

BS 2782-11: Method 1150E: 1997 ISO 11413: 1996

Methods of testing

Plastics —

Part 11: Thermoplastics pipes, fittings and valves —

Method 1150E Plastics pipes and fittings — Preparation of test piece assemblies between a polyethylene (PE) pipe and an electrofusion fitting

 $ICS\ 23.040.20;\ 23.040.45$

This British Standard, having been prepared under the direction of the Sector Board for Materials and Chemicals, was published under the authority of the Standards Board and comes into effect on 15 March 1997

© BSI 03-1999

ISBN 0 580 27211 7

Amendments issued since publication

Amd. No.	Date	Comments

Contents

	Page			
National foreword				
Foreword	ii			
1 Scope	1			
2 Normative references	1			
3 Symbols	1			
4 Joint assembly	2			
Annex A (normative) Symbols for dimensions of an electrofusion socket	3			
Annex B (normative) Diagrammatic representation of variation				
in fusion energy with ambient temperature	4			
Annex C (normative) Conditions for the preparation of pipes and				
fittings	5			
Annex D (informative) Determination of fusion-jointing electrical				
parameters	6			
Figure A.1	3			
Figure B.1 — Profile with continuous adjustment of energy	4			
Figure B.2 — Constant-energy profile	4			
Figure B.3 — Profile with stepped adjustment of energy	5			
Table C.1 — Conditions for pipe and fitting preparation	5			
Table D.1 — Resistance-bridge performance characteristics	6			

© BSI 03-1999 i

National foreword

This British Standard reproduces verbatim ISO 11413:1996 and implements it as the UK national standard.

The UK participation in its preparation was entrusted by Technical Committee PRI/61, Plastics piping systems and components, to Subcommittee PRI/61/4, Methods of test for thermoplastics piping systems and components, which has the responsibility to:

- aid enquirers to understand the text;
- present to the responsible international/European committee any enquiries on the interpretation, or proposals for change, and keep the UK interests informed;
- monitor related international and European developments and promulgate them in the UK.

A list of organizations represented on this committee can be obtained on request.

Cross-references

This international standard is incorporated into BS 2782 Methods of testing plastics: Part 11: Thermoplastics pipes, fittings and valves, as Method 1150E:1996, for association with related test methods for plastics materials and plastics piping components.

British Standards which implement international or European publications referred to in dual numbered standards may usually be found in the BSI Standards Catalogue under the section entitled "International Standards Correspondence Index", or using the "Find" facility of the BSI Standards Electronic Catalogue.

Reference is made to ISO 4427, for which there is no identical British Standard because the corresponding British Standards are expected to be replaced by implementation of the collected Parts of EN 12201 when they are finalized.

Reference is made to ISO 4437, ISO 8085-2 and ISO 8085-3, for which there are no identical British Standards because the corresponding British Standards are expected to be replaced by implementation of the collected Parts of EN 1555 when they are finalized.

WARNING NOTE. This British Standard, which is identical with ISO 11413:1996, does not necessarily detail all the precautions necessary to meet the requirements of the Health and Safety at Work etc. Act 1974. Attention should be paid to any appropriate safety precautions and the method should be operated only by trained personnel.

A British Standard does not purport to include all the necessary provisions of a contract. Users of British Standards are responsible for their correct application.

Compliance with a British Standard does not of itself confer immunity from legal obligations.

Summary of pages

This document comprises a front cover, an inside front cover, pages i and ii, the ISO title page, page ii, pages 1 to 6 and a back cover

This standard has been updated (see copyright date) and may have had amendments incorporated. This will be indicated in the amendment table on the inside front cover.

Licensed Copy: Akin Koksal, Bechtel Ltd, 12 December 2002, Uncontrolled Copy, (c) BSI

INTERNATIONAL STANDARD

ISO 11413

> First edition 1996-09-15

Plastics pipes and fittings — Preparation of test piece assemblies between a polyethylene (PE) pipe and an electrofusion fitting

Tubes et raccords en matières plastiques — Préparation d'éprouvettes par assemblage tube/raccord électrosoudable en polyéthylène (PE)

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

International Standard ISO 11413 was prepared by Technical Committee ISO/TC 138, Plastics pipes, fittings and valves for the transport of fluids, Subcommittee SC 5, General properties of pipes, fittings and valves of plastic materials and their accessories — Test methods and basic specifications.

Annex A to Annex C form an integral part of this International Standard. Annex D is for information only.

 $\textbf{Descriptors:} \ \text{Pipes (tubes)}, \ polyethylene, \ plastic \ tubes, \ pipe \ fittings, \ welded \ joints, \ tests, \ specimen \ preparation.$

ii © BSI 03-1999

1 Scope

This International Standard specifies a method for the preparation of test pieces assembled from polyethylene (PE) pipes or spigot-ended fittings and electrofusion fittings (e.g. socket fittings such as couplers, or saddles).

The assembly criteria specified include parameters such as ambient temperature, fusion conditions, fitting and pipe dimensions and pipe shape, taking into account the limiting service conditions specified by the relevant product standards.

2 Normative references

The following standards contain provisions which, through reference in this text, constitute provisions of this International Standard. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agreements based on this International Standard are encouraged to investigate the possibility of applying the most recent editions of the standards indicated below. Members of IEC and ISO maintain registers of currently valid International Standards.

ISO 4427:—¹⁾, Polyethylene (PE) pipes for water supply — Specifications.

ISO 4437:—²⁾, Plastics pipes and fittings — Buried polyethylene (PE) pipes for the supply of gaseous fuels — Metric series — Specifications.

ISO 8085-2:—¹⁾, Polyethylene fittings for use with polyethylene pipes for the supply of gaseous fuels — Metric series — Specifications — Part 2: Spigot fittings for butt fusion jointing, for socket fusion using heated tools and for use with electrofusion fittings.

ISO 8085-3:—¹⁾, Polyethylene fittings for use with polyethylene pipes for the supply of gaseous fuels — Metric series — Specifications — Part 3: Electrofusion fittings.

ISO 12093:—¹⁾, Plastics pipes and fittings— Content of a manufacturer's technical-data file for polyolefin electrofusion fittings.

3 Symbols

3.1 General symbols (see Figure A.1)

 D_{im} the mean inside diameter of the fusion zone of a fitting in the radial plane located a distance $L_3 + 0.5$ L_2 from the face of the fitting socket;

$$D_{i,max}$$
 the maximum inside diameter of the fusion zone of the fitting:

$$D_{i,min}$$
 the minimum inside diameter of the fusion zone of the fitting;

$$d_{\rm e}$$
 the outside diameter of a pipe or fitting spigot:

$$d_{\mathrm{emp}}$$
 the mean outside diameter of a pipe or fitting spigot after preparation for assembly with the outer layer removed by scraping or peeling and calculated from the circumference measured in a radial plane coincident with the centre of the fusion zone at a distance L_3 + 0,5 L_2 from the face of the fitting socket after assembly:

$$L_2$$
 the nominal length of the fusion zone as indicated by the fitting manufacturer;

$$L_3$$
 the nominal distance from the face of the fitting socket to the leading edge of the fusion zone;

3.2 Clearances

3.2.1 Socket fittings

 C_1 the clearance between fitting bore and outside diameter of unscraped pipe.

$$C_1 = D_{\rm im} - d_{\rm em}$$

 C_2 the clearance between fitting bore and outside diameter of scraped pipe.

$$C_2 = C_1 + 2e_s$$

NOTE 1 C_2 may be obtained by machining the unscraped pipe to bring its mean outside diameter $d_{\rm em}$ to the value $d_{\rm emp}$ calculated from the equation

$$d_{\text{emp}} = D_{\text{im}} - C_2$$

 C_3 the maximum theoretical clearance between fitting bore and outside diameter of unscraped pipe.

$$C_3 = D_{\text{im max}} - d_{\text{e}}$$

 $D_{\text{im,max}}$ the maximum theoretical value of D_{im} as declared by the fitting manufacturer;

 e_{s} the depth of scraping or the thickness of material removed from the pipe surface by peeling.

¹⁾ To be published.

²⁾ To be published. (Revision of ISO 4437:1988)

 C_4 the maximum theoretical clearance between fitting bore and outside diameter of scraped pipe.

$$C_4 = C_3 + 2e_s$$

NOTE 2 C_4 may be obtained by machining the unscraped pipe to bring its mean outside diameter $d_{\rm em}$ to the value $d_{\rm emp}$ calculated from the equation

$$d_{\text{emp}} = D_{\text{im}} - C_4$$

3.2.2 Saddles

The clearance between saddle fittings and pipes is assumed to be zero.

3.3 Ambient temperature

 $T_{\rm a}$ the ambient temperature at which a joint is made.

NOTE 3 The ambient temperature may vary from the minimum temperature T_{\min} to the maximum temperature T_{\max} as specified either in the product standard or by agreement between the manufacturer and the purchaser.

 $T_{\rm R}$ the reference ambient temperature of 23 °C ± 2 °C;

 T_{max} the maximum permitted ambient temperature for joint assembly;

 T_{\min} the minimum permitted ambient temperature for joint assembly.

3.4 Fusion parameters

- Reference time, $t_{\rm R}$: The theoretical fusion time indicated by the fitting manufacturer for the reference ambient temperature.
- Fusion energy: The electrical energy supplied during the fusion-jointing cycle as measured at the terminals of the fitting at a given ambient temperature $T_{\rm a}$ and for electrical parameters whose values lie within the tolerance ranges declared by the manufacturer. The fitting manufacturer is generally required to state in the technical file in accordance with clause ${\bf 5}$ of ISO 12093:— any variations in fusion energy input required as a function of the ambient temperature in the range $T_{\rm min}$ to $T_{\rm max}$.
- Usual energy: The fusion energy supplied to a fitting at the reference ambient temperature $T_{\rm R}$, generated using the nominal fusion parameters defined by the fitting manufacturer on the basis of Table 9 of ISO 12093:—.
- Reference energy: The usual energy supplied to a fitting having a nominal electrical resistance defined by the manufacturer on the basis of Table 6 of ISO 12093:—.
- Maximum energy: The maximum value of the fusion energy supplied for jointing at a given ambient temperature $T_{\rm a}$.

— Minimum energy: The minimum value of the fusion energy supplied for jointing at a given ambient temperature T_a .

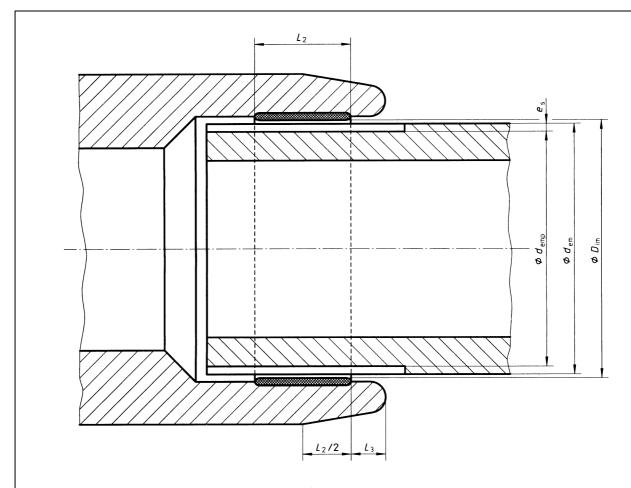
4 Joint assembly

4.1 General

The joints shall be made using pipes and/or spigotended fittings in conformance with ISO 4437, ISO 4427 and ISO 8085-2, and fittings for which the dimensions conform to ISO 8085-3. The preparation of the assembly for testing shall be carried out in accordance with the electrofusion-fitting manufacturer's written procedures.

Unless a greater scraping depth is recommended by the manufacturer, the minimum scraping depth $e_{\rm s}$ shall be 0,2 mm.

4.2 Procedure


Carry out the following procedure, where steps d) and f) shall be carried out in a temperature-controlled chamber able to maintain the temperature to within \pm 2 °C and large enough to contain the fitting, the pipes and the holding apparatus. Fittings shall not be used within 170 h of manufacture.

- a) Measure, at the reference temperature $T_{\rm R}$, the parts to be joined to determine the dimensional characteristics defined in **3.1** and illustrated in Figure A.1.
- b) Prepare the pipes to achieve the necessary clearance conditions, at the reference temperature $T_{\rm R}$, as given in 3.2.
- c) Mount the fitting on the pipes in accordance with the manufacturer's instructions.
- d) Condition the assembly and the associated apparatus for at least 4 h at the applicable ambient temperature $T_{\rm a}$ specified in Annex C.
- e) After conditioning, measure the resistance of the heating coil and determine the values of the electrical parameters in accordance with Annex C and Annex D.

The procedure for measuring the coil resistance implies the use of measuring equipment at the reference ambient temperature $T_{\rm R}$ with the fitting at the conditioning temperature.

- f) Carry out the fusion jointing in accordance with the fitting manufacturer's instructions at the energy levels indicated in Annex C.
- g) Leave the joint to cool until it reaches ambient temperature.

Annex A (normative) Symbols for dimensions of an electrofusion socket

 L_2 is the nominal length of the fusion zone.

 L_3 is the length of the unheated section of the socket.

$$D_{\text{im}} = (D_{\text{i,max}} + D_{\text{i,min}})/2$$

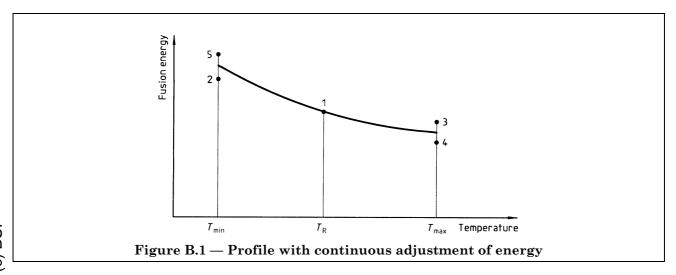
$$d_{\text{em}} = \frac{C}{\pi}$$

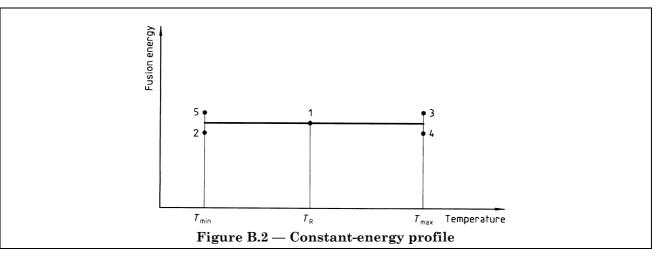
 $d_{\rm em} = \frac{C}{\pi}$ where C is the circumference of the unscraped pipe.

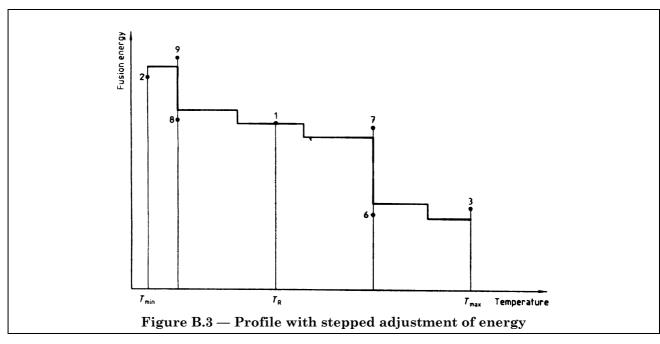
$$d_{\text{emp}}$$
 (by analogy) = $\frac{C_{\text{p}}}{\pi}$

 $d_{\rm emp}$ (by analogy) = $\frac{C_{\rm p}}{\pi}$ where $C_{\rm p}$ is the circumference of the pipe to be assembled with the fitting.

$$e_s = (d_{em} - d_{emp})/2$$


Figure A.1


3 $\ensuremath{\mathbb{C}}$ BSI 03-1999


Annex B (normative)

Diagrammatic representation of variation in fusion energy with ambient temperature

Figure B.1, Figure B.2 and Figure B.3 illustrate different forms of energy profile (see also Annex C).

Annex C (normative) Conditions for the preparation of pipes and fittings

Table C.1 — Conditions for pipe and fitting preparation

Set of conditions	$\begin{array}{c} \textbf{Ambient} \\ \textbf{temperature,} \ T_{\rm a} \\ \textbf{(3.3)} \end{array}$	Pipe configuration	Clearance ^a (3.2)	Energy (3.4)	$\begin{array}{c} \textbf{Assembly} \\ \textbf{load}^{\text{b}} \end{array}$
1	$T_{ m R}$	coiled or straight pipe as supplied	C_2	usual	usual
2	T_{\min}	straight pipe	C_4	minimum	minimum
3	$T_{ m max}$	coiled or straight pipe as supplied	C_2	maximum	maximum
4	T_{max}	straight pipe	C_4	minimum	minimum
5	T_{\min}	coiled or straight pipe as supplied	C_2	maximum	maximum
6	$> T_{ m R}^{ m c}$	straight pipe	C_4	minimum	minimum
7	$> T_{ m R}^{ m c}$	coiled or straight pipe as supplied	C_2	maximum	maximum
8	$< T_{ m R}^{ m c}$	straight pipe	C_4	minimum	minimum
9	$< T_{ m R}^{ m c}$	coiled or straight pipe as supplied	C_2	maximum	maximum

NOTE Sets of conditions 1 to 5 are applicable to the energy profiles illustrated in Figure B.1 and Figure B.2 of Annex B. Sets of conditions 1 to 3 and 6 to 9 apply to the stepped energy profile illustrated in Figure B.3.

© BSI 03-1999 5

 $^{^{\}rm a}$ In the case of saddles, the clearance shall be considered to be zero.

^b Applicable to joints with saddles, where the load can be controlled.

 $^{^{\}rm c}$ Temperature corresponding to the largest energy discontinuity and closest to the extreme temperatures situated on either side of the reference temperature.

Annex D (informative) Determination of fusion-jointing electrical parameters

(using the energy, voltage and current tolerances specified in ISO 12176-2³⁾)

D.1 Maximum energy input at ambient temperature $T_{\rm a}$

For control boxes using energy control:

energy = nominal energy + tolerance

For control boxes using voltage control:

applied voltage =
$$V_{\text{max}} \sqrt{R/R_{\text{min}}}$$

For control boxes using current control:

applied current =
$$I_{\text{max}} \sqrt{R_{\text{max}}/R}$$

where

 V_{max} is the maximum control-box output voltage, in volts (nominal + tolerance);

 I_{\max} is the maximum control-box output current, in amperes (nominal + tolerance);

 R_{\min} is the manufacturer's minimum fitting resistance at T_{R} , in ohms, declared in

accordance with ISO 12093;

 $R_{\rm max}$ is the manufacturer's maximum fitting resistance at $T_{\rm R}$, in ohms, declared in accordance with ISO 12093;

R is the resistance, measured using a four-arm resistance bridge with the performance characteristics specified in Table D.1, of the fitting conditioned at the ambient temperature $T_{\rm a}$ specified for jointing.

D.2 Minimum energy input at ambient temperature $T_{\rm a}$

For control boxes using energy control:

energy = nominal energy - tolerance

For control boxes using voltage control:

applied voltage =
$$V_{\min} \sqrt{R/R_{\max}}$$

For control boxes using current control:

applied current =
$$I_{\min} \sqrt{R_{\min}/R}$$

where

 V_{\min} is the minimum control-box output voltage, in volts (nominal – tolerance);

 I_{\min} is the minimum control-box output current, in amperes (nominal – tolerance);

 $R_{\rm min}$ is the manufacturer's minimum fitting resistance at $T_{\rm R}$, in ohms, declared in accordance with ISO 12093;

 $R_{
m max}$ is the manufacturer's maximum fitting resistance at $T_{
m R}$, in ohms, declared in accordance with ISO 12093;

R is the resistance, measured using a four-arm resistance bridge with the performance characteristics specified in Table D.1, of the fitting conditioned at the ambient temperature $T_{\rm a}$ specified for jointing.

The procedure for measuring the coil resistance implies the use of measuring equipment at the reference ambient temperature of 23 °C \pm 2 °C, conditioning of the fitting at $T_{\rm max}$ or $T_{\rm min}$ and measurement of the resistance of the coil of the fitting within 30 s of removal from the conditioning enclosure.

Table D.1 — Resistance-bridge performance characteristics

Range Ω	$\underset{m\Omega}{\mathbf{Resolution}}$	Accuracy
0 to 1	0,1	0,25 % of reading
0 to 10	1	0.25 % of reading
0 to 100	10	0,25~% of reading

³⁾ ISO 12176-2:—, Plastics pipes and fittings — Equipment for fusion jointing polyethylene systems — Part 2: Electrofusion equipment (to be published).

BSI — British Standards Institution

BSI is the independent national body responsible for preparing British Standards. It presents the UK view on standards in Europe and at the international level. It is incorporated by Royal Charter.

Revisions

British Standards are updated by amendment or revision. Users of British Standards should make sure that they possess the latest amendments or editions.

It is the constant aim of BSI to improve the quality of our products and services. We would be grateful if anyone finding an inaccuracy or ambiguity while using this British Standard would inform the Secretary of the technical committee responsible, the identity of which can be found on the inside front cover. Tel: 020 8996 9000. Fax: 020 8996 7400.

BSI offers members an individual updating service called PLUS which ensures that subscribers automatically receive the latest editions of standards.

Buying standards

Orders for all BSI, international and foreign standards publications should be addressed to Customer Services. Tel: 020 8996 9001. Fax: 020 8996 7001.

In response to orders for international standards, it is BSI policy to supply the BSI implementation of those that have been published as British Standards, unless otherwise requested.

Information on standards

BSI provides a wide range of information on national, European and international standards through its Library and its Technical Help to Exporters Service. Various BSI electronic information services are also available which give details on all its products and services. Contact the Information Centre. Tel: 020 8996 7111. Fax: 020 8996 7048.

Subscribing members of BSI are kept up to date with standards developments and receive substantial discounts on the purchase price of standards. For details of these and other benefits contact Membership Administration. Tel: 020 8996 7002. Fax: 020 8996 7001.

Copyright

Copyright subsists in all BSI publications. BSI also holds the copyright, in the UK, of the publications of the international standardization bodies. Except as permitted under the Copyright, Designs and Patents Act 1988 no extract may be reproduced, stored in a retrieval system or transmitted in any form or by any means – electronic, photocopying, recording or otherwise – without prior written permission from BSI.

This does not preclude the free use, in the course of implementing the standard, of necessary details such as symbols, and size, type or grade designations. If these details are to be used for any other purpose than implementation then the prior written permission of BSI must be obtained.

If permission is granted, the terms may include royalty payments or a licensing agreement. Details and advice can be obtained from the Copyright Manager. Tel: 020 8996 7070.