Polyethylene of raised temperature resistance (PE-RT) pipes — Effect of time and temperature on the expected strength ICS 23.040.20 # National foreword This British Standard is the UK implementation of ISO 24033:2009. The UK participation in its preparation was entrusted to Technical Committee PRI/88/4, Test methods. A list of organizations represented on this committee can be obtained on request to its secretary. This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application. Compliance with a British Standard cannot confer immunity from legal obligations. This British Standard was published under the authority of the Standards Policy and Strategy Committee on 28 February 2009 © BSI 2009 Amendments/corrigenda issued since publication | Date | Comments | |------|----------| | | | | | | | | | | | | ISBN 978 0 580 57516 7 BS ISO 24033:2009 # INTERNATIONAL STANDARD ISO 24033 Second edition 2009-01-15 # Polyethylene of raised temperature resistance (PE-RT) pipes — Effect of time and temperature on the expected strength Tubes en polyéthylène de meilleure résistance à la température (PE-RT) — Influence du temps et de la température sur la résistance espérée ### PDF disclaimer This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area. Adobe is a trademark of Adobe Systems Incorporated. Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below. # **COPYRIGHT PROTECTED DOCUMENT** #### © ISO 2009 All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester. ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org Published in Switzerland # **Foreword** ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2. The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote. Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. ISO 24033 was prepared by Technical Committee ISO/TC 138, *Plastics pipes, fittings and valves for the transport of fluids*, Subcommittee SC 5, *General properties of pipes, fittings and valves of plastic materials and their accessories* — *Test methods and basic specifications*. This second edition cancels and replaces the first edition (ISO 24033:2006), which is extended to cover PE-RT materials, type II, which have a higher hoop stress performance at higher temperatures than type I. The first edition dealt only with PE-RT materials, currently designated type I. # Introduction An increasing number of types of polyethylene (PE) polymers, made in a variety of processes, is on the market for different applications in plastic piping and ducting systems. Many applications have their own system standard that defines the properties and requirements for the pipes and fittings used. The types of PE suitable for use in hot and cold water systems are basically different from those for applications at ambient temperatures such as in water supply, sewage and drainage, and gaseous fuels. Therefore, it makes sense to differentiate those PE having raised temperature-resistance by terming them "PE-RT" (for polyethylene of raised temperature)¹⁾. See the foreword for details of PE-RT materials, types I and II. iν ¹⁾ Abbreviated term based on the provisions of, and guidance for preparing new abbreviated terms for, basic polymers, mixtures of polymers, and related terms given in ISO 1043-1^[1]. # Polyethylene of raised temperature resistance (PE-RT) pipes — Effect of time and temperature on the expected strength # 1 Scope This International Standard specifies minimum values for expected strength as a function of time and temperature in the form of reference lines, for use in calculations on pipes made of: - a) polyethylene of raised temperature resistance (PE-RT) type I; - b) PE-RT type II. ### 2 Normative references The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. ISO 1167-1, Thermoplastics pipes, fittings and assemblies for the conveyance of fluids — Determination of the resistance to internal pressure — Part 1: General method ISO 1167-2, Thermoplastics pipes, fittings and assemblies for the conveyance of fluids — Determination of the resistance to internal pressure — Part 2: Preparation of pipe test pieces ## 3 Terms and definitions For the purposes of this document, the following terms and definitions apply. # 3.1 ### reference line $\langle PE-RT \ pipes \rangle$ generic description of the minimum long-term hydrostatic strength to be expected from a particular polymer NOTE 1 A reference line is not to be considered as characteristic of a specific grade or of material from a specific supplier. NOTE 2 A line is described by a mathematical equation, which permits interpolation and extrapolation in an unambiguous way at various temperatures. NOTE 3 The reference lines for PE-RT have been agreed by a group of experts after considering experimental data, and have been accepted by the relevant ISO technical committees. #### **Basic equations** 4 The reference lines for PE-RT type I temperatures between 20 °C and 95 °C are described by Equations (1) and (2): $$\lg t = A_1 + (B_1/T) \lg \sigma + C_1/T + D_1 \lg \sigma$$ (1) $$\lg t = A_2 + (B_2/T) \lg \sigma + C_2/T + D_2 \lg \sigma$$ (2) where t is the time, in hours; T is the temperature, in kelvin; σ is the hoop stress, in megapascals; $$A_1 = -190,481$$ $A_2 = -23,7954$ $$A_2 = -23,7954$$ $$B_1 = -58\ 219,035$$ $B_2 = -1\ 723,318$ $$B_2 = -1723,318$$ $$C_1 = 78763,07$$ $$C_1 = 78\ 763,07$$ $C_2 = 11\ 150,56$ $$D_1 = 119,877$$ $D_2 = 0$ $$D_{2} = 0$$ The 110 °C values have been determined separately using water inside and air outside the test specimen and have not been derived from Equations (1) and (2). The reference lines for PE-RT type II for temperatures between 20 °C and 110 °C are described by Equation (3): $$\lg t = A + (B/T) \lg \sigma + C/T + D \lg \sigma \tag{3}$$ where A = -219 B = -62600,752 C = 90 635,353 D = 126.387 NOTE ISO 9080^[2] quotes equations in a different sequence where $C_1 = A$, $C_2 = C$, $C_3 = D$ and $C_4 = B$. # **Expected strength** # **Extrapolation limits** The extrapolation limits (the end points of the reference lines) are based on an experimentally determined life at 110 °C and an Arrhenius equation for the temperature dependence with an activation energy of 110 kJ/mol (\approx 26 kcal/mol). This yields the values given in Table 1 for the extrapolation factor, K_x (i.e. the expected lifetime at a given temperature divided by the lifetime at 110 °C). Table 1 — Extrapolation factors, K_{x} | Temperature | Extrapolation factor | | | | |----------------------------|----------------------|--|--|--| | T | K_x | | | | | °C | | | | | | 100 ≥ <i>T</i> > 95 | 2,5 | | | | | 95 ≥ <i>T</i> > 90 | 4 | | | | | 90 <i>≥ T</i> > 85 | 6 | | | | | 85 <i>≥ T</i> > 80 | 12 | | | | | 80 <i>≥ T</i> > 7 5 | 18 | | | | | 75 <i>≽ T</i> > 70 | 30 | | | | | <i>T</i> ≤ 70 | 50 | | | | With a life of 1 year at 110 °C, these values are therefore the number of years the pipes would be expected to last at each of the temperatures given. For temperatures up to and including 50 °C, an extrapolation factor K_x of 100 is acceptable. # 5.2 Graphical representation Figure 1 and Figure 2 contain the reference lines corresponding to the values of the parameters given in Clause 4, to be used for demonstrating conformity to this specification, as specified in Annex A. The broken lines represent the extrapolation of the reference lines, applicable when longer failure times are obtained at 110 °C, extrapolation being permitted up to the limits given by the extrapolation factors in Table 1. ### 5.3 Tabulated values The calculated hoop strength values to be used for various temperatures and times are given in Table 2 and include no safety factors or design factors. The times at 80 °C, 90 °C and 95 °C not in brackets in the "Time" column in Table 2 are based on a lifetime of one year at 110 °C. Proof of a longer lifetime at 110 °C allows a corresponding extension of the times at lower temperatures. Such values are given in brackets in Table 2. Table 2 — Expected hoop strength values for various values of time and temperature for PE-RT | Temperature | Time | Expected strength | | Temperature | Time | Expected strength | | |-------------|------|-------------------|---------|-------------|------|-------------------|---------| | °C | а | MPa | | °C | а | MPa | | | | | Type I | Type II | | | Type I | Type II | | 20 | 1 | 8,8 | 9,8 | | 1 | 5,1 | 5,4 | | | 5 | 8,6 | 9,6 | 70 | 5 | 4,8 | 5,3 | | | 10 | 8,5 | 9,5 | | 10 | | | | | 25 | 8,4 | 9,4 | | | 4,8 | 5,2 | | | 50 | 8,3 | 9,3 | | 25 | 4,7 | 5,1 | | | 100 | 8,3 | 9,3 | | 50 | 4,1 | 5,1 | | | 1 | 8,1 | 8,9 | | 1 | 4,3 | 4,6 | | | 5 | 7,9 | 8,7 | | 5 | | | | 20 | 10 | 7,8 | 8,6 | 80 | 10 | 4,2 | 4,5 | | 30 | 25 | 7,7 | 8,5 | 80 | | 3,8 | 4,4 | | | 50 | 7,6 | 8,5 | | 18 | 3,4 | 4,3 | | | 100 | 7,6 | 8,4 | | (25) | (3,2) | (4,3) | | | 1 | 7,3 | 8,0 | | 4 | 0.0 | 2.0 | | 40 | 5 | 7,2 | 7,8 | 90 | 1 | 3,6 | 3,8 | | | 10 | 7,1 | 7,8 | | 4 | 3,1 | 3,7 | | | 25 | 7,0 | 7,7 | | 6 | 2,9 | 3,6 | | | 50 | 6,9 | 7,6 | | (10) | (2,6) | (3,6) | | | 100 | 6,8 | 7,5 | | (15) | (2,4) | (3,6) | | 50 | 1 | 6,6 | 7,2 | 95 | | | | | | 5 | 6,4 | 7,0 | | 1 | 3,2 | 3,4 | | | 10 | 6,3 | 6,9 | | 4 | 2,6 | 3,3 | | | 25 | 6,2 | 6,8 | | (6) | (2,4) | (3,3) | | | 50 | 6,2 | 6,7 | | (10) | (2,1) | (3,2) | | | 100 | 6,1 | 6,7 | | | | | | 60 | 1 | 5,8 | 6,3 | | | • | | | | 5 | 5,7 | 6,1 | | | | | | | 10 | 5,6 | 6,1 | | | | | | | 25 | 5,5 | 6,0 | | | | | | | 50 | 5,4 | 5,9 | | | | | # Key $egin{array}{lll} {\sf X}_1 & t_1 & {\sf time \ to \ fracture, \ h} \\ {\sf X}_2 & t_2 & {\sf time \ to \ fracture, \ a} \\ {\sf Y} & \sigma & {\sf hoop \ stress, \ MPa} \\ \end{array}$ Figure 1 — Expected strength of PE-RT type I pipes # Key $egin{array}{lll} {\sf X}_1 & t_1 & {\sf time \ to \ fracture, h} \\ {\sf X}_2 & t_2 & {\sf time \ to \ fracture, a} \\ \end{array}$ Y σ hoop stress, MPa Figure 2 — Expected strength of PE-RT type II pipes # Annex A (normative) # Demonstrating conformity of pipes to reference lines At each of the following temperatures, specimens shall be tested at each of the temperatures given; at least three failure times shall fall in each of the following time intervals: Temperatures: 20 °C, 60 °C to 82 °C, 95 °C and, for type II, 110 °C NOTE 82 °C is equivalent to 180°F, commonly used as a test temperature in ASTM standards. Time intervals: 10 h to 100 h 100 h to 1000 h 1 000 h to 8 760 h > 8 760 h In the case of tests lasting longer than 8 760 h, any test time after this value may be considered as the failure time. Testing shall be carried out in accordance with ISO 1167-1 and ISO 1167-2. Conformity to reference lines shall be demonstrated by plotting the individual experimental results on the graph. At least 97,5 % of them shall lie on or above the reference lines given in either Figure 1 or Figure 2. For PE-RT type II materials, these experimental results shall not give any brittle failures indicating the presence of a knee at any temperature up to 110 °C within 8 760 h. © ISO 2009 – All rights reserved 7 # **Bibliography** - [1] ISO 1043-1, Plastics Symbols and abbreviated terms Part 1: Basic polymers and their special characteristics - [2] ISO 9080, Plastics piping and ducting systems Determination of the long-term hydrostatic strength of thermoplastics materials in pipe form by extrapolation # **BSI - British Standards Institution** BSI is the independent national body responsible for preparing British Standards. It presents the UK view on standards in Europe and at the international level. It is incorporated by Royal Charter. #### Revisions British Standards are updated by amendment or revision. Users of British Standards should make sure that they possess the latest amendments or editions. It is the constant aim of BSI to improve the quality of our products and services. We would be grateful if anyone finding an inaccuracy or ambiguity while using this British Standard would inform the Secretary of the technical committee responsible, the identity of which can be found on the inside front cover. Tel: +44 (0)20 8996 9000. Fax: +44 (0)20 8996 7400. BSI offers members an individual updating service called PLUS which ensures that subscribers automatically receive the latest editions of standards. # **Buying standards** Orders for all BSI, international and foreign standards publications should be addressed to Customer Services. Tel: +44 (0)20 8996 9001. Fax: +44 (0)20 8996 7001 Email: orders@bsigroup.com You may also buy directly using a debit/credit card from the BSI Shop on the Website http://www.bsigroup.com/shop In response to orders for international standards, it is BSI policy to supply the BSI implementation of those that have been published as British Standards, unless otherwise requested. # Information on standards BSI provides a wide range of information on national, European and international standards through its Library and its Technical Help to Exporters Service. Various BSI electronic information services are also available which give details on all its products and services. Contact Information Centre. Tel: +44 (0)20 8996 7111 Fax: +44 (0)20 8996 7048 Email: info@bsigroup.com Subscribing members of BSI are kept up to date with standards developments and receive substantial discounts on the purchase price of standards. For details of these and other benefits contact Membership Administration. Tel: +44 (0)20 8996 7002 Fax: +44 (0)20 8996 7001 Email: membership@bsigroup.com Information regarding online access to British Standards via British Standards Online can be found at http://www.bsigroup.com/BSOL Further information about BSI is available on the BSI website at http://www.bsigroup.com # Copyright Copyright subsists in all BSI publications. BSI also holds the copyright, in the UK, of the publications of the international standardization bodies. Except as permitted under the Copyright, Designs and Patents Act 1988 no extract may be reproduced, stored in a retrieval system or transmitted in any form or by any means – electronic, photocopying, recording or otherwise – without prior written permission from BSI. This does not preclude the free use, in the course of implementing the standard, of necessary details such as symbols, and size, type or grade designations. If these details are to be used for any other purpose than implementation then the prior written permission of BSI must be obtained. Details and advice can be obtained from the Copyright and Licensing Manager. Tel: $\pm 44~(0)20~8996~7070$ Email: copyright@bsigroup.com BSI Group Headquarters 389 Chiswick High Road, London, W4 4AL, UK Tel +44 (0)20 8996 9001 Fax +44 (0)20 8996 7001 www.bsigroup.com/ standards