
BSI Standards Publication

BS ISO 24610-2:2011

Language resource
management —
Feature structures
Part 2: Feature system declaration

BS ISO 24610-2:2011 BRITISH STANDARD

National foreword

This British Standard is the UK implementation of ISO 24610-2:2011.

The UK participation in its preparation was entrusted to
Technical Committee TS/1, Terminology.

A list of organizations represented on this committee can be
obtained on request to its secretary.

This publication does not purport to include all the necessary
provisions of a contract. Users are responsible for its correct
application.

© The British Standards Institution 2013.
Published by BSI Standards Limited 2013.

ISBN 978 0 580 64013 1

ICS 01.140.20

Compliance with a British Standard cannot confer immunity
from legal obligations.

This British Standard was published under the authority of the
Standards Policy and Strategy Committee on 31 January 2013.

Amendments issued since publication

Date Text affected

BS ISO 24610-2:2011

Reference number
ISO 24610-2:2011(E)

© ISO 2011

INTERNATIONAL
STANDARD

ISO
24610-2

First edition
2011-10-01

Language resource management —
Feature structures —

Part 2:
Feature system declaration

Gestion des ressources langagières — Structures de traits —

Partie 2: Déclaration de système de structures de traits

http://dx.doi.org/10.3403/30186693U

BS ISO 24610-2:2011
ISO 24610-2:2011(E)

 COPYRIGHT PROTECTED DOCUMENT

© ISO 2011

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or
ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

ii © ISO 2011 – All rights reserved

BS ISO 24610-2:2011
ISO 24610-2:2011(E)

© ISO 2011 – All rights reserved iii

Contents Page

Foreword .. iv

Introduction ... v

1 Scope .. 1

2 Normative references .. 1

3 Terms and definitions ... 2

4 Overall structure .. 5

5 Basic concepts .. 6
5.1 Typed feature structures reviewed .. 6
5.2 Types .. 7
5.3 Type inheritance hierarchies .. 9
5.4 Type constraints .. 11
5.5 Optional (default) values and underspecification .. 12
5.6 Subsumption .. 12

6 Defining well-formedness versus validity... 14
6.1 Overview ... 14
6.2 ISO 24610 ... 14

7 A feature system for a grammar .. 19
7.1 Overview ... 19
7.2 Sample FSDs .. 20

8 Declaration of a feature system ... 23
8.1 Overview ... 24
8.2 Linking a text to feature system declarations .. 24
8.3 Overall structure of a feature system declaration ... 25
8.4 Feature declarations ... 27
8.5 Feature structure constraints .. 33

Annex A (normative) XML schema for feature structures .. 36

Annex B (informative) A complete example ... 46

Bibliography .. 50

BS ISO 24610-2:2011
ISO 24610-2:2011(E)

iv © ISO 2011 – All rights reserved

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies
(ISO member bodies). The work of preparing International Standards is normally carried out through ISO
technical committees. Each member body interested in a subject for which a technical committee has been
established has the right to be represented on that committee. International organizations, governmental and
non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the
International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards
adopted by the technical committees are circulated to the member bodies for voting. Publication as an
International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 24610-2 was prepared by Technical Committee ISO/TC 37, Terminology and other language and content
resources, Subcommittee SC 4, Language resource management.

ISO 24610 consists of the following parts, under the general title Language resource management — Feature
structures:

 Part 1: Feature structure representation

 Part 2: Feature system declaration

http://dx.doi.org/10.3403/30186693U

BS ISO 24610-2:2011
ISO 24610-2:2011(E)

© ISO 2011 – All rights reserved v

Introduction

ISO 24610 is organized in two separate main parts.

 Part 1, Feature structure representation, is dedicated to the description of feature structures, providing an
informal and yet explicit outline of their characteristics, as well as an XML-based structured way of
representing feature structures in general and typed feature structures in particular. It is designed to lay a
basis for constructing an XML-based reference format for exchanging (typed) feature structures between
applications.

 Part 2, Feature system declaration, will provide an implementation standard for XML-based typed feature
structures, first by defining a set of types and their hierarchy, then by formulating type constraints on a set
of features and their respective admissible feature values and finally by introducing a set of validity
conditions on feature structures for particular applications, especially related to the goal of language
resource management.

A feature structure is a general-purpose data structure that identifies and groups together individual features
by assigning a particular value to each. Because of the generality of feature structures, they can be used to
represent many different kinds of information. Interrelations among various pieces of information and their
instantiation in markup provide a meta-language for representing linguistic content. Moreover, this
instantiation allows a specification of a set of features and values associated with specific types and their
restrictions, by means of feature system declarations, or other XML mechanisms to be discussed in this part
of ISO 24610.

Some of the statements here are copied from ISO 24610-1:2006 in order to make this part standalone without
referring to part 1.

http://dx.doi.org/10.3403/30107257

BS ISO 24610-2:2011

BS ISO 24610-2:2011

INTERNATIONAL STANDARD ISO 24610-2:2011(E)

© ISO 2011 – All rights reserved 1

Language resource management — Feature structures —

Part 2:
Feature system declaration

1 Scope

This part of ISO 24610 provides a format to represent, store or exchange feature structures in natural
language applications, for both annotation and production of linguistic data. It is ultimately designed to provide
a computer format to define a type hierarchy and to declare the constraints that bear on a set of feature
specifications and operations on feature structures, thus offering means to check the conformance of each
feature structure with regards to a reference specification. Feature structures are an essential part of many
linguistic formalisms as well as an underlying mechanism for representing the information consumed or
produced by and for language engineering applications.

A feature system declaration (FSD) is an auxiliary file used in conjunction with a certain type of text that
makes use of fs (that is, feature structure) elements. The FSD serves four purposes.

 It provides an encoding by which types and their subtyping and inheritance relationships can be
introduced and defined, thus laying the basis for constructing a feature system.

 It provides a mechanism by which the encoder can list all of the feature names and feature values and
give a prose description as to what each represents.

 It provides a mechanism by which type constraints can be declared, against which typed feature
structures are validated relative to a given theory stated in typed feature logic. These constraints may
involve constraints on the range of a feature's value, constraints on which features are permitted within
certain types of feature structures, or constraints that prevent the co-occurrence of certain feature-value
pairs. The source of these constraints is normally the empirical domain being modelled.

 It provides a mechanism by which the encoder can define the intended interpretation of underspecified
feature structures. This involves defining default values (whether literal or computed) for missing features.

The scheme described in this part of ISO 24610 may be used to document any feature system, but is primarily
intended for use with the typed feature structure representation defined in ISO 24610-1. The feature structure
representations of ISO 24610-1 specify data structures that are subject to the typing conventions and
constraints specified using ISO 24610-2. The feature structure representations of ISO 24610-1 are also used
within some of the elements defined in ISO 24610-2.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.

ISO 24610-1:2006, Language resource management — Feature structures — Part 1: Feature structure
representation

ISO/IEC 19757-2, Information technology — Document Schema Definition Language (DSDL) — Part 2:
Regular-grammar-based validation — RELAX NG

http://dx.doi.org/10.3403/30107257U
http://dx.doi.org/10.3403/30107257U
http://dx.doi.org/10.3403/30186693U
http://dx.doi.org/10.3403/30107257U
http://dx.doi.org/10.3403/30186693U
http://dx.doi.org/10.3403/30107257
http://dx.doi.org/10.3403/02947935U

BS ISO 24610-2:2011
ISO 24610-2:2011(E)

2 © ISO 2011 – All rights reserved

3 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO 19757-2 and the following apply.

3.1
admissibility constraint
feature admissibility constraint
specification of a set of admissible features (3.2) and admissible feature values (3.3) associated with a
specific type (3.24)

3.2
admissible feature
appropriate feature
feature which any feature structure (3.14) of a given type (3.24) may bear a value (3.17) for

NOTE This term is often interpreted elsewhere to mean obligatory, i.e. feature structures of the given type must bear
a value for every admissible feature. This term does not imply that the feature is obligatory here.

3.3
admissible feature value
admissible value
value restriction
range restriction
value (3.17) that the value of an admissible feature (3.2) must be subsumed by in feature structures (3.14)
of a given type (3.24)

3.4
atomic type
user-defined type (3.24) with no admissible features (3.2) declared or inherited

3.5
bag
multiset
triple of an integer n, a set S and a function that maps the integers in the range, 1 to n, to elements of S

NOTE A bag is halfway between a set (in that its elements are unordered) and a list (in that particular elements can
occur more than once).

3.6
built-in
non-user-defined element that may appear in place of a feature structure (3.14), for example, as a feature
value (3.17)

NOTE Built-ins can be atomic or complex. The atomic built-ins are numeric, string, symbol and binary. The complex
built-ins are collections (3.7) and applications of the operators, i.e. alternation, negation and merge (5.2.4).

3.7
collection
feature value (3.17) consisting of potentially many values, organized as a list, set or bag (3.5)

3.8
constraint
unit of specification that identifies some collection of feature structures (3.14) as invalid

NOTE 1 All constraints are implicational in their syntactic form, although some are distinguished as admissibility
constraints. See validity (3.31) and 5.4. All feature structures not explicitly excluded as invalid are considered to be valid.

NOTE 2 A feature structure that has not been so identified by any of the constraints in a feature system is considered
to be valid.

BS ISO 24610-2:2011
ISO 24610-2:2011(E)

© ISO 2011 – All rights reserved 3

3.9
default value
value (3.17) otherwise assigned to a feature (3.12) when one is not specified

EXAMPLE Masculine is the default value of the grammatical gender in Dutch.

NOTE A feature structure may not bear a feature without a corresponding value.

3.10
empty feature structure
feature structure (3.14) that contains no information

NOTE An empty feature structure subsumes all other feature structures.

3.11
extension
converse of subsumption (3.21)

NOTE A feature structure F extends G if and only if G subsumes F.

3.12
feature
property or aspect of an entity that is formally represented as a function mapping the entity to a corresponding
value (3.17)

3.13
feature specification
pairing of a feature (3.12) with a value (3.17) in a feature structure description

3.14
feature structure
record structure that associates one value (3.17) to each of a collection of features

NOTE 1 Each value is either a feature structure or a simpler built-in (3.6) such as a string.

NOTE 2 Feature structures are partially ordered. The minimal feature structures in this ordering are the empty feature
structures.

3.15
feature system
type hierarchy (3.26) in which each type (3.24) has been associated with a collection of admissibility
constraints (3.1) and implicational constraints (3.18)

NOTE cf. type declaration (3.25)

3.16
feature system declaration
FSD
specification of a particular feature system (3.15)

3.17
feature value
value
entity or aggregation of entities that characterize some property or aspect of another entity

BS ISO 24610-2:2011
ISO 24610-2:2011(E)

4 © ISO 2011 – All rights reserved

3.18
implicational constraint
constraint of the form, “if G, then H,” where G and H are feature structures (3.14)

NOTE This identifies any feature structure F as invalid for which G subsumes F, and yet F and H have no valid
extension in common. See subsumption (3.21) and 8.5. Often used to refer to implicational constraints that are not also
admissibility constraints.

3.19
interpretation
minimally informative (or equivalently, most general) extension (3.11) of a feature structure (3.14) that is
consistent with a set of constraints declared by an FSD (3.16)

3.20
partial order
partially ordered set
set S equipped with a relation over S S that is (1) reflexive (for all s S, s s), (2) anti-symmetric (for all p,
q S, if p q and q p, then p q), and (3) transitive (for all p, q, r S, if p q and q r, then p r)

NOTE The set of integers Z is partially ordered, but it has an additional property: for every p, q Z, either p q or
q p. Not all partial orders have this property. The taxonomical classification of organisms into phyla, genera and species,
for example, is a partial order that does not. Type hierarchies may not necessarily. The typed feature structures of a
feature system do not, unless (a) their type hierarchy does, and (b) either the type hierarchy has exactly one type, or every
y type is constrained to have exactly one appropriate feature.

3.21
subsumption
property that holds between two feature structures, G and F, such that G is said to subsume F if and only if F
carries all of the information with it that G does

NOTE A formal definition is provided in 5.6.

3.22
subtype
type (3.24) to which another type confers its constraints and appropriate features

3.23
supertype
base type
type (3.24) from which another type inherits constraints and appropriate features

NOTE s is a subtype of t iff t is a supertype of s. Every type is a subtype and supertype of itself.

3.24
semantic type
type
referring expression that distinguishes a collection of feature structures (3.14) as an identifiable and
conceptually significant class

NOTE As implied by the name semantic type, types in this part of ISO 24610 do not serve to distinguish feature
structures or their specifications syntactically.

3.25
type declaration
structure that declares the supertypes (3.23), admissible features (3.2), admissible feature values (3.3),
admissibility constraints (3.1) and implicational constraints (3.18) for a given type (3.24)

NOTE The constraints on a type in the resulting feature system are those that have been declared in its declaration,
in addition to those that it has inherited from its supertypes.

BS ISO 24610-2:2011
ISO 24610-2:2011(E)

© ISO 2011 – All rights reserved 5

3.26
type hierarchy
partial order (3.20) over a set of types (3.24)

NOTE See ISO 24610-1:2006, Annex C, Type inheritance hierarchies.

3.27
typed feature structure
TFS
feature structure (3.14) that bears a type (3.24)

3.28
typing
assignment of a semantic type (3.24) to a built-in (3.6) or feature structure (3.14), either atomic or complex

NOTE Semantic types in feature systems are partially ordered, with multiple inheritance.

3.29
underspecification
provision of partial information about a value (3.17)

NOTE An underspecification generally subsumes one of a range of candidate values that could be resolved to a
single value through subsequent constraint resolution. See subsumption (3.21).

3.30
well-formedness
syntactic conformity of a feature structure (3.14) representation to ISO 24610-1

3.31
validity
conformity of a typed feature structure (3.27) to the constraints (3.8) of a particular feature system (3.15)

NOTE See Clause 6.

4 Overall structure

The main part of the document consists of four clauses: Clauses 5, 6, 7 and 8.

 Clause 5, Basic concepts, reviews the definition of typed feature structures and the notions of atomic and
complex types, collections and other operators that may appear in feature values. It then describes the
notions of type inheritance hierarchies, type constraints, default values and underspecification that are
essential to the construction of feature systems.

 Clause 6, Defining well-formedness versus validity, discusses the conditions of well-formedness and
validity.

 Clause 7, A feature system for a grammar, illustrates how to define types with a type hierarchy and type
constraints which declare what features and values are admissible for specific types.

 Finally, Clause 8, Declaration of a feature system, discusses how a feature system can be declared and
developed into a validator.

The main part of the document is followed by two annexes: Annex A contains the XML schema for this part of
ISO 24610; Annex B contains a complete example.

http://dx.doi.org/10.3403/30107257
http://dx.doi.org/10.3403/30107257U

BS ISO 24610-2:2011
ISO 24610-2:2011(E)

6 © ISO 2011 – All rights reserved

5 Basic concepts

5.1 Typed feature structures reviewed

Typed feature structures (TFSs) are introduced as basic records for language resource management.

For more information, refer to ISO 24610-1:2006, 4.7, Typed feature structure, and Annex C, Type inheritance
hierarchies.

Here, a TFS is formally defined as a tuple over a finite set Feat of features, a collection X of
non-feature-structure elements, and a type hierarchy Type, , where Type is a finite set of types and is a
subtyping relation over Type.

A feature structure is a tuple <Q, γ, θ, δ>, in which

a) Q is a set of nodes,

b) γ ∈ Q is the root node of the feature structure,

c) θ : Q → Type is a partial typing function, and

d) δ : Feat × Q → ∪ X is a partial feature value function, Q

such that, for all q ∈ Q, there exists a path of features F1, ..., Fn such that δ[Fn, ... δ(F1, γ) ...] q.

<fs> elements denote nodes. This definition deviates from the standard one used in linguistics and theoretical
computer science in that (1) typing is partial, not total, i.e. not all feature structures have types, and (2) feature
values might not be feature structures, but instead be drawn from a collection denoted by other XML elements
such as string, numeric, symbol, and binary (the X above). Note that nodes are typed, but features themselves
are not.

The following XML representation of a feature structure is considered well-formed, where the attribute type is
assigned to each of the two <fs> elements.

EXAMPLE Typed feature structure:

<fs type="word">
 <f name="orth">
 <string>had</string>
 </f>
 <f name="morphoSyntax">
 <fs type="verb">
 <f name="tense">
 <symbol value="past"/>
 </f>
 <f name="auxiliary">
 <binary value="false"/>
 </f>
 </fs>
 </f>
 </fs>

The feature name ORTH above stands for orthography, the conventional written form of a word or phrase.

This XML representation shows how the morpho-syntactic features of an English word “had” are specified as
a past-tensed and non-auxiliary verb.

In the alternative, “matrix” or “AVM” notation, type names are conventionally in the lower-case, sometimes
italicized or in the text type font, feature names in the upper-case, and strings in quotes. Binary values are

http://dx.doi.org/10.3403/30107257

BS ISO 24610-2:2011
ISO 24610-2:2011(E)

© ISO 2011 – All rights reserved 7

indicated with or . These conventions are followed in this document, too. The above feature structure would
be depicted in matrix notation as shown in Figure 1.

Figure 1 — Matrix notation

5.2 Types

5.2.1 Atomic types

Alongside the built-ins (<symbol>, <string>, <numeric> and <binary>), it is possible for a feature structure to
have a type but no features. These are called simple or atomic feature structures, and types that allow for no
features in their feature system declaration (FSD) are called atomic types.

There is, as a result, always the possibility of declaring new atomic types and using these instead of the
above-mentioned built-ins to specify simple values. The above feature structure, for example, could have
instead been rendered as follows, assuming the extra types had, past and false were declared in an FSD.

EXAMPLE Typed feature structure: alternative formulation

<fs type="word">
 <f name="orth">
 <fs type="had"/>
 </f>
 <f name="morphoSyntax">
 <fs type="verb">
 <f name="tense">
 <fs type="past"/>
 </f>
 <f name="auxiliary">
 <binary value="false"/>
 </f>
 </fs>
 </f>
</fs>

There is a difference also noticed between the two classes of built-ins: <string> on the one hand, and
<symbol>, <binary> and <numeric> on the other. Any kind of string is permissible as the content of the
<string> element, whereas a very restricted set of values is permissible in <symbol>, <binary> and <numeric>
elements. To reflect this difference, members of the latter class specify their values using the attribute value.
The type <binary>, for instance, is associated with four values: true, false, plus (equivalent to true) and minus
(equivalent to false).

NOTE ISO 24610-1:2006 introduced the type binary, but the W3C's XML schema (2001) names it boolean.

It is the duty of the encoder to choose between atomic-type encodings and built-in encodings consistently.
This part of ISO 24610 does not regard one as identical or even consistent with the other.

5.2.2 Complex types

Types that are not atomic are called complex. These include all of the types declared by the encoder in an
FSD that declare or inherit admissible features. A feature is only admissible to a type if feature structures of
that type are permitted by the FSD to have values for that feature. This does not mean that well-formed
feature structures cannot arbitrarily associate types with feature structures regardless of their featural content
– they can. But only those feature structures that use only admissible features to their type, as specified by

http://dx.doi.org/10.3403/30107257

BS ISO 24610-2:2011
ISO 24610-2:2011(E)

8 © ISO 2011 – All rights reserved

some FSD, could be validated against that FSD. The distinction between validity and well-formedness is
further elaborated upon in Clause 6.

All user-declared types, no matter whether they are atomic or complex, are semantic, i.e. syntactically, they
look no different from each other, apart from the value of their type attribute. It is the role of a validator to
interpret the real significance of these types through enforcing restrictions on admissibility, restrictions on the
possible values that admissible features can have (<vRange>), and other constraints that take the form of
logical implications. All of these are specified, for each type, in an FSD.

The built-ins defined by the ISO 24610-1:2006 feature structure representations (FSRs) standard are purely
syntactic. They can be used without declaration in an FSD, and they cannot be declared in an FSD. They can
appear in value range restrictions, or in implicational constraints, but they cannot have such restrictions (since
they have no admissible features) or constraints of their own.

5.2.3 Collections

Not all built-ins are as simple as those mentioned above, however. Some grammatical features such as
specifiers (SPR), complements (COMPS) and arguments (ARGS) are considered as having a list of
grammatical values, especially in Head-driven Phrase Structure Grammars (Pollard and Sag 1994[10]; Sag,
Wasow, Bender 2003[12]). For languages other than English, some of these features may take other kinds of
collections, namely sets or multisets, as their value. In a language (e.g. German, Korean or Japanese) that
allows a relatively free word order, the feature COMPS may be analysed as taking a set or multiset, instead of
a list, of complements. For more general applications, ISO 24610-1:2006 thus introduces sets and multisets
as well as lists as built-in ways of assembling complex feature values.

Collections (<vColl>; ISO 24610-1:2006, 5.8, Collections as complex feature values) take the organization
(org) attribute, with the values “list”, “set” and “bag”. In lists, order and multiplicity of elements matter. In bags,
only multiplicity matters (these are often called multisets). In sets, neither order nor multiplicity matter.

For example, the feature ARGS of verbs can be represented by specifying the organization of <vColl> as a list
of values, each of which is of type phrase.

EXAMPLE List value

<fs type="word">
 <f name="orth">
 <string>put</string>
 </f>
 <f name="args">
 <vColl org="list">
 <fs type="phrase">
 <vLabel name="L1"/>
 <f name="nominal">
 <binary value="plus"/>
 </f>
 </fs>
 <fs type="phrase">
 <vLabel name="L2"/>
 <f name="nominal">
 <binary value="plus"/>
 </f>
 </fs>
 <fs type="phrase">
 <vLabel name="L3"/>
 <f name="prepositional">
 <binary value="plus"/>
 </f>
 </fs>
 </vColl>
 </f>
</fs>

http://dx.doi.org/10.3403/30107257
http://dx.doi.org/10.3403/30107257
http://dx.doi.org/10.3403/30107257

BS ISO 24610-2:2011
ISO 24610-2:2011(E)

© ISO 2011 – All rights reserved 9

Some would call the type of this collection list (phrase), but polymorphic lists are not yet supported in this part
of ISO 24610. This is equivalent to the following AVM notation, where NP stands for a feature structure of the
type phrase with a positive NOMINAL feature, namely a noun phrase, and PP, a feature structure of the type
phrase with a positive PREPOSITIONAL feature, namely a prepositional phrase. The boxed integers are the
labels for marking structure sharing as shown in Figue 2.

Figure 2 — Marking structure sharing

5.2.4 Operators

The other class of built-ins are operators that take one or more built-ins or feature structures as arguments,
but instead of constructing a collection from them, denote a value that is in some other way derived from them.

Alternations (<vAlt>; ISO 24610-1:2006, 5.9.2, Alternations) denote one of their arguments' values. A feature
structure containing an alternation does not denote multiple feature structures, however. An alternation is a
single value that underspecifies which of several possible alternatives it is. Alternations can be regarded as
the joins of their arguments in the partial order induced by subsumption (see 5.6).

Negations (<vNeg>; ISO 24610-1:2006, 5.9.3, Negation) take a single argument, and denote a value which is
not its argument. A negation is equivalent to an alternation among all values that are inconsistent with its
argument. A negation is actually not a logical negation of a value, but rather the complement of that value in
the full Boolean lattice that contains the partial order induced by subsumption.

A merge (<vMerge>; ISO 24610-1:2006, 5.9.4, Collection of values) denotes the concatenation or union of
several values and/or collections of values, according to how its org attribute is set. org takes the same values,
with the same meanings, as in <vColl>.

5.3 Type inheritance hierarchies

The type hierarchy <Type, > is discussed in great length in ISO 24610-1:2006, Annex C Type inheritance
hierarchies. This structure is normally depicted as a directed acyclic graph with a unique top node. The label
of this top node is often top, and represents the most general type, the type that is consistent with all typed
feature structures. Subtypes are connected to, and appear below, their supertypes. The most specific types
appear at the bottom of the graph. These are mutually incompatible with each other, which is generally
understood implicitly, or, on occasion, depicted by another special type, bottom as the unique bottom-most
element. Bottom is not used in this part of ISO 24610.

Figure 3 provides an example that depicts a part of the natural world:

Figure 3 — Type hierarchy for living beings

According to this picture, living beings consist of plants and animals. Animals are subclassified into fish, birds
and mammals. Dogs, humans and bovines (oxen, cows, bulls) belong to the class of mammals.

http://dx.doi.org/10.3403/30107257
http://dx.doi.org/10.3403/30107257
http://dx.doi.org/10.3403/30107257
http://dx.doi.org/10.3403/30107257

BS ISO 24610-2:2011
ISO 24610-2:2011(E)

10 © ISO 2011 – All rights reserved

Type hierarchies are not always trees; they may have two or more branches meeting at a single node. When
this happens, it means that a type has multiple supertypes, and properties multiply inherited from all of them.
Figure 4 provides is an example of this.

Figure 4 — Medieval hierarchy of beings

Here, the type human has two parent types, animal and rational. Hence, a human is viewed as an animal like
a dog, but also a spiritual and rational being like an angel. A human thus shares some properties with both
dogs and angels.

All these types are partially ordered by a subtyping relation, , over types. A type τ is a subtype of type σ if
and only if σ is more general than τ, i.e. if the set of feature structures of type σ contains the set of feature
structures of type τ. Since the type animate is more general than the type animal in the above example, all
animals are asserted to be animate. A type σ is said to be a supertype of a type τ if and only if τ is a subtype
of σ. The immediate supertypes of a type are often called its parents.

A subtype inherits all of the properties from its supertype. The type human, for instance, inherits all the
properties from its supertypes (being, animate, animal, spiritual and rational).

Here is a linguistic example, modified from Grammar 2 of Copestake (2002)[2] is shown in Figure 5.

Figure 5 — Type hierarchy for a simple grammar top

The type hierarchy has a unique top element. It is the most general type with no parents or immediate
supertypes. Top is only a subtype of itself.

Each type has a name and every type, except for the top-most type, has exactly one parent. The type top has
four immediate subtypes. phrase and det are incomparable – neither is a subtype or supertype of the other.

Depending on the complexity of a grammar, the type hierarchy can be very complex. Some portions of the
hierarchy may be universal to all languages, while others are very language-specific. The agreement type
agr-cat in English, for example, has only two immediate subtypes: 3sing and non-3sing (e.g. “sings” versus
“sing”).

The type det stands for a determiner such as “the” or “a”; 3sing stands for 3rd person singular, and non-3sing
stands for agreement categories other than 3sing.

This distinction is the one that is apparent in English verb agreement.

BS ISO 24610-2:2011
ISO 24610-2:2011(E)

© ISO 2011 – All rights reserved 11

5.4 Type constraints

The type hierarchy is the skeleton on which the rest of the grammar grows. The rest of the grammar takes the
form of constraints over feature structures of these user-defined types. These constraints are at least of the
following three kinds: (1) implicational constraints, (2) constraints on admissible features, and (3) constraints
on admissible feature values. Actually, all of them can be thought of implicationally, e.g.

 if a feature structure is of type verb, then it may have the feature AUXiliary,

 if a feature structure is of type verb, then it may have the feature INVerted,

 if a feature structure is of type verb, then its AUX value must be “binary”,

 if a feature structure is of type verb, then its INV value must be “binary”,

 if a feature structure is of type verb and its AUX value is negative, then its INV value must be “negative”.

The first two of these are feature admissibility constraints. They tell us that a particular feature can be used in
feature structures of a particular type. The second two are constraints on admissible feature values,
sometimes called “value restrictions” or “range restrictions”. They tell us what kind of value a particular feature
must take when it occurs in a feature structure of some given type. The last of these is of a more general form;
however, this kind of constraint says that whenever a feature structure takes some particular form (determined
by types, feature values, etc.), it must satisfy some other criteria (again stated in terms of types, feature values,
etc.). This last form of constraint is generally what is meant by the phrase implicational constraint. Each of
these three forms has a different syntax in an FSD. The above constraints on verb would be encoded as
follows.

EXAMPLE Constraint on the type verb

<fsDecl type="verb">
 <fDecl name="aux">
 <vRange>
 <binary/>
 </vRange>
 </fDecl>
 <fDecl name="inv">
 <vRange>
 <binary/>
 </vRange>
 </fDecl>
 <fsConstraints>
 <cond>
 <fs>
 <f name="aux">
 <binary value="false"/>
 </f>
 </fs>
 <then/>
 <fs>
 <f name="inv">
 <binary value="false"/>
 </f>
 </fs>
 </cond>
 </fsConstraints>
</fsDecl>

The first two kinds are specified together inside an <fDecl> element, the second being the <vRange> portion
of that declaration, whereas the third is specified as an if-then conditional (<cond>).

BS ISO 24610-2:2011
ISO 24610-2:2011(E)

12 © ISO 2011 – All rights reserved

5.5 Optional (default) values and underspecification

In a feature structure, some features must be specified and others need not be. In French, for example, the
specification of the features NUMBER and GENDER is obligatory for nouns and adjectives. In English, the
feature NUMBER must be specified for each noun, but the specification of the feature GENDER is optional. It
is obligatory for the third person singular pronouns, “he”, “she” and “it”.

Nevertheless, there are cases in which some obligatory features are not specified. In those cases, there are
two possibilities: (1) if a default value has been defined, then it is understood to be its value; and (2) if not,
then the value of the feature is inferred from the feature's range restriction.

English mass nouns such as “water” and “air” are uncountable and singular by default. Hence, their NUMBER
feature need not be specified, although the feature NUMBER is obligatory. Some countable nouns such as
“sheep” can be either singular or plural. When the NUMBER is not specified, its value is understood to be
some more general type such as number, which is a supertype of all of the admissible feature values.

Grammatical descriptions are often underspecified in order to capture generalizations. In English, for instance,
verbs are subclassified into the number of complements that they require. Intransitive verbs (“smile”, “bark”)
take only a subject, transitive verbs (“love”, “attack”) take a subject and a direct object, and ditransitive verbs
(“give”, “put”) take a subject, direct object and indirect object. Many of the grammatical phenomena, however,
do not refer to one of these specific subclasses. Examples include subject-verb agreement (“The dog barks”
versus ill-formed “the dog bark”) or subject-verb inversion (“Does the dog bark?” versus ill-formed “Do the dog
attacks Jane?”). Since the specification of this feature is irrelevant in describing these grammatical
phenomena, it is left underspecified.

Here is another example for underspecification. The analysis of a sentence like “The sheep attacked Jane”
may be underspecified with respect to the NUMBER value of “sheep”. Only if necessary is its lexical ambiguity
displayed.

Default values are specified in FSDs with <vDefault>, as explained in 8.4, and can be referenced in FSRs with
the <default> element (ISO 24610-1:2006, 5.10, Default values).

5.6 Subsumption

A feature structure F subsumes another feature structure G (F G) if and only if G contains all of the
information that F does. “Information” is delivered by a feature structure in two ways: typing and path equality.
When one views feature structures as a pair consisting of an equivalence relation on paths (≡), and a partial
typing function on paths (Θ), then formally < ≡F, ΘF > < ≡G, ΘG > if and only if ≡F ⊆ ≡G and for all
π ∈ PathsF ∩ PathsG, if ΘF(π) is defined, then ΘG(π) is defined and ΘG(π) is a subtype of ΘF(π). When F G,
we say that G extends F.

The view of typed feature structures taken here is still more general than is often the case in either the
linguistics literature or the formal literature on typed feature logic, because of the presence of symbols, strings,
numbers and other feature values than <fs> elements. With respect to extensions and subsumption, strings,
symbols, numbers and Booleans (binary values) behave as though they were types with no admissible
features that are discretely ordered alongside, but not connected to, the rest of the type inheritance hierarchy,
i.e. they have no subtype relationships with any type but themselves. Feature structures of these “types” are
only subsumed by themselves and the most general untyped feature structure, <fs/>, and they have no
extensions other than themselves. Some caution must be exercised, however, with respect to determining
subsumption within this extended view of typed feature structures, because re-entrancies may still exist or not
exist between identical-looking symbols, strings, numbers, etc. The more extensional view of identity that
usually accompanies these other entities is inconsistent with the view of identity that the logic of typed feature
structures takes with respect to feature structures over its own types. It is the latter that this part of ISO 24610
uses and applies to both feature structures and these other entities, when they occur within feature structures.

Alternations are also often excluded from more formal work on typed feature logic, but can be thought of as
joins of their respective typed feature structure arguments in the partial order of typed feature structures
induced by subsumption. The negation of a value can similarly be thought of as the join of every structure that

http://dx.doi.org/10.3403/30107257

BS ISO 24610-2:2011
ISO 24610-2:2011(E)

© ISO 2011 – All rights reserved 13

is inconsistent with that value under unification. Collections actually depend on the organization. Lists appear
in the subsumption partial order as though they were encoded as typed feature structures using this FSD.

EXAMPLE Sample FSD

<fsDecl type="list" baseTypes="top"/>
<fsDecl type="e-list" baseTypes="list">
 <fsDescr>Empty lists</fsDescr>
</fsDecl>
<fsDecl type="ne-list" baseTypes="list">
 <fsDescr>Non-empty lists</fsDescr>
 <fDecl name="first"/>
 <fDecl name="rest">
 <vRange>
 <fs type="list"/>
 </vRange>
 </fDecl>
</fsDecl>

One bag (multiset) B1 subsumes another bag B2 if and only if there exists a total surjection σ between the

elements of the two bags such that, for all b1 in the domain of B1 with multiplicity µ1 (b1), and all b2 in the

domain of B2 with multiplicity µ2 (b2):

1) b1 σ(b1),

2) µ2 (b2) = ∑ µ1 (b1),

 b1 : σ(b1) b2

and σ can be extended to a total function, σ*, between the substructures of the elements of the two bags,
such that, for all substructures, c, of the elements of B1:

3) σ*(c) = σ(c) if c is an element of B1, and

4) σ * [δ(F, c)] = δ[F, σ*(c)], for every F ∈ Feat such that δ(F, c) is defined.

One set S1 likewise subsumes another set S2 if and only if conditions 1), 3) and 4) above apply. This means,
for example, that the two-element set {F1, F2} subsumes the one-element set {G1} if both F1 G1 and F2 G1.
This partially ordered interpretation of sets is called the Pollard-Moshier set theory, and it is one of the most
commonly used theories in typed feature logic.

In addition, a bag subsumes any list that is a permutation of its elements. A set subsumes a bag if the domain
of the bag is the set, i.e. all and only the elements of the set appear in the bag one or more times.

A combination of collections (<vMerge>) occupies the same position in the subsumption partial order as the
result of the concatenation or union that it specifies, with the organization it specifies, would have.

The reflexive and transitive closure of all of these conditions produces the subsumption relation assumed by
this part of ISO 24610.

BS ISO 24610-2:2011
ISO 24610-2:2011(E)

14 © ISO 2011 – All rights reserved

6 Defining well-formedness versus validity

6.1 Overview

6.1.1 General

This clause distinguishes the use of the concepts of well-formedness and validity, as they pertain to feature
structure representations and feature systems. In linguistic theory, even linguistic theories ostensibly based on
typed feature logic, they are often used synonymously or in ways that diverge from their conventional
meanings in either formal logic or XML. Their usage in formal logic and XML also differs. Before formulating
these two concepts, a brief survey is made of how they have been treated in these two areas.

6.1.2 Formal logics

In formal logics, the concepts of well-formedness and validity are clearly distinguished. Well-formedness is a
syntactic concept, whereas validity is a semantic concept. A string of symbols in a logic is well-formed if it is
defined by a set of its formation rules. In first-order logic, for instance, the string ∀x [H(x) → [G(x) → H(x)]] is
considered as a well-formed formula, where ∀ is the universal quantifier, x is an individual variable, the
arrow → is a binary sentential operator, G and H are unary predicate symbols, and all the brackets properly
match. On the other hand, ∀x by itself is ill-formed because the syntactic formation rule for quantifiers requires
each quantifier with a variable to be followed by a well-formed formula. The syntactic formation rules thus
delineate the set of well-formed formulas out of the set of arbitrary strings.

The semantics of first-order logic then interprets these well-formed formulas by evaluating their truth values.
Since ordinary first-order logic is a bivalent logic, every formula including atomic formulas is either true or false
with respect to some interpretation (or model) and possibly also with respect to an assignment of values to
variables in the case of so-called open formulas like G(x) and H(x). A formula G(x) is true with respect to some
model and some assignment if and only if the value assigned to the variable x belongs to the denotation set of
G in that model. Suppose x is Jane and G refers to girls. Then, G(x) is true, assuming that Jane is a girl. But
the formula ∀x[H(x) → [G(x) → H(x)]] is always true with respect to any model or any variable assignment, for it
is the form of a tautology [p → [q → p]] in propositional logic. Such a formula is called valid. In general, a well-
formed formula is said to be valid if it is true under every interpretation/model. One of the semantic tasks in
logics is thus to delineate all and only the valid formulas out of the total set of well-formed formulas.

6.1.3 XML

In XML again, a clear distinction is made between these two concepts. XML documents can be either well-
formed or ill-formed (broken) and then well-formed documents can be either valid or non-valid (broken). Just
like most other markup languages, a well-formed XML document must follow several rules like one-root
element, proper nesting, and well-formed entities. The criteria for the validity of XML documents are slightly
more difficult to set up. First, valid documents must be well-formed and then validated against all the
constraints (rules) set forth in a document grammar such as a Document Type Definition (DTD), internal or
external, an XML schema, a RELAX NG or some other format. Non-valid XML documents are also called
broken.

6.2 ISO 24610

6.2.1 Definitions

In this International Standard, well-formedness and validity are treated as clearly distinct, and in a fashion that
can generally be understood as analogous to XML, with the role of DTDs being played by the FSDs defined in
this International Standard.

 A feature structure representation is well-formed if and only if it conforms to the definitions of feature
structure declarations and typing, as specified in ISO 24610-1:2006 or its updated version.

 Corollary: every feature structure representation in XML must follow the well-formedness conditions of
XML documents like having a single root condition, proper nesting, and well-formed entities.

http://dx.doi.org/10.3403/30107257

BS ISO 24610-2:2011
ISO 24610-2:2011(E)

© ISO 2011 – All rights reserved 15

 A feature structure representation in XML is valid if and only if it is well-formed and also conforms to the
feature system declared (in a DTD, an XML schema or some other format) for a particular application that
uses typed feature structures.

A well-formed feature structure representation is typed relative to a (in the XML sense) well-formed FSD if and
only if every <fs> it contains (including itself, if it is an <fs> element) bears a value for the type attribute that is
declared as such in some <fsDecl> of the FSD. Every typed feature structure representation uniquely denotes
a typed feature structure. In this International Standard, we speak of typed feature structures and typed
feature structure representations interchangeably. Not all feature structures in ISO 24610-1:2006 are typed.
Validity and validation with respect to an FSD, however, only make sense for typed feature structure
representations.

A typed feature structure can be invalid in several different ways. To be valid, it must, first of all, be well-
formed, satisfying both the well-formedness conditions of XML and the definitions of feature structures and
typing. Then the values of its features must fall within the admissible feature value ranges declared. Finally, it
must satisfy the type constraints imposed on it as well as the constraints inherited from its base types.

Unlike in XML, typed feature structures are partially ordered by the subsumption relation (see 5.6). It simply
makes no sense to refer to subsumption of or by an ill-formed feature structure representation, but it does
make sense to speak of subsumption of or by non-valid feature structure representations so long as they are
typed. Valid typed feature structures can subsume non-valid ones, and vice versa, so validity and
subsumption cannot be used to make inferences about each other, but it is comparatively rare that we are
ever interested in determining the simple validity of a typed feature structure. Instead, the process of validation
almost always involves the search for a valid extension (3.11) of a typed feature structure. Every valid typed
feature structure trivially has at least one valid extension, namely itself. Some non-valid typed feature
structures have no valid extensions, but the ones that have one have a unique most general (or equivalently,
least informative) valid extension. This most general valid extension is used as a proxy for the entire set of
valid extensions that a valid or non-valid typed feature structure subsumes.

One often finds other kinds of typed feature structures distinguished in the literature. Most notably, totally well-
typed feature structures are typed feature structures in which every obligatory feature takes a value that
respects the feature's value range (<vRange>) restrictions – this is tantamount to validity without
consideration for the <cond> or <bicond> constraints of the FSD. In addition, what are here called feature
structure representations accord in many respects more closely with what computational linguists would term
feature structure descriptions than with feature structures. The description language used in most linguistic
applications [of typed feature structures, the vast majority of them being in the Head-driven Phrase Structure
Grammar (HPSG) framework; Pollard and Sag, 1994[10]] is conservative enough to easily embed into
ISO 24610-1:2006 feature structure representations. However, there are ISO 24610-1:2006 FSRs for which
the correspondence to a single, equivalent description is, at best, remote, owing to their dependence on the
FSD relative to which such an equivalence could be proved.

6.2.2 Review of the syntax of typed feature structures in XML

6.2.2.1 Overview

The overview of the syntax of typed feature structure representations is provided here by introducing the
relevant element names and their patterns.

6.2.2.2 Introducing names

a) element names for feature structures and features: fs, f

b) element names for feature values: (fs), string, symbol, binary, numeric, vLabel

c) attribute names for elements: name, type, org, value

d) element names as collection constructors: vColl

e) element names as operators: vAlt, vNot, vMerge, default

http://dx.doi.org/10.3403/30107257
http://dx.doi.org/10.3403/30107257
http://dx.doi.org/10.3403/30107257

BS ISO 24610-2:2011
ISO 24610-2:2011(E)

16 © ISO 2011 – All rights reserved

6.2.2.3 Basic pattern

<fs type="Type">
 <f name="featureName">
 <fs type="featureValueType">VALUE</fs>
 </f>
</fs>

6.2.2.4 Feature value patterns

a) for atomic feature value types

<fs type="atomicType"/>

b) for feature structures as values

<fs type="featureValueType">VALUE</fs>

c) collections

<vColl org="collectionType">
 <fs type="Member1Type">VALUE1</fs>
 <fs type="Member2Type">VALUE2</fs> ...
</vColl>

d) alternation

<vAlt>
 <fs type="Disjunct1Type">VALUE1</fs>
 <fs type="Disjunct2Type">VALUE2</fs> ...
</vAlt>

e) negation (complement)

<vNot>
 <fs type="NegatedValue">VALUE</fs>
</vNot>

 or

<vNot>
 <vAlt>
 <fs type="NegatedValue1">VALUE1</fs>
 <fs type="NegatedValue2">VALUE2</fs>
 </vAlt>
</vNot>

EXAMPLE

<fs type="pos">
 <f name="agr">
 <fs type="agr-cat">
 <f name="per">
 <vNot>
 <fs type="3rd"/>
 </vNot>
 </f>
 <f name="num">
 <vNot>
 <fs type="singular"/>
 </vNot>
 </f>
 </fs>
 </f>
</fs>

BS ISO 24610-2:2011
ISO 24610-2:2011(E)

© ISO 2011 – All rights reserved 17

6.2.3 Illustrations for well-formedness

By definition, a feature structure is a partial function from features to values. Hence, the representation fs/ is
allowed (representing the empty feature structure), but a representation that specifies features without values
is not allowed.

EXAMPLE 1 Well-formedness

a) <fs type="top"/>

b) <fs type="TYPE">
 <f name="FEATURE"/>
 <!-- WRONG -->
 </fs>

Here, a) is well-formed, while b) is ill-formed.

A type is assigned to each feature structure or feature value, but not to a feature. Hence, an element named
“f” may not have an attribute named “type”.

EXAMPLE 2 Well-formedness

a) <fs/>

b) <fs type="top"/>

c) <fs type="TYPE1">
 <f name="FEATURE" type="TYPE2">
 <fs type="top"/>
 </f>
 <!-- WRONG -->
 </fs>

d) <fs type="TYPE1">
 <f name="FEATURE">
 <fs type="TYPE2"/>
 </f>
 </fs>

Here,

a) is well-formed – this is the most general untyped feature structure representation;

b) is also well-formed; top is conventionally considered to be the most general type, which would make this the
most general type of feature structure representation, although the standard does not require this and top is not
built-in – top must still be declared if it is to be used;

c) is not well-formed because a type is assigned to a feature;

d) is well-formed because a feature value may be typed.

6.2.4 Illustration for validity

6.2.4.1 Conditions

The conditions of validity depend on a particular feature system that consists of type constraints. For
illustration, consider the specification of type constraints in 6.2.4.3. The following typed feature structure is
valid with respect to this FSD.

BS ISO 24610-2:2011
ISO 24610-2:2011(E)

18 © ISO 2011 – All rights reserved

6.2.4.2 Illustration for validity

<fs type="word">
 <f name="orth">
 <string>Mia</string>
 </f>
 <f name="head">
 <fs type="noun">
 <f name="agr">
 <fs type="agr-cat">
 <f name="person">
 <fs type="3rd"/>
 </f>
 <f name="number">
 <fs type="singular"/>
 </f>
 </fs>
 </f>
 </fs>
 </f>
 <f name="spr">
 <vColl org="list"/>
 </f>
 <f name="comps">
 <vColl org="list"/>
 </f>
</fs>

The corresponding AVM is shown in Figure 6.

Figure 6 — Corresponding AVM

NOTE Again, the element names orth, head, agr, spr and comps in the above XML representation each correspond
to ORTH, HEAD, AGR, SPR and COMPS in the AVM representation.

The example this subclause represents the valid typed feature structure in Figure 6. This TFS is valid because
it satisfies all the constraints for the type word. Below is the most general valid typed feature structure of that
type. It subsumes this TFS or Figure 6.

6.2.4.3 Overall constraint for the type word

<fs type="word">
 <f name="orth">
 <fsval kind="string"/>
 </f>
 <f name="head">
 <fs type="pos"/>
 </f>
 <f name="specifier">
 <vColl org="list"/>
 </f>
 <f name="complements">
 <vColl org="list"/>
 </f>
</fs>

BS ISO 24610-2:2011
ISO 24610-2:2011(E)

© ISO 2011 – All rights reserved 19

The corresponding AVM is shown in Figure 7.

Figure 7 — Corresponding AVM

It can be determined feature-by-feature how this feature structure subsumes the TFS given in 6.2.4.2. In this
TFS, a string “Mia” is given for ORTH, the type noun is a subtype of pos for HEAD, and the empty list is a kind
of list collection for both SPEC and COMPS.

7 A feature system for a grammar

7.1 Overview

Typed feature structures are very widely used for the development of grammars, lexica and other linguistic
resources and applications. In a grammar implementation like the English Resource Grammar (ERG;
Flickinger, 2002[3]), everything that constitutes a grammar, including type definitions, phrase structure rules,
and lexical entries, is represented by feature structures. In this approach, each of these feature structures
must be uniquely extensible to a most general feature structure that satisfies an accompanying type system,
which consists of a type hierarchy and a set of type constraints. As will be observed in 8.4, some types may
also be associated with a collection of admissible features and their admissible feature values, as well as
more general implicational constraints. Since feature values can be obligatory (required), optional or default,
this distinction should also be marked in a feature system.

These admissibility declarations as well as the individual subtype relationships that constitute the type
hierarchy can be, and often are, expressed as typed feature structures, with the context determining that they
should be viewed as assertions about validity, and not merely as data. Under suitable syntactic restrictions to
the allowable constraints of this International Standard – restrictions that one can observe in operation in the
ERG and its derivative fragments – implicational type constraints can also be encoded as object-level feature
structures, i.e. feature structures drawn from the same type system as the underlying grammar. Under the
ERG's conventions, all type constraints are unidirectional implications (<cond>), in which the antecedent is
only a type. In addition, both the lexicon and the phrase structure rules of a grammar can be regarded as
object-level type constraints through the use of alternations (ISO 24610-1:2006, 5.9.2, Alternations), which are
otherwise foreign to the ERG.

Even without assuming the conventions and restrictions of the previous paragraph, however, a meta-level
representation as feature structures is always available for every component of a grammar. In such a
representation, extra types and features are used to encode, in the case of phrase structure rules, for example,
a left-hand- or right-hand-side constituent of the corresponding rule. A head-complement rule that consumes
one argument of a phrasal head, for example, could be encoded as shown in Figure 8.

Figure 8 — Head-complement rule 1

Here, an extra type (head-complement rule 1) and feature (ARGS) have been appropriated for representing,
respectively, the identity and right-hand-side constituents of this rule. Viewed as an implicational constraint,
the extra type can also be viewed as the antecedent, and everything else as a conjunctive consequent. Lists

http://dx.doi.org/10.3403/30107257

BS ISO 24610-2:2011
ISO 24610-2:2011(E)

20 © ISO 2011 – All rights reserved

(expressed with angled brackets as a shorthand), one of the complex collections of ISO 24610-1:2006, 5.8,
Collections as complex feature values, are also being used here, although they may not have any other role in
the object-level type system of the grammar.

In linguistic publications, these encodings may be sufficient, but do not be misled by such informal practices.
Under this International Standard, FSDs as defined here, and not merely the <fs> elements of ISO 24610-
1:2006, must be used to declare the type system, admissible features, admissible feature value restrictions,
and implicational type constraints of a grammar. Meta-level encodings are always possible, but possibility is
not at issue. FSDs document the proper intention, i.e. how the information is to be used by an application, in
which there may not be a human in the loop to infer it.

A grammar that is consistent with the present standard, therefore, is minimally defined by: (1) a feature
system declaration (type hierarchy, admissibility declarations, and type constraints), (2) a lexicon, and (3) a
collection of phrase structure rules. (1) must use FSDs. It is recommended that (2) and (3) be encoded
through syntactic conventions that exist outside this International Standard, in which their status as lexical
items or production rules is also explicitly and unambiguously indicated, but it is also permissible to use FSDs.

7.2 Sample FSDs

7.2.1 General

In this subclause, an illustration of a sample grammar's feature system declaration, modified from Grammar 2
in Copestake (2002)[2], is shown.

7.2.2 Defining types and their hierarchy

Types are defined by specifying their supertype parents. Type hierarchies are not always trees – a subtype
can have more than one supertype parent – but there are restrictions on their shape, such as having a unique
most general type.

A sample feature system declaration for a type hierarchy is shown in Figure 9.

Figure 9 — A simple type hierarchy for English

Each branch in this tree simply declares an instance of a subtype-supertype relationship; top or T is often
used as the name of the type that applies to every feature structure. Italicized types like list and string are
built-ins that would not receive an explicit declaration in a conforming FSD (shown below). Parenthesized
types are types that could have been declared, but instead the constraints below use alternations among their
subtypes, which are encoded as symbols (shown as single-quoted). Note also that the lists introduced here
are non-polymorphic.

The difference between a type system, which is what FSDs actually declare, and a type hierarchy is that type
systems specify not only subtyping relationships, but also admissible features, restrictions on the admissible
feature values of admissible features, and other constraints on types and their features' values.

7.2.3 Declaring type constraints

In this example, there are no type constraints apart from restrictions on admissible feature values, so <cond>
and <bicond> (see 8.5) do not need to be used. We begin by presenting the admissible features and their

http://dx.doi.org/10.3403/30107257

BS ISO 24610-2:2011
ISO 24610-2:2011(E)

© ISO 2011 – All rights reserved 21

admissible feature values informally. Here, each feature structure indicates the admissible features and
minimal admissible feature values for its respective type. See Figure 10.

a)

b)

c)

Figure 10 — Admissible features and their admissible feature values

Note that 3s and non-3s refine the restrictions on the admissible feature values of PER and NUM by reducing
the size of the alternation that constrains them.

Taken altogether, this type system is encoded as follows.

EXAMPLE Type system

<fsDecl type="sign">
 <fsDescr>The fundamental type for linguistic signs</fsDescr>
 <fDecl name="head">
 <fDescr>Indicates the syntactic head of the sign</fDescr>
 <vRange>
 <fs type="pos"/>
 </vRange>
 </fDecl>
 <fDecl name="spr">
 <fDescr>Indicates the specifiers of the sign</fDescr>
 <vRange>
 <vColl org="list"/>
 </vRange>
 </fDecl>
 <fDecl name="comps">
 <fDescr>Indicates the complements of the sign</fDescr>
 <vRange>
 <vColl org="list"/>
 </vRange>

BS ISO 24610-2:2011
ISO 24610-2:2011(E)

22 © ISO 2011 – All rights reserved

 </fDecl>
</fsDecl>
<fsDecl type="word" baseTypes="sign">
 <fsDescr>The fundamental type for individual words</fsDescr>
 <fDecl name="orth">
 <fDescr>The orthographic representation for this word</fDescr>
 <vRange>
 <string/>
 </vRange>
 </fDecl>
</fsDecl>
<fsDecl type="phrase" baseTypes="sign">
 <fsDescr>The fundamental type for phrasal signs</fsDescr>
 <fDecl name="wordlist">
 <fDescr>The words contained within this phrase</fDescr>
 <vRange>
 <vColl org="list"/>
 </vRange>
 </fDecl>
</fsDecl>
<fsDecl type="stem" baseTypes="phrase">
 <fsDescr>The verbal stem from which a phrase is formed</fsDescr>
 <fDecl name="head">
 <fDescr>The verbal head that phrases formed from this stem must
 take</fDescr>
 <vRange>
 <fs type="verb"/>
 </vRange>
 </fDecl> copyright ISO 2011 – All rights reserved ISO 24610-2 <fDecl name="spr">
 <fDescr>Indicates the specifiers of the sign</fDescr>
 <vRange>
 <vColl org="list"/>
 </vRange>
 </fDecl>
 <fDecl name="comps">
 <fDescr>Indicates the complements of the sign</fDescr>
 <vRange>
 <vColl org="list"/>
 </vRange>
 </fDecl>
</fsDecl>
<fsDecl type="pos">
 <fsDescr>Parts of speech</fsDescr>
 <fDecl name="agr">
 <fDescr>Agreement information for this part of speech</fDescr>
 <vRange>
 <fs type="agr-cat"/>
 </vRange>
 </fDecl>
</fsDecl>
<fsDecl type="agr-cat">
 <fsDescr>GPSG-style agreement complex</fsDescr>
 <fDecl name="per">
 <fDescr>Person value</fDescr>
 <vRange>
 <vAlt>
 <symbol value="1st"/>
 <symbol value="2nd"/>
 <symbol value="3rd"/>
 </vAlt>
 </vRange>

http://dx.doi.org/10.3403/30186693U

BS ISO 24610-2:2011
ISO 24610-2:2011(E)

© ISO 2011 – All rights reserved 23

 </fDecl>
 <fDecl name="num">
 <fDescr>Number value</fDescr>
 <vRange>
 <vAlt>
 <symbol value="sing"/>
 <symbol value="plur"/>
 </vAlt>
 </vRange>
 </fDecl>
</fsDecl>
<fsDecl type="3s" baseTypes="agr-cat">
 <fsDescr>Third-person singular agreement complex</fsDescr>
 <fDecl name="per">
 <fDescr>Person value</fDescr>
 <vRange>
 <symbol value="3rd"/>
 </vRange>
 </fDecl>
 <fDecl name="num">
 <fDescr>Number value</fDescr>
 <vRange>
 <symbol value="sing"/>
 </vRange>
 </fDecl>
</fsDecl>
<fsDecl type="non-3s" baseTypes="agr-cat">
 <fsDescr>Third-person singular agreement complex</fsDescr>
 <fDecl name="per">
 <fDescr>Person value</fDescr>
 <vRange>
 <vAlt>
 <symbol value="1st"/>
 <symbol value="2nd"/>
 </vAlt>
 </vRange>
 </fDecl>
 <fDecl name="num">
 <fDescr>Number value</fDescr>
 <vRange>
 <vAlt>
 <symbol value="sing"/>
 <symbol value="plur"/>
 </vAlt>
 </vRange>
 </fDecl>
</fsDecl>

Note that some features have been redeclared as admissible as subtypes of types for which they have
already been declared. This is permissible, although if the multiply inherited feature value restrictions are not
unifiable, there will be no valid feature structures of that type; top only needs to be defined if it will actually be
named as a type in feature structures.

8 Declaration of a feature system

NOTE This clause is a slightly modified version of the TEI Guidelines P5, 2005, Section 18.11, Feature System
Declaration. A fuller discussion of the reasoning behind FSDs and another complete example are provided by “A rationale
for the TEI recommendations for feature-structure markup”, by D. Terence Langendoen and Gary F. Simons, in
Computers and the Humanities, 29, 1995[7].

BS ISO 24610-2:2011
ISO 24610-2:2011(E)

24 © ISO 2011 – All rights reserved

8.1 Overview

The Feature System Declaration (FSD) standard is intended for use in conjunction with fs (that is, feature
structure) elements that comply with ISO 24610-1:2006, although it may be used to document any feature
structure system. Its purposes are stated in Clause 1, Scope.

The FSD serves an important function in documenting precisely what the encoder intended by the system of
feature structure markup used in an XML-encoded text. The FSD is also an important resource which
standardizes the rules of inference used by software to validate the feature structure markup in a text, and to
infer the full interpretation of underspecified feature structures.

The reader should be aware, however, that there are a number of terminological mismatches between the
present standard and conventional practice in both formal logic and practical linguistic applications of typed
feature structures. In particular, what shall be called an “interpretation” of a feature structure here is not an
interpretation in the model-theoretic sense, but is instead a minimally informative (or equivalently, most
general) extension (see 5.6) of that feature structure that is consistent with a set of constraints declared by an
FSD. In linguistic application, such a system of constraints is the principal means by which the grammar of
some natural language is expressed. There is, however, a great deal of disagreement as to what, if any,
model-theoretic interpretation feature structures have in such applications. This status of this formal kind of
interpretation is not relevant to the present standard. The term valid normally appeals to a notion of formal
semantics as well, but is merely used here to describe what is in fact a purely syntactic state of well-
formedness in the sense defined by the logic of typed feature structures itself, as distinct from and in addition
to the “well-formedness” that pertains at the level of this encoding standard (see Clause 6).

The following subclause describes how an XML-encoded text should use header information to make links to
any associated FSDs. The third, fourth and fifth subclauses describe the overall structure of an FSD and
provide details on how to encode its parts. Annex B offers a full example.

8.2 Linking a text to feature system declarations

In order for application software to use feature system declarations to aid in the automatic interpretation of
encoded texts, or even for human readers to find the appropriate declarations which document the feature
system used in markup, there must be a formal link from the encoded texts to the declarations. However, the
schema that declares the syntax for the feature system should be kept distinct from the feature structure
representation schema itself, which is an application of that system.

The association between an FSD and a document using the feature structures it declares is reified in this
International Standard in a manner intended to be consistent with its inclusion in the <encodingDesc> block of
a document's <teiHeader> (see the TEI Guidelines P5, Section 2.3[14]). The fsdDecl element may be used for
each distinct feature structure type, as follows (in this International Standard, we use the “compact” variant of
the RELAX NG schema language to define such elements):

element fsdDecl
{

att.global.attributes,
attribute type { data enumerated }?
attribute url { data.pointer },
empty

}

<fsdDecl> [FSD (feature-system declaration) declaration] identifies the feature system declaration which
contains definitions for a particular type of feature structure. In addition to global attributes, type identifies the
type of feature structure documented by the FSD; it is expected that this will be the value of the type attribute
on at least one feature structure. The value can be any string of characters, but if the value contains
whitespace, it must be normalized: no leading or trailing sequences of whitespace characters, nor internal
sequences of more than one whitespace character. The type attribute is optional. If better validation is
required, the global xml:id attribute may be used to specify the type instead of this attribute, in which case the
name must be a valid identifier. If neither is used, then this <fsdDecl> is assumed to identify the FSDs for all
types of feature structures used in the encoding.

http://dx.doi.org/10.3403/30107257

BS ISO 24610-2:2011
ISO 24610-2:2011(E)

© ISO 2011 – All rights reserved 25

url supplies a link to the entity containing the feature system declaration. Its value must be an RFC 2396
Uniform Resource Identifier (URI).

There may be multiple fsdDecl elements for a given FSD; one for each type of feature structure it defines. For
instance, in the following example, the file Lexicon.fsd contains an FSD that contains definitions of feature
structures for lexical entries (<fs type="entry">) and lexical subentries (<fs type="subentry">). The file
Gazdar.fsd contains another FSD which contains the definition of a type of feature structure called GPSG:

<TEI>
 <teiHeader>
 <fileDesc>
<!-- ... -->
 </fileDesc>
 <encodingDesc>
<!-- ... -->
 <fsdDecl type="GPSG" url="Gazdar.fsd"/>
 <fsdDecl type="entry" url="Lexicon.fsd"/>
 <fsdDecl type="subentry" url="Lexicon.fsd"/>
<!-- ... -->
 </encodingDesc>
 </teiHeader>
<!-- The text goes here -->
</TEI>

This example shows an <fsdDecl> being given within the <encodingDesc> for each distinct value used as the
type of the <fs> elements in the document itself. In this case, for example, the feature system declaration used
by feature structures of types entry and subentry is to be found in the entity at the URL Lexicon.fsd.

The current standard provides no way of enforcing the uniqueness of type values among fsdDecl elements,
nor of requiring that every type value specified on an <fs> element be also declared on an <fsdDecl> element,
nor of ensuring that multiple <fsdDecl> do not appear in the same <encodingDesc> both with and without the
optional type attribute.

Encoders requiring such constraints (which might have some obvious utility in assisting the consistency and
accuracy of tagging) are recommended to develop tools to enforce them, using such mechanisms as
Schematron assertions.

FSDs avail themselves of the following elements: fsd, fsDecl, fsDescr, fDecl, fDescr, vRange, vDefault, if, then,
fsConstraints, cond, bicond and iff.

While the syntax of FSDs has no particular dependencies on any TEI module or ISO 24610-1 FSRs, it should
be used in conjunction with the standard tei, header, and core modules, as well as ISO 24610-1.

Broadly speaking, an FSD consists of one or more feature structure declarations (<fsDecl>), one or more
feature definitions (<fDecl>), and zero or more feature structure constraints (<cond> and/or <bicond>).
Feature definitions and feature structure constraints occur only within the scope of feature structure
declarations.

8.3 Overall structure of a feature system declaration

A feature system declaration is encoded as a document of type <fsd>. Apart from its global attributes, it has
two parts: an optional header (which provides bibliographic information for the file) and a set of feature
structure declarations, each of which defines one type of feature structure. Each feature structure declaration
in turn has three parts: an optional description (which gives a prose comment on what that type of feature
structure encodes), an obligatory set of feature declarations (which specify range constraints and default
values for the features in that type of structure), and optional feature structure constraints (which specify inter
alia co-occurrence restrictions on feature values). It is recommended that the header be encoded as a

http://dx.doi.org/10.3403/30107257U
http://dx.doi.org/10.3403/30107257U

BS ISO 24610-2:2011
ISO 24610-2:2011(E)

26 © ISO 2011 – All rights reserved

<teiHeader> (see the TEI Guidelines P5, Chapter 2, The TEI Header[14]). The other components listed above
are unique to feature system declarations. Thus, the following new elements are involved:

 <fsd> (feature system declaration) contains a feature system declaration.

 <fsDecl> (feature structure declaration) declares one type of feature structure.

 <fsDescr> [feature structure description (in FSD)] describes in prose what is represented by the type of
feature structure declared in the enclosing <fsDecl>.

 <fDecl> (feature declaration) declares a single feature, specifying its name, organization, range of
allowed values, and optionally its default value.

 <fsConstraints> (feature-structure constraints) specifies certain other constraints on valid feature
structures within this FSD.

Feature declarations and feature structure constraints are described in the next two subclauses (8.4 and 8.5).
The specification of similar <fsDecl> elements can be simplified by devising an inheritance hierarchy for the
feature structure types. Each <fsDecl> may name one or more baseTypes from which it inherits feature
declarations and constraints (these are often called “supertypes”).

For instance, suppose that <fsDecl type="Basic"> contains <fDecl name="one"> and <fDecl name="two">,
and that <fsDecl type="Derived" baseTypes="Basic"> contains just <fDecl name="three">. Then any instance
of <fs type="Derived"> must include all three features. This is because <fsDecl type="Derived"> inherits the
two feature declarations from <fsDecl type="Basic"> when it specifies a base type of Basic.

EXAMPLE The following example shows the overall structure of a complete FSD:

<fsd>
 <teiHeader>
<!-- The header is as for a TEI document -->
 </teiHeader>
 <fsDecl type="SomeName">
 <fsDescr>Describes what this type of fs represents</fsDescr>
 <fDecl name="featureOne">
<!-- The declaration for featureOne -->
 </fDecl>
 <fDecl name="featureTwo">
<!-- The declaration for featureTwo -->
 </fDecl>
 <fsConstraints>
<!-- The feature structure constraints go here -->
 </fsConstraints>
 </fsDecl>
 <fsDecl type="AnotherType">
<!-- Declare another type of feature structure -->
 </fsDecl>
</fsd>

The formal definition of the <fsd> and its components is as follows:

element fsd { att.global.attributes, fsd.content }

fsd.content = teiHeader?, fsDecl+

fsDecl = element fsDecl
{

att.global.attributes
fsDecl.attributes,
fsDecl.cont

}

BS ISO 24610-2:2011
ISO 24610-2:2011(E)

© ISO 2011 – All rights reserved 27

fsDecl.content = fsDescr?, fDecl+, fsConstraints?

fsDecl.attributes =
attribute type { data.enumerated },
attribute baseTypes { list { data.name+ } }?

fsDescr = element fsDescr
{
 att.global.attributes
 fsDescr.content
}

fsDescr.content = macro.limitedContent

baseTypes gives the name of one or more types from which this type inherits feature specifications and
constraints; if this type includes a feature specification with the same name as one inherited from any of the
types specified by this attribute, or if more than one specification of the same name is inherited, then the
possible values of that feature are determined by unification. Similarly, the set of constraints applicable is
derived by conjoining those specified explicitly within this element with those implied by the baseTypes
attribute. When no base type is specified, no feature specification or constraint is inherited.

Although this part of ISO 24610 does provide for default feature values, feature inheritance is defined to be
monotonic.

The process of combining constraints may result in a contradiction, for example if two specifications for the
same feature specify disjoint ranges of values, and at least one such specification is mandatory. In such a
case, there is no valid feature structure of the type being defined.

Every type specified in baseTypes must be a single word which is a legal XML name; for example, they
cannot include whitespace or begin with digits. Multiple base types are separated with spaces, e.g. <fsDecl
type="Sub" baseTypes="Super1 Super2">.

<fsDescr> may contain any prose except certain elements used for transcribing extant texts, e.g. del.

8.4 Feature declarations

8.4.1 General

Each feature is declared in an <fDecl> element whose name attribute identifies the feature being declared;
this matches the name attribute of the <f> elements it declares.

An <fDecl> has three parts: an optional prose description, which should explain what the feature and its
values represent, an obligatory range specification, which declares what values the feature is allowed to have,
and an optional default specification, which declares what default value should be supplied when the named
feature does not appear in an <fs>. A single unconditional default value or multiple conditional values may be
specified.

8.4.2 Type inference for obligatory features

If, in a feature structure, a feature

 is not optional (i.e. is obligatory),

 has no value provided, or the value <default> is provided (see ISO 24610-1:2006, 5.10, Default values),
and

 either has no default specified, or has conditional defaults, none of the conditions on which is met,

http://dx.doi.org/10.3403/30107257

BS ISO 24610-2:2011
ISO 24610-2:2011(E)

28 © ISO 2011 – All rights reserved

then the value of this feature in the feature structure's most general valid extension is the most general value
provided in its <vRange> in the case of a unit organization, or the singleton set, bag or list containing that
element in the case of a complex organization.

8.4.3 Type inference for optional features with defaults

If, in a feature structure, a feature

 is optional,

 has no value provided, or the value <default> is provided, and

 either has a default specified, or has conditional defaults, one of the conditions on which is met,

then this feature does have a value in the feature structure's most general valid extension when it exists,
namely the default value that pertains. Naturally, the feature also takes on this value if it is obligatory and a
default is specified.

8.4.4 Type inference for optional features without defaults

If, in a feature structure, a feature

 is optional,

 has no value provided, or the value <default> is provided, and

 has no default specified, or has conditional defaults, none of the conditions on which is met,

then this feature does not have a value in the feature structure's most general valid extension, when it exists.
This is permitted, because it is optional.

8.4.5 Possibility of failed inference

It is possible that a feature structure will not have a valid extension because the default value that pertains to a
feature is not consistent with that feature's declared range. Additional tools are required for the enforcement of
such criteria.

8.4.6 Elements and attributes of feature declarations

<fDecl> (feature declaration) declares a single feature, specifying its name, organization, range of allowed
values, an optional default value, and whether or not the feature itself is optional. The following elements and
attributes are used in feature declarations.

 name indicates the name of the feature being declared; it matches the name attribute of <f> elements in
the text.

 org specifies the organizing discipline of the feature value.

 optional indicates whether or not the feature is optional in feature structures of the type being declared.

 <fDescr> [feature description (in FSD)] describes in prose what is represented by the feature being
declared and its values.

 <vRange> (value range) defines the range of allowed values for a feature, in the form of an <fs>, <vAlt>,
or built-in; for the value of an <f> to be valid, it must be subsumed by the specified range; if the <f>
contains multiple values (as sanctioned by the org attribute), then each value must be subsumed by the
vRange.

BS ISO 24610-2:2011
ISO 24610-2:2011(E)

© ISO 2011 – All rights reserved 29

 <vDefault> (value default) declares the default value to be supplied when a feature structure does not
contain an instance of <f> for this name; if unconditional, it is specified as one (or, depending on the
value of the org attribute of the enclosing fDecl) more <fs> elements or primitive values; if conditional, it is
specified as one or more if elements; if no default is specified, or no condition matches, the value none is
assumed.

 <if> defines a conditional default value for a feature; the condition is specified as a feature structure, and
is met if it subsumes the feature structure in the text for which a default value is sought.

 <then> separates the condition from the default in an <if>, or the antecedent and the consequent in a
<cond> element.

8.4.7 Feature declarations and subsumption

The logic for validating feature values and for matching the conditions for supplying default values is based
upon the operation of subsumption. Subsumption is a standard operation in feature-structure-based
formalisms. Informally, a feature structure FS subsumes all feature structures that are consistent with and at
least as informative as itself; that is, all feature structures that specify all of the feature values that FS does
with values that are subsumed by the values that FS has, and that have all of the re-entrancies that FS does
(Carpenter, 1992[1]). See 5.1 for a formal definition.

Following the spirit of the informal definition above, we can extend subsumption in a straightforward way to
cover alternation, negation, special primitive values, and the use of attributes in the markup – for instance, a
<vAlt> containing the value v subsumes v. The negation of a value v (represented by means of the <vNot>
element discussed in ISO 24610-1:2006, 5.9.3 Negation) subsumes any value that does not unify with v or, in
the case of alternations and negations, does not include v; for example

<vNot>
 <numeric value="0"/>
</vNot>

subsumes any numeric value other than zero.

The value, <fs type="X"/>, even if it is not valid, subsumes any feature structure of type X.

8.4.8 Example of feature declarations

8.4.8.1 As an example of feature declarations, consider the following extract from Gazdar et al.s
Generalized Phrase Structure Grammar (GPSG)[4]. In the appendix to their book (pp. 245-247), they propose
a feature system for English of which this is just a sampling:

Feature value ranges:

 INV {+, -}

 SUBJ {+, -}

 CONJ {and, both, but, either, neither, nor, or, NIL}

 COMP {for, that, whether, if, NIL}

 AGR CAT

 PFORM {to, by, for, . . . }

Feature specification defaults:

 FSD 1: [-INV]

 FSD 2: ∽[CONJ]

 FSD 9: [INF, +SUBJ] → [COMP for]

http://dx.doi.org/10.3403/30107257

BS ISO 24610-2:2011
ISO 24610-2:2011(E)

30 © ISO 2011 – All rights reserved

8.4.8.2 Note that “FSD” here does not refer to the feature system declarations of this International
Standard, but to GPSG's feature specification defaults. The INV feature, which encodes whether or not the
subject-verb order in a sentence is inverted, allows only the values plus (+) and minus (). If the feature is not
specified, then the default rule (FSD 1 above) says that a value of minus is always assumed. The feature
declaration for this feature would be encoded as follows:

<fDecl name="inv">
 <fDescr>inverted sentence</fDescr>
 <vRange>
 <vAlt>
 <binary value="true"/>
 <binary value="false"/>
 </vAlt>
 </vRange>
 <vDefault>
 <binary value="false"/>
 </vDefault>
</fDecl>

The value range is specified as an alternation (more precisely, an exclusive disjunction) between values that
can be represented by the <binary> feature value. That is, the value must be either true or false, but cannot
be both or neither.

8.4.8.3 The CONJ feature indicates the surface form of the conjunction used in a construction. The ~ in
the default rule (see FSD 2 above) represents negation. This means that by default the feature is not present,
in other words, no conjunction is taking place.

Note that CONJ not being present is different from CONJ being present and having the NIL value allowed in
the value range. In their analysis, NIL means that the phenomenon of conjunction is taking place but there is
no explicit conjunction in the surface form of the sentence. The feature declaration for this feature would be
encoded as follows:

<fDecl name="conj">
 <fDescr>surface form of the conjunction</fDescr>
 <vRange>
 <vAlt>
 <symbol value="and"/>
 <symbol value="both"/>
 <symbol value="but"/>
 <symbol value="either"/>
 <symbol value="neither"/>
 <symbol value="nor"/>
 <symbol value="or"/>
 <symbol value="NIL"/>
 <binary value="false"/>
 </vAlt>
 </vRange>
 <vDefault>
 <binary value="false"/>
 </vDefault>
</fDecl>

Note that the <vDefault> is not strictly necessary in this case, since the binary value of false only serves to
convey the information that the feature has no other legitimate value.

8.4.8.4 The COMP feature indicates the surface form of the complementizer used in a construction. In its
range of values, it is analogous to CONJ. However, its default rule (see FSD 9 above) is conditional. It says
that if the verb form is infinitival (the VFORM feature is not mentioned in the rule since it is the only feature
that can take INF as a value), and the construction has a subject, then a for complement must be used. For

BS ISO 24610-2:2011
ISO 24610-2:2011(E)

© ISO 2011 – All rights reserved 31

instance, to make John the subject of the infinitive in “It is necessary to go”, a for complement must be used;
that is, It is necessary for John to go. The feature declaration for this feature would be encoded as follows:

<fDecl name="comp">
 <fDescr>surface form of the complementizer</fDescr>
 <vRange>
 <vAlt>
 <symbol value="for"/>
 <symbol value="that"/>
 <symbol value="whether"/>
 <symbol value="if"/>
 <symbol value="NIL"/>
 </vAlt>
 </vRange>
 <vDefault>
 <if>
 <fs>
 <f name="vform">
 <symbol value="INF"/>
 </f>
 <f name="subj">
 <binary value="true"/>
 </f>
 </fs>
 <then/>
 <symbol value="for"/>
 </if>
 </vDefault>
</fDecl>

8.4.8.5 The AGR feature stores the features relevant to subject-verb agreement. Gazdar et al. (1985)
specify the range of this feature as CAT. This means that the value is a category, which is their term for a
feature structure. This is actually too weak a statement. Not just any feature structure is allowable here; it
must be a feature structure for agreement (which is defined, in the complete example at the end of that
chapter of Gazdar et al. (1985)[4], to contain the features of person and number). The following feature
declaration encodes this constraint on the value range:

<fDecl name="agr">
 <fDescr>agreement for person and number</fDescr>
 <vRange>
 <fs type="Agreement"/>
 </vRange>
</fDecl>

That is, the value must be a feature structure of type Agreement. The complete example in Annex A provides
the <fsDecl type="Agreement"> which includes <fDecl name="pers"> and <fDecl name="num">.

8.4.8.6 The PFORM feature indicates the surface form of the preposition used in a construction. Since
PFORM is specified above as an open set, <string> is used in the range specification below rather than
<symbol>.

<fDecl name="pform">
 <fDescr>word form of a preposition</fDescr>
 <vRange>
 <vNot>
 <string/>
 </vNot>
 </vRange>
</fDecl>

BS ISO 24610-2:2011
ISO 24610-2:2011(E)

32 © ISO 2011 – All rights reserved

EXAMPLE This example makes use of a negated value:

<vNot>
 <string/>
</vNot>

subsumes any string that is not the empty string.

8.4.8.7 The formal definition for feature declarations follows. Note that the class model.featureVal
includes all possible feature values, including feature structures, alternations (<vAlt>), and complex collections
(<vColl>).

fDecl = element fDecl
{
 att.global.attributes,
 fDecl.attributes,
 fDecl.content
}

fDecl.attributes =
 attribute name { data.name },

attribute optional { xsd:boolean }?,
attribute org { "unit" | "set" | "bag" | "list" }?

fDecl.content = fDescr?, vRange, vDefault?

fDescr = element fDescr
{
 att.global.attributes,
 macro.limitedContent
}

vRange = element vRange
{
 att.global.attributes,
 model.featureVal
}

vDefault = element vDefault
{
 att.global.attributes,
 (model.featureVal+ | if+)
}

if = element if
{
 att.global.attributes,
 ((fs | f), then, (model.featureVal))
}

then = element then
{
 att.global.attributes,
 empty
}

BS ISO 24610-2:2011
ISO 24610-2:2011(E)

© ISO 2011 – All rights reserved 33

8.5 Feature structure constraints

Ensuring the validity of feature structures may require much more than simply specifying the range of allowed
values for each feature. There may be constraints on the co-occurrence of one feature value with the value of
another feature in the same feature structure or in an embedded feature structure.

Such constraints on valid feature structures are expressed as a series of conditional and biconditional tests in
the <fsConstraints> part of an <fsDecl>. A particular feature structure is valid only if it meets all the constraints.
The <cond> element encodes the conventional if-then conditional of Boolean logic which succeeds when
either the consequent is true or the antecedent is false. The <bicond> element encodes the biconditional (if
and only if) operation of Boolean logic. It succeeds only when the corresponding if-then conditionals in both
directions are true. In feature structure constraints, the antecedent and consequent are expressed as feature
structures; they are considered true if their feature structure subsumes (see 8.4, Feature declarations) the
feature structure in question. Procedurally, if the antecedent is true, then the consequent must also be true, so
the truth of the consequent is asserted rather than simply tested. A conditional is thus enforced by determining
that the antecedent does not (and will never) subsume the given feature structure, or by determining that the
antecedent does subsume the given feature structure, and then unifying the consequent with it (the result of
which, if successful, will be subsumed by the consequent). In practice, the enforcement of such constraints
can result in periods in which the truth of a constraint with respect to a given feature structure is simply not
known; in this case, the constraint must be persistently monitored as the feature structure becomes more
informative until either its truth value is determined or computation fails for some other reason.

The following elements make up the <fsConstraints> part of an FSD.

 fsConstraints (feature-structure constraints) specifies constraints on the content of valid feature
structures.

 cond (conditional feature-structure constraint) defines a conditional feature-structure constraint; the
consequent and the antecedent are specified as feature structures or feature-structure collections; the
constraint is satisfied if both the antecedent and the consequent subsume the given feature structure, or if
the antecedent does not.

 bicond (biconditional feature-structure constraint) defines a biconditional feature-structure constraint;
both consequent and antecedent are specified as feature structures or collocations of feature structures;
the constraint is satisfied if both subsume a given feature structure, or if both do not.

 then separates the condition from the default in an if, or the antecedent and the consequent in a <cond>
element.

 iff separates the condition from the consequence in a <bicond> element.

For an example of feature structure constraints, consider the following “feature co-occurrence restrictions”
extracted from the feature system for English proposed by Gazdar et al. (1985:246):

 FCR 1: [+INV] → [+AUX, FIN]

 FCR 7: [BAR 0] ↔ [N] & [V] & [SUBCAT]

 FCR 8: [BAR 1] → [SUBCAT]

BS ISO 24610-2:2011
ISO 24610-2:2011(E)

34 © ISO 2011 – All rights reserved

The first constraint says that if a construction is inverted, it must also have an auxiliary and a finite verb form.
That is:

<cond>
 <fs>
 <f name="inv">
 <binary value="true"/>
 </f>
 </fs>
 <then/>
 <fs>
 <f name="aux">
 <binary value="true"/>
 </f>
 <f name="vform">
 <symbol value="fin"/>
 </f>
 </fs>
</cond>

The second constraint says that if a construction has a BAR value of zero (i.e. it is a lexical item), then it must
have a value for the features N, V, and SUBCAT. By the same token, because it is a biconditional, if it has
values for N, V, and SUBCAT, it must have BAR='0'. That is:

<bicond>
 <fs>
 <f name="bar">
 <symbol value="0"/>
 </f>
 </fs>
 <iff/>
 <fs>
 <f name="n"/>
 <f name="v"/>
 <f name="subcat"/>
 </fs>
</bicond>

NOTE Here, according ISO 24610-1:2006, 5.10, Default values, (107), <f name="n"> is, for instance, understood as
having a value in the possible range of its values, thus being equivalent to the following:

<f name="n">
 <vAlt>
 <binary value="true"/>
 <binary value="false"/>
 </vAlt>
</f>

http://dx.doi.org/10.3403/30107257

BS ISO 24610-2:2011
ISO 24610-2:2011(E)

© ISO 2011 – All rights reserved 35

The final constraint says that if a construction has a BAR value of 1 (i.e. it is a phrase), then the SUBCAT
feature should be absent (~). This is not biconditional, since there are other instances under which the
SUBCAT feature is inappropriate. That is:

<cond>
 <fs>
 <f name="bar">
 <symbol value="1"/>
 </f>
 </fs>
 <then/>
 <fs>
 <f name="subcat">
 <binary value="false"/>
 </f>
 </fs>
</cond>

The formal declaration for feature structure constraints is as follows. Note that <cond> and <bicond> use the
empty tags <then> and <iff>, respectively, to separate the antecedent and consequent. These are primarily for
the sake of enhancing human readability.

fsConstraints = element fsConstraints
{

 att.global.attributes,
 (cond | bicond)*
}

cond = element cond
{
 att.global.attributes,
 ((fs | f), then, (fs | f))
}

bicond = element bicond
{
 att.global.attributes,
 ((fs | f), iff, (fs | f))
}

iff = element iff
{
 att.global.attributes,
 empty
}

BS ISO 24610-2:2011
ISO 24610-2:2011(E)

36 © ISO 2011 – All rights reserved

Annex A
(normative)

XML schema for feature structures

macro.limitedContent = (text | model.limitedPhrase | model.inter)*
macro.xtext = (text | model.gLike)*

att.global.attributes =
 att.global.attribute.xmlid,
 att.global.attribute.n,
 att.global.attribute.xmllang,
 att.global.attribute.xmlbase,
 empty

att.global.attribute.xmlid =
 ## (identifier) provides a unique identifier for the element bearing the
 ## attribute.
 attribute xml:id { xsd:ID }?

att.global.attribute.n =
 ## (number) gives a number (or other label) for an element, which is
 ## not necessarily unique within the document.
 attribute n {
 list {
 xsd:token { pattern = "(\p{L}|\p{N}|\p{P}|\p{S})+" }+
 }
 }?

att.global.attribute.xmllang =
 ## (language) indicates the language of the element content using a
 ## tag generated according to BCP 47
 attribute xml:lang { xsd:language }?

att.global.attribute.xmlbase =
 ## provides a base URI reference with which applications can
 ## resolve relative URI references into absolute URI
 ## references.
 attribute xml:base { xsd:anyURI }?

model.gLike = notAllowed

model.featureVal.complex = fs | vColl | vNot | vMerge

model.featureVal.single =
 binary | symbol | numeric | \string | vLabel | \default | vAlt

model.placeStateLike = notAllowed

model.qLike = notAllowed

model.nameLike = model.placeStateLike

model.featureVal = model.featureVal.complex | model.featureVal.single

model.pPart.data = model.nameLike

model.inter = model.qLike

BS ISO 24610-2:2011
ISO 24610-2:2011(E)

© ISO 2011 – All rights reserved 37

model.limitedPhrase = model.pPart.data

fsdDecl =
 ## (feature system declaration) provides a feature system declaration
 ## comprising one or more
 ## feature structure declarations or feature structure declaration links.
 element fsdDecl {
 (fsDecl | fsdLink)+,
 att.global.attribute.xmlid,
 att.global.attribute.n,
 att.global.attribute.xmllang,
 att.global.attribute.xmlbase,
 empty
 }

fsDecl =
 ## (feature structure declaration) declares one type of feature structure.
 element fsDecl {
 (fsDescr?, fDecl+, fsConstraints?),
 att.global.attribute.xmlid,
 att.global.attribute.n,
 att.global.attribute.xmllang,
 att.global.attribute.xmlbase,

 ## gives a name for the type of feature structure being declared.

 attribute type { xsd:Name },

 ## gives the name of one or more typed feature structures
 ## from which this type inherits feature specifications and
 ## constraints; if this type includes a feature specification
 ## with the same name as that of any of those specified by this
 ## attribute, or if more than one specification of the same name
 ## is inherited, then the set of possible values is defined by
 ## unification. Similarly, the set of constraints applicable is
 ## derived by combining those specified explicitly within this
 ## element with those implied by the baseTypes
 ## attribute. When no baseTypes attribute is specified, no
 ## feature specification or constraint is inherited.

 attribute baseTypes {
 list { xsd:Name+ }
 }?,
 empty
 }

fsDescr =
 ## (feature system description (in FSD)) describes in prose
 ## what is represented by the type of feature
 ## structure declared in the enclosing fsDecl.
 element fsDescr {
 macro.limitedContent,
 att.global.attribute.xmlid,
 att.global.attribute.n,
 att.global.attribute.xmllang,
 att.global.attribute.xmlbase,
 empty
 }

BS ISO 24610-2:2011
ISO 24610-2:2011(E)

38 © ISO 2011 – All rights reserved

fsdLink =
 ## (feature structure declaration link) associates the name of
 ## a typed feature structure with a feature
 ## structure declaration for it.
 element fsdLink {
 empty,
 att.global.attribute.xmlid,
 att.global.attribute.n,
 att.global.attribute.xmllang,
 att.global.attribute.xmlbase,

 ## identifies the type of feature structure to be documented;
 ## this will be the value of the type attribute on at least one
 ## feature structure.

 attribute type { xsd:Name },

 ## supplies a pointer to a feature structure declaration
 ## (fsDecl) element within the current document or elsewhere.

 attribute target { xsd:anyURI },
 empty
 }

fDecl =
 ## (feature declaration) declares a single feature,
 ## specifying its name, organization,
 ## range of allowed values, and optionally its default value.
 element fDecl {
 (fDescr?, vRange, vDefault?),
 att.global.attribute.xmlid,
 att.global.attribute.n,
 att.global.attribute.xmllang,
 att.global.attribute.xmlbase,

 ## indicates the name of the feature being declared; matches the
 ## name attribute of f elements in the text.

 attribute name { xsd:Name },

 ## indicates whether or not the value of this feature may
 ## be present.

 [a1:defaultValue = "true"] attribute optional { xsd:boolean }?,
 empty
 }

fDescr =
 ## (feature description (in FSD)) describes in prose
 ## what is represented by the feature being
 ## declared and its values.
 element fDescr {
 macro.limitedContent,
 att.global.attribute.xmlid,
 att.global.attribute.n,
 att.global.attribute.xmllang,
 att.global.attribute.xmlbase,
 empty
 }

BS ISO 24610-2:2011
ISO 24610-2:2011(E)

© ISO 2011 – All rights reserved 39

vRange =
 ## (value range) defines the range of allowed values for a feature,
 ## in the form of an fs, vAlt, or primitive value;
 ## for the value of an f to be valid, it must be
 ## subsumed by the specified range; if the f
 ## contains multiple values (as sanctioned by the org attribute),
 ## then each value must be subsumed by the vRange.
 element vRange {
 model.featureVal,
 att.global.attribute.xmlid,
 att.global.attribute.n,
 att.global.attribute.xmllang,
 att.global.attribute.xmlbase,
 empty
 }

vDefault =
 ## (value default) declares the default value to be supplied
 ## when a feature structure
 ## does not contain an instance of f for this name; if
 ## unconditional, it is specified as one (or, depending on the value of
 ## the org attribute of the enclosing fDecl) more
 ## fs elements or primitive values;
 ## if conditional, it is specified as
 ## one or more if elements; if no default is specified, or no
 ## condition matches, the value none is assumed.
 element vDefault {
 (model.featureVal+ | if+),
 att.global.attribute.xmlid,
 att.global.attribute.n,
 att.global.attribute.xmllang,
 att.global.attribute.xmlbase,
 empty
 }

if =
 ## defines a conditional default value for a feature; the condition
 ## is specified as a feature structure, and is met if it
 ## subsumes the feature structure in the text for which a
 ## default value is sought.
 element if {
 ((fs | f), then, model.featureVal),
 att.global.attribute.xmlid,
 att.global.attribute.n,
 att.global.attribute.xmllang,
 att.global.attribute.xmlbase,
 empty
 }

then =
 ## separates the condition from the default in an if, or
 ## the antecedent and the consequent in a cond element.
 element then {
 empty,
 att.global.attribute.xmlid,
 att.global.attribute.n,
 att.global.attribute.xmllang,
 att.global.attribute.xmlbase,
 empty
 }

BS ISO 24610-2:2011
ISO 24610-2:2011(E)

40 © ISO 2011 – All rights reserved

fsConstraints =
 ## (feature-structure constraints) specifies constraints
 ## on the content of valid feature
 ## structures.
 element fsConstraints {
 (cond | bicond)*,
 att.global.attribute.xmlid,
 att.global.attribute.n,
 att.global.attribute.xmllang,
 att.global.attribute.xmlbase,
 empty
 }

cond =
 ## (conditional feature-structure constraint) defines a conditional
 ## feature-structure constraint; the consequent
 ## and the antecedent are specified as feature structures or
 ## feature-structure collections; the constraint is satisfied if both the
 ## antecedent and the consequent subsume a given feature
 ## structure, or if the antecedent does not.
 element cond {
 ((fs | f), then, (fs | f)),
 att.global.attribute.xmlid,
 att.global.attribute.n,
 att.global.attribute.xmllang,
 att.global.attribute.xmlbase,
 empty
 }

bicond =
 ## (biconditional feature-structure constraint) defines a
 ## biconditional feature-structure constraint; both
 ## consequent and antecedent are specified as feature structures
 ## or groups of feature structures; the constraint is satisfied
 ## if both subsume a given feature structure, or if both do not.
 element bicond {
 ((fs | f), iff, (fs | f)),
 att.global.attribute.xmlid,
 att.global.attribute.n,
 att.global.attribute.xmllang,
 att.global.attribute.xmlbase,
 empty
 }

iff =
 ## (if and only if) separates the condition from the consequence
 ## in a bicond element.
 element iff {
 empty,
 att.global.attribute.xmlid,
 att.global.attribute.n,
 att.global.attribute.xmllang,
 att.global.attribute.xmlbase,
 empty
 }

BS ISO 24610-2:2011
ISO 24610-2:2011(E)

© ISO 2011 – All rights reserved 41

fs =
 ## (feature structure) represents a feature structure, that is, a
 ## collection of feature-value pairs organized as a structural unit.
 element fs {
 f*,
 att.global.attribute.xmlid,
 att.global.attribute.n,
 att.global.attribute.xmllang,
 att.global.attribute.xmlbase,

 ## specifies the type of the feature structure.

 attribute type { xsd:Name }?,

 ## (features) references the feature-value specifications
 ## making up this feature structure.

 attribute feats {
 list { xsd:anyURI+ }
 }?,
 empty
 }

f =
 ## (feature) represents a feature value specification, that
 ## is, the association of a name with a value of
 ## any of several different types.
 element f {
 model.featureVal*,
 att.global.attribute.xmlid,
 att.global.attribute.n,
 att.global.attribute.xmllang,
 att.global.attribute.xmlbase,

 ## provides a name for the feature.

 attribute name { text },

 ## (feature value) references any element which can be used
 ## to represent the value of a feature.

 attribute fVal { text }?,
 empty
 }

binary =
 ## (binary value) represents the value part of
 ## a feature-value specification which can contain either
 ## of exactly two possible values.
 element binary {
 empty,
 att.global.attribute.xmlid,
 att.global.attribute.n,
 att.global.attribute.xmllang,
 att.global.attribute.xmlbase,

 ## supplies a binary value.

 attribute value { xsd:boolean },
 empty
 }

BS ISO 24610-2:2011
ISO 24610-2:2011(E)

42 © ISO 2011 – All rights reserved

symbol =
 ## (symbolic value) represents the value part of
 ## a feature-value specification which contains one of
 ## a finite list of symbols.
 element symbol {
 empty,
 att.global.attribute.xmlid,
 att.global.attribute.n,

 att.global.attribute.xmllang,
 att.global.attribute.xmlbase,

 ## supplies the symbolic value for the feature, one of a finite list that
 ## may be specified in a feature declaration.

 attribute value {
 xsd:token { pattern = "(\p{L}|\p{N}|\p{P}|\p{S})+" }
 },
 empty
 }

numeric =
 ## (numeric value) represents the value part of
 ## a feature-value specification which contains a numeric value or range.
 element numeric {
 empty,
 att.global.attribute.xmlid,
 att.global.attribute.n,
 att.global.attribute.xmllang,
 att.global.attribute.xmlbase,

 ## supplies a lower bound for the numeric value represented,
 ## and also (if max is not supplied) its upper bound.

 attribute value { xsd:double | xsd:decimal },

 ## supplies an upper bound for the numeric value represented.

 attribute max { xsd:double | xsd:decimal }?,

 ## specifies whether the value represented should be
 ## truncated to give an integer value.

 attribute trunc { xsd:boolean }?,
 empty
 }

string =

 ## (string value) represents the value part of
 ## a feature-value specification which contains a string.
 element string {
 macro.xtext,
 att.global.attribute.xmlid,
 att.global.attribute.n,
 att.global.attribute.xmllang,
 att.global.attribute.xmlbase,
 empty
 }

BS ISO 24610-2:2011
ISO 24610-2:2011(E)

© ISO 2011 – All rights reserved 43

vLabel =
 ## (value label) represents the value part of a feature-value
 ## specification which appears at more than one point
 ## in a feature structure.
 element vLabel {
 model.featureVal?,
 att.global.attribute.xmlid,
 att.global.attribute.n,
 att.global.attribute.xmllang,
 att.global.attribute.xmlbase,

 ## supplies a name for the sharing point.

 attribute name {
 xsd:token { pattern = "(\p{L}|\p{N}|\p{P}|\p{S})+" }
 },
 empty
 }

vColl =
 ## (collection of values) represents the value part
 ## of a feature-value specification which contains multiple values
 ## organized as a set, bag, or list.
 element vColl {
 (fs | model.featureVal.single)*,
 att.global.attribute.xmlid,
 att.global.attribute.n,
 att.global.attribute.xmllang,
 att.global.attribute.xmlbase,

 ## (organization) indicates organization of given value or values
 ## as a set, bag or list.

 attribute org {
 ## indicates that the given values are organized as a set.

 "set"

 |

 ## indicates that the given values are organized as a
 ## bag (multiset).

 "bag"

 |

 ## indicates that the given values are organized as a
 ## list.

 "list"
 }?,
 empty
 }

BS ISO 24610-2:2011
ISO 24610-2:2011(E)

44 © ISO 2011 – All rights reserved

default =
 ## (default feature value) represents the value part of
 ## a feature-value specification
 ## which contains a defaulted value.
 element default {
 empty,
 att.global.attribute.xmlid,
 att.global.attribute.n,
 att.global.attribute.xmllang,
 att.global.attribute.xmlbase,
 empty
 }

vAlt =
 ## (value alternation) represents the value part of
 ## a feature-value specification
 ## which contains a set of values, only one of which can be valid.
 element vAlt {
 (model.featureVal, model.featureVal+),
 att.global.attribute.xmlid,
 att.global.attribute.n,
 att.global.attribute.xmllang,
 att.global.attribute.xmlbase,
 empty
 }

vNot =
 ## (value negation) represents a feature value
 ## which is the negation of its content.
 element vNot {
 model.featureVal,
 att.global.attribute.xmlid,
 att.global.attribute.n,
 att.global.attribute.xmllang,
 att.global.attribute.xmlbase,
 empty
 }

vMerge =
 ## (merged collection of values) represents a feature value
 ## which is the result of merging together the feature values
 ## contained by its children, using the organization
 ## specified by the org attribute.
 element vMerge {
 model.featureVal+,
 att.global.attribute.xmlid,
 att.global.attribute.n,
 att.global.attribute.xmllang,
 att.global.attribute.xmlbase,

 ## indicates the organization of the resulting merged values
 ## as set, bag or list.

 attribute org {

 ## indicates that the resulting values are organized as a set.

 "set"

 |

BS ISO 24610-2:2011
ISO 24610-2:2011(E)

© ISO 2011 – All rights reserved 45

 ## indicates that the resulting values are organized as a bag (multiset).

 "bag"

 |

 ## indicates that the resulting values are organized as a list.

 "list"
 }?,
 empty
 }

fLib =
 ## (feature library) assembles a library of feature elements.
 element fLib {
 f+,
 att.global.attribute.xmlid,
 att.global.attribute.n,
 att.global.attribute.xmllang,
 att.global.attribute.xmlbase,
 empty
 }

fvLib =
 ## (feature-value library) assembles a library
 ## of reusable feature value elements
 ## (including complete feature structures).
 element fvLib {
 model.featureVal*,
 att.global.attribute.xmlid,
 att.global.attribute.n,
 att.global.attribute.xmllang,
 att.global.attribute.xmlbase,
 empty
 }

start = fsdDecl

BS ISO 24610-2:2011
ISO 24610-2:2011(E)

46 © ISO 2011 – All rights reserved

Annex B
(informative)

A complete example

To summarize, the complete FSD for the example that has run through Clause 8 is reproduced here:

<TEI>
 <teiHeader>
 <fileDesc>
 <titleStmt>
 <title>A sample FSD based on an extract from Gazdar et al.'s
 GPSG feature system for English</title>
 <respStmt>
 <resp>encoded by</resp>
 <name>Gary F. Simons</name>
 </respStmt>
 </titleStmt>
 <publicationStmt>
 <p>This sample was first encoded by Gary F. Simons (Summer
 Institute of Linguistics, Dallas, TX) on January 28, 1991.
 Revised April 8, 1993 to match the specification of FSDs in
 version P2 of the TEI Guidelines. Revised again December
 2004 to be consistent with the feature structure
 representation standard jointly developed with ISO TC37/SC4.
 </p>
 </publicationStmt>
 <sourceDesc>
 <p>This sample FSD does not describe a complete feature system.
 It is based on extracts from the feature system for English
 presented in the appendix (pages 245–247) of Generalized
 Phrase Structure Grammar, by Gazdar, Klein, Pullum, and Sag
 (Harvard University Press, 1985).</p>
 </sourceDesc>
 </fileDesc>
 </teiHeader>
 <fsdDecl>
 <fsDecl type="GPSG">
 <fsDescr>Encodes a feature structure for the GPSG analysis of
 English (after Gazdar, Klein, Pullum, and Sag)</fsDescr>
 <fDecl name="INV">
 <fDescr>inverted sentence</fDescr>
 <vRange>
 <vAlt>
 <binary value="true"/>
 <binary value="false"/>
 </vAlt>
 </vRange>
 <vDefault>
 <binary value="false"/>
 </vDefault>
 </fDecl>
 <fDecl name="CONJ">
 <fDescr>surface form of the conjunction</fDescr>
 <vRange>
 <vAlt>

BS ISO 24610-2:2011
ISO 24610-2:2011(E)

© ISO 2011 – All rights reserved 47

 <symbol value="and"/>
 <symbol value="both"/>
 <symbol value="but"/>
 <symbol value="either"/>
 <symbol value="neither"/>
 <symbol value="nor"/>
 <symbol value="or"/>
 <symbol value="NIL"/>
 </vAlt>
 </vRange>
 <vDefault>
 <binary value="false"/>
 </vDefault>
 </fDecl>
 <fDecl name="COMP">
 <fDescr>surface form of the complementizer</fDescr>
 <vRange>
 <vAlt>
 <symbol value="for"/>
 <symbol value="that"/>
 <symbol value="whether"/>
 <symbol value="if"/>
 <symbol value="NIL"/>
 </vAlt>
 </vRange>
 <vDefault>
 <if>
 <fs>
 <f name="VFORM">
 <symbol value="INF"/>
 </f>
 <f name="SUBJ">
 <binary value="true"/>
 </f>
 </fs>
 <then/>
 <symbol value="for"/>
 </if>
 </vDefault>
 </fDecl>
 <fDecl name="AGR">
 <fDescr>agreement for person and number</fDescr>
 <vRange>
 <fs type="Agreement"/>
 </vRange>
 </fDecl>
 <fDecl name="PFORM">
 <fDescr>word form of a preposition</fDescr>
 <vRange>
 <vNot>
 <string/>
 </vNot>
 </vRange>
 </fDecl>
 <fsConstraints>
 <cond>
 <fs>
 <f name="INV">
 <binary value="true"/>
 </f>

BS ISO 24610-2:2011
ISO 24610-2:2011(E)

48 © ISO 2011 – All rights reserved

 </fs>
 <then/>
 <fs>
 <f name="AUX">
 <binary value="true"/>
 </f>
 <f name="VFORM">
 <symbol value="FIN"/>
 </f>
 </fs>
 </cond>
 <bicond>
 <fs>
 <f name="BAR">
 <symbol value="0"/>
 </f>
 </fs>
 <iff/>
 <fs>
 <f name="N">
 <binary value="true"/>
 </f>
 <f name="V">
 <binary value="true"/>
 </f>
 <f name="SUBCAT">
 <binary value="true"/>
 </f>
 </fs>
 </bicond>
 <cond>
 <fs>
 <f name="BAR">
 <symbol value="1"/>
 </f>
 </fs>
 <then/>
 <fs>
 <f name="SUBCAT">
 <binary value="false"/>
 </f>
 </fs>
 </cond>
 </fsConstraints>
 </fsDecl>
 <fsDecl type="Agreement">
 <fsDescr>This type of feature structure encodes the features for
 subject-verb agreement in English</fsDescr>
 <fDecl name="PERS">
 <fDescr>person (first, second, or third)</fDescr>
 <vRange>
 <vAlt>
 <symbol value="1"/>
 <symbol value="2"/>
 <symbol value="3"/>
 </vAlt>
 </vRange>
 </fDecl>
 <fDecl name="NUM">
 <fDescr>number (singular or plural)</fDescr>

BS ISO 24610-2:2011
ISO 24610-2:2011(E)

© ISO 2011 – All rights reserved 49

 <vRange>
 <vAlt>
 <symbol value="sg"/>
 <symbol value="pl"/>
 </vAlt>
 </vRange>
 </fDecl>
 </fsDecl>
 </fsdDecl>
</TEI>

BS ISO 24610-2:2011
ISO 24610-2:2011(E)

50 © ISO 2011 – All rights reserved

Bibliography

[1] CARPENTER, B., The Logic of Typed Feature Structures. Cambridge University Press, Cambridge, 1992

[2] COPESTAKE, A., Implementing Typed Feature Structure Grammars. CSLI Publications, Stanford, 2002

[3] FLICKINGER, D., On building a more efficient grammar by exploiting types. In: Collaborative Language
Engineering (ed. Stephan Oepen, Dan Flickinger, Jun'ichi Tsujii and Hans Uszkoreit), CSLI
Publications, Stanford, 2002, pp. 1-17

[4] GAZDAR, G., KLEIN, E., PULLUM, G. and SAG, I., Generalized Phrase Structure Grammar, Harvard
University Press, Cambridge, MA, 1985

[5] JOHNSON, M., Attribute-Value Logic and the Theory of Grammar, CSLI Lecture Notes 16, Stanford,
1988

[6] KAY, M., Unification. In: Computational Linguistics and Formal Semantics (ed. Michael Rosner and
Roderick Johnson), Cambridge University Press, Cambridge, 1992, pp. 1-30

[7] LANGENDOEN, D.T. and SIMONS, G.F., A rationale for the TEI recommendations for feature-structure
markup. Computers and the Humanities, 29, 1995, pp. 191-209

[8] PEREIRA, F.C.N. Grammars and Logics of Partial Information, SRI International Technical Note 420.
SRI International, Menlo Park, CA, 1987

[9] POLLARD, C.J. and SAG, I.A., Information-based Syntax and Semantics, Vol. 1 Fundamentals. CSLI
Lecture Notes, 13, Stanford, 1987

[10] POLLARD, C.J. and SAG, I.A., Head-driven Phrase Structure Grammar. The University of Chicago Press,
Chicago, 1994

[11] POLLARD, C.J. and MOSHIER, M.A., Unifying partial descriptions of sets. In: Information, Language, and
Cognition (ed. Philip P. Hanson), The University of British Columbia Press, Vancouver, 1990,
pp. 285-322

[12] SAG, I.A., WASOW, T. and BENDER, E.M., Syntactic Theory: A Formal Introduction. 2nd edition, CSLI
Publications, Stanford, 2003.

[13] SHIEBER, S.M., An Introduction to Unification-Based Approaches to Grammar. CSLI Lecture Notes, 4,
Stanford, 1986

[14] Text Encoding Initiative Consortium, The TEI Guidelines, P5, 2005

[15] VIJAY-SHANKER, K. and JOSHI, A.K. Feature-structure based tree adjoining grammar. Proceedings of
COLING'88, 1988

BS ISO 24610-2:2011

BS ISO 24610-2:2011
ISO 24610-2:2011(E)

ICS 01.140.20
Price based on 50 pages

© ISO 2011 – All rights reserved

This page deliberately left blank

BSI is the national body responsible for preparing British Standards and other
standards-related publications, information and services.

BSI is incorporated by Royal Charter. British Standards and other standardization
products are published by BSI Standards Limited.

British Standards Institution (BSI)

BSI Group Headquarters

389 Chiswick High Road London W4 4AL UK

About us
We bring together business, industry, government, consumers, innovators
and others to shape their combined experience and expertise into standards
-based solutions.

The knowledge embodied in our standards has been carefully assembled in
a dependable format and refined through our open consultation process.
Organizations of all sizes and across all sectors choose standards to help
them achieve their goals.

Information on standards
We can provide you with the knowledge that your organization needs
to succeed. Find out more about British Standards by visiting our website at
bsigroup.com/standards or contacting our Customer Services team or
Knowledge Centre.

Buying standards
You can buy and download PDF versions of BSI publications, including British
and adopted European and international standards, through our website at
bsigroup.com/shop, where hard copies can also be purchased.

If you need international and foreign standards from other Standards Development
Organizations, hard copies can be ordered from our Customer Services team.

Subscriptions
Our range of subscription services are designed to make using standards
easier for you. For further information on our subscription products go to
bsigroup.com/subscriptions.

With British Standards Online (BSOL) you’ll have instant access to over 55,000
British and adopted European and international standards from your desktop.
It’s available 24/7 and is refreshed daily so you’ll always be up to date.

You can keep in touch with standards developments and receive substantial
discounts on the purchase price of standards, both in single copy and subscription
format, by becoming a BSI Subscribing Member.

PLUS is an updating service exclusive to BSI Subscribing Members. You will
automatically receive the latest hard copy of your standards when they’re
revised or replaced.

To find out more about becoming a BSI Subscribing Member and the benefits
of membership, please visit bsigroup.com/shop.

With a Multi-User Network Licence (MUNL) you are able to host standards
publications on your intranet. Licences can cover as few or as many users as you
wish. With updates supplied as soon as they’re available, you can be sure your
documentation is current. For further information, email bsmusales@bsigroup.com.

Revisions
Our British Standards and other publications are updated by amendment or revision.

We continually improve the quality of our products and services to benefit your
business. If you find an inaccuracy or ambiguity within a British Standard or other
BSI publication please inform the Knowledge Centre.

Copyright
All the data, software and documentation set out in all British Standards and
other BSI publications are the property of and copyrighted by BSI, or some person
or entity that owns copyright in the information used (such as the international
standardization bodies) and has formally licensed such information to BSI for
commercial publication and use. Except as permitted under the Copyright, Designs
and Patents Act 1988 no extract may be reproduced, stored in a retrieval system
or transmitted in any form or by any means – electronic, photocopying, recording
or otherwise – without prior written permission from BSI. Details and advice can
be obtained from the Copyright & Licensing Department.

Useful Contacts:
Customer Services
Tel: +44 845 086 9001
Email (orders): orders@bsigroup.com
Email (enquiries): cservices@bsigroup.com

Subscriptions
Tel: +44 845 086 9001
Email: subscriptions@bsigroup.com

Knowledge Centre
Tel: +44 20 8996 7004
Email: knowledgecentre@bsigroup.com

Copyright & Licensing
Tel: +44 20 8996 7070
Email: copyright@bsigroup.com

NO COPYING WITHOUT BSI PERMISSION EXCEPT AS PERMITTED BY COPYRIGHT LAW

www.bsigroup.com/standards
www.bsigroup.com/shop
www.bsigroup.com/shop
www.bsigroup.com/subscriptions

	1 Scope
	2 Normative references
	3 Terms and definitions
	4 Overall structure
	5 Basic concepts
	5.1 Typed feature structures reviewed
	5.2 Types
	5.2.1 Atomic types
	5.2.2 Complex types
	5.2.3 Collections
	5.2.4 Operators

	5.3 Type inheritance hierarchies
	5.4 Type constraints
	5.5 Optional (default) values and underspecification
	5.6 Subsumption

	6 Defining well-formedness versus validity
	6.1 Overview
	6.1.1 General
	6.1.2 Formal logics
	6.1.3 XML

	6.2 ISO€24610
	6.2.1 Definitions
	6.2.2 Review of the syntax of typed feature structures in XML
	6.2.2.1 Overview
	6.2.2.2 Introducing names
	6.2.2.3 Basic pattern
	6.2.2.4 Feature value patterns

	6.2.3 Illustrations for well-formedness
	6.2.4 Illustration for validity
	6.2.4.1 Conditions
	6.2.4.2 Illustration for validity
	6.2.4.3 Overall constraint for the type word

	7 A feature system for a grammar
	7.1 Overview
	7.2 Sample FSDs
	7.2.1 General
	7.2.2 Defining types and their hierarchy
	7.2.3 Declaring type constraints

	8 Declaration of a feature system
	8.1 Overview
	8.2 Linking a text to feature system declarations
	8.3 Overall structure of a feature system declaration
	8.4 Feature declarations
	8.4.1 General
	8.4.2 Type inference for obligatory features
	8.4.3 Type inference for optional features with defaults
	8.4.4 Type inference for optional features without defaults
	8.4.5 Possibility of failed inference
	8.4.6 Elements and attributes of feature declarations
	8.4.7 Feature declarations and subsumption
	8.4.8 Example of feature declarations

	8.5 Feature structure constraints

