution contains 0,10 mg of $V_2\mathrm{O}_5.$

4.12 *Vanadium*, standard solution corresponding to 0.010 g of V_2O_5 per litre.

Take 50,0 ml of the standard solution (4.1), transfer to a 500 ml one-mark volumetric flask, dilute to the mark and mix.

1 ml of this standard solution contains 0,010 mg of $\ensuremath{V_2}\ensuremath{O_5}.$

5 Apparatus

Ordinary laboratory apparatus and

- **5.1** *Separating funnels*, having a very short stem, and of capacity approximately 150 ml.
- **5.2** Spectrophotometer, or
- **5.3** *Photoelectric absorptiometer,* fitted with filters ensuring a maximum transmission between 520 and 530 nm.

6 Procedure

6.1 Aliquot portion of principal solution (test portion)

Take 50,0 ml of the principal solution P (prepared in accordance with **6.1**, **6.2** and **6.3** of ISO 804, but using the sulphuric acid solution (**4.7**) instead of nitric acid solution to take up the fused mass, and diluting to 250 or 500 ml, according to the V_2O_5 content).

6.2 Preparation of the calibration graph

6.2.1 Preparation of standard colorimetric solutions for photometric measurements with a cell of optical path length equal to or greater than 3 cm

Into a series of six separating funnels (5.1) which have been completely dried and the taps of which have previously been moistened with the chloroform (4.4), place the volumes of the standard vanadium solution (4.12) indicated in the following table:

Standard vanadium solution (4.12)	Corresponding mass of V_2O_5
ml	mg
0a	0
1,00	0,010
2,00	0,020
4,00	0,040
6,00	0,060
8,00	0,080
^a Compensation solution.	- 1

Add to each funnel 20 ml of the sulphuric acid solution (4.6), dilute with water to approximately 70 ml, and cool. (The temperature must not exceed 25 °C.) Then add a few (3 or 4) drops of the potassium permanganate solution (4.8) until the solution shows a faintly pink coloration. Stir gently and wait 5 min for complete oxidation of the vanadium to take place.

6.2.2 Colour development

In order to avoid reduction of the vanadium, the addition of the cooled hydrochloric acid solution to the standard colorimetric solutions must be carried out immediately before extraction of the complex. It is therefore necessary to prepare only one point of the calibration graph at a time.

Add 10 ml of the

N-benzoyl-N-phenylhydroxylamine solution (4.9) and, without stirring, 32 ml of the hydrochloric acid solution (4.5), which has previously been cooled to approximately 10 °C. Shake for 1 min and leave to stand until the two phases are completely separate.

Draw off the chloroform phase and collect it in a perfectly dry 50 ml one-mark volumetric flask in which approximately 1 g of the sodium sulphate (4.3) has already been placed. Wash the residual aqueous phase in the separating funnel once by shaking it with 10 ml of the chloroform (4.4) in order to extract the last traces of vanadium. Draw off the chloroform phase and collect it in the same flask. Dilute to the mark with the chloroform, mix, and leave to stand for 10 min.

6.2.3 Photometric measurements

Carry out the photometric measurements using either the spectrophotometer (5.2) at a wavelength of about 524 nm, or the photoelectric absorptiometer (5.3) with a suitable filter, after having adjusted the instrument to zero absorbance against the compensation solution.

6.2.4 Plotting of the calibration graph

Plot a graph having, for example, the V_2O_5 contents in milligrams per 50 ml of standard colorimetric solution as abscissae and the corresponding values of absorbance as ordinates.

6.3 Determination

6.3.1 Preparation of the test solution

Place the test portion (6.1) in a separating funnel (5.1). Add 20 ml of the sulphuric acid solution (4.6) and proceed as specified in 6.2.1, first paragraph after the table.

6.3.2 Colour development

Carry out the colour development as specified in **6.2.2**.

6.3.3 Photometric measurement

Carry out the photometric measurement as specified in **6.2.3**, after having adjusted the instrument to zero absorbance against the blank test solution **(6.4.2)**.

6.4 Blank test

6.4.1 Preparation of the solution

Prepare the solution for the blank test, in the absence of extra-pure aluminium oxide, by directly dissolving 12 g of the sodium carbonate (4.1) and 4 g of the boric acid (4.2) or 2,25 g of the boron trioxide (4.2.1) in approximately 150 ml of hot water and 30 ml of the sulphuric acid solution (4.7). Boil for 10 min to eliminate the carbon dioxide; allow to cool and transfer the solution quantitatively to a volumetric flask of a capacity equal to that used for the preparation of the principal solution P (see 6.1). Place 36,7 ml of the sulphuric acid solution in a platinum dish of diameter approximately 70 mm, and evaporate until almost dry. Add to the dish a little hot water and 3,3 ml of the sulphuric acid solution. Heat, if necessary, and after cooling transfer the solution quantitatively to the flask containing the solution for the blank test. Cool, dilute to the mark and mix. Take 50.0 ml of the solution and proceed as specified in 6.3.1.

6.4.2 Colour development

Carry out the colour development as specified in **6.3.2**.

7 Expression of results

By means of the calibration graph (see **6.2.4**), determine the quantity of V_2O_5 corresponding to the value of the photometric measurement of the test solution.

The vanadium content, expressed as a percentage by mass of V_2O_5 , is given by the formula

$$m_1 \times \frac{D}{10 \times m_0}$$

where

 m_0 is the mass, in grams, of the test portion taken for the preparation of the principal solution P;

 m_1 is the mass, in milligrams, of V_2O_5 found in the aliquot portion of the principal solution P;

D is the ratio between the volume of the principal solution P and the volume of the aliquot portion taken for the determination.

8 Test report

The test report shall include the following particulars:

- a) the reference of the method used;
- b) the results and the method of expression used;
- c) any unusual feature noted during the determination;
- d) all operations not included in this International Standard or in the International Standards to which reference is made, or regarded as optional.

Annex ISO Publications relating to aluminium oxide primarily used for the production of aluminium

- ISO 802, Preparation and storage of test samples.
- ISO 803, Determination of loss of mass at 300 °C (conventional moisture).
- ISO 804, Preparation of solution for analysis Method by alkaline fusion.
- ISO 805, Determination of iron content 1,10-Phenanthroline photometric method.
- ISO 806, Determination of loss of mass at 1 000 and 1 200 °C.
- ISO 900, Determination of titanium content Diantipyrylmethane photometric method.
- ${\rm ISO~901}, \, Determination~of~absolute~density -- Pyknometer~method.$
- ISO 902, Measurement of the angle of repose.
- ISO 903, Determination of untamped density.
- ${\rm ISO~1232}, Determination~of~silica~content -- Reduced~molybdosilicate~spectrophotometric~method.$
- ISO 1617, Determination of sodium content Flame emission spectrophotometric method.
- ISO 1618, Determination of vanadium content N-Benzoyl-N-phenylhydroxylamine photometric method.
- ISO 2069, Determination of calcium content Flame atomic absorption method.
- ISO/R 2070, Determination of calcium content Spectrophotometric method using naphthalhydroxamic acid.
- ISO 2071, Determination of zinc content Flame atomic absorption method.
- ISO/R 2072, Determination of zinc content PAN photometric method.
- ISO 2073, Preparation of solution for analysis Method by hydrochloric acid attack under pressure.
- ISO 2828, Determination of fluorine content Alizarin complexone and lanthanum chloride spectrophotometric method.
- ISO 2829, Determination of phosphorus content—Reduced phosphomolyb date spectrophotometric method.
- ISO 2865, Determination of boron content Curcumin spectrophotometric method.
- ISO 2926, Particle size analysis Sieving method.
- ISO 2927, Sampling.
- ISO 2961, Determination of an adsorption index.
- ISO 3390, Determination of manganese content Flame atomic absorption method.

Publications referred to

See national foreword.

BS 4140-12: 1986 ISO 1618:1976

BSI — British Standards Institution

BSI is the independent national body responsible for preparing British Standards. It presents the UK view on standards in Europe and at the international level. It is incorporated by Royal Charter.

Revisions

British Standards are updated by amendment or revision. Users of British Standards should make sure that they possess the latest amendments or editions.

It is the constant aim of BSI to improve the quality of our products and services. We would be grateful if anyone finding an inaccuracy or ambiguity while using this British Standard would inform the Secretary of the technical committee responsible, the identity of which can be found on the inside front cover. Tel: 020 8996 9000. Fax: 020 8996 7400.

BSI offers members an individual updating service called PLUS which ensures that subscribers automatically receive the latest editions of standards.

Buying standards

Orders for all BSI, international and foreign standards publications should be addressed to Customer Services. Tel: 020 8996 9001. Fax: 020 8996 7001.

In response to orders for international standards, it is BSI policy to supply the BSI implementation of those that have been published as British Standards, unless otherwise requested.

Information on standards

BSI provides a wide range of information on national, European and international standards through its Library and its Technical Help to Exporters Service. Various BSI electronic information services are also available which give details on all its products and services. Contact the Information Centre. Tel: 020 8996 7111. Fax: 020 8996 7048.

Subscribing members of BSI are kept up to date with standards developments and receive substantial discounts on the purchase price of standards. For details of these and other benefits contact Membership Administration. Tel: 020 8996 7002. Fax: 020 8996 7001.

Copyright

Copyright subsists in all BSI publications. BSI also holds the copyright, in the UK, of the publications of the international standardization bodies. Except as permitted under the Copyright, Designs and Patents Act 1988 no extract may be reproduced, stored in a retrieval system or transmitted in any form or by any means – electronic, photocopying, recording or otherwise – without prior written permission from BSI.

This does not preclude the free use, in the course of implementing the standard, of necessary details such as symbols, and size, type or grade designations. If these details are to be used for any other purpose than implementation then the prior written permission of BSI must be obtained.

If permission is granted, the terms may include royalty payments or a licensing agreement. Details and advice can be obtained from the Copyright Manager. Tel: 020 8996 7070.

BSI 389 Chiswick High Road London W4 4AL