
BS ISO
28640:2010

ICS 03.120.30

NO COPYING WITHOUT BSI PERMISSION EXCEPT AS PERMITTED BY COPYRIGHT LAW

BRITISH STANDARD

Random variate
generation methods

This British Standard
was published under the
authority of the Standards
Policy and Strategy
Committee on 30 June
2010
© BSI 2010

ISBN 978 0 580 57787 1

Amendments/corrigenda issued since publication

Date Comments

BS ISO 28640:2010

National foreword

This British Standard is the UK implementation of ISO 28640:2010.
The UK participation in its preparation was entrusted to Technical
Committee SS/5, Acceptance sampling schemes.
A list of organizations represented on this committee can be obtained on
request to its secretary.
This publication does not purport to include all the necessary provisions
of a contract. Users are responsible for its correct application.
Compliance with a British Standard cannot confer immunity
from legal obligations.

BS ISO 28640:2010

Reference number
ISO 28640:2010(E)

© ISO 2010

INTERNATIONAL
STANDARD

ISO
28640

First edition
2010-03-15

Random variate generation methods

Méthodes de génération de nombres pseudo-aléatoires

BS ISO 28640:2010
ISO 28640:2010(E)

PDF disclaimer
This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but
shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In
downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat
accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation
parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In
the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

 COPYRIGHT PROTECTED DOCUMENT

© ISO 2010
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or
ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

ii © ISO 2010 – All rights reserved

BS ISO 28640:2010
ISO 28640:2010(E)

© ISO 2010 – All rights reserved iii

Contents Page

Foreword ..iv
Introduction...v
1 Scope ..1
2 Normative references..1
3 Terms and definitions ...1
4 Symbols and mathematical binary operations...2
4.1 Symbols..2
4.2 Mathematical binary operations ..2
5 Uniformly distributed pseudo-random numbers..3
5.1 General ...3
5.2 M-sequence method definition ..3
5.3 Pentanomial GFSR method ..4
5.4 Combined Tausworthe method..4
5.5 Mersenne Twister method ..5
6 Generation of random numbers from various distributions...6
6.1 Introduction..6
6.2 Uniform distribution ..6
6.3 Standard beta distribution..7
6.4 Triangular distribution ..8
6.5 General exponential distribution with location and scale parameters ..8
6.6 Normal distribution ...9
6.7 Gamma distribution...9
6.8 Weibull distribution ...11
6.9 Lognormal distribution ...11
6.10 Logistic distribution ..11
6.11 Multivariate normal random variate generation ...12
6.12 Binomial distribution...12
6.13 Poisson distribution..14
6.14 Discrete uniform distribution ...14
Annex A (informative) Table of physical random numbers ..16
A.1 Table of random numbers ..16
A.2 Method of physical random number generation ..17
Annex B (informative) Algorithm for pseudo-random number generation...18
B.1 Program code for the trinomial GFSR method...18
B.2 Program code for the pentanomial GFSR method...22
B.3 Program code for the combined Tausworthe method...28
B.4 Program code for the Mersenne Twister method ..32
B.5 Linear congruential method ...38
B.6 Reference examples..52
Bibliography..53

BS ISO 28640:2010
ISO 28640:2010(E)

iv © ISO 2010 – All rights reserved

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies
(ISO member bodies). The work of preparing International Standards is normally carried out through ISO
technical committees. Each member body interested in a subject for which a technical committee has been
established has the right to be represented on that committee. International organizations, governmental and
non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the
International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards
adopted by the technical committees are circulated to the member bodies for voting. Publication as an
International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 28640 was prepared by Technical Committee ISO/TC 69, Applications of statistical methods.

This is the first edition.

BS ISO 28640:2010
ISO 28640:2010(E)

© ISO 2010 – All rights reserved v

Introduction

This International Standard specifies typical algorithms by which the users can regard the generated
numerical sequences as if they were real random variates.

Nowadays most statisticians, scientists and engineers have enough computer power at their disposal to carry
out large computer simulations, and it is important that these be based on sound pseudo-random generators.
This International Standard has been developed to help ensure that randomization, where needed, is carried
out correctly and efficiently.

Six uses of randomization can be identified in statistical standardization:

⎯ selection of a random sample;

⎯ analysis of sample data;

⎯ development of standards;

⎯ checking theoretical results;

⎯ demonstrating that a proposed procedure has the properties claimed of it;

⎯ resolving uncertainty in the statistical literature.

BS ISO 28640:2010

BS ISO 28640:2010

INTERNATIONAL STANDARD ISO 28640:2010(E)

© ISO 2010 – All rights reserved 1

Random variate generation methods

1 Scope

This International Standard specifies methods for generating uniform and non-uniform random variates for
Monte Carlo simulation purposes. Cryptographic random number generation methods are not included. This
International Standard is applicable, inter alia, by

⎯ researchers, industrial engineers or experts in operations management, who use statistical simulation,

⎯ statisticians who need randomization related to SQC methods, statistical design of experiments or sample
surveys,

⎯ applied mathematicians who plan complex optimization procedures that require the use of Monte Carlo
methods, and

⎯ software engineers who implement algorithms for random variate generation.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.

ISO/IEC 2382-1, Information technology — Vocabulary — Part 1: Fundamental terms

ISO 3534-1, Statistics — Vocabulary and symbols — Part 1: General statistical terms and terms used in
probability

ISO 3534-2, Statistics — Vocabulary and symbols — Part 2: Applied statistics

3 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO/IEC 2382-1, ISO 3534-1 and
ISO 3534-2 apply, except where redefined below.

3.1
random variate
random number
number as the realization of a specific random variable

NOTE 1 The term “random number” is often used for uniformly distributed random variate.

NOTE 2 Random numbers provided as a sequence are called a “random number sequence”.

BS ISO 28640:2010
ISO 28640:2010(E)

2 © ISO 2010 – All rights reserved

3.2
pseudo-random number
random number (3.1) generated by an algorithm, that appears to be random

NOTE If there is no fear of misunderstanding, a pseudo-random number may simply be called a “random number”.

3.3
physical random number
random number (3.1) generated by a physical mechanism

3.4
binary random number sequence
random number (3.1) sequence consisting of zeros and ones

3.5
seed
initialization value required for pseudo-random number generation

4 Symbols and mathematical binary operations

4.1 Symbols

For the purposes of this document, the symbols given in the normative references as the latest versions of
ISO/IEC 2382-1, ISO 3534-1 and ISO 3534-2 apply, except where redefined below.

The symbols and abbreviations specifically used in this International Standard are as follows:

X integer type uniform random number

U standard uniform random number

Z normal random variate

n suffix of random number sequence

4.2 Mathematical binary operations

The mathematical binary operations specifically used in this International Standard are as follows:

mod(m; k) residue from dividing integer m by k

m ⊕ k bitwise exclusive logical disjunction of binary integers m and k

EXAMPLE 1 1 ⊕ 1 = 0

 0 ⊕ 1 = 1

 1 ⊕ 0 = 1

 0 ⊕ 0 = 0

 1010 ⊕ 1100 = 0110

BS ISO 28640:2010
ISO 28640:2010(E)

© ISO 2010 – All rights reserved 3

m ∧ k bitwise logical conjunction of binary integers m and k

EXAMPLE 2 1 ∧ 1 = 1

 0 ∧ 1 = 0

 1 ∧ 0 = 0

 0 ∧ 0 = 0

 1010 ∧ 1100 = 1000

m := k replaces value m by k

m >> k k-bit right shift of binary integer m

m << k k-bit left shift of binary integer m

5 Uniformly distributed pseudo-random numbers

5.1 General

This clause provides algorithms for generating uniformly distributed pseudo-random numbers based on
M-sequence methods (see 5.2).

Annex A introduces the concept of physically generated random numbers for information.

Annex B includes C and full Basic codes for all the recommended algorithms for information. Although the
linear congruential method is not recommended for complex Monte Carlo simulations, it is also included in
Annex B for information.

5.2 M-sequence method definition

a) Let p be a natural number, and c1, c2, ..., cp − 1 be specified to be 0 or 1, and define the recurrence
formula

xn + p = cp − 1 xn + p − 1 + cp − 2 xn + p − 2 + ... + c1 xn + 1 + xn (mod 2) (n = 1, 2, 3, ...)

b) The least positive integer N such that xn + N = xn for all n is called the period of the sequence. This
sequence is called an M-sequence in cases where its period is 2p − 1.

c) The polynomial

t p + cp − 1 t p − 1 + ... + c1t + 1

is called the characteristic polynomial of the above-mentioned recurrence formula.

NOTE 1 A necessary and sufficient condition for the above-mentioned recurrence formula to generate an M-sequence
is that at least one of the seeds x1, x2, ..., xp is not zero.

NOTE 2 The letter M of the M-sequence originates from the English word “maximum”, which means the largest. The
period of any sequence generated by the above recurrence formula cannot exceed 2p − 1. Therefore, if there is a series
that has a period of 2p − 1, it is the series that has the largest period.

NOTE 3 When this method is used, either one of the polynomials listed in Table 1 or another primitive polynomial listed
in the literature is chosen as the characteristic polynomial and its coefficients are used to define the recurrence formula
in a).

BS ISO 28640:2010
ISO 28640:2010(E)

4 © ISO 2010 – All rights reserved

5.3 Pentanomial GFSR method

This method uses a characteristic polynomial of 5 terms, and it generates binary integer sequences of w bits
by the following recurrence formula. This algorithm is called the GFSR or “generalized feedback shift register”
random number generator.

Xn + p = Xn + q1 ⊕ Xn + q2 ⊕ Xn + q3 ⊕ Xn (n = 1, 2, 3, ...)

The parameters are (p, q1, q2, q3, w) and X1, ..., Xp are initially given as seeds. Examples of parameters p, q1,
q2, q3 giving the largest period 2p − 1 are indicated in Table 1.

Table 1 — Pentanomial characteristic polynomials

p q1 q2 q3

89 20 40 69

107 31 57 82

127 22 63 83

521 86 197 447

607 167 307 461

1 279 339 630 988

2 203 585 1 197 1 656

2 281 577 1 109 1 709

3 217 809 1 621 2 381

4 253 1 093 2 254 3 297

4 423 1 171 2 273 3 299

9 689 2 799 5 463 7 712

NOTE q1, q2, q3 represent exponents of the non-zero terms of the
characteristic polynomial.

5.4 Combined Tausworthe method

Let x0, x1, x2, … be an M-sequence generated by the recurrence relationship:

xn + p = xn + q + xn (mod 2) (n = 0, 1, 2, …)

Using this M-sequence, a w-bit integer sequence called a simple Tausworthe sequence with parameters
(p, q, t) is obtained as follows:

Xn = xnt xnt + 1…xnt + w − 1 (n = 0, 1, 2, …)

where

t is a natural number which is coprime to the period 2p − 1 of the M-sequence;

w is the word length which does not exceed p.

The period of this sequence is also 2p − 1.

NOTE 1 Two integers are said to be coprime, or relatively prime, when they have no common divisors other than unity.

BS ISO 28640:2010
ISO 28640:2010(E)

© ISO 2010 – All rights reserved 5

EXAMPLE If a primitive polynomial t4 + t + 1 is chosen, set p = 4, and q = 1 in the above recurrence relationship. If
the seeds (x0, x1, x2, x3) = (1,1,1,1) are given to the recurrence, then the M-sequence obtained by the recurrence will be
1,1,1,1, 0,0,0,1, 0,0,1,1, 0,1,0,1, 1,1,1,0, … , and the period of the sequence is 24 − 1 = 15. Taking, for example, t = 4
which is coprime to 15, and w = 4, the simple Tausworthe sequence {Xn} with parameters (4, 1, 4) is obtained as follows:

X0 = x0x1x2x3 = 1111 (= 15)

X1 = x4x5x6x7 = 0001 (= 1)

X2 = x8x9x10x11 = 0011 (= 3)

X3 = x12x13x14x0 = 0101 (= 5)

X4 = x1x2x3x4 = 1110 (= 14)

X5 = x5x6x7x8 = 0010 (= 2)

.....

The simple Tausworthe sequence obtained in this way will be, in decimal notation, 15, 1, 3, 5, 14, 2, 6, 11, 12,
4, 13, 7, 8, 9, 10, 15, 1, 3, … , and its period is 24 − 1 = 15.

Suppose now that there is a multiple, say J, of simple Tausworthe sequences {Xn
(j)}, j = 1, 2, ..., J with the

same word length w. The combined Tausworthe method is a technique that generates a sequence of
pseudo-random numbers {Xn} as the bitwise exclusive logical disjunction in the binary representation of these
J sequences.

Xn = X(1)
n ⊕ X(2)

n ⊕ … ⊕ X(J)
n (n = 0, 1, 2, …)

The parameters and the seeds of the combined Tausworthe sequence are combinations of the parameters
and the seeds of each simple Tausworthe sequence. If the periods of the J simple Tausworthe sequences are
coprime, then the period of the combined Tausworthe sequence is the product of the periods of the J
sequences.

NOTE 2 This method can generate sequences with good multidimensional equidistribution characteristics. The
algorithm taus88_31() given in Annex A generates a sequence of 31-bit integers by combining three simple Tausworthe
generators with parameters (p, q, t) = (31, 13, 12), (29, 2, 4), and (28, 3, 17), respectively. The period length of the
combined sequence is (231 − 1)(229 − 1)(228 − 1), i.e. about 288. Many other combinations are suggested in References [7]
and [8] in the Bibliography.

5.5 Mersenne Twister method

Let Xn be a binary integer of w bits. Then, the Mersenne Twister method generates a sequence of binary
integer pseudo-random numbers of w bits according to the following recurrence formula with integer constants
p, q, r and a binary integer a of w bits.

Xn + p = Xn + q ⊕ (Xf
n|Xl

n+1)(r) A , (n = 1, 2, 3, ...)

where (X f
n|X l

n+1)(r) represents a binary integer that is obtained by a concatenation of X f
n and X l

n + 1, the first
w − r bits of Xn and the last r bits of Xn + 1 in this order. A is a w × w 0-1 matrix, which is determined by a, and
the product XA is given by the following formula.

X >> 1 (when the last bit of X = 0)

XA = (X >> 1) ⊕ a (when the last bit of X = 1)

Here, X is regarded as a w dimensional 0-1 vector.

BS ISO 28640:2010
ISO 28640:2010(E)

6 © ISO 2010 – All rights reserved

NOTE The necessary amount of memory for this computation is p words, the period becomes 2pw−r − 1, and the
efficiency is better than that of the GFSR methods described previously. To improve the randomness of the first w − r bits,
the following series of conversions can be applied to Xn.

y := Xn

y := y ⊕ (y >> u)

y := y ⊕ [(y << s) ∧ b]

y := y ⊕ [(y << t) ∧ c]

y := y ⊕ (y >> l)

where b, c are constant bits masks to improve the randomness of the first w − r bits. The parameters of this
algorithm are (p, q, r, w, a, u, s, t, l, b, c). The seeds are X2, ..., Xq + 1 and the first w − r bits of X1.

The final value of y is the pseudo-random number.

6 Generation of random numbers from various distributions

6.1 Introduction

Methods of generating random numbers Y from various distributions by using uniform random numbers X of
integer type, are described below.

The distribution function is denoted by F(y). If it is a continuous distribution, its probability density function is
denoted by f(y), and if it is a discrete distribution, its probability mass function is denoted by p(y).

6.2 Uniform distribution

6.2.1 Standard uniform distribution

6.2.1.1 Probability density function

1, 0 1() 0, otherwise
yf y ⎧= ⎨

⎩
u u

6.2.1.2 Random variate generation method

If the maximum value of uniform random number X of integer type is m − 1, the following formula should be
used to generate standard uniform random numbers.

XU
m

=

EXAMPLE For any w-bit integer sequences generated by the method described in 5.2 through 5.5, m = 2.

NOTE 1 Because X takes on discrete values, the values of U are also discrete.

NOTE 2 The value of U never becomes 1,0. The value of U becomes 0,0 only when X = 0. In the case of M-sequence
random numbers, any generation method may cause this phenomenon.

NOTE 3 Random numbers from the standard uniform distribution are called standard uniform random numbers, and
are represented by U1, U2, … They are assumed to be independent of each other.

BS ISO 28640:2010
ISO 28640:2010(E)

© ISO 2010 – All rights reserved 7

6.2.2 General uniform distribution

6.2.2.1 Probability density function

1/ , () 0, otherwise
b a y a bf y +⎧= ⎨

⎩
u u

where b > 0.

6.2.2.2 Random variate generation method

If the standard uniform random number U is generated by the method specified in 6.2.1.2, then the general
uniform random number should be generated by the following formula:

Y bU a= +

6.3 Standard beta distribution

6.3.1 Probability density function

()
()

11 1 0 1,() Β ,
otherwise0,

dcy y yf y c d

−−⎧ −⎪
= ⎨
⎪
⎩

u u

where () ()1 11
0

Β , 1 ddcc d x x x−−= −∫ is the beta function and the parameters c and d are greater than 0.

6.3.2 Random variate generation method by Jöhnk

If the standard uniform random numbers U1 and U2 are independently generated by the method specified in
6.2.1, then the standard beta random number Y should be generated by the following procedures.

If 1/ 1/
1 2

c dY U U= + is less than or equal to 1, set 1/
1 /cY U Y= ; otherwise, generate two standard uniform

random numbers again until the inequality is satisfied.

6.3.3 Random variate generation method by Cheng

If the standard uniform random numbers U1 and U2 are independently generated by the method specified in
6.2.1, then the standard beta random number Y should be generated by the following procedures.

[Set-up]

a) Let

() (,)
2 ()

2

1min , , if min

, otherwise

c d c d
q cd c d

c d

<⎧
⎪= ⎨ − +
⎪ + −⎩

[Generation]

b) Let

1

1

1 , exp()
1

U
V W c V

q U
= =

−

BS ISO 28640:2010
ISO 28640:2010(E)

8 © ISO 2010 – All rights reserved

c) If

2
1 2()ln () ln4 ln()c dc d c q V U U

d W
+⎛ ⎞+ + + −⎜ ⎟+⎝ ⎠

W

then employ

; and stop.WY
d W

=
+

d) Generate U1, U2, and go to b).

21
1 2

1

1 ()ln () ln4 ln()
1

U c d WV c d c q V U U
q U d W d W

+⎛ ⎞= + + + −⎜ ⎟− + +⎝ ⎠
W

Jöhnk's method is recommended when max(c, d) u 1; otherwise, Cheng's method is recommended.

NOTE General beta random variates with the support [a, a + b] will be obtained by a linear transformation similar to
the one described in 6.2.2.2.

6.4 Triangular distribution

6.4.1 Probability density function

2 ,()
0, otherwise

b a y
a b y a bf y b

⎧ − −
⎪ − += ⎨
⎪⎩

u u

where b > 0.

6.4.2 Random variate generation method

If the standard uniform random numbers U1 and U2 are independently generated by the method specified in
6.2.1, then the triangular random number Y should be generated by ()1 2 1Y a b U U= + + − .

6.5 General exponential distribution with location and scale parameters

6.5.1 Probability density function

{ }() /
()

1exp ,

0,

y a b y a
f y b

y a

⎧ − −⎪= ⎨
⎪ <⎩

W

where a and b are the location and scale parameters of the exponential distribution, respectively.

6.5.2 Random variate generation method

If the standard uniform random number U is generated by the method specified in 6.2.1, then the general
exponential random number should be generated by

Y = − b ln(U) + a

BS ISO 28640:2010
ISO 28640:2010(E)

© ISO 2010 – All rights reserved 9

6.6 Normal distribution

6.6.1 Probability density function

() ()2
2

1 1exp ,
2 2

f z z zµ
σ σ

⎧ ⎫
= − − − ∞ < < ∞⎨ ⎬

π ⎩ ⎭

where µ and σ are the mean and standard deviation of the normal distribution, respectively.

NOTE The symbol Z is used for a normal random variate.

6.6.2 The Box-Müller method

If the standard uniform random numbers U1 and U2 are independently generated by the method specified in
6.2.1, then two independent normal random numbers Z1, Z2 will be generated by the following procedures:

()1 1 22ln 1 cos(2)Z U Uµ σ= + − − π

()2 1 22ln 1 sin(2)Z U Uµ σ= + − − π

NOTE 1 Since U1 is not continuous, Z1, Z2 cannot be normally distributed in a strict sense. For example, using this
procedure, the upper bound of the absolute value of the pseudo-standardized normal variates is

1() 22 ln In ;M m m−= − = thus, when m = 232, M ≈ 6,660 4, and when m = 231 − 1, M ≈ 6,555 5. However, since the
probability that absolute values of random variables from a true standard normal distribution exceed M is only about 10−10,
this will rarely be a problem in practice.

NOTE 2 When generating U1, U2, by a linear congruential method sequentially, U1 and U2 are not independent of each
other, so the tail of the distribution of the generated Z1 and Z2 can depart considerably from the true normal distribution.

6.7 Gamma distribution

6.7.1 Probability density function

{ } { }() / () /
()()

11 exp ,

se0, otherwi

cy a b y a b y a
b cf y

−⎧ − − −⎪ Γ= ⎨
⎪⎩

W

where a, b, c are the location, scale and shape parameters of the distribution, respectively.

6.7.2 Random variate generation methods

6.7.2.1 General

Algorithms are given for three special cases depending on the shape parameter value c as follows.

6.7.2.2 Case of c = k (k: integer)

Using independent uniform random numbers U1, U2, ... , Uk, the transformation formula

{ }()()...()1 2ln 1 1 1 kY a b U U U= − − − −

should be used.

BS ISO 28640:2010
ISO 28640:2010(E)

10 © ISO 2010 – All rights reserved

NOTE The chi-squared distribution with even degrees of freedom can be generated by this method when a = 0 and
b = 2.

6.7.2.3 Case of c = k + 1/2 (k: integer)

Using a standard normal random number Z0 and uniform random number U1, U2, ... , Uk, the transformation
formula

{ }/ ()()...()2
0 1 22 ln 1 1 1 kY a b Z U U U⎡ ⎤= + − − − −⎣ ⎦

should be used. In the case where k = 0, the logarithm term disappears.

NOTE The chi-squared distribution with odd degrees of freedom can be generated by this method when a = 0 and
b = 2.

6.7.2.4 Approximate generation method when c > 1/3

a) Set () /()31/3, , ln , 1 3r c s r t r r r p s= − = = − = and .3q r= −

b) Generate standard normal random number Z.

c) If Z < q, then go to b).

d) Set () /3 2, 2,Y pZ s V Z= + = and generate U.

e) If (Y − r)2/Y − V u U, then employ Y := a + bY and stop.

f) Set W = Y − r ln(Y) − t − V.

g) If W u U, then employ Y := a + bY and stop.

h) If W > −In(1,0 − U), then go to b).

NOTE This method is based on the Wilson-Hilferty transformation of chi-square distributions to an approximate
standard normal distribution. The accuracy of this approximation depends on the parameter values of c, and the
dependency is rather complicated. A very rough idea is as follows: the absolute difference between the percentage point
of the approximate distribution and the exact distribution is always less than 0,2.

6.7.2.5 Exact generation method when c > 1/2, by Cheng

a) Set q = c – ln 4 and 2 1r c c= + − .

b) Generate standard uniform random numbers U1 and U2.

c) Set (), (), 21
1 1 2

1
ln exp

1
UV c W c U Z U U

U
= = =

−
 and R = q + rV − W.

d) If R W 4,5Z − (1 + In 4,5) then employ Y = a + bW and stop.

e) If R W InZ then employ Y = a + bW and stop.

f) Go to b).

BS ISO 28640:2010
ISO 28640:2010(E)

© ISO 2010 – All rights reserved 11

()
1

1

/ 2 , 2

1

21 1
1 2

1 1
1 1 ln4 1 ln 4,5 (1 ln4,5)

1 1

p

p

U Up c q c r c c q pr c U U
U U

U
Y a bc

U

⎛ ⎞ ⎛ ⎞
= − = − = + − + − − +⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

⎛ ⎞
= + ⎜ ⎟−⎝ ⎠

W

6.8 Weibull distribution

6.8.1 Probability distribution function

()
1 exp ,

0,

cy a y a
F y b

y a

⎧ ⎧ ⎫−⎪ ⎪⎛ ⎞⎪ − −⎪ ⎨ ⎬⎜ ⎟= ⎝ ⎠⎨ ⎪ ⎪⎩ ⎭⎪
<⎪⎩

W

where a, b and c are the location, scale and shape parameters of the distribution, respectively.

6.8.2 Random variate generation method

If the standard uniform random numbers U are generated by the method specified in 6.2.1, then general
Weibull random numbers are generated by the following formula:

Y = a – b{ln(1 – U)}1/c

6.9 Lognormal distribution

6.9.1 Probability density function

() ()
21 1exp ,

22 { }

0,

y a y af y by a b

y a

⎧ ⎧ ⎫−⎛ ⎞⎪ ⎪⎪ −⎨ ⎬⎜ ⎟= ⎨ π − ⎝ ⎠⎪ ⎪⎩ ⎭⎪
⎩ <

W

where a and b are the location and scale parameters of the normal distribution, respectively.

6.9.2 Random variate generation method

Using standard normal random numbers Z,

()expY a bZ= +

generates lognormal random numbers.

6.10 Logistic distribution

6.10.1 Probability function

{ }
1()
() /

,
1 exp

F y y
y a b

= − ∞ < < ∞
+ − −

where a and b are the location and scale parameters of the distribution, respectively.

BS ISO 28640:2010
ISO 28640:2010(E)

12 © ISO 2010 – All rights reserved

6.10.2 Random variate generation method

If standard uniform random numbers U are generated by the method specified in 6.2.1, then logistic random
numbers are generated by

ln
1

UY a b
U

⎛ ⎞= + ⎜ ⎟−⎝ ⎠

6.11 Multivariate normal random variate generation

Random numbers Y1, Y2, ..., Yn from an n-dimensional normal distribution, with mean values µ1, µ2, ..., µn and
variances and covariances σij (1 u i, j u n) are generated as follows using mutually independent standard
normal random numbers Z1, ..., Zn.

Y1 = µ1 + a11Z1

Y2 = µ2 + a21Z1 + a22Z2

 ...

Yn = µn + an1Z1 + an2Z2 + ... + annZn

where a11, ..., ann are constants that are calculated before start of random number generation from variances
and covariances by following Cholesky factorization procedures, as given below.

NOTE σij (1 u i, j u n), σii means the variance of Yi.

a) Set a11 = 11σ , ai1 = σi1/a11 (2 u i u n)

b) For j = 2, ..., n set

1
1 2

2

1

j

jj jj jk
k

a aσ
−

=

⎛ ⎞
⎜ ⎟= −
⎜ ⎟
⎝ ⎠

∑

and

1

1
/ (1)

j

ij ij ik jk jj
k

a a a a j i nσ
−

=

⎛ ⎞
⎜ ⎟= − +
⎜ ⎟
⎝ ⎠

∑ u u

6.12 Binomial distribution

6.12.1 Probability mass function

When some event occurs with probability p at each trial, the probability that this event occurs y times in n trials
is given by the following formula:

() (1) , 0,1, ...,y n ynp y p p y ny
−⎛ ⎞= − =⎜ ⎟

⎝ ⎠

where 0 < p < 1.

BS ISO 28640:2010
ISO 28640:2010(E)

© ISO 2010 – All rights reserved 13

6.12.2 Random variate generation methods

6.12.2.1 General

The following methods should be used for generating random numbers Y from this distribution.

6.12.2.2 Direct method

Generate n standard uniform random numbers U, and let Y be the number of these values of U that are less
than p.

6.12.2.3 Inverse function method

Compute the distribution function as follows:

0
() (1) , 0,1, ...,

y
k n k

k

nF y p p y nk
−

=

⎛ ⎞= − =⎜ ⎟
⎝ ⎠∑

Whenever a random number is required, generate a standard uniform random number U, and let Y be the
minimum y that satisfies U u F(y).

6.12.2.4 Alias method

First, n + 1 parameters v0, v1, ..., vn and n + 1 other parameters a0, a1, ..., an, are calculated by the following
procedures.

a) vy = (n + 1) p(y), y = 0, 1, …, n.

b) Let G be the set of suffices y that satisfies vy W 1 and S be the set of suffices y that satisfies vy < 1.

c) While S is not empty, repeat the following operations from 1) to 4).

1) Select any element i from G and any element j from S.

2) Set aj = i and vi = vi − (1 − vj).

3) If vi < 1, delete element i from G and move it to S.

4) Delete element j from S.

If the preparations mentioned above are completed, a binomial random number Y will be obtained by
performing the following operations d) to f).

d) Generate a standard uniform random number U, and set V = (n + 1)U.

e) Set k = (integer part of V) and u = V − k.

f) If u u vk, set Y = k; otherwise, set Y = ak.

BS ISO 28640:2010
ISO 28640:2010(E)

14 © ISO 2010 – All rights reserved

6.13 Poisson distribution

6.13.1 Probability mass function

The probability mass function of a Poisson distribution with mean µ is defined as follows.

() exp() , 0, 1, 2, ... ,
!

y
p y y

y
µµ= − =

where µ > 0.

6.13.2 Method of using a relationship with an exponential distribution

Generate standard uniform random numbers U1, U2, ..., and let Y be the maximum n that satisfies the
following inequality:

{ }()()...()1 2ln 1 1 1 nU U U µ− − − − <

6.13.3 Alias method

First, select a constant n for which the probability that Y > n is negligibly small, for example, the integer part of
6µ µ+ could be specified to be n. Then use the procedure 6.12.2.4 alias method of the binomial distribution;

however, this time the probability mass function of the Poisson distribution shall be used for p(y).

NOTE This method is efficient when µ is of medium size (about 10 to 100).

6.14 Discrete uniform distribution

For generating discrete uniform random variates from M to N, a binary r bit random number sequence
generated by the method standardized in 5.1 is converted by the following procedures, where N − M + 1 is
assumed to be not greater than 2r.

a) Find the natural number k that satisfies the following inequality:

12 1 1 2k kN M− + − +u u

NOTE 1 Such k is the minimum natural number that is equal to or greater than log2 (N − M + 1).

EXAMPLE 1 When N − M + 1 = 100, k = 7 because 26 + 1 = 65 u 100 u 27 = 128.

b) Add 1 to the binary integer that is constructed from the first k bits of a random number, and convert the
result to a decimal number.

NOTE 2 A k bit binary number Z1Z2Z3Z4...Zk converts to a decimal number 2k − 1Z1 + 2k − 2Z2 + 2k − 3Z3 + 2k − 4Z4
+ ... + Zk.

EXAMPLE 2 When the upper 7 bits are 1 011 001, the corresponding decimal number is 64 + 16 + 8 + 1 = 89,
and the decimal random number becomes 89.

c) The required decimal random number is the converted decimal number plus M − 1 by skipping numbers
greater than N.

NOTE 3 When N − M + 1 is more than 2r the required decimal random number can be obtained by concatenating
two or more binary random numbers to get one binary random number.

BS ISO 28640:2010
ISO 28640:2010(E)

© ISO 2010 – All rights reserved 15

NOTE 4 When using the linear congruential method for generating pseudo-random numbers, k shall not be
specified to be equal to r.

Further, when N − M + 1 is a decimal k digit natural number, and k is not too large, say k is less than 20,
the method given in 5.2 can be used. The procedure is as follows.

d) Generate a decimal random number sequence of k digits by using procedure 5.2.

e) From the random number sequence which is generated by d) above, remove the numbers greater than N.
The sequence thus obtained is the required decimal random number sequence.

BS ISO 28640:2010
ISO 28640:2010(E)

16 © ISO 2010 – All rights reserved

Annex A
(informative)

Table of physical random numbers

A.1 Table of random numbers

Physically generated random numbers have no functional relationship like pseudo-random numbers, and no
periodicity. Table A.1 shows a physically generated random number sequence obtained as measured values
of a property of a random physical system.

Table A.1 — Physical random number table

1 93 90 60 02 17 25 89 42 27 41 64 45 08 02 70 42 49 41 55 98

2 34 19 39 65 54 32 14 02 06 84 43 65 97 97 65 05 40 55 65 06

3 27 88 28 07 16 05 18 96 81 69 53 34 79 84 83 44 07 12 00 38

4 95 16 61 89 77 47 14 14 40 87 12 40 15 18 54 89 72 88 59 67

5 50 45 95 10 48 25 29 74 63 48 44 06 18 67 19 90 52 44 05 85

6 11 72 79 70 41 08 85 77 03 32 46 28 83 22 48 61 93 19 98 60

7 19 31 85 29 48 89 59 53 99 46 72 29 49 06 58 65 69 06 87 09

8 14 58 90 27 73 67 17 08 43 78 71 32 21 97 02 25 27 22 81 74

9 28 04 62 77 82 73 00 73 83 17 27 79 37 13 76 29 90 07 36 47

10 37 43 04 36 86 72 63 43 21 06 10 35 13 61 01 98 23 67 45 21

11 74 47 22 71 36 15 67 41 77 67 40 00 67 24 00 08 98 27 98 56

12 48 85 81 89 45 27 98 41 77 78 24 26 98 03 14 25 73 84 48 28

13 55 81 09 70 17 78 18 54 62 06 50 64 90 30 15 78 60 63 54 56

14 22 18 73 19 32 54 05 18 36 45 87 23 42 43 91 63 50 95 69 09

15 78 29 64 22 97 95 94 54 64 28 34 34 88 98 14 21 38 45 37 87

16 97 51 38 62 95 83 45 12 72 28 70 23 67 04 28 55 20 20 96 57

17 42 91 81 16 52 44 71 99 68 55 16 32 83 27 03 44 93 81 69 58

18 07 84 27 76 18 24 95 78 67 33 45 68 38 56 64 51 10 79 15 46

19 60 31 55 42 68 53 27 82 67 68 73 09 98 45 72 02 87 79 32 84

20 47 10 36 20 10 48 09 72 35 94 12 94 78 29 14 80 77 27 05 67

21 73 63 78 70 96 12 40 36 80 49 23 29 26 69 01 13 39 71 33 17

22 70 65 19 86 11 30 16 23 21 55 04 72 30 01 22 53 24 13 40 63

23 86 37 79 75 97 29 19 00 30 01 22 89 11 84 55 08 40 91 26 61

24 28 00 93 29 59 54 71 77 75 24 10 65 69 15 66 90 47 90 48 80

25 40 74 69 14 01 78 36 13 06 30 79 04 03 28 87 59 85 93 25 73

BS ISO 28640:2010
ISO 28640:2010(E)

© ISO 2010 – All rights reserved 17

A.2 Method of physical random number generation

The method by which the physical random numbers in Table A.1 were generated is described below. The
source of the numbers is the noise generated by a diode. In a diode, the noise signal is large because, by
amplification using the electron avalanche effect, stabilized noise is easily obtained. For this reason, it is used
very often as a noise source. For the element, NC24011) of Noisecom in the United States was used. This
element has a noise source and an amplifier built-in, and its band width is 1 GHz, while its amplitude is
160 mVrms.

The methods of digitalizing the noise signal are

a) analogue/digital conversion,

b) regarding noise as a pulse sequence, by counting pulses per unit time,

c) regarding noise as a pulse sequence, by measuring pulse interval.

For example, consider the use of a DAS-4102 converter2) produced by the Keithley Instruments, Inc. for
analogue/digital conversion. This equipment has a resolution of 8 bits with a sampling period of 64 MHz
maximum. Data was sampled at 1 MHz to produce the attached table. Measuring was done with resolution
ability 3,91 mV/digit and only the lowest bit was used as a random number source.

Because the analogue/digital conversion equipment has errors that are peculiar to the equipment, the
frequency distribution of values after conversion is not uniform. To obtain a more uniform distribution, 2 bits
were generated from the same random number source, and

(0,1) → Random number (Rn) = 0

(1,0) → Random number (Rn) = 1

(0,0), (1,1) → abandoned

Random numbers in Table A.1 were generated according to the above scheme. If the probabilities of (0,1) and
(1,0) are equal to each other, the random number is uniformly distributed. Because the intervals between
successive measurements are as short as 1 ms, the characteristics of the equipment would scarcely change
in this time interval. Therefore, (0,1) and (1,0) are considered to conform to the same probability distribution.
An alternative method of correcting is by formerly measuring the probability distribution of the characteristics,
but, because this distribution varies from equipment to equipment, this method was not employed. Further, for
safety, 32 bits were gathered in one group, and exclusive or was done with pseudo-random numbers using
the Mersenne Twister (routine name genrand) which is described in 5.5. The Mersenne Twister was initialized
by the routine init_genrand(s), s = 19660809. If the original random number sequences are required, they can
be regenerated by operating exclusive or again using the Mersenne Twister.

Table A.1 is a decimal random number sequence generated by the above-mentioned method, taking the
upper 4 bits of the 32-bit random number sequence. If the value of this is not less than 0 and not more than 9,
the value is employed as the random number value; however, if the value of this is 10 or more, it is
abandoned and the next random number is generated.

1) NC2401 is the trade name of a product supplied by Noisecom. This information is given for the convenience of users
of this document and does not constitute an endorsement by ISO of the product named.

2) DAS-4102 is the trade name of a product supplied by Keithley Instruments, Inc. This information is given for the
convenience of users of this document and does not constitute an endorsement by ISO of the product named.

BS ISO 28640:2010
ISO 28640:2010(E)

18 © ISO 2010 – All rights reserved

Annex B
(informative)

Algorithm for pseudo-random number generation

B.1 Program code for the trinomial GFSR method

The following C program given below, which is in accordance with ISO/IEC 9899, is an example with
parameters (p, q, w) = (1 279, 418, 32) and period (21 279 − 1). When the function gfsr() is called, it generates
an integer between 0 and (232 − 1) inclusive. When the function gfsr_31() is called, it generates an integer
between 0 and (231 − 1) inclusive. Before calling the functions gfsr() and gfsr_31(), initialization is necessary
by calling init_gfsr(s) once.The initialization function init_gfsr(s) executes initialization under the condition that
an unsigned 32-bit integer [integer between 0 and (232 − 1)] is used as the seed. The generated sequence
can be used to provide 39 independent series, each of which has negligible auto-correlation, is 39-distributed
(uniformly distributed in a 39-dimensional hyper-cube) with 32-bit precision, and its auto-correlation function
assumes values close to zero up to phase shift 21 274.

To obtain different pseudo-random number series, change the seed s given to init_gfsr(s). Only the constants
p, q, w in the program may be changed. The value of w will be a power of 2 within the word length of the
machine. The value of w will generally be 32 or 64, according to the machine. For example, if the word length
of the machine is 64, the constant w in the program is set to 64, and then gfsr() generates integers between 0
and (264 − 1) inclusive, while gfsr_31() generates integers between 0 and (263 − 1) inclusive.

In this program, the length of type “unsigned long” is presumed to be not less than 32 bits.

/***

 C code : Trinomial GFSR

***/

#define P 1279

#define Q 418

#define W 32 /* W should be a power of 2 */

static unsigned long state [P] ;

static int state_i ;

void init_gfsr (unsigned long s)

{

 int i, j, k;

 static unsigned long x [P] ;

 s &= 0xffffffffUL;

 for (i=0 ; i<P ; i++) {

 x [i] = s>>31 ;

BS ISO 28640:2010
ISO 28640:2010(E)

© ISO 2010 – All rights reserved 19

 s = 1664525UL * s + 1UL ;

 s &= 0xffffffffUL ;

 }

 for (k=0, i=0 ; i<P ; i++) {

 state [i] = 0UL ;

 for (j=0 ; j<W ; j++) {

 state [i] <<= 1 ;

 state [i] |= x [k] ;

 x [k] ^= x [(k+Q) %P] ;

 k++;

 if (k==P) k = 0 ;

 }

 }

 state_i = 0 ;

}

unsigned long gfsr (void)

{

int i ;

unsigned long *p0, *p1 ;

 if (state_i >= P) {

 state_i = 0 ;

 p0 = state ;

 p1 = state + Q ;

 for (i=0 ; i<(P-Q) ; i++)

 *p0++ ^= *p1++ ;

 p1 = state ;

 for (; i<P ; i++)

 *p0++ ^= *p1++ ;

 }

return state [state_i++] ;

}

/* W-1 bit integer */

long gfsr_31 (void)

{

BS ISO 28640:2010
ISO 28640:2010(E)

20 © ISO 2010 – All rights reserved

 return (long) (gfsr() >>1) ;

}

NOTE The corresponding Full Basic code of the trinomial GFSR method is shown for information as follows.

REM /***

REM BASIC code : Trinomial GFSR

REM **/

OPTION BASE 0

REM
/***/

DECLARE NUMERIC P

LET P=1279 !#define P 1279

DECLARE NUMERIC Q

LET Q=418 !#define Q 418

DECLARE NUMERIC W

LET W=32 !#define W 32 /* W should be power OF 2 */

DIM state(P) !static unsigned long state[P];

DECLARE NUMERIC state_i !static INT state_i;

REM
/***/

FUNCTION init_gfsr(s) !void init_gfsr(unsigned long s){

 DECLARE NUMERIC i,j,k ! int i, j, k;

 DIM x(P) ! static unsigned long x[P];

 LET s = And32(s , MskF_f) ! s &= 0xffffffffUL;

 FOR i = 0 TO P -1 ! for (i=0; i<P; i++) {

 LET x(i) = SR32U(s , 31) ! x[i] = s>>31;

 LET s = Mul32U(1664525 , s) + 1 ! s = 1664525UL * s + 1UL;

BS ISO 28640:2010
ISO 28640:2010(E)

© ISO 2010 – All rights reserved 21

 LET s = And32(s, MskF_f) ! s &= 0xffffffffUL;

 NEXT I ! }

 LET k=0

 FOR i = 0 TO P -1 ! for (k=0,i=0; i<P; i++) {

 LET state(i) = 0 ! state[i] = 0UL;

 FOR j=0 TO W-1 ! for (j=0; j<W; j++) {

 LET state(i) = SL32U(state(i) , 1) ! state[i] <<= 1;

 LET state(i) = Or32(state(i) , x(k)) ! state[i] |= x[k];

 LET x(k) = Xor32(x(k) , x(REMAINDER(k + Q , P)))

 ! ! x[k] ^= x[(k+Q)%P];

 LET k = k + 1 ! k++;

 IF k = P THEN LET k = 0 ! if (k==P) k = 0;

 NEXT j ! }

 NEXT I ! }

 LET state_i = 0 ! state_i = 0;

END FUNCTION !}

REM
/***/

FUNCTION gfsr !unsigned long gfsr(void){

 DECLARE NUMERIC I ! int i;

 DECLARE NUMERIC p0, p1 ! unsigned long *p0, *p1;

 IF state_i >= P THEN ! if (state_i >= P) {

 LET state_i = 0 ! state_i = 0;

 LET p0 = 0 ! p0 = state;

 LET p1 = Q ! p1 = state + Q;

 FOR i=0 TO P-Q-1 ! for (i=0; i<(P-Q); i++)

 LET state(p0) = Xor32(state(p0) , state(p1))

 LET p0 = p0 + 1

 LET p1 = P1 + 1 ! *p0++ ^= *p1++;

BS ISO 28640:2010
ISO 28640:2010(E)

22 © ISO 2010 – All rights reserved

 NEXT i

 LET p1 = 0 ! p1 = state;

 FOR i=i TO P-1 ! for (; i<P; i++)

 LET state(p0) = Xor32(state(p0) , state(p1))

 LET p0 = p0 + 1

 LET p1 = P1 + 1 ! *p0++ ^= *p1++;

 NEXT i

 END IF ! }

 LET gfsr = state(state_i)

 LET state_i = state_i + 1 ! return state[state_i++];

END FUNCTION !}

REM
/***/

REM /* W-1 bit integer */

FUNCTION gfsr_31 !long gfsr_31(void){

 LET gfsr_31 = SR32U(gfsr , 1) ! return (long)(gfsr()>>1);

END FUNCTION !}

B.2 Program code for the pentanomial GFSR method

In this program, the parameters are (521, 86, 197, 447, 32), and the period is 2521 − 1. When the function
gfsr5() is called, it generates an integer between zero and (232 − 1) inclusive. When the function gfsr5_31() is
called, it generates an integer between zero and (231 − 1) inclusive. The initialization routine init_gfsr5(s)
initializes under the condition that the seed is an unsigned 32-bit integer [integer between 0 and (232 − 1)].
Before calling gfsr5() and gfsr5_31(), init_gfsr5(s) is executed once to initialize. The generated sequence is
16-distributed (uniformly distributed in a 16-dimensional hyper-cube) with 32-bit precision, and its auto-
correlation function assumes almost zero value up to the phase shift 2516.

If an independent batch of random numbers is needed for each one of multiple replications of a simulation, the
initialization function init_gfsr5(s) should be called only once before the start of the simulation. After each
replication, the contents of the table x[P] of length P and the value of the variable state_i should be saved, and
used as the initial values for the next replication.

If another sequence with different period is required, a set of values p, q1, q2 and q3 shall be selected from
Table 1.

/***

 C code : Pentanominal GFSR

**/

BS ISO 28640:2010
ISO 28640:2010(E)

© ISO 2010 – All rights reserved 23

#define P 521

/* Q1 < Q2 < Q3 */

#define Q1 86

#define Q2 197

#define Q3 447

#define W 32 /* W should be a power of 2 */

static unsigned long state [P] ;\

static int state_i ;

void init_gfsr5 (unsigned long s)

{

 int i, j, k ;

 static unsigned long x [P] ;

 s &= 0xffffffffUL ;

 for (i=0 ; i<P ; i++) {

 x [i] = s>>31 ;

 s = 1664525UL * s + 1UL ;

 s &= 0xffffffffUL ;

 }

 for (k=0, i=0 ; i<P ; i++) {

 state [i] = 0UL ;

 for (j=0 ; j<W ; j++) {

 state [i] <<= 1 ;

 state [i] |= x [k] ;

 x [k] ^=x [(k+Q1) %P] ^x [(k+Q2) %P] ^x [(k+Q3) %P] ;

 k++;

 if (k==P) k = 0 ;

 }

 }

 state_i = 0 ;

}

unsigned long gfsr5 (void)

{

 int i ;

BS ISO 28640:2010
ISO 28640:2010(E)

24 © ISO 2010 – All rights reserved

 unsigned long *p0, *p1, *p2, *p3 ;

 if (state_i >= P) {

 state_i = 0 ;

 p0 = state ;

 p1 = state + Q1 ;

 p2 = state + Q2 ;

 p3 = state + Q3 ;

 for (i=0 ; i<(P-Q3) ; i++)

 *p0++ ^= *p1++ ^ *p2++ ^ *p3++;

 p3 = state ;

 for (; i<(P-Q2) ; i++)

 *p0++ ^= *p1++ ^ *p2++ ^*p3++;

 p2 = state;

 for (; i<(P-Q1) ; i++)

 *p0++ ^= *p1++ ^ *p2++ ^*p3++;

 p1 = state;

 for (; i<P ; i++)

 *p0++ ^= *p1++ ^*p2++ ^*p3++;

 }

 return state [state_i++] ;

}

/* W-1 bit integer */

long gfsr5_31 (void)

{

 return (long) (gfsr5() >>1);

}

NOTE The corresponding Full Basic code of the pentanomial GFSR method is shown for information as follows.

REM /***

REM BASIC code : Pentanomial GFSR

REM **/

OPTION BASE 0

BS ISO 28640:2010
ISO 28640:2010(E)

© ISO 2010 – All rights reserved 25

REM
/***/

DECLARE NUMERIC P

LET P = 521 !#define P 512

REM /* Q1 < Q2 < Q3 */

DECLARE NUMERIC Q1

LET Q1 = 86 !#define Q1 86

DECLARE NUMERIC Q2

LET Q2 = 197 !#define Q2 197

DECLARE NUMERIC Q3

LET Q3 = 447 !#define Q3 447

DECLARE NUMERIC W

LET W = 32 !#define W 32 /* W should be power of
2 */

DIM state(P) !static unsigned long state[P];

DECLARE NUMERIC state_i !static int state_i;

REM
/***/

FUNCTION init_gfsr5(s) !void init_gfsr5(unsigned long s) {

 DECLARE NUMERIC i, j, k ! int i, j, k;

 DIM x(P) ! static unsigned long x[P];

 LET s = And32(s , MskF_f) ! s &= 0xffffffffUL;

 FOR i=0 TO P-1 ! for (i=0; i<P; i++) {

 LET x(i) = SR32U(s , 31) ! x[i] = s>>31;

 LET s = Mul32U(1664525 , s) + 1 ! s = 1664525UL * s + 1UL;

 LET s = And32(s , MskF_f) ! s &= 0xffffffffUL;

 NEXT I ! }

BS ISO 28640:2010
ISO 28640:2010(E)

26 © ISO 2010 – All rights reserved

 LET k=0

 FOR i=0 TO P-1 ! for (k=0,i=0; i<P; i++) {

 LET state(i) = 0 ! state[i] = 0UL;

 FOR j=0 TO W-1 ! for (j=0; j<W; j++) {

 LET state(i) = SL32U(state(i) , 1) ! state[i] <<= 1;

 LET state(i) = Or32(state(i) , x(k)) ! state[i] |= x[k];

 LET x(k) = Xor32(Xor32(Xor32(x(k) , x(REMAINDER(k + Q1 , P))) ,
x(REMAINDER(k + Q2 , P))) , x(REMAINDER(k + Q3 , P)))

 ! ! x[k] ^= x[(k+Q1)%P] ^
x[(k+Q2)%P] ^ x[(k+Q3)%P];

 LET k = k + 1 ! k++;

 IF k = P THEN LET K = 0 ! if (k==P) k = 0;

 NEXT j ! }

 NEXT I ! }

 LET state_i = 0 ! state_i = 0;

END FUNCTION !}

REM
/***/

FUNCTION gfsr5 !unsigned long gfsr5(void) {

 DECLARE NUMERIC I ! int i;

 DECLARE NUMERIC p0, p1, p2, p3 ! unsigned long *p0, *p1, *p2,
*p3;

 IF state_i >= P THEN ! if (state_i >= P) {

 LET state_i = 0 ! state_i = 0;

 LET p0 = 0 ! p0 = state;

 LET p1 = Q1 ! p1 = state + Q1;

 LET p2 = Q2 ! p2 = state + Q2;

 LET p3 = Q3 ! p3 = state + Q3;

BS ISO 28640:2010
ISO 28640:2010(E)

© ISO 2010 – All rights reserved 27

 FOR i=0 TO P-Q3-1 ! FOR (i=0; i<(P-Q3); i++)

 LET state(p0) = Xor32(Xor32(Xor32(state(p0) , state(p1)) , state(p2)) ,
state(p3))

 LET p0 = p0 + 1

 LET p1 = p1 + 1

 LET p2 = p2 + 1

 LET p3 = p3 + 1 ! *p0++ ^= *p1++ ^ *p2++ ^
*p3++;

 NEXT i

 LET p3 = 0 ! p3 = state;

 FOR i=i TO P-Q2-1 ! for (; i<(P-Q2); i++)

 LET state(p0) = Xor32(Xor32(Xor32(state(p0) , state(p1)) , state(p2)) ,
state(p3))

 LET p0 = p0 + 1

 LET p1 = p1 + 1

 LET p2 = p2 + 1

 LET p3 = p3 + 1 ! *p0++ ^= *p1++ ^ *p2++ ^
*p3++;

 NEXT i

 LET p2 = 0 ! p2 = state;

 FOR i=i TO P-Q1-1 ! for (; i<(P-Q1); i++)

 LET state(p0) = Xor32(Xor32(Xor32(state(p0) , state(p1)) , state(p2)) ,
state(p3))

 LET p0 = p0 + 1

 LET p1 = p1 + 1

 LET p2 = p2 + 1

 LET p3 = p3 + 1 ! *p0++ ^= *p1++ ^ *p2++ ^
*p3++;

 NEXT i

 LET p1 = 0 ! p1 = state;

 FOR i=i TO P-1 ! for (; i<P; i++)

BS ISO 28640:2010
ISO 28640:2010(E)

28 © ISO 2010 – All rights reserved

 LET state(p0) = Xor32(Xor32(Xor32(state(p0) , state(p1)) , state(p2)) ,
state(p3))

 LET p0 = p0 + 1

 LET p1 = p1 + 1

 LET p2 = p2 + 1

 LET p3 = p3 + 1 ! *p0++ ^= *p1++ ^ *p2++ ^
*p3++;

 NEXT i

 END IF ! }

 LET gfsr5 = state(state_i)

 LET state_i = state_i + 1 ! return state[state_i++];

END FUNCTION !}

REM
/***/

REM /* W-1 bit integer */

FUNCTION gfsr5_31 !long gfsr5_31(void) {

 LET gfsr5_31 = SR32U(gfsr5 , 1) ! return (long)(gfsr5()>>1);

END FUNCTION !}

B.3 Program code for the combined Tausworthe method

Following is a C Language implementation of the combined Tausworthe method, which generates integers
between zero and (231 − 1) inclusive by combining three Tausworthe sequences of parameters (31, 13, 12),
(29, 2, 4) and (28, 3, 17).

The initialization function init_taus88(s) initializes under the condition that the seed s is an unsigned 32-bit
integer [integer between 0 and (232 − 1) inclusive]. To obtain a different pseudo-random number sequence,
change the seed s. Before calling taus88_31(), init_taus88(s) executes once to initialize. The initialization can
be done without using init_taus88(s) by directly assigning suitable values into s1, s2 and s3. However, when
initializing, the following three conditions must be satisfied:

⎯ at least one of the upper 31 bits of s1 is one;

⎯ at least one of the upper 29 bits of s2 is one;

⎯ at least one of the upper 28 bits of s3 is one.

Because the lowest 1 bit of s1, the lowest 3 bits of s2 and the lowest 4 bits of s3 are ignored, the generated
random number sequence is unaffected by the changes to those bits.

BS ISO 28640:2010
ISO 28640:2010(E)

© ISO 2010 – All rights reserved 29

In this program, the length of type “unsigned long” is presumed as 32 bits.

/***

 C code : Combined Tausworthe

**/

static unsigned long s1, s2, s3, b ;

void init_taus88 (unsigned long s)

{

 int i ;

 unsigned long x [3] ;

 i=0 ;

 while (i<3) {

 if (s & 0xfffffff0UL) {

 x [i] = s ;

 i++;

 }

 s = 1664525UL * s + 1UL;

 }

 s1 = x [0] ; s2 = x [1] ; s3 = x [2] ;

}

/* 31 bit integer */

long taus88_31 (void)

{

 b = (((s1 << 13) ^ s1) >> 19) ;

 s1 = (((s1 & 4294967294UL) << 12) ^b) ;

 b = (((s2 << 2) ^ s2) >> 25);

 s2 = (((s2 & 4294967288UL) << 4) ^b) ;

BS ISO 28640:2010
ISO 28640:2010(E)

30 © ISO 2010 – All rights reserved

 b = (((s3 << 3) ^ s3) >> 11) ;

 s3 = (((s3 & 4294967280UL) <<17) ^b) ;

 return (long) ((s1 ^ s2 ^ s3) >>1) ;

}

In this program, the code

 b = (((s1 << 13) ^ s1) >> 19) ;

s1 = (((s1 & 4294967294UL) << 12) ^b) ;

generates a number in the Tausworthe sequence with parameters (31, 13, 12) in s1, and the codes

 b = (((s2 << 2) ^ s2) >> 25) ;

 s2 = (((s2 & 4294967288UL) << 4) ^b) ;

and

 b = (((s3 << 3) ^s3) >> 11) ;

 s3 = (((s3 & 4294967280UL) << 17) ^b) ;

generate numbers in the Tausworthe sequence with parameters (29, 2, 4) and (28, 3, 17) correspond to s2
and s3, respectively. These three binary integers are combined bit by bitwise exclusive-or operations, and a
31-bit pseudo-random number sequence is generated.

Selection of the three parameters (p, q, t) is made to give the best multi-dimensional equidistribution of the
pseudo-random number sequence after the combination. These values of parameters shall not be changed.
To obtain a different pseudo-random number sequence, change the seed.

If an independent batch of random numbers are needed for each one of multiple replications of a simulation,
the initialization function init_taus88(s) should be called only once before the start of the simulation. After each
replication, the values of s1, s2, and s3 should be saved, and given to the variables s1, s2, and s3, respectively,
as the initial values for the next replication.

NOTE The corresponding Full Basic code of the Combined Tausworthe method is shown for information as follows.

REM /**

REM BASIC code : Combined Tausworthe

REM **/

OPTION BASE 0

BS ISO 28640:2010
ISO 28640:2010(E)

© ISO 2010 – All rights reserved 31

REM
/***/

FUNCTION init_taus88(s) !void init_taus88(unsigned long
s) {

 DECLARE NUMERIC I ! int i;

 DIM x(3) ! unsigned long x[3];

 FOR i = 0 TO 2 ! i=0; while (i<3) {

 IF And32(s , MskF_0) <> 0 THEN ! if (s & 0xfffffff0UL)
{

 LET x(i) = s ! x[i] = s; i++;

 END IF ! }

 LET s = Mul32U(1664525, s) + 1 ! s = 1664525UL * s +
1UL;

 NEXT I ! }

 LET s1 = x(0)

 LET s2 = x(1)

 LET s3 = x(2) ! s1 = x[0]; s2 = x[1]; s3 =
x[2];

END FUNCTION !}

REM
/***/

FUNCTION taus88_31 !long taus88_int(void)
{

 REM /***** 31 bit integer *****/

 LET b = SR32U(Xor32(SL32U(s1, 13), s1), 19 ! b = (((s1 << 13) ^
s1) >> 19);

 LET s1 = Xor32(SL32U(And32(s1 , MskF_e), 12), b) ! s1 = (((s1 &
4294967294) << 12) ^ b);

 LET b = SR32U(Xor32(SL32U(s2, 2), s2), 25) ! b = (((s2 << 2) ^ s2)
>> 25);

 LET s2 = Xor32(SL32U(And32(s2 , MskF_8), 4), b) ! s2 = (((s2 &
4294967288) << 4) ^ b);

 LET b = SR32U(Xor32(SL32U(s3, 3), s3), 11 ! b = (((s3 << 3) ^ s3)
>> 11);

BS ISO 28640:2010
ISO 28640:2010(E)

32 © ISO 2010 – All rights reserved

 LET s3 = Xor32(SL32U(And32(s3 , MskF_0), 17), b) ! s3 = (((s3 &
4294967280) << 17) ^ b);

 LET taus88_31 = SR32U(Xor32(Xor32(s1, s2), s3), 1) ! return (long)((s1 ^
s2 ^ s3) >> 1);

 ! !'}

END FUNCTION

B.4 Program code for the Mersenne Twister method

The following program is a C language implementation of the Mersenne Twister method. The function
genrand() of this code generates unsigned integer pseudo-random numbers of 32 bits whose range is
between 0 and (232 − 1) inclusive. The function genrand_31() generates unsigned integer pseudo-random
numbers of 31 bits whose range is between 0 and (231 − 1) inclusive. The function init_genrand(s) initializes
the seed as an unsigned 32-bit integer [integer between 0 and (232 − 1) inclusive]. Before calling genrand() or
genrand_31(), initialization shall be done by executing init_genrand(s) once. Different seeds s lead to different
sequences. The parameters in this program should not be changed.

If independent batch of random numbers are needed for each one of multiple replications of a simulation, the
initialization function init_genrand(s) should be called only once before the start of the simulation. After each
replication, contents of the table mt[P] of length P and the value of the variable mti should be saved, and used
as the initial values for the next replication.

EXAMPLE This is an example using p = 624 words with parameters (624, 397, 31, 32, 0x9908b0df, 11, 7, 15, 18,
0x9d2c5680, 0xefc60000). Here, 10-digit numbers starting with 0x are unsigned 32-bit constants represented in
hexadecimal. The period is 219 937 − 1 and this is distributed uniformly in 623 dimensional hyper-cube with 32 bits
precision; moreover, the sequence is equidistributed in 3 115 dimensions with 6 bits precision.

In this program, the length of type “unsigned long” is presumed to be not less than 32 bits.

C code : Mersenne Twister

**/

/* Period parameters */

#define P 624

#define Q 397

#define MATRIX_A 0x9908b0dfUL /* constant vector a */

#define UPPER_MASK 0x80000000UL /* most significant w-r bits */

#define LOWER_MASK 0x7fffffffUL /* least significant r bits */

static unsigned long mt [P] ; /* the array for the state vector */

BS ISO 28640:2010
ISO 28640:2010(E)

© ISO 2010 – All rights reserved 33

static int mti=P+1 ; /* mti==P+1 means mt [P] is not initialized */

/* initializes mt [P] with a seed */

void init_genrand (unsigned long s)

{

 mt [0] = s & 0xffffffffUL ;

 for (mti=1 ; mti<P ; mti++) {

 mt [mti] = (1664525UL * mt [mti-1] + 1UL) ;

 mt [mti] &= 0xffffffffUL ;

 }

}

/* generates a random number on [0, 0xffffffff] -interval */

unsigned long genrand (void)

{

 unsigned long y ;

 static unsigned long mag01 [2] = {0x0UL, MATRIX_A} ;

 /* mag01 [x] = x * MATRIX_A for x=0, i */

 if (mti >=P) { /* generate P words at one time */

 int kk ;

 if (mti == P+1) /* if init _genrand () has not been called, */

 init_genrand (5489UL) ; /* a default initial seed is used */

 for (kk=0 ; kk<P-Q ; kk++) {

 y = (mt [kk] &UPPER_MASK) | (mt [kk+1] &LOWER_MASK) ;

 mt [kk] = mt [kk+Q] ^ (y >> 1) ^ mag01 [y & 0x1UL] ;

 }

 for (; kk<P-1 ; kk++) {

BS ISO 28640:2010
ISO 28640:2010(E)

34 © ISO 2010 – All rights reserved

 y = (mt [kk] &UPPER_MASK) | (mt [kk+1] &LOWER_MASK) ;

 mt [kk] = mt [kk+ (Q-P)] ^ (y >> 1) ^ mag01 [y & 0x1UL] ;

 }

 y = (mt [P-1] &UPPER_MASK) | (mt [0] &LOWER_MASK) ;

 mt [P-1] = mt [Q-1] ^ (y >> 1) ^ mag01 [y & 0x1UL] ;

 mti = 0 ;

 }

 y = mt [mti++] ;

 /* Tempering */

 y ^= (y >> 11) ;

 y ^= (y << 7) & 0x9d2c5680UL ;

 y ^= (y << 15) & 0xefc60000UL ;

 y ^= (y >> 18) ;

 return y ;

}

/* generates a random number on [0, 0x7fffffff] -interval */

long genrand_31 (void)

{

 return (long) (genrand() >>1) ;

}

NOTE The corresponding Full Basic code of the Mersenne Twister method is shown for information as follows.

REM /**/

REM Mersenne Twister

REM /**/

BS ISO 28640:2010
ISO 28640:2010(E)

© ISO 2010 – All rights reserved 35

OPTION BASE 0

REM
/***/

REM /* Period parameters */

DECLARE NUMERIC P

LET P = 624 !#define P 624

DECLARE NUMERIC Q

LET Q = 397 !#define Q 397

DECLARE NUMERIC MATRIX_A

LET MATRIX_A = BVAL("9908b0df" , 16) !#define MATRIX_A 0x9908b0dfUL /*
constant vector a */

DECLARE NUMERIC UPPER_MASK

LET UPPER_MASK = BVAL("80000000" , 16) !#define UPPER_MASK 0x80000000UL /*
most significant w-r bits */

DECLARE NUMERIC LOWER_MASK

LET LOWER_MASK = BVAL("7fffffff" , 16) !#define LOWER_MASK 0x7fffffffUL /*
least significant r bits */

DIM mt(P) !static unsigned long mt[P]; /* the
array for the state vector */

DECLARE NUMERIC mti

LET mti = P + 1 !static int mti=P+1; /* mti==P+1 means
mt[P] is not initialized */

REM
/***/

REM /* initializes mt[P] with a seed */

FUNCTION init_genrand(s) !void init_genrand(unsigned long s) {

 LET mt(0) = And32(s , MskF_f) ! mt[0]= s & 0xffffffffUL;

 FOR mti = 1 TO P - 1 ! for (mti=1; mti<P; mti++) {

 LET mt(mti) = Mul32U(1664525 , mt(mti-1)) + 1

 ! ! mt[mti] = (1664525UL *
mt[mti-1] + 1UL);

BS ISO 28640:2010
ISO 28640:2010(E)

36 © ISO 2010 – All rights reserved

 LET mt(mti) = And32(mt(mti) , MskF_f) ! mt[mti] &= 0xffffffffUL;

 NEXT mti ! }

END FUNCTION !}

REM
/***/

REM /* generates a random number ON [0,0xffffffff]-interval */

FUNCTION genrand !unsigned long genrand(void) {

 DECLARE NUMERIC y ! unsigned long y;

 DIM mag01(2)

 LET mag01(0) = 0

 LET mag01(1) = MATRIX_A ! static unsigned long
mag01[2]={0x0UL, MATRIX_A};

 REM /* mag01[x] = x * MATRIX_A for x=0,1 */

 IF mti >= P THEN ! if (mti >= P) { /* generate P
words at one time */

 DECLARE NUMERIC kk ! int kk;

 IF mti = P + 1 THEN ! if (mti == P+1) /* if
init_genrand() has not been called, */

 LET y = init_genrand(5489) ! init_genrand(5489UL);
/* a default initial s is used */

 END IF

 FOR kk=0 TO P-Q-1 ! for (kk=0;kk<P-Q;kk++) {

 LET y = Xor32(And32(mt(kk) , UPPER_MASK) , And32(mt(kk+1) ,
LOWER_MASK))

 ! ! y =
(mt[kk]&UPPER_MASK)|(mt[kk+1]&LOWER_MASK);

 LET mt(kk) = Xor32(Xor32(mt(kk+Q) , SR32U(y , 1)) , mag01(And32(y ,
1)))

 ! ! mt[kk] = mt[kk+Q] ^ (y
>> 1) ^ mag01[y & 0x1UL];

 NEXT kk ! }

BS ISO 28640:2010
ISO 28640:2010(E)

© ISO 2010 – All rights reserved 37

 FOR kk=kk TO P-2 ! for (;kk<P-1;kk++) {

 LET y = Xor32(And32(mt(kk) , UPPER_MASK) , And32(mt(kk+1) ,
LOWER_MASK))

 ! ! y =
(mt[kk]&UPPER_MASK)|(mt[kk+1]&LOWER_MASK);

 LET mt(kk) = Xor32(Xor32(mt(kk+Q-P) , SR32U(y , 1)) , mag01(And32(y ,
1)))

 ! ! mt[kk] = mt[kk+(Q-P)] ^
(y >> 1) ^ mag01[y & 0x1UL];

 NEXT kk ! }

 LET y = Xor32(And32(mt(P-1) , UPPER_MASK) , And32(mt(0) , LOWER_MASK))

 ! ! y = (mt[P-
1]&UPPER_MASK)|(mt[0]&LOWER_MASK);

 LET mt(P-1) = Xor32(Xor32(mt(Q-1) , SR32U(y , 1)) , mag01(And32(y , 1)))

 ! ! mt[P-1] = mt[Q-1] ^ (y >> 1) ^
mag01[y & 0x1UL];

 LET mti = 0 ! mti = 0;

 END IF ! }

 LET y = mt(mti)

 LET mti = mti + 1 ! y = mt[mti++];

 REM /* Tempering */

 LET y = Xor32(y , SR32U(y , 11)) ! y ^= (y >> 11);

 LET y = Xor32(y , And32(SL32U(y , 7) , BVAL("9d2c5680" , 16)))

 ! ! y ^= (y << 7) & 0x9d2c5680UL;

 LET y = Xor32(y , And32(SL32U(y ,15) ,BVAL("efc60000" , 16)))

 ! ! y ^= (y << 15) & 0xefc60000UL;

 LET y = Xor32(y , SR32U(y , 18)) ! y ^= (y >> 18);

 LET genrand = y ! return y;

END FUNCTION !}

BS ISO 28640:2010
ISO 28640:2010(E)

38 © ISO 2010 – All rights reserved

REM
/***/

REM /* generates a random number on [0,0x7fffffff]-interval */

FUNCTION genrand_31 !long genrand_31(void) {

 LET genrand_31 = SR32U(genrand , 1) ! return (long)(genrand()>>1);

END FUNCTION !}

B.5 Linear congruential method

B.5.1 General

B.5.1.1 Usage

Linear congruential methods are widely used in software since they combine economy of use of memory with
rapid execution. However, they have a relatively short period and are consequently not sufficiently random,
particularly for generating random multi-dimensional sequences.

B.5.1.2 Definition

Most linear congruential methods generate pseudo-random number sequences X1, X2, ... by using the
following recurrence relationship.

Xn = mod(aXn – 1 + c; m) n = 1, 2,

where a and m are positive integers and c is a non-negative integer.

Once the values of the parameters a, m and c have been decided, the linear congruential method is
determined; moreover, if the seed X0 is given, the generated number sequence is determined.

NOTE 1 The meaning of the recurrence relationship is as follows. Calculate aX0 + c by using seed X0 and divide the
result by m. The residue is X1. Next, calculate aX1 + c and divide the result by m, and the residue is X2. This procedure is
repeated as many times as required.

NOTE 2 The value of n for which Xn = X0 for the first time is called the period of the sequence.

B.5.1.3 Method of deciding parameter values

A good pseudo-random number sequence cannot be obtained if the values of a, m and c are determined
arbitrarily. Therefore, these should be decided on the following basis.

Because m is the upper limit of a period of the number sequence obtained by the linear congruential method,
m should be set as large as possible. Hence, using for example 32-bit computers, it is recommended to set
m = 232 or 231 − 1.

For increment c, there is no strict criterion. However, the periods of generated number sequences may be
different, according to whether a criterion is set to zero or a positive integer.

As for the multiplier a, a value that provides good results in combination with the chosen values of m and c
should be used (see Table B.1).

NOTE In the case where m is an integer power of 2 and c is specified to be 0, the period is not more than m/4. If c is
an odd number, the period becomes m.

BS ISO 28640:2010
ISO 28640:2010(E)

© ISO 2010 – All rights reserved 39

B.5.1.4 Example of parameters

For 32-bit computers, one of the sets of parameters from Table B.1 should be used.

Table B.1 — Examples of parameters used in the linear congruential method

Row number A c M

1 1 664 525 * 232

2 1 566 083 941 0 232

3 48 828 125 0 232

4 2 100 005 341 0 231 − 1

5 397 204 094 0 231 − 1

6 314 159 369 0 231 − 1

NOTE 1 The symbol * indicates that any odd number may be used.

NOTE 2 Using the parameters of row 1, all integers in the range 0 to (232 − 1) are generated.

NOTE 3 Using the parameters of row 2 or row 3, the set of generated numbers is 4i + 1 for i = 0,
1, ..., (230 − 1), or 4i + 3 for i = 0, 1, ..., (230 − 1), which depends on the seed X0.

NOTE 4 Using the parameters of rows 4, 5 or 6, all the positive integers between 1 to (231 − 2) are
generated.

NOTE 5 When not many bits are required, they should be extracted from the upper bits of the
random number, and lower bits should not be used.

B.5.2 Program code for the linear congruential method

B.5.2.1 General

The C language implementation of the linear congruential method, which is in accordance with ISO/IEC 9899,
is given below. It is composed of two types of programs, one for the case where m = 232, the other for the
case where m = 231 − 1. These cases are consistent with the recommendations of B.5.1.

B.5.2.2 Case of m = 232

Every time the function lcong32() is called, it returns an integer random number between zero and (232 − 1)
inclusive. The result is returned of type “unsigned long”. Every time the function lcong32_31() is called, it
generates an integer random number between zero and (231 − 1) inclusive. The result is returned of type
“long”. The initialization function init_lcong32 (unsigned long seed) executes initialization so that a
non-negative integer of type “unsigned long” is set as the seed. If the addend c is 0 and the original seed X0

*
is odd, then X0 can be set as X0 = X0

. However, when an even original seed X0 is given in the case c = 0,
one is added to the original seed to obtain the seed X0, i.e. X0 = X0

* + 1. In other cases, mod(X0*; m) is used
as X0.

The multiplier and the addend are changed by changing the definitions of MULTIPLIER and INCREMENT in
each program. The random number sequence is restarted by using the output of lcong32() as the argument
of initialization function init_lcong32(seed).

B.5.2.3 Case of m = 231 − 1

Every time the function lcong31() is called, it returns an integer random number between 1 and (231 − 2)
inclusive. The result is returned of type “long”. The initialization function init_lcong31 (unsigned long seed)
executes initialization so that a non-negative integer is set as the seed. As with the parameters in Table B.1,
the addend of c are always 0. Therefore, the seed X0 should not be 0. However, if X0

* = 0, a special number
(19 660 809) is used instead as the seed X0. In other cases, mod(X0*; m) is used as X0.

BS ISO 28640:2010
ISO 28640:2010(E)

40 © ISO 2010 – All rights reserved

In order to change the multiplier, the definition of MULTIPLIER should be changed in the program.

/***

 C code : Linear Congruential

**/

/***

 Part 1. Modulus = 2^32

**/

#define MULTIPLIER 1664525UL

#define INCREMENT 1UL

static unsigned long state32 ;

unsigned long lcong32(void)

{

 state32 = (state32 * MULTIPLIER + INCREMENT) & 0xFFFFFFFFUL;

 return state32;

}

long lcong32_31(void)

{

 state32 = (state32 * MULTIPLIER + INCREMENT) & 0xFFFFFFFFUL;

 return state32>>1;

}

void init_lcong32(unsigned long s)

{

/* seed should be odd when increment == 0 */

 if ((INCREMENT==0) && (s%2 == 0)){

 s++ ;

 }

 state32 = s ;

}

/***

 Part 2. Modulus = 2^31-1 = 2147483647

**/

#undef MULTIPLIER

BS ISO 28640:2010
ISO 28640:2010(E)

© ISO 2010 – All rights reserved 41

#undef INCREMENT

#undef NBIT

#define NBIT 15

#define MASK ((1<<NBIT)-1)

#define MASK2 ((1<<2*NBIT) -1)

#define MULTIPLIER 2100005341UL

#define MULTIPLIER_LO (MULTIPLIER & MASK)

#define MULTIPLIER_HI (MULTIPLIER >> NBIT)

static unsigned long state31 ;

long lcong31 (void)

{

 unsigned long xlo, xhi ;

 unsigned long z0, z1, z2 ;

 xlo = state31 & MASK ;

 xhi = state31 >> NBIT ;

 z0 = xlo * MULTIPLIER_LO ; /* 15bit * 15bit => 30bit */

 z1 = xlo * MULTIPLIER_HI

 + xhi * MULTIPLIER_LO ; /* 15bit * 16bit * 2 => 32bit */

 z2 = xhi * MULTIPLIER_HI ; /* 16bit * 16bit => 32bit */

 z0 += (z1 & MASK) << NBIT ;

 z2 += (z1 >> NBIT) + (z0 >> (2*NBIT)) ;

 z0 = (z0 & MASK2) | ((z2&1) << (2*NBIT)) ;

 z2 >>=1 ;

 state31 = z0 + z2 ;

 /* This should not exceed 2*0x7fffffffUL */

 if (state31>=0x7fffffffUL) state31 -= 0x7fffffffUL ;

 return (long) state31 ;

}

void init_lcong31 (unsigned long s)

{

 /* seed should not be 0 */

 if (s == 0UL) s=19660809UL ;

 s = s % 0x7fffffffUL ;

 state31 = s ;

}

NOTE 1 The Full Basic code of the linear congruential method is shown for information comparing with the
corresponding C code as follows.

BS ISO 28640:2010
ISO 28640:2010(E)

42 © ISO 2010 – All rights reserved

REM /***

REM BASIC code : Linear Congruential

REM **/

REM

REM /***

REM Part 1. Modulus = 2^32

REM **/

OPTION BASE 0

REM
/***/

DECLARE NUMERIC MULTIPLIER

LET MULTIPLIER = 1664525 !#define MULTIPLIER 1664525UL

DECLARE NUMERIC INCREMENT

LET INCREMENT = 1 !#define INCREMENT 1UL

DECLARE NUMERIC state32 !static unsigned long state32;

REM
/***/

FUNCTION lcong32 !unsigned long lcong32u(void) {

 LET state32 = And32((state32 * MULTIPLIER) + INCREMENT , MskF_f)

 ! ! state32 = (state32 * MULTIPLIER +
INCREMENT) & 0xFFFFFFFFUL;

 LET lcong32 = state32 ! return state32;

END FUNCTION !}

REM
/***/

FUNCTION lcong32_31 !long lcong32(void) {

BS ISO 28640:2010
ISO 28640:2010(E)

© ISO 2010 – All rights reserved 43

! ! state32 = (state32 * MULTIPLIER +
INCREMENT) & 0xFFFFFFFFUL;

 LET lcong32_31 = SR32U(lcong32 , 1) ! return state32>>1;

END FUNCTION !}

REM
/***/

FUNCTION init_lcong32(s) !void init_lcong32(unsigned long s) {

 REM /* seed should be odd when increment == 0 */

 IF (INCREMENT = 0) AND (REMAINDER(s , 2) = 0) THEN

 ! ! if ((INCREMENT==0) && (s%2 == 0))
{

 LET s = s + 1 ! s++;

 END IF ! }

 LET state32 = s ! state32 = s;

END FUNCTION !}

REM /***

REM BASIC code : Linear Congruential

REM **/

REM

REM /***

REM Part 2. Modulus = 2^31-1 = 2147483647

REM **/

OPTION BASE 0

DECLARE NUMERIC NBIT

LET NBIT = 15 !#define NBIT 15

DECLARE NUMERIC MASK

LET MASK = SL32U(1 , NBIT) - 1 !#define MASK ((1<<NBIT)-1)

BS ISO 28640:2010
ISO 28640:2010(E)

44 © ISO 2010 – All rights reserved

DECLARE NUMERIC MASK2

LET MASK2 = SL32U(1 , 2*NBIT) - 1 !#define MASK2 ((1<<(2*NBIT))-1)

DECLARE NUMERIC MULTIPLIER

LET MULTIPLIER = 2100005341 !#define MULTIPLIER 2100005341UL

DECLARE NUMERIC MULTIPLIER_LO

LET MULTIPLIER_LO = And32(MULTIPLIER , MASK) !#define MULTIPLIER_LO (MULTIPLIER
& MASK)

DECLARE NUMERIC MULTIPLIER_HI

LET MULTIPLIER_HI = SR32U(MULTIPLIER , NBIT) !#define MULTIPLIER_HI (MULTIPLIER
>> NBIT)

DECLARE NUMERIC state31 !static unsigned long state31;

REM
/***/

FUNCTION lcong31 !long lcong31(void) {

 DECLARE NUMERIC xlo, xhi ! unsigned long xlo, xhi;

 DECLARE NUMERIC z0, z1, z2 ! unsigned long z0, z1, z2;

 LET xlo = And32(state31 , MASK) ! xlo = state31 & MASK; //1st
val:9

 LET xhi = SR32U(state31 , NBIT) ! xhi = state31 >> NBIT; //1st
val:600

 LET z0 = xlo * MULTIPLIER_LO ! z0 = xlo * MULTIPLIER_LO; /*
15bit * 15bit => 30bit */

 LET z1 = xlo * MULTIPLIER_HI ! z1 = xlo * MULTIPLIER_HI

 LET z1 = z1 + xhi * MULTIPLIER_LO ! + xhi * MULTIPLIER_LO; /*
15bit * 16bit * 2 => 32bit */

 LET z2 = xhi * MULTIPLIER_HI ! z2 = xhi * MULTIPLIER_HI; /* 16bit
* 16bit => 32bit */

BS ISO 28640:2010
ISO 28640:2010(E)

© ISO 2010 – All rights reserved 45

 LET z0 = z0 + SL32U(And32(z1 , MASK) , NBIT)! z0 += (z1 & MASK) << NBIT;
//1st val:897833157

 LET z2 = z2 + SR32U(z1 , NBIT) + SR32U(z0 , 2 * NBIT)

 ! ! z2 += (z1 >> NBIT) + (z0 >>
(2*NBIT));

 LET z0 = Or32(And32(z0 , MASK2) , SL32U(And32(z2 , 1) , 2 * NBIT))

 ! ! z0 = (z0 & MASK2) |
((z2&1)<<(2*NBIT));

 LET z2 = SR32U(Z2 , 1) ! z2 >>=1;

 LET state31 = z0 + z2 ! state31 = z0 + z2;

 REM /* This should not exceed 2*0x7fffffffUL */

 IF state31 >= 2147483647 THEN LET state31 = state31 - 2147483647

 ! ! IF (state31>=0x7fffffffUL) state31
-= 0x7fffffffUL;

 LET lcong31 = state31 ! return (long) state31;

END FUNCTION !}

REM
/***/

FUNCTION init_lcong31(s) !void init_lcong31(unsigned long s) {

 REM ! /* seed should not be 0 */

 IF s = 0 THEN LET s = 19660809 ! if (s == 0UL) s=19660809UL;

 LET s = REMAINDER(s , 2147483647) ! s = s % 0x7fffffffUL;

 LET state31 = s ! state31 = s;

END FUNCTION !}

NOTE 2 The following set of Basic functions are necessary for transforming C code into all the Full Basic codes to
generate random numbers in the Annex A to realize bitwise operations in the Basic codes.

REM /***

REM BASIC code : FUNCTIONS

BS ISO 28640:2010
ISO 28640:2010(E)

46 © ISO 2010 – All rights reserved

REM ***/

OPTION BASE 0

REM /**/

DECLARE NUMERIC MskF_f

DECLARE NUMERIC MskF_e

DECLARE NUMERIC MskF_8

DECLARE NUMERIC MskF_0

LET MskF_f = BVAL("ffffffff" , 16)

LET MskF_e = BVAL("fffffffe" , 16)

LET MskF_8 = BVAL("fffffff8" , 16)

LET MskF_0 = BVAL("fffffff0" , 16)

REM /***/

FUNCTION Or32(xA,xB)

 DECLARE NUMERIC Ori, OrC

 LET OrC = 0

 FOR Ori=0 TO 31

 LET xA = xA / 2

 LET xB = xB / 2

 IF (INT(xA) <> xA) OR (INT(xB) <> xB) THEN

 LET OrC = OrC + 2 ^ Ori

 END IF

 LET xA = INT(xA)

 LET xB = INT(xB)

 IF (xA = 0) AND (xB = 0) THEN EXIT FOR

 NEXT Ori

 LET Or32 = OrC

BS ISO 28640:2010
ISO 28640:2010(E)

© ISO 2010 – All rights reserved 47

END FUNCTION

REM /***/

FUNCTION And32(xA,xB)

 DECLARE NUMERIC Andi, AC

 LET AC = 0

 IF xA > MskF_f THEN

 LET xA = xA - INT(xA / 4294967296) * 4294967296

 END IF

 IF xB > MskF_f THEN

 LET xB = xB - INT(xB / 4294967296) * 4294967296

 END IF

 IF (xA = 0) OR (xB = 0) THEN

 LET And32 = 0

 ELSEIF xB = MskF_f THEN !&Hffffffff

 LET And32 = xA

 ELSEIF xA = MskF_f THEN !&Hffffffff

 LET And32 = xB

 ELSEIF xB = MskF_8 THEN !&Hfffffff8

 LET And32 = INT(xA / 8) * 8

 ELSEIF xA = MskF_8 THEN !&Hfffffff8

 LET And32 = INT(xB / 8) * 8

 ELSEIF xB = MskF_0 THEN !&Hfffffff0

 LET And32 = INT(xA / 16) * 16

 ELSEIF xA = MskF_0 THEN !&Hfffffff0

 LET And32 = INT(xB / 16) * 16

 ELSE

 FOR Andi=0 TO 31

BS ISO 28640:2010
ISO 28640:2010(E)

48 © ISO 2010 – All rights reserved

 LET xA = xA / 2

 LET xB = xB / 2

 IF (INT(xA) <> xA) AND (INT(xB) <> xB) THEN

 LET AC = AC + 2 ^ Andi

 END IF

 LET xA = INT(xA)

 LET xB = INT(xB)

 IF (xA = 0) OR (xB = 0) THEN EXIT FOR

 NEXT Andi

 LET And32 = AC

 END IF

END FUNCTION

REM /***/

FUNCTION Xor32(xA,xB)

 DECLARE NUMERIC Xori, XC

 LET XC = 0

 FOR Xori=0 TO 31

 LET xA = xA / 2

 LET xB = xB / 2

 IF ((INT(xA) = xA) AND (INT(xB) <> xB)) OR (INT(xA) <> xA) AND (INT(xB) =
xB) THEN

 LET XC = XC + 2 ^ Xori

 END IF

 LET xA = INT(xA)

 LET xB = INT(xB)

 IF (xA = 0) OR (xB = 0) THEN EXIT FOR

 NEXT Xori

BS ISO 28640:2010
ISO 28640:2010(E)

© ISO 2010 – All rights reserved 49

 LET Xori = Xori + 1

 IF (xA =0) AND (xB = 0) THEN

 elseIF xA = 0 THEN

 FOR Xori=Xori TO 31

 LET xB = xB / 2

 IF INT(xB) <> xB THEN

 LET XC = XC + 2 ^ Xori

 END IF

 LET xB = INT(xB)

 IF xB = 0 THEN EXIT FOR

 NEXT Xori

 ELSE

 FOR Xori=Xori TO 31

 LET xA = xA / 2

 IF INT(xA) <> xA THEN

 LET XC = XC + 2 ^ Xori

 END IF

 LET xA = INT(xA)

 IF xA = 0 THEN EXIT FOR

 NEXT Xori

 END IF

 LET Xor32 = XC

END FUNCTION

REM /***/

FUNCTION SL32U(xA,xL)

 REM 2006-05-31

 DECLARE NUMERIC slAH,slAL

 IF (xA = 0) OR (xL = 0) THEN

BS ISO 28640:2010
ISO 28640:2010(E)

50 © ISO 2010 – All rights reserved

 LET SL32U = xA

 ELSEIF xL >= 16 THEN

 LET slAL = xA - INT(xA / 65536) * 65536

 LET slAL = slAL * 2 ^ (xL - 16)

 LET slAL = slAL - INT(slAL / 65536) * 65536

 LET SL32U = slAL * 65536

 ELSE

 LET slAL = xA - INT(xA / 65536) * 65536

 LET slAH = INT(xA / 65536)

 LET slAL = slAL * 2 ^ xL

 LET slAH = slAH * 2 ^ xL

 LET slAH = slAH - INT(slAH / 65536) * 65536

 LET SL32U = slAL + slAH * 65536

 END IF

End Function

REM /***/

FUNCTION SR32U(xA,xL)

 REM 2006-06-03

 IF xL = 0 THEN

 LET SR32U = xA

 ELSEIF xA = 0 THEN

 LET SR32U = 0

 ELSE

 LET SR32U = INT(xA / 2 ^ xL)

 END IF

End Function

BS ISO 28640:2010
ISO 28640:2010(E)

© ISO 2010 – All rights reserved 51

REM /***/

FUNCTION Mul32U(xA,xB)

 REM /***** A,B : unsigned long (32-bit) *****/

 REM 2006-06-02

 DECLARE NUMERIC MAH, MAL, MBH, MBL

 LET MAH = INT(xA / 65536)

 LET MBH = INT(xB / 65536)

 IF (xA = 0) OR (xB = 0) THEN

 LET Mul32U = 0

 ELSEIF (MAH = 0) AND (MBH = 0) THEN

 LET Mul32U = xA * xB

 ELSE

 LET MAL = xA - INT(xA / 65536) * 65536

 LET MBL = xB - INT(xB / 65536) * 65536

 LET MBH = MAH * MBL + MAL * MBH + INT((MAL * MBL) / 65536)

 LET MBH = MBH - INT(MBH / 65536) * 65536

 LET MAL = MAL * MBL

 LET MBL = MAL - INT(MAL / 65536) * 65536

 LET Mul32U = MBL + 65536 * MBH

 END IF

END FUNCTION

BS ISO 28640:2010
ISO 28640:2010(E)

52 © ISO 2010 – All rights reserved

B.6 Reference examples

Table B.2 gives examples of random number sequences using the code in Annex B with specific values of the
parameters for the validation. The first 5 pseudo-random numbers and the 5 pseudo-random numbers at
intervals of 1 000 are listed for reference.

Table B.2 — Output examples of random numbers

Generation method Linear congruential Linear congruential Trinomial GFSR Pentanomial GFSR

Routine name lcong32_31 lcong31 gfsr_31 gfsr5_31
Parameters M = 232, m = 231 − 1, P = 1 279, p = 521,

 A = 1 664 525, a = 2 100 005 341, q = 418, q1 = 86,
 C = 1 c = 0 w = 32 q2 = 197,
 q3 = 447,
 w = 32

Initialization routine init_lcong32 init_lcong31 init_gfsr init_gfsr5

Initialization seed 19 660 809 19 660 809 19 660 809 19 660 809

1 1 276 136 251 1 990 801 112 716 530 710 716 530 710
2 865 096 703 549 424 302 1 004 066 893 1 004 066 893
3 1 405 063 418 2 128 986 934 1 271 815 862 1 271 815 862
4 1 021 835 442 637 203 998 955 533 625 955 533 625
5 1 313 685 521 965 379 446 626 736 785 626 736 785

1 000 1 292 340 048 294 652 208 1 588 358 191 1 935 299 389
2 000 517 257 756 407 927 492 2 027 766 761 43 898 710
3 000 1 420 573 800 216 557 927 1 495 802 935 1 516 572 896
4 000 1 195 033 140 919 639 774 1 360 928 075 1 923 029 091
5 000 971 701 120 639 093 944 1 950 421 053 2 129 964 021

Generation method Combined Tausworthe Mersenne Twister Physical random number

Routine name taus88_31 genrand_31 rndtable31

Parameters Same as the body of this
International Standard

Same as the body of this
International Standard File

 prnd01. bin

Initialization routine init_taus88 init_genrand init_rndtable

Initialization seed 19 660 809 19 660 809 19 660 809

1 116 464 117 652 430 828 57 316 494
2 1 350 114 716 769 118 065 905 630 297
3 14 524 262 902 643 984 1 460 801 524
4 565 035 872 1 576 219 271 751 624 663
5 1 079 577 460 859 869 705 1 289 292 436

1 000 1 404 867 807 1 194 038 620 2 001 042 935
2 000 2 022 781 177 563 296 554 1 638 049 143
3 000 2 098 228 799 1 515 829 663 41 578 219
4 000 1 089 352 213 1 803 857 212 87 938 653
5 000 262 361 229 1 203 434 155 1 851 047 367

BS ISO 28640:2010
ISO 28640:2010(E)

© ISO 2010 – All rights reserved 53

Bibliography

[1] ISO 80000-2, Quantities and units — Part 2: Mathematical signs and symbols to be used in the natural
sciences and technology

[2] ISO/IEC 9899, Programming languages — C

[3] FERRENBERG, A.M., LANDAU, D.P. and WONG, Y.J. Monte Carlo Simulations: Hidden Errors from
“Good” Random Number Generators. Physical Review Letters, 69(23), 1992, pp. 3382-3384

[4] GENTLE, J.E. Random Number Generation and Monte Carlo Methods, Springer-Verlag, 2003

[5] HERINGA, J.R., BLÖTE, H.W.J. and COMPAGNER, A. New Primitive Trinomials of Mersenne-Exponent
Degrees for Random-Number Generation. International Journal of Modern Physics C, 3(3), 1992,
pp. 561-564

[6] ISHIDA, M., SATO, T., SUZUKI, K., SHIMADA, S. and KAWASE, T. Random Number Generator Using a
Diode Noise. The Institute of Statistical Mathematics Research Memorandum, Number 968, 2005

[7] JÖHNK, M.D. Erzeugung Von Betavesteilten und Gammavesteilten Zufellszahlen. Metrica, 8(1), 1964,
pp. 5-15

[8] KNUTH, D.E. Seminumerical Algorithms (The Art of Computer Programming, Volume 2), 3rd. ed.,
Addison Wesley, 1998

[9] KURITA, Y. and MATSUMOTO, M. Primitive t-nomials (t = 3, 5) over GF (2) Whose Degree is a Mersenne
Exponent u 44497. Mathematics of Computation, 56(194), 1991, pp. 817-821

[10] L'ECUYER, P. Maximally Equidistributed Combined Tausworthe Generators. Mathematics of
Computation, 65(213), 1996, pp. 203-213

[11] L'ECUYER, P. Tables of Maximally-Equidistributed Combined LFSR Generators. Mathematics of
Computation, 68(225), 1996, pp. 261-269

[12] LEWIS, T.G. and PAYNE, W.H. Generalized Feedback Shift Register Pseudorandom Number
Generators. Journal of the Association for Computing Machinery, 20(3), 1973, pp. 456-468

[13] MASSEY, J.L. Shift-Register Synthesis and BCH Decoding. IEEE Trans. on Information Theory,
IT-15 (1), 1969, pp. 122 127

[14] MATSUMOTO, M. and NISHIMURA, T. Mersenne Twister: A 623-Dimensionally Equidistributed Uniform
Pseudo-Random Number Generator. ACM. Trans. Model. Comput. Simul., 8(1), 1998, pp. 3-30

[15] VON NEUMANN, J. Various Techniques Used in Connection with Random Digits, Monte Carlo Method,
Applied Mathematics Series, No.12, U.S. National Bureau of Standards, Washington D.C., 1951,
pp. 36-38

[16] NIKI, N. Machine Generation of Randum Numbers. The Institute of Statistical Mathematics Research
Memorandum, Number 969, 2005

[17] NIKI, N. Physical Random Number Generator for Personal Computers. The Institute of Statistical
Mathematics Research Memorandum, Number 970, 2005

[18] RUEPPEL, R.A. Analysis and Design of Stream Ciphers, Springer-Verlag, 1986

BS ISO 28640:2010
ISO 28640:2010(E)

54 © ISO 2010 – All rights reserved

[19] TAUSWORTHE, R.C. Random Numbers Generated by Linear Recurrence Modulo Two. Mathematics of
Computation, 19, 1965, pp. 201-209

[20] TEZUKA, S. and L'ECUYER, P. Efficient and Portable Combined Tausworthe Random Number
Generators. ACM. Trans. Model. Comput. Simul., 1, 1991, pp. 99-112

[21] VATTULAINEN, I., ALA-NISSILÄ, T. and KANKAALA, K. Physical Tests for Random Numbers in Simulations.
Physical Review Letters, 73(19), 1994, pp. 2513 2516

[22] VATTULAINEN, I., ALA-NISSILÄ, T. and KANKAALA, K. Physical Models as Tests of Randomness. Physical
Review, E52, 1995, pp. 3205-3214

[23] Random Number Generator, The Institute of Statistical Mathematics,
http://random.ism.ac.jp/random_e/index.php

BS ISO 28640:2010

BS ISO 28640:2010
ISO 28640:2010(E)

ICS 03.120.30
Price based on 54 pages

© ISO 2010 – All rights reserved

BS ISO 28640:2010

This page has been intentionally left blank

BS ISO
28640:2010

BSI Group
Headquarters 389
Chiswick High Road,
London, W4 4AL, UK
Tel +44 (0)20 8996 9001
Fax +44 (0)20 8996 7001
www.bsigroup.com/
standards

BSI - British Standards Institution
BSI is the independent national body responsible for preparing British
Standards. It presents the UK view on standards in Europe and at the
international level. It is incorporated by Royal Charter.

Revisions

British Standards are updated by amendment or revision. Users of British
Standards should make sure that they possess the latest amendments or
editions.

It is the constant aim of BSI to improve the quality of our products and services.
We would be grateful if anyone finding an inaccuracy or ambiguity while using
this British Standard would inform the Secretary of the technical committee
responsible, the identity of which can be found on the inside front cover. Tel:
+44 (0)20 8996 9000. Fax: +44 (0)20 8996 7400.

BSI offers members an individual updating service called PLUS which ensures
that subscribers automatically receive the latest editions of standards.

Buying standards

Orders for all BSI, international and foreign standards publications should be
addressed to Customer Services. Tel: +44 (0)20 8996 9001. Fax: +44 (0)20 8996
7001 Email: orders@bsigroup.com You may also buy directly using a debit/credit
card from the BSI Shop on the Website http://www.bsigroup.com/shop

In response to orders for international standards, it is BSI policy to supply the
BSI implementation of those that have been published as British Standards,
unless otherwise requested.

Information on standards

BSI provides a wide range of information on national, European and
international standards through its Library and its Technical Help to Exporters
Service. Various BSI electronic information services are also available which
give details on all its products and services. Contact Information Centre. Tel:
+44 (0)20 8996 7111 Fax: +44 (0)20 8996 7048 Email: info@bsigroup.com

Subscribing members of BSI are kept up to date with standards developments
and receive substantial discounts on the purchase price of standards. For details
of these and other benefits contact Membership Administration. Tel: +44 (0)20
8996 7002 Fax: +44 (0)20 8996 7001 Email: membership@bsigroup.com

Information regarding online access to British Standards via British Standards
Online can be found at http://www.bsigroup.com/BSOL

Further information about BSI is available on the BSI website at http://
www.bsigroup.com

Copyright

Copyright subsists in all BSI publications. BSI also holds the copyright, in the
UK, of the publications of the international standardization bodies. Except as
permitted under the Copyright, Designs and Patents Act 1988 no extract may
be reproduced, stored in a retrieval system or transmitted in any form or by any
means – electronic, photocopying, recording or otherwise – without prior written
permission from BSI.

This does not preclude the free use, in the course of implementing the standard,
of necessary details such as symbols, and size, type or grade designations. If
these details are to be used for any other purpose than implementation then the
prior written permission of BSI must be obtained.

Details and advice can be obtained from the Copyright and Licensing Manager.
Tel: +44 (0)20 8996 7070 Email: copyright@bsigroup.com

