Random variate generation methods ICS 03.120.30 #### National foreword This British Standard is the UK implementation of ISO 28640:2010. The UK participation in its preparation was entrusted to Technical Committee SS/5, Acceptance sampling schemes. A list of organizations represented on this committee can be obtained on request to its secretary. This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application. Compliance with a British Standard cannot confer immunity from legal obligations. This British Standard was published under the authority of the Standards Policy and Strategy Committee on 30 June 2010 © BSI 2010 Amendments/corrigenda issued since publication | Date | Comments | |------|----------| | | | | | | | | | | | | ISBN 978 0 580 57787 1 ## INTERNATIONAL STANDARD BS ISO 28640:2010 ISO 28640 First edition 2010-03-15 ## Random variate generation methods Méthodes de génération de nombres pseudo-aléatoires #### PDF disclaimer This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area. Adobe is a trademark of Adobe Systems Incorporated. Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below. #### COPYRIGHT PROTECTED DOCUMENT #### © ISO 2010 All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester. ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org Published in Switzerland Page #### Contents | Forewo | ord | iv | |--|--|--| | Introdu | ıction | v | | 1 | Scope | 1 | | 2 | Normative references | 1 | | 3 | Terms and definitions | 1 | | 4
4.1
4.2 | Symbols and mathematical binary operations | 2 | | 5
5.1
5.2
5.3
5.4
5.5 | Uniformly distributed pseudo-random numbers General | 3
4
4 | | 6
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14 | Generation of random numbers from various distributions | 6
7
8
9
11
11
12
12 | | Annex
A.1
A.2 | A (informative) Table of physical random numbers | 16 | | B.1
B.2
B.3
B.4
B.5
B.6 | B (informative) Algorithm for pseudo-random number generation Program code for the trinomial GFSR method Program code for the pentanomial GFSR method Program code for the combined Tausworthe method Program code for the Mersenne Twister method Linear congruential method Reference examples | 18
22
28
32
38 | | שוחוחה | , αριι <u>γ</u> | აა | #### **Foreword** ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2. The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote. Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. ISO 28640 was prepared by Technical Committee ISO/TC 69, Applications of statistical methods. This is the first edition. #### Introduction This International Standard specifies typical algorithms by which the users can regard the generated numerical sequences as if they were real random variates. Nowadays most statisticians, scientists and engineers have enough computer power at their disposal to carry out large computer simulations, and it is important that these be based on sound pseudo-random generators. This International Standard has been developed to help ensure that randomization, where needed, is carried out correctly and efficiently. Six uses of randomization can be identified in statistical standardization: - selection of a random sample; - analysis of sample data; - development of standards; - checking theoretical results; - demonstrating that a proposed procedure has the properties claimed of it; - resolving uncertainty in the statistical literature. #### Random variate generation methods #### 1 Scope This International Standard specifies methods for generating uniform and non-uniform random variates for Monte Carlo simulation purposes. Cryptographic random number generation methods are not included. This International Standard is applicable, *inter alia*, by - researchers, industrial engineers or experts in operations management, who use statistical simulation, - statisticians who need randomization related to SQC methods, statistical design of experiments or sample surveys, - applied mathematicians who plan complex optimization procedures that require the use of Monte Carlo methods, and - software engineers who implement algorithms for random variate generation. #### 2 Normative references The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. ISO/IEC 2382-1, Information technology — Vocabulary — Part 1: Fundamental terms ISO 3534-1, Statistics — Vocabulary and symbols — Part 1: General statistical terms and terms used in probability ISO 3534-2, Statistics — Vocabulary and symbols — Part 2: Applied statistics #### 3 Terms and definitions For the purposes of this document, the terms and definitions given in ISO/IEC 2382-1, ISO 3534-1 and ISO 3534-2 apply, except where redefined below. #### 3.1 #### random variate #### random number number as the realization of a specific random variable - NOTE 1 The term "random number" is often used for uniformly distributed random variate. - NOTE 2 Random numbers provided as a sequence are called a "random number sequence". #### ISO 28640:2010(E) #### 3.2 #### pseudo-random number random number (3.1) generated by an algorithm, that appears to be random NOTE If there is no fear of misunderstanding, a pseudo-random number may simply be called a "random number". #### 3.3 #### physical random number random number (3.1) generated by a physical mechanism #### 3.4 #### binary random number sequence random number (3.1) sequence consisting of zeros and ones #### 3.5 #### seed initialization value required for pseudo-random number generation #### 4 Symbols and mathematical binary operations #### 4.1 Symbols For the purposes of this document, the symbols given in the normative references as the latest versions of ISO/IEC 2382-1, ISO 3534-1 and ISO 3534-2 apply, except where redefined below. The symbols and abbreviations specifically used in this International Standard are as follows: - X integer type uniform random number - U standard uniform random number - Z normal random variate - n suffix of random number sequence #### 4.2 Mathematical binary operations The mathematical binary operations specifically used in this International Standard are as follows: mod(m; k) residue from dividing integer m by k $m \oplus k$ bitwise exclusive logical disjunction of binary integers m and k EXAMPLE 1 $1 \oplus 1 = 0$ 0 ⊕ 1 = 1 $1 \oplus 0 = 1$ $0 \oplus 0 = 0$ 1010 1100 = 0110 $m \wedge k$ bitwise logical conjunction of binary integers m and k EXAMPLE 2 $1 \wedge 1 = 1$ $0 \land 1 = 0$ $1 \land 0 = 0$ $0 \land 0 = 0$ $1010 \land 1100 = 1000$ m := k replaces value m by k m >> k k-bit right shift of binary integer m $m \ll k$ bit left shift of binary integer m #### 5 Uniformly distributed pseudo-random numbers #### 5.1 General This clause provides algorithms for generating uniformly distributed pseudo-random numbers based on M-sequence methods (see 5.2). Annex A introduces the concept of physically generated random numbers for information. Annex B includes C and full Basic codes for all the recommended algorithms for information. Although the linear congruential method is not recommended for complex Monte Carlo simulations, it is
also included in Annex B for information. #### 5.2 M-sequence method definition a) Let p be a natural number, and c_1 , c_2 , ..., c_{p-1} be specified to be 0 or 1, and define the recurrence formula $$x_{n+p} = c_{p-1}x_{n+p-1} + c_{p-2}x_{n+p-2} + \dots + c_1x_{n+1} + x_n \pmod{2}$$ $(n = 1, 2, 3, \dots)$ - b) The least positive integer N such that $x_{n+N} = x_n$ for all n is called the period of the sequence. This sequence is called an M-sequence in cases where its period is $2^p 1$. - c) The polynomial $$t^{p} + c_{p-1} t^{p-1} + ... + c_{1}t + 1$$ is called the characteristic polynomial of the above-mentioned recurrence formula. NOTE 1 A necessary and sufficient condition for the above-mentioned recurrence formula to generate an M-sequence is that at least one of the seeds $x_1, x_2, ..., x_p$ is not zero. NOTE 2 The letter M of the M-sequence originates from the English word "maximum", which means the largest. The period of any sequence generated by the above recurrence formula cannot exceed $2^p - 1$. Therefore, if there is a series that has a period of $2^p - 1$, it is the series that has the largest period. NOTE 3 When this method is used, either one of the polynomials listed in Table 1 or another primitive polynomial listed in the literature is chosen as the characteristic polynomial and its coefficients are used to define the recurrence formula in a). #### 5.3 Pentanomial GFSR method This method uses a characteristic polynomial of 5 terms, and it generates binary integer sequences of w bits by the following recurrence formula. This algorithm is called the GFSR or "generalized feedback shift register" random number generator. $$X_{n+p} = X_{n+q1} \oplus X_{n+q2} \oplus X_{n+q3} \oplus X_n$$ $(n = 1, 2, 3, ...)$ The parameters are (p, q1, q2, q3, w) and $X_1, ..., X_p$ are initially given as seeds. Examples of parameters p, q_1, q_2, q_3 giving the largest period $2^p - 1$ are indicated in Table 1. p q_1 92 q_3 89 20 40 69 107 31 57 82 127 22 63 83 521 86 197 447 607 461 167 307 1 279 339 630 988 2 2 0 3 585 1 197 1 656 2 281 577 1 109 1 709 3 217 809 1 621 2 381 4 253 1 093 2 2 5 4 3 297 4 423 1 171 3 299 2 2 7 3 Table 1 — Pentanomial characteristic polynomials NOTE q_1 , q_2 , q_3 represent exponents of the non-zero terms of the characteristic polynomial. 5 463 7 712 2 799 #### 5.4 Combined Tausworthe method Let x_0, x_1, x_2, \dots be an M-sequence generated by the recurrence relationship: 9 689 $$x_{n+p} = x_{n+q} + x_n \pmod{2}$$ $(n = 0, 1, 2, ...)$ Using this M-sequence, a w-bit integer sequence called a simple Tausworthe sequence with parameters (p, q, t) is obtained as follows: $$X_n = x_{nt} x_{nt+1} \dots x_{nt+w-1}$$ $(n = 0, 1, 2, \dots)$ where - is a natural number which is coprime to the period $2^p 1$ of the M-sequence; - w is the word length which does not exceed p. The period of this sequence is also $2^p - 1$. NOTE 1 Two integers are said to be coprime, or relatively prime, when they have no common divisors other than unity. EXAMPLE If a primitive polynomial $t^4 + t + 1$ is chosen, set p = 4, and q = 1 in the above recurrence relationship. If the seeds $(x_0, x_1, x_2, x_3) = (1,1,1,1)$ are given to the recurrence, then the M-sequence obtained by the recurrence will be 1,1,1,1, 0,0,0,1, 0,0,1,1, 0,1,0,1, 1,1,1,0, ..., and the period of the sequence is $2^4 - 1 = 15$. Taking, for example, t = 4 which is coprime to 15, and w = 4, the simple Tausworthe sequence $\{X_n\}$ with parameters (4, 1, 4) is obtained as follows: $$X_0 = x_0 x_1 x_2 x_3 = 1111 (= 15)$$ $$X_1 = x_4 x_5 x_6 x_7 = 0001 (= 1)$$ $$X_2 = x_8 x_9 x_{10} x_{11} = 0011 (= 3)$$ $$X_3 = x_{12} x_{13} x_{14} x_0 = 0101 (= 5)$$ $$X_4 = x_1 x_2 x_3 x_4 = 1110 (= 14)$$ $$X_5 = x_5 x_6 x_7 x_8 = 0010 (= 2)$$ The simple Tausworthe sequence obtained in this way will be, in decimal notation, 15, 1, 3, 5, 14, 2, 6, 11, 12, 4, 13, 7, 8, 9, 10, 15, 1, 3, ..., and its period is $2^4 - 1 = 15$. Suppose now that there is a multiple, say J, of simple Tausworthe sequences $\{X_n^{(j)}\}$, j=1, 2, ..., J with the same word length w. The combined Tausworthe method is a technique that generates a sequence of pseudo-random numbers $\{X_n\}$ as the bitwise exclusive logical disjunction in the binary representation of these J sequences. $$X_n = X^{(1)}_n \oplus X^{(2)}_n \oplus \ldots \oplus X^{(J)}_n \quad (n = 0, 1, 2, \ldots)$$ The parameters and the seeds of the combined Tausworthe sequence are combinations of the parameters and the seeds of each simple Tausworthe sequence. If the periods of the J simple Tausworthe sequences are coprime, then the period of the combined Tausworthe sequence is the product of the periods of the J sequences. NOTE 2 This method can generate sequences with good multidimensional equidistribution characteristics. The algorithm taus88_31() given in Annex A generates a sequence of 31-bit integers by combining three simple Tausworthe generators with parameters (p, q, t) = (31, 13, 12), (29, 2, 4), and (28, 3, 17), respectively. The period length of the combined sequence is $(2^{31} - 1)(2^{29} - 1)(2^{28} - 1),$ i.e. about 2^{88} . Many other combinations are suggested in References [7] and [8] in the Bibliography. #### 5.5 Mersenne Twister method Let X_n be a binary integer of w bits. Then, the Mersenne Twister method generates a sequence of binary integer pseudo-random numbers of w bits according to the following recurrence formula with integer constants p, q, r and a binary integer a of w bits. $$X_{n+p} = X_{n+q} \oplus (X_n^{\mathsf{f}} | X_{n+1}^{\mathsf{f}})^{(r)} \, \mathbf{A} \; , \quad (n=1,\,2,\,3,\,\ldots)$$ where $(X_n^f|X_{n+1}^f)^{(r)}$ represents a binary integer that is obtained by a concatenation of X_n^f and X_{n+1}^f , the first w-r bits of X_n and the last r bits of X_{n+1} in this order. A is a $w\times w$ 0-1 matrix, which is determined by a, and the product XA is given by the following formula. $$X \gg 1$$ (when the last bit of $X = 0$) $$XA = (X >> 1) \oplus a$$ (when the last bit of $X = 1$) Here, *X* is regarded as a *w* dimensional 0-1 vector. #### ISO 28640:2010(E) NOTE The necessary amount of memory for this computation is p words, the period becomes $2^{pw-r} - 1$, and the efficiency is better than that of the GFSR methods described previously. To improve the randomness of the first w-r bits, the following series of conversions can be applied to X_p . $$y := X_n$$ $$y := y \oplus (y >> u)$$ $$y := y \oplus [(y << s) \land b]$$ $$y := y \oplus [(y << t) \land c]$$ $$y := y \oplus (y >> l)$$ where b, c are constant bits masks to improve the randomness of the first w-r bits. The parameters of this algorithm are (p, q, r, w, a, u, s, t, l, b, c). The seeds are $X_2, ..., X_{q+1}$ and the first w-r bits of X_1 . The final value of y is the pseudo-random number. #### 6 Generation of random numbers from various distributions #### 6.1 Introduction Methods of generating random numbers Y from various distributions by using uniform random numbers X of integer type, are described below. The distribution function is denoted by F(y). If it is a continuous distribution, its probability density function is denoted by f(y), and if it is a discrete distribution, its probability mass function is denoted by p(y). #### 6.2 Uniform distribution #### 6.2.1 Standard uniform distribution #### 6.2.1.1 Probability density function $$f(y) = \begin{cases} 1, & 0 \le y \le 1 \\ 0, & \text{otherwise} \end{cases}$$ #### 6.2.1.2 Random variate generation method If the maximum value of uniform random number X of integer type is m-1, the following formula should be used to generate standard uniform random numbers. $$U = \frac{X}{m}$$ EXAMPLE For any w-bit integer sequences generated by the method described in 5.2 through 5.5, m = 2. NOTE 1 Because X takes on discrete values, the values of U are also discrete. NOTE 2 The value of U never becomes 1,0. The value of U becomes 0,0 only when X = 0. In the case of M-sequence random numbers, any generation method may cause this phenomenon. NOTE 3 Random numbers from the standard uniform distribution are called standard uniform random numbers, and are represented by U_1 , U_2 , ... They are assumed to be independent of each other. #### 6.2.2 General uniform distribution #### 6.2.2.1 Probability density function $$f(y) = \begin{cases} 1/b, & a \le y \le a+b \\ 0, & \text{otherwise} \end{cases}$$ where b > 0. #### 6.2.2.2 Random variate generation method If the standard uniform random number U is generated by the method specified in 6.2.1.2, then the general uniform random number should be generated by the following formula: $$Y = bU + a$$ #### 6.3 Standard beta distribution #### 6.3.1 Probability density function $$f(y) = \begin{cases} \frac{y^{c-1} (1-y)^{d-1}}{B(c,d)}, & 0 \le y \le 1\\ 0, & \text{otherwise} \end{cases}$$ where $B(c, d) = \int_0^1 x^{c-1} (1-x)^{d-1} dx$ is the beta function and the parameters c and d are greater than 0. #### 6.3.2 Random variate generation method by Jöhnk If the standard uniform random numbers U_1 and U_2 are independently generated by the method specified in 6.2.1, then the standard beta random number Y should be generated by the following procedures. If $\tilde{Y} = U_1^{1/c} + U_2^{1/d}$ is less than or equal to 1, set $Y = U_1^{1/c} / \tilde{Y}$; otherwise, generate two standard uniform random numbers again until the inequality is satisfied. #### 6.3.3 Random variate generation method by Cheng If the standard uniform random numbers U_1 and U_2 are independently generated by the method specified in 6.2.1, then the standard beta random number Y should be generated by the following procedures. [Set-up] a) Let $$q = \begin{cases} \min(c, d), & \text{if } \min(c, d) < 1\\ \sqrt{\frac{2cd - (c + d)}{c + d - 2}}, & \text{otherwise} \end{cases}$$ [Generation] b) Let $$V = \frac{1}{q} \frac{U_1}{1 - U_1}, W = c \exp(V)$$ #### ISO 28640:2010(E) c) If
$$(c+d)\ln\left(\frac{c+d}{d+W}\right)+(c+q)V-\ln 4\geqslant \ln(U_1^2U_2)$$ then employ $$Y = \frac{W}{d+W}$$; and stop. d) Generate U_1 , U_2 , and go to b). $$V = \frac{1}{q} \frac{U_1}{1 - U_1} (c + d) \ln \left(\frac{c + d}{d + W} \right) + (c + q) V - \ln 4 \ge \ln (U_1^2 U_2) \frac{W}{d + W}$$ Jöhnk's method is recommended when $\max(c, d) \le 1$; otherwise, Cheng's method is recommended. NOTE General beta random variates with the support [a, a + b] will be obtained by a linear transformation similar to the one described in 6.2.2.2. #### 6.4 Triangular distribution #### 6.4.1 Probability density function $$f(y) = \begin{cases} \frac{b - |a - y|}{b^2}, & a - b \le y \le a + b \\ 0, & \text{otherwise} \end{cases}$$ where h > 0. #### 6.4.2 Random variate generation method If the standard uniform random numbers U_1 and U_2 are independently generated by the method specified in 6.2.1, then the triangular random number Y should be generated by $Y = a + b(U_1 + U_2 - 1)$. #### 6.5 General exponential distribution with location and scale parameters #### 6.5.1 Probability density function $$f(y) = \begin{cases} \frac{1}{b} \exp\{-(y-a)/b\}, & y \ge a \\ 0, & y < a \end{cases}$$ where a and b are the location and scale parameters of the exponential distribution, respectively. #### 6.5.2 Random variate generation method If the standard uniform random number U is generated by the method specified in 6.2.1, then the general exponential random number should be generated by $$Y = -b \ln(U) + a$$ #### 6.6 Normal distribution #### 6.6.1 Probability density function $$f(z) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{1}{2\sigma^2}(z-\mu)^2\right\}, -\infty < z < \infty$$ where μ and σ are the mean and standard deviation of the normal distribution, respectively. NOTE The symbol Z is used for a normal random variate. #### 6.6.2 The Box-Müller method If the standard uniform random numbers U_1 and U_2 are independently generated by the method specified in 6.2.1, then two independent normal random numbers Z_1 , Z_2 will be generated by the following procedures: $$Z_1 = \mu + \sigma \sqrt{-2\ln(1 - U_1)}\cos(2\pi U_2)$$ $$Z_2 = \mu + \sigma \sqrt{-2\ln(1-U_1)} \sin(2\pi U_2)$$ NOTE 1 Since U_1 is not continuous, Z_1 , Z_2 cannot be normally distributed in a strict sense. For example, using this procedure, the upper bound of the absolute value of the pseudo-standardized normal variates is $M = \sqrt{-2 \ln(m^{-1})} = \sqrt{2 \ln m}$; thus, when $m = 2^{32}$, $M \approx 6,660$ 4, and when $m = 2^{31} - 1$, $M \approx 6,555$ 5. However, since the probability that absolute values of random variables from a true standard normal distribution exceed M is only about 10^{-10} , this will rarely be a problem in practice. NOTE 2 When generating U_1 , U_2 , by a linear congruential method sequentially, U_1 and U_2 are not independent of each other, so the tail of the distribution of the generated Z_1 and Z_2 can depart considerably from the true normal distribution. #### 6.7 Gamma distribution #### 6.7.1 Probability density function $$f(y) = \begin{cases} \frac{1}{b\Gamma(c)} \{ (y-a)/b \}^{c-1} \exp\{-(y-a)/b \}, & y \geqslant a \\ 0, & \text{otherwise} \end{cases}$$ where a, b, c are the location, scale and shape parameters of the distribution, respectively. #### 6.7.2 Random variate generation methods #### 6.7.2.1 General Algorithms are given for three special cases depending on the shape parameter value c as follows. #### **6.7.2.2** Case of c = k (k: integer) Using independent uniform random numbers U_1, U_2, \dots, U_k , the transformation formula $$Y = a - b \ln\{(1 - U_1)(1 - U_2)...(1 - U_k)\}$$ should be used. #### ISO 28640:2010(E) NOTE The chi-squared distribution with even degrees of freedom can be generated by this method when a = 0 and b = 2. #### **6.7.2.3** Case of c = k + 1/2 (k: integer) Using a standard normal random number Z_0 and uniform random number $U_1,\ U_2,\ \dots$, U_k , the transformation formula $$Y = a + b \left[Z_0^2 / 2 - \ln \{ (1 - U_1)(1 - U_2)...(1 - U_k) \} \right]$$ should be used. In the case where k = 0, the logarithm term disappears. NOTE The chi-squared distribution with odd degrees of freedom can be generated by this method when a = 0 and b = 2. #### **6.7.2.4** Approximate generation method when c > 1/3 - a) Set r = c 1/3, $s = \sqrt[3]{r}$, $t = r r \ln(r)$, $p = 1/(3\sqrt{s})$ and $q = -3\sqrt{r}$. - b) Generate standard normal random number Z. - c) If Z < q, then go to b). - d) Set $Y = (pZ + s)^3$, $V = Z^2/2$, and generate U. - e) If $(Y r)^2/Y V \le U$, then employ Y := a + bY and stop. - f) Set $W = Y r \ln(Y) t V$. - g) If $W \leqslant U$, then employ Y := a + bY and stop. - h) If $W > -\ln(1.0 U)$, then go to b). NOTE This method is based on the Wilson-Hilferty transformation of chi-square distributions to an approximate standard normal distribution. The accuracy of this approximation depends on the parameter values of c, and the dependency is rather complicated. A very rough idea is as follows: the absolute difference between the percentage point of the approximate distribution and the exact distribution is always less than 0,2. #### 6.7.2.5 Exact generation method when c > 1/2, by Cheng - a) Set $q = c \ln 4$ and $r = c + \sqrt{2c 1}$. - b) Generate standard uniform random numbers U_1 and U_2 . - c) Set $V = c \ln(\frac{U_1}{1 U_1}), W = c \exp(U_1), Z = U_1^2 U_2$ and R = q + rV W. - d) If $R \ge 4.5Z (1 + \ln 4.5)$ then employ Y = a + bW and stop. - e) If $R \ge \ln Z$ then employ Y = a + bW and stop. - f) Go to b). $$p = 1/\sqrt{2c - 1}, \ q = c - \ln 4 \qquad r = c + \sqrt{2c - 1} \qquad q + pr\ln\left(\frac{U_1}{1 - U_1}\right) - c\left(\frac{U_1}{1 - U_1}\right)^p \geqslant 4.5\left(U_1^2U_2\right) - (1 + \ln 4.5)$$ $$Y = a + bc\left(\frac{U_1}{1 - U_1}\right)^p$$ #### 6.8 Weibull distribution #### 6.8.1 Probability distribution function $$F(y) = \begin{cases} 1 - \exp\left\{-\left(\frac{y-a}{b}\right)^c\right\}, & y \geqslant a \\ 0, & y < a \end{cases}$$ where a, b and c are the location, scale and shape parameters of the distribution, respectively. #### 6.8.2 Random variate generation method If the standard uniform random numbers U are generated by the method specified in 6.2.1, then general Weibull random numbers are generated by the following formula: $$Y = a - b\{\ln(1 - U)\}^{1/c}$$ #### 6.9 Lognormal distribution #### 6.9.1 Probability density function $$f(y) = \begin{cases} \frac{1}{\sqrt{2\pi} \{(y-a)/b\}} \exp\left\{-\frac{1}{2} \left(\frac{y-a}{b}\right)^2\right\}, & y \geqslant a \\ 0, & y < a \end{cases}$$ where a and b are the location and scale parameters of the normal distribution, respectively. #### 6.9.2 Random variate generation method Using standard normal random numbers Z, $$Y = a + \exp(bZ)$$ generates lognormal random numbers. #### 6.10 Logistic distribution #### 6.10.1 Probability function $$F(y) = \frac{1}{1 + \exp\{-(y-a)/b\}}, -\infty < y < \infty$$ where a and b are the location and scale parameters of the distribution, respectively. #### 6.10.2 Random variate generation method If standard uniform random numbers U are generated by the method specified in 6.2.1, then logistic random numbers are generated by $$Y = a + b \ln \left(\frac{U}{1 - U} \right)$$ #### 6.11 Multivariate normal random variate generation Random numbers $Y_1, Y_2, ..., Y_n$ from an n-dimensional normal distribution, with mean values $\mu_1, \mu_2, ..., \mu_n$ and variances and covariances σ_{ij} (1 \leq $i, j \leq$ n) are generated as follows using mutually independent standard normal random numbers $Z_1, ..., Z_n$. $$Y_1 = \mu_1 + a_{11}Z_1$$ $$Y_2 = \mu_2 + a_{21}Z_1 + a_{22}Z_2$$... $$Y_n = \mu_n + a_{n1}Z_1 + a_{n2}Z_2 + \dots + a_{nn}Z_n$$ where $a_{11}, ..., a_{nn}$ are constants that are calculated before start of random number generation from variances and covariances by following Cholesky factorization procedures, as given below. NOTE σ_{ij} (1 \leq $i, j \leq$ n), σ_{ii} means the variance of Y_{i} . a) Set $$a_{11} = \sqrt{\sigma_{11}}$$, $a_{i1} = \sigma_{i1}/a_{11}$ (2 $\leq i \leq n$) b) For j = 2, ..., n set $$a_{jj} = \left(\sigma_{jj} - \sum_{k=1}^{j-1} a_{jk}^2\right)^{\frac{1}{2}}$$ and $$a_{ij} = \left(\sigma_{ij} - \sum_{k=1}^{j-1} a_{ik} a_{jk}\right) | a_{jj} \ (j+1 \le i \le n)$$ #### 6.12 Binomial distribution #### 6.12.1 Probability mass function When some event occurs with probability p at each trial, the probability that this event occurs y times in n trials is given by the following formula: $$p(y) = {n \choose y} p^y (1-p)^{n-y}, y = 0, 1, ..., n$$ where 0 . #### 6.12.2 Random variate generation methods #### 6.12.2.1 General The following methods should be used for generating random numbers *Y* from this distribution. #### 6.12.2.2 Direct method Generate n standard uniform random numbers U, and let Y be the number of these values of U that are less than p. #### 6.12.2.3 Inverse function method Compute the distribution function as follows: $$F(y) = \sum_{k=0}^{y} {n \choose k} p^k (1-p)^{n-k}, y = 0, 1, ..., n$$ Whenever a random number is required, generate a standard uniform random number U, and let Y be the minimum y that satisfies $U \leq F(y)$. #### 6.12.2.4 Alias method First, n + 1 parameters v_0 , v_1 , ..., v_n and n + 1 other parameters a_0 , a_1 , ..., a_n , are calculated by the following procedures. - a) $v_y = (n+1) p(y), y = 0, 1, ..., n.$ - b) Let G be the set of suffices y that satisfies $v_y \ge 1$ and S be the set of suffices y that satisfies $v_y < 1$. - c) While *S* is not empty, repeat the following operations from 1) to 4). - 1) Select any element *i* from *G* and any element *j* from *S*. - 2) Set $a_i = i$ and $v_i = v_i (1 v_i)$. - 3) If $v_i < 1$, delete element i from G and move it to S. - 4) Delete element *j* from *S*. If the preparations mentioned above are completed, a binomial random number
Y will be obtained by performing the following operations d) to f). - d) Generate a standard uniform random number U, and set V = (n + 1)U. - e) Set k = (integer part of V) and u = V k. - f) If $u \le v_k$, set Y = k; otherwise, set $Y = a_k$. #### 6.13 Poisson distribution #### 6.13.1 Probability mass function The probability mass function of a Poisson distribution with mean μ is defined as follows. $$p(y) = \exp(-\mu) \frac{\mu^y}{y!}, y = 0, 1, 2, ...,$$ where $\mu > 0$. #### 6.13.2 Method of using a relationship with an exponential distribution Generate standard uniform random numbers U_1 , U_2 , ..., and let Y be the maximum n that satisfies the following inequality: $$-\ln\{(1-U_1)(1-U_2)...(1-U_n)\} < \mu$$ #### 6.13.3 Alias method First, select a constant n for which the probability that Y > n is negligibly small, for example, the integer part of $\mu + 6\sqrt{\mu}$ could be specified to be n. Then use the procedure 6.12.2.4 alias method of the binomial distribution; however, this time the probability mass function of the Poisson distribution shall be used for p(y). NOTE This method is efficient when μ is of medium size (about 10 to 100). #### 6.14 Discrete uniform distribution For generating discrete uniform random variates from M to N, a binary r bit random number sequence generated by the method standardized in 5.1 is converted by the following procedures, where N-M+1 is assumed to be not greater than 2^r . a) Find the natural number k that satisfies the following inequality: $$2^{k-1} + 1 \le N - M + 1 \le 2^k$$ NOTE 1 Such k is the minimum natural number that is equal to or greater than $\log_2 (N - M + 1)$. EXAMPLE 1 When $$N - M + 1 = 100$$, $k = 7$ because $2^6 + 1 = 65 \le 100 \le 2^7 = 128$. b) Add 1 to the binary integer that is constructed from the first *k* bits of a random number, and convert the result to a decimal number. NOTE 2 A $$k$$ bit binary number $Z_1Z_2Z_3Z_4...Z_k$ converts to a decimal number $2^{k-1}Z_1 + 2^{k-2}Z_2 + 2^{k-3}Z_3 + 2^{k-4}Z_4 + ... + Z_k$. EXAMPLE 2 When the upper 7 bits are 1 011 001, the corresponding decimal number is 64 + 16 + 8 + 1 = 89, and the decimal random number becomes 89. c) The required decimal random number is the converted decimal number plus M-1 by skipping numbers greater than N. NOTE 3 When N-M+1 is more than 2^r the required decimal random number can be obtained by concatenating two or more binary random numbers to get one binary random number. NOTE 4 When using the linear congruential method for generating pseudo-random numbers, k shall not be specified to be equal to r. Further, when N-M+1 is a decimal k digit natural number, and k is not too large, say k is less than 20, the method given in 5.2 can be used. The procedure is as follows. - d) Generate a decimal random number sequence of k digits by using procedure 5.2. - e) From the random number sequence which is generated by d) above, remove the numbers greater than N. The sequence thus obtained is the required decimal random number sequence. # Annex A (informative) #### Table of physical random numbers #### A.1 Table of random numbers Physically generated random numbers have no functional relationship like pseudo-random numbers, and no periodicity. Table A.1 shows a physically generated random number sequence obtained as measured values of a property of a random physical system. Table A.1 — Physical random number table | 1 | 93 | 90 | 60 | 02 | 17 | 25 | 89 | 42 | 27 | 41 | 64 | 45 | 80 | 02 | 70 | 42 | 49 | 41 | 55 | 98 | |----| | 2 | 34 | 19 | 39 | 65 | 54 | 32 | 14 | 02 | 06 | 84 | 43 | 65 | 97 | 97 | 65 | 05 | 40 | 55 | 65 | 06 | | 3 | 27 | 88 | 28 | 07 | 16 | 05 | 18 | 96 | 81 | 69 | 53 | 34 | 79 | 84 | 83 | 44 | 07 | 12 | 00 | 38 | | 4 | 95 | 16 | 61 | 89 | 77 | 47 | 14 | 14 | 40 | 87 | 12 | 40 | 15 | 18 | 54 | 89 | 72 | 88 | 59 | 67 | | 5 | 50 | 45 | 95 | 10 | 48 | 25 | 29 | 74 | 63 | 48 | 44 | 06 | 18 | 67 | 19 | 90 | 52 | 44 | 05 | 85 | | 6 | 11 | 72 | 79 | 70 | 41 | 80 | 85 | 77 | 03 | 32 | 46 | 28 | 83 | 22 | 48 | 61 | 93 | 19 | 98 | 60 | | 7 | 19 | 31 | 85 | 29 | 48 | 89 | 59 | 53 | 99 | 46 | 72 | 29 | 49 | 06 | 58 | 65 | 69 | 06 | 87 | 09 | | 8 | 14 | 58 | 90 | 27 | 73 | 67 | 17 | 80 | 43 | 78 | 71 | 32 | 21 | 97 | 02 | 25 | 27 | 22 | 81 | 74 | | 9 | 28 | 04 | 62 | 77 | 82 | 73 | 00 | 73 | 83 | 17 | 27 | 79 | 37 | 13 | 76 | 29 | 90 | 07 | 36 | 47 | | 10 | 37 | 43 | 04 | 36 | 86 | 72 | 63 | 43 | 21 | 06 | 10 | 35 | 13 | 61 | 01 | 98 | 23 | 67 | 45 | 21 | | 11 | 74 | 47 | 22 | 71 | 36 | 15 | 67 | 41 | 77 | 67 | 40 | 00 | 67 | 24 | 00 | 80 | 98 | 27 | 98 | 56 | | 12 | 48 | 85 | 81 | 89 | 45 | 27 | 98 | 41 | 77 | 78 | 24 | 26 | 98 | 03 | 14 | 25 | 73 | 84 | 48 | 28 | | 13 | 55 | 81 | 09 | 70 | 17 | 78 | 18 | 54 | 62 | 06 | 50 | 64 | 90 | 30 | 15 | 78 | 60 | 63 | 54 | 56 | | 14 | 22 | 18 | 73 | 19 | 32 | 54 | 05 | 18 | 36 | 45 | 87 | 23 | 42 | 43 | 91 | 63 | 50 | 95 | 69 | 09 | | 15 | 78 | 29 | 64 | 22 | 97 | 95 | 94 | 54 | 64 | 28 | 34 | 34 | 88 | 98 | 14 | 21 | 38 | 45 | 37 | 87 | | 16 | 97 | 51 | 38 | 62 | 95 | 83 | 45 | 12 | 72 | 28 | 70 | 23 | 67 | 04 | 28 | 55 | 20 | 20 | 96 | 57 | | 17 | 42 | 91 | 81 | 16 | 52 | 44 | 71 | 99 | 68 | 55 | 16 | 32 | 83 | 27 | 03 | 44 | 93 | 81 | 69 | 58 | | 18 | 07 | 84 | 27 | 76 | 18 | 24 | 95 | 78 | 67 | 33 | 45 | 68 | 38 | 56 | 64 | 51 | 10 | 79 | 15 | 46 | | 19 | 60 | 31 | 55 | 42 | 68 | 53 | 27 | 82 | 67 | 68 | 73 | 09 | 98 | 45 | 72 | 02 | 87 | 79 | 32 | 84 | | 20 | 47 | 10 | 36 | 20 | 10 | 48 | 09 | 72 | 35 | 94 | 12 | 94 | 78 | 29 | 14 | 80 | 77 | 27 | 05 | 67 | | 21 | 73 | 63 | 78 | 70 | 96 | 12 | 40 | 36 | 80 | 49 | 23 | 29 | 26 | 69 | 01 | 13 | 39 | 71 | 33 | 17 | | 22 | 70 | 65 | 19 | 86 | 11 | 30 | 16 | 23 | 21 | 55 | 04 | 72 | 30 | 01 | 22 | 53 | 24 | 13 | 40 | 63 | | 23 | 86 | 37 | 79 | 75 | 97 | 29 | 19 | 00 | 30 | 01 | 22 | 89 | 11 | 84 | 55 | 80 | 40 | 91 | 26 | 61 | | 24 | 28 | 00 | 93 | 29 | 59 | 54 | 71 | 77 | 75 | 24 | 10 | 65 | 69 | 15 | 66 | 90 | 47 | 90 | 48 | 80 | | 25 | 40 | 74 | 69 | 14 | 01 | 78 | 36 | 13 | 06 | 30 | 79 | 04 | 03 | 28 | 87 | 59 | 85 | 93 | 25 | 73 | #### A.2 Method of physical random number generation The method by which the physical random numbers in Table A.1 were generated is described below. The source of the numbers is the noise generated by a diode. In a diode, the noise signal is large because, by amplification using the electron avalanche effect, stabilized noise is easily obtained. For this reason, it is used very often as a noise source. For the element, NC2401¹⁾ of Noisecom in the United States was used. This element has a noise source and an amplifier built-in, and its band width is 1 GHz, while its amplitude is 160 mVrms. The methods of digitalizing the noise signal are - a) analogue/digital conversion, - b) regarding noise as a pulse sequence, by counting pulses per unit time, - c) regarding noise as a pulse sequence, by measuring pulse interval. For example, consider the use of a DAS-4102 converter²⁾ produced by the Keithley Instruments, Inc. for analogue/digital conversion. This equipment has a resolution of 8 bits with a sampling period of 64 MHz maximum. Data was sampled at 1 MHz to produce the attached table. Measuring was done with resolution ability 3,91 mV/digit and only the lowest bit was used as a random number source. Because the analogue/digital conversion equipment has errors that are peculiar to the equipment, the frequency distribution of values after conversion is not uniform. To obtain a more uniform distribution, 2 bits were generated from the same random number source, and - (0,1) \rightarrow Random number (Rn) = 0 - (1,0) \rightarrow Random number (Rn) = 1 - $(0,0), (1,1) \rightarrow abandoned$ Random numbers in Table A.1 were generated according to the above scheme. If the probabilities of (0,1) and (1,0) are equal to each other, the random number is uniformly distributed. Because the intervals between successive measurements are as short as 1 ms, the characteristics of the equipment would scarcely change in this time interval. Therefore, (0,1) and (1,0) are considered to conform to the same probability distribution. An alternative method of correcting is by formerly measuring the probability distribution of the characteristics, but, because this distribution varies from equipment to equipment, this method was not employed. Further, for safety, 32 bits were gathered in one group, and exclusive or was done with pseudo-random numbers using the Mersenne Twister (routine name genrand) which is described in 5.5. The Mersenne Twister was initialized by the routine init_genrand(s), s = 19660809. If the original random number sequences are required, they can be regenerated by operating exclusive or again using the Mersenne Twister. Table A.1 is a decimal random number sequence generated by the above-mentioned method, taking the upper 4 bits of the 32-bit random number sequence. If the value of this is not less than 0 and not more than 9, the value is employed as the random number value; however, if the value of this is 10 or more, it is abandoned and the next random number is generated. © ISO 2010 – All rights reserved ¹⁾ NC2401 is the trade name of a product supplied by Noisecom. This information is given for the convenience of users of this document and does not constitute an endorsement by ISO of the product named. ²⁾ DAS-4102 is the trade name of a product supplied by Keithley Instruments, Inc. This information is given for the convenience of users of this document and does not constitute an endorsement by ISO of the product named. ## **Annex B** (informative) #### Algorithm for pseudo-random number generation #### B.1 Program code for the trinomial GFSR method The following C program given below, which is in accordance with ISO/IEC 9899, is an example with parameters $(p, q, w) = (1\ 279, 418, 32)$ and period $(2^{1\ 279} - 1)$. When the
function gfsr() is called, it generates an integer between 0 and $(2^{32} - 1)$ inclusive. When the function gfsr_31() is called, it generates an integer between 0 and $(2^{31} - 1)$ inclusive. Before calling the functions gfsr() and gfsr_31(), initialization is necessary by calling init_gfsr(s) once. The initialization function init_gfsr(s) executes initialization under the condition that an unsigned 32-bit integer [integer between 0 and $(2^{32} - 1)$] is used as the seed. The generated sequence can be used to provide 39 independent series, each of which has negligible auto-correlation, is 39-distributed (uniformly distributed in a 39-dimensional hyper-cube) with 32-bit precision, and its auto-correlation function assumes values close to zero up to phase shift $2^{1\ 274}$. To obtain different pseudo-random number series, change the seed s given to init_gfsr(s). Only the constants p, q, w in the program may be changed. The value of w will be a power of 2 within the word length of the machine. The value of w will generally be 32 or 64, according to the machine. For example, if the word length of the machine is 64, the constant w in the program is set to 64, and then gfsr() generates integers between 0 and $(2^{64} - 1)$ inclusive, while gfsr 31() generates integers between 0 and $(2^{63} - 1)$ inclusive. In this program, the length of type "unsigned long" is presumed to be not less than 32 bits. ``` s = 1664525UL * s + 1UL ; s &= 0xffffffffUL ; } for (k=0, i=0; i<P; i++) { state [i] = OUL; for (j=0 ; j<W ; j++) { state [i] <<= 1 ; state [i] = x [k]; x [k] ^= x [(k+Q) %P]; k++; if (k==P) k = 0; } } state_i = 0; } unsigned long gfsr (void) int i ; unsigned long *p0, *p1; if (state_i >= P) { state_i = 0; p0 = state ; p1 = state + Q; for (i=0 ; i<(P-Q) ; i++) *p0++ ^= *p1++ ; p1 = state ; for (; i<P ; i++) *p0++ ^= *p1++ ; } return state [state_i++] ; } /* W-1 bit integer */ long gfsr_31 (void) { ``` ``` return (long) (gfsr() >>1); } NOTE The corresponding Full Basic code of the trinomial GFSR method is shown for information as follows. REM /************************* REM BASIC code : Trinomial GFSR OPTION BASE 0 DECLARE NUMERIC P !#define P 1279 LET P=1279 DECLARE NUMERIC Q LET Q=418 !#define Q 418 DECLARE NUMERIC W !#define W 32 /* W should be power OF 2 */ LET W=32 DIM state(P) !static unsigned long state[P]; DECLARE NUMERIC state i !static INT state i; FUNCTION init_gfsr(s) !void init_gfsr(unsigned long s){ DECLARE NUMERIC i,j,k int i, j, k; ! DIM \times (P) ! static unsigned long x[P]; LET s = And32(s , MskF_f) ! s &= 0xffffffffUL; FOR i = 0 TO P -1 ! for (i=0; i<P; i++) { LET x(i) = SR32U(s, 31) ! x[i] = s>>31; LET s = Mul32U(1664525, s) + 1 ! s = 1664525UL * s + 1UL; ``` ``` LET s = And32(s, MskF_f) ! s &= 0xffffffffUL; NEXT I ! LET k=0 FOR i = 0 TO P -1 ! for (k=0, i=0; i<P; i++) { LET state(i) = 0 ! state[i] = OUL; FOR j=0 TO W-1 for (j=0; j<W; j++) { ! LET state(i) = SL32U(state(i), 1)! state[i] <<= 1; LET state(i) = Or32(state(i) , x(k))! state[i] |= x[k]; LET x(k) = Xor32(x(k), x(REMAINDER(k + Q, P))) ! ! x[k] ^= x[(k+Q)%P]; LET k = k + 1 ! k++; IF k = P THEN LET k = 0 if (k==P) k = 0; ! NEXT j ! } NEXT I ! } LET state_i = 0 state_i = 0; END FUNCTION ! } FUNCTION gfsr !unsigned long gfsr(void) { ! int i; DECLARE NUMERIC I DECLARE NUMERIC p0, p1 ! unsigned long *p0, *p1; IF state_i >= P THEN if (state_i >= P) { ! LET state_i = 0 ! state_i = 0; LET p0 = 0 ! p0 = state; LET p1 = Q p1 = state + Q; for (i=0; i<(P-Q); i++) FOR i=0 TO P-Q-1 ! LET state(p0) = Xor32(state(p0), state(p1)) LET p0 = p0 + 1 ! *p0++ ^= *p1++; LET p1 = P1 + 1 ``` ``` NEXT i LET p1 = 0 p1 = state; FOR i=i TO P-1 for (; i<P; i++) LET state(p0) = Xor32(state(p0), state(p1)) LET p0 = p0 + 1 LET p1 = P1 + 1 *p0++ ^= *p1++; ! NEXT i END IF 1 } LET gfsr = state(state_i) LET state_i = state_i + 1 ! return state[state i++]; END FUNCTION ! } REM REM /* W-1 bit integer */ !long gfsr 31(void) { FUNCTION gfsr 31 LET gfsr_31 = SR32U(gfsr, 1) ! return (long)(gfsr() >> 1); END FUNCTION ! } ``` #### B.2 Program code for the pentanomial GFSR method In this program, the parameters are (521, 86, 197, 447, 32), and the period is $2^{521}-1$. When the function gfsr5() is called, it generates an integer between zero and $(2^{32}-1)$ inclusive. When the function gfsr5_31() is called, it generates an integer between zero and $(2^{31}-1)$ inclusive. The initialization routine init_gfsr5(s) initializes under the condition that the seed is an unsigned 32-bit integer [integer between 0 and $(2^{32}-1)$]. Before calling gfsr5() and gfsr5_31(), init_gfsr5(s) is executed once to initialize. The generated sequence is 16-distributed (uniformly distributed in a 16-dimensional hyper-cube) with 32-bit precision, and its autocorrelation function assumes almost zero value up to the phase shift 2^{516} . If an independent batch of random numbers is needed for each one of multiple replications of a simulation, the initialization function init_gfsr5(s) should be called only once before the start of the simulation. After each replication, the contents of the table x[P] of length P and the value of the variable state_i should be saved, and used as the initial values for the next replication. If another sequence with different period is required, a set of values p, q_1 , q_2 and q_3 shall be selected from Table 1. ``` #define P 521 /* Q1 < Q2 < Q3 */ #define Q1 86 #define Q2 197 #define Q3 447 \#define W 32 /* W should be a power of 2 */ static unsigned long state [P] ;\ static int state_i ; void init_gfsr5 (unsigned long s) { int i, j, k; static unsigned long x [P] ; s &= 0xffffffffUL ; for (i=0 ; i<P ; i++) { x [i] = s >> 31; s = 1664525UL * s + 1UL ; s &= 0xffffffffUL ; } for (k=0, i=0; i<P; i++) { state [i] = OUL; for (j=0 ; j<W ; j++) { state [i] <<= 1; state [i] = x [k]; x [k] ^=x [(k+Q1) P] ^x [(k+Q2) P] ^x [(k+Q3) P] ; k++; if (k==P) k = 0; } } state_i = 0 ; } unsigned long gfsr5 (void) int i ; ``` ``` unsigned long *p0, *p1, *p2, *p3; if (state_i >= P) { state_i = 0; p0 = state ; p1 = state + Q1 ; p2 = state + Q2; p3 = state + Q3; for (i=0 ; i<(P-Q3) ; i++) *p0++ ^= *p1++ ^ *p2++ ^ *p3++; p3 = state; for (; i < (P-Q2) ; i++) *p0++ ^= *p1++ ^ *p2++ ^*p3++; p2 = state; for (; i < (P-Q1); i++) *p0++ ^= *p1++ ^ *p2++ ^*p3++; p1 = state; for (; i<P ; i++) *p0++ ^= *p1++ ^*p2++ ^*p3++; } return state [state_i++] ; } /* W-1 bit integer */ long gfsr5_31 (void) return (long) (gfsr5() >>1); } NOTE The corresponding Full Basic code of the pentanomial GFSR method is shown for information as follows. REM /************************* REM BASIC code : Pentanomial GFSR OPTION BASE 0 ``` ``` DECLARE NUMERIC P LET P = 521 !#define P 512 REM /* O1 < O2 < O3 */ DECLARE NUMERIC Q1 LET Q1 = 86 !#define Q1 86 DECLARE NUMERIC Q2 LET Q2 = 197 !#define Q2 197 DECLARE NUMERIC Q3 LET Q3 = 447 !#define Q3 447 DECLARE NUMERIC W LET W = 32 !#define W 32 /* W should be power of 2 */ DIM state(P) !static unsigned long state[P]; DECLARE NUMERIC state_i !static int state_i; FUNCTION init_gfsr5(s) !void init_gfsr5(unsigned long s) { DECLARE NUMERIC i, j, k ! int i, j, k; DIM \times (P) ! static unsigned long x[P]; LET s = And32(s , MskF_f) ! s &= OxffffffffUL; FOR i=0 TO P-1 for (i=0; i< P; i++) { ! LET x(i) = SR32U(s, 31)! x[i] = s >> 31; LET s = Mul32U(1664525 , s) + 1 ! s = 1664525UL * s + 1UL; LET s = And32(s, MskF_f) ! s &= 0xffffffffUL; ! } NEXT I ``` ``` LET k=0 FOR i=0 TO P-1 ! for (k=0, i=0; i<P; i++) { LET state(i) = 0 ! state[i] = OUL; for (j=0; j<W; j++) { FOR j=0 TO W-1 ! LET state(i) = SL32U(state(i), 1) ! state[i] <<= 1; LET state(i) = Or32(state(i), x(k))! state[i] |= x[k]; LET x(k) = Xor32(Xor32(Xor32(x(k) , x(REMAINDER(k + Q1 , P)))), x(REMAINDER(k + Q2 , P))) , x(REMAINDER(k + Q3 , P))) x[k] ^= x[(k+Q1)%P] ^ x[(k+Q2)%P] ^ x[(k+Q3)%P]; LET k = k + 1 ! k++; IF k = P THEN LET K = 0 if (k==P) k = 0; ! NEXT i ! } NEXT I ! } LET state_i = 0 ! state_i = 0; END FUNCTION ! } FUNCTION gfsr5 !unsigned long gfsr5(void) { DECLARE NUMERIC I int i; ! unsigned long *p0, *p1, *p2, DECLARE NUMERIC p0, p1, p2, p3 ! *p3; IF state_i >= P THEN ! if (state_i >= P) { LET state i = 0 ! state_i = 0; LET p0 = 0 p0 = state; ! LET p1 = Q1 p1 = state + Q1; LET p2 = Q2 p2 = state + Q2; LET p3 = Q3 ! p3 = state + Q3; ``` ``` FOR i=0 TO P-Q3-1 ! FOR (i=0; i<(P-Q3); i++) LET state(p0) = Xor32(Xor32(State(p0)), state(p1)), state(p2)), state(p3)) LET p0 = p0 + 1 LET p1 = p1 + 1 LET p2 = p2 + 1 LET p3 = p3 + 1 *p0++ ^= *p1++ ^ *p2++ ^ *p3++; NEXT i LET p3 = 0 p3 = state; FOR i=i TO P-Q2-1 for (; i < (P-Q2); i++) LET state(p0) = Xor32(Xor32(xor32(state(p0) , state(p1)) , state(p2)) , state(p3)) LET p0 = p0 + 1 LET p1 = p1 + 1 LET p2 = p2 + 1 *p0++ ^= *p1++ ^ *p2++ ^ LET p3 = p3 + 1 ! *p3++; NEXT i LET p2 = 0 p2 = state; FOR i=i TO P-Q1-1 for (; i < (P-Q1); i++) LET state(p0) = Xor32(Xor32(Xor32(state(p0) , state(p1)) , state(p2)) , state(p3)) LET p0 = p0 + 1 LET p1 = p1 + 1 LET p2 = p2 + 1 LET p3 = p3 + 1 ! *p0++ ^= *p1++ ^ *p2++ ^ *p3++; NEXT i LET p1 = 0 ! p1 = state; FOR i=i TO P-1 for (; i<P; i++) ``` ``` LET state(p0) = Xor32(Xor32(Xor32(state(p0)), state(p1)), state(p2)), state(p3)) LET p0 = p0 + 1 LET p1 = p1 + 1 LET p2 = p2 + 1 *p0++ ^= *p1++ ^ *p2++ ^ LET p3 = p3 + 1 - 1 *p3++; NEXT i END IF } LET gfsr5 = state(state_i) LET state_i = state_i + 1 ! return state[state_i++]; END FUNCTION ! } REM REM /* W-1 bit integer */ FUNCTION gfsr5_31 !long gfsr5_31(void) { LET gfsr5_31 = SR32U(gfsr5, 1) ! return (long)(gfsr5()>>1); END FUNCTION ! } ``` #### **B.3** Program code for the combined Tausworthe method Following is a C Language implementation of the combined Tausworthe method, which generates integers between zero and $(2^{31} - 1)$ inclusive by combining three Tausworthe sequences of parameters (31, 13, 12), (29, 2, 4) and (28, 3, 17). The initialization function init_taus88(s) initializes under the condition that the seed s is an unsigned 32-bit integer [integer between 0 and $(2^{32} - 1)$
inclusive]. To obtain a different pseudo-random number sequence, change the seed s. Before calling taus88_31(), init_taus88(s) executes once to initialize. The initialization can be done without using init_taus88(s) by directly assigning suitable values into s_1 , s_2 and s_3 . However, when initializing, the following three conditions must be satisfied: - at least one of the upper 31 bits of s_1 is one; - at least one of the upper 29 bits of s_2 is one; - at least one of the upper 28 bits of s_3 is one. Because the lowest 1 bit of s_1 , the lowest 3 bits of s_2 and the lowest 4 bits of s_3 are ignored, the generated random number sequence is unaffected by the changes to those bits. In this program, the length of type "unsigned long" is presumed as 32 bits. ``` /************ C code : Combined Tausworthe static unsigned long s1, s2, s3, b; void init_taus88 (unsigned long s) { int i ; unsigned long x [3]; i=0 ; while (i<3) { if (s & 0xfffffff0UL) { x [i] = s; i++; s = 1664525UL * s + 1UL; s1 = x [0] ; s2 = x [1] ; s3 = x [2] ; /* 31 bit integer */ long taus88_31 (void) { b = (((s1 << 13) ^s1) >> 19) ; s1 = (((s1 \& 4294967294UL) << 12) ^b); b = (((s2 << 2) ^s2) >> 25); s2 = (((s2 \& 4294967288UL) << 4) ^b); ``` # ISO 28640:2010(E) ``` b = (((s3 << 3) ^ s3) >> 11); s3 = (((s3 & 4294967280UL) <<17) ^b); return (long) ((s1 ^ s2 ^ s3) >>1); } ``` In this program, the code ``` b = (((s1 << 13) ^ s1) >> 19) ; s1 = (((s1 & 4294967294UL) << 12) ^b) ; ``` generates a number in the Tausworthe sequence with parameters (31, 13, 12) in s₁, and the codes ``` b = (((s2 << 2) ^s2) >> 25) ; s2 = (((s2 & 4294967288UL) << 4) ^b) ; ``` and ``` b = (((s3 << 3) ^s3) >> 11) ; s3 = (((s3 & 4294967280UL) << 17) ^b) ; ``` generate numbers in the Tausworthe sequence with parameters (29, 2, 4) and (28, 3, 17) correspond to s_2 and s_3 , respectively. These three binary integers are combined bit by bitwise exclusive-or operations, and a 31-bit pseudo-random number sequence is generated. Selection of the three parameters (p, q, t) is made to give the best multi-dimensional equidistribution of the pseudo-random number sequence after the combination. These values of parameters shall not be changed. To obtain a different pseudo-random number sequence, change the seed. If an independent batch of random numbers are needed for each one of multiple replications of a simulation, the initialization function init_taus88(s) should be called only once before the start of the simulation. After each replication, the values of s_1 , s_2 , and s_3 should be saved, and given to the variables s_1 , s_2 , and s_3 , respectively, as the initial values for the next replication. NOTE The corresponding Full Basic code of the Combined Tausworthe method is shown for information as follows. OPTION BASE 0 ``` FUNCTION init_taus88(s) !void init_taus88(unsigned long s) { DECLARE NUMERIC I int i; DIM x(3) unsigned long x[3]; FOR i = 0 TO 2 i=0; while (i<3) { if (s & 0xfffffff0UL) IF And32(s , MskF_0) <> 0 THEN ! { LET x(i) = s ! x[i] = s; i++; END IF } LET s = Mu132U(1664525, s) + 1 s = 1664525UL * s + ! 1UL; NEXT I } LET s1 = x(0) LET s2 = x(1) LET s3 = x(2) s1 = x[0]; s2 = x[1]; s3 = x[2]; END FUNCTION ! } FUNCTION taus88_31 !long taus88_int(void) REM /**** 31 bit integer ****/ s1) >> 19); LET s1 = Xor32(SL32U(And32(s1 , MskF_e), 12), b) ! s1 = (((s1 & 4294967294) << 12) ^ b); LET b = SR32U(Xor32(SL32U(s2, 2), s2), 25) b = (((s2 << 2) ^s2) >> 25); LET s2 = Xor32(SL32U(And32(s2 , MskF_8), 4), b) ! s2 = (((s2 \& 4294967288) << 4) ^ b); LET b = SR32U(Xor32(SL32U(s3, 3), s3), 11 ! b = (((s3 << 3) ^ s3) >> 11); ``` ``` LET s3 = Xor32(SL32U(And32(s3 , MskF_0), 17), b) ! s3 = (((s3 & 4294967280) << 17) ^ b); LET taus88_31 = SR32U(Xor32(Xor32(s1, s2), s3), 1) ! return (long)((s1 ^ s2 ^ s3) >> 1); ! !!} ``` # **B.4 Program code for the Mersenne Twister method** The following program is a C language implementation of the Mersenne Twister method. The function genrand() of this code generates unsigned integer pseudo-random numbers of 32 bits whose range is between 0 and $(2^{32} - 1)$ inclusive. The function genrand_31() generates unsigned integer pseudo-random numbers of 31 bits whose range is between 0 and $(2^{31} - 1)$ inclusive. The function init_genrand(s) initializes the seed as an unsigned 32-bit integer [integer between 0 and $(2^{32} - 1)$ inclusive]. Before calling genrand() or genrand_31(), initialization shall be done by executing init_genrand(s) once. Different seeds s lead to different sequences. The parameters in this program should not be changed. If independent batch of random numbers are needed for each one of multiple replications of a simulation, the initialization function init_genrand(s) should be called only once before the start of the simulation. After each replication, contents of the table mt[P] of length P and the value of the variable mt[P] and used as the initial values for the next replication. EXAMPLE This is an example using p = 624 words with parameters (624, 397, 31, 32, 0x9908b0df, 11, 7, 15, 18, 0x9d2c5680, 0xefc60000). Here, 10-digit numbers starting with 0x are unsigned 32-bit constants represented in hexadecimal. The period is $2^{19} \, {}^{937} - 1$ and this is distributed uniformly in 623 dimensional hyper-cube with 32 bits precision; moreover, the sequence is equidistributed in 3 115 dimensions with 6 bits precision. In this program, the length of type "unsigned long" is presumed to be not less than 32 bits. ``` ************* C code: Mersenne Twister ************************** /* Period parameters */ #define P 624 #define Q 397 #define MATRIX_A 0x9908b0dfUL /* constant vector a */ #define UPPER_MASK 0x8000000UL /* most significant w-r bits */ #define LOWER_MASK 0x7fffffffUL /* least significant r bits */ static unsigned long mt [P]; /* the array for the state vector */ ``` ``` static int mti=P+1; /* mti==P+1 means mt [P] is not initialized */ /* initializes mt [P] with a seed */ void init genrand (unsigned long s) { mt [0] = s & OxfffffffUL ; for (mti=1 ; mti<P ; mti++) {</pre> mt [mti] = (1664525UL * mt [mti-1] + 1UL) ; mt [mti] &= OxffffffffUL ; } } /* generates a random number on [0, 0xffffffff] -interval */ unsigned long genrand (void) unsigned long y ; static unsigned long mag01 [2] = {0x0UL, MATRIX_A}; /* mag01 [x] = x * MATRIX_A for x=0, i */ if (mti >=P) { /* generate P words at one time */ int kk; if (mti == P+1) /* if init _genrand () has not been called, */ init_genrand (5489UL) ; /* a default initial seed is used */ for (kk=0 ; kk<P-Q ; kk++) { y = (mt [kk] &UPPER_MASK) | (mt [kk+1] &LOWER_MASK); mt [kk] = mt [kk+Q] ^ (y >> 1) ^ mag01 [y & 0x1UL] ; } for (; kk < P-1 ; kk++) { ``` ``` y = (mt [kk] \&UPPER_MASK) | (mt [kk+1] \&LOWER_MASK) ; mt [kk] = mt [kk+ (Q-P)] ^ (y >> 1) ^ mag01 [y & 0x1UL] ; } y = (mt [P-1] \& UPPER_MASK) | (mt [0] \& LOWER_MASK) ; mt [P-1] = mt [Q-1] ^ (y >> 1) ^ mag01 [y & 0x1UL] ; mti = 0; } y = mt [mti++]; /* Tempering */ y ^= (y >> 11) ; y ^= (y << 7) & 0x9d2c5680UL ; y ^= (y << 15) & 0xefc60000UL ; y ^= (y >> 18) ; return y ; } /* generates a random number on [0, 0x7fffffff] -interval */ long genrand_31 (void) return (long) (genrand() >>1) ; } The corresponding Full Basic code of the Mersenne Twister method is shown for information as follows. NOTE REM Mersenne Twister ``` #### OPTION BASE 0 ``` REM REM /* Period parameters */ DECLARE NUMERIC P LET P = 624 !#define P 624 DECLARE NUMERIC Q LET Q = 397 !#define Q 397 DECLARE NUMERIC MATRIX_A LET MATRIX_A = BVAL("9908b0df", 16) !#define MATRIX_A 0x9908b0dfUL constant vector a */ DECLARE NUMERIC UPPER MASK LET UPPER_MASK = BVAL("80000000", 16) !#define UPPER_MASK 0x8000000UL /* most significant w-r bits */ DECLARE NUMERIC LOWER MASK LET LOWER_MASK = BVAL("7ffffffff" , 16) !#define LOWER_MASK 0x7fffffffUL /* least significant r bits */ DIM mt(P) !static unsigned long mt[P]; /* the array for the state vector */ DECLARE NUMERIC mti LET mti = P + 1 !static int mti=P+1; /* mti==P+1 means mt[P] is not initialized */ REM /* initializes mt[P] with a seed */ FUNCTION init_genrand(s) !void init_genrand(unsigned long s) { LET mt(0) = And32(s , MskF_f) ! mt[0] = s & 0xffffffffUL; FOR mti = 1 TO P - 1 ! for (mti=1; mti<P; mti++) {</pre> LET mt(mti) = Mul32U(1664525, mt(mti-1)) + 1 mt[mti] = (1664525UL * ! mt[mti-1] + 1UL); ``` ``` LET mt(mti) = And32(mt(mti), MskF_f)! mt[mti] &= 0xffffffffUL; NEXT mti ! END FUNCTION !} REM /* generates a random number ON [0,0xffffffff]-interval */ FUNCTION genrand !unsigned long genrand(void) { DECLARE NUMERIC y ! unsigned long y; DIM mag01(2) LET mag01(0) = 0 ! LET mag01(1) = MATRIX_A static unsigned long mag01[2] = {0x0UL, MATRIX_A}; REM /* mag01[x] = x * MATRIX A for x=0,1 */ IF mti >= P THEN if (mti >= P) { /* generate P ! words at one time */ DECLARE NUMERIC kk ! int kk; IF mti = P + 1 THEN if (mti == P+1) /* if ! init_genrand() has not been called, */ LET y = init_genrand(5489) ! init_genrand(5489UL); /* a default initial s is used */ END IF ! for (kk=0;kk<P-Q;kk++) { FOR kk=0 TO P-Q-1 LET y = Xor32(And32(mt(kk)), UPPER_MASK), And32(mt(kk+1)), LOWER_MASK)) ! у = (mt[kk]&UPPER_MASK) | (mt[kk+1]&LOWER_MASK); LET mt(kk) = Xor32(Xor32(mt(kk+Q), SR32U(y, 1)), mag01(And32(y, 1)) 1))) mt[kk] = mt[kk+Q] ^ (y ! >> 1) ^ mag01[y & 0x1UL]; ! } NEXT kk ``` ``` FOR kk=kk TO P-2 ! for (;kk<P-1;kk++) { y = Xor32(And32(mt(kk)), UPPER_MASK), And32(mt(kk+1)) LOWER_MASK)) (mt[kk]&UPPER_MASK) | (mt[kk+1]&LOWER_MASK); LET mt(kk) = Xor32(Xor32(mt(kk+Q-P)), SR32U(y, 1)), mag01(And32(y, 1)) 1))) ! mt[kk] = mt[kk+(Q-P)] ^ (y >> 1) ^ mag01[y & 0x1UL]; NEXT kk LET y = Xor32(And32(mt(P-1), UPPER_MASK), And32(mt(0), LOWER_MASK)) ! ! y = (mt[P- 1]&UPPER_MASK) | (mt[0]&LOWER_MASK); LET mt(P-1) = Xor32(Xor32(mt(Q-1), SR32U(y, 1)), mag01(And32(y, 1))) ! mt[P-1] = mt[Q-1] ^ (y >> 1) ^ mag01[y & 0x1UL]; LET mti = 0 ! mti = 0; END IF ! } LET y = mt(mti) LET mti = mti + 1 ! y = mt[mti++]; REM /* Tempering */ LET y = Xor32(y,
SR32U(y, 11)) ! y = (y >> 11); LET y = Xor32(y, And32(SL32U(y, 7), BVAL("9d2c5680", 16))) y ^= (y << 7) \& 0x9d2c5680UL; ! LET y = Xor32(y, And32(SL32U(y, 15), BVAL("efc60000", 16))) y ^= (y << 15) & 0xefc60000UL; ! ! LET y = Xor32(y, SR32U(y, 18)) ! y = (y >> 18); LET genrand = y return y; END FUNCTION ! } ``` # **B.5** Linear congruential method # **B.5.1 General** #### **B.5.1.1** Usage Linear congruential methods are widely used in software since they combine economy of use of memory with rapid execution. However, they have a relatively short period and are consequently not sufficiently random, particularly for generating random multi-dimensional sequences. # **B.5.1.2** Definition Most linear congruential methods generate pseudo-random number sequences X_1 , X_2 , ... by using the following recurrence relationship. $$X_n = \text{mod}(aX_{n-1} + c; m) n = 1, 2,$$ where a and m are positive integers and c is a non-negative integer. Once the values of the parameters a, m and c have been decided, the linear congruential method is determined; moreover, if the seed X_0 is given, the generated number sequence is determined. NOTE 1 The meaning of the recurrence relationship is as follows. Calculate $aX_0 + c$ by using seed X_0 and divide the result by m. The residue is X_1 . Next, calculate $aX_1 + c$ and divide the result by m, and the residue is X_2 . This procedure is repeated as many times as required. NOTE 2 The value of n for which $X_n = X_0$ for the first time is called the period of the sequence. ## B.5.1.3 Method of deciding parameter values A good pseudo-random number sequence cannot be obtained if the values of a, m and c are determined arbitrarily. Therefore, these should be decided on the following basis. Because m is the upper limit of a period of the number sequence obtained by the linear congruential method, m should be set as large as possible. Hence, using for example 32-bit computers, it is recommended to set $m = 2^{32}$ or $2^{31} - 1$. For increment c, there is no strict criterion. However, the periods of generated number sequences may be different, according to whether a criterion is set to zero or a positive integer. As for the multiplier a, a value that provides good results in combination with the chosen values of m and c should be used (see Table B.1). NOTE In the case where m is an integer power of 2 and c is specified to be 0, the period is not more than m/4. If c is an odd number, the period becomes m. ## **B.5.1.4** Example of parameters For 32-bit computers, one of the sets of parameters from Table B.1 should be used. Table B.1 — Examples of parameters used in the linear congruential method | Row number | A | С | M | |------------|---------------|---|---------------------| | 1 | 1 664 525 | * | 232 | | 2 | 1 566 083 941 | 0 | 232 | | 3 | 48 828 125 | 0 | 232 | | 4 | 2 100 005 341 | 0 | 2 ³¹ – 1 | | 5 | 397 204 094 | 0 | 2 ³¹ – 1 | | 6 | 314 159 369 | 0 | 2 ³¹ – 1 | NOTE 1 The symbol * indicates that any odd number may be used. NOTE 2 Using the parameters of row 1, all integers in the range 0 to $(2^{32} - 1)$ are generated. NOTE 3 Using the parameters of row 2 or row 3, the set of generated numbers is 4i + 1 for i = 0, 1, ..., $(2^{30} - 1)$, or 4i + 3 for $i = 0, 1, ..., (2^{30} - 1)$, which depends on the seed X_0 . NOTE 4 Using the parameters of rows 4, 5 or 6, all the positive integers between 1 to $(2^{31} - 2)$ are generated. NOTE 5 When not many bits are required, they should be extracted from the upper bits of the random number, and lower bits should not be used. # B.5.2 Program code for the linear congruential method # B.5.2.1 General The C language implementation of the linear congruential method, which is in accordance with ISO/IEC 9899, is given below. It is composed of two types of programs, one for the case where $m = 2^{31}$, the other for the case where $m = 2^{31} - 1$. These cases are consistent with the recommendations of B.5.1. ## **B.5.2.2** Case of $m = 2^{32}$ Every time the function lcong32() is called, it returns an integer random number between zero and $(2^{32}-1)$ inclusive. The result is returned of type "unsigned long". Every time the function lcong32_31() is called, it generates an integer random number between zero and $(2^{31}-1)$ inclusive. The result is returned of type "long". The initialization function init_lcong32 (unsigned long seed) executes initialization so that a non-negative integer of type "unsigned long" is set as the seed. If the addend c is 0 and the original seed X_0^* is odd, then X_0 can be set as $X_0 = X_0^*$. However, when an even original seed X_0^* is given in the case c = 0, one is added to the original seed to obtain the seed X_0 , i.e. $X_0 = X_0^* + 1$. In other cases, $\operatorname{mod}(X_0^*; m)$ is used as X_0 . The multiplier and the addend are changed by changing the definitions of MULTIPLIER and INCREMENT in each program. The random number sequence is restarted by using the output of lcong32() as the argument of initialization function init_lcong32(seed). # **B.5.2.3** Case of $m = 2^{31} - 1$ Every time the function lcong31() is called, it returns an integer random number between 1 and $(2^{31} - 2)$ inclusive. The result is returned of type "long". The initialization function init_lcong31 (unsigned long seed) executes initialization so that a non-negative integer is set as the seed. As with the parameters in Table B.1, the addend of c are always 0. Therefore, the seed X_0 should not be 0. However, if $X_0^* = 0$, a special number (19 660 809) is used instead as the seed X_0 . In other cases, $mod(X_0^*; m)$ is used as X_0 . In order to change the multiplier, the definition of MULTIPLIER should be changed in the program. ``` /*********************** C code : Linear Congruential ************************** /********************* Part 1. Modulus = 2^32 *********************************** #define MULTIPLIER 1664525UL #define INCREMENT 1UL static unsigned long state32; unsigned long lcong32(void) state32 = (state32 * MULTIPLIER + INCREMENT) & 0xFFFFFFFFUL; return state32; } long lcong32_31(void) { state32 = (state32 * MULTIPLIER + INCREMENT) & 0xFFFFFFFFUL; return state32>>1; } void init_lcong32(unsigned long s) /* seed should be odd when increment == 0 */ if ((INCREMENT==0) && (s%2 == 0)){ s++ ; } state32 = s; } /*************** Part 2. Modulus = 2^31-1 = 2147483647 #undef MULTIPLIER ``` ``` #undef INCREMENT #undef NBIT #define NBIT 15 #define MASK ((1<<NBIT)-1)</pre> #define MASK2 ((1<<2*NBIT) -1)</pre> #define MULTIPLIER 2100005341UL #define MULTIPLIER_LO (MULTIPLIER & MASK) #define MULTIPLIER HI (MULTIPLIER >> NBIT) static unsigned long state31; long lcong31 (void) { unsigned long xlo, xhi; unsigned long z0, z1, z2; xlo = state31 & MASK ; xhi = state31 >> NBIT ; z0 = xlo * MULTIPLIER_LO ; /* 15bit * 15bit => 30bit */ z1 = xlo * MULTIPLIER_HI + xhi * MULTIPLIER_LO ; /* 15bit * 16bit * 2 => 32bit */ z2 = xhi * MULTIPLIER_HI ; /* 16bit * 16bit => 32bit */ z0 += (z1 \& MASK) << NBIT ; z2 += (z1 >> NBIT) + (z0 >> (2*NBIT)); z0 = (z0 \& MASK2) | ((z2&1) << (2*NBIT)); z2 >>=1 ; state31 = z0 + z2; /* This should not exceed 2*0x7fffffffUL */ if (state31>=0x7fffffffUL) state31 -= 0x7fffffffUL; return (long) state31; void init_lcong31 (unsigned long s) /* seed should not be 0 */ if (s == 0UL) s=19660809UL; s = s % 0x7fffffffUL ; state31 = s ; } ``` NOTE 1 The Full Basic code of the linear congruential method is shown for information comparing with the corresponding C code as follows. ``` REM /******************************** BASIC code : Linear Congruential REM REM Part 1. Modulus = 2^32 REM OPTION BASE 0 REM DECLARE NUMERIC MULTIPLIER LET MULTIPLIER = 1664525 !#define MULTIPLIER 1664525UL DECLARE NUMERIC INCREMENT LET INCREMENT = 1 !#define INCREMENT 1UL DECLARE NUMERIC state32 !static unsigned long state32; REM FUNCTION lcong32 !unsigned long lcong32u(void) { LET state32 = And32((state32 * MULTIPLIER) + INCREMENT , MskF_f) ! state32 = (state32 * MULTIPLIER + INCREMENT) & 0xfffffffful; LET lcong32 = state32 ! return state32; END FUNCTION ! } FUNCTION lcong32_31 !long lcong32(void) { ``` ``` ! state32 = (state32 * MULTIPLIER + INCREMENT) & 0xfffffffful; LET lcong32_31 = SR32U(lcong32 , 1) ! return state32>>1; END FUNCTION ! } REM FUNCTION init_lcong32(s) !void init_lcong32(unsigned long s) { REM /* seed should be odd when increment == 0 */ IF (INCREMENT = 0) AND (REMAINDER(s , 2) = 0) THEN ! ! if ((INCREMENT==0) && (s%2 == 0)) { LET s = s + 1 ! s++; END IF ! } LET state32 = s ! state32 = s; END FUNCTION ! } REM BASIC code : Linear Congruential REM REM /*********************************** REM Part 2. Modulus = 2^31-1 = 2147483647 OPTION BASE 0 DECLARE NUMERIC NBIT LET NBIT = 15 !#define NBIT 15 DECLARE NUMERIC MASK LET MASK = SL32U(1 , NBIT) - 1 !#define MASK ((1<<NBIT)-1) ``` # BS ISO 28640:2010 ISO 28640:2010(E) ``` DECLARE NUMERIC MASK2 LET MASK2 = SL32U(1 , 2*NBIT) - 1 !#define MASK2 ((1<<(2*NBIT))-1) DECLARE NUMERIC MULTIPLIER !#define MULTIPLIER 2100005341UL LET MULTIPLIER = 2100005341 DECLARE NUMERIC MULTIPLIER LO LET MULTIPLIER_LO = And32(MULTIPLIER , MASK) !#define MULTIPLIER_LO (MULTIPLIER & MASK) DECLARE NUMERIC MULTIPLIER_HI LET MULTIPLIER_HI = SR32U(MULTIPLIER , NBIT) !#define MULTIPLIER_HI (MULTIPLIER >> NBIT) DECLARE NUMERIC state31 !static unsigned long state31; REM !long lcong31(void) { FUNCTION lcong31 DECLARE NUMERIC xlo, xhi ! unsigned long xlo, xhi; DECLARE NUMERIC z0, z1, z2 ! unsigned long z0, z1, z2; LET xlo = And32(state31, MASK) ! xlo = state31 & MASK; //1st val:9 LET xhi = SR32U(state31 , NBIT) ! xhi = state31 >> NBIT; //1st val:600 LET z0 = xlo * MULTIPLIER_LO ! z0 = xlo * MULTIPLIER_LO; /* 15bit * 15bit => 30bit */ LET z1 = xlo * MULTIPLIER_HI ! z1 = xlo * MULTIPLIER_HI LET z1 = z1 + xhi * MULTIPLIER_LO ! + xhi * MULTIPLIER_LO; /* 15bit * 16bit * 2 => 32bit */ LET z2 = xhi * MULTIPLIER_HI ! z2 = xhi * MULTIPLIER_HI; /* 16bit *
16bit => 32bit */ ``` ``` LET z0 = z0 + SL32U(And32(z1 , MASK) , NBIT)! z0 += (z1 & MASK) << NBIT; //1st val:897833157 LET z2 = z2 + SR32U(z1 , NBIT) + SR32U(z0 , 2 * NBIT) ! z2 += (z1 >> NBIT) + (z0 >> (2*NBIT)); LET z0 = Or32(And32(z0, MASK2), SL32U(And32(z2, 1), 2 * NBIT)) ! z0 = (z0 \& MASK2) ((z2&1) << (2*NBIT)); LET z2 = SR32U(Z2, 1) ! z2 >>=1; LET state31 = z0 + z2 ! state31 = z0 + z2; REM /* This should not exceed 2*0x7fffffffUL */ IF state31 >= 2147483647 THEN LET state31 = state31 - 2147483647 ! IF (state31>=0x7fffffffUL) state31 -= 0x7fffffffUL; LET lcong31 = state31 ! return (long) state31; END FUNCTION ! } FUNCTION init_lcong31(s) !void init_lcong31(unsigned long s) { REM ! /* seed should not be 0 */ IF s = 0 THEN LET s = 19660809 ! if (s == 0UL) s=19660809UL; LET s = REMAINDER(s, 2147483647) ! s = s % 0x7fffffffUL; LET state31 = s ! state31 = s; END FUNCTION ! } ``` NOTE 2 The following set of Basic functions are necessary for transforming C code into all the Full Basic codes to generate random numbers in the Annex A to realize bitwise operations in the Basic codes. ``` OPTION BASE 0 DECLARE NUMERIC MskF_f DECLARE NUMERIC MskF_e DECLARE NUMERIC MskF_8 DECLARE NUMERIC MskF_0 LET MskF_f = BVAL("ffffffff", 16) LET MskF_e = BVAL("fffffffe" , 16) LET MskF_8 = BVAL("fffffff8", 16) LET MskF_0 = BVAL("fffffff0", 16) FUNCTION Or32(xA,xB) DECLARE NUMERIC Ori, OrC LET OrC = 0 FOR Ori=0 TO 31 LET xA = xA / 2 LET xB = xB / 2 IF (INT(xA) <> xA) OR (INT(xB) <> xB) THEN LET OrC = OrC + 2 ^ Ori END IF LET xA = INT(xA) LET xB = INT(xB) IF (xA = 0) AND (xB = 0) THEN EXIT FOR NEXT Ori LET Or32 = OrC ``` #### END FUNCTION FUNCTION And32(xA,xB) DECLARE NUMERIC Andi, AC LET AC = 0IF xA > MskF_f THEN LET xA = xA - INT(xA / 4294967296) * 4294967296END IF IF xB > MskF_f THEN LET xB = xB - INT(xB / 4294967296) * 4294967296END IF IF (xA = 0) OR (xB = 0) THEN LET And 32 = 0ELSEIF xB = MskF_f THEN !&Hffffffff LET And 32 = xAELSEIF xA = MskF_f THEN !&Hffffffff LET And 32 = xBELSEIF xB = MskF_8 THEN !&Hfffffff8 LET And32 = INT(xA / 8) * 8 ELSEIF xA = MskF_8 THEN !&Hfffffff8 LET And32 = INT(xB / 8) * 8 !&Hfffffff0 !&Hfffffff0 ELSE FOR Andi=0 TO 31 ELSEIF xB = MskF_0 THEN ELSEIF xA = MskF_0 THEN LET And 32 = INT(xA / 16) * 16 LET And32 = INT(xB / 16) * 16 ``` LET xA = xA / 2 LET xB = xB / 2 IF (INT(xA) \iff xA) AND (INT(xB) \iff xB) THEN LET AC = AC + 2 ^ Andi END IF LET xA = INT(xA) LET xB = INT(xB) IF (xA = 0) OR (xB = 0) THEN EXIT FOR NEXT Andi LET And 32 = AC END IF END FUNCTION FUNCTION Xor32(xA,xB) DECLARE NUMERIC Xori, XC LET XC = 0 FOR Xori=0 TO 31 LET xA = xA / 2 LET xB = xB / 2 IF ((INT(xA) = xA) AND (INT(xB) <> xB)) OR (INT(xA) <> xA) AND (INT(xB) = xB) THEN LET XC = XC + 2 ^ Xori END IF LET xA = INT(xA) LET xB = INT(xB) IF (xA = 0) OR (xB = 0) THEN EXIT FOR NEXT Xori ``` ``` LET Xori = Xori + 1 IF (xA = 0) AND (xB = 0) THEN elseIF xA = 0 THEN FOR Xori=Xori TO 31 LET xB = xB / 2 IF INT(xB) <> xB THEN LET XC = XC + 2 ^ Xori END IF LET xB = INT(xB) IF xB = 0 THEN EXIT FOR NEXT Xori ELSE FOR Xori=Xori TO 31 LET xA = xA / 2 IF INT(xA) <> xA THEN LET XC = XC + 2 ^ Xori END IF LET xA = INT(xA) IF xA = 0 THEN EXIT FOR NEXT Xori END IF LET Xor32 = XC END FUNCTION FUNCTION SL32U(xA,xL) REM 2006-05-31 DECLARE NUMERIC slah, slal IF (xA = 0) OR (xL = 0) THEN ``` ``` LET SL32U = xA ELSEIF xL >= 16 THEN LET slal = xA - INT(xA / 65536) * 65536 LET slal = slal * 2 ^ (xL - 16) LET slAL = slAL - INT(slAL / 65536) * 65536 LET SL32U = slAL * 65536 ELSE LET slal = xA - INT(xA / 65536) * 65536 LET slAH = INT(xA / 65536) LET slAL = slAL * 2 ^ xL LET slAH = slAH * 2 ^ xL LET slAH = slAH - INT(slAH / 65536) * 65536 LET SL32U = slAL + slAH * 65536 END IF End Function REM /***********************************/ FUNCTION SR32U(xA,xL) REM 2006-06-03 IF xL = 0 THEN LET SR32U = xA ELSEIF xA = 0 THEN LET SR32U = 0 ELSE LET SR32U = INT(xA / 2 ^ xL) END IF ``` End Function ``` REM /***********************************/ FUNCTION Mul32U(xA,xB) REM /**** A,B : unsigned long (32-bit) ****/ REM 2006-06-02 DECLARE NUMERIC MAH, MAL, MBH, MBL LET MAH = INT(xA / 65536) LET MBH = INT(xB / 65536) IF (xA = 0) OR (xB = 0) THEN LET Mu132U = 0 ELSEIF (MAH = 0) AND (MBH = 0) THEN LET Mul32U = xA * xB ELSE LET MAL = xA - INT(xA / 65536) * 65536 LET MBL = xB - INT(xB / 65536) * 65536 LET MBH = MAH * MBL + MAL * MBH + INT((MAL * MBL) / 65536) LET MBH = MBH - INT(MBH / 65536) * 65536 LET MAL = MAL * MBL LET MBL = MAL - INT(MAL / 65536) * 65536 LET Mul32U = MBL + 65536 * MBH END IF ``` END FUNCTION # **B.6 Reference examples** Table B.2 gives examples of random number sequences using the code in Annex B with specific values of the parameters for the validation. The first 5 pseudo-random numbers and the 5 pseudo-random numbers at intervals of 1 000 are listed for reference. Table B.2 — Output examples of random numbers | Generation method | Linear congruential | Linear congruential | Trinomial GFSR | Pentanomial GFSR | |------------------------|-----------------------|---------------------------|----------------|------------------| | Routine name | lcong32_31 | lcong31 | gfsr_31 | gfsr5_31 | | Parameters | $M = 2^{32}$, | $m = 2^{31} - 1$, | P = 1 279, | <i>p</i> = 521, | | | <i>A</i> = 1 664 525, | <i>a</i> = 2 100 005 341, | q = 418, | $q_1 = 86,$ | | | <i>C</i> = 1 | c = 0 | w = 32 | $q_2 = 197,$ | | | | | | $q_3 = 447$, | | | | | | <i>w</i> = 32 | | Initialization routine | init_lcong32 | init_lcong31 | init_gfsr | init_gfsr5 | | Initialization seed | 19 660 809 | 19 660 809 | 19 660 809 | 19 660 809 | | 1 | 1 276 136 251 | 1 990 801 112 | 716 530 710 | 716 530 710 | | 2 | 865 096 703 | 549 424 302 | 1 004 066 893 | 1 004 066 893 | | 3 | 1 405 063 418 | 2 128 986 934 | 1 271 815 862 | 1 271 815 862 | | 4 | 1 021 835 442 | 637 203 998 | 955 533 625 | 955 533 625 | | 5 | 1 313 685 521 | 965 379 446 | 626 736 785 | 626 736 785 | | 1 000 | 1 292 340 048 | 294 652 208 | 1 588 358 191 | 1 935 299 389 | | 2 000 | 517 257 756 | 407 927 492 | 2 027 766 761 | 43 898 710 | | 3 000 | 1 420 573 800 | 216 557 927 | 1 495 802 935 | 1 516 572 896 | | 4 000 | 1 195 033 140 | 919 639 774 | 1 360 928 075 | 1 923 029 091 | | 5 000 | 971 701 120 | 639 093 944 | 1 950 421 053 | 2 129 964 021 | | Generation method | Combined Tausworthe | Mersenne Twister | Physical random number | |------------------------|--|--|------------------------| | Routine name | taus88_31 | genrand_31 | rndtable31 | | Parameters | Same as the body of this
International Standard | Same as the body of this
International Standard | File | | | | | prnd01. bin | | Initialization routine | init_taus88 | init_genrand | init_rndtable | | Initialization seed | 19 660 809 | 19 660 809 | 19 660 809 | | 1 | 116 464 117 | 652 430 828 | 57 316 494 | | 2 | 1 350 114 716 | 769 118 065 | 905 630 297 | | 3 | 14 524 262 | 902 643 984 | 1 460 801 524 | | 4 | 565 035 872 | 1 576 219 271 | 751 624 663 | | 5 | 1 079 577 460 | 859 869 705 | 1 289 292 436 | | 1 000 | 1 404 867 807 | 1 194 038 620 | 2 001 042 935 | | 2 000 | 2 022 781 177 | 563 296 554 | 1 638 049 143 | | 3 000 | 2 098 228 799 | 1 515 829 663 | 41 578 219 | | 4 000 | 1 089 352 213 | 1 803 857 212 | 87 938 653 | | 5 000 | 262 361 229 | 1 203 434 155 | 1 851 047 367 | # **Bibliography** - [1] ISO 80000-2, Quantities and units Part 2: Mathematical signs and symbols to be used in the natural sciences and technology - [2] ISO/IEC 9899, Programming languages C - [3] FERRENBERG, A.M., LANDAU, D.P. and WONG, Y.J. Monte Carlo Simulations: Hidden Errors from "Good" Random Number Generators. *Physical Review Letters*, **69**(23), 1992, pp. 3382-3384 - [4] GENTLE, J.E. Random Number Generation and Monte Carlo Methods, Springer-Verlag, 2003 - [5] HERINGA, J.R., BLÖTE, H.W.J. and COMPAGNER, A. New Primitive Trinomials of Mersenne-Exponent Degrees for Random-Number Generation. *International Journal of Modern Physics* C, **3**(3), 1992, pp. 561-564 - [6] ISHIDA, M., SATO, T., SUZUKI, K., SHIMADA, S. and KAWASE, T. Random Number Generator Using a Diode Noise. *The Institute of Statistical Mathematics Research Memorandum*, Number 968, 2005 - JÖHNK, M.D. Erzeugung Von Betavesteilten und Gammavesteilten Zufellszahlen. *Metrica*, **8**(1), 1964, pp. 5-15 - [8] KNUTH, D.E. Seminumerical Algorithms (The Art of Computer Programming, Volume 2), 3rd. ed., Addison Wesley, 1998 - [9] KURITA, Y. and MATSUMOTO, M. Primitive t-nomials (t = 3, 5) over GF (2) Whose Degree is a Mersenne Exponent ≤ 44497 . *Mathematics of Computation*, **56**(194), 1991, pp. 817-821 - [10] L'ECUYER, P. Maximally Equidistributed Combined Tausworthe Generators. *Mathematics of Computation*, **65**(213), 1996, pp. 203-213 - [11] L'ECUYER, P. Tables of Maximally-Equidistributed Combined LFSR Generators. *Mathematics of Computation*, **68**(225), 1996, pp. 261-269 - [12] LEWIS, T.G. and PAYNE, W.H. Generalized Feedback Shift Register Pseudorandom Number Generators. *Journal of the Association for Computing Machinery*, **20**(3), 1973, pp. 456-468 - [13] MASSEY, J.L. Shift-Register Synthesis and BCH Decoding. *IEEE Trans. on Information Theory*, **IT-15** (1), 1969, pp. 122 127 - [14] MATSUMOTO, M. and NISHIMURA, T. Mersenne Twister: A 623-Dimensionally Equidistributed Uniform Pseudo-Random Number Generator. *ACM. Trans. Model. Comput. Simul.*, **8**(1), 1998, pp. 3-30 - [15] VON NEUMANN, J. Various Techniques Used in Connection with Random Digits, *Monte Carlo Method*, Applied Mathematics Series, No.12, U.S. National Bureau of Standards, Washington D.C., 1951, pp. 36-38 - [16] NIKI, N. *Machine Generation of Randum Numbers*. The Institute of Statistical Mathematics Research Memorandum, Number 969, 2005 - [17] NIKI, N. *Physical Random Number Generator for Personal Computers*. The Institute of Statistical Mathematics Research Memorandum, Number 970, 2005 - [18] RUEPPEL, R.A. Analysis and Design of Stream Ciphers,
Springer-Verlag, 1986 © ISO 2010 – All rights reserved 53 # ISO 28640:2010(E) - [19] TAUSWORTHE, R.C. Random Numbers Generated by Linear Recurrence Modulo Two. *Mathematics of Computation*, **19**, 1965, pp. 201-209 - [20] TEZUKA, S. and L'ECUYER, P. Efficient and Portable Combined Tausworthe Random Number Generators. *ACM. Trans. Model. Comput. Simul.*, **1**, 1991, pp. 99-112 - [21] VATTULAINEN, I., ALA-NISSILÄ, T. and KANKAALA, K. Physical Tests for Random Numbers in Simulations. *Physical Review Letters*, **73**(19), 1994, pp. 2513 2516 - [22] VATTULAINEN, I., ALA-NISSILÄ, T. and KANKAALA, K. Physical Models as Tests of Randomness. *Physical Review*, **E52**, 1995, pp. 3205-3214 - [23] Random Number Generator, The Institute of Statistical Mathematics, http://random.ism.ac.jp/random_e/index.php # **BSI - British Standards Institution** BSI is the independent national body responsible for preparing British Standards. It presents the UK view on standards in Europe and at the international level. It is incorporated by Royal Charter. #### Revisions British Standards are updated by amendment or revision. Users of British Standards should make sure that they possess the latest amendments or editions. It is the constant aim of BSI to improve the quality of our products and services. We would be grateful if anyone finding an inaccuracy or ambiguity while using this British Standard would inform the Secretary of the technical committee responsible, the identity of which can be found on the inside front cover. Tel: +44 (0)20 8996 9000. Fax: +44 (0)20 8996 7400. BSI offers members an individual updating service called PLUS which ensures that subscribers automatically receive the latest editions of standards. # **Buying standards** Orders for all BSI, international and foreign standards publications should be addressed to Customer Services. Tel: +44 (0)20 8996 9001. Fax: +44 (0)20 8996 7001 Email: orders@bsigroup.com You may also buy directly using a debit/credit card from the BSI Shop on the Website http://www.bsigroup.com/shop In response to orders for international standards, it is BSI policy to supply the BSI implementation of those that have been published as British Standards, unless otherwise requested. # Information on standards BSI provides a wide range of information on national, European and international standards through its Library and its Technical Help to Exporters Service. Various BSI electronic information services are also available which give details on all its products and services. Contact Information Centre. Tel: +44 (0)20 8996 7111 Fax: +44 (0)20 8996 7048 Email: info@bsigroup.com Subscribing members of BSI are kept up to date with standards developments and receive substantial discounts on the purchase price of standards. For details of these and other benefits contact Membership Administration. Tel: +44 (0)20 8996 7002 Fax: +44 (0)20 8996 7001 Email: membership@bsigroup.com Information regarding online access to British Standards via British Standards Online can be found at http://www.bsigroup.com/BSOL Further information about BSI is available on the BSI website at http://www.bsigroup.com #### Copyright Copyright subsists in all BSI publications. BSI also holds the copyright, in the UK, of the publications of the international standardization bodies. Except as permitted under the Copyright, Designs and Patents Act 1988 no extract may be reproduced, stored in a retrieval system or transmitted in any form or by any means – electronic, photocopying, recording or otherwise – without prior written permission from BSI. This does not preclude the free use, in the course of implementing the standard, of necessary details such as symbols, and size, type or grade designations. If these details are to be used for any other purpose than implementation then the prior written permission of BSI must be obtained. Details and advice can be obtained from the Copyright and Licensing Manager. Tel: $\pm 44~(0)20~8996~7070$ Email: copyright@bsigroup.com BSI Group Headquarters 389 Chiswick High Road, London, W4 4AL, UK Tel +44 (0)20 8996 9001 Fax +44 (0)20 8996 7001 www.bsigroup.com/ standards