BS ISO 24616:2012 # BSI Standards Publication # Language resources management — Multilingual information framework NO COPYING WITHOUT BSI PERMISSION EXCEPT AS PERMITTED BY COPYRIGHT LAW BS ISO 24616:2012 BRITISH STANDARD ### National foreword This British Standard is the UK implementation of ISO 24616:2012. The UK participation in its preparation was entrusted to Technical Committee TS/1, Terminology. A list of organizations represented on this committee can be obtained on request to its secretary. This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application. © The British Standards Institution 2012. Published by BSI Standards Limited 2012. ISBN 978 0 580 66449 6 ICS 01.020 Compliance with a British Standard cannot confer immunity from legal obligations. This British Standard was published under the authority of the Standards Policy and Strategy Committee on 30 September 2012. Amendments issued since publication Date Text affected BS ISO 24616:2012 # INTERNATIONAL STANDARD ISO 24616 First edition 2012-09-01 # Language resources management — Multilingual information framework Gestion des ressources langagières — Plateforme d'informations multilingues BS ISO 24616:2012 ISO 24616:2012(E) ### **COPYRIGHT PROTECTED DOCUMENT** © ISO 2012 All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester. ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org Published in Switzerland ### **Contents** Page | Forewo | ord | iν | |------------------------|--|----------| | 1 | Scope | . 1 | | 2 | Normative references | .1 | | 3 | Terms and definitions | .1 | | 4
4.1
4.2
4.3 | Specification principles | .2
.2 | | 5 | Metamodel specification | .2 | | 6 | MLIF compliance | .3 | | 7
7.1 | Metamodel adornment | . 3 | | 7.2
7.3 | General principles concerning the use of W3C generic attributes | .4 | | 7.4
7.5 | Recommended adornment for GroupC | | | 7.6 | Recommended and mandatory adornment for MonoC | | | 7.7
7.8 | Recommended adornment for SegC | | | 7.0
7.9 | Recommended online annotation adornment | | | 7.10 | Recommended adornment for localization | | | 7.11
7.12 | Recommended adornment for internationalization | | | 8 | Relation with other standards | | | Annex | A (informative) Example using MLIF for Computer-Assisted Translation (CAT) | .8 | | Annex | B (informative) Example: representing TMX data1 | 11 | | Annex | C (informative) Example of XLIFF data representation | 14 | | Annex | D (informative) Example: representing smilText data | 18 | | Annex | E (informative) Example of MLIF usage for subtitles (captioning) | 20 | | Annex | F (informative) Using MLIF for MAF data | 26 | | Annex | G (normative) Detailed specification | 27 | | Bibliog | raphy4 | 12 | ### **Foreword** ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2. The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote. Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. ISO 24616 was prepared by Technical Committee ISO/TC 37, *Terminology and other language and content resources*, Subcommittee SC 4, *Language resource management*. # Language resources management — Multilingual information framework ### 1 Scope This International Standard provides a generic platform for modelling and managing multilingual information in various domains: localization, translation, multimedia annotation, document management, digital library support, and information or business modelling applications. MLIF (multilingual information framework) provides a metamodel and a set of generic data categories [ISO 12620:2009] for various application domains. MLIF also provides strategies for the interoperability and/or linking of models including, but not limited to, XLIFF, TMX, smilText and ITS. ### 2 Normative references The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. ISO 12620:2009; Terminology and other language and content resources — Specification of data categories and management of a Data Category Registry for language resources ISO 8879, Information processing — Text and office systems —Generalized Markup Language (SGML) Extensible Markup Language. Fifth Edition, T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, F. Yergeau Editors, W3C Recommendation, 26 November 2008, http://www.w3.org/TR/xml ### 3 Terms and definitions For the purposes of this document, the following terms and definitions apply: ### 3.1 ### adornment data category attached to a component of a metamodel ### 3.2 ### inline code inline instructions inserted in a source document Note to entry: Native code can, for instance, provide presentational instructions (e.g. HTML codes). ### 3.3 ### subtitle textual versions of the dialog in films, television programs, video games, etc., usually displayed at the bottom of the screen ### 3.4 ### working language language in which linguistic sequences are expressed ### 4 Specification principles ### 4.1 Key standard used in the specification: Unified Modeling Language (UML) The MLIF specification complies with the modelling principles of UML as defined by the Object Management Group (OMG) [UML]. The specification uses the UML subset that is relevant for the purposes of MLIF. ### 4.2 Metamodel and adornment In line with Terminological Markup Framework (TMF) as defined in ISO 16642, MLIF defines a metamodel that is adorned by data categories, as defined in ISO 12620. ### 4.3 XML serialization Associated with the metamodel and its adornment, MLIF proposes a representation in XML called "XML serialization", in line with Extensible Markup Language (XML) as defined in ISO 8879. ### 5 Metamodel specification The MLIF metamodel is specified in the UML object diagram in Figure 1. Figure 1 — MLIF metamodel The MLIF metamodel is defined by the following seven "core components". These components are listed as follows, according to their XML serialization: - <MLDC> (Multilingual Data Collection), which represents a collection of data containing global information and several multilingual units; - <GI> (Global Information), which represents technical and administrative information applying to the entire multilingual data collection; - <GroupC> (Grouping components), which represents a sub-collection of multilingual data that have a common origin or purpose within a given project; - <MultiC> (Multilingual Component), which groups together all variants of a given textual content; - <MonoC> (Monolingual Component), which groups together information related to one language and is part of a multilingual component (MultiC); - <HistoC> (History Component), which traces modifications to the component to which it is anchored (i.e. versioning); - <SegC> (Segmentation Component), which allows any level of segmentation for textual information, possibly in a recursive manner. ### 6 MLIF compliance Any format compliant with this International Standard may use the MLIF metamodel in two possible ways: - by fully implementing the MLIF metamodel starting at the level of <MLDC>; - by specifically embedding MLIF-compliant information within another model, by implementing one of the lower level MLIF elements, namely <GroupC>, <MultiC> or <MonoC>. ### 7 Metamodel adornment ### 7.1 Introduction The MLIF XML serialization proposes a set of XML elements and XML attributes, which are described in the following sections, where the characters "<" and ">" delimit the name of the element. Following the TEI guidelines (http://www.tei-c.org), some attributes are specified by means of a class attribute, with the convention that the name of the class attribute is prefixed by "att." (e.g. "att.xlink"). The other XML attributes are listed with the convention that two quotes delimit the name of the attribute (e.g. "xml:lang"). The specifications in Annex G shall be applied. ### 7.2 General principles concerning the use of W3C generic attributes The following W3C attributes are to be used by all MLIF-compliant applications: - the attribute xml:lang shall be used in accordance with W3C recommendations to represent the working language of any relevant element and, in particular, shall be used systematically for any implementation of MonoC: - the attribute xml:id shall be used in accordance with W3C recommendations
to provide a unique identifier to an element of the MLIF metamodel. # **Recommended adornment for GI** <domain> ct> <source> <sourceType> <sourceLanguage> <sourceFormat> <targetLanguage> <formatVersion> <legalStatus> <creationTool> <creationToolVersion> — <creationDate> <creationIdentifier> <changeDate> <changeIdentifier> Recommended adornment for GroupC <groupType> Recommended adornment for MultiC <class> <changeDate> <changeIdentifier> <creationTool> <creationToolVersion> <creationIdentifier> <creationDate> <translationStatus> <matchQuality> | 7.6 | Recommended and mandatory adornment for MonoC | |-----|--| | | att.lang | | | <translationrole></translationrole> | | | <segmentation></segmentation> | | | att.xlink | | The | e language attribute is mandatory on MonoC. All other adornments are optional. | | 7.7 | Recommended adornment for SegC | | | <translationrole></translationrole> | | |

 | | | <endpairedtag></endpairedtag> | | | <genericgroupplaceholder></genericgroupplaceholder> | | | <pre><placeholder></placeholder></pre> | | | <genericplaceholder></genericplaceholder> | | | <translate></translate> | | | att.linguistic | | | att.xlink | | 7.8 | Recommended adornment for HistoC | | and | e HistoC component is a generic component that traces modifications made on the component to which it is thored (e.g. creation, modification and validation). In the MLIF metamodel, the HistoC component may be chored to the GI, MultiC or MonoC component. This makes it possible for all evolutions of, or transcements to, the component to be recorded. | | His | toC may be adorned by four elements: | | | <author></author> | | | <version></version> | | | <transaction></transaction> | | | <date></date> | | | | ### 7.9 Recommended online annotation adornment Multilingual text documents are often only one stage in a complex workflow that involves external document sources in a wide variety of formats. From these, it is often necessary to keep inline markup indicating the presentational features that have to be retained in a translated target document. To this end, MLIF-compliant applications should use the following elements, in relation to the <SegC> element, that map onto similar subsets in TMX and XLIFF: ### BS ISO 24616:2012 ISO 24616:2012(E) | |
beginPairedTag> | | | |---|--|--|--| | | <endpairedtag></endpairedtag> | | | | — | <genericgroupplaceholder></genericgroupplaceholder> | | | | | <genericplaceholder></genericplaceholder> | | | | | <pre><placeholder></placeholder></pre> | | | | 7.1 | 0 Recommended adornment for localization | | | | All t | the following elements should be used to provide localization-related information: | | | | | <translationrole></translationrole> | | | | | <translationstatus></translationstatus> | | | | 7.11 Recommended adornment for internationalization | | | | | | <translate></translate> | | | | 7.1 | 2 Recommended adornment for temporal synchronization | | | | | e following elements should be used when textual content has to be conveyed (in written or spoken form) ether with some constraints: | | | | | <duration></duration> | | | | |
begin> | | | | | <next></next> | | | | 8 | Relation with other standards | | | | Αs | with the "Terminological Markup Framework" TMF [ISO 16642] in terminology MLIF introduces a | | | As with the "Terminological Markup Framework" TMF [ISO 16642] in terminology, MLIF introduces a metamodel that combines with selected data categories as a way of ensuring interoperability between several multilingual applications and corpora. MLIF deals with multilingual corpora, multilingual fragments, and the translation relations between them. In each domain where MLIF is applicable, a specific granularity may be considered for segmentation and description. These two last processes may rely on MAF [ISO 24611], SynAF [ISO 24615] and TMF for morphological description, syntactical annotation and terminological description respectively. MLIF supports the construction and the interoperability of localization and translation memories resources, and also deals with the description of a metamodel for multilingual content. MLIF does not propose a closed list of description features. Rather, it provides a list of data categories that is much easier to update and extend. This list represents a point of reference for multilingual information in the context of various application scenarios. However, MLIF not only describes elementary linguistic segments (e.g. sentence, syntactical fragment, word and part of speech), but may also be used to represent document structure (e.g. title, abstract, paragraph and section). In addition, MLIF allows for external and internal links (annotations and references). MLIF is designed to provide a common framework that facilitates the interoperability with formats such as TMX (LISA OSCAR) and XLIFF (OASIS). MLIF can be seen as a parent of these formats, since both of them deal with multilingual data expressed in the form of segments or text units. Both can be stored, manipulated and translated in a similar manner. Examples of using MLIF are given in Annexes A to F. ### Annex A (informative) ### **Example using MLIF for Computer-Assisted Translation (CAT)** The main reason for lemma, part-of-speech and morphological features is to allow CAT tools based on translation memory to produce translations of new words and sentences that are not in the translation database. For example, using a translation memory that contains the English sentence "The meal is nice." and its translation in French "Le repas est bon.", current CAT tools such as SDL TRADOS¹⁾ Translator's Workbench are not able to provide the predicted translation for the sentence "The meals are nice." even though the word lemmas of "The meal is nice." and "The meals are nice." are matching. This weakness is due to the fact that these tools use limited linguistic criteria during the translation process. The data produced by TRADOS Translator's Workbench is as follows: ``` <tmx version="1.4"> <header creationtool="TRADOS Translator's Workbench for Windows" creationtoolversion="Edition 8 Build 863" segtype="sentence" o-tmf="TW4Win 2.0 Format" adminlang="EN-US" srclang="EN-GB" datatype="rtf" creationdate="20100528T144322Z" creationid="USER"/> <body> <tu creationdate="20100528T144322Z" creationid="USER"> <tuv xml:lang="EN-GB"> <seq>The meal is nice.</seq> </tuv> <tuv xml:lang="FR-FR"> <seg>Le repas est bon.</seg> </tuv> </tu> </body> </tmx> ``` To translate the sentence "The meals are nice.", an MLIF-compliant tool should implement the following procedure: Step-1 Represent in MLIF and add linguistic properties to all the words within the translation memory. Step-2 Run a part-of-speech tagger on the sentence in order to obtain the right morphosyntactic word categories. Step-3 Translate the lemmas using an English-to-French bilingual lexicon. ¹⁾ SDL TRADOS Translator's Workbench is an example of a suitable product available commercially. This information is given for the convenience of users of this International Standard and does not constitute an
endorsement by ISO of this product. Step-4 Consult a French lexicon of inflected forms in order to retrieve the correct inflected form using the lemma and morphological features. Step-5 Generate the translation of "The meals are nice." by substituting each English word with its French inflected form as follows: "The meals are nice." => "Les repas sont bons." The XML data will include a feature structure declaration defining a tagset (e.g. for "nS"), with a word segmentation and tagset defined in MAF: ``` <MLDC xmlns="http://www.tei-c.org/ns/1.0"> <tei:fLib> <tei:f xml:id="nS" name="grammaticalNumber" fVal="singular"/> <tei:f xml:id="gM" name="grammaticalGender" fVal="masculine"/> <tei:f xml:id="mP" name="verbFormMood" fVal="present"/> <tei:f xml:id="p1" name="person" fVal="thirdPerson"/> <tei:f xml:id="nS" name="grammaticalNumber" fVal="singular"/> </fLib> <GroupC> <MultiC> <creationIdentifier>SEMMAR</creationIdentifier> <creationDate>20090922T140653Z</creationDate> <MonoC xml:lang="en"> <SeqC>The meal is nice.</SeqC> </MonoC> <MonoC xml:lang="fr"> <SegC>Le repas est bon.</SegC> </MonoC> </MultiC> <MultiC class="translation"> <MonoC xml:lang="en"> <SegC class="word" lemma="the" pos="definiteArticle">The</SegC> <SegC class="word" lemma="meal" pos="commonNoun" tag="#nS">meal</SegC> <SeqC class="word" lemma="be" pos="verb" tag="#mP #p1 #nS">is</SegC> <SegC class="word" lemma="nice" pos="qualifierAdjective">nice</SegC> <SegC class="word" lemma="." pos="mainPunctuation">.</SegC> </MonoC> <MonoC xml:lang="fr"> <SeqC class="word" lemma="le" pos="definiteArticle" tag="#gM #nS">Le</SegC> <SegC class="word" lemma="repas" pos="commonNoun" tag="#gM #nS">repas</SegC> <SegC class="word" lemma="être" ``` ### BS ISO 24616:2012 ISO 24616:2012(E) ``` pos="verb" tag="#mP #p1 #nS">est</SegC> <SegC class="word" lemma="bon" pos="qualifierAdjective" tag="#gM #nS">bon</SegC> <SegC class="word" lemma="." pos="mainPunctuation">.</SegC> </MonoC> </MultiC> </GroupC> </MLDC></MLDC></moderate/ </mathrel=""></moderate/ // SegC > </moderate/ </moderate ``` # Annex B (informative) **Example: representing TMX data** ### **B.1 Introduction** TMX (Translation Memory eXchange) is the vendor-neutral open XML standard for the exchange of Translation Memory (TM) data created by computer-aided translation (CAT) and localization tools. The purpose of TMX is to allow easier exchange of translation memory data between tools and/or translation vendors with little or no loss of critical data during the process. TMX, which has been on the market since 1998, is a certifiable standard format. It was developed, and is maintained by, OSCAR (Open Standards for Container/Content Allowing Re-use), a LISA Special Interest Group. ### **B.2 Mapping TMX to MLIF** TMX is nearly isomorphic to the MLIF metamodel. The core elements of the TMX macro-structure map to MLIF as follows: |
<tmx> maps onto the <mldc> element;</mldc></tmx> | |---| |
<header> maps onto the <gi> element;</gi></header> | |
<body> is a container for the <tuv> element and maps onto the <groupc> element;</groupc></tuv></body> | |
<tu> maps onto the <multic> element;</multic></tu> | |
<tuv> maps onto the <monoc> element;</monoc></tuv> | |
<seg> maps onto the <segc> element;</segc></seg> | |
<hi> of type term maps onto the <segc> element of type term.</segc></hi> | Further TMX elements and attributes map onto MLIF elements as follows: - The "creationtool" attribute maps onto the <creationTool> element; - The "creationdate" attribute maps onto the <creationDate> element; - The "tuid" attribute maps onto the <creationIdentifier> element within MultiC. ### **B.3** Example of data The following example, based on TMX version 1.4, focuses on the multilingual units of a TMX document and does not translate all the details of the header. ``` <tmx version="1.4"> <header adminlang="en" creationdate="20040731T164933Z" creationtool="Heartsome TM Server" creationtoolversion="1.0.1" datatype="xml" o-tmf="unknown" segtype="block" srclang="*all*"/> <body> <tu creationdate="20020930T004233Z" tuid="1091303313515"> <tuv xml:lang="fr"> <seg>Le processus de <hi xml:id="X3" type="term">contrôle de qualité</hi> en dix étapes qu'il a créé il y a plus de 1300 ans est beaucoup plus complet et précis que ceux existant aujourd'hui.</seg> </tuv> <tuv xml:lang="en"> <seg>His 10-stage <hi corresp="#X3" type="term">quality control</hi> process initiated more than 1300 years ago is far more thorough and exacting than any existing today.</seg> </tuv> <tuv xml:lang="es"> <seg>El proceso de <hi corresp="#X3" type="term">control de calidad</hi> en diez pasos que inició hace más de 1300 años es mucho más completo y preciso que los que existen en la actualidad.</seg> </tuv> <tuv xml:lang="it"> <seg>ll suo metodo di <hi corresp="#X3" type="term">controllo di qualità</hi> in 10 fasi risale a più di 1300 anni fa ed è molto più accurato e preciso di qualsiasi metodo attuale.</seg> </tuv> <tuv xml:lang="ko"> <seg>그가 1300 여년 전 시작한 10 단계 <hi corresp="#X3" type="term">품질 관리</hi> 방법은 현존하는 것보다 훨씬 더 철저하고 정확하다.</seq> </tuv> </tu> </body> </tmx> ``` The corresponding representation in MLIF default representation is as follows: ``` <MLDC> <GI> <sourceFormat>TMX</sourceFormat> <formatVersion>1.4</formatVersion> <creationDate>20040731T164933Z</creationDate> <creationTool>Heartsome TM Server</creationTool> <creationToolVersion>1.0.1</creationToolVersion> </GI> <GroupC> <MultiC> ``` ``` <creationIdentifier>1091303313515</creationIdentifier> <creationDate>20020930T004233Z</creationDate> <MonoC xml:lang="fr"> <SegC>Le processus de <SegC xml:id="X3" type="term">contrôle de qualité</SegC> en dix étapes qu'il a créé il y a plus de 1300 ans est beaucoup plus complet et précis que ceux existant aujourd'hui.</SegC> </MonoC> <MonoC xml:lang="en"> <SegC>His 10-stage <SegC corresp="#X3" type="term">quality control</SegC> process initiated more than 1300 years ago is far more thorough and exacting than any existing today.</SegC> </MonoC> </MultiC> </GroupC> </MLDC> ``` ### **B.4 Example of TMX and MLIF interaction** Figure B.1 illustrates the interaction between TMX and MLIF. This process involves subsequent steps of extraction, translation and merging. The process begins with a TMX document containing linguistic content in English (en) and German (de). The extraction process (1) generates a "Skeleton File" (2) containing all TM formatting information, and an MLIF Document Linguistic Content (3) in which only relevant linguistic information is stored. As most translators (human beings or automatic software modules) work with TMX software-oriented tools, an XSL style-sheet makes it possible to transform an MLIF document into a TMX document. This file does not contain any formatting information. Once the translator has added the appropriate Japanese (ja) translation, another XSL style-sheet transforms the TMX document into an MLIF document (4). Finally, the new MLIF document (containing the Japanese translation) is merged with the "Skeleton File" to produce a new TMX formatted document (5). Figure B.1 — TMX and MLIF interaction ## Annex C (informative) ### **Example of XLIFF data representation** ### **C.1 Introduction** The purpose of the XLIFF is to define and promote the adoption of a specification for the interchange of localizable software- and document-based objects and related metadata. ### C.2 Mapping XLIFF to MLIF XLIFF differs from the MLIF metamodel in that it draws a clear distinction between source and target language for monolingual information. This is handled through the appropriate use of the <translationRole> data category in <MonoC> together with the language declarations (<sourceLanguage> and <targetLanguage>) in <GI>. The core elements of the XLIFF macro-structure map to MLIF as follows: - <xliff> maps onto the <MLDC> element; - <header> maps onto the <GI> element; - -- <body> is a container for the <tuv> element and maps onto the <GroupC> element; - the <phase> element maps onto the <HistoC> element; - <trans-unit> maps onto the <MultiC> element; - <source> maps onto the <MonoC> element and simultaneously sets the value of the <translationRole> element to <sourceLanguage>. The corresponding textual content is placed in a <SegC> element; - <target> maps onto the <MonoC> element and simultaneously sets the value of the <translationRole> element to <targetLanguage>. The corresponding textual content is placed in a <SegC> element; - <alt-trans> maps onto the <MultiC> element and simultaneously sets the value of the <translationStatus> element to alternate. XLIFF further elements and attributes map onto MLIF elements as follows: — The XLIFF tool attribute maps onto the <creationTool> element. ### C.3 Example of data The following example, based on XLIFF version 1.2, focuses on the bilingual part of an XLIFF document: ``` xmlns="urn:oasis:names:tc:xliff:document:1.2" version="1.2" xml:lang="en" xsi:schemaLocation="urn:oasis:names:tc:xliff:document:1.2 xliff-core-schema-1.2.xsd" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <file source-language="en" target-language="fr" datatype="winres" original="Sample1.rc"> <header/> <body> <group restype="dialog" resname="IDD_DIALOG1" coord="0;0;186;57" font="MS Sans Serif;8"> <trans-unit id="1" restype="caption"> <source xml:lang="en">Title</source> <target xml:lang="fr">Titre</target> </trans-unit> <trans-unit id="2" restype="label" resname="IDC STATIC" coord="8;4;19;8"> <source xml:lang="en">Path</source> <target xml:lang="fr">Chemin</target> </trans-unit> <trans-unit id="3" restype="check" resname="IDC CHECK1" coord="8;40;41;10"> <source xml:lang="en">Validate</source> xml:lang="fr">Valider</target> </trans-unit> <trans-unit id="4" restype="button" resname="IDOK" coord="129;7;50;14"> <source xml:lang="en">OK</source> <target xml:lang="fr">OK</target> ``` ``` </trans-unit>
<trans-unit id="5" restype="button" resname="IDCANCEL" coord="129;24;50;14"> <source xml:lang="en">Cancel</source> <target xml:lang="fr">Annuler</target> </trans-unit> </group> </body> </file> </xliff> <formatVersion>1.2</formatVersion> ``` The corresponding representation in MLIF default representation is as follows: ``` <MLDC> <GI> <sourceFormat>XLIFF</sourceFormat> </GI> <GroupC> <GI> <sourceLanguage>en</sourceLanguage> <targetLanguage>fr</targetLanguage> </GI> <groupType>file</groupType> <GroupC> <groupType>body</groupType> <MultiC xml:id="id1" > <MonoC xml:lang="en"> <translationRole>sourceLanguage/translationRole> <SegC>Title</SegC> </MonoC> <MonoC xml:lang="fr"> <translationRole>targetLanguage/translationRole> <SegC>Titre</SegC> </MonoC> </MultiC> <MultiC xml:id="id2"> <MonoC xml:lang="en"> <translationRole>sourceLanguage/translationRole> <SegC>Path</SegC> </MonoC> <MonoC xml:lang="fr"> <translationRole>targetLanguage/translationRole> <SegC>Chemin</SegC> </MonoC> </MultiC> <MultiC xml:id="id3"> <MonoC xml:lang="en"> <translationRole>sourceLanguage/translationRole> <SegC>Validate</SegC> </MonoC> <MonoC xml:lang="fr"> <translationRole>targetLanguage/translationRole> <SegC>Valider</SegC> </MonoC> </MultiC> ``` <MultiC xml:id="id4"> <MonoC xml:lang="en"> <translationRole>sourceLanguage/translationRole> <SegC>OK</SegC> </MonoC> <MonoC xml:lang="fr"> <translationRole>targetLanguage/translationRole> <SegC>OK</SegC> </MonoC> </MultiC> <MultiC xml:id="id5"> <MonoC xml:lang="en"> <translationRole>sourceLanguage/translationRole> <SegC>Cancel</SegC> </MonoC> <MonoC xml:lang="fr"> <translationRole>targetLanguage/translationRole> <SegC>Annuler</SegC> </MonoC> </MultiC> </GroupC> </GroupC> </MLDC> **17** ### Annex D (informative) ### **Example: representing smilText data** ### **D.1 Introduction** Within the SMIL 3.0 W3C recommendation (http://www.w3.org/TR/2008/REC-SMIL3-20081201), the smilText modules provide a text container element with an explicit content model for defining timed text (http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-text.html). smilText has the potential to be an important application context for MLIF as it associates and synchronizes multimedia and textual content. ### D.2 Using generic SMIL attributes in MLIF General timing mechanisms from the SMIL (Synchronized Multimedia Integration Language) recommendation may be used in MLIF-compliant content to provide synchronization mechanisms for textual content. The following SMIL elements are thus integrated in the overall MLIF specification: "begin", "next" and "dur". ### D.3 Simplified mapping of monolingual content The basic use case for articulating MLIF and SMIL involves producing a monolingual SMIL output from a multilingual representation expressed in an MLIF-compliant format. This results from the selection of the content corresponding to a selected language and its integration into one or several <smilText> containers, for instance embedded in a <seq> construct. When applicable, the existing timing information is propagated into the SMIL representation. In this context, the core mappings between MLIF and the smilText specification are as follows: - <MonoC> elements map onto <smilText> elements, together with the corresponding attributes (in particular, language); - <SegC> elements map univocally onto <tev> elements, together with the corresponding descriptors (in particular, temporal ones). The actual embedding of multilingual content within a single SMIL representation is based on the <switch> constructs within the following skeleton: ``` <switch xmlns:its="http://www.w3.org/2005/11/its"> <par systemLanguage="en"> <smilText xml:id="TE30" region="Contents" dur="12s" its:dir="ltr" xml:lang="en" its:translate="yes"> This is a sentence.</smilText> </par> <par systemLanguage="fr"> <smilText xml:id="TF30" region="Contents" dur="12s"</pre> ``` ``` its:dir="ltr" xml:lang="fr" its:translate="yes">Ceci est une phrase.</smilText> </par> </switch> ``` Other non-temporal attributes such as region are not covered by the MLIF specification, and should therefore be created separately from the MLIF-compliant structure. This mapping can be used conversely to generate MLIF-compliant content from a SMIL representation. The associated use case is typically the preparation of an MLIF-compliant structure that will later contain further translation(s). ### D.4 Mapping smilText to MLIF The core elements of smilText map to MLIF elements as follows²): - the <smilText> element functions as a logical and temporal structuring element that allows the inclusion of inline text content in a SMIL presentation. smilText can also be used as an external, stand-alone timed text format. This is achieved by using the SMIL 3.0 smilText profile; - the <tev> element defines a "temporal moment" within a block of smilText content; depending on the values of the begin or next attributes, it determines a scheduling time during which the associated text content (up to the following <tev> or <clear> element or the end of the smilText element) is rendered; - mapping to <SegC>, the <clear> element defines a "temporal moment" within a block of smilText content at which the full contents of the rendering area are cleared. The following SMIL attributes also map as follows: - the "dur" attribute maps onto the <duration> element; - the "begin" attribute maps onto the <begin> element; - the "next" attribute maps onto the <next> element. © ISO 2012 – All rights reserved ²⁾ These definitions are taken from the W3C SMIL recommandation: http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-text.html. ### Annex E (informative) ### **Example of MLIF usage for subtitles (captioning)** ### **E.1 Introduction** Subtitles are textual versions of the dialog in films, television programs, video games, etc., and are usually displayed at the bottom of the screen. They can be either, a written rendering of the dialog in the same language, or a written rendering of the dialog in a language other than that of the dialog itself. Additional information may be included in order to help viewers who are deaf and hard-of-hearing to follow the dialog [SUB]. Professional subtitlers usually work with specialized computer software and hardware where the video is stored digitally, making each individual frame instantly accessible. In addition to creating the subtitles, the subtitler usually specifies the exact positions where each subtitle shall appear and disappear. For cinema film, this task is traditionally done by separate technicians. The end result is a subtitle file containing the actual subtitles as well as position markers indicating when each subtitle appears and disappears. These markers are usually based on timecode if the work is for the electronic media (e.g. television, videos and DVDs) and on film length (measured in feet and frames) if the subtitles are to be used for traditional cinema film. ### E.2 Using MLIF to represent subtitling information There are several formats that may be used for subtitles. Some of them are de jure standards (e.g. [MPEG-4 TT]), while some others, although not being de jure standards, are currently being used by a large number of people all over the world (e.g. SRT Format – SubRip). SRT is probably the most popular external subtitle file format. All subtitle formats have to provide a way of synchronizing video frames with subtitles. It goes without saying, that synchronization means associating temporal markers to textual information. The following example is a very small fragment of a part of an SRT file: ### Fragment-1: ``` 1 00:00:20,000 --> 00:00:24,400 Subtitle number one... 2 00:00:24,600 --> 00:00:27,800 Subtitle number two... ``` This annex demonstrates how MLIF may be used for subtitles. Fragment-2 and Fragment-3 have been built in compliance with the latest SMIL specification, in particular smilText. The use of MLIF for dealing with multilingual subtitles is straightforward. It is easy to parse any of the proposed MLIF documents in order to obtain SRT files. However, depending on the underlying scenario (or workflow), the subtitling information may be represented in two different ways. The first MLIF way (Fragment-2) defines a single <MultiC> element, and inside this element, two <MonoC> elements are embedded as follows: ### Fragment-2: <MLDC> <GI/> <GroupC> <MultiC> <MonoC/> <MonoC/> </MultiC> </GroupC> </MLDC> The second MLIF way (Fragment-3) defines two <MultiC> elements, each containing a single <MonoC> element, with the corresponding outline: ### Fragment-3: <MLDC> <GI/> <GroupC> <MultiC> <MonoC/> </MultiC> <MultiC> <MonoC/> </MultiC> </force> </force> </force> </MLDC> The first approach may be more convenient for a pair-to-pair translation process, while the second way may be more convenient for filtering and selecting of one language (for example, a monolingual block can easily be isolated). Other implementations may occur depending on how one wants to elicit temporal information associated with the presentation of subtitles. For instance, the following examples use the SMIL attributes in two different ways, with either an <end> (Fragment-4) or a <duration> (Fragment-5). ### Fragment-4 ``` <MLDC> <GroupC> <MultiC> <MonoC xml:lang="en">
<begin>00:12:28,928</begin> <end>00:12:32,515</end> <SegC>- Good morning.</SegC> <SegC>- Dr Lecter, my name is Clarice Starling.</SegC> </MonoC> <MonoC xml:lang="fr">
<begin>00:12:01,800</begin> <end>00:12:05,270</end> <SegC>- Bonjour.</SegC> <SegC>- Dr Lecter, je m'appelle Clarice Starling.</SegC> </MonoC> </MultiC> </GroupC> </MLDC> ``` 21 ### Fragment-5 ``` <MLDC> <GroupC> <MultiC> <MonoC xml:lang="en">
<begin>00:12:28,928</begin> <duration>3.607</duration> <SegC>- Good morning.</SegC> <SegC>- Dr Lecter, my name is Clarice Starling.</SegC> </MonoC> <MonoC xml:lang="fr">
<begin>00:12:01,800</begin> <duration>3.47</duration> <SegC>- Bonjour.</SegC>
<SegC>- Dr Lecter, je m'appelle Clarice Starling.</SegC> </MonoC> </MultiC> </GroupC> </MLDC> ``` ### E.3 Full example ### E.3.1 Introduction The following example associates an SRT representation with a compliant MLIF-based format. ### E.3.2 SRT source files ### E.3.2.1 English subtitles The English subtitles are as follows: ``` 1 00:00:32,560 --> 00:00:35,119 The world is changed. 2 00:00:35,640 --> 00:00:38,200 I see it in the water. ``` ### E.3.2.2 French subtitles The French subtitles are as follows: ``` 1 00:00:32,560 --> 00:00:35,119 Le monde a changé. 2 00:00:35,640 --> 00:00:38,200 Je le vois dans l'eau. ``` ### E.4 MLIF representation - paired sentences Based on Fragment-2 structure, the resulting MLIF data are as follows: ``` <MLDC> <GI> <HistoC> <date>2008-11-30T17:31:57+01:00</date> <author>Samuel CRUZ-LARA</author> <version>0.1</version> </HistoC> </GI> <GroupC> <MultiC class="subtitles"> <MonoC xml:lang="en"> <SegC xml:id="id1en"> <SegC class="sentence">
<begin>00:00:32.560</begin> <end>00:00:35.119</end> <SegC class="word">The</SegC> <SegC class="word">world</SegC> <SegC class="word">is</SegC> <SegC class="word">changed</SegC> <SegC class="punctuation">.</SegC> </SegC> </SegC> <SegC xml:id="id2en"> <SegC class="sentence">
<begin>00:00:35.640</begin> <end>00:00:38.200</end> <SegC class="word">I</SegC> <SeqC class="word">feel</SeqC> <SegC class="word">it</SegC> <SegC class="word">in</SegC> <SegC class="word">the</SegC> <SegC class="word">water</SegC> <SegC class="punctuation">.</SegC> </SegC> </SegC> </MonoC> <MonoC xml:lang="fr"> <SegC xml:id="id1fr"> <SegC class="sentence">
<begin>00:00:32.560</begin> <end>00:00:35.119</end> <SegC class="word">Le</SegC> <SegC class="word">monde</SegC> <SegC class="word">a</SegC> <SegC class="word">changé</SegC> <SegC class="punctuation">.</SegC> </SegC> </SegC> <SegC xml:id="id2fr"> <SegC class="sentence">
<begin>00:00:35.640</begin> <end>00:00:38.200</end> <SegC class="word">Je</SegC> <SegC class="word">le</SegC> <SegC class="word">vois</SegC> <SegC class="word">dans</SegC> ``` © ISO 2012 – All rights reserved ``` <SegC class="word">|'</SegC> <SegC class="word">eau</SegC> <SegC class="punctuation">.</SegC> </SegC> </SegC> </MonoC> </MultiC> </GroupC> </MLDC></MLDC></media="monospace"></media="monospace"></media="monospace"></media="monospace"></media="monospace"></media="monospace"></media="monospace"></media="monospace"></media="monospace"></media="monospace"></media="monospace"></media="monospace"></media="monospace"></media="monospace"></media="monospace"></media="monospace"></media="monospace"></media="monospace"></media="monospace"></media="monospace"></media="monospace"></media="monospace"></media="monospace"></media="monospace"></media="monospace"></media="monospace"></media="monospace"></media="monospace"></media="monospace"></media="monospace"></media="monospace"></media="monospace"></media="monospace"></media="monospace"></media="monospace"></media="monospace"></media="monospace"></media="monospace"></media="monospace"></media="monospace"></media="monospace"></media="monospace"></media="monospace"></media="monospace"></media="monospace"></media="monospace"></media="monospace"></media="monospace"></media="monospace"></media="monospace"></media="monospace"></media="monospace"></media="monospace"></media="monospace"></media="monospace"></media="monospace"></media="monospace"></media="monospace"></media="monospace"></media="monospace"></media="monospace"></media="monospace"></media="monospace"></media="monospace"></media="monospace"></media="monospace"></media="monospace"></media="monospace"></media="monospace"></media="monospace"></media="monospace"></media="monospace"></media="monospace"></media="monospace"></media="monospace"></media="monospace"></media="monospace"></media="monospace"></media="monospace"></media="monospace"></media="monospace"></media="monospace"></media="monospace"></media="monospace"></media="monospace"></media="monospace"></media="monospace"></media="monospace"></media="monospace"></media="monospace"></media="monospace"></media="monospace"></media="monospace"></media="monos ``` ### E.5 MLIF representation - captioning scenario Based on Fragment-3 structure, the resulting MLIF data are as follows: ``` <MLDC> <GI> <HistoC> <date>2008-11-30T17:31:57+01:00</date> <author>Samuel CRUZ-LARA</author> <version>0.1</version> </HistoC> </GI> <GroupC> <MultiC class="subtitles"> <MonoC xml:lang="en"> <SegC xml:id="id1en"> <SegC class="sentence">
<begin>00:00:32.560</begin> <end>00:00:35.119</end> <SegC class="word">The</SegC> <SegC class="word">world</SegC> <SegC class="word">is</SegC> <SegC class="word">changed</SegC> <SegC class="punctuation">.</SegC> </SegC> </SegC> <SegC xml:id="id2en"> <SegC class="sentence">
<begin>00:00:35.640</begin> <end>00:00:38.200</end> <SegC class="word">I</SegC> <SeqC class="word">feel</SeqC> <SegC class="word">it</SegC> <SegC class="word">in</SegC> <SegC class="word">the</SegC> <SegC class="word">water</SegC> <SegC class="punctuation">.</SegC> </SegC> </SegC> </MonoC> </MultiC> <MultiC class="subtitles"> <MonoC xml:lang="fr"> <SegC xml:id="id1fr"> <SegC class="sentence">

 degin>00:00:32.560</begin> <end>00:00:35.119</end> <SegC class="word">Le</SegC> ``` ``` <SegC class="word">monde</SegC> <SegC class="word">a</SegC> <SegC class="word">changé</SegC> <SegC class="punctuation">.</SegC> </SegC> </SegC> <SegC xml:id="id2fr"> <SegC class="sentence">

begin>00:00:35.640</begin> <end>00:00:38.200</end> <SegC class="word">Je</SegC> <SegC class="word">le</SegC> <SegC class="word">vois</SegC> <SegC class="word">dans</SegC> <SegC class="word">|'</SegC> <SegC class="word">eau</SegC> <SegC class="punctuation">.</SegC> </SegC> </SegC> </MonoC> </MultiC> </GroupC> </MLDC> ``` © ISO 2012 - All rights reserved 25 # **Annex F** (informative) Using MLIF for MAF data MLIF may be used to include pre-existent non-MLIF data like those produced by a Natural Language processor. The aim of the following example is to show how to represent a standoff annotation coming from a morphosyntactic process. The example input is "to eventually decide", in which the verbal form is discontinuous. The challenge is to preserve the ordering position of each element in the flow of word forms. In the following MLIF XML fragment, the MAF XML elements are included without any transformation. ### Annex G (normative) ### **Detailed specification** ### G.1 General The main body of this International Standard specifies the general principles of the structure and the application of MLIF. This annex specifies in detail the different MLIF classes and the relationships to which they belong. In this specification, each component of the meta-model is implemented as a specific element bearing the appropriate relations to the other elements implementing the MLIF metamodel. This specification also describes a series of data categories which should be seen as normative for any MLIF application. It may also be found in the ISO/TC 37 datacategory registry (under www.isocat.org). ### G.2 Model classes ### G.2.1 model.GIPart ### model.GIPart Groups elements that can be attached at GI level. Used by <GI> Members <changeDate> <changeIdentifier> <creationDate> <creationIdentifier> <creationToolVers ion> <domain> <formatVersion> <legalStatus> <project> <source> <sourceFormat> <sourceLanguage> <sourceType> <targetLanguage> ### G.2.2 model.GroupCPart ### model.GroupCPart Groups elements that can be attached at GroupC level. ### G.2.3 model.HistoCPart ### model.HistoCPart Groups elements that can be attached at HistoC level. Used by <HistoC> Members <author> <date> <transaction> <version> © ISO 2012 – All rights reserved 27 ### G.2.4 model.I18N ### model.I18N Groups together all the information that may be used for internationalization applications. Used by Members <translate> ### G.2.5 model.L10N ### model.L10N (Localization related elements) Represents information for localization purposes. Used by Members<matchQuality> <translationRole> <translationStatus>NoteThe main input comes from the XLIFF specification ### G.2.6 model.MonoCPart ### model.MonoCPart Groups elements that can be attached at MonoC level. Used by <MonoC> Members <segmentation> <translationRole> ### G.2.7 model.MultiCPart ### model.MultiCPart Groups elements that can be attached at MultiC level. Used by <MultiC> Members <changeDate> <changeIdentifier> <class> <creationDate> <creationIdentifier> <creationTool> <creation ToolVersion> <translationStatus> ### G.2.8 model.SegCPart ### model.SegCPart Groups elements that can be attached at SegC level. Used by <SegC> Members model.inline [<beginPairedTag> <endPairedTag> <genericGroupPlaceholder> <genericPlaceholder> <placeholder> | <segmentation> <translate> ### G.2.9 model.inline ### model.inline (Inline elements) Groups information that can appear inside a SegC component. With the exception of <hi> and <sub> element, they all enclose or replace any formatting or control codes that is not text but resides within the SegC component. Used by model.SegCPart Members
 <br/ Note Source: TMX, also used in XLIFF ### G.2.10 model.temporal ### model.temporal Groups together all elements and attributes required for synchronizing temporal information and textual content. Note Most of the elements described for this class are attributes in the SMIL specification. ### G.2.11 model.workflow ### model.workflow (Workflow related elements) Relates to the creation and management of content. ### Used by $\begin{tabular}{ll} \textbf{Members} & \end{tabular} \end{tabula$ ion> ### G.3 Attribute classes ### G.3.1 att.classed ### att.classed Specifies a hierarchical description of the component to which it is anchored. Members<MonoC> <MultiC> <SegC>AttributesclassStatusOptional **Datatype** text © ISO 2012 – All rights reserved ### G.3.2 att.id ### att.id Provides a general definition of xml:id
for the unique identification of components in the MLIF metamodel. **Members** <HistoC> <MonoC> <MultiC> <SegC> Attributes xml:id Status Optional **Datatype** text corresp Points to an equivalent textual segment in another language Status Optional Datatype text **Note** This attribute is equivalent to the TEI corresp attribute. ### G.3.3 att.lang ### att.lang Provides a general definition of xml:lang for the description of working language in the MLIF metamodel and corresponding data categories when applicable. Members <MonoC> Attributes xml:lang Status Optional **Datatype** text ### G.3.4 att.linguistic ### att.linguistic Determines linguistic attributes. Members <SegC> Attributes pos (part of speech) Indicates the grammatical category of the word being tagged. Status Optional Datatype text lemma Provides an abstract reference to the lexical entry that can be associated to the word being tagged. Status Optional Datatype text tag Specifies the morphological feature(s) attribute that relates to the word form being tagged. The value shall point to the definition of feature structures. Status Optional Datatype text ### G.3.5 att.xlink ### att.xlink Provides the definition of all XLink attributes needed for MLIF. Members <MonoC> <SegC> **Attributes** Labels the resource of locator element. label > **Status** Optional **Datatype** text Note XLink traversal attribute href Supplies the data to find a remote resource. > **Status** Optional **Datatype** text Specifies a document (URI) and an XPointer Note Indicates the XLink element type. type > **Status** Optional > > simple Creates a simple link. Sample values include extended Creates an extended link. > locator Creates a locater link that points to a resource. arc Creates an arc with multiple resources and various traversal paths. resource Creates a resource link, which indicates a specific resource. title Creates title link. Such elements are useful for internationalization purposes. title Allows a human-readable description. > **Status** Optional **Datatype** text from Identifies the origin resource of an arc. > **Status** Optional **Datatype** text Note XLink transversal attribute Identifies the destination resource of an arc. to > **Status** Optional **Datatype** text XLink traversal attribute Note # **G.4 Elements** #### G.4.1 <GI> <GI> (Global Information) Represents technical and administrative information applying to the entire multilingual data collection. Used by <GroupC> <MLDC> <HistoC> <changeDate> <changeIdentifier> <creationDate> <creationIdentifier> <creationTool> <creation</pre> May contain onToolVersion> <domain> <formatVersion> <legalStatus> <project> <source> <sourceFormat> <source eLanguage> <sourceType> <targetLanguage> # BS ISO 24616:2012 ISO 24616:2012(E) **Declaration** element GI { (model.GIPart | <HistoC>)* } **Note** Example: title of the data collection, revision history, context,... # G.4.2 < Group C> <GroupC> (Grouping components) Represents a sub-collection of multilingual data having a common origin or purpose within a given project. Used by <GroupC> <MLDC> May contain <GI> <GroupC> <MultiC> <groupType> **Declaration** element GroupC { <GI>?, model.GroupCPart*, (<GroupC>* | <MultiC>*) } **Note** The model for GroupC does not allow for a mixture of GroupC and SegC. #### G.4.3 <HistoC> <HistoC> (History Component) Traces modifications on the component to which it is anchored (i.e. versioning). In addition to global attributes att.id (@id, @corresp) Used by <GI> <MonoC> <MultiC> May contain<author> <date> <transaction> <version>Declarationelement HistoC { att.id, model.HistoCPart* } **Note** Example: author of the modification, date of the modification, version number,... # G.4.4 < MLDC > <MLDC> (Multilingual Data Collection) Represents a collection of data containing global information and several multilingual units. Used by May contain <GI> <GroupC> **Declaration** element MLDC { <GI>?, <GroupC>* } #### G.4.5 < Mono C> **<MonoC>** (Monolingual Component) Groups information related to one language and is part of a multilingual component (MultiC). ``` In addition to global att.lang (@lang) att.id (@id, @corresp) att.xlink (@label, @href, @type, @title, @from, attributes @to) att.classed (@class) <MultiC> Used by May contain <HistoC> <SegC> <segmentation> <translationRole> Declaration element MonoC att.lang, att.id, att.xlink, att.classed. <HistoC>*. (<SegC> | model.MonoCPart)* ``` #### G.4.6 < MultiC> < MultiC> (Multilingual Component) Groups together all variants of a given textual content. ``` In addition to global ``` attributes att.id (@id, @corresp) att.classed (@class) Used by <GroupC> <MultiC> creationIdentifier> <creationTool> <creationToolVersion> <translationStatus> **Declaration** element MultiC ``` { att.id, att.classed, <HistoC>*, model.MultiCPart*, <MonoC>*, <MultiC>* } ``` # G.4.7 <SegC> <SegC> (Segmentation Component) Allows any level of segmentation for textual information, possibly in a recursive manner. In addition to global attributes att.id (@id, @corresp) att.xlink (@label, @href, @type, @title, @from, @to) att.classed (@class) att.linguistic (@pos, @lemma, @tag) Used by <MonoC> <SegC> older> <placeholder> <segmentation> <translate> **Declaration** element SeqC { att.id, att.xlink, att.classed, att.linguistic, (text | <SegC> | model.SegCPart)* } #### G.4.8 <author> <author> Names the person responsible for the creation of the content. This element maps onto the "originator" data category [ISO 12620:2009; TC37 DCR] as available from ISOCat. Used bymodel.HistoCPartMay containCharacter data onlyDeclarationelement author { text } # **G.4.9 <begin>**
 Used by model.temporal May contain Character data only Declaration element begin { text } #### G.4.10 <beginPairedTag> **<beginPairedTag>** (Begin paired tag) Delimits the beginning of a paired sequence of inline codes. Each **<beginPairedTag>** has a corresponding <endPairedTag> element within the segment. Used by model.inline May contain Character data only **Declaration** element beginPairedTag { text } Note Implemented as
bpt> in TMX and XLIFF # G.4.11 <changeDate> <changeDate> (Change date) Specifies the date of the last modification of the encompassing component in ISO 8601 format. This element maps onto the "modification date" data category [ISO 12620:2009; TC37 DCR] as available from ISOCat. Used by model.GIPart model.MultiCPart model.workflow May contain Character data only **Declaration** element changeDate { text } Note cf. creationDate #### G.4.12 <changeldentifier> <changeIdentifier> (Change identifier) Specifies the identifier of the user who last modified the encompassing component. This element maps onto the "updater" data category [ISO 12620:2009; TC37 DCR] as available from ISOCat. Used by model.GIPart model.MultiCPart model.workflow May contain Character data only **Declaration** element changeldentifier { text } #### G.4.13 <class> <class> Specifies a hierarchical description of the component to which it is anchored. Used bymodel.MultiCPartMay containCharacter data onlyDeclarationelement class { text } # G.4.14 <creationDate> <creationDate> (Creation date) Specifies the date of creation of the element in ISO 8601 format. This element maps onto the "origination date" data category [ISO 12620:2009; TC37 DCR] as available from ISOCat. Used by model.GIPart model.MultiCPart model.workflow May contain Character data only **Declaration** element creationDate { text } **Example** For example, date="20020125T210600Z", is January 25, 2002 at 9:06pm GMT, January 25, 2002 at 2:06pm US Mountain Time and January 26, 2002 at 6:06am Japan time Note Date in [ISO 8601] Format. The recommended pattern to use is: YYYYMMDDThhmmssZ where: YYYY is the year (4 digits), MM is the month (2 digits), DD is the day (2 digits), hh is the hour (2 digits), mm is the minute (2 digits), ss is the second (2 digits), and Z is UTC time. #### G.4.15 <creationIdentifier> <creationIdentifier> (Creation identifier) Specifies the identifier of the user who created the encompassing component. This element maps onto the "originator" data category [ISO 12620:2009; TC37 DCR] as available from ISOCat. Used by model.GIPart model.MultiCPart model.workflow May contain Character data only **Declaration** element creationIdentifier { text } #### G.4.16 <creationTool> <creationTool> (Creation tool) Identifies the tool that created the content of the encompassing component. **Used by** model.GIPart model.MultiCPart model.workflow May contain Character data only **Declaration** element creationTool { text } #### G.4.17 <creationToolVersion> <creationToolVersion> (Creation tool version) Identifies the version of the tool that created the monolingual or multilingual content. Its possible values are not specified by the standard but each tool provider shall publish the string identifier it uses. Used by model.GIPart model.MultiCPart model.workflow May contain Character data only **Declaration** element creationToolVersion { text } #### G.4.18 <date> <date> Specifies the date of the creation of HistoC in ISO 8601 format. Used bymodel.HistoCPartMay containCharacter data onlyDeclarationelement date { text } Note Date in [ISO 8601] Format. The recommended pattern to use is: YYYYMMDDThhmmssZ Where: YYYY is the year (4 digits), MM is the month (2 digits), DD is the day (2 digits), hh is the hours (2 digits), mm is the minutes (2 digits), ss is the second (2 digits), and Z is UTC time. #### **G.4.19** <domain> <domain> Specifies the domain on which the MLDC is dependent. Used by model.GIPart May containCharacter data onlyDeclarationelement domain { text } #### G.4.20 <duration> <duration> Expresses the duration of the encompassing component (SegC, MonoC or MultiC) specified as a simple time value. Used bymodel.temporalMay containCharacter data onlyDeclarationelement duration { text } #### G.4.21 <end> <end> Defines an absolute time, when the encompassing component stops being active. Used by
model.temporal May contain Character data only Declaration element end { text } #### G.4.22 <endPairedTag> <endPairedTag> (End paired tag) Delimits the end of a paired sequence of inline codes. Each <endPairedTag> has a corresponding <beginPairedTag> element within the segment. Used by model.inline May contain Character data only **Declaration** element endPairedTag { text } Note Implemented as <ept> in TMX and XLIFF #### G.4.23 <formatVersion> <formatVersion> Indicates, when applicable, the corresponding version of the format from which MLIF data have been generated from an MLIF-compliant application. This information shall be used in combination with sourceFormat. Used by model.GIPart May contain Character data only **Declaration** element formatVersion { text } # G.4.24 <genericGroupPlaceholder> <genericGroupPlaceholder> (Generic group placeholder) Replaces any inline code of the original document that has a beginning and an end, does not overlap other paired inline codes and can be moved within its parent structural element. Used by model.inline May contain Character data only Declaration element genericGroupPlaceholder { text } Note Implemented as <g> in TMX and XLIFF # G.4.25 <genericPlaceholder> <genericPlaceholder> (Generic placeholder) Replaces any inline code of the original document. Used by model.inline May contain Character data only Declaration element genericPlaceholder { text } Note Implemented as <x> in TMX and XLIFF # G.4.26 <groupType> **<groupType>** (Group type) Specifies the rationale for grouping MultiC information together. Used by model.GroupCPart May contain Character data only **Declaration** element groupType { text } # G.4.27 < legalStatus> legalStatus> Describes the legal status of the organization that is involved in creating, managing or providing access to a resource or a tool/service. Used by model.GIPart May contain Character data only **Declaration** element legalStatus { text } # G.4.28 <matchQuality> <matchQuality> (Match quality) Indicates the match quality of the alternate translation, possibly with a score expressed in percentage or with an arbitrary value (e.g. match-quality="high"). Used by model.L10N May contain Character data only **Declaration** element matchQuality { text } #### G.4.29 <next> <next> Defines a relative start time, relative to the effective begin time of the parent MonoC component, or the most recently activated SegC component within the parent. Used bymodel.temporalMay containCharacter data onlyDeclarationelement next { text } # G.4.30 <placeholder> <placeholder> (Placeholder) Delimits a sequence of inline codes in the segment that contain embedded translatable text, or the initial or ending portion of a paired tag that does not have its matching code within the segment. Used by model.inline May contain Character data only **Declaration** element placeholder { text } Note Implemented as <ph> in TMX and XLIFF # G.4.31 ct> Used by model.GIPart May contain Character data only Declaration element project { text } #### G.4.32 <segmentation> <segmentation> Specifies the pointers in time or sequence that indicate the segmentation process. **Used by** model.SegCPart model.MonoCPart May contain Empty element #### G.4.33 <source> <source> Specifies a complete citation of the bibliographic information pertaining to a document or other resource. [ISO 12620:1999] Used by model.GIPart May containCharacter data onlyDeclarationelement source { text } Note Reference to a resource from which the present resource is derived. #### G.4.34 <sourceFormat> <sourceFormat> Indicates the format from which MLIF data have been generated from an MLIF-compliant application. Used by model.GIPart May contain Character data only **Declaration** element sourceFormat { text } # G.4.35 <sourceLanguage> <sourceLanguage> Specifies (in a translation-oriented language resource or terminological database) the original language of this text. [ISO 12620:1999] Used by model.GIPart © ISO 2012 – All rights reserved # BS ISO 24616:2012 ISO 24616:2012(E) May contain Character data only **Declaration** element sourceLanguage { text } #### G.4.36 <sourceType> <sourceType> Specifies (in multilingual and translation-oriented language resource or terminology management) the kind of text used to document the selection of lexical or terminological equivalents, collocations, and the like. Used by model.GIPart May contain Character data only **Declaration** element sourceType { text } Note Both parallel and background texts serve as sources for information used in documenting multilingual terminology entries. # G.4.37 <targetLanguage> <targetLanguage> Specifies (in a translation-oriented language resource or terminology database) the language into which the original text is translated. Used by model.GIPart May contain Character data only **Declaration** element targetLanguage { text } #### G.4.38 <transaction> <transaction> Represents one of the steps involved in the creation, approval, and use of a specific component (approval, check, exportation, importation, input, modification, origination, standardization, userAccess, withdrawal). Used by model.HistoCPart May contain Character data only **Declaration** element transaction { text } #### G.4.39 <translate> <translate> Expresses information about whether the content of encompassing SegC component shall be translated or not. The range of values is "yes" (translatable) and "no" (not translatable). Used by model.I18N model.SegCPart May contain Empty element #### G.4.40 <translationRole> <translationRole> (Translation role) Determines whether the encompassing MonoC component corresponds to a source language or a target language in a translation process. Used by model.L10N model.MonoCPart May contain Empty element #### G.4.41 <translationStatus> <translationStatus> (Translation status) Indicates whether the MultiC component has a specific status with regard to the translation process. One of these values may be alternate. Used by model.L10N model.MultiCPart May contain Empty element # G.4.42 <version> <version> Determines a unique and unambiguous number used for versioning purposes. Used bymodel.HistoCPartMay containCharacter data onlyDeclarationelement version { text } # **Bibliography** - [1] The Object Management Group (OMG); The Unified Modeling Language (UML) Version 2.3. May 2010 - [2] TEI Consortium, eds. *Guidelines for Electronic Text Encoding and Interchange*. November 1, 2007. http://www.tei-c.org/P5/ - [3] RUMBAUGH, J., JACOBSON, I. and BOOCH, G. *The unified modeling language reference manual*, 2nd ed., Addison Wesley, 2004 - [4] Wikipedia http://en.wikipedia.org/wiki/Subtitle_(captioning) on 2nd October 2009 - [5] ISO 24611, Language Resource Management Morpho-syntactic Annotation Framework - [6] ISO 12620:1999, Computer applications in terminology Data categories - [7] ISO 16642:2003, Computer applications in terminology Terminological markup framework - [8] ISO 24615, Language resource management Syntactic annotation framework (SynAF) - [9] ISO 8601:2004, Data elements and interchange formats Information interchange Representation of dates and times - [10] W3C, Date and Time Formats: http://www.w3.org/TR/NOTE-datetime on 7th May 2010 - [11] ISO/IEC 14496-17:2006, Information technology Coding of audio-visual objects Part 17: Streaming text format - [12] Organization for the Advancement of Structured Standards (OASIS); XML Localization Interchange File Format (XLIFF) Version 1.2. 1st February 2008 - [13] Open Standard Codes and Routines (OSCAR); *The Translation Memory Exchange (TMX) Version* 1.4b. April 2004he Localisation Industry Standards Association (LISA)³⁾ ³⁾ In March 2011 the Localization Industry Standards Association (LISA) was declared insolvent. As a result, LISA's portfolio of standards has been authorized to be posted under a Creative Commons Attribution 3.0 License that allows for reuse and creation of derivative works based on the LISA standards. Note that LISA has designated the European Telecommunications Standards Institute (ETSI) Localization Industry Standards (LIS) Industry Specification Group (ISG) as its successor organization for its standards portfolio. More information on the position of these standards in the ETSI environment will be available after August 2011. Price based on 42 pages # **British Standards Institution (BSI)** BSI is the independent national body responsible for preparing British Standards and other standards-related publications, information and services. It presents the UK view on standards in Europe and at the international level. BSI is incorporated by Royal Charter. British Standards and other standardisation products are published by BSI Standards Limited. # Revisions British Standards and PASs are periodically updated by amendment or revision. Users of British Standards and PASs should make sure that they possess the latest amendments or editions. It is the constant aim of BSI to improve the quality of our products and services. We would be grateful if anyone finding an inaccuracy or ambiguity while using British Standards would inform the Secretary of the technical committee responsible, the identity of which can be found on the inside front cover. Similary for PASs, please notify BSI Customer Services. Tel: +44 (0)20 8996 9001 Fax: +44 (0)20 8996 7001 BSI offers BSI Subscribing Members an individual updating service called PLUS which ensures that subscribers automatically receive the latest editions of British Standards and PASs. Tel: +44 (0)20 8996 7669 Fax: +44 (0)20 8996 7001 Email: plus@bsigroup.com # **Buying standards** You may buy PDF and hard copy versions of standards directly using a credit card from the BSI Shop on the website **www.bsigroup.com/shop.** In addition all orders for BSI, international and foreign standards publications can be addressed to BSI Customer Services. Tel: +44 (0)20 8996 9001 Fax: +44 (0)20 8996 7001 Email:
orders@bsigroup.com In response to orders for international standards, BSI will supply the British Standard implementation of the relevant international standard, unless otherwise requested. # Information on standards BSI provides a wide range of information on national, European and international standards through its Knowledge Centre. Tel: +44 (0)20 8996 7004 Fax: +44 (0)20 8996 7005 Email: knowledgecentre@bsigroup.com BSI Subscribing Members are kept up to date with standards developments and receive substantial discounts on the purchase price of standards. For details of these and other benefits contact Membership Administration. Tel: +44 (0)20 8996 7002 Fax: +44 (0)20 8996 7001 Email: membership@bsigroup.com Information regarding online access to British Standards and PASs via British Standards Online can be found at www.bsigroup.com/BSOL Further information about British Standards is available on the BSI website at www.bsi-group.com/standards # Copyright All the data, software and documentation set out in all British Standards and other BSI publications are the property of and copyrighted by BSI, or some person or entity that own copyright in the information used (such as the international standardisation bodies) has formally licensed such information to BSI for commerical publication and use. Except as permitted under the Copyright, Designs and Patents Act 1988 no extract may be reproduced, stored in a retrieval system or transmitted in any form or by any means – electronic, photocopying, recording or otherwise – without prior written permission from BSI. This does not preclude the free use, in the course of implementing the standard, of necessary details such as symbols, and size, type or grade designations. If these details are to be used for any other purpose than implementation then the prior written permission of BSI must be obtained. Details and advice can be obtained from the Copyright & Licensing Department. Tel: +44 (0)20 8996 7070 Email: copyright@bsigroup.com #### BSI 389 Chiswick High Road London W4 4AL UK Tel +44 (0)20 8996 9001 Fax +44 (0)20 8996 7001 www.bsigroup.com/standards