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Foreword 

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies 
(ISO member bodies). The work of preparing International Standards is normally carried out through ISO 
technical committees. Each member body interested in a subject for which a technical committee has been 
established has the right to be represented on that committee. International organizations, governmental and 
non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the 
International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. 

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2. 

The main task of technical committees is to prepare International Standards. Draft International Standards 
adopted by the technical committees are circulated to the member bodies for voting. Publication as an 
International Standard requires approval by at least 75 % of the member bodies casting a vote. 

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent 
rights. ISO shall not be held responsible for identifying any or all such patent rights. 

ISO 28640 was prepared by Technical Committee ISO/TC 69, Applications of statistical methods. 

This is the first edition. 
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Introduction 

This International Standard specifies typical algorithms by which the users can regard the generated 
numerical sequences as if they were real random variates. 

Nowadays most statisticians, scientists and engineers have enough computer power at their disposal to carry 
out large computer simulations, and it is important that these be based on sound pseudo-random generators. 
This International Standard has been developed to help ensure that randomization, where needed, is carried 
out correctly and efficiently. 

Six uses of randomization can be identified in statistical standardization: 

⎯ selection of a random sample; 

⎯ analysis of sample data; 

⎯ development of standards; 

⎯ checking theoretical results; 

⎯ demonstrating that a proposed procedure has the properties claimed of it; 

⎯ resolving uncertainty in the statistical literature. 

 



BS ISO 28640:2010



BS ISO 28640:2010

INTERNATIONAL STANDARD ISO 28640:2010(E)

 

© ISO 2010 – All rights reserved 1
 

Random variate generation methods 

1 Scope 

This International Standard specifies methods for generating uniform and non-uniform random variates for 
Monte Carlo simulation purposes. Cryptographic random number generation methods are not included. This 
International Standard is applicable, inter alia, by 

⎯ researchers, industrial engineers or experts in operations management, who use statistical simulation, 

⎯ statisticians who need randomization related to SQC methods, statistical design of experiments or sample 
surveys, 

⎯ applied mathematicians who plan complex optimization procedures that require the use of Monte Carlo 
methods, and 

⎯ software engineers who implement algorithms for random variate generation. 

2 Normative references 

The following referenced documents are indispensable for the application of this document. For dated 
references, only the edition cited applies. For undated references, the latest edition of the referenced 
document (including any amendments) applies. 

ISO/IEC 2382-1, Information technology — Vocabulary — Part 1: Fundamental terms 

ISO 3534-1, Statistics — Vocabulary and symbols — Part 1: General statistical terms and terms used in 
probability 

ISO 3534-2, Statistics — Vocabulary and symbols — Part 2: Applied statistics 

3 Terms and definitions 

For the purposes of this document, the terms and definitions given in ISO/IEC 2382-1, ISO 3534-1 and 
ISO 3534-2 apply, except where redefined below. 

3.1 
random variate 
random number 
number as the realization of a specific random variable 

NOTE 1 The term “random number” is often used for uniformly distributed random variate. 

NOTE 2 Random numbers provided as a sequence are called a “random number sequence”. 
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3.2 
pseudo-random number 
random number (3.1) generated by an algorithm, that appears to be random 

NOTE If there is no fear of misunderstanding, a pseudo-random number may simply be called a “random number”. 

3.3 
physical random number 
random number (3.1) generated by a physical mechanism 

3.4 
binary random number sequence 
random number (3.1) sequence consisting of zeros and ones 

3.5 
seed 
initialization value required for pseudo-random number generation 

4 Symbols and mathematical binary operations 

4.1 Symbols 

For the purposes of this document, the symbols given in the normative references as the latest versions of 
ISO/IEC 2382-1, ISO 3534-1 and ISO 3534-2 apply, except where redefined below. 

The symbols and abbreviations specifically used in this International Standard are as follows: 

X integer type uniform random number 

U standard uniform random number 

Z normal random variate 

n suffix of random number sequence 

4.2 Mathematical binary operations 

The mathematical binary operations specifically used in this International Standard are as follows: 

mod(m; k) residue from dividing integer m by k 

m ⊕ k bitwise exclusive logical disjunction of binary integers m and k 

EXAMPLE 1 1 ⊕ 1 = 0 

 0 ⊕ 1 = 1 

 1 ⊕ 0 = 1 

 0 ⊕ 0 = 0 

 1010 ⊕ 1100 = 0110 
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m ∧ k bitwise logical conjunction of binary integers m and k 

EXAMPLE 2 1 ∧ 1 = 1 

 0 ∧ 1 = 0 

 1 ∧ 0 = 0 

 0 ∧ 0 = 0 

 1010 ∧ 1100 = 1000 

m := k replaces value m by k 

m >> k k-bit right shift of binary integer m 

m << k k-bit left shift of binary integer m 

5 Uniformly distributed pseudo-random numbers 

5.1 General 

This clause provides algorithms for generating uniformly distributed pseudo-random numbers based on 
M-sequence methods (see 5.2). 

Annex A introduces the concept of physically generated random numbers for information. 

Annex B includes C and full Basic codes for all the recommended algorithms for information. Although the 
linear congruential method is not recommended for complex Monte Carlo simulations, it is also included in 
Annex B for information. 

5.2 M-sequence method definition 

a) Let p be a natural number, and c1, c2, ..., cp − 1 be specified to be 0 or 1, and define the recurrence 
formula 

xn + p = cp − 1 xn + p − 1 + cp − 2 xn + p − 2 + ... + c1 xn + 1 + xn (mod 2)    (n = 1, 2, 3, ...) 

b) The least positive integer N such that xn + N = xn for all n is called the period of the sequence. This 
sequence is called an M-sequence in cases where its period is 2p − 1. 

c) The polynomial 

t p + cp − 1 t p − 1 + ... + c1t + 1 

is called the characteristic polynomial of the above-mentioned recurrence formula. 

NOTE 1 A necessary and sufficient condition for the above-mentioned recurrence formula to generate an M-sequence 
is that at least one of the seeds x1, x2, ..., xp is not zero. 

NOTE 2 The letter M of the M-sequence originates from the English word “maximum”, which means the largest. The 
period of any sequence generated by the above recurrence formula cannot exceed 2p − 1. Therefore, if there is a series 
that has a period of 2p − 1, it is the series that has the largest period. 

NOTE 3 When this method is used, either one of the polynomials listed in Table 1 or another primitive polynomial listed 
in the literature is chosen as the characteristic polynomial and its coefficients are used to define the recurrence formula 
in a). 
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5.3 Pentanomial GFSR method 

This method uses a characteristic polynomial of 5 terms, and it generates binary integer sequences of w bits 
by the following recurrence formula. This algorithm is called the GFSR or “generalized feedback shift register” 
random number generator. 

Xn + p = Xn + q1 ⊕ Xn + q2 ⊕ Xn + q3 ⊕ Xn    (n = 1, 2, 3, ...) 

The parameters are (p, q1, q2, q3, w) and X1, ..., Xp are initially given as seeds. Examples of parameters p, q1, 
q2, q3 giving the largest period 2p − 1 are indicated in Table 1. 

Table 1 — Pentanomial characteristic polynomials 

p q1 q2 q3 

89 20 40 69 

107 31 57 82 

127 22 63 83 

521 86 197 447 

607 167 307 461 

1 279 339 630 988 

2 203 585 1 197 1 656 

2 281 577 1 109 1 709 

3 217 809 1 621 2 381 

4 253 1 093 2 254 3 297 

4 423 1 171 2 273 3 299 

9 689 2 799 5 463 7 712 

NOTE q1, q2, q3 represent exponents of the non-zero terms of the 
characteristic polynomial. 

 

5.4 Combined Tausworthe method 

Let x0, x1, x2, … be an M-sequence generated by the recurrence relationship: 

xn + p = xn + q + xn (mod 2)    (n = 0, 1, 2, …) 

Using this M-sequence, a w-bit integer sequence called a simple Tausworthe sequence with parameters 
(p, q, t) is obtained as follows: 

Xn = xnt xnt + 1…xnt + w − 1    (n = 0, 1, 2, …) 

where 

t is a natural number which is coprime to the period 2p − 1 of the M-sequence; 

w is the word length which does not exceed p. 

The period of this sequence is also 2p − 1. 

NOTE 1 Two integers are said to be coprime, or relatively prime, when they have no common divisors other than unity. 
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EXAMPLE If a primitive polynomial t4 + t + 1 is chosen, set p = 4, and q = 1 in the above recurrence relationship. If 
the seeds (x0, x1, x2, x3) = (1,1,1,1) are given to the recurrence, then the M-sequence obtained by the recurrence will be 
1,1,1,1, 0,0,0,1, 0,0,1,1, 0,1,0,1, 1,1,1,0, … , and the period of the sequence is 24 − 1 = 15. Taking, for example, t = 4 
which is coprime to 15, and w = 4, the simple Tausworthe sequence {Xn} with parameters (4, 1, 4) is obtained as follows: 

X0 = x0x1x2x3 = 1111 (= 15) 

X1 = x4x5x6x7 = 0001 (= 1) 

X2 = x8x9x10x11 = 0011 (= 3) 

X3 = x12x13x14x0 = 0101 (= 5) 

X4 = x1x2x3x4 = 1110 (= 14) 

X5 = x5x6x7x8 = 0010 (= 2) 

..... 

The simple Tausworthe sequence obtained in this way will be, in decimal notation, 15, 1, 3, 5, 14, 2, 6, 11, 12, 
4, 13, 7, 8, 9, 10, 15, 1, 3, … , and its period is 24 − 1 = 15. 

Suppose now that there is a multiple, say J, of simple Tausworthe sequences {Xn
(j)}, j = 1, 2, ..., J with the 

same word length w. The combined Tausworthe method is a technique that generates a sequence of 
pseudo-random numbers {Xn} as the bitwise exclusive logical disjunction in the binary representation of these 
J sequences. 

Xn = X(1)
n ⊕ X(2)

n ⊕ … ⊕ X(J)
n    (n = 0, 1, 2, …) 

The parameters and the seeds of the combined Tausworthe sequence are combinations of the parameters 
and the seeds of each simple Tausworthe sequence. If the periods of the J simple Tausworthe sequences are 
coprime, then the period of the combined Tausworthe sequence is the product of the periods of the J 
sequences. 

NOTE 2 This method can generate sequences with good multidimensional equidistribution characteristics. The 
algorithm taus88_31(  ) given in Annex A generates a sequence of 31-bit integers by combining three simple Tausworthe 
generators with parameters (p, q, t) = (31, 13, 12), (29, 2, 4), and (28, 3, 17), respectively. The period length of the 
combined sequence is (231 − 1)(229 − 1)(228 − 1), i.e. about 288. Many other combinations are suggested in References [7] 
and [8] in the Bibliography. 

5.5 Mersenne Twister method 

Let Xn be a binary integer of w bits. Then, the Mersenne Twister method generates a sequence of binary 
integer pseudo-random numbers of w bits according to the following recurrence formula with integer constants 
p, q, r and a binary integer a of w bits. 

Xn + p = Xn + q ⊕ (Xf
n|Xl

n+1)(r) A ,    (n = 1, 2, 3, ...) 

where (X f
n|X l

n+1)(r) represents a binary integer that is obtained by a concatenation of X f
n and X l

n + 1, the first 
w − r bits of Xn and the last r bits of Xn + 1 in this order. A is a w × w 0-1 matrix, which is determined by a, and 
the product XA is given by the following formula. 

X >> 1 (when the last bit of X = 0) 

XA = (X >> 1) ⊕ a (when the last bit of X = 1) 

Here, X is regarded as a w dimensional 0-1 vector. 
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NOTE The necessary amount of memory for this computation is p words, the period becomes 2pw−r − 1, and the 
efficiency is better than that of the GFSR methods described previously. To improve the randomness of the first w − r bits, 
the following series of conversions can be applied to Xn. 

y := Xn 

y := y ⊕ (y >> u) 

y := y ⊕ [(y << s) ∧ b] 

y := y ⊕ [(y << t) ∧ c] 

y := y ⊕ (y >> l) 

where b, c are constant bits masks to improve the randomness of the first w − r bits. The parameters of this 
algorithm are (p, q, r, w, a, u, s, t, l, b, c). The seeds are X2, ..., Xq + 1 and the first w − r bits of X1. 

The final value of y is the pseudo-random number. 

6 Generation of random numbers from various distributions 

6.1 Introduction 

Methods of generating random numbers Y from various distributions by using uniform random numbers X of 
integer type, are described below. 

The distribution function is denoted by F(y). If it is a continuous distribution, its probability density function is 
denoted by f(y), and if it is a discrete distribution, its probability mass function is denoted by p(y). 

6.2 Uniform distribution 

6.2.1 Standard uniform distribution 

6.2.1.1 Probability density function 

1, 0 1( ) 0, otherwise
yf y ⎧= ⎨

⎩
u u  

6.2.1.2 Random variate generation method 

If the maximum value of uniform random number X of integer type is m − 1, the following formula should be 
used to generate standard uniform random numbers. 

XU
m

=  

EXAMPLE For any w-bit integer sequences generated by the method described in 5.2 through 5.5, m = 2. 

NOTE 1 Because X takes on discrete values, the values of U are also discrete. 

NOTE 2 The value of U never becomes 1,0. The value of U becomes 0,0 only when X = 0. In the case of M-sequence 
random numbers, any generation method may cause this phenomenon. 

NOTE 3 Random numbers from the standard uniform distribution are called standard uniform random numbers, and 
are represented by U1, U2, … They are assumed to be independent of each other. 
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6.2.2 General uniform distribution 

6.2.2.1 Probability density function 

1/ ,  ( ) 0, otherwise     
b a y a bf y +⎧= ⎨

⎩
u u  

where b > 0. 

6.2.2.2 Random variate generation method 

If the standard uniform random number U is generated by the method specified in 6.2.1.2, then the general 
uniform random number should be generated by the following formula: 

Y bU a= +  

6.3 Standard beta distribution 

6.3.1 Probability density function 

( )
( )

11 1 0 1,( ) Β ,
otherwise0,     

dcy y yf y c d

−−⎧ −⎪
= ⎨
⎪
⎩

u u  

where ( ) ( )1 11
0

Β , 1 ddcc d x x x−−= −∫  is the beta function and the parameters c and d are greater than 0. 

6.3.2 Random variate generation method by Jöhnk 

If the standard uniform random numbers U1 and U2 are independently generated by the method specified in 
6.2.1, then the standard beta random number Y should be generated by the following procedures. 

If 1/ 1/
1 2

c dY U U= + is less than or equal to 1, set 1/
1 /cY U Y= ; otherwise, generate two standard uniform 

random numbers again until the inequality is satisfied. 

6.3.3 Random variate generation method by Cheng 

If the standard uniform random numbers U1 and U2 are independently generated by the method specified in 
6.2.1, then the standard beta random number Y should be generated by the following procedures. 

[Set-up] 

a) Let 

( ) ( , )
2 ( )

2

1min , ,           if min

,          otherwise

c d c d
q cd c d

c d

<⎧
⎪= ⎨ − +
⎪ + −⎩

 

[Generation] 

b) Let 

1

1

1 , exp( )
1

U
V W c V

q U
= =

−
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c) If 

2
1 2( )ln ( ) ln4 ln( )c dc d c q V U U

d W
+⎛ ⎞+ + + −⎜ ⎟+⎝ ⎠

W  

then employ 

; and stop.WY
d W

=
+

 

d) Generate U1, U2, and go to b). 

21
1 2

1

1 ( )ln ( ) ln4 ln( )
1

U c d WV c d c q V U U
q U d W d W

+⎛ ⎞= + + + −⎜ ⎟− + +⎝ ⎠
W  

Jöhnk's method is recommended when max(c, d) u 1; otherwise, Cheng's method is recommended. 

NOTE General beta random variates with the support [a, a + b] will be obtained by a linear transformation similar to 
the one described in 6.2.2.2. 

6.4 Triangular distribution 

6.4.1 Probability density function 

2 ,( )
0,                          otherwise

b a y
a b y a bf y b

⎧ − −
⎪ − += ⎨
⎪⎩

u u  

where b > 0. 

6.4.2 Random variate generation method 

If the standard uniform random numbers U1 and U2 are independently generated by the method specified in 
6.2.1, then the triangular random number Y should be generated by ( )1 2 1Y a b U U= + + − . 

6.5 General exponential distribution with location and scale parameters 

6.5.1 Probability density function 

{ }( ) /
( )

1exp , 

0,                           

y a b y a
f y b

y a

⎧ − −⎪= ⎨
⎪ <⎩

W
 

where a and b are the location and scale parameters of the exponential distribution, respectively. 

6.5.2 Random variate generation method 

If the standard uniform random number U is generated by the method specified in 6.2.1, then the general 
exponential random number should be generated by 

Y = − b ln(U) + a 



BS ISO 28640:2010
ISO 28640:2010(E) 

© ISO 2010 – All rights reserved 9
 

6.6 Normal distribution 

6.6.1 Probability density function 

( ) ( )2
2

1 1exp ,
2 2

f z z zµ
σ σ

⎧ ⎫
= − − − ∞ < < ∞⎨ ⎬

π ⎩ ⎭
 

where µ and σ are the mean and standard deviation of the normal distribution, respectively. 

NOTE The symbol Z is used for a normal random variate. 

6.6.2 The Box-Müller method 

If the standard uniform random numbers U1 and U2 are independently generated by the method specified in 
6.2.1, then two independent normal random numbers Z1, Z2 will be generated by the following procedures: 

( )1 1 22ln 1 cos(2 )Z U Uµ σ= + − − π  

( )2 1 22ln 1 sin(2 )Z U Uµ σ= + − − π  

NOTE 1 Since U1 is not continuous, Z1, Z2 cannot be normally distributed in a strict sense. For example, using this 
procedure, the upper bound of the absolute value of the pseudo-standardized normal variates is 

1( ) 22 ln In ;M m m−= − = thus, when m = 232, M ≈ 6,660 4, and when m = 231 − 1, M ≈ 6,555 5. However, since the 
probability that absolute values of random variables from a true standard normal distribution exceed M is only about 10−10, 
this will rarely be a problem in practice. 

NOTE 2 When generating U1, U2, by a linear congruential method sequentially, U1 and U2 are not independent of each 
other, so the tail of the distribution of the generated Z1 and Z2 can depart considerably from the true normal distribution. 

6.7 Gamma distribution 

6.7.1 Probability density function 

{ } { }( ) / ( ) /
( )( )

11 exp ,   

se0,                                                 otherwi

cy a b y a b y a
b cf y

−⎧ − − −⎪ Γ= ⎨
⎪⎩

W
 

where a, b, c are the location, scale and shape parameters of the distribution, respectively. 

6.7.2 Random variate generation methods 

6.7.2.1 General 

Algorithms are given for three special cases depending on the shape parameter value c as follows. 

6.7.2.2 Case of c = k (k: integer) 

Using independent uniform random numbers U1, U2, ... , Uk, the transformation formula 

{ }( )( )...( )1 2ln 1 1 1 kY a b U U U= − − − −  

should be used. 



BS ISO 28640:2010
ISO 28640:2010(E) 

10 © ISO 2010 – All rights reserved
 

NOTE The chi-squared distribution with even degrees of freedom can be generated by this method when a = 0 and 
b = 2. 

6.7.2.3 Case of c = k + 1/2 (k: integer) 

Using a standard normal random number Z0 and uniform random number U1, U2, ... , Uk, the transformation 
formula 

{ }/ ( )( )...( )2
0 1 22 ln 1 1 1 kY a b Z U U U⎡ ⎤= + − − − −⎣ ⎦  

should be used. In the case where k = 0, the logarithm term disappears. 

NOTE The chi-squared distribution with odd degrees of freedom can be generated by this method when a = 0 and 
b = 2. 

6.7.2.4 Approximate generation method when c > 1/3 

a) Set ( ) /( )31/3, , ln , 1 3r c s r t r r r p s= − = = − =  and .3q r= −  

b) Generate standard normal random number Z. 

c) If Z < q, then go to b). 

d) Set ( ) /3 2, 2,Y pZ s V Z= + = and generate U. 

e) If (Y − r)2/Y − V u U, then employ Y := a + bY and stop. 

f) Set W = Y − r ln(Y) − t − V. 

g) If W u U, then employ Y := a + bY and stop. 

h) If W > −In(1,0 − U), then go to b). 

NOTE This method is based on the Wilson-Hilferty transformation of chi-square distributions to an approximate 
standard normal distribution. The accuracy of this approximation depends on the parameter values of c, and the 
dependency is rather complicated. A very rough idea is as follows: the absolute difference between the percentage point 
of the approximate distribution and the exact distribution is always less than 0,2. 

6.7.2.5 Exact generation method when c > 1/2, by Cheng 

a) Set q = c – ln 4 and 2 1r c c= + − . 

b) Generate standard uniform random numbers U1 and U2. 

c) Set ( ), ( ), 21
1 1 2

1
ln exp

1
UV c W c U Z U U

U
= = =

−
 and R = q + rV − W. 

d) If R W 4,5Z − (1 + In 4,5) then employ Y = a + bW and stop. 

e) If R W InZ then employ Y = a + bW and stop. 

f) Go to b). 



BS ISO 28640:2010
ISO 28640:2010(E) 

© ISO 2010 – All rights reserved 11
 

( )
1

1

/ 2 , 2

1

21 1
1 2

1 1
1 1  ln4 1 ln 4,5 (1 ln4,5)

1 1

p

p

U Up c q c r c c q pr c U U
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6.8 Weibull distribution 

6.8.1 Probability distribution function 

( )
1 exp ,   

0,                               

cy a y a
F y b

y a

⎧ ⎧ ⎫−⎪ ⎪⎛ ⎞⎪ − −⎪ ⎨ ⎬⎜ ⎟= ⎝ ⎠⎨ ⎪ ⎪⎩ ⎭⎪
<⎪⎩

W
 

where a, b and c are the location, scale and shape parameters of the distribution, respectively. 

6.8.2 Random variate generation method 

If the standard uniform random numbers U are generated by the method specified in 6.2.1, then general 
Weibull random numbers are generated by the following formula: 

Y = a – b{ln(1 – U)}1/c 

6.9 Lognormal distribution 

6.9.1 Probability density function 

( ) ( )
21 1exp ,

22 { }

0,                                             

y a y af y by a b

y a

⎧ ⎧ ⎫−⎛ ⎞⎪ ⎪⎪ −⎨ ⎬⎜ ⎟= ⎨ π − ⎝ ⎠⎪ ⎪⎩ ⎭⎪
⎩ <

W  

where a and b are the location and scale parameters of the normal distribution, respectively. 

6.9.2 Random variate generation method 

Using standard normal random numbers Z, 

( )expY a bZ= +  

generates lognormal random numbers. 

6.10 Logistic distribution 

6.10.1 Probability function 

{ }
1( )
( ) /

, 
1 exp

F y y
y a b

= − ∞ < < ∞
+ − −

 

where a and b are the location and scale parameters of the distribution, respectively. 
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6.10.2 Random variate generation method 

If standard uniform random numbers U are generated by the method specified in 6.2.1, then logistic random 
numbers are generated by 

ln
1

UY a b
U

⎛ ⎞= + ⎜ ⎟−⎝ ⎠
 

6.11 Multivariate normal random variate generation 

Random numbers Y1, Y2, ..., Yn from an n-dimensional normal distribution, with mean values µ1, µ2, ..., µn and 
variances and covariances σij (1 u i, j u n) are generated as follows using mutually independent standard 
normal random numbers Z1, ..., Zn. 

Y1 = µ1 + a11Z1 

Y2 = µ2 + a21Z1 + a22Z2 

  ... 

Yn = µn + an1Z1 + an2Z2 + ... + annZn 

where a11, ..., ann are constants that are calculated before start of random number generation from variances 
and covariances by following Cholesky factorization procedures, as given below. 

NOTE σij (1 u i, j u n), σii means the variance of Yi. 

a) Set a11 = 11σ , ai1 = σi1/a11 (2 u i u n) 

b) For j = 2, ..., n set 

1
1 2

2

1

j

jj jj jk
k

a aσ
−

=

⎛ ⎞
⎜ ⎟= −
⎜ ⎟
⎝ ⎠

∑  

and 

1

1
/ ( 1 )

j

ij ij ik jk jj
k

a a a a j i nσ
−

=

⎛ ⎞
⎜ ⎟= − +
⎜ ⎟
⎝ ⎠

∑ u u  

6.12 Binomial distribution 

6.12.1 Probability mass function 

When some event occurs with probability p at each trial, the probability that this event occurs y times in n trials 
is given by the following formula: 

( ) (1 ) , 0,1, ...,y n ynp y p p y ny
−⎛ ⎞= − =⎜ ⎟

⎝ ⎠
 

where 0 < p < 1. 
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6.12.2 Random variate generation methods 

6.12.2.1 General 

The following methods should be used for generating random numbers Y from this distribution. 

6.12.2.2 Direct method  

Generate n standard uniform random numbers U, and let Y be the number of these values of U that are less 
than p. 

6.12.2.3 Inverse function method 

Compute the distribution function as follows: 

0
( ) (1 ) , 0,1, ...,

y
k n k

k

nF y p p y nk
−

=

⎛ ⎞= − =⎜ ⎟
⎝ ⎠∑  

Whenever a random number is required, generate a standard uniform random number U, and let Y be the 
minimum y that satisfies U u F(y). 

6.12.2.4 Alias method 

First, n + 1 parameters v0, v1, ..., vn and n + 1 other parameters a0, a1, ..., an, are calculated by the following 
procedures. 

a) vy = (n + 1) p(y), y = 0, 1, …, n. 

b) Let G be the set of suffices y that satisfies vy W 1 and S be the set of suffices y that satisfies vy < 1. 

c) While S is not empty, repeat the following operations from 1) to 4). 

1) Select any element i from G and any element j from S. 

2) Set aj = i and vi = vi − (1 − vj). 

3) If vi < 1, delete element i from G and move it to S. 

4) Delete element j from S. 

If the preparations mentioned above are completed, a binomial random number Y will be obtained by 
performing the following operations d) to f). 

d) Generate a standard uniform random number U, and set V = (n + 1)U. 

e) Set k = (integer part of V) and u = V − k. 

f) If u u vk, set Y = k; otherwise, set Y = ak. 
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6.13 Poisson distribution 

6.13.1 Probability mass function 

The probability mass function of a Poisson distribution with mean µ is defined as follows. 

( ) exp( ) ,  0, 1, 2, ... ,
!

y
p y y

y
µµ= − =  

where µ > 0. 

6.13.2 Method of using a relationship with an exponential distribution  

Generate standard uniform random numbers U1, U2, ..., and let Y be the maximum n that satisfies the 
following inequality: 

{ }( )( )...( )1 2ln 1 1 1 nU U U µ− − − − <  

6.13.3 Alias method 

First, select a constant n for which the probability that Y > n is negligibly small, for example, the integer part of 
6µ µ+  could be specified to be n. Then use the procedure 6.12.2.4 alias method of the binomial distribution; 

however, this time the probability mass function of the Poisson distribution shall be used for p(y). 

NOTE This method is efficient when µ is of medium size (about 10 to 100). 

6.14 Discrete uniform distribution 

For generating discrete uniform random variates from M to N, a binary r bit random number sequence 
generated by the method standardized in 5.1 is converted by the following procedures, where N − M + 1 is 
assumed to be not greater than 2r. 

a) Find the natural number k that satisfies the following inequality: 

12 1 1 2k kN M− + − +u u  

NOTE 1 Such k is the minimum natural number that is equal to or greater than log2 (N − M + 1). 

EXAMPLE 1 When N − M + 1 = 100, k = 7 because 26 + 1 = 65 u 100 u 27 = 128. 

b) Add 1 to the binary integer that is constructed from the first k bits of a random number, and convert the 
result to a decimal number. 

NOTE 2 A k bit binary number Z1Z2Z3Z4...Zk converts to a decimal number 2k − 1Z1 + 2k − 2Z2 + 2k − 3Z3 + 2k − 4Z4 
+ ... + Zk. 

EXAMPLE 2 When the upper 7 bits are 1 011 001, the corresponding decimal number is 64 + 16 + 8 + 1 = 89, 
and the decimal random number becomes 89. 

c) The required decimal random number is the converted decimal number plus M − 1 by skipping numbers 
greater than N. 

NOTE 3 When N − M + 1 is more than 2r the required decimal random number can be obtained by concatenating 
two or more binary random numbers to get one binary random number. 
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NOTE 4 When using the linear congruential method for generating pseudo-random numbers, k shall not be 
specified to be equal to r. 

Further, when N − M + 1 is a decimal k digit natural number, and k is not too large, say k is less than 20, 
the method given in 5.2 can be used. The procedure is as follows. 

d) Generate a decimal random number sequence of k digits by using procedure 5.2. 

e) From the random number sequence which is generated by d) above, remove the numbers greater than N. 
The sequence thus obtained is the required decimal random number sequence. 
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Annex A 
(informative) 

 
Table of physical random numbers 

A.1 Table of random numbers 

Physically generated random numbers have no functional relationship like pseudo-random numbers, and no 
periodicity. Table A.1 shows a physically generated random number sequence obtained as measured values 
of a property of a random physical system.  

Table A.1 — Physical random number table 

1 93 90 60 02 17 25 89 42 27 41 64 45 08 02 70 42 49 41 55 98 

2 34 19 39 65 54 32 14 02 06 84 43 65 97 97 65 05 40 55 65 06 

3 27 88 28 07 16 05 18 96 81 69 53 34 79 84 83 44 07 12 00 38 

4 95 16 61 89 77 47 14 14 40 87 12 40 15 18 54 89 72 88 59 67 

5 50 45 95 10 48 25 29 74 63 48 44 06 18 67 19 90 52 44 05 85 

6 11 72 79 70 41 08 85 77 03 32 46 28 83 22 48 61 93 19 98 60 

7 19 31 85 29 48 89 59 53 99 46 72 29 49 06 58 65 69 06 87 09 

8 14 58 90 27 73 67 17 08 43 78 71 32 21 97 02 25 27 22 81 74 

9 28 04 62 77 82 73 00 73 83 17 27 79 37 13 76 29 90 07 36 47 

10 37 43 04 36 86 72 63 43 21 06 10 35 13 61 01 98 23 67 45 21 

11 74 47 22 71 36 15 67 41 77 67 40 00 67 24 00 08 98 27 98 56 

12 48 85 81 89 45 27 98 41 77 78 24 26 98 03 14 25 73 84 48 28 

13 55 81 09 70 17 78 18 54 62 06 50 64 90 30 15 78 60 63 54 56 

14 22 18 73 19 32 54 05 18 36 45 87 23 42 43 91 63 50 95 69 09 

15 78 29 64 22 97 95 94 54 64 28 34 34 88 98 14 21 38 45 37 87 

16 97 51 38 62 95 83 45 12 72 28 70 23 67 04 28 55 20 20 96 57 

17 42 91 81 16 52 44 71 99 68 55 16 32 83 27 03 44 93 81 69 58 

18 07 84 27 76 18 24 95 78 67 33 45 68 38 56 64 51 10 79 15 46 

19 60 31 55 42 68 53 27 82 67 68 73 09 98 45 72 02 87 79 32 84 

20 47 10 36 20 10 48 09 72 35 94 12 94 78 29 14 80 77 27 05 67 

21 73 63 78 70 96 12 40 36 80 49 23 29 26 69 01 13 39 71 33 17 

22 70 65 19 86 11 30 16 23 21 55 04 72 30 01 22 53 24 13 40 63 

23 86 37 79 75 97 29 19 00 30 01 22 89 11 84 55 08 40 91 26 61 

24 28 00 93 29 59 54 71 77 75 24 10 65 69 15 66 90 47 90 48 80 

25 40 74 69 14 01 78 36 13 06 30 79 04 03 28 87 59 85 93 25 73 
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A.2 Method of physical random number generation 

The method by which the physical random numbers in Table A.1 were generated is described below. The 
source of the numbers is the noise generated by a diode. In a diode, the noise signal is large because, by 
amplification using the electron avalanche effect, stabilized noise is easily obtained. For this reason, it is used 
very often as a noise source. For the element, NC24011) of Noisecom in the United States was used. This 
element has a noise source and an amplifier built-in, and its band width is 1 GHz, while its amplitude is 
160 mVrms. 

The methods of digitalizing the noise signal are 

a) analogue/digital conversion, 

b) regarding noise as a pulse sequence, by counting pulses per unit time, 

c) regarding noise as a pulse sequence, by measuring pulse interval. 

For example, consider the use of a DAS-4102 converter2) produced by the Keithley Instruments, Inc. for 
analogue/digital conversion. This equipment has a resolution of 8 bits with a sampling period of 64 MHz 
maximum. Data was sampled at 1 MHz to produce the attached table. Measuring was done with resolution 
ability 3,91 mV/digit and only the lowest bit was used as a random number source. 

Because the analogue/digital conversion equipment has errors that are peculiar to the equipment, the 
frequency distribution of values after conversion is not uniform. To obtain a more uniform distribution, 2 bits 
were generated from the same random number source, and 

(0,1) → Random number (Rn) = 0 

(1,0) → Random number (Rn) = 1 

(0,0), (1,1) → abandoned 

Random numbers in Table A.1 were generated according to the above scheme. If the probabilities of (0,1) and 
(1,0) are equal to each other, the random number is uniformly distributed. Because the intervals between 
successive measurements are as short as 1 ms, the characteristics of the equipment would scarcely change 
in this time interval. Therefore, (0,1) and (1,0) are considered to conform to the same probability distribution. 
An alternative method of correcting is by formerly measuring the probability distribution of the characteristics, 
but, because this distribution varies from equipment to equipment, this method was not employed. Further, for 
safety, 32 bits were gathered in one group, and exclusive or was done with pseudo-random numbers using 
the Mersenne Twister (routine name genrand) which is described in 5.5. The Mersenne Twister was initialized 
by the routine init_genrand(s), s = 19660809. If the original random number sequences are required, they can 
be regenerated by operating exclusive or again using the Mersenne Twister. 

Table A.1 is a decimal random number sequence generated by the above-mentioned method, taking the 
upper 4 bits of the 32-bit random number sequence. If the value of this is not less than 0 and not more than 9, 
the value is employed as the random number value; however, if the value of this is 10 or more, it is 
abandoned and the next random number is generated. 

                                                      

1) NC2401 is the trade name of a product supplied by Noisecom. This information is given for the convenience of users 
of this document and does not constitute an endorsement by ISO of the product named. 

2) DAS-4102 is the trade name of a product supplied by Keithley Instruments, Inc. This information is given for the 
convenience of users of this document and does not constitute an endorsement by ISO of the product named. 
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Annex B 
(informative) 

 
Algorithm for pseudo-random number generation 

B.1 Program code for the trinomial GFSR method 

The following C program given below, which is in accordance with ISO/IEC 9899, is an example with 
parameters (p, q, w) = (1 279, 418, 32) and period (21 279 − 1). When the function gfsr( ) is called, it generates 
an integer between 0 and (232 − 1) inclusive. When the function gfsr_31( ) is called, it generates an integer 
between 0 and (231 − 1) inclusive. Before calling the functions gfsr( ) and gfsr_31( ), initialization is necessary 
by calling init_gfsr(s) once.The initialization function init_gfsr(s) executes initialization under the condition that 
an unsigned 32-bit integer [integer between 0 and (232 − 1)] is used as the seed. The generated sequence 
can be used to provide 39 independent series, each of which has negligible auto-correlation, is 39-distributed 
(uniformly distributed in a 39-dimensional hyper-cube) with 32-bit precision, and its auto-correlation function 
assumes values close to zero up to phase shift 21 274. 

To obtain different pseudo-random number series, change the seed s given to init_gfsr(s). Only the constants 
p, q, w in the program may be changed. The value of w will be a power of 2 within the word length of the 
machine. The value of w will generally be 32 or 64, according to the machine. For example, if the word length 
of the machine is 64, the constant w in the program is set to 64, and then gfsr( ) generates integers between 0 
and (264 − 1) inclusive, while gfsr_31( ) generates integers between 0 and (263 − 1) inclusive. 

In this program, the length of type “unsigned long” is presumed to be not less than 32 bits. 

/************************************************* 

 C code : Trinomial GFSR 

*************************************************/ 

 

#define P 1279 

#define Q 418 

#define W 32 /* W should be a power of 2 */ 

 

static unsigned long state [P] ; 

static int state_i ; 

 

void init_gfsr (unsigned long s) 

{ 

 int i, j, k; 

 static unsigned long x [P] ; 

 

 s &= 0xffffffffUL; 

 

 for (i=0 ; i<P ; i++) { 

   x [i] = s>>31 ; 



BS ISO 28640:2010
ISO 28640:2010(E) 

© ISO 2010 – All rights reserved 19
 

   s = 1664525UL * s + 1UL ; 

   s &= 0xffffffffUL ; 

 } 

 

 for (k=0, i=0 ; i<P ; i++) { 

  state [i] = 0UL ; 

  for (j=0 ; j<W ; j++) { 

   state [i] <<= 1 ; 

   state [i] |= x [k] ; 

   x [k] ^= x [ (k+Q) %P] ; 

   k++; 

   if (k==P) k = 0 ; 

  } 

 } 

 

 state_i = 0 ; 

} 

 

unsigned long gfsr (void) 

{ 

int i ; 

unsigned long *p0, *p1 ; 

 

 if (state_i >= P) { 

  state_i = 0 ; 

  p0 = state ; 

  p1 = state + Q ; 

  for (i=0 ; i<(P-Q) ; i++) 

   *p0++ ^= *p1++ ; 

  p1 = state ; 

  for ( ; i<P ; i++) 

   *p0++ ^= *p1++ ; 

 } 

 

return state [state_i++] ; 

} 

 

/* W-1 bit integer */ 

long gfsr_31 (void) 

{ 
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 return (long) (gfsr( ) >>1) ; 

} 
 

NOTE The corresponding Full Basic code of the trinomial GFSR method is shown for information as follows. 

REM /********************************************* 

REM  BASIC code : Trinomial GFSR 

REM **********************************************/ 

 

OPTION BASE 0 

 

REM 
/*******************************************************************************/ 

DECLARE NUMERIC P 

LET  P=1279 !#define P 1279 

DECLARE NUMERIC Q 

LET  Q=418 !#define Q 418 

DECLARE NUMERIC W 

LET  W=32 !#define W 32 /* W should be power OF 2 */ 

 

DIM state(P) !static unsigned long state[P]; 

DECLARE NUMERIC state_i !static INT state_i; 

 

REM 
/*******************************************************************************/ 

FUNCTION init_gfsr(s) !void init_gfsr(unsigned long s){ 

   DECLARE NUMERIC i,j,k !    int i, j, k; 

   DIM x(P) !    static unsigned long x[P]; 

   LET  s = And32(s , MskF_f) !    s &= 0xffffffffUL; 

   FOR i = 0 TO P -1 !    for (i=0; i<P; i++) { 

      LET  x(i) = SR32U(s , 31) !        x[i] = s>>31; 

      LET  s = Mul32U(1664525 , s) + 1 !        s = 1664525UL * s + 1UL; 
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      LET  s = And32(s, MskF_f) !        s &= 0xffffffffUL; 

   NEXT I !    } 

   LET  k=0  

   FOR i = 0 TO P -1 !    for (k=0,i=0; i<P; i++) { 

      LET  state(i) = 0 !        state[i] = 0UL; 

      FOR j=0 TO W-1 !        for (j=0; j<W; j++) { 

         LET  state(i) = SL32U(state(i) , 1) !            state[i] <<= 1; 

         LET  state(i) = Or32(state(i) , x(k)) !            state[i] |= x[k]; 

         LET  x(k) = Xor32(x(k) , x(REMAINDER(k + Q , P))) 

         ! !            x[k] ^= x[(k+Q)%P]; 

         LET  k = k + 1 !            k++; 

         IF k = P THEN LET  k = 0 !            if (k==P) k = 0; 

      NEXT j !        } 

   NEXT I !    } 

   LET  state_i = 0 !    state_i = 0; 

END FUNCTION !} 

  

REM 
/*******************************************************************************/ 

FUNCTION gfsr !unsigned long gfsr(void){ 

   DECLARE NUMERIC I !    int i; 

   DECLARE NUMERIC p0, p1 !    unsigned long *p0, *p1; 

   IF state_i >= P THEN !    if (state_i >= P) { 

      LET  state_i = 0 !        state_i = 0; 

      LET  p0 = 0 !        p0 = state; 

      LET  p1 = Q !        p1 = state + Q; 

      FOR i=0 TO P-Q-1 !        for (i=0; i<(P-Q); i++) 

         LET  state(p0) = Xor32(state(p0) , state(p1)) 

         LET  p0 = p0 + 1 

         LET  p1 = P1 + 1 !            *p0++ ^= *p1++; 
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      NEXT i 

      LET  p1 = 0 !        p1 = state; 

      FOR i=i TO P-1 !        for (; i<P; i++) 

         LET  state(p0) = Xor32(state(p0) , state(p1)) 

         LET  p0 = p0 + 1 

         LET  p1 = P1 + 1 !            *p0++ ^= *p1++; 

      NEXT i 

   END IF !    } 

   LET  gfsr = state(state_i) 

   LET  state_i = state_i + 1 !    return state[state_i++]; 

END FUNCTION !} 

 

REM 
/*******************************************************************************/ 

REM /* W-1 bit integer */ 

FUNCTION gfsr_31 !long gfsr_31(void){ 

   LET  gfsr_31 = SR32U(gfsr , 1) !    return (long)(gfsr()>>1); 

END FUNCTION !} 

B.2 Program code for the pentanomial GFSR method 

In this program, the parameters are (521, 86, 197, 447, 32), and the period is 2521 − 1. When the function 
gfsr5( ) is called, it generates an integer between zero and (232 − 1) inclusive. When the function gfsr5_31( ) is 
called, it generates an integer between zero and (231 − 1) inclusive. The initialization routine init_gfsr5(s) 
initializes under the condition that the seed is an unsigned 32-bit integer [integer between 0 and (232 − 1)]. 
Before calling gfsr5( ) and gfsr5_31( ), init_gfsr5(s) is executed once to initialize. The generated sequence is 
16-distributed (uniformly distributed in a 16-dimensional hyper-cube) with 32-bit precision, and its auto-
correlation function assumes almost zero value up to the phase shift 2516. 

If an independent batch of random numbers is needed for each one of multiple replications of a simulation, the 
initialization function init_gfsr5(s) should be called only once before the start of the simulation. After each 
replication, the contents of the table x[P] of length P and the value of the variable state_i should be saved, and 
used as the initial values for the next replication. 

If another sequence with different period is required, a set of values p, q1, q2 and q3 shall be selected from 
Table 1. 

/************************************************* 

 C code : Pentanominal GFSR 

**************************************************/ 
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#define P 521 

/* Q1 < Q2 < Q3 */ 

#define Q1 86 

#define Q2 197 

#define Q3 447 

#define W 32 /* W should be a power of 2 */ 

 

static unsigned long state [P] ;\ 

static int state_i ; 

 

void init_gfsr5 (unsigned long s) 

{ 

 int i, j, k ; 

 static unsigned long x [P] ; 

 s &= 0xffffffffUL ; 

 

 for (i=0 ; i<P ; i++) { 

  x [i] = s>>31 ; 

  s = 1664525UL * s + 1UL ; 

  s &= 0xffffffffUL ; 

 } 

 

 for (k=0, i=0 ; i<P ; i++) { 

  state [i] = 0UL ; 

  for (j=0 ; j<W ; j++) { 

   state [i] <<= 1 ; 

   state [i] |= x [k] ; 

   x [k] ^=x [ (k+Q1) %P] ^x [ (k+Q2) %P] ^x [ (k+Q3) %P] ; 

   k++; 

   if (k==P) k = 0 ; 

  } 

 } 

 

 state_i = 0 ; 

} 

 

unsigned long gfsr5 (void) 

{ 

 int i ; 
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 unsigned long *p0, *p1, *p2, *p3 ; 

 

 if (state_i >= P) { 

  state_i = 0 ; 

  p0 = state ; 

  p1 = state + Q1 ; 

  p2 = state + Q2 ; 

  p3 = state + Q3 ; 

 

 for (i=0 ; i<(P-Q3) ; i++) 

  *p0++ ^= *p1++ ^ *p2++ ^ *p3++; 

 p3 = state ; 

 for ( ; i<(P-Q2) ; i++) 

  *p0++ ^= *p1++ ^ *p2++ ^*p3++; 

 p2 = state; 

 for ( ; i<(P-Q1) ; i++) 

  *p0++ ^= *p1++ ^ *p2++ ^*p3++; 

 p1 = state; 

 for ( ; i<P ; i++) 

  *p0++ ^= *p1++ ^*p2++ ^*p3++; 

 } 

 

 return state [state_i++] ; 

} 

 

/* W-1 bit integer */ 

long gfsr5_31 (void) 

{ 

 return (long) (gfsr5( ) >>1); 

} 
 

NOTE The corresponding Full Basic code of the pentanomial GFSR method is shown for information as follows. 

REM /********************************************* 

REM BASIC code : Pentanomial GFSR 

REM **********************************************/ 

 

OPTION BASE 0 
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REM 
/*******************************************************************************/ 

DECLARE NUMERIC P  

LET  P = 521 !#define P 512 

REM /* Q1 < Q2 < Q3 */ 

DECLARE NUMERIC Q1 

LET  Q1 =  86 !#define Q1 86 

DECLARE NUMERIC Q2 

LET  Q2 = 197 !#define Q2 197 

DECLARE NUMERIC Q3 

LET  Q3 = 447 !#define Q3 447 

DECLARE NUMERIC W 

LET  W  =  32 !#define W 32 /* W should be power of 
2 */ 

 

DIM state(P) !static unsigned long state[P]; 

DECLARE NUMERIC state_i !static int state_i; 

 

REM 
/*******************************************************************************/ 

FUNCTION init_gfsr5(s) !void init_gfsr5(unsigned long s)   { 

   DECLARE NUMERIC i, j, k !    int i, j, k; 

   DIM x(P) !    static unsigned long x[P]; 

     

   LET  s = And32(s , MskF_f) !    s &= 0xffffffffUL; 

     

   FOR i=0 TO P-1 !    for (i=0; i<P; i++) { 

      LET  x(i) = SR32U(s , 31) !        x[i] = s>>31; 

      LET  s = Mul32U(1664525 , s) + 1 !        s = 1664525UL * s + 1UL; 

      LET  s = And32(s , MskF_f) !        s &= 0xffffffffUL; 

   NEXT I !    } 
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   LET  k=0 

   FOR i=0 TO P-1 !    for (k=0,i=0; i<P; i++) { 

      LET  state(i) = 0 !        state[i] = 0UL; 

      FOR j=0 TO W-1 !        for (j=0; j<W; j++) { 

         LET  state(i) = SL32U(state(i) , 1) !            state[i] <<= 1; 

         LET  state(i) = Or32(state(i) , x(k)) !            state[i] |= x[k]; 

         LET  x(k) = Xor32(Xor32(Xor32(x(k) , x(REMAINDER(k + Q1 , P))) , 
x(REMAINDER(k + Q2 , P))) , x(REMAINDER(k + Q3 , P))) 

         ! !            x[k] ^= x[(k+Q1)%P] ^ 
x[(k+Q2)%P] ^ x[(k+Q3)%P]; 

         LET  k = k + 1 !            k++; 

         IF k = P THEN LET  K = 0 !            if (k==P) k = 0; 

      NEXT j !        } 

   NEXT I !    } 

     

   LET  state_i = 0 !    state_i = 0; 

END FUNCTION !} 

 

REM 
/*******************************************************************************/ 

FUNCTION gfsr5 !unsigned long gfsr5(void)    { 

   DECLARE NUMERIC I !    int i; 

   DECLARE NUMERIC p0, p1, p2, p3 !    unsigned long  *p0, *p1, *p2, 
*p3; 

     

   IF state_i >= P THEN !    if (state_i >= P) { 

      LET  state_i = 0 !        state_i = 0; 

      LET  p0 = 0 !        p0 = state; 

      LET  p1 = Q1 !        p1 = state + Q1; 

      LET  p2 = Q2 !        p2 = state + Q2; 

      LET  p3 = Q3 !        p3 = state + Q3; 
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      FOR i=0 TO P-Q3-1 !        FOR (i=0; i<(P-Q3); i++) 

         LET  state(p0) = Xor32(Xor32(Xor32(state(p0) , state(p1)) , state(p2)) , 
state(p3)) 

         LET  p0 = p0 + 1 

         LET  p1 = p1 + 1 

         LET  p2 = p2 + 1 

         LET  p3 = p3 + 1 !            *p0++ ^= *p1++ ^ *p2++ ^ 
*p3++; 

      NEXT i 

      LET  p3 = 0 !        p3 = state; 

      FOR i=i TO P-Q2-1 !        for (; i<(P-Q2); i++) 

         LET  state(p0) = Xor32(Xor32(Xor32(state(p0) , state(p1)) , state(p2)) , 
state(p3)) 

         LET  p0 = p0 + 1 

         LET  p1 = p1 + 1 

         LET  p2 = p2 + 1 

         LET  p3 = p3 + 1 !            *p0++ ^= *p1++ ^ *p2++ ^ 
*p3++; 

      NEXT i 

      LET  p2 = 0 !        p2 = state; 

      FOR i=i TO P-Q1-1 !        for (; i<(P-Q1); i++) 

         LET  state(p0) = Xor32(Xor32(Xor32(state(p0) , state(p1)) , state(p2)) , 
state(p3)) 

         LET  p0 = p0 + 1 

         LET  p1 = p1 + 1 

         LET  p2 = p2 + 1 

         LET  p3 = p3 + 1 !            *p0++ ^= *p1++ ^ *p2++ ^ 
*p3++; 

      NEXT i 

      LET  p1 = 0 !        p1 = state; 

      FOR i=i TO P-1 !        for (; i<P; i++) 
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         LET  state(p0) = Xor32(Xor32(Xor32(state(p0) , state(p1)) , state(p2)) , 
state(p3)) 

         LET  p0 = p0 + 1 

         LET  p1 = p1 + 1 

         LET  p2 = p2 + 1 

         LET  p3 = p3 + 1 !            *p0++ ^= *p1++ ^ *p2++ ^ 
*p3++; 

      NEXT i 

   END IF  !    } 

     

   LET  gfsr5 = state(state_i) 

   LET  state_i = state_i + 1 !    return state[state_i++]; 

END FUNCTION !} 

 

REM 
/*******************************************************************************/ 

REM /* W-1 bit integer */ 

FUNCTION gfsr5_31 !long gfsr5_31(void)    { 

   LET  gfsr5_31 = SR32U(gfsr5 , 1) !    return (long)(gfsr5()>>1); 

END FUNCTION  !} 

B.3 Program code for the combined Tausworthe method 

Following is a C Language implementation of the combined Tausworthe method, which generates integers 
between zero and (231 − 1) inclusive by combining three Tausworthe sequences of parameters (31, 13, 12), 
(29, 2, 4) and (28, 3, 17). 

The initialization function init_taus88(s) initializes under the condition that the seed s is an unsigned 32-bit 
integer [integer between 0 and (232 − 1) inclusive]. To obtain a different pseudo-random number sequence, 
change the seed s. Before calling taus88_31( ), init_taus88(s) executes once to initialize. The initialization can 
be done without using init_taus88(s) by directly assigning suitable values into s1, s2 and s3. However, when 
initializing, the following three conditions must be satisfied: 

⎯ at least one of the upper 31 bits of s1 is one; 

⎯ at least one of the upper 29 bits of s2 is one; 

⎯ at least one of the upper 28 bits of s3 is one. 

Because the lowest 1 bit of s1, the lowest 3 bits of s2 and the lowest 4 bits of s3 are ignored, the generated 
random number sequence is unaffected by the changes to those bits. 
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In this program, the length of type “unsigned long” is presumed as 32 bits. 

/************************************************* 

 C code : Combined Tausworthe 

**************************************************/ 

 

static unsigned long s1, s2, s3, b ; 

 

void init_taus88 (unsigned long s) 

{ 

 int i ; 

 unsigned long x [3] ; 

 

 i=0 ; 

 while (i<3) { 

  if (s & 0xfffffff0UL) { 

   x [i] = s ; 

   i++; 

  } 

  s = 1664525UL * s + 1UL; 

 } 

 s1 = x [0] ; s2 = x [1] ; s3 = x [2] ; 

} 

/* 31 bit integer */ 

 

long taus88_31 (void) 

{ 

 b = (((s1 << 13) ^ s1) >> 19) ; 

 s1 = (((s1 & 4294967294UL) << 12) ^b) ; 

 b = (((s2 << 2) ^ s2) >> 25); 

 s2 = (((s2 & 4294967288UL) << 4) ^b) ; 
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 b = (((s3 << 3) ^ s3) >> 11) ; 

 s3 = (((s3 & 4294967280UL) <<17) ^b) ; 

 

 return (long) ((s1 ^ s2 ^ s3) >>1) ; 

} 

 

 
In this program, the code 

 b = (((s1 << 13) ^ s1) >> 19) ; 

s1 = (((s1 & 4294967294UL) << 12) ^b) ; 
 

generates a number in the Tausworthe sequence with parameters (31, 13, 12) in s1, and the codes 

  b = (((s2 << 2) ^ s2) >> 25) ; 

 s2 = (((s2 & 4294967288UL) << 4) ^b) ; 
 

and 

  b = (((s3 << 3) ^s3) >> 11) ; 

 s3 = (((s3 & 4294967280UL) << 17) ^b) ; 
 

generate numbers in the Tausworthe sequence with parameters (29, 2, 4) and (28, 3, 17) correspond to s2 
and s3, respectively. These three binary integers are combined bit by bitwise exclusive-or operations, and a 
31-bit pseudo-random number sequence is generated. 

Selection of the three parameters (p, q, t) is made to give the best multi-dimensional equidistribution of the 
pseudo-random number sequence after the combination. These values of parameters shall not be changed. 
To obtain a different pseudo-random number sequence, change the seed. 

If an independent batch of random numbers are needed for each one of multiple replications of a simulation, 
the initialization function init_taus88(s) should be called only once before the start of the simulation. After each 
replication, the values of s1, s2, and s3 should be saved, and given to the variables s1, s2, and s3, respectively, 
as the initial values for the next replication. 

NOTE The corresponding Full Basic code of the Combined Tausworthe method is shown for information as follows. 

REM /**************************************************** 

REM  BASIC code : Combined Tausworthe 

REM ****************************************************/ 

 

OPTION BASE 0 
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REM 
/*******************************************************************************/ 

FUNCTION init_taus88(s) !void init_taus88(unsigned long 
s) { 

   DECLARE NUMERIC I !    int i; 

   DIM x(3) !    unsigned long x[3];     

   FOR i = 0 TO 2 !    i=0;   while (i<3) { 

      IF And32(s , MskF_0) <> 0 THEN !        if (s & 0xfffffff0UL) 
{ 

         LET  x(i) = s !        x[i] = s;      i++; 

      END IF !    } 

      LET  s = Mul32U(1664525, s) + 1 !        s = 1664525UL * s + 
1UL; 

   NEXT I !    } 

   LET  s1 = x(0) 

   LET  s2 = x(1) 

   LET  s3 = x(2) !    s1 = x[0]; s2 = x[1]; s3 = 
x[2]; 

END FUNCTION !} 

 

REM 
/*******************************************************************************/ 

FUNCTION taus88_31 !long taus88_int(void)    
{ 

   REM /***** 31 bit integer *****/ 

   LET  b = SR32U(Xor32(SL32U(s1, 13), s1), 19 !    b = (((s1 << 13) ^ 
s1) >> 19); 

   LET  s1 = Xor32(SL32U(And32(s1 , MskF_e), 12), b) !    s1 = (((s1 & 
4294967294) << 12) ^ b); 

   LET  b = SR32U(Xor32(SL32U(s2, 2), s2), 25) !    b = (((s2 << 2) ^ s2) 
>> 25); 

   LET  s2 = Xor32(SL32U(And32(s2 , MskF_8), 4),  b) !    s2 = (((s2 & 
4294967288) << 4) ^ b); 

   LET  b = SR32U(Xor32(SL32U(s3, 3),  s3), 11 !    b = (((s3 << 3) ^ s3) 
>> 11); 
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   LET  s3 = Xor32(SL32U(And32(s3 , MskF_0), 17), b) !    s3 = (((s3 & 
4294967280) << 17) ^ b); 

   LET  taus88_31 = SR32U(Xor32(Xor32(s1, s2), s3), 1) !    return (long)((s1 ^ 
s2 ^ s3) >> 1); 

   ! !'} 

END FUNCTION 

B.4 Program code for the Mersenne Twister method 

The following program is a C language implementation of the Mersenne Twister method. The function 
genrand( ) of this code generates unsigned integer pseudo-random numbers of 32 bits whose range is 
between 0 and (232 − 1) inclusive. The function genrand_31( ) generates unsigned integer pseudo-random 
numbers of 31 bits whose range is between 0 and (231 − 1) inclusive. The function init_genrand(s) initializes 
the seed as an unsigned 32-bit integer [integer between 0 and (232 − 1) inclusive]. Before calling genrand( ) or 
genrand_31( ), initialization shall be done by executing init_genrand(s) once. Different seeds s lead to different 
sequences. The parameters in this program should not be changed.  

If independent batch of random numbers are needed for each one of multiple replications of a simulation, the 
initialization function init_genrand(s) should be called only once before the start of the simulation. After each 
replication, contents of the table mt[P] of length P and the value of the variable mti should be saved, and used 
as the initial values for the next replication. 

EXAMPLE This is an example using p = 624 words with parameters (624, 397, 31, 32, 0x9908b0df, 11, 7, 15, 18, 
0x9d2c5680, 0xefc60000). Here, 10-digit numbers starting with 0x are unsigned 32-bit constants represented in 
hexadecimal. The period is 219 937 − 1 and this is distributed uniformly in 623 dimensional hyper-cube with 32 bits 
precision; moreover, the sequence is equidistributed in 3 115 dimensions with 6 bits precision.  

 

In this program, the length of type “unsigned long” is presumed to be not less than 32 bits. 

************************************************* 

C code : Mersenne Twister 

**************************************************/ 

 

/* Period parameters */ 

#define P 624 

#define Q 397 

#define MATRIX_A 0x9908b0dfUL /* constant vector a */ 

#define UPPER_MASK 0x80000000UL /* most significant w-r bits */ 

#define LOWER_MASK 0x7fffffffUL /* least significant r bits */ 

 

static unsigned long mt [P] ; /* the array for the state vector */ 
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static int mti=P+1 ; /* mti==P+1 means mt [P] is not initialized */ 

 

/* initializes mt [P] with a seed */ 

void init_genrand (unsigned long s) 

{ 

 mt [0] = s & 0xffffffffUL ; 

 for (mti=1 ; mti<P ; mti++) { 

  mt [mti] = (1664525UL * mt [mti-1] + 1UL) ; 

  mt [mti] &= 0xffffffffUL ; 

 } 

} 

 

/* generates a random number on [0, 0xffffffff] -interval */ 

unsigned long genrand (void) 

{ 

 unsigned long y ; 

 static unsigned long mag01 [2] = {0x0UL, MATRIX_A} ; 

 /* mag01 [x] = x * MATRIX_A for x=0, i */ 

 

 if (mti >=P) { /* generate P words at one time */ 

  int kk ; 

 

 if (mti == P+1) /* if init _genrand ( ) has not been called, */ 

  init_genrand (5489UL) ; /* a default initial seed is used */ 

 

 for (kk=0 ; kk<P-Q ; kk++) { 

  y = (mt [kk] &UPPER_MASK) | (mt [kk+1] &LOWER_MASK) ; 

  mt [kk] = mt [kk+Q] ^ (y >> 1) ^ mag01 [y & 0x1UL] ; 

 } 

 for ( ; kk<P-1 ; kk++) { 
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  y = (mt [kk] &UPPER_MASK) | (mt [kk+1] &LOWER_MASK) ; 

  mt [kk] = mt [kk+ (Q-P) ] ^ (y >> 1) ^ mag01 [y & 0x1UL] ; 

 } 

 y = (mt [P-1] &UPPER_MASK) | (mt [0] &LOWER_MASK) ; 

 mt [P-1] = mt [Q-1] ^ (y >> 1) ^ mag01 [y & 0x1UL] ; 

 

 mti = 0 ; 

 } 

 

 y = mt [mti++] ; 

 /* Tempering */ 

 y ^= (y >> 11) ; 

 y ^= (y << 7) & 0x9d2c5680UL ; 

 y ^= (y << 15) & 0xefc60000UL ; 

 y ^= (y >> 18) ; 

 

 return y ; 

} 

 

/* generates a random number on [0, 0x7fffffff] -interval */ 

long genrand_31 (void) 

{ 

 return (long) (genrand( ) >>1) ; 

} 

 

NOTE The corresponding Full Basic code of the Mersenne Twister method is shown for information as follows. 

 

REM /****************************************************/ 

REM  Mersenne Twister 

REM /****************************************************/ 
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OPTION BASE 0 

 

REM 
/*******************************************************************************/ 

REM /* Period parameters */ 

DECLARE NUMERIC P 

LET  P = 624  !#define P 624 

DECLARE NUMERIC Q 

LET  Q = 397 !#define Q 397 

DECLARE NUMERIC MATRIX_A 

LET  MATRIX_A = BVAL("9908b0df" , 16) !#define MATRIX_A 0x9908b0dfUL   /* 
constant vector a */ 

DECLARE NUMERIC UPPER_MASK 

LET  UPPER_MASK = BVAL("80000000" , 16) !#define UPPER_MASK 0x80000000UL /* 
most significant w-r bits */ 

DECLARE NUMERIC LOWER_MASK 

LET  LOWER_MASK = BVAL("7fffffff" , 16) !#define LOWER_MASK 0x7fffffffUL /* 
least significant r bits */ 

 

DIM mt(P) !static unsigned long mt[P]; /* the 
array for the state vector  */ 

DECLARE NUMERIC mti 

LET  mti = P + 1 !static int mti=P+1; /* mti==P+1 means 
mt[P] is not initialized */ 

 

REM 
/*******************************************************************************/ 

REM /* initializes mt[P] with a seed */ 

FUNCTION init_genrand(s) !void init_genrand(unsigned long s)  { 

   LET  mt(0) = And32(s , MskF_f) !    mt[0]= s & 0xffffffffUL; 

   FOR mti = 1 TO P - 1 !    for (mti=1; mti<P; mti++) { 

      LET  mt(mti) = Mul32U(1664525 , mt(mti-1)) + 1 

      ! !        mt[mti] = (1664525UL * 
mt[mti-1] + 1UL); 
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      LET  mt(mti) = And32(mt(mti) , MskF_f) !        mt[mti] &= 0xffffffffUL; 

   NEXT mti !    } 

END FUNCTION !} 

 

REM 
/*******************************************************************************/ 

REM /* generates a random number ON [0,0xffffffff]-interval */ 

FUNCTION genrand !unsigned long genrand(void)  { 

   DECLARE NUMERIC y !    unsigned long y; 

   DIM  mag01(2) 

   LET  mag01(0) = 0 

   LET  mag01(1) = MATRIX_A !    static unsigned long 
mag01[2]={0x0UL, MATRIX_A}; 

   REM /* mag01[x] = x * MATRIX_A  for x=0,1 */ 

     

   IF mti >= P THEN !    if (mti >= P) { /* generate P 
words at one time */ 

      DECLARE NUMERIC kk  !        int kk; 

        

      IF mti = P + 1 THEN  !        if (mti == P+1)   /* if 
init_genrand() has not been called, */ 

         LET  y = init_genrand(5489) !            init_genrand(5489UL); 
/* a default initial s is used   */ 

      END IF     

      FOR kk=0 TO P-Q-1 !        for (kk=0;kk<P-Q;kk++) { 

         LET  y = Xor32(And32(mt(kk) , UPPER_MASK) , And32(mt(kk+1) , 
LOWER_MASK)) 

         !                                      !            y = 
(mt[kk]&UPPER_MASK)|(mt[kk+1]&LOWER_MASK); 

         LET  mt(kk) = Xor32(Xor32(mt(kk+Q) , SR32U(y , 1)) , mag01(And32(y , 
1))) 

         ! !            mt[kk] = mt[kk+Q] ^ (y 
>> 1) ^ mag01[y & 0x1UL]; 

      NEXT kk !        } 
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      FOR kk=kk TO P-2 !        for (;kk<P-1;kk++) { 

         LET  y = Xor32(And32(mt(kk) , UPPER_MASK) , And32(mt(kk+1) , 
LOWER_MASK)) 

         ! !            y = 
(mt[kk]&UPPER_MASK)|(mt[kk+1]&LOWER_MASK); 

         LET  mt(kk) = Xor32(Xor32(mt(kk+Q-P) , SR32U(y , 1)) , mag01(And32(y , 
1))) 

         ! !            mt[kk] = mt[kk+(Q-P)] ^ 
(y >> 1) ^ mag01[y & 0x1UL]; 

      NEXT kk !        } 

      LET  y = Xor32(And32(mt(P-1) , UPPER_MASK) , And32(mt(0) , LOWER_MASK)) 

      !                                         !        y = (mt[P-
1]&UPPER_MASK)|(mt[0]&LOWER_MASK); 

      LET  mt(P-1) = Xor32(Xor32(mt(Q-1) , SR32U(y , 1)) , mag01(And32(y , 1))) 

      ! !      mt[P-1] = mt[Q-1] ^ (y >> 1) ^ 
mag01[y & 0x1UL]; 

        

      LET  mti = 0 !        mti = 0; 

   END IF !    } 

     

   LET  y = mt(mti) 

   LET  mti = mti + 1 !    y = mt[mti++]; 

     

   REM /* Tempering */ 

   LET  y = Xor32(y , SR32U(y , 11)) !    y ^= (y >> 11); 

   LET  y = Xor32(y , And32(SL32U(y , 7) , BVAL("9d2c5680" , 16))) 

   ! !    y ^= (y << 7) & 0x9d2c5680UL; 

   LET  y = Xor32(y , And32(SL32U(y ,15) ,BVAL("efc60000" , 16))) 

   ! !    y ^= (y << 15) & 0xefc60000UL; 

   LET  y = Xor32(y , SR32U(y , 18)) !    y ^= (y >> 18); 

     

   LET  genrand = y !    return y; 

END FUNCTION !} 
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REM 
/*******************************************************************************/ 

REM /* generates a random number on [0,0x7fffffff]-interval */ 

FUNCTION genrand_31 !long genrand_31(void)  { 

   LET  genrand_31 = SR32U(genrand , 1) !    return (long)(genrand()>>1); 

END FUNCTION !} 

B.5 Linear congruential method 

B.5.1 General 

B.5.1.1 Usage 

Linear congruential methods are widely used in software since they combine economy of use of memory with 
rapid execution. However, they have a relatively short period and are consequently not sufficiently random, 
particularly for generating random multi-dimensional sequences.  

B.5.1.2 Definition 

Most linear congruential methods generate pseudo-random number sequences X1, X2, ... by using the 
following recurrence relationship. 

Xn = mod(aXn – 1 + c; m) n = 1, 2, .... 

where a and m are positive integers and c is a non-negative integer. 

Once the values of the parameters a, m and c have been decided, the linear congruential method is 
determined; moreover, if the seed X0 is given, the generated number sequence is determined. 

NOTE 1 The meaning of the recurrence relationship is as follows. Calculate aX0 + c by using seed X0 and divide the 
result by m. The residue is X1. Next, calculate aX1 + c and divide the result by m, and the residue is X2. This procedure is 
repeated as many times as required. 

NOTE 2 The value of n for which Xn = X0 for the first time is called the period of the sequence. 

B.5.1.3 Method of deciding parameter values 

A good pseudo-random number sequence cannot be obtained if the values of a, m and c are determined 
arbitrarily. Therefore, these should be decided on the following basis. 

Because m is the upper limit of a period of the number sequence obtained by the linear congruential method, 
m should be set as large as possible. Hence, using for example 32-bit computers, it is recommended to set 
m = 232 or 231 − 1. 

For increment c, there is no strict criterion. However, the periods of generated number sequences may be 
different, according to whether a criterion is set to zero or a positive integer. 

As for the multiplier a, a value that provides good results in combination with the chosen values of m and c 
should be used (see Table B.1). 

NOTE In the case where m is an integer power of 2 and c is specified to be 0, the period is not more than m/4. If c is 
an odd number, the period becomes m. 
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B.5.1.4 Example of parameters 

For 32-bit computers, one of the sets of parameters from Table B.1 should be used. 

Table B.1 — Examples of parameters used in the linear congruential method 

Row number A c M 

1 1 664 525 * 232 

2 1 566 083 941 0 232 

3 48 828 125 0 232 

4 2 100 005 341 0 231 − 1 

5 397 204 094 0 231 − 1 

6 314 159 369 0 231 − 1 

NOTE 1 The symbol * indicates that any odd number may be used. 

NOTE 2 Using the parameters of row 1, all integers in the range 0 to (232 − 1) are generated. 

NOTE 3 Using the parameters of row 2 or row 3, the set of generated numbers is 4i + 1 for i = 0, 
1, ..., (230 − 1), or 4i + 3 for i = 0, 1, ..., (230 − 1), which depends on the seed X0. 

NOTE 4 Using the parameters of rows 4, 5 or 6, all the positive integers between 1 to (231 − 2) are 
generated. 

NOTE 5 When not many bits are required, they should be extracted from the upper bits of the 
random number, and lower bits should not be used. 

 

B.5.2 Program code for the linear congruential method 

B.5.2.1 General 

The C language implementation of the linear congruential method, which is in accordance with ISO/IEC 9899, 
is given below. It is composed of two types of programs, one for the case where m = 232, the other for the 
case where m = 231 − 1. These cases are consistent with the recommendations of B.5.1. 

B.5.2.2 Case of m = 232 

Every time the function lcong32( ) is called, it returns an integer random number between zero and (232 − 1) 
inclusive. The result is returned of type “unsigned long”. Every time the function lcong32_31( ) is called, it 
generates an integer random number between zero and (231 − 1) inclusive. The result is returned of type 
“long”. The initialization function init_lcong32 (unsigned long seed) executes initialization so that a 
non-negative integer of type “unsigned long” is set as the seed. If the addend c is 0 and the original seed X0

* 
is odd, then X0 can be set as X0 = X0

*. However, when an even original seed X0* is given in the case c = 0, 
one is added to the original seed to obtain the seed X0, i.e. X0 = X0

* + 1. In other cases, mod(X0*; m) is used 
as X0. 

The multiplier and the addend are changed by changing the definitions of MULTIPLIER and INCREMENT in 
each program. The random number sequence is restarted by using the output of lcong32( ) as the argument 
of initialization function init_lcong32(seed). 

B.5.2.3 Case of m = 231 − 1 

Every time the function lcong31( ) is called, it returns an integer random number between 1 and (231 − 2) 
inclusive. The result is returned of type “long”. The initialization function init_lcong31 (unsigned long seed) 
executes initialization so that a non-negative integer is set as the seed. As with the parameters in Table B.1, 
the addend of c are always 0. Therefore, the seed X0 should not be 0. However, if X0

* = 0, a special number 
(19 660 809) is used instead as the seed X0. In other cases, mod(X0*; m) is used as X0. 
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In order to change the multiplier, the definition of MULTIPLIER should be changed in the program. 

/***************************************************************** 

 C code : Linear Congruential 

******************************************************************/ 

 

/********************************************************* 

 Part 1. Modulus = 2^32 

**********************************************************/ 

 

#define MULTIPLIER 1664525UL 

#define INCREMENT 1UL 

 

static unsigned long state32 ; 

 

unsigned long lcong32( void ) 

{ 

  state32 = ( state32 * MULTIPLIER + INCREMENT ) & 0xFFFFFFFFUL; 

  return state32; 

} 

 

long lcong32_31( void ) 

{ 

  state32 = ( state32 * MULTIPLIER + INCREMENT ) & 0xFFFFFFFFUL; 

  return state32>>1; 

} 

 

void init_lcong32(unsigned long s) 

{ 

/* seed should be odd when increment == 0 */ 

 if ( (INCREMENT==0) && (s%2 == 0) ){ 

  s++ ; 

 } 

 state32 = s ; 

} 

 

/********************************************************* 

 Part 2. Modulus = 2^31-1 = 2147483647 

**********************************************************/ 

 

#undef MULTIPLIER 
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#undef INCREMENT 

#undef NBIT 

 

#define NBIT 15 

#define MASK  ( (1<<NBIT)-1) 

#define MASK2 ( (1<<2*NBIT) -1) 

#define MULTIPLIER 2100005341UL 

#define MULTIPLIER_LO (MULTIPLIER & MASK) 

#define MULTIPLIER_HI (MULTIPLIER >> NBIT) 

static unsigned long state31 ; 

 

long lcong31 ( void ) 

{ 

 unsigned long xlo, xhi ; 

 unsigned long z0, z1, z2 ; 

 

 xlo = state31 & MASK ; 

 xhi = state31 >> NBIT ; 

 z0 = xlo * MULTIPLIER_LO ;  /* 15bit * 15bit => 30bit */ 

 z1 = xlo * MULTIPLIER_HI 

    + xhi * MULTIPLIER_LO ;  /* 15bit * 16bit * 2 => 32bit */ 

 z2 = xhi * MULTIPLIER_HI ;  /* 16bit * 16bit => 32bit */ 

 z0 += (z1 & MASK) << NBIT ; 

 z2 += (z1 >> NBIT) + (z0 >> (2*NBIT)) ; 

 z0 = (z0 & MASK2) | ((z2&1) << (2*NBIT)) ; 

 z2 >>=1 ; 

 state31 = z0 + z2 ; 

 /* This should not exceed 2*0x7fffffffUL */ 

 if (state31>=0x7fffffffUL) state31 -= 0x7fffffffUL ; 

 return (long) state31 ; 

} 

void init_lcong31 (unsigned long s) 

{ 

 /* seed should not be 0 */ 

 if ( s == 0UL ) s=19660809UL ; 

 s = s % 0x7fffffffUL ; 

 state31 = s ; 

} 
 

NOTE 1 The Full Basic code of the linear congruential method is shown for information comparing with the 
corresponding C code as follows. 
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REM /********************************************************* 

REM   BASIC code : Linear Congruential 

REM **********************************************************/ 

REM 

REM /********************************************************* 

REM    Part 1. Modulus = 2^32 

REM **********************************************************/ 

 

OPTION BASE 0 

 

REM 
/*******************************************************************************/ 

DECLARE NUMERIC MULTIPLIER 

LET  MULTIPLIER = 1664525  !#define MULTIPLIER 1664525UL 

DECLARE NUMERIC INCREMENT 

LET  INCREMENT = 1 !#define INCREMENT  1UL 

 

DECLARE NUMERIC state32  !static unsigned long state32; 

 

REM 
/*******************************************************************************/ 

FUNCTION lcong32 !unsigned long lcong32u( void )     { 

   LET  state32 = And32((state32 * MULTIPLIER) + INCREMENT , MskF_f) 

   ! !  state32 = ( state32 * MULTIPLIER + 
INCREMENT ) & 0xFFFFFFFFUL; 

   LET  lcong32 = state32 !  return state32; 

END FUNCTION  !} 

 

REM 
/*******************************************************************************/ 

FUNCTION lcong32_31 !long lcong32( void )   { 
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! !  state32 = ( state32 * MULTIPLIER + 
INCREMENT ) & 0xFFFFFFFFUL; 

   LET  lcong32_31 = SR32U(lcong32 , 1) !  return state32>>1; 

END FUNCTION !} 

 

REM 
/*******************************************************************************/ 

FUNCTION init_lcong32(s) !void init_lcong32(unsigned long s) { 

   REM /* seed should be odd when increment == 0 */ 

   IF (INCREMENT = 0) AND (REMAINDER(s , 2) = 0) THEN 

   ! !  if ( (INCREMENT==0) && (s%2 == 0) ) 
{ 

      LET  s = s + 1 !    s++; 

   END IF !  } 

   LET  state32 = s !  state32 = s; 

END FUNCTION !} 

 

REM /********************************************************* 

REM   BASIC code : Linear Congruential 

REM **********************************************************/ 

REM 

REM /********************************************************* 

REM    Part 2. Modulus = 2^31-1 = 2147483647 

REM **********************************************************/ 

 

OPTION BASE 0 

 

DECLARE NUMERIC NBIT 

LET  NBIT = 15 !#define NBIT 15 

DECLARE NUMERIC MASK 

LET  MASK = SL32U(1 , NBIT) - 1 !#define MASK  ((1<<NBIT)-1) 
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DECLARE NUMERIC MASK2 

LET MASK2 = SL32U(1 , 2*NBIT) - 1 !#define MASK2 ((1<<(2*NBIT))-1) 

 

DECLARE NUMERIC MULTIPLIER 

LET  MULTIPLIER = 2100005341 !#define MULTIPLIER 2100005341UL 

 

DECLARE NUMERIC MULTIPLIER_LO 

LET  MULTIPLIER_LO = And32(MULTIPLIER , MASK) !#define MULTIPLIER_LO (MULTIPLIER 
&  MASK ) 

DECLARE NUMERIC MULTIPLIER_HI 

LET  MULTIPLIER_HI = SR32U(MULTIPLIER , NBIT) !#define MULTIPLIER_HI (MULTIPLIER 
>> NBIT ) 

 

DECLARE NUMERIC state31 !static unsigned long state31; 

 

REM 
/*******************************************************************************/ 

FUNCTION lcong31 !long lcong31( void )   { 

   DECLARE NUMERIC xlo, xhi !  unsigned long xlo, xhi; 

   DECLARE NUMERIC z0, z1, z2 !  unsigned long z0, z1, z2; 

     

   LET  xlo = And32(state31 , MASK) !  xlo = state31 &  MASK;     //1st 
val:9 

   LET  xhi = SR32U(state31 , NBIT) !  xhi = state31 >> NBIT;     //1st 
val:600 

     

   LET  z0 = xlo * MULTIPLIER_LO !  z0 = xlo * MULTIPLIER_LO; /* 
15bit * 15bit => 30bit */ 

   LET  z1 = xlo * MULTIPLIER_HI !  z1 = xlo * MULTIPLIER_HI 

   LET  z1 = z1 + xhi * MULTIPLIER_LO !       + xhi * MULTIPLIER_LO;  /* 
15bit * 16bit * 2 => 32bit */ 

   LET  z2 = xhi * MULTIPLIER_HI !  z2 = xhi * MULTIPLIER_HI; /* 16bit 
* 16bit => 32bit */ 
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   LET  z0 = z0 + SL32U(And32(z1 , MASK) , NBIT)!  z0 += (z1 & MASK) << NBIT; 
//1st val:897833157 

   LET  z2 = z2 + SR32U(z1 , NBIT) + SR32U(z0 , 2 * NBIT)   

   ! !  z2 += (z1 >> NBIT) + (z0 >> 
(2*NBIT)); 

   LET  z0 = Or32(And32(z0 , MASK2) , SL32U(And32(z2 , 1) , 2 * NBIT)) 

   ! !  z0 = (z0 & MASK2) | 
((z2&1)<<(2*NBIT)); 

   LET  z2 = SR32U(Z2 , 1) !  z2 >>=1; 

     

   LET  state31 = z0 + z2 !  state31 = z0 + z2; 

   REM /* This should not exceed 2*0x7fffffffUL */  

   IF state31 >= 2147483647 THEN  LET  state31 = state31 - 2147483647 

   ! !  IF (state31>=0x7fffffffUL) state31 
-= 0x7fffffffUL; 

   LET  lcong31 = state31 !  return (long) state31; 

END FUNCTION !} 

 

REM 
/*******************************************************************************/ 

FUNCTION init_lcong31(s) !void init_lcong31(unsigned long s) { 

   REM !  /* seed should not be 0 */ 

   IF s = 0 THEN LET  s = 19660809 !  if ( s == 0UL ) s=19660809UL; 

   LET  s = REMAINDER(s , 2147483647) !  s = s % 0x7fffffffUL; 

   LET  state31 = s !  state31 = s; 

END FUNCTION !} 

 

 

NOTE 2 The following set of Basic functions are necessary for transforming C code into all the Full Basic codes to 
generate random numbers in the Annex A to realize bitwise operations in the Basic codes. 

 

REM /********************************************* 

REM  BASIC code : FUNCTIONS 
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REM *********************************************/ 

 

OPTION BASE 0 

 

REM /****************************************************/ 

DECLARE NUMERIC MskF_f 

DECLARE NUMERIC MskF_e 

DECLARE NUMERIC MskF_8 

DECLARE NUMERIC MskF_0 

LET  MskF_f = BVAL("ffffffff" , 16) 

LET  MskF_e = BVAL("fffffffe" , 16) 

LET  MskF_8 = BVAL("fffffff8" , 16) 

LET  MskF_0 = BVAL("fffffff0" , 16) 

 

REM /*******************************************/ 

FUNCTION Or32(xA,xB) 

   DECLARE NUMERIC Ori, OrC 

     

   LET  OrC = 0 

   FOR Ori=0 TO 31 

      LET  xA = xA / 2 

      LET  xB = xB / 2 

      IF (INT(xA) <> xA) OR (INT(xB) <> xB) THEN 

         LET  OrC = OrC + 2 ^ Ori 

      END IF 

      LET  xA = INT(xA) 

      LET  xB = INT(xB) 

      IF (xA = 0) AND (xB = 0) THEN EXIT FOR 

   NEXT Ori 

   LET  Or32 = OrC 
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END FUNCTION 

 

REM /*******************************************/ 

FUNCTION And32(xA,xB) 

   DECLARE NUMERIC Andi, AC 

     

   LET  AC = 0 

   IF xA > MskF_f THEN 

      LET  xA = xA - INT(xA / 4294967296) * 4294967296 

   END IF 

   IF xB > MskF_f THEN 

      LET  xB = xB - INT(xB / 4294967296) * 4294967296 

   END IF 

     

   IF (xA = 0) OR (xB = 0) THEN 

      LET  And32 = 0 

   ELSEIF xB = MskF_f THEN                !&Hffffffff 

      LET  And32 = xA 

   ELSEIF xA = MskF_f THEN                !&Hffffffff 

      LET  And32 = xB 

   ELSEIF xB = MskF_8 THEN                !&Hfffffff8 

      LET  And32 = INT(xA / 8) * 8 

   ELSEIF xA = MskF_8 THEN                !&Hfffffff8 

      LET  And32 = INT(xB / 8) * 8 

   ELSEIF xB = MskF_0 THEN                !&Hfffffff0 

      LET  And32 = INT(xA / 16) * 16 

   ELSEIF xA = MskF_0 THEN                !&Hfffffff0 

      LET  And32 = INT(xB / 16) * 16 

   ELSE 

      FOR Andi=0 TO 31 
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         LET  xA = xA / 2 

         LET  xB = xB / 2 

         IF (INT(xA) <> xA) AND (INT(xB) <> xB) THEN 

            LET  AC = AC + 2 ^ Andi 

         END IF 

         LET  xA = INT(xA) 

         LET  xB = INT(xB) 

         IF (xA = 0) OR (xB = 0) THEN EXIT FOR 

      NEXT Andi 

      LET  And32 = AC 

   END IF 

 

END FUNCTION 

 

REM /*******************************************/ 

FUNCTION Xor32(xA,xB) 

   DECLARE NUMERIC Xori, XC 

     

   LET  XC = 0 

   FOR Xori=0 TO 31 

      LET  xA = xA / 2 

      LET  xB = xB / 2 

      IF ((INT(xA) = xA) AND (INT(xB) <> xB)) OR (INT(xA) <> xA) AND (INT(xB) = 
xB) THEN 

         LET  XC = XC + 2 ^ Xori 

      END IF 

      LET  xA = INT(xA) 

      LET  xB = INT(xB) 

      IF (xA = 0) OR (xB = 0) THEN EXIT FOR 

   NEXT Xori 
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   LET  Xori = Xori + 1 

   IF (xA =0) AND (xB = 0) THEN 

   elseIF xA = 0 THEN 

      FOR Xori=Xori TO 31 

         LET  xB = xB / 2 

         IF INT(xB) <> xB THEN 

            LET  XC = XC + 2 ^ Xori 

         END IF 

         LET  xB = INT(xB) 

         IF xB = 0 THEN EXIT FOR 

      NEXT Xori 

   ELSE 

      FOR Xori=Xori TO 31 

         LET  xA = xA / 2 

         IF INT(xA) <> xA THEN 

            LET  XC = XC + 2 ^ Xori 

         END IF 

         LET  xA = INT(xA) 

         IF xA = 0 THEN EXIT FOR 

      NEXT Xori 

   END IF 

   LET  Xor32 = XC 

     

END FUNCTION  

REM /*******************************************/ 

FUNCTION SL32U(xA,xL) 

   REM 2006-05-31 

   DECLARE NUMERIC slAH,slAL 

     

   IF (xA = 0) OR (xL = 0) THEN 
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      LET  SL32U = xA 

   ELSEIF xL >= 16 THEN 

      LET  slAL = xA - INT(xA / 65536) * 65536 

      LET  slAL = slAL * 2 ^ (xL - 16) 

      LET  slAL = slAL - INT(slAL / 65536) * 65536 

      LET  SL32U = slAL * 65536 

   ELSE 

      LET  slAL = xA - INT(xA / 65536) * 65536 

      LET  slAH = INT(xA / 65536) 

      LET  slAL = slAL * 2 ^ xL 

      LET  slAH = slAH * 2 ^ xL 

      LET  slAH = slAH - INT(slAH / 65536) * 65536 

      LET  SL32U = slAL + slAH * 65536 

   END IF 

     

End Function 

 

REM /*******************************************/ 

FUNCTION SR32U(xA,xL) 

   REM 2006-06-03 

     

   IF xL = 0 THEN 

      LET  SR32U = xA 

   ELSEIF xA = 0 THEN 

      LET  SR32U = 0 

   ELSE 

      LET  SR32U = INT(xA / 2 ^ xL) 

   END IF 

     

End Function 
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REM /*******************************************/ 

FUNCTION Mul32U(xA,xB) 

   REM /***** A,B : unsigned long (32-bit) *****/ 

   REM 2006-06-02 

   DECLARE NUMERIC MAH, MAL, MBH, MBL 

     

   LET  MAH = INT(xA / 65536) 

   LET  MBH = INT(xB / 65536) 

   IF (xA = 0) OR (xB = 0) THEN 

      LET Mul32U = 0 

   ELSEIF (MAH = 0) AND (MBH = 0) THEN 

      LET Mul32U = xA * xB 

   ELSE 

      LET  MAL = xA - INT(xA / 65536) * 65536 

      LET  MBL = xB - INT(xB / 65536) * 65536 

      LET  MBH = MAH * MBL + MAL * MBH + INT((MAL * MBL) / 65536) 

      LET  MBH = MBH - INT(MBH / 65536) * 65536 

      LET  MAL = MAL * MBL 

      LET  MBL = MAL - INT(MAL / 65536) * 65536 

      LET  Mul32U = MBL + 65536 * MBH 

   END IF 

     

END FUNCTION 
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B.6 Reference examples 

Table B.2 gives examples of random number sequences using the code in Annex B with specific values of the 
parameters for the validation. The first 5 pseudo-random numbers and the 5 pseudo-random numbers at 
intervals of 1 000 are listed for reference. 

Table B.2 — Output examples of random numbers 

Generation method Linear congruential Linear congruential Trinomial GFSR Pentanomial GFSR 

Routine name lcong32_31 lcong31 gfsr_31 gfsr5_31 
Parameters M = 232, m = 231 − 1, P = 1 279, p = 521, 

 A = 1 664 525, a = 2 100 005 341, q = 418, q1 = 86, 
 C = 1 c = 0 w = 32 q2 = 197, 
    q3 = 447, 
    w = 32 

Initialization routine init_lcong32 init_lcong31 init_gfsr init_gfsr5 

Initialization seed 19 660 809 19 660 809 19 660 809 19 660 809 

1 1 276 136 251 1 990 801 112 716 530 710 716 530 710 
2 865 096 703 549 424 302 1 004 066 893 1 004 066 893 
3 1 405 063 418 2 128 986 934 1 271 815 862 1 271 815 862 
4 1 021 835 442 637 203 998 955 533 625 955 533 625 
5 1 313 685 521 965 379 446 626 736 785 626 736 785 

1 000 1 292 340 048 294 652 208 1 588 358 191 1 935 299 389 
2 000 517 257 756 407 927 492 2 027 766 761 43 898 710 
3 000 1 420 573 800 216 557 927 1 495 802 935 1 516 572 896 
4 000 1 195 033 140 919 639 774 1 360 928 075 1 923 029 091 
5 000 971 701 120 639 093 944 1 950 421 053 2 129 964 021 

     

Generation method Combined Tausworthe Mersenne Twister Physical random number 

Routine name taus88_31 genrand_31 rndtable31 

Parameters Same as the body of this 
International Standard 

Same as the body of this 
International Standard File 

   prnd01. bin 

Initialization routine init_taus88 init_genrand init_rndtable 

Initialization seed 19 660 809 19 660 809 19 660 809 

1 116 464 117 652 430 828 57 316 494 
2 1 350 114 716 769 118 065 905 630 297 
3 14 524 262 902 643 984 1 460 801 524 
4 565 035 872 1 576 219 271 751 624 663 
5 1 079 577 460 859 869 705 1 289 292 436 

1 000 1 404 867 807 1 194 038 620 2 001 042 935 
2 000 2 022 781 177 563 296 554 1 638 049 143 
3 000 2 098 228 799 1 515 829 663 41 578 219 
4 000 1 089 352 213 1 803 857 212 87 938 653 
5 000 262 361 229 1 203 434 155 1 851 047 367 
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