BS ISO 26869:2012 ### **BSI Standards Publication** Space systems — Smallauxiliary-spacecraft (SASC)to-launch-vehicle interface control document BS ISO 26869:2012 BRITISH STANDARD #### National foreword This British Standard is the UK implementation of ISO 26869:2012. The UK participation in its preparation was entrusted to Technical Committee ACE/68/-/2, Space systems and operations - Interfaces, integration and test. A list of organizations represented on this committee can be obtained on request to its secretary. This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application. © The British Standards Institution 2012. Published by BSI Standards Limited 2012 ISBN 978 0 580 74131 9 ICS 49.140 Compliance with a British Standard cannot confer immunity from legal obligations. This British Standard was published under the authority of the Standards Policy and Strategy Committee on 30 April 2012. Amendments issued since publication Date Text affected # INTERNATIONAL STANDARD BS ISO 26869:2012 ISO 26869 First edition 2012-04-01 # Space systems — Small-auxiliary-spacecraft (SASC)-to-launch-vehicle interface control document Systèmes spatiaux — Document de contrôle d'interface entre véhicules lanceurs et petits véhicules spatiaux auxiliaires #### **COPYRIGHT PROTECTED DOCUMENT** © ISO 2012 All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester. ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org Published in Switzerland #### **Contents** Page | Forewordv | | | | | |--|--|-----------------------|--|--| | Introductionvi | | | | | | 1 | Scope | 1 | | | | 2 | Normative reference | 1 | | | | 3
3.1
3.2 | Terms, definitions and abbreviated terms Terms and definitions Abbreviated terms | 1 | | | | 4
4.1
4.2
4.3 | Applicable and reference documentation Applicable documents Reference documents Waivers | 2
2 | | | | 5
5.1
5.2
5.3 | SASC mission characteristics SASC mission description SASC additional constraints SASC simulator | 2
2 | | | | 6
6.1
6.2
6.3
6.4
6.5
6.6 | Mechanical interface General Mechanical configuration SASC fundamental frequencies Usable volume LV-SASC adapter interface Connector and microswitch definition Purges and fluid connection interface | 2
3
3
3
3 | | | | 7
7.1
7.2
7.3
7.4
7.5
7.6
7.7 | Electrical interfaces General Umbilical wiring diagram Umbilical connectors Umbilical wiring links Electrical commands dedication to SASC Separation status transmission Power supply Earth potential continuity | 4
4
4
5
6 | | | | 8
9
9.1
9.2
9.3
9.4 | Radio frequency and electromagnetic interface LV and SASC mission characteristics SASC input data for mission analysis Trajectory and performance analysis Launch windows SASC pointing and separation | 6
6
7
7 | | | | 10
10.1
10.2
10.3
10.4
10.5
10.6
10.7 | Induced environment General Mechanical environment Thermal environment Static pressure Contamination and cleanliness Radio and electromagnetic environment Overall compatibility | 7
7
8
9
9 | | | | 11
11.1
11.2
11.3 | Verification tests General SASC mechanical environment qualification and acceptance tests LV/SASC | 9
9
9 | | | | 11.4 | Primary payload/SASC | 10 | |------|----------------------------------|----| | 12 | Launch-range operation | 10 | | 12.1 | General | 10 | | 12.2 | Range capabilities | 10 | | 12.3 | | | | 12.4 | Umbilical lines and ground lines | 14 | | | Overall data transmission | | | 12.6 | Operational constraints | 15 | | | Range services | | #### **Foreword** ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2. The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote. Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. ISO 26869 was prepared by Technical Committee ISO/TC 20, Aircraft and space vehicles, Subcommittee SC 14, Space systems and operations. #### Introduction Small auxiliary spacecraft (SASCs) are carried with primary spacecraft by using surplus launch capability, in order to make the best use of the launch vehicle (LV) extra capability. By definition, an SASC has no impact on the primary spacecraft or its mission. Establishing a common baseline of ICD requirements between the launch vehicle side and the SASC side is a cost- and risk-minimum means of achieving success in international trade. In order to give a clear understanding of the ICD items needed to accommodate the SASC customer's requirements, there is a need for international standardization. It is hoped that this International Standard will encourage activity and lead to the increased utilization of space potential, opening the way for many more small space missions. LV and SASC organization may include additional topics and some sections of this International Standard might refer to elements that are not applicable to a particular LV, SASC or launch range characteristics, in which case they can be ignored. For most items, except when specified, the information can be provided in SASC or LV drawings and in tabular or narrative format with figures. ISO 26869:2012(E) ## Space systems — Small-auxiliary-spacecraft (SASC)-to-launch-vehicle interface control document #### 1 Scope This International Standard provides small auxiliary spacecraft (SASC) and launch vehicle (LV) organizations with basic rules for writing an interface control document (ICD), and a general format for the document's presentation, when the SASC has an interface (I/F) only with the LV. It is applicable to the necessary ICD items and restrictions peculiar to SASCs, these spacecraft being as defined in the contract between the launch agency and the contractor. The payload area covered by this International Standard is limited to SASC. NOTE SASCs have minor priorities with respect to the main spacecraft. #### 2 Normative reference The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. ISO 15863, Space systems — Spacecraft-to-launch-vehicle interface control document #### 3 Terms, definitions and abbreviated terms For the purposes of this document, the following terms, definitions and abbreviated terms apply. #### 3.1 Terms and definitions #### 3.1.1 #### primary spacecraft main payload of the launch operation #### 3.1.2 #### small auxiliary spacecraft #### SASC small payload which is carried with primary spacecraft by using surplus launch capability, in order to make the best use of the launch vehicle's extra capability #### 3.2 Abbreviated terms EMC electromagnetic compatibility ICD interface control document I/F interface LV launch vehicle RF radio frequency SASC small auxiliary spacecraft UT universal time #### 4 Applicable and reference documentation #### 4.1 Applicable documents This section of the ICD shall describe the list of documents in terms of a formal agreement. The list should include the applicable LV user's manual. #### 4.2 Reference documents This section of the ICD shall describe the list of documents to be used to supplement this standard in terms of scope, contents and description. #### 4.3 Waivers This section of the ICD shall describe the list of applicable waivers and corresponding current status. #### 5 SASC mission characteristics #### 5.1 SASC mission description This section of the ICD shall describe the following items: - a) the purpose of the SASC mission and its orbital characteristics; - b) the general characteristics of the SASC bus, including appendages; - c) the payload equipment and its purpose. The section should indicate the LV and SASC reference axes. It should include an in-orbit view of the SASC and may address general aspects of the mission such as ground network, coverage zones and duration of SASC and launch vehicle interaction. #### 5.2 SASC additional constraints Any additional constraints on the SASC which may be necessary to preclude unacceptable effects on any LV or primary spacecraft function shall be specified in this section. #### 5.3 SASC simulator This section shall describe, if required, the necessity of a SASC simulator, which may be used to maintain the launch schedule of the primary payload in case of SASC development/manufacturing delay or problems. The SASC simulator shall simulate the identified interfaces and characteristics of the SASC and information shall be provided for the SASC simulator in accordance with this International Standard for specified interface parameters. #### 6 Mechanical interface #### 6.1 General This section of the ICD shall specify characteristics and parameters that define the mechanical I/F between the SASC (or simulator) and the LV. The information can be provided in SASC or LV drawings and in tabular or narrative format with figures. #### 6.2 Mechanical configuration This section of the ICD shall include configuration drawings of the SASC (or simulator) and adapter assembly within the payload compartment, which show and define the location of all interface components. Reference axes and relative rotational orientation shall be shown. #### 6.3 SASC fundamental frequencies This section of the ICD shall state the minimum allowable SASC (or simulator) fundamental frequencies in the axial and lateral directions of the LV. #### 6.4 Usable volume This section of the ICD shall provide drawings that show the allowable usable volume within the payload compartment. The usable volume is determined by the physical clearances that are based on the static clearances and dynamic deflections of the LV structures, primary payload, given SASC (or simulator) and other SASC (if applicable). The section shall also provide critical clearance information, including detailed views of protrusion areas and/or protected areas with their associated dimensions. #### 6.5 LV-SASC adapter interface This section of the ICD shall describe all the characteristics of the physical and geometric I/F for the SASC (or simulator) and the LV, including the general characteristics of the payload adapter, considering the following items: - a) type; - b) material; - c) geometrical shape; - d) separation system; - e) diameter of upper and lower I/F rings (if applicable); - f) mass properties of equipped adapter of SASC; - g) other significant information, as applicable. #### 6.6 Connector and microswitch definition This section of the ICD defines the connector I/F, the following characteristics of which shall be considered: - a) type; - b) quantity; - c) location and mechanical I/F; - d) push-on and push-off loads; - e) separation force. #### 6.7 Purges and fluid connection interface This section of the ICD defines the SASC purge and fluid connection I/F. The following characteristics shall be considered: - a) location and mechanical I/F: - 1) angular position; - 2) radial position; - 3) height from separation plane; - b) push-on and push-off loads; - c) energy released; - d) separation force; - e) maximum allowable leakage rate on disconnect. #### 7 Electrical interfaces #### 7.1 General SASCs can have restrictions on command lines, flight telemetry and power supply, and redundancy of the RF link in order not to distract primary spacecraft functions. This section of the ICD shall describe the results of coordination on those restrictions. #### 7.2 Umbilical wiring diagram Provide detailed drawings of the SASC for the LV- and SASC-to-ground facilities wiring diagram. #### 7.3 Umbilical connectors Organizations responsible for providing connector elements shall be identified. Umbilical connectors shall be described for both the LV and SASC sides. The distinction shall be made between SASC servicing and SASC pyrotechnic functions that are maintained on separate LV–SASC connectors. Example figures of connectors shall be included. Connector characteristics shall be defined as follows: - a) supplier; - b) part number; - c) number of pins available to user; - d) polarizing key orientation; - e) insert clocking; - f) location (see also 6.6); - g) backshell shielding requirement; - h) harness shielding requirement. #### 7.4 Umbilical wiring links Umbilical links between the SASC and the LV, and between the SASC and the electrical checkout equipment plugs, shall be described, with the following characteristics, for each connector and connector pin: - a) pin number; - b) function(s); - c) wire type; - d) twisting and shielding; - e) maximum voltage (in volts); - f) maximum current (in amperes); - g) end-to-end resistance (in ohms); - h) line start; - i) line end; - j) maximum voltage at separation (if applicable); - k) maximum current at separation (if applicable); - signal type; - m) signal frequency. The LV contractor shall define and conduct verification tests of the end-to-end, line-to-ground and line-to-line isolation resistance. #### 7.5 Electrical commands dedication to SASC #### 7.5.1 Pyrotechnic commands The SASC contractor shall provide a schematic of the SASC electrical circuits related to pyrotechnic commands. Pyrotechnic commands shall be described considering the following characteristics: - a) command identification; - b) number of redundant commands; - c) time of command initiation; - d) minimum time interval between commands (in milliseconds); - e) pulse width (in milliseconds); - f) voltage (in volts); - g) minimum all fire current (in amperes); - h) maximum no fire current (in amperes); - i) output isolation (in ohms); - j) wire gage; - k) wire type; - I) wire length from LV-SASC I/F; - m) circuit connectors to pyro devices; - n) initiator characteristics. The LV contractor shall indicate possible constraints applicable to the SASC circuitry, and in particular - SASC wiring isolation requirements, and - safety plug definition. © ISO 2012 – All rights reserved #### 7.6 Separation status transmission Indicate the measurement used to confirm SASC separation. #### 7.7 Power supply The specification for electrical power provided by the LV to the SASC, if required for pre-launch or flight phases, shall be defined as follows: - a) voltage (in volts); - b) current (in amperes); - c) availability; - d) frequency; - e) ripple noise. The LV contractor shall indicate possible constraints applicable to the SASC circuitry such as - SASC circuit protection requirements, - SASC wiring isolation requirements, and - electromagnetic compatibility requirements. #### 7.8 Earth potential continuity The SASC requirements in terms of electrical continuity with respect to the earth potential shall be expressed as follows: - a) location of reference point on SASC; - b) maximum resistance allowed between SASC metallic elements and reference point; - c) maximum resistance allowed for SASC interface plane. #### 8 Radio frequency and electromagnetic interface This section of the ICD shall provide the characteristics of the radio-electrical systems, RF telemetry and command links, and the electromagnetic interface. #### 9 LV and SASC mission characteristics #### 9.1 SASC input data for mission analysis #### 9.1.1 General The SASC contractor shall provide the input data defined in this section for all SASC configurations associated with operations conducted by the LV contractor. #### 9.1.2 Reference axes The LV and SASC reference axes used for mission analysis studies shall be consistent with the mechanical configuration specified in 5.1. #### 9.1.3 Mass and inertia characteristics If the SASC configuration changes before it is separated from the LV (e.g. deployment of antenna), the following data shall also be given for the alternative configuration. The mass of the SASC with related tolerances shall be provided. The centre of gravity coordinates and related tolerances shall be provided with respect to a reference frame parallel to the SASC reference frame with the origin located at the SASC centre of gravity. Inertia ratios between the transverse moments of inertia and the longitudinal moment of inertia shall be indicated. The product of inertia shall be as defined in the LV–SC interface control document, in accordance with ISO 15863. #### 9.2 Trajectory and performance analysis This section of the ICD shall specify that the SASC's trajectory is subject to the primary payload trajectory and SASC constraints related to trajectory analysis. In the case of additional thrust for the SASC after the primary payload separation, the SASC's trajectory should be described according to the coordination between the LV and the SASC. #### 9.3 Launch windows Launch windows shall be presented in tabular or graphical forms in UT hours. This section of ICD shall specify that the launch window is subject to the primary payload launch window. If the primary payload launch window has some tolerance for SASC, it should be described according to the coordination between the primary payload and the SASC. #### 9.4 SASC pointing and separation The LV shall define an orbital reference frame so that required SASC orientations at separation can be specified. The orbital frame orientation can be fixed with respect to the orbit plane or linked to the SASC orbital position. The SASC shall define the SASC orientation just prior to separation. #### 10 Induced environment #### 10.1 General This section of the ICD shall describe the environmental conditions of SASC and the compatibility with the LV. #### 10.2 Mechanical environment #### 10.2.1 Static acceleration The static acceleration profile related to the LV flight shall be obtained from the trajectory analysis, in accordance with 9.2, with indication of axes. #### 10.2.2 Quasi-static loads A synthesis of static and dynamic flight loads at the SASC centre of gravity shall be provided with an indication of the axes. It shall be a requirement that their levels be verified (if applicable) on the basis of the dynamic coupled load analysis (processed with a test verified SASC model, if applicable). #### 10.2.3 Low-frequency longitudinal vibration The envelope of all longitudinal sine and transient vibrations at the SASC base shall be provided in terms of equivalent longitudinal sinusoidal vibrations over the frequency range of interest, with indication of axes. It shall be a requirement that their levels be verified (if applicable) on the basis of the dynamic coupled load analysis (processed with a test verified SASC model, if applicable). #### 10.2.4 Low-frequency lateral vibration The envelope of all lateral sine and transient vibration at the SASC base shall be provided in terms of equivalent lateral sinusoidal vibrations over the frequency range of interest with an indication of axes. It shall be a requirement that their levels shall be verified (if applicable) on the basis of the dynamic coupled load analysis (processed with a test-verified SASC model, if applicable). #### 10.2.5 Random vibrations The envelope spectrum of the flight-level random vibrations in the longitudinal and lateral directions shall be provided (if applicable). When applicable, it should be indicated that random loads are covered by acoustic loads. #### 10.2.6 Acoustic noise The flight-level noise spectrum under the payload compartment shall be provided in terms of octaves or thirds of octaves. #### 10.2.7 Shock The envelope shock spectrum generated by the LV at the LV-SASC I/F shall be provided. If the SASC is separated after the primary SC (or other SASC), the corresponding shock environment shall be presented. When the SASC provides the adapter, the SASC contractor shall provide the envelope shock spectrum generated by the SASC separation system at the I/F. #### 10.2.8 Critical clearances If applicable, it shall be a requirement that static and dynamic analyses shall be conducted on SASC critical point clearances (see 6.4). #### 10.3 Thermal environment #### 10.3.1 General The detailed SASC thermal environment related to the ground and flight phases is described in the LV–SASC final verification coupled thermal analysis. The thermal environment of the SASC should be determined by the interface coordination with the primary payload through LV. #### 10.3.2 Air-conditioning A drawing showing the SASC inside the payload compartment with a representation of the airflow path may be provided. The following payload compartment air-conditioning parameters shall be indicated for the various operation phases: - a) inlet temperature; - b) outlet temperature (optional); - c) relative humidity; - d) filtration; - e) air flow rate; - f) air velocity; - g) cleanliness. #### 10.3.3 Aerothermal flux The maximum aerothermal flux value shall be provided for the fairing jettisoning event and, if applicable, for any other high flux flight event with the corresponding phase duration. #### 10.4 Static pressure The time history of the static pressure inside the payload compartment during the flight shall be provided. #### 10.5 Contamination and cleanliness If applicable, the results of the contamination and cleanliness analysis conducted by the LV shall be provided. The SASC organization shall provide a list of the SASC material outgassing characteristics. This section of the ICD shall specify that the cleanliness of the SASC is subject to that of the primary payload, and that the SASC shall not have a harmful influence on the primary payload. #### 10.6 Radio and electromagnetic environment #### 10.6.1 LV-generated and other payload-generated radiation The LV contractor shall describe the radiation emitted at a specified LV station by the LV transmitters in terms of electrical field as a function of radio frequency bands. #### 10.6.2 Range-generated radiation The LV contractor shall describe the range electromagnetic environment, including telemetry, telecommand and radar transponders. #### 10.7 Overall compatibility A conclusion about the compatibility of the LV, primary payload and the SASC with respect to the induced environment shall be formulated on the basis of the results presented in 10.2 to 10.6. #### 11 Verification tests #### 11.1 General This section shall include — either explicitly or by reference to applicable documents — mandatory SASC test verification of indicated ICD environmental requirements. #### 11.2 SASC mechanical environment qualification and acceptance tests If applicable, requirements for the following environmental tests shall be briefly described: - a) static load test; - b) modal survey test; - c) sinusoidal vibration test; - d) acoustic noise; - e) random vibrations; - f) separation shock test(s). #### 11.3 LV/SASC The list of tests applicable to the SASC shall be indicated considering the following series of possible tests: - a) match-mate; - b) separation; - c) umbilical connector pull-out; - d) clearance measurement; - e) EMC; - f) end-to-end electrical; - g) RF link. #### 11.4 Primary payload/SASC The list of tests applicable to the SASC shall be indicated considering the following series of possible tests: - a) clearance measurement; - b) EMC; - c) RF link. #### 12 Launch-range operation #### 12.1 General This section of the ICD shall specify that the following items in the launch-range operation of the SASC shall be coordinated with the primary payload through the LV: - a) usage of facilities; - b) working area for launch operation; - c) time schedule of launch operation. #### 12.2 Range capabilities #### 12.2.1 General The LV contractor shall provide to the SASC contractor detailed documentation describing the overall facilities and support available for launch range operations. This section of the ICD shall mention only items specific to the SASC launch campaign. The section shall describe the restrictions on the usage of the facilities imposed by the primary payload. #### 12.2.2 SASC preparation facility The LV contractor shall describe the facilities and equipment provided for processing the SASC, including specific additional requirements from the SASC contractor. The following typical pieces of equipment or support may be listed for each relevant building area, as applicable: - a) access doors: - 1) location; - 2) size; - b) crane characteristics: - 1) capacity; - 2) hook height; - 3) range of vertical speed; - c) electrical power supply: - 1) voltage (in volts); - 2) frequency (in hertz); - 3) maximum power (in watts); - 4) stability of frequency and voltage (as a percentage); - d) environment: - 1) cleanliness class; - 2) standard temperature (in degrees Centigrade); - 3) standard relative humidity (as a percentage); - e) clothing (safety garments): - 1) location of use; - 2) type of garment; - 3) type of protection; - 4) relevant hazardous operation requiring protection; - 5) availability. #### 12.2.3 Special technical support equipment The floor space required by, and the corresponding duration of time dedicated to, the SASC shall be identified for all relevant preparation areas, including - the preparation area, - the check-out room, - storage areas (and associated environment), and - offices and meeting rooms. This section of the ICD shall describe the restrictions on the usage of the facilities imposed by the primary payload. #### 12.2.4 SASC consumable loading, control and final assembly facilities The LV contractor shall describe the facilities and equipment provided for SASC consumable loading, control and final assembly operations, including specific additional requirements from the SASC contractor. © ISO 2012 – All rights reserved The following items may be considered, including hazardous item storage facilities: - a) weighing device: - 1) scale, - 2) load cells available; - b) dynamic balance machine: - 1) capacity (in kilograms), - 2) spin rate (in revolutions per minute), - 3) type of interface; - c) liquid propellant storage and transfer: - 1) type of liquid, - 2) quantity, - 3) period and duration of storage, - 4) storage conditions, - 5) transfer conditions; - d) SASC purge requirements, - e) SASC fluid requirements. The LV contractor shall identify the floor space required, and the corresponding duration of time dedicated to the SASC, for all relevant SASC consumable loading, control and final assembly facilities, including - the consumable loading area, - the assembly area, - the technical room, - the control room. - storage areas (and associated environment), and - offices and meeting rooms. #### 12.2.5 Payload encapsulation facilities (if applicable) Payload encapsulation facilities shall be used when the SASC, payload adapter(s) and payload enclosure are assembled together to form an integrated structure to be mated with the LV. The LV contractor shall describe the facilities and equipment provided for encapsulation operations, including specific additional requirements from the SASC contractor. The LV contractor shall describe the main passenger operational requirements during combined operations. #### 12.2.6 Launch preparation facilities The mating between the LV and the SASC or an encapsulated payload is performed at the launch preparation facilities. This may be performed at the launch pad. The LV contractor shall describe the facilities and equipment provided for launch-preparation operations, including specific additional requirements from the SASC contractor. The LV contractor shall describe the main passenger operational requirements during combined operation. #### 12.2.7 Payload handling and transport The LV contractor shall describe the facilities and equipment provided for payload handling and transport, including specific additional requirements from the SASC contractor. The following items shall be described: - a) payload to transport (SASC, encapsulated payload or other); - b) itinerary and timelines (optional); - c) type of transport or hoisting operations; - d) transport or hoisting equipment; - e) container for transportation; - f) environmental conditions; - g) SASC purge; - h) SASC fluids. The SASC contractor shall indicate any specific instructions for handling and transport operations. #### 12.2.8 SASC battery-charging requirements The SASC contractor shall indicate the SASC battery-charging requirements, including how the battery charging is to be performed during launch preparation, the charging frequency needed, if applicable, and the associated restrictions. #### 12.2.9 Mission control centre The LV contractor shall describe the facilities and equipment provided for mission control operations, including specific additional requirements from the SASC contractor. #### 12.3 Range communication facility #### 12.3.1 External communications The LV contractor shall describe the external communication facilities to be provided. The SASC contractor shall define the specific equipment to be provided by the SASC. The following items shall be considered: - a) type of lines (voice and data); - b) line distribution on the range. #### 12.3.2 Range communication network The LV contractor shall describe the range communication network. The following items shall be considered: - a) operational intercom network: - point-to-point telephone network; - b) range telephone network: - closed circuit television, - time reference. © ISO 2012 – All rights reserved #### 12.4 Umbilical lines and ground lines #### 12.4.1 General This section of the ICD shall describe the restrictions on the usage of the equipment imposed by the primary payload. #### 12.4.2 Line description The LV contractor shall describe the ground line and umbilical line facilities. The following items shall be considered: - a) network; - b) type of lines (electric characteristics); - c) purpose of network; - d) applicable SASC or LV-SASC combined operation. #### 12.4.3 Umbilical shielding and ground reference The LV contractor shall describe the ground and flight-shielding grounding. #### 12.4.4 Rules for implementation of umbilical and lines #### 12.4.4.1 Documentation The LV contractor shall indicate the rules and constraints to be met by the SASC contractor for the implementation of umbilical and ground lines. The following items shall be documented: - a) specific requirements (on the SASC contractor); - b) general drawing of umbilical wiring; - c) rules for end-to-end checks; - d) conformance certificate (LV and SASC contractors). #### 12.4.4.2 Responsibility Responsibility for the equipment operating and for conducting tests shall be clearly established for the following: - a) installation of SASC provided equipment; - b) provisioning of connectors (SASC side and ground side); - c) connecting to ground facilities; - d) connection testing; - e) check of configured network; - f) modifications of configured network. #### 12.5 Overall data transmission #### 12.5.1 Overall network description The LV contractor shall define the overall data transmission network of the range, including all operational types of transmissions. The following characteristics shall be indicated: a) operations of interest; - b) facilities connected; - c) type of transmissions; - d) connected items; - e) line routing. #### 12.5.2 Individual network For each type of transmission network (RF, base-band, modem or other), the LV contractor shall indicate the following: - a) connected facilities; - b) limitations on transmission volume; - c) physical interfaces (range side). #### 12.6 Operational constraints The LV contractor shall list the various operational constraints to be met by the SASC contractor. The following typical items are given as examples: - safety regulation and implementation; - security rules; - launch campaign; - SASC countdown operations time windows. #### 12.7 Range services #### 12.7.1 General This section of the ICD shall describe the restrictions on the usage of the services imposed by the primary payload. #### 12.7.2 Safety facilities and support related to safety These shall include - a) training course and briefings, and - b) the role of range-safety personnel. #### 12.7.3 Technical and general services The LV contractor shall provide a list of technical and general services available on the range, for example: - a) chemical analysis laboratory; - b) mechanical and electrical workshop; - c) optical and photographic workshop; - d) measuring instruments laboratory; - e) general purpose services. © ISO 2012 – All rights reserved Price based on 15 pages ## British Standards Institution (BSI) BSI is the national body responsible for preparing British Standards and other standards-related publications, information and services. BSI is incorporated by Royal Charter. British Standards and other standardization products are published by BSI Standards Limited. #### About us We bring together business, industry, government, consumers, innovators and others to shape their combined experience and expertise into standards -based solutions. The knowledge embodied in our standards has been carefully assembled in a dependable format and refined through our open consultation process. Organizations of all sizes and across all sectors choose standards to help them achieve their goals. #### Information on standards We can provide you with the knowledge that your organization needs to succeed. Find out more about British Standards by visiting our website at bsigroup.com/standards or contacting our Customer Services team or Knowledge Centre. #### **Buying standards** You can buy and download PDF versions of BSI publications, including British and adopted European and international standards, through our website at bsigroup.com/shop, where hard copies can also be purchased. If you need international and foreign standards from other Standards Development Organizations, hard copies can be ordered from our Customer Services team. #### **Subscriptions** Our range of subscription services are designed to make using standards easier for you. For further information on our subscription products go to bsigroup.com/subscriptions. With **British Standards Online (BSOL)** you'll have instant access to over 55,000 British and adopted European and international standards from your desktop. It's available 24/7 and is refreshed daily so you'll always be up to date. You can keep in touch with standards developments and receive substantial discounts on the purchase price of standards, both in single copy and subscription format, by becoming a **BSI Subscribing Member**. **PLUS** is an updating service exclusive to BSI Subscribing Members. You will automatically receive the latest hard copy of your standards when they're revised or replaced. To find out more about becoming a BSI Subscribing Member and the benefits of membership, please visit bsigroup.com/shop. With a **Multi-User Network Licence (MUNL)** you are able to host standards publications on your intranet. Licences can cover as few or as many users as you wish. With updates supplied as soon as they're available, you can be sure your documentation is current. For further information, email bsmusales@bsigroup.com. #### **BSI Group Headquarters** 389 Chiswick High Road London W4 4AL UK #### **Revisions** Our British Standards and other publications are updated by amendment or revision. We continually improve the quality of our products and services to benefit your business. If you find an inaccuracy or ambiguity within a British Standard or other BSI publication please inform the Knowledge Centre. #### Copyright All the data, software and documentation set out in all British Standards and other BSI publications are the property of and copyrighted by BSI, or some person or entity that owns copyright in the information used (such as the international standardization bodies) and has formally licensed such information to BSI for commercial publication and use. Except as permitted under the Copyright, Designs and Patents Act 1988 no extract may be reproduced, stored in a retrieval system or transmitted in any form or by any means – electronic, photocopying, recording or otherwise – without prior written permission from BSI. Details and advice can be obtained from the Copyright & Licensing Department. #### **Useful Contacts:** #### **Customer Services** Tel: +44 845 086 9001 Email (orders): orders@bsigroup.com Email (enquiries): cservices@bsigroup.com #### Subscriptions Tel: +44 845 086 9001 Email: subscriptions@bsigroup.com #### **Knowledge Centre** Tel: +44 20 8996 7004 Email: knowledgecentre@bsigroup.com #### **Copyright & Licensing** Tel: +44 20 8996 7070 Email: copyright@bsigroup.com