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BS 903-5:2004
1 Scope

This part of BS 903 gives recommendations for test procedures and guidance on appropriate methods for 
determining model parameters from test data for use in finite element analysis (FEA) of rubber. It covers 
stress–strain characterization, mechanical failure, friction, thermal properties and heat build-up.

It is applicable to solid vulcanized rubbers of hardness 20 to 80 IRHD for which the deformation is 
predominantly elastic, and to cellular materials formed using such rubbers. It might prove useful for other 
materials which can be deformed elastically to large strain.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated 
references, only the edition cited applies. For undated references, the latest edition of the referenced 
document (including any amendments) applies.

BS 903-A1, Physical testing of rubber — Part A1: Determination of density.

BS 903-A2, Physical testing of rubber — Part A2: Method for determination of tensile stress-strain 
properties.

BS 903-A4, Physical testing of rubber — Part A4: Determination of compression stress–strain properties.

BS 903-A10 (BS ISO 132), Rubber, vulcanized or thermoplastic — Part A10: Determination of flex cracking 
and crack growth (De Mattia).

BS 903-A14, Physical testing of rubber — Part A14: Method for determination of modulus in shear or 
adhesion to rigid plates — Quadruple shear method.

BS 903-A21, Physical testing of rubber — Part A21: Determination of rubber to metal bond strength.

BS 903-A42 (BS ISO 3384), Physical testing of rubber — Part A42: Determination of stress relaxation in 
compression at ambient and at elevated temperatures.

BS 903-A51, Physical testing of rubber — Part A51: Determination of resistance to tension fatigue.

BS 903-A61 (BS ISO 15113), Physical testing of rubber — Part A61: Determination of the frictional 
properties.

BS 7608, Code of practice for fatigue design and assessment of steel structures.

BS EN 12667, Thermal performance of building materials and products — Determination of thermal 
resistance by means of guarded hot plate and heat flow meter methods — Products of high and medium 
thermal resistance.

BS ISO 34-1, Physical testing of rubber — Determination of tear strength — Part 1: Trouser, angle and 
crescent test pieces.

BS ISO 4664, Rubber — Guide to the determination of dynamic properties.

BS ISO 23529, Rubber — Physical test methods — Preparation and conditioning of test pieces and preferred 
test conditions.

3 Terms and definitions

For the purposes of this British Standard, the following terms and definitions apply.

3.1  
finite element analysis
FEA
numerical method of analysing a product in which the numerical calculations are carried out for discrete, 
linked elements of the product
NOTE FEA is usually carried out using a commercial software package which allows visual simulation of the product to aid creation 
of the finite element model and viewing of the results of the analysis.
© BSI 2 August 2004 1
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3.2  
deformation mode
deformation arising through a particular relationship of the principal extension ratios
NOTE Examples are uniaxial tension, uniaxial compression, pure shear, simple shear or equibiaxial extension.

3.3  
deviatoric deformation
deformation involving change of shape with no associated change of volume

3.4  
volumetric deformation
deformation involving change of volume with no associated change of shape

3.5  
extension ratio
ratio of deformed to undeformed length of a line element of material in a specified direction
NOTE 1 This is also known as a stretch ratio.

NOTE 2 The term extension is used to cover all types of deformation; thus a compression is defined with an extension ratio less than 
one.

3.6  
hyperelastic
<material> deforming to high strains under the application of stresses, and returning to the original shape 
when the stresses are reduced, such that there is no loss of energy

3.7  
incompressible
<material> deforming without a change in volume
NOTE For infinitesimal strains, incompressibility is equivalent to a Poisson’s ratio of 0.5. For large deformations, the condition is 
that Æ1Æ2Æ3 = 1.

3.8  
model
<finite element> computer simulation of a product or structure, containing all the information necessary 
to carry out a finite element analysis

3.9  
model
<material> description, expressed mathematically, of some aspect of the behaviour of the material, which 
is implemented in the FEA package

3.10  
principal strain axis
one of three orthogonal directions within the material along which the deformation results only in changes 
in length of a line element of the material without any rotation of the element, other than that associated 
with any rigid body rotation

3.11  
principal stress
stress acting on a surface element of material normal to a principal stress axis

3.12  
principal extension ratio 
Æi
ratio of deformed to undeformed length of an element of material in the direction of one of the principal 
strain axes

3.13  
principal stress axis
one of three orthogonal directions in the material with the property that the stress acting on a surface 
normal to it has the same direction
2 © BSI 2 August 2004
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3.14  
stable
<model> showing an increase in stress for an increase in extension
NOTE This guide applies only to elastic materials for which unstable models are not physically possible.

3.15  
stiffness
ratio of force to deflection of a test piece or product
NOTE Dynamic stiffness is the ratio of the amplitude of the periodic force to that of an applied sinusoidal deformation.

3.16  
strain energy function
mathematical expression for the strain energy per unit unstrained volume (strain energy density) of the 
hyperelastic material in terms of its deformation

3.17  
strain invariant
I1, I2, I3
function of the principal extension ratios which is independent of the choice of co-ordinate axes
NOTE The most commonly used are defined in Clause 4.

4 Symbols

The following symbols are used with the following definitions throughout this part of BS 903. Other 
symbols are defined in the clauses in which they appear.

5 Introduction to FEA
FEA has become a popular tool for design engineers and others. It provides a means of obtaining a 
computer simulation of the behaviour of a product from which useful quantitative predictions may be made. 
Some of the uses of FEA for products containing rubber are:

— to simulate the response of the product under a system of applied forces or deflections;
— to optimize the design (shape) of a component;
— to identify regions where failure can occur;
— to estimate the sealing pressure of a seal;
— to optimize the cure time and temperature of a bulky product.

The widespread use of FEA among engineers has been aided by the development of a number of commercial 
FEA software packages, which enable those without a specialist knowledge of mathematics or numerical 
analysis methods to carry out FEA. As well as the program which performs the analysis (the solver), many 
such software packages also contain programs which allow a visual simulation of the product on the 
computer screen (the pre- and post-processor). These are very useful for generating the correct input for 
the analysis (the FEA model) and for viewing the results, such as the deformed shape of the product, or the 
temperature distribution following a thermal analysis.

Relatively simple, so-called “linear”, FEA packages are available and are suitable for carrying out analyses 
where the strains are small, such as stress analysis of metals. Two difficulties make such packages 
unsuitable for analysing rubber products: they assume that the strains are very small, and that the 
material is compressible (Poisson’s ratio significantly less than 0.5). Instead, for mechanical analyses of 
rubber products, so called “non-linear” FEA packages are required. Non-linear packages are also required 
for most transient thermal analyses, such as simulating heat flow during vulcanization.

I1 is the first strain invariant, defined such that I1 = Æ1
2 + Æ2

2 + Æ3
2;

I2 is the second strain invariant, defined such that I2 = Æ1
2Æ2

2 + Æ2
2Æ3

2 + Æ3
2Æ1

2;
I3 is the third strain invariant, defined such that I3 = Æ1

2Æ2
2Æ3

2;
W is the strain energy density, as defined in 3.16;
Æ1, Æ2, Æ3 are the three principal extension ratios.
© BSI 2 August 2004 3
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As with any computer simulation, the accuracy of the analysis is heavily dependent on the quality of the 
information supplied to the computer. The skill of the FEA practitioner lies in selecting the best analysis 
method, and also in using sensible models for describing the behaviour of the materials, with accurately 
measured values of the model parameters. Adequate models for some features of rubber behaviour are not 
yet provided with any existing commercial FEA package, notably for:

a) dynamic properties of rubber (see 6.3);

b) the Mullins effect (see 6.3);

c) heat build-up (see Clause 10).

The purpose of this guide is to give some background information on the material models available in FEA 
packages for modelling rubber, and to recommend suitable test methods for measuring the model 
parameters.

6 Stress–strain behaviour

6.1 Solid (incompressible) rubbers

6.1.1 Introduction

Traditionally, rubber is modelled as a perfect hyperelastic material. This means that features such as set, 
hysteresis and strain softening are ignored. Commercial FEA packages are gradually introducing models 
which do take account of these features, but such models do not always provide a realistic description of 
the material behaviour, so should be used with caution. Further details are given in 6.3. 

6.1.2 Hyperelastic models

Commercial FEA packages normally provide a choice of hyperelastic models expressed as strain energy 
functions, and the user is required to input one or more parameters of the function. The strain energy 
function is a mathematical expression for the amount of energy stored in the material, arising from work 
done in deforming it. In its most general form, it may be written as:

or

where the symbols have the meanings given in Clause 4. Stress–strain equations may be obtained directly 
from equation (1) by differentiation and, conversely, experimental stress–strain curves may be used to fit 
the parameters of the strain energy function. The necessary equations are given in Annex A.

Many FEA packages also provide a curve-fitting procedure in which the user may enter tables of 
experimental stress–strain data and the program provides the best-fit values of the parameters for the 
chosen function (see 6.7). Alternatively, the function need not have an explicit form, but values required to 
fit a particular experimental data set may be obtained numerically (see 6.1.4.7).

6.1.3 Choosing a hyperelastic model

6.1.3.1 If a model has a large number of parameters which are fitted from a limited amount of test data it 
is possible that the model will be unstable and unrepresentative of any real material for strains or 
deformation modes outside those covered by the test data. Therefore the model with the fewest number of 
fitted parameters which is able to give a satisfactory description of the rubber behaviour should be used.

6.1.3.2  Hyperelastic models do not account for the effects of set, hysteresis, strain softening and frequency. 
However, these features usually have a significant effect on the stress–strain behaviour of filled rubbers 
and thus experimental stress–strain curves used to fit the parameters of the hyperelastic model are 
dependent on these features. It is unnecessary and unwarranted to attempt to obtain a fit to the 
experimental data which is much better than the quality of the experimental data, bearing in mind its 
dependence on features which cannot be modelled. Furthermore, other imperfections and approximations 
in the FEA can also outweigh imperfections in the material model.

W = W(I1, I2, I3) (1a)

W = W(Æ1, Æ2, Æ3) (1b)
4 © BSI 2 August 2004
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6.1.3.3 For solid rubbers, the bulk modulus is a few thousand times larger than the shear modulus so it is 
normally reasonable to model the material as fully incompressible. Mathematically, incompressibility is 
defined by setting I3 = 1. Hence, the strain energy function for an incompressible hyperelastic material is 
a function of only two variables and is normally expressed as:

or

In 6.1.4 all the models have been expressed in a form which neglects compressibility. However, most 
commercial FEA programs allow the user to enter a value for the bulk modulus, and take account of 
compressibility with an additional volumetric term in the strain energy function. Thus they assume that 
the volumetric deformation does not influence the deviatoric deformation. There is little experimental 
evidence to indicate the form which the volumetric term should take; in any case, for most analyses, the 
volumetric deformation will be very small compared to the deviatoric deformation so its exact form is 
unlikely to be critical. Exceptions are given in 6.5.1. Most FEA programs consider cellular rubbers or 
rubbers with a cellular filler, such as cork, separately, and modelling these is discussed in 6.2.

6.1.3.4 It is often useful to assume that the strain energy density is a function of I1 only. Hence:

This assumption has been validated for filled natural rubber [1]. If this assumption is made at the outset, 
a considerable saving in the number of experimental tests required to characterize the rubber is possible 
since, in principle, a single test geometry is all that is required to fit the function W(I1), it not even being 
necessary to have a preconceived functional form with a fixed number of parameters. For further 
elaboration on this point, see 6.4.1. However, further tests serve to validate the assumption for a particular 
rubber and provide a check of the accuracy of the test. 

6.1.3.5 Some models are designed to model particular features of the stress–strain curve such as the high 
modulus at low strains, observed in filled rubbers, or the high modulus at high strains due to finite 
extensibility of the long chain molecules. Not all models will give a good representation of all the features 
of the stress–strain behaviour of a particular rubber. The model and fitting procedure should be chosen to 
give a good representation of the behaviour in the strain range of interest.

6.1.4 Appraisal of incompressible hyperelastic models

6.1.4.1 Introduction

All the models listed in 6.1.4.2 to 6.1.4.6 are available in at least one commercial FEA package. The 
advantages and disadvantages of each model are discussed, so that the FEA practitioner can make a 
sensible choice for any specific application. Examples of fits of some of these models to an experimental data 
set, to demonstrate some of the issues discussed in 6.1.3 and 6.1.4 are given in Annex C. 

6.1.4.2 Mooney-Rivlin models

6.1.4.2.1 These models are truncations of the infinite Taylor series expansion for a strain energy function 
given by [2]:

where

W = W(I1, I2) (2a)

W = W(Æ1, Æ2) (2b)

W = W(I1) (2c)

(3)

W, I1 and I2 are defined in Clause 4;
Cij are constants.

W Cij I1 3–( )i I2 3–( )j

i j 0= =

∞

∑=
© BSI 2 August 2004 5
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6.1.4.2.2 The neo-Hookean model [3] is obtained from equation (3) by setting all coefficients other than C10 
to zero. Hence, the strain energy function is given by:

This model gives linear behaviour in simple shear with the one constant being equal to half the shear 
modulus. This model is recommended for general use in FEA, when precise details of the non-linear 
behaviour are unknown or can be neglected. The model may be derived from the statistical theory of rubber 
elasticity, giving C10 . NkT where N is the number of active chains in the network, k is Boltzmann’s 
constant and T is absolute temperature, and thus has a molecular, rather than purely phenomenological, 
basis.

6.1.4.2.3  The Mooney model [4] is given by:

This model was developed to provide a more accurate representation of the behaviour of unfilled rubber in 
uniaxial tension than the neo-Hookean model, which tends to predict too high a stress at moderate strains 
if fitted at small strain. However, the Mooney model gives a poorer representation of the behaviour in 
compression. Also, fits to a limited amount of experimental data sometimes yield unstable functions 
(see 6.1.3.1). Hence, the Mooney model is not normally recommended.

6.1.4.2.4 The Yeoh model [5] is given by:

This model is capable of modelling some of the non-linear features of rubber. Normally C10 and C30 are 
positive and C20 is negative. Where this criterion is satisfied, the model will normally be stable but this is 
not assured. It is recommended when a more accurate representation of non-linear stress–strain behaviour 
than can be provided by the neo-Hookean model is required.

6.1.4.2.5  Commercial FEA programs often allow use of functions with more terms of the infinite series. 
Usually, these functions contain terms in I1 and I2. Due to the large number of fitting constants, it is 
generally possible to obtain a good fit to a particular set of experimental data. However, these functions are 
liable to give unstable representations of the behaviour for deformations outside the scope of the fit, unless 
an extensive range of data is used for the fit, and careful checks of stability are made. Furthermore, 
inelastic effects, such as hysteresis and stress softening, are often significant, so precise agreement with 
particular sets of experimental data is usually unwarranted. Hence, these models are not normally 
recommended.

6.1.4.3 The Ogden model

The Ogden strain energy function [6] takes the form:

where

The coefficients, Èn and µn, need not be integers or positive. Stability can be assured if Ènµn > 0 for all n. 
The Ogden function reduces to the neo-Hookean form if n = 1 and µ1 = 2. A better representation of the 
behaviour might be achieved with more terms, but care is needed to ensure that the behaviour is sensible 
for strains and deformation modes other than those used for the fit. Three terms are generally sufficient.

(4)

(5)

(6)

(7)

Èn and µn are constants.

W C10 I1 3–( )=

W C10 I1 3–( ) C01 I2 3–( )+=

W C10 I1 3–( ) C20 I1 3–( )2 C30 I1 3–( )3+ +=

W
Èn

µn
------- Æ1

µn Æ2
µn Æ1Æ2( )

µ– n 3–+ +
 
 
 

n 1=

∞

∑=
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6.1.4.4 Models that give a high stiffness at large strains

6.1.4.4.1 The models in 6.1.4.4.2 and 6.1.4.4.3 are specifically formulated to give a very high stiffness at 
large strains, corresponding to the finite extensibility of the rubber molecules.

6.1.4.4.2 The Gent strain energy function [7] takes the form:

where

This model is devised to reduce to the neo-Hookean model at small strains. It provides a straightforward 
way, with only one extra constant, of modelling rubber at high strains, but it is important to ensure that 
Im is large enough never to be exceeded in the analysis; otherwise the analysis will fail.

6.1.4.4.3 The Arruda-Boyce model [8] is given by:

where

This model also reduces to the neo-Hookean model at small strain. 

6.1.4.5  Model derived from molecular considerations

The Kilian or Van der Waals model [9] is given by: 

where

(8)

G is a constant (the shear modulus at small strain);

Im is a constant (the maximum possible value of I1). Typically Im is about 100.

(9)

G is a constant (the shear modulus at small strain);

Æm is a constant (the maximum possible extension ratio of a single molecule);

Ci are the constants arising from a series expansion of an inverse Langevin function.

(10)

(11)

(12)

G and Æm have the definitions given in 6.1.4.4.3

a       is the global interaction parameter which may be estimated from:

W 1
2
---G Im 3–( )ln 1 I1 3–( ) Im 3–( )⁄–{ }–=

W G
Ci

Æm
2i 2–

------------------- I1
i 3i–( )

i 1=

n
∑=

Thus, C1 1 2⁄=  C2;  1 20⁄= ; C3 11 1050⁄=  C4;  19 7000⁄=  C5;  519 673750⁄= .

W G Æ
2
m 3–( ) ln 1 ½ )–( ½ ]+[– 2

3
---a Ĩ 3–

2
----------- 
 

3
2
---

–













=

Ĩ 1 ¶–( )I1 ¶I2+=

½ Ĩ 3–( ) Æ
2
m 3–( )⁄=
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where

This model is an attempt to derive a strain energy function from molecular considerations. However, its 
rather complicated form and the relatively large number of parameters make it less convenient than some 
other models, so it is not recommended for general use.

6.1.4.6  Marlow model [10]

This model does not assume an explicit form for the strain energy function, except that it is a function of I1 
only. Instead, the strain energy density is calculated numerically from the data from one experimental test, 
interpolating between data points to give a complete description of the material. The strain energy density 
is assumed to be a function of I1 only in order to enable predictions in a general strain state to be made.

6.1.4.7  User-defined models

Commercial FEA packages often allow the user to define a strain energy function by writing a 
user-subroutine. The user is required to provide expressions, in terms of I1, I2 and user-defined parameters, 
for W and its derivatives with respect to I1 and I2.

6.1.4.8  Summary

The best choice of model depends on the purpose of the analysis, the range of strains present in the 
component and the availability of experimental characterization data. For many purposes, the 
neo-Hookean model is sufficient. Only one parameter, the shear modulus, need be measured or estimated. 
An improved fit may generally be achieved with the Yeoh model. If the application involves large strains 
(greater than about 200 %) the Gent or Arruda-Boyce model are recommended. For these latter three 
models, a characterization test in a single mode of deformation is sufficient. The three-term Ogden model, 
and higher order Mooney-Rivlin type models require more characterization tests. They can give a precision 
comparable to, or perhaps better than, the Yeoh or Gent models, but only if the fitting is carried out with 
care to avoid instabilities; for this reason they are not recommended.

6.2 Cellular rubbers

Rubbers with a small volume fraction of voids can be modelled with the hyperelastic models given in 6.1.4, 
with a suitable value for the bulk modulus. In addition, special foam models are provided in some FEA 
programs for modelling isotropic, hyperelastic highly compressible materials. An inherent difficulty in the 
use of an isotropic model for significantly compressible cellular rubbers is that their behaviour in tension 
differs markedly from their behaviour in compression. In tension the stiffness rises with increasing strain. 
In compression, the initial stiffness, at less than about 5 % strain, is the same as in tension, thereafter the 
cells buckle, giving a plateau where there is little increase in stress with increasing strains. At high 
compressive strains, corresponding to collapsed cells, the stiffness rises steeply. This means that it is 
essential that experimental characterization tests are carried out in similar deformations to those 
applicable in the analysis; for example, if compression dominates the material should be characterized in 
compression. Both deviatoric tests (see 6.4) and dilatational tests (see 6.5) are required to characterize the 
material.

(13)

C01 is the second Mooney-Rivlin parameter;

¶ is a linear mixture parameter, combining I1 and I2 into one parameter. Hence 0 < ¶ < 1. 
If ¶ = 0, the model is a function of I1 only.

a
2C01
3G
-------------

Æm
2

Æm
3 1–

-------------------+=
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6.3 Limitations of hyperelastic models and alternative modelling techniques

6.3.1 General

The traditional assumption that rubber behaves as a perfectly elastic material which may be described by 
a hyperelastic material model ignores many features of the real behaviour of typical rubbers. The most 
significant departures from hyperelastic behaviour are:

a) hysteresis. There is a loss of energy on loading and unloading so that the loading and unloading curves 
do not follow the same path; this also gives rise to damping or loss factor. For some unfilled rubbers 
damping is related to creep, a gradual increase in deformation under a load, stress relaxation, a gradual 
decrease in force under a constant deformation, and recoverable set through viscoelastic theory. For filled 
rubbers the interrelationships are not simple and the additional departures from elastic behaviour 
described in b), c) and d) are more evident.

b) the Mullins effect [11, 12]. The rubber is softer on second and subsequent loadings at strains less than 
the previous maximum. If strained above the previous maximum there is a marked stiffening near the 
previous maximum strain as the stress approaches its level for the unstrained material. Most softening 
occurs on the first cycle but there is some further softening on subsequent cycles. There is usually some 
slow recovery from this effect but, for the time scales of many applications, it may be considered to be 
largely irreversible.

c) permanent set. After deforming and relaxing the rubber does not return to its original dimensions but 
retains some permanent deformation. For some rubbers, cyclic loading increases the creep above the 
level expected from tests under constant load; this phenomenon is also akin to set.

d) the Payne or Fletcher-Gent effect [13, 14]. The dynamic stiffness of rubber tends to fall as the strain 
amplitude is increased, especially if the rubber incorporates reinforcing filler or is a block copolymer. The 
high stiffness at small amplitude recovers quite rapidly after subjection of the material to a higher strain 
amplitude. An associated effect is the relatively high stiffness of a small “dynamic” strain superimposed 
on a larger “static” strain.

Models which aim to take account of one or more of these features are under development. Some have been 
implemented in some commercial packages but not all are adequate for the purpose for which they are 
designed. Furthermore, some FEA packages allow the user to define and implement a model using a 
user-subroutine, though such an exercise is not trivial. At the moment, it is often better to use a 
hyperelastic material model, with the rubber characterized under the most appropriate conditions 
(see 6.4.1, 6.4.2, and 6.4.3). Exceptions are applications involving slow relaxation of forces under a static 
deformation, such as relaxation in seals, and applications involving damping using viscoelastic materials. 
For these applications the viscoelastic model described in 6.3.2 is recommended.

6.3.2 Large strain viscoelasticity

A model which is based on linear viscoelasticity theory, modified to large strains, is implemented in some 
FEA programs. It is able to model stress relaxation and the frequency dependence of the dynamic modulus. 
It successfully models only those departures from elasticity given in 6.3.1 a). Experimental data, giving the 
dependence of modulus with time, from a stress relaxation experiment are usually required. Appropriate 
test methods are given in 6.6.2. Alternatively, some FEA programs can formulate the model from dynamic 
properties, such as from a table giving values of storage modulus and loss factor as a function of frequency. 
Suitable test methods are described in 6.6.3.
© BSI 2 August 2004 9
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6.4 Recommended deviatoric tests for obtaining parameters for hyperelastic models

6.4.1 Introduction

Useful tests are uniaxial tension, uniaxial compression, equibiaxial tension, pure (planar) shear and simple 
shear. These tests are described in 6.4.4. 

Figure 1 shows the values of I1 and I2 which are covered by the tests. A comprehensive test schedule would 
require a fully biaxial test rig, allowing different stretches in two perpendicular directions on a sheet of 
rubber, in order to map the whole of the I1 I2 space, (the area shown unshaded on Figure 1). Ensuring 
compatibility of strain history and rate effects would be very difficult. Alternatively, a simplifying 
assumption could be made, such as that W is a function of I1 only, or that W is a preconceived function of 
I1 and I2, requiring only a specified number of parameters to be determined. If either assumption is made, 
a fit may be achieved from a test in a single mode of deformation. However, choosing W as a preconceived 
function of I1 and I2, and fitting from a test in a single mode of deformation is very dangerous because the 
fit may be apparently improved by independently adjusting the parameters of both the I1 and I2 terms. This 
effectively increases the number of adjustable parameters and can result in very unrealistic predictions for 
other modes of deformation, although the use of a stability check should avoid such extreme behaviour.

This problem can only be avoided by carrying out additional tests in other modes of deformation to ensure 
that the fit gives a realistic dependence for both I1 and I2. Fortunately, it appears that the first option, W 
as a function of I1 only, is often satisfactory, and then testing in a single mode of deformation is adequate. 
In any case, assuming W is a function of I1 only is robust and will at worst impair the fit rather than lead 
to very unrealistic predictions in other modes of deformation. Nevertheless, further tests would serve to 
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1 Equibiaxial extension of uniaxial compression

2 Pure or simple shear

3 Uniaxial tension

NOTE Shaded areas are not physically possible

Figure 1 — Values of I1 and I2 for different deformation modes.

38

33

28

23

18

13

8

3
3 8 13 18 23

1

2

3

I2

I1
10 © BSI 2 August 2004



BS 903-5:2004
validate the assumption that W is a function of I1 only, provide a check of the experimental accuracy of the 
tests and enable a greater range of strains to be covered than is possible from a single test. If tests in more 
than one deformation mode are to be carried out, it is sensible to choose tests which cover as much of the 
I1, I2 space of Figure 1 as possible. To this end, the following points should be taken into account. For an 
incompressible material: 

a) equibiaxial tension and uniaxial compression are equivalent deformations. No additional information, 
except for checks of the accuracy of the test methods, and the applicability of an incompressible 
hyperelastic model, may be obtained from carrying out both tests;

b) pure (planar) and simple shear are equivalent.

Any two or three tests, which correspond to different lines on Figure 1, provide a reasonably comprehensive 
evaluation of the I1 and I2 dependence of W.

Another consideration when choosing test methods is their experimental simplicity and the range of strain 
which may be covered. Uniaxial tension, pure shear and simple shear are all straightforward to carry out, 
and require no sophisticated equipment except a test machine, nor exceptionally precise measurement, 
although simple shear test pieces require moulding and bonding to end-pieces. These test methods are 
recommended for providing accurate data with the minimum effort or expense. Uniaxial compression is 
slightly more difficult to carry out accurately since it requires smooth, parallel test platens, effective 
lubrication of the test piece and careful measurement of deflection. Moreover, it is not possible to reach high 
strains. The alternative, an equibiaxial tension test, is also difficult. One technique, equibiaxial straining 
of a flat sheet (see 6.4.4.4.2), requires a relatively elaborate test jig. The other, inflation of a sheet 
(see 6.4.4.4.3), also requires some special equipment and demands precise measurements on curved 
surfaces to be made, thus is liable to be the most inaccurate of the tests at modest strains. However, it is 
possible to reach very high extensions by this method and thus it is a useful technique for modelling 
applications involving very large strains.

Test conditions should be chosen to reflect as far as possible the conditions of the product to be modelled. 
Thus the test speed, test temperature and strain range should, if possible, be comparable to those 
experienced by the product. The effect of strain rate on stress is normally quite small; a tenfold increase in 
strain rate typically gives less than 10 % increase in modulus. In respect of strain range it is important to 
bear in mind that some parts of the product might experience local strains that are much larger than the 
overall strain, thus the maximum strains in the characterization tests should be large enough to reflect 
this.

6.4.2 Methods for standardizing strain history effects

Because rubber, especially filled rubber, is not a perfect hyperelastic material, the stress–strain data will 
be dependent on strain history. Further information on strain history effects such as the Mullins effect are 
given in 6.3.1. Methods of carrying out characterization tests are recommended as follows.

a) Use only data from the first loading of a previously unstrained test piece. This technique does not 
address the phenomenon of softening due to previous straining, and thus will lead to models which 
overestimate the stiffness of products that have been pre-strained. However, it avoids confusion or error 
due to an inappropriate prestraining procedure, and is very simple to define and carry out.

b) Stretch the test piece one or more times to a predetermined strain, then use the data from the next 
loading. This technique allows for stress-softening. However, the magnitude of the prestrain affects the 
stress–strain behaviour in subsequent loadings. The time between prestraining and testing has some, 
though usually a small, effect on the stress–strain behaviour. A single prestrain is representative only 
of a product in a largely uniform state of strain. Normally, some parts of the product are subjected to 
higher strains than other parts and thus it is preferable for the prestrain to depend on the strain.

c) Stretch the test piece a fixed number of times to successively increasing strains, and use only the 
values at the peak of the final stretch at each strain. A typical test might be to stretch the test piece three 
times to 5 %, 10 %, 20 %, 50 %, 100 %, 150 %, 200 %, 250 % and 300 % strain. This technique allows for 
strain softening in a way which takes account of non-uniform strains in a product. Its disadvantages are 
that a relatively elaborate test procedure is needed and only a few data points are generated, so that the 
fit to a material model might be rather crude. Also, the stress–strain curve is a composition of many 
curves, rather than one obtainable directly from the rubber.

Method a) is recommended for applications in which the product experiences occasional deformations of 
varying magnitude. Method c) is recommended for applications in which the product is subjected to regular 
cyclic deformations.
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If methods b) or c) are chosen, there is a further complication. After each stretch, the test piece will not 
return to its original length but will retain some permanent set. The strains and stresses in subsequent 
stretches may be determined by:

i) using the original test piece dimensions;

ii) by redefining the length and cross-sectional area using the new unstrained length.
NOTE If option ii) is chosen it is applied as a retrospective correction, to the test data, rather than for specifying the test deflections. 
It is only possible to specify the test deflections after subtracting the permanent set if a time-lapse between cycles is incorporated in 
the test method.

Option ii) makes the data handling more cumbersome, but is more realistic so is recommended for 
materials with a large permanent set used in circumstances where some prestraining is likely to have 
taken place.

6.4.3 Ensuring consistency between tests in different modes of deformation

If data from tests in more than one mode of deformation are used to fit a hyperelastic model, the following 
issues should be considered.

a) The magnitude of any prestrains or maximum strains specified in the test procedure should be 
consistent between different tests. The recommended procedure is to strain to the same value of I1. 
Characterization using prestrains cannot be carried out in a logically consistent way in more than one 
deformation mode if W is taken as being dependent on I2 as well as I1.

b) The strain rates in the different tests should be comparable. The recommended procedure is to strain 
to a set value of I1 (say equivalent to 100 % uniaxial tensile strain) in equal times. This avoids the 
unnecessary elaboration of variable rate tests.

c) Samples prepared from the same rubber formulation can differ if the processing and vulcanization are 
not identical. If possible, the test pieces for the different tests should be cut from the same rubber sheet. 
Otherwise, care should be taken to ensure that all test pieces have been vulcanized to the same level, and 
that flow during processing is similar.

6.4.4 Deviatoric test methods

6.4.4.1 General guidelines

For all the tests detailed in this sub-clause preparation and conditioning of the rubber from which the test 
piece is cut should be in accordance with BS ISO 23529. The test speed and maximum strain(s) should be 
selected in accordance with the advice and recommendations of 6.4.1, 6.4.2 and 6.4.3. The test machine 
should be capable of operating at these speeds and accommodating these deflections, and thus its 
specification may differ from those given in BS 903-A2 (for tension), A4 (for compression) and A14 (for 
shear).

In all cases the force-deflection curve(s) required for the fit to a hyperelastic model should be recorded in 
graphical or digital form. Since the data are normally required in digital form for the curve-fitting 
procedure, a digital recording system is preferred. If method a) or b) of 6.4.2 is used the resolution of the 
digital recording device and test machine should be sufficient for the force and deflection at one-tenth of 
the maximum strain to be recorded to a precision of ±2 % and the capture rate sufficient to capture at least 
10 evenly spaced points. If method c) of 6.4.2 is used, the resolution should be sufficient for the force and 
deflection at the first maximum to be recorded to a precision of ±2 %. The capture rate should be sufficient 
to ensure that the point captured at the first maximum is within 1 % of the maximum, and is on the loading 
and not the unloading curve.

6.4.4.2 Uniaxial tension

The principal extension ratios are Æ, and  where Æ is greater than one. BS 903-A2 provides a 
suitable test method.
NOTE BS 903-A2 provides procedures for calculating tensile strength, elongation at break and the stress at a given elongation. 
These values are not required for FEA characterization and thus may be ignored. Only the force-deflection curve need be recorded.

For characterization up to stresses lower than the tensile strength, a parallel sided strip may be used 
instead of the dumbbell or ring test pieces specified in BS 903-A2. The length of the strip should be at least 
ten times its width. Its extension may be obtained directly from the cross-head movement of the test 
machine. Suggested dimensions of the strip are 2 mm × 5 mm × 150 mm. These proportions meet the 
requirement for a large length to width ratio, which ensures that the rubber is effectively in uniaxial 
extension, and a length large enough to make machine compliance and imprecision of clamping points 

1 Æ⁄ 1 Æ⁄
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insignificant. Because of its long length, this test piece is better than the dumbbell test piece for small or 
moderate (less than 100 %) strain measurements which are often the ones of interest.

6.4.4.3 Uniaxial compression

The principal extension ratios are Æ, and where Æ is less than one. Redefining the extension 
ratios in terms of the extension ratio in the direction of the “bulge”, i.e.   gives principal 
extension ratios of ,  and  where . Thus uniaxial compression gives a deformation which 
is equivalent to equibiaxial tension (see 6.4.4.4). BS 903-A4 provides a suitable test method. 
NOTE Only method A of BS 903-A4 (compression between lubricated plates) is suitable; compression between bonded plates gives 
a non-uniform strain state in the test piece which is not suitable for fitting a hyperelastic model.

If the test piece is properly lubricated, it might be ejected when strained. To prevent this, it should be 
constrained by a small pin, about 1 mm long, projecting from the centre of one of the plates. Good 
lubrication and accurate measurement of the compressive strain are important.

6.4.4.4 Equibiaxial tension

6.4.4.4.1 General

The principal extension ratios are Æ, Æ and 1/Æ2 where Æ is greater than one. Suitable test methods are:

a) equibiaxial straining of a flat sheet (6.4.4.4.2);

b) inflation of a sheet (6.4.4.4.3).

6.4.4.4.2 Equibiaxial straining of a flat sheet

A square rubber sheet is stretched equally in two perpendicular directions using a special rig. A typical 
design of rig is shown in Figure 2.

The rig should be constructed such that the force measurements are not distorted by friction between 
sliding members of the rig. Since clamping causes distortion of the edges of the rubber sheet, extensions 
should be measured away from the sheet edge, for example with an optical following device measuring a 
grid drawn on the unstrained test piece.

Key

1 Force

2 Clamp

3 Test piece

4 Clamping links should be free to separate and to slide parallel to the clamp as the rubber sheet is stretched

Figure 2 — Schematic diagram of apparatus for equibiaxial straining of a flat sheet
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6.4.4.4.3 Inflation of a sheet

A flat rubber sheet is inflated through a circular clamp as shown in Figure 3. Near the apex of the sheet 
the rubber is in a state of equibiaxial strain. Only points within about 10° of the apex conform closely to the 
equibiaxial strain state, so measurements should be taken within this region.

Dimensional measurements are needed to calculate the extension ratio and the radius of curvature at the 
apex from which the nominal stress is determined from the equation:

where

An optical method is generally used to obtain the measurements. For example, r could be determined from 
photographs of the inflated sheet viewed from the side, and Æ from photographs of a plane view of the apex 
of the sheet, on which a suitable grid has been drawn, using trigonometric corrections if necessary.

The pressure of air or other inflating fluid should be measured with an accurate pressure gauge. If a dense 
fluid such as water is used there will be a distortion of the inflated shape due to the weight of the fluid. The 
pressure–extension curve for inflation of a sheet is highly non-linear, and, at moderate extensions, a very 
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1 Air pressure

2 Test piece

3 Clamps

Figure 3 — Schematic diagram of apparatus for inflation of a sheet

s is the nominal stress;

P is the inflation pressure;

r is the radius of curvature of the sheet at the apex;

t is the initial thickness of the sheet.
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large increase in extension occurs with very little change in pressure. This means that in order to obtain 
measurements at equally spaced extensions, control of the fluid flow, as well as the pressure, is required.

6.4.4.5 Pure (planar) shear

The pure shear test piece is a strip of rubber, clamped along its length and strained perpendicular to its 
length (Figure 4). The principal extension ratios are Æ, 1/Æ and 1. The height of the strip in the straining 
direction should be no more than one-fifth of its longest dimension. Recommended dimensions (excluding 
the rubber inside the clamps) are 20 mm × 2 mm × 200 mm. The thickness of the test piece should be 
measured with a suitable gauge to an accuracy of ±0.01 mm. Five measurements should be taken over the 
width of the test piece and the mean used in the calculation of cross-sectional area. The longest dimension 
and unstrained height should be measured to an accuracy of ±0.5 %.

6.4.4.6 Simple shear

A suitable test method is given in BS 903-A14. Other test pieces such as the double bonded shear test piece 
(BS ISO 4664) are also suitable. A circular double bonded shear test piece may be strained in any direction, 
including symmetrically about the unstrained state. In order to avoid significant bending of the rubber 
elements in double or quadruple shear test pieces, the thickness of each rubber element should not exceed 
one-quarter of its width or diameter.

The curve fitting procedure in at least one commercial FEA package does not accommodate simple shear 
test data. However, since simple shear and pure shear are equivalent deformations (see Figure 1), it is 
possible to convert simple shear data into an equivalent pure shear form, which is accepted by the curve 
fitting procedure. A method for doing this is given in Annex B.

6.4.5 Summary

From a theoretical standpoint all the tests are equally acceptable. The number of tests required depends 
primarily on the choice of strain energy function (see 6.1.3 and 6.4.1). The test conditions, such as strain 
range, depend primarily on the application. For fitting to robust models, such as functions of I1 only, a 
single test is sufficient and the simpler ones, such as uniaxial tension, are recommended unless the 
application involves very large strains, in which case an additional test in equibiaxial extension is 
desirable. 

6.5 Recommended test methods for obtaining a value for the bulk modulus

6.5.1 Introduction

Since the bulk modulus of a solid rubber is a few thousand times its shear modulus, normally the 
deformation is overwhelmingly deviatoric (change in shape) rather than dilatational (change in volume). 
Thus, in most cases, it is reasonable to assume that the rubber is incompressible, or to assume a large value 
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Figure 4 — Schematic diagram of pure shear apparatus
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of 2 000 MPa to 3 000 MPa for the bulk modulus. In a few circumstances, volumetric compression is 
important and the bulk modulus should be measured experimentally. These circumstances are:

a) when the rubber is significantly prevented from bulging, such as when enclosed in a recess, or when 
thin layers are bonded to rigid plates;

b) when the rubber is cellular or contains a compressible filler such as cork.

Because of the relatively high coefficient of thermal expansion of rubber, there is a significant difference 
(around 15 %) between the bulk modulus of solid rubber under isothermal and adiabatic conditions; their 
relationship can be derived from thermodynamics: 

where 

The distinction between Ba and Bi must be borne in mind when choosing the test piece size and the rate of 
volumetric compression. If compression is achieved in a time significantly shorter than Äl2 where Ä is the 
thermal diffusivity, defined by equation (37), and l is the effective radius of the test piece, then conditions 
will effectively be adiabatic. 

(14)

Bi is the bulk modulus under isothermal conditions;

Ba is the bulk modulus under adiabatic conditions;

Ú is the absolute temperature;

Vo is the volume of unit mass under standard conditions of pressure and temperature;

µ is the volumetric coefficient of thermal expansion;

C is the specific heat capacity.
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6.5.2 Dilatational test methods

6.5.2.1 Constrained compression

A cylinder of rubber, which is prevented from bulging, is compressed. A suitable apparatus is shown in 
Figure 5. This test method is most suitable for almost incompressible materials, such as solid rubbers. The 
test piece should be lubricated with a suitable lubricant, which does not swell the rubber, such as detergent 
or low viscosity silicone oil. The deflection of the piston should be measured directly with a linear variable 
differential transformer (LVDT) or similar device; it is not advisable to rely on the cross-head displacement, 
as the machine compliance might be significant. It is sufficient for solid or nearly solid rubbers to assume 
a constant value for the bulk modulus, which should be obtained from the slope of the force–deflection curve 
from the equation:

where 

Key

1 Force

2 Piston

3 Cylinder

4 Test piece

Figure 5 — Schematic diagram of apparatus for constrained compression

(15)

B is the bulk modulus;

k is the tangent stiffness obtained from the slope of force–deflection curve. The initial slope 
of the graph might be smaller, due to “lead-in” associated with imperfections of the fit of 
the test piece in the apparatus. Thereafter, the graph will normally be approximately 
linear, and the tangent stiffness may be measured at any suitable strain, such as 5 %;

l is the height of the deformed test piece at the deflection at which k is measured;

A is the cross-sectional area of the test piece, which should be taken as the cross-sectional 
area of the cylindrical cavity in which the rubber is constrained.
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If the material is significantly compressible, equation (15) is not sufficiently accurate because it ignores the 
deviatoric component of the deformation in the confined compression test, so the method given in 6.5.2.2 
should be used instead.

6.5.2.2 Compression in a fluid

Materials which are significantly compressible, such as foam rubbers, may be compressed by immersing a 
test piece in a pressurizable container of a fluid which does not swell or interact with the rubber. The fluid 
pressure is increased and the volumetric compression is equated with the volume of fluid pumped into the 
container. Thus a means of measuring both the pressure and flow of the fluid is required. If the fluid is 
liable to penetrate the rubber, such as in the case of an open cell foam, it might be necessary to enclose the 
test piece in a bag which should allow air to escape without requiring appreciable force. This technique is 
recommended for materials which are much more compressible than the fluid; if this condition is not 
satisfied the compression should be corrected to allow for the compression of the fluid.

The bulk modulus is given by the slope of a plot of pressure against change in volume:

where 

This technique is recommended for measuring the dilatational behaviour of significantly compressible 
cellular rubbers for use with foam models. In this case, it might be preferable to fit the parameters using 
the curve-fitting program provided by the FEA package for which a curve of P against tV is required, 
rather than a single value of bulk modulus.

6.6 Recommended tests for obtaining parameters for large strain viscoelastic models

6.6.1 General guidelines

The choice of test method depends mainly on the application. Stress relaxation experiments cover longer 
time-scales than dynamic tests. Hence, stress relaxation data are appropriate for modelling events which 
take place over long times, such as stress relaxation of seals, whereas dynamic tests are more appropriate 
for modelling products subjected to vibrations.

6.6.2 Stress relaxation test method

A test piece is held at constant extension and the change in force with time is recorded. Usually the force 
will decay rapidly at first, and then more slowly, so it should be recorded more frequently near the 
beginning of the test. The timescale and temperature of the test should reflect that of the application. Any 
of the test pieces and test geometries described in 6.4.4.2 to 6.4.4.6 are suitable in principle, but the simpler 
geometries, such as uniaxial tension and simple shear, are recommended. Stress relaxation in compression 
is covered by BS 903-A42 Method A. The stiffness of rubber depends on temperature; for this reason it is 
important that the test temperature is controlled to within ±1 °C. 

6.6.3 Dynamic test method

Suitable test methods, and definitions of dynamic properties are given in BS ISO 4664. Forced vibration 
test methods are recommended. The test temperatures, frequencies and amplitudes should be chosen to 
reflect the service conditions of the product.

6.7 Fitting procedures

Some FEA programs provide a curve fitting procedure which calculates the constants for a hyperelastic 
model directly from stress–strain data. The types of data which they accept are all or some of uniaxial 
tension, uniaxial compression, biaxial extension, pure (planar) shear, simple shear and volumetric 
compression. In the absence of such a curve-fitting procedure, a least-squares fit to the experimental data 
may be carried out, as explained in Annex A.

(16)

B is the bulk modulus;

P is the hydrostatic pressure;

tV is the change in volume.

B P V∆⁄=
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Most curve-fitting programs give equal weight to each data point. Thus roughly equal numbers of data 
points from each test should be used to ensure that the fitting procedure does not favour the results of one 
test over those of another.

Strain energy density functions with a large number of parameters, and functions of both I1 and I2, rather 
than I1 only, might predict unstable behaviour for strains or deformations outside those covered by the test 
data. Some FEA programs have a stability check which should be used. If such a check is not provided, a 
visual check of stability should be made by plotting the stress–strain predictions of the model for different 
deformations, including equibiaxial extension, up to high strains. If the slope of the plots becomes negative 
at high strains, then the function is unstable.

7 Mechanical failure

7.1 Introduction

FEA aimed at prediction of mechanical failure of rubber requires no input from testing other than the 
stress–strain model (Clause 6), and for preliminary design work a neo-Hookean model is recommended 
[equation (4)]. However the results from the FEA must be set in a wider context of the failure 
characteristics of the material, and this is the subject of this clause.

FEA for materials other than rubber, such as steel, is often synonymous with stress analysis, because the 
only objective is to quantify the maximum stress values, and, through modification of the design, to reduce 
them to levels low enough to ensure adequate fatigue life according to an S–N curve for the material (e.g. 
BS 7608). Stress analysis is not an appropriate term for FEA of rubber products because there are usually 
additional objectives to prediction of mechanical failure (see Clause 5), and stress values are not an 
adequate guide to quantitative prediction of mechanical failure.

Hysteresis can result in heat build-up in rubber products undergoing arduous mechanical working, and is 
addressed separately in Clause 10. Mechanical failure of rubber, in the absence of such heat build-up, is 
believed to result from the growth of pre-existing internal flaws, occurring at a rate that depends on the 
amount of energy available to generate the fracture surfaces. This is known as the fracture mechanics, or 
energetics, approach. Except in some especially simple cases, the rate of crack growth cannot be directly 
related to field variables such as strain energy density, maximum principal stress, or maximum principal 
strain in the locality of the initiating flaw, so S–N or Wöhler curves generated from simple material fatigue 
experiments (see 7.4) often cannot be used to make reliable quantitative predictions of fatigue life of 
products. The field variables are, however, a useful output from FEA for making qualitative improvements 
in the design from the point of view of resistance to mechanical failure. For example, in a well-designed 
product the strain energy density should be as uniform as possible, while the maximum (tensile) value of 
principal stress gives a good guide to the location and orientation (normal to the maximum tensile stress) 
in which a crack can first appear.

According to the energetics approach, an FEA based analysis of mechanical failure will require the     
stress–strain model for the rubber and two additional inputs from experiment – the size of initiating flaws 
or cracks and the crack growth rate as a function of the energy available for fracture. The objective of the 
FEA would be to calculate the latter, and is briefly discussed in 7.5. Before discussing experimental 
characterization of the material through crack growth (7.3) and fatigue (7.4) tests, the foundations of the 
energetics approach will be outlined in 7.2.

This clause does not cover cellular rubbers, since very little literature exists on their mechanical strength. 
Nevertheless, it appears that the energetics approach, together with parameters describing the 
microstructure, may be used to relate the mechanical strength of a cellular rubber to that of the solid 
rubber from which it is formed [15]. In particular, the largest pores serve as flaws, so that materials with 
a uniform pore distribution, and no abnormally large pores, are anticipated to have the highest tensile 
strength.

7.2 The energetics, or fracture-mechanics approach

7.2.1 Criterion for mechanical failure

The basic assumption is that the energy needed to increase a crack surface area by $A is T$A, where T is 
a characteristic of the material and the particular conditions such as temperature, rate and chemical 
environment, but is independent of the geometric detail. The symbol T was chosen to signify “tearing 
energy” since the first application of the approach was to establish a criterion for tearing of rubber [16], and 
$A is taken to be the area of just one of the two new surfaces generated by the incremental fracture.
© BSI 2 August 2004 19



BS 903-5:2004
For a perfectly elastic material, deformed with fixed displacements at the boundaries during the crack 
growth $A so that the external forces do no work in the process, it is clear that T is supplied by the “strain 
energy release rate”  where U is the total strain energy, and the partial differentiation (with fixed 
length l) signifies that the derivative is evaluated with fixed boundary displacements. Thus the basic 
equation expressing the balance of energy is:

For convenience, T is usually defined to be the right-hand side of equation (17), which may be referred to 
as the energy available for tearing. For stable crack growth this is equal to the energy required for tearing, 
but the material response is in general more usefully thought of as the rate of crack growth corresponding 
to the energy, T, available for tearing. Evaluation of the right-hand side of equation (17) for a particular 
geometry involving finite strains is not usually tractable without resort to numerical methods such as FEA. 
The energetics approach has also been adopted for materials such as metals for which classical, linear 
elasticity is applicable. For such materials the “stress intensity factor” for a crack in a particular stress field 
or geometry is often used rather than the strain energy release rate as the driving force for fracture. The 
two quantities are interrelated for through-cracks in plates (or sheets) by:

where 

Thus, at small strains, the values of strain energy release rates for some rubber test pieces can be 
calculated from tabulated values for stress intensity factors for other materials. However, the high 
extensibility of rubber causes departures from such formulae at the usual working strains. High 
extensibility has the consequence that no distinction is made between different cracking modes in rubber, 
and that experimental results are much less sensitive to the perfection of boundary conditions at the 
clamped ends of the test pieces than is the case for more rigid materials.

7.2.2 Material characteristics

The energy, T, required to propagate a crack is related to the hysteresis of the material, as it is strained 
cyclically up to very high strains around the crack-tip and relaxed as the crack moves on.

It is found that, in the absence of special effects such as ozone, cracks grow only if the energy available for 
tearing, T, exceeds a threshold value T0. The value of T0 is about 0.05 kJ·m–2 for typical unfilled rubbers.

For T > T0, the crack growth rate depends on T:

where 

For a critical value Tc of T the crack growth rate becomes very large, and catastrophic tearing occurs as 
soon as T reaches this value. For strain-crystallizing rubbers such as natural rubber and polychloroprene, 
dc/dt is effectively zero for T significantly below Tc, but non-strain crystallizing rubbers suffer time 
dependent crack growth at all T > T0.

(17)

(18)

K is the stress intensity factor;

E' is the extensional modulus. E´ = E for plane stress, and  for plain strain 
where E is Young’s modulus and Ý is Poisson’s ratio.

(19)

c is the crack length;

t is time.
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Under cyclic stress conditions, the crack grows faster than anticipated from the “time dependent” crack 
behaviour, each cycle involving an increment in crack length during loading in addition to any contribution 
from time-dependent crack growth over the entire cycle. It is found that the cyclic crack growth rate, dc/dn, 
where n is the number of cycles, depends strongly on the maximum value, Tmax, of T during the cycle, and, 
for strain-crystallizing rubbers and rubbers with reinforcing filler, also quite strongly on the minimum 
value, Tmin, of T during the cycle. However, the dependence on the detailed time-history of the cycle is weak, 
unless, for a non-strain crystallizing rubber, the frequency is sufficiently low that time-dependent crack 
growth makes a significant contribution. We may thus often assume:

7.2.3 Fatigue

To use the energetics approach and FEA to predict the mechanical fatigue life of a product, the following 
steps are made:

a) use FEA to identify the probable position where a flaw is likely to develop into a crack, and the 
orientation of the crack. Calculate the dependence of T on c:

More detail is given in 7.5.

b) find the crack growth rate for the material, as discussed in 7.3.

c) Find the effective initial flaw size, c0, in the material as discussed in 7.4, and choose a condition such 
as cf = 3 mm, at which the product is deemed to have failed.

d) the number of cycles to failure, N, is given by:

As discussed in 7.4, simple fatigue experiments, together with the crack growth characteristic, g(T) 
(see 7.3), may be used to find the effective initial flaw size, c0, by regarding it as a fitting parameter in 
equation (23).

7.3 Test pieces for characterizing the crack growth behaviour of rubber

7.3.1 Introduction

There are no suitable standard methods for characterizing the crack growth behaviour using the energetics 
approach. The tension fatigue test (BS 903-A51) contains no methodology for inserting a crack, or 
measuring its length, although it is sometimes used in this way. The De Mattia test (BS 903-A10), with or 
without an initial cut, is not suitable because the geometry does not lend itself to a convenient expression 
for the strain energy release rate [equation (17)]. In principle this shortcoming could be overcome by using 
FEA to calculate the strain energy release rate, but it is simpler to use one of the test methods outlined in 
7.3.2 for which simple analytical expressions for the strain energy release rate have been derived.

According to the energetics approach, all of the test methods presented in 7.3.2 should yield the same 
results, characteristic of the material, if plotted as dc/dt or dc/dn versus T. This has usually been found to 
be the case, but in some cases agreement is imperfect, and it is good practice to work with more than one 
type of test piece to gauge the confidence level of the approach in a particular application.

7.3.2 Fracture test pieces for rubber

Several test pieces for characterizing fracture of rubber are common to those discussed in 6.4 for              
stress–strain characterization. However, the standard of precision required for fracture tests is not so great 
(see 7.3.6), so stipulations regarding test piece proportions (e.g. tensile) may be less stringent. A 
comprehensive set of fracture test pieces is given in Table 1. Test pieces A, B, C, D and F may be cut from 
2 mm thick sheet, but for test pieces E and G use of thinner sheet (0.5 mm) is recommended.

(20)

(21)

(22)

(23)
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22 Table 1 — Fracture test pieces for rubber

NOTE All dimensions refer to the unstrained state. Unless otherwise specified, h is the thickness of test pieces from sheet, orthogonal to the plane of the diagrams. W is the strain 
energy density in the rubber far enough away from the crack and the edge of the test piece for the strains to be uniform.

Test piece Expression for T and Characteristics
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Characteristics
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Table 1 — Fracture test pieces for rubber (continued)

Test piece Expression for T and 
conditions of validity
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24 Table 1 — Fracture test pieces for rubber (continued)

Test piece Expression for T and 
conditions of validity

Characteristics
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Table 1 — Fracture test pieces for rubber (continued)

Test piece Expression for T and 
conditions of validity
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26 Table 1 — Fracture test pieces for rubber (continued)

Test piece Expression for T and 
conditions of validity

Characteristics
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Table 1 — Fracture test pieces for rubber (continued)

Test piece Expression for T and 
conditions of validity
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28 Table 1 — Fracture test pieces for rubber (continued)

Test piece Expression for T and 
conditions of validity

Characteristics
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For a crack of length c through the thickness, h, of a sheet test piece, $A = h$c so that:

Evaluating this equation for test pieces containing cracks and undergoing finite strains has been done in 
several special cases, designated A, B, C, D in Table 1.

The expressions for strain energy release rate of the test pieces shown in Table 1 A, B, C and D require 
knowledge of the strain energy density, W, of the rubber in the region of approximately uniform strain far 
away from the perturbing influence of the crack. If the strain energy function for the rubber is known, W 
may be calculated from the deformation, but otherwise an auxiliary test is needed, W being calculated from 
the area under the force–extension graph for the extension used in the test, using a test piece with no crack, 
and dividing by the volume of rubber.

For another set of test pieces, it is convenient to consider U as being a function of the positions of the 
external boundaries – here we choose two orthogonal displacements x, y in place of l – as well as of the crack 
length c, so that:

where two of the partial derivatives have been identified with the forces Fx and Fy in the x and y directions, 
respectively:

It follows that the strain energy release rate is given by:

A set of test pieces shown in Table 1 as E, F and G have been devised for which the partial derivatives on 
the right-hand side of equation (27) may be evaluated, based on the geometry and, for , on 
auxillary measurements. The strain energy release rate may then be calculated from measurements of the 
forces Fx and Fy. 

The use of the trouser test piece, Table 1 F, for determining the tear strength is covered by BS ISO 34-1. 
However, this latter standard gives no guidance on crack growth measurements or on expressing results 
in terms of the tearing energy. Moreover, because the geometry recommended in BS ISO 34-1 for the 
trouser test piece has legs of small cross-sectional area (7.5 × 2 mm2) they will undergo significant 
stretching. This means that the approximation for the strain energy release rate based on neglecting the 
leg extension:

is usually very poor.

The test pieces shown in Table 1 A to G are all based on sheet rubber, and it is desirable to verify that the 
same characteristics of crack growth rate versus T are found for three dimensional test pieces; two such 
test pieces are given as Table 1, H and I. The equation for T for test piece I is unlike those for the other test 
pieces, in that the neo-Hookean form for W is assumed in its derivation, G representing the shear modulus 
(G = 2C10 of 6.1.4.2.2).
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7.3.3 Test pieces for characterizing bond and near-bond failure

The energetics approach is applicable to bond, or near-bond, failure as well as to cohesive failure within the 
bulk of the material. The proximity of the rigid material, to which the rubber is bonded, can modify the 
failure characteristics of the material, and this should be borne in mind when using test pieces H and I of 
Table 1 for determining the crack growth characteristics of the rubber. If experiment shows the failure not 
only to be parallel to the bond, but at or very near the interface, the results may be regarded as giving the 
bond fracture characteristics. BS 903-A14 advocates the quadruple shear test piece for assessing adhesion, 
but for the present purposes it is necessary also to stipulate that a sufficiently long initiating crack be 
inserted at the appropriate locus, shown in Table 1 H; also, cyclic loading conditions are usually of greater 
interest to the service conditions than a single shear load to failure as specified in BS 903-A14.

Two more adhesion tests, amenable to interpretation using the energetics approach, are included in     
Table 1 as J and K. Test piece J, the peel test piece, is covered by BS 903-A21, but again this latter standard 
would have to be augmented by choosing appropriate (e.g. cyclic) load conditions and expressing the results 
in terms of crack growth rate versus strain energy release rate.

7.3.4 Comparison of the test pieces and effect of crack tip sharpness.

Brief notes on the attributes, positive and negative, of the different test pieces are given in Table 1. The 
most convenient test pieces are A for bulk properties and J, using a low peel angle such as 30°, for near-bond 
failure. However, it is important to note that it is good practice to validate the energetics approach by using 
more than one test piece type for each major characterization programme.

Differences in crack tip sharpness result in different growth rates for the same energy release rate. The 
crack growth rate should only be regarded as characteristic of the material once sufficient crack growth has 
occurred for a natural crack tip roughness to develop, so initial rapid crack growth from a crack introduced 
with a razor blade should be excluded from reported results. Similar, but less marked, transients occur 
when the energy release rate is changed since the natural crack tip roughness increases as the energy 
release rate increases. In some circumstances discrepancies between results from different test pieces – for 
example between one for which T is constant and one for which T is proportional to c – may be attributed 
to this phenomenon.

Forking of the crack tip is an extreme form of blunting. It is part of the strength characteristics of the 
material, associated particularly with the use of reinforcing filler and non-relaxing cyclic loading 
conditions. Procedures for dealing with it should be guided by whether or not it plays a role in the 
application. 

7.3.5 Dealing with imperfections in elasticity

As presented in 7.2.1, the energetics approach is based on an assumption of perfectly elastic behaviour of 
the rubber. This is not entirely consistent with the known behaviour, or with the idea discussed in 7.2.2, 
that the fracture toughness is related to hysteresis in the region near the crack tip. For materials that 
exhibit significant hysteresis for all stress–strain cycles, there is a need to define W in the equations given 
in Table 1 in an unambiguous manner.

For test pieces A, B, C, D, H and I the fracture energy, T, is supplied by release of the far-field strain energy, 
so it is apparent that the retraction energy (the area under the force–retraction plot) is required. If the 
retraction energy depends on the rate of retraction there is still an ambiguity. The relevant rate would be 
expected to depend on the rate of advance of the crack tip and the length scale, in the region of the crack 
tip, over which the strain energy density changes from the far-field value to the relaxed value in the lee of 
the crack, but this is generally unknown. It is recommended therefore that, for these test pieces, the 
retraction strain energy density is used, as measured in a stress–strain testing procedure using the same 
rate of loading as in the crack growth tests, and using the same rate of unloading and, for cyclic studies, 
the same number of cycles. The test piece used for this purpose should be an auxiliary one, not containing 
a crack, but in practice for cyclic crack growth tests the convenience of working with the same test piece for 
determining W as for determining dc/dn may outweigh the error in W caused by the presence of a crack.

For test pieces F and J, the strain energy density appearing in the equations for T in Table 1 represents an 
offset to the predominant supply of T by the externally applied force, the energy stored in the region with 
energy density W actually increasing when the crack grows. It is therefore recommended in these cases that 
the extension strain energy density be used.
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7.3.6 Errors in experimental determination of the crack growth characteristics

Strength properties are statistical rather than precisely definable quantities. It is therefore to be expected 
that there is a scatter of around 30 % in crack growth rate for a given value of strain energy release rate. 
Errors associated with estimation of the T-values, for example the effects of imperfect elasticity discussed 
in 7.3.5, are probably of a similar order. Very little work on the latter has been published, the exception 
being a comparison [26] of results for pure shear (D of Table 1) and trouser (F of Table 1) test pieces for 
time-dependent cracking in unvulcanized natural rubber, a material whose elasticity is far from perfect. It 
was found that agreement was good only if the retraction strain energy was used for the pure shear test 
piece. A feel for the uncertainty in T may be obtained by comparing values calculated using the extension 
and the retraction values for W, and where these are very large a special study of the kind given in [26] is 
called for.

7.4 Material test for fatigue of rubber

BS 903-A51 provides a suitable method of determining the resistance to cyclic fatigue in tension. Assuming 
that the crack growth characteristics of the material are known (e.g. equation (20) with Tmin = 0), the 
effective flaw size, c0, may be determined from the number of cycles to failure by choosing c0 to fit 
equation (23) where T is expressed in terms of c, W and Æ using the equation given in Table 1 A.

For large flaws, such that all crack growth occurs in the power law region:

where

It follows, with cf >> c0 and n > 1, that

When equation (30) is used, the resulting value of c0 should be used to calculate the initial value of T, to 
check that it is large enough to be consistent with the power law region of g(T). If not, the integration in 
equation (23) should be carried out without this simplification, if necessary numerically.

It is good practice to verify that the effective flaw size is independent of the strain used in the fatigue test, 
verifying the applicability of the fracture mechanics approach to predict fatigue life.

Fatigue results may also be used to construct Wöhler or S–N type plots, by plotting the logarithm of the 
number of cycles to failure against the logarithm of maximum stress, strain or energy density. Such results 
give a guide to the lifetime of a product, the tensile fatigue number of cycles to failure being read off them 
for the same maximum stress, strain or strain energy as occurs in the product. However, for 
strain-crystallizing rubbers such as natural rubber and polychloroprene, there is a strongly beneficial effect 
of non-relaxing conditions on the fatigue life, and this is also true to some extent for non-crystallizing 
rubbers incorporating reinforcing filler. Thus, in addition to the uncertain basis on which tensile fatigue is 
used as a guide to fatigue in the more complex modes of deformation in products, the tensile fatigue tests 
of BS 903-A51 would need, as a minimum, to be supplemented with non-relaxing tests.

7.5 Calculation of strain energy release rate using FEA

It is generally straightforward to find values of field variables such as strain energy density, maximum 
principal stress and maximum principal strain from FE models of rubber products. Such results are useful 
for design optimization, predicting where mechanical failure will start and in what direction the initiating 
crack will grow (orthogonal to the maximum principal stress, if tensile), but serve only as a crude guide to 
fatigue life, through the use of S–N or Wöhler plots.

The test pieces in Table 1 are recommended as training and validation benchmarks for strain energy 
release rate analysis, the prediction of FEA being compared to those of the formulae given in Table 1. The 
strain energy release rate may be calculated from the difference in total energies for two models differing 
only in crack length. Satisfaction of equation (17) requires that the model boundaries do not move when 
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the crack is introduced. Thus boundary conditions based on a fixed displacement, rather than a fixed load, 
facilitate calculation of the strain energy release rate. The total strain energy may be reported directly by 
the FEA solver or calculated from the area under the force–deformation plot. Some finite strain FEA 
packages provide a direct solution for the strain energy release rate based on the J-integral [27] or 
Lorenzi [28] contour integral methods but in some packages these calculations may be incorrect for large 
strain problems. Considerable experience might be required to achieve convergence for a model of a product 
containing a crack, and to study crack propagation requires a remesh for each crack advance. Thus, unless 
the crack advance procedure is automated in some way, there might be relatively little advantage in effort 
in using the J-integral method compared to a direct calculation of strain energy release rate. 

To remove the tedium of repetitive meshing with different lengths of crack to simulate propagation, 
software packages are available that handle the meshing of the crack, and call an appropriate FEA package 
as a subroutine to solve for the strain energy release rate.

To simulate crack propagation in 3D FEA models, the crack front should be advanced locally in the 
direction that maximizes the release of strain energy. Advancing in the direction normal to the maximum 
principal stress is easier to implement and should give similar results. Propagation can result in the crack 
surface becoming non-planar, making the modelling of 3D crack growth very difficult.

8 Friction

8.1 Introduction

Rubber has unusually high friction, as a consequence of its very low elastic modulus and its viscoelastic 
behaviour. It is easily deformed under a contact pressure, resulting in a large real area of contact and high 
friction. Under sufficiently high loads, the real area of contact becomes equal to the apparent contact area, 
and the frictional stress becomes approximately constant, a condition known as “saturation”.

Most FEA packages incorporate friction models based on Coulomb’s law in which slip occurs if:

where

For materials which obey Coulomb’s law, È is independent of normal load and velocity, but most FEA 
programs allow a variable È, although in some this is only permitted through use of a user subroutine. This 
is useful since rubber does not obey Coulomb’s law and the coefficient of friction is dependent on the normal 
stress, sliding velocity and temperature. For example at “saturation”, Ù is constant; thus it is readily seen 
from equation (31) that the coefficient of friction is inversely proportional to the normal pressure. A 
modified version of the main model may allow for the possibility that a force “barrier” must be overcome 
for the transition from sticking to sliding. This is useful for cases where so-called “static” friction is higher 
than sliding or “dynamic” friction, such as where lubrication is more effective once sliding begins. Thus the 
purpose of friction testing for FEA is to provide a value or set of values for the coefficient of friction over 
the range of normal pressures, velocities and temperatures applicable to the analysis. Adequate estimates 
of appropriate normal pressures and sliding velocities may be obtained from simple hand calculations or 
from preliminary analyses with a crude value for È.

(31)

Ù is the tangential stress along the interface;
P is the pressure normal to the interface;
È is the coefficient of friction.

Ù ÈP>
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8.2 Test methods

BS 903-A61 provides suitable test methods for determining the coefficient of friction for contact involving 
rubber, and background information on the factors affecting rubber friction.
NOTE Method B of BS 903-A61 concerns changes in the coefficient of friction which occur after continuous long term sliding. It is 
not normally feasible to allow for changes in È over time in FEA, but use of long term, rather than initial, values of È is appropriate 
where this is representative of the service conditions.

The normal load(s) required for the friction tests may be obtained from:

for planar contact and from:

for contact between a rubber ball and planar track where

NOTE For contact between a rubber ball and planar track, the pressure distribution over the area of contact will be non-uniform. 
Applying a normal force, N, calculated according to equation (33), will result in a mean pressure of P.

The test speed(s), temperature(s) and lubrication, if any, should also be chosen to be representative of the 
service conditions of the product.

9 Thermal properties

9.1 General

Heat transfer during vulcanization, and other processes involving temperature changes, can be modelled 
with FEA by performing a transient thermal analysis. Taking the simple example of heat flow in an 
isotropic material, with no temperature dependence of the thermal properties, and no evolution or 
absorption of heat by the rubber, the heat flow within the body is defined by the differential equation:

where

For a cure analysis, heat evolved as the reaction progresses can be significant. Thus the governing 
differential equation becomes:

where

(32)

(33)

N is the normal load;
P is the normal pressure (estimated as suggested in 8.1);
A is the apparent contact area of the rubber test piece;
R is the radius of the rubber ball;
E is the Young’s modulus of the rubber ball.

(34)

Ú is the temperature;
t is the time;
Ä is the thermal diffusivity;
x, y and z are the co-ordinates of position.

(35)
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At the surface of the body, the flux, F, is given by:

where

The thermal diffusivity is related to the thermal conductivity by the equation:

where

9.2 Thermal conductivity

Various apparatuses exist for measurement of thermal conductivity. The use of guarded hot plate and heat 
flow meter apparatus is described in BS EN 12667, and these methods are suitable for use with rubber. 
They are “steady-state” methods and involve heating two surfaces of a rubber test piece to different 
temperatures and monitoring the heat flow across the rubber once thermal equilibrium has been reached. 
The geometry of the test piece and design of the apparatus is such that the heat flow is unidirectional. The 
influence of the thermal resistance at the boundary between the apparatus platens and the rubber may be 
eliminated by making the measurement on two test pieces of different thickness.

Alternatively, the thermal conductivity may be calculated, using equation (37), from direct measurements 
of thermal diffusivity. This method involves measurement of the temperature changes of a test piece before 
an equilibrium state has been reached and are thus termed “transient”. The temperature changes are often 
applied to one surface of a test piece suddenly, although values deduced from gradual heating have also 
been reported. Various test piece shapes are possible; symmetry considerations favour slabs, spheres or 
cylinders. There is no British Standard governing this method, and users are advised to give careful 
consideration to the magnitude of experimental and computational errors; this method is inherently less 
accurate than the steady-state methods.

9.3 Specific heat capacity

The specific heat capacity may be measured by calorimetry. The most widespread method is differential 
scanning calorimetry (DSC). In this method, a constant heating rate, typically 20 K/ min is applied to the 
test piece. The rate of heat flow into the test piece (compared to the heat flow into a second identical sample 
holder) is measured continuously. Three scans are required; the first of an empty test piece holder to 
establish an accurate baseline, the second of the test piece, and the third of a standard test piece of 
accurately known specific heat capacity over the temperature range of interest. The use of a standard 
eliminates errors associated with temperature dependence of the machine calibration, which might arise 
if a direct measurement is carried out. At any temperature, the specific heat capacity of the test piece, C, 
is given by:

C is the specific heat capacity;
dQ/dt is the rate of heat evolution per unit mass.

(36)

H is the film coefficient (the inverse of the thermal resistance);
K is the thermal conductivity;
(ÚsÖÚ0) is the temperature difference between the body at the surface and the 

surroundings;
n is the direction of the normal to the surface.

(37)

Ä, K and C have the definitions already given in this clause;
Ô is the density.

(38)

F H Ús Ú0–( ) K Ú∂
n∂
------–= =

Ä K ÔC⁄=

C
CsMs H'∆

M H's∆
-------------------------=
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where

At the start and end of heating at constant rate, there will be changing heating rates at different places in 
the test piece. These transient effects will give spurious readings at the start of the run; their duration 
depends on the size and thermal diffusivity of the test piece. Thus the heating run should start at a 
temperature at least 20 K below that for which data are required. Thereafter, the heating rate of all points 
in the test piece is uniform, but the temperature inside the test piece will lag behind that of the test piece 
holder and temperature sensor; this will lead to errors if the test piece is large or if the heat capacity has 
a strong temperature dependence.

The specific heat capacity of a rubber of known formulation may be estimated from the specific heat 
capacities of the ingredients, if these are known, from the equation:

where

9.4 Density

The method of hydrostatic weighings given in BS 903-A1 should be used.

9.5 Contact resistances and film coefficients

Since rubber is a deformable material, it normally forms good thermal contact with other solid materials. 
The thermal contact resistance is low, and may generally be neglected for contact between a clean rubber 
surface and another clean surface. The presence of surface layers, such as dirt or metal oxide films, might 
increase the surface resistance considerably. Thus, it is important that experimental determinations of 
contact resistance are made between materials whose surface conditions accurately match those of the 
modelled product.

There are no well documented test methods for measuring thermal contact resistances between rubber and 
other materials. A possible technique would be to measure the thermal conductivity of a few multiple layer 
“sandwiches” of the two materials by one of the methods given in 9.2, from which the thermal resistance 
may be deduced from the total resistance if the thermal conductivities of the two materials are already 
known.

When the rubber is in contact with a fluid, such as air or steam, the heat transfer depends on whether the 
surface is vertical or horizontal, its dimensions, and the temperature and speed of the fluid. Formulae and 
methods for obtaining the heat transfer film coefficients are given in standard chemical engineering texts.

9.6 Heat of vulcanization

The heat of vulcanization may be measured by DSC of an unvulcanized sample, followed by a second scan 
of the same, now vulcanized, sample to establish the baseline. The heat of vulcanization is given by the area 
under the exotherm on a plot of heat capacity against temperature. It is important that the DSC samples 
come from mixes in which the curatives are well-dispersed, to ensure the values obtained are 
representative. Other thermal processes can also occur in the same temperature range, such as melting or 
softening of solid compounding ingredients, or evaporation of plasticizers; in this case identification of the 
cure exotherm might be more difficult.

Cs is the specific heat capacity of the standard at the same temperature;
Ms is the mass of the standard;

is the measured rate of heat flow into the test piece, relative to the baseline;

M is the mass of the test piece;
is the measured rate of heat flow into the standard relative to the baseline.

(39)

the Vi   are the mass fractions of the ingredients;
the Ci   are the corresponding specific heat capacities.

H′∆

H′∆ s

C ViCi∑=
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10 Heat build-up

If a rubber product is subjected to rapid strain cycling, hysteretic losses in the rubber are converted to heat. 
If the heat is generated more rapidly than it is dissipated, the product becomes hot and degradation of the 
rubber can follow.

In order to model this behaviour with FEA, the program must first calculate the hysteretic energy loss and 
equate this to heat generation at every point in the product, then calculate the flow of heat. The heat flow 
calculations and material properties required are as described in Clause 9. The conversion of hysteretic 
losses to heat is more problematic; currently commercial FEA programs have not implemented this for 
their large strain linear viscoelastic models, so the user would need to estimate it or calculate it with a 
user-subroutine. Normally a “modular” approach is adopted, in which the mechanical problem is solved for 
a small number of cycles first, and the calculated heat generation rate is then fed into a thermal analysis 
in which the rubber is assumed to be motionless. This avoids the need to use a very large number of 
increments to model the movement of the rubber over thousands of cycles. If necessary, further iterations 
of the two analyses may be carried out to allow for the temperature dependence of the mechanical 
properties. In view of the limitations of the commercial FEA packages in providing suitable mechanical 
models, further discussion of modelling heat build-up is beyond the scope of this guide.
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Annex A (informative)
Stress-extension relationships in simple deformations and parameter 
optimization

The relationships between the strain energy function and the nominal stress are:

where

Hence, the form of the stress, stretch ratio relationship for a strain energy function W(I1, I2) may be
obtained by differentiating the function and substituting into the relationships given in equations (A.1) to
(A.4). Values of the coefficients may then be obtained from a least-squares fit to the experimental data. So
that relative rather than absolute departures are minimized, it is appropriate to use, as the objective
function to be minimized, the sum of the square of relative errors:

where

If experimental data have been obtained from more than one type of test, the fit may be made to one set of
data, and a check made of the accuracy of the fit to the other sets of data. This procedure is adequate for
functions of I1 only. With more complicated strain energy functions, such as functions of I1 and I2, a more
sophisticated procedure is needed to provide best-fit values of all the coefficients.

 for uniaxial tension and compression (A.1)

 for pure shear (A.2)

 for equibiaxial extension (A.3)

 for simple shear (A.4)

ÖT is the nominal stress in the direction of stretching in uniaxial tension or squashing in uniaxial 
compression;

ÖP is the nominal stress in the direction of stretching in pure shear;
ÖB is the nominal stress in the direction of stretching in equibiaxial tension;
ÖS is the shear stress in simple shear;
ÆT is the extension ratio in the direction of stretching in uniaxial tension or squashing in uniaxial 

compression;
ÆP is the extension ratio in the direction of stretching in pure shear;
ÆB is the extension ratio in the direction of stretching in equibiaxial tension;
¾ is the shear strain in simple shear;
W, I1 and I2 are defined in Clause 4.

(A.5)

Öe is the experimental value of stress;
Öf is the analytical value at the same Æ;

ÖT 2 ÆT ÆT
2––( ) W∂

I1∂
-------- 1

ÆT
------ W∂

I2∂
--------+ 

 =

ÖP 2 ÆP ÆP
3––( ) W∂

I1∂
-------- W∂

I2∂
--------+ 

 =

ÖB 2 ÆB ÆB
5––( ) W∂
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2 W∂
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--------+ 
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Annex B (informative)
Relationship between stress in simple shear and pure shear

It may be shown that the extension ratio in the direction of stretching in pure shear, ÆP, is given by:

where

From equations (A.2) and (A.4) the nominal stress in the same direction, ÖP, is given by:

where ¾ is defined previously and ÖP, ÖS, and ÆP are defined in Annex A.

Hence, simple shear data may be converted to a pure shear form by use of equations (B.1) and (B.2) to
obtain ÆP and ÖP from ¾ and ÖS.

Annex C (informative)
An example of fitting models to experimental data

Some of the models discussed in 6.1.4 were fitted to the stress–strain curve generated from a first cycle
uniaxial tensile test on a carbon black-filled natural rubber vulcanizate. The test data were recorded from
zero to 200 % strain. The curve fitting was carried out using the routine supplied as part of a major
commercial non-linear FEA package. No attempt was made to satisfy any available criteria to ensure
stability of the models. The fits to the uniaxial tension data, with an extrapolation to 400 % strain, are
shown in Figure C.1. The strain in the figures is expressed as extension ratio. The model constants are
given in Table C.1. The predictions of the models (with the same fitted constants) of the behaviour in pure
shear and equibiaxial extension are shown in Figure C.2 and Figure C.3 respectively.

Table C.1 — Constants derived from fits to uniaxial tension data

(B.1)

¾ is the shear strain in simple shear.

(B.2)

Model Fitted constants

neo-Hookean C10 = 0.594
Mooney C10 = 0.745; C01 = –0.273
Yeoh C10 = 0.569; C20 = –0.018 1; C30 = 0.004 4
3 term Mooney-Rivlin C10 = –0.588; C01 = 1.435; C11 = 0.181
Arruda-Boyce G = 0.898; Æm = 2.25
Gent G = 1.02; Im = 20.3
2 term Ogden È1 = 2.16; µ1 = –4.28; È2 = –28.1; µ2 = 0.188;
3 term Ogden È1 = 2.16; µ1 = 2.42; È2 = –35.5; µ2 = –0.634; È3 = –44.5; µ3 = 0.547

ÆP
1
2
--- ¾ ¾

2 4++( )=

ÖP

ÖS
¾
------ ÆP ÆP

3––( )=
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Figure C.1 — Fits to experimental data in uniaxial tension
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Figure C.2 — Prediction of behaviour in pure shear based on fits to experimental data in 
uniaxial tension
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It may be seen from Figure C.1 that all models provide an adequate fit to the data within the strain range
of the experimental data. Thereafter the models diverge: the Yeoh, Gent and Arruda-Boyce models predict
rather stiff behaviour, whereas the neo-Hookean and Mooney models show no increase in stiffness.
Typically, the real behaviour would lie between these extremes. For the Arruda-Boyce model, the value for
the maximum chain extension, Æm, determined from the fit, is much lower than is physically realistic. The
stiffening, for all models capable of capturing it, would be predicted more accurately if test data to higher
strains were used for the fit, emphasising the need to ensure that the characterizations tests cover the full
strain range of interest.

In the other modes of deformation (Figure C.2 and Figure C.3), the predictions of the models which are
functions of I1 only (neo-Hookean, Yeoh, Gent and Arruda-Boyce) agree quite closely, at least at moderate
strains, and their predictions seem sensible. The other models deviate widely from these predictions, with
the Ogden and 3 term Mooney-Rivlin model suggesting unrealistically stiff behaviour. Moreover, the
Mooney model is unstable as it predicts a negative stiffness in equibiaxial extension. It also predicts,
implausibly, that the rubber is softer in pure shear, where it is constrained laterally, than in uniaxial
tension, where it is not. Although an improvement to the Mooney fit would be possible by making use of a
stability check, these examples show the advantage of restricting the model to a function of I1 only. At high
strains, the lack of high strain fitting data in tension is likely to have impaired the fit of the Yeoh and
Arruda-Boyce models. Furthermore, analyses with the Gent model will fail if I1 ever exceeds Im; its utility
might be improved if a higher value for Im is adopted.

Figure C.3 — Prediction of behaviour in equibiaxial extension based on fits 
to experimental data in uniaxial tension
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