BS ISO 23833:2013 ### **BSI Standards Publication** # Microbeam analysis — Electron probe microanalysis (EPMA) — Vocabulary BS ISO 23833:2013 BRITISH STANDARD #### National foreword This British Standard is the UK implementation of ISO 23833:2013. It supersedes BS ISO 23833:2006 which is withdrawn. The UK participation in its preparation was entrusted to Technical Committee CII/9, Microbeam analysis. A list of organizations represented on this committee can be obtained on request to its secretary. This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application. © The British Standards Institution 2013. Published by BSI Standards Limited 2013 ISBN 978 0 580 78774 4 ICS 01.040.71; 71.040.99 Compliance with a British Standard cannot confer immunity from legal obligations. This British Standard was published under the authority of the Standards Policy and Strategy Committee on 30 April 2013. Amendments issued since publication Date Text affected ## INTERNATIONAL STANDARD ISO 23833:2013 ISO 23833 Second edition 2013-04-15 ## Microbeam analysis — Electron probe microanalysis (EPMA) — Vocabulary Analyse par microfaisceaux — Analyse par microsonde électronique (microsonde de Castaing) — Vocabulaire #### COPYRIGHT PROTECTED DOCUMENT © ISO 2013 All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester. ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org Published in Switzerland | Cor | ntents | Page | |--------------|---|------| | Fore | eword | iv | | Intro | oduction | v | | 1 | Scope | 1 | | 2 | Abbreviated terms | 1 | | 3 | Definitions of general terms used in electron probe microanalysis | 1 | | 4 | Definition of terms used to describe EPMA instrumentation | 7 | | 5 | Definitions of terms used in EPMA methodology | 17 | | Rihlingranhy | | 27 | #### Foreword ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2. The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote. Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. ISO 23833 was prepared by Technical Committee ISO/TC 202, *Microbeam analysis*, Subcommittee SC 1, *Terminology*. $The \, European \, Microbeam \, Analysis \, Society \, (EMAS) \, made \, contributions \, to \, the \, preparation \, of \, the \, document.$ This second edition of ISO 23833 cancels and replaces the first edition (ISO 23833:2006), of which it constitutes a minor revision. This International Standard has a cross-reference relationship with the surface chemical analysis vocabulary prepared by ISO/TC 201 (ISO 18115-1:2010). #### Introduction Electron probe X-ray microanalysis (EPMA) is a modern technique used to qualitatively determine and quantitatively measure the elemental composition of solid materials, including metal alloys, ceramics, glasses, minerals, polymers, powders, etc., on a spatial scale of approximately one micrometer laterally and in depth. EPMA is based on the physical mechanism of electron-stimulated X-ray emission and X-ray spectrometry. As a major sub-field of microbeam analysis (MBA), the EPMA technique is widely applied in diverse business sectors (high-tech industries, basic industries, metallurgy and geology, biology and medicine, environmental protection, trade, etc.) and has a wide business environment for standardization. Standardization of terminology in a technical field is one of the basic prerequisites for development of standards on other aspects of that field. This International Standard is relevant to the need for an EPMA vocabulary that contains consistent definitions of terms as they are used in the practice of electron probe microanalysis by the international scientific and engineering communities that employ the technique. ## Microbeam analysis — Electron probe microanalysis (EPMA) — Vocabulary #### 1 Scope This International Standard defines terms used in the practices of electron probe microanalysis (EPMA). It covers both general and specific concepts classified according to their hierarchy in a systematic order. This International Standard is applicable to all standardization documents relevant to the practices of EPMA. In addition, some parts of this International Standard are applicable to those documents relevant to the practices of related fields (SEM, AEM, EDX, etc.) for definition of those terms common to them. #### 2 Abbreviated terms BSE backscattered electron CRM certified reference material EDS energy-dispersive spectrometer EDX energy-dispersive X-ray spectrometry EPMA electron probe microanalysis or electron probe microanalyser eV electronvolt keV kiloelectronvolt RM reference material SE secondary electron SEM scanning electron microscope WDS wavelength-dispersive spectrometer WDX wavelength-dispersive X-ray spectrometry #### 3 Definitions of general terms used in electron probe microanalysis #### 3.1 #### electron probe microanalysis #### **EPMA** $technique\ of\ spatially-resolved\ elemental\ analysis\ based\ upon\ electron-excited\ X-ray\ spectrometry\ with\ a\ focussed\ electron\ probe\ and\ an\ electron\ interaction\ volume\ with\ micrometer\ to\ sub-micrometer\ dimensions$ #### 3.1.1 #### qualitative EPMA procedure in EPMA leading to the identification of the elements present in the electron-excited interaction volume by a systematic method for the recognition and assignment of X-ray spectral peaks to specific elements #### 3.1.2 #### quantitative EPMA procedure leading to the assignment of numerical values to represent the concentrations of elemental constituents that had been previously identified in the electron-excited interaction volume during the qualitative analysis phase in EPMA Note 1 to entry: Quantitative analysis can be accomplished by comparing the unknown X-ray peak intensities to X-ray peak intensities measured under the same conditions using reference material(s) or by calculating the concentration from first principles (also known as standardless analysis). #### 3.2 #### electron probe microanalyser instrument for carrying out electron-excited X-ray microanalysis Note 1 to entry: This instrument is usually equipped with more than one wavelength spectrometer and an optical microscope for precise specimen placement. #### 3.3 #### electron scattering deviation in trajectory and/or kinetic energy suffered by an impinging energetic beam electron as a result of an interaction with a specimen atom or electron #### 3.3.1 #### angle of scattering #### scattering angle angle between the direction of the incident particle or photon and the direction that the particle or photon is traveling after scattering [ISO 18115-1:2010] #### 3.3.2 #### backscattering escape of beam electrons from the specimen following sufficient scattering events to cause the trajectories to intersect the entrance surface of the specimen #### 3.3.2.1 #### backscatter coefficient η fraction of beam electrons that are backscattered, given by the equation $$\eta = n(BS)/n(B)$$ where n(B) is the number of incident electrons and n(BS) is the number of backscattered electrons #### 3.3.2.2 #### backscattered electron electron ejected from the entrance surface of the specimen by a backscattering process #### 3.3.2.3 #### backscattered electron angular distribution distribution of backscattered electrons as a function of the angle relative to the surface normal #### 3.3.2.4 #### backscattered electron depth distribution distribution of backscattered electrons as a function of the maximum depth into the specimen reached before travelling back to the entrance surface to exit the specimen #### 3.3.3 #### continuous energy loss approximation mathematical description of energy loss by fast electrons propagating through matter in which all of the discrete inelastic processes are approximated as a single continuous energy loss process Note 1 to entry: Also known as the continuous slowing-down approximation (CSDA). #### 3.3.4 #### elastic scattering interaction of an energetic electron from the impinging beam and a specimen atom during which the electron's energy remains essentially unaltered but its trajectory is changed by an angle from 0 up to π rad (180°) with an average of approximately 0,1 rad #### 3.3.5 #### inelastic scattering interaction of an energetic electron from the impinging beam and a specimen atom or electron during which kinetic energy is lost to the specimen by various mechanisms (secondary electron generation, bremsstrahlung, inner shell
ionization, plasmon and photon excitation) Note 1 to entry: For inelastic scattering, the electron trajectory is modified by a small angle, generally less than 0,01 rad. #### 3.3.6 #### scattering cross-section number of scattering events per unit area mathematical description of the probability of a scattering event (elastic or inelastic) Note 1 to entry: See *ionization cross-section* (3.4.4). Note 2 to entry: Scattering cross-section is usually expressed simply as an area, in cm². The number of scattering events per unit area is expressed in events/(atoms/cm²). #### 3.3.7 #### scattering effect measurable physical phenomenon, such as electron backscattering or loss of X-ray generation, that results from modification of the trajectory and/or kinetic energy of an impinging energetic beam electron by scattering processes in the specimen #### 3.3.8 #### secondary electron Electron emitted from the specimen as a result of inelastic scattering of the primary beam electron by loosely bound valence-level electrons of the specimen Note 1 to entry: Secondary electrons have conventionally an energy less than 50 eV. #### 3.4 #### X-ray photon of electromagnetic radiation created by fluorescence of an inner shell electron vacancy or by deceleration of an energetic electron in the Coulombic field of an atom #### 3.4.1 #### characteristic X-ray photon of electromagnetic radiation created by the relaxation of an excited atomic state created by inner shell ionization following inelastic scattering of an energetic electron or ion, or by absorption of an X-ray photon #### 3.4.2 #### continuous X-ray photon of electromagnetic radiation created by deceleration (an inelastic scattering mechanism) of an energetic electron in the Coulombic field of an atom #### 3.4.3 #### fluorescence yield (ı) fraction of inner shell ionization events that give rise to characteristic X-ray emission during subsequent de-excitation Note 1 to entry: The fluorescence yield is independent of the method of ionization. #### 3.4.4 #### ionization cross-section number of ionization events per unit area mathematical description of the probability of ionizing an atom by removing an atomic electron from a particular bound electron shell into the unbound vacuum, or continuum, energy level or state Note 1 to entry: See *scattering cross-section* (3.3.6). Note 2 to entry: Ionization cross-section is usually expressed simply as an area, in cm^2 or in barns (10^{-24} cm^2). Ionization event probability is expressed in events/(atoms/cm²). Note 3 to entry: Ionization cross-section is usually denoted by Q, which is defined by the mathematical expression $dn = Q(N\rho/A)dx$ where dn is the number of ionization events which occur in each increment dx of electron path and $N\rho/A$ is the number of atoms per unit volume. #### 3.4.5 #### ionization energy critical excitation energy edge energy minimum energy required to ionize an atomic electron, i.e. to remove a bound electron from a shell (K, L, etc.) to (as a minimum) the continuum of energy states in a solid Note 1 to entry: Ionization energy units are eV or keV. #### 3.4.6 #### **I-value** mean ionization energy, a critical parameter in mathematical descriptions of the continuous energy loss approximation #### 3.4.7 #### stopping power dE/ds rate of energy loss experienced by a primary electron (from all inelastic scattering processes) with distance travelled in the specimen Note 1 to entry: Stopping power is expressed as energy loss/unit distance (e.g. eV/nm). #### 3.4.8 #### X-ray fluorescence effect #### secondary fluorescence photoelectric absorption of an X-ray (characteristic or bremsstrahlung) by an atom, resulting in an excited atomic state which will de-excite with electron shell transitions and subsequent emission of an Auger electron or the characteristic X-ray of the absorbing atom #### 3.4.9 #### X-ray generation generation of X-rays in the specimen under the stimulation of an incident beam of radiation (electrons, ions or photons) Note 1 to entry: X-rays can be generated through the ionization of inner atomic shells (characteristic X-rays) or through the "braking radiation" (bremsstrahlung) process (continuum or white radiation). #### 3.5 #### X-ray absorption attenuation of the intensity of X-rays passing through matter, arising primarily from photoelectric absorption for X-ray energies appropriate to EPMA #### 3.5.1 #### absorption edge critical ionization energy for a particular shell or subshell of an atom species Note 1 to entry: Absorption edges are detected in spectra as discontinuities in the X-ray continuum (bremsstrahlung) background due to a sharp change in the X-ray mass absorption coefficient at the edge. #### 3.5.2 #### absorption factor $f(\chi)$ ratio of emitted X-ray intensity to the generated intensity in a specific direction towards the X-ray detector #### 3.5.3 #### depth distribution function $\phi(\rho z)$ function which describes the distribution of generated X-rays as a function of depth below the specimen surface Note 1 to entry: ρz is expressed in units of density × thickness (depth). #### 3.5.4 #### jump ratio <EPMA, TXRF> ratio of the X-ray absorption coefficient at an energy just above an absorption edge to that at an energy just below the edge Note 1 to entry: X-ray absorption spectra can have complex shapes for X-ray energies in the vicinity of photoionization thresholds, and a well-defined edge is not always observed at the threshold. [ISO 18115-1:2010] #### 3.5.5 #### mass absorption coefficient $\mu_{\rm l}/\rho$ material parameter that relates the loss of X-ray intensity due only to photoelectric absorption during passage through matter, where μ_l is the linear absorption coefficient and ρ is the material density Note 1 to entry: Its dimensions are area/mass (e.g. cm^2/g). It is sometimes referred to as the mass absorption cross section. #### 3.5.6 #### mass attenuation coefficient μ/ρ material parameter that relates the loss of X-ray intensity due to all absorption and scattering processes during passage through matter, given by the equation $$I/I_0 = \exp[-(\mu/\rho)\rho s]$$ where I_0 is the incident X-ray intensity, I is the intensity remaining after passage through a distance s of the material, μ is the linear attenuation coefficient, ρ is the material density, s is the path thickness in cm Note 1 to entry: Its dimensions are area/mass (e.g. cm^2/g). It is sometimes referred to as the mass attenuation cross section. #### 3.5.7 #### mass-depth distance ΩZ description of a dimension in terms of the product of linear distance (cm) and density (g/cm³) Note 1 to entry: It is expressed in grams per square centimetre. #### 3.5.8 #### X-ray take-off angle ψ angle between the specimen surface and the central axis of the X-ray spectrometer #### 3.6 #### X-ray spectrum plot of the X-ray photon abundance as a function of the energy or wavelength Note 1 to entry: Most often, the number of photons/unit time is plotted, but other measures of the intensity are possible. #### 3.6.1 #### characteristic X-ray spectrum X-ray peaks or lines associated with a particular atom species and generated as a result of inner shell ionization (caused by an energetic electron, ion, or photon) followed by inter-shell electron transitions and emission of excess energy as a photon of electromagnetic radiation #### 3.6.1.1 #### family of X-ray lines systematic set of characteristic X-rays produced as a result of all possible routes of ionization of a particular shell/subshell and the subsequent inter-shell electron transitions that occur #### 3.6.1.2 #### K-line one of the characteristic line emissions following K-shell ionization #### 3.6.1.3 #### K-spectrum series of characteristic X-rays arising from ionization of an electron bound in the K-shell of an atom #### 3.6.1.4 #### L-line one of the characteristic line emissions following L-shell ionization #### 3.6.1.5 #### L-spectrum series of characteristic X-rays arising from ionization of an electron bound in the L-shell of an atom #### 3.6.1.6 #### M-line one of the characteristic line emissions following M-shell ionization #### 3.6.1.7 #### M-spectrum series of characteristic X-rays arising from ionization of an electron bound in the M-shell of an atom #### 3.6.1.8 #### satellite line low relative abundance feature near a characteristic peak that can result from any of a variety of processes or situations: "forbidden" transitions, "non-diagram" lines and doubly-ionized atoms #### 3.6.1.9 #### X-ray line table table of fundamental parameters for qualitative analysis by EPMA Note 1 to entry: The X-ray line table for qualitative analysis by EPMA contains the wavelengths (or energies) of K-, L- and M-lines of the elements to be analyzed. It may also include their relative intensities, the full width at half maximum (FWHM) of each peak, the names of the diffraction crystals used and their interplanar spacings, and the wavelengths (or energies) of satellite lines. #### 3.6.2 #### continuous X-ray spectrum #### continuum #### bremsstrahlung braking radiation non-characteristic X-ray spectrum created by electron deceleration in the Coulombic field of an atom and having an energy distribution from 0 up to the incident beam energy E_0 (Duane-Hunt limit) #### 3.6.2.1 #### **Duane-Hunt limit** #### beam energy E_0 maximum photon energy found in the continuous X-ray spectrum corresponding to complete conversion of an incident electron's energy in a single event #### 3.6.2.2 #### Kramers' law experimental observation of the intensity of the X-ray continuum as a function of the incident electron beam energy, the photon energy and the atomic number of the specimen #### 4 Definition of terms used to describe EPMA instrumentation #### 4.1 #### electron optics system of electrostatic and electromagnetic lenses that make up the beam forming system #### 4.1.1 #### condenser lens first demagnification lens, i.e.
in a two-lens system the lens located immediately below the electron gun Note 1 to entry: Its principal function is to define the current in the beam. #### 4.1.1.1 #### condenser lens aperture fixed diaphragm with an axial opening that defines the angular transmission of the condenser lens #### 4.1.1.2 #### condenser lens current externally-adjustable current flowing in the coil of the condenser lens which generates the magnetic field that provides focussing action #### 4.1.2 #### demagnification numerical value by which the diameter a beam exiting a lens is reduced in size, relative to the incident diameter, by the focussing action Note 1 to entry: Equal to p/q, where p is the distance from the object to the center of the lens, and q is the distance from the image to the center of the lens #### 4.1.3 #### electron gun source of electrons in EPMA, consisting of an emitter (heated tungsten or LaB₆ filament, or cold or thermally-assisted field emitter tip) and electrostatic extraction and accelerating optics #### 4.1.3.1 #### electron gun brightness В current per unit area per unit solid angle in the beam, given by the equation $$\beta = 4I/(\pi^2 d^2 \alpha^2)$$ where I is the current (A), d is the beam diameter (cm) and α is the beam divergence (rad) #### 4.1.3.2 #### electron gun current beam current current in the beam as it exits the final element of the electron gun assembly #### 4.1.4 #### objective lens electron probe forming lens, i.e. in a two-lens system the lens located immediately above the specimen and below the condenser lens Note 1 to entry: The principal function of the lens is to focus the final probe. #### 4.1.4.1 #### objective lens aberration any of various lens defects (spherical aberration, chromatic aberration, diffraction, etc.) that degrade the focussed probe #### 4.1.4.2 #### objective lens aperture diaphragm with an axial opening placed above the objective lens that defines the angular divergence of the focussed beam and that reduces spherical aberrations Note 1 to entry: Generally, a selection of apertures is provided on an externally adjustable slider. #### 4.1.4.3 #### objective lens current externally-adjustable current flowing in the coil of the objective lens which generates the magnetic field that provides focussing action #### 4.1.5 #### working distance distance between the lower surface of the polepiece of the objective lens and the specimen surface Note 1 to entry: In the past, this distance was defined as the distance between the principal plane of the objective lens and the plane containing the specimen surface. #### 4.2 #### electron beam (electron optics) electron beam prior to focussing by the electron optical system onto the specimen #### 4.2.1 #### beam current electron current contained within the electron beam Note 1 to entry: See *electron beam* (4.2). #### 4.2.1.1 #### beam current density beam current normalized by the beam area Note 1 to entry: It is expressed in amperes per square centimetre. #### 4.2.1.2 #### beam current stability variation with time of the beam current Note 1 to entry: See beam current (4.2.1). #### 4.2.1.3 #### beam diameter diameter of the electron beam containing a specified fraction of the total current, for example 0,8 (80 %) of the total Note 1 to entry: See *electron beam* (4.2). Note 2 to entry: The beam diameter can be measured as the full peak width at half maximum (FWHM) of the beam current across the diameter of the cross-section perpendicular to the beam. #### 4.2.2 #### Faraday cup $special \, target for \, capturing \, the \, incident \, beam \, current \, with \, negligible \, loss \, of \, current \, due \, to \, backscattering, \, secondary \, electron \, emission, \, or \, photoemission$ Note 1 to entry: The Faraday cup typically consists of a blind hole drilled into a carbon block covered with a metal aperture with an opening of approximately $100 \mu m$ in diameter. #### 4.3 #### electron probe (electron optics) electron beam focussed by the electron optical system onto the specimen Note 1 to entry: (instrumentation) See *electron probe microanalyser* (3.2). Note 2 to entry: Typical beam diameters at the specimen plane range from nanometers to micrometers. #### 4.3.1 #### probe current electron current contained within the electron probe Note 1 to entry: See *electron probe* (4.3). #### 4.3.1.1 #### probe current density probe current normalized by the probe area Note 1 to entry: It is expressed in amperes per square centimetre. #### 4.3.1.2 #### probe current stability variation with time of the probe current #### 432 #### probe diameter diameter of the probe containing a specified fraction of the total current, for example 0,8 (80 %) of the total Note 1 to entry: The probe diameter can be measured as the full peak width at half maximum (FWHM) of the probe current across the diameter of the cross-section perpendicular to the probe. #### 4.3.3 #### specimen stage component of an electron probe X-ray microanalyser that operates to translate the specimen, usually in at least two dimensions (along *x*- and *y*-axes perpendicular to the beam) Note 1 to entry: Movement in three dimensions (*x*-, *y*- and *z*-axes, where *z*- is parallel to the beam) and specimen tilt and rotation may also be provided. #### 4.3.4 #### absorbed current specimen current current flowing between the conducting specimen and ground, representing the difference between the beam current injected into the specimen and the current emitted as backscattered electrons and secondary electrons #### 4.4 #### electron scanning image scanning image image constructed by moving an incident electron beam to discrete locations on a specimen, collecting information generated therefrom (secondary electron signal, backscattered electron signal, X-rays, etc.) and displaying this signal at a corresponding point in a visual display such as a cathode ray tube or storing it as a numerical value at a computer memory location #### 4.4.1 #### area scanning beam scanning action to cover a specific area of the specimen during the recording of an X-ray map #### 4.4.2 #### backscattered electron image scanning electron beam image in which a signal is derived from a dedicated backscattered electron detector (e.g. passive scintillator, solid-state diode, channel plate or negatively-biased Everhart-Thornley detector) #### 4.4.3 #### compositional mapping X-ray mapping in which all significant corrections are performed at each picture element to produce a map in which the quantitative concentration of an element is used to select the grey or colour scale for the final display #### 4.4.4 #### dot mapping form of display for X-ray maps in which the X-ray intensity is used to select a two-state display, off (black) or on (white) Note 1 to entry: Dot maps are purely qualitative in nature. #### 4.4.5 #### edge effect phenomenon in which a secondary electron image appears bright, especially at a protuberance or the edge of an uneven part of the specimen, owing to an increase in the number of secondary electrons emitted from such an area #### 4.4.6 #### image contrast \mathcal{C} difference in signal between two arbitrarily chosen points (P_1, P_2) of interest in the image field, normalized by the maximum possible signal available under the particular operating conditions Note 1 to entry: $C = |S_2 - S_1|/S_{\text{max}}$ (0 < C <1), where S_2 and S_1 are the signals from the two arbitrarily chosen points (P₁, P₂), respectively, and S_{max} is the maximum possible signal available under the particular operating conditions. #### 4.4.7 #### image magnification ratio of the linear dimension L of the scan display (e.g. along an edge) to the corresponding length l of the scan field on the specimen $$M = L/l$$ Note 1 to entry: Historically, the magnification was related to the size of the roll film used to photograph the CRT image. For digital images displayable on screens of various sizes, it is more appropriate to specify the size of the scan field. #### 4.4.8 #### image resolution minimum spacing at which two features of an image can be recognized as distinct and separate Note 1 to entry: Image resolution can be measured as the minimum distance between two separable details displayed by the image under the operating conditions chosen. #### 4.4.9 #### line analysis analysis obtained when the electron probe is stepped across a portion of the specimen in a line Note 1 to entry: The analytical points along the line analysis should be equidistant from each other and have the same electron probe dwell time. #### 4.4.10 #### point analysis analysis obtained when the electron probe is placed at a single location and held there for the duration of the spectrometric measurement #### 4.4.11 #### secondary electron image scanning electron beam image in which the signal is derived from a detector that selectively measures secondary electrons (electrons having less than 50 eV) and is not directly sensitive to backscattered electrons #### 4.4.12 #### absorbed current image specimen current image scanning electron beam image prepared with a signal derived from the current absorbed by the specimen and conducted to ground Note 1 to entry: A specimen current amplifier in series with the specimen is used to measure the specimen current. #### 4.4.13 #### X-ray image scanning electron beam image in which the output X-ray count rate from an energy-dispersive or wavelength-dispersive X-ray spectrometer is used to modulate the brightness of the displayed pixel corresponding to the beam position on the specimen Note 1 to entry: The X-ray signal typically represents a narrow range of energy ΔE or wavelength range $\Delta \lambda$ that arises from a particular elemental species, along with the associated continuum in that range. #### 4.5 #### X-ray detection measurement of an X-ray event employing an X-ray detection system #### 4.5.1 #### coincidence losses (in serial processing of X-ray
events) the loss of X-rays incident on the detector due to the restriction of the pulse measurement circuitry to processing one pulse at a time, resulting in dead time #### 4.5.2 #### counter energy resolution width of the distribution of counting pulses produced by monochromatic X-radiation in a proportional counter #### 4.5.3 #### counting pulse charge collected in a proportional counter from the interaction of a single X-ray photon #### 4.5.4 #### counting statistics mathematical measures of the distribution of stochastic events such as electron-excited X-rays #### 4.5.5 #### counting system pulse counting system electronic system used to detect and measure counting pulses from a gas proportional counter or an energy-dispersive X-ray detector #### 4.5.6 #### dead time τ time that the system is unable to record a photon measurement because it is busy processing a previous event and frequently expressed as a percentage of the total time Note 1 to entry: See *live time* (4.5.11). #### 4.5.7 #### discriminator (pulse processing circuitry of a wavelength-dispersive X-ray spectrometer) a circuit whose function is to define a minimum or maximum pulse voltage for acceptance #### 4.5.8 #### discriminator threshold minimum voltage value an amplified pulse must reach for acceptance by the pulse counting system #### 4.5.9 #### discriminator window voltage range above the discriminator threshold that a pulse must fall within for acceptance to the pulse counting system #### 4.5.10 #### gas multiplication method of amplification of an X-ray signal in a proportional counter Note 1 to entry: In a proportional counter, X-rays are detected following photoelectric absorption by a gas atom and subsequent ejection of an electron, which can scatter inelastically with other atoms and ionize them with the ejection of low-energy electrons. These low-energy electrons are accelerated in the applied field, and can themselves cause ionizations, multiplying the original deposited charge. #### 4.5.11 #### live time time that the pulse measurement circuitry is available for the detection of X-ray photons Note 1 to entry: See dead time (4.5.6). Note 2 to entry: Live time = real time for analysis minus dead time. Real time is the time that would be measured with a conventional clock. For X-ray acquisition, the real time always exceeds the live time. #### 4.5.12 #### proportional counter gas-filled chamber for X-ray detection in which the X-ray energy is transferred to a photoelectron which then scatters inelastically Note 1 to entry: There is a range of accelerating voltages for which, when the accelerating voltage is applied to a central collection wire, the charge collected will be proportional to the photon energy. #### 4.5.13 #### pulse height distribution the statistical distribution of counting pulses produced from photons of the same energy captured in a proportional counter #### 4.6 #### X-ray spectrometry method in which an X-ray spectrometer is used to measure the energy or wavelength distribution of X-ray photons #### 4.6.1 #### characteristic peak localized feature in an X-ray spectrum with higher intensity than the general level of the background radiation that is associated with a specific atomic species Note 1 to entry: Characteristic peaks are produced as a result of a sequence of inner shell ionization followed by inter-shell electron transitions and electromagnetic radiation emission. Note 2 to entry: The natural peak width in energy units is approximately 1 eV to 3 eV. #### 4.6.2 #### detector device for detecting an X-ray photon and/or measuring the energy of that photon Note 1 to entry: Examples of X-ray detectors include gas-filled proportional counters, microcalorimeters, intrinsic germanium (Ge) detectors, lithium-drifted silicon (Si-Li) detectors, and silicon drift detectors (SDD). #### 4.6.3 #### detector artefacts feature introduced into the X-ray spectrum as a result of the detection process (e.g. coincidence peak, escape peak, higher-order peak) and not related to the true X-ray spectrum as emitted from the specimen #### 4.6.4 #### energy-dispersive X-ray spectrometer #### FDS device for determining X-ray intensity as a function of the energy of the radiation #### 4.6.4.1 #### dead layer region of the semiconductor crystal immediately below the surface electrode which has a reduced efficiency, relative to the interior of the crystal, for the collection of charge deposited when an X-ray photon is absorbed #### 4.6.4.2 #### false peak artefact peak peak in an energy-dispersive X-ray spectrum caused by processes such as pulse coincidence (or pulse sum) and radiation loss from the detector (e.g. Si escape peak) #### 4.6.4.3 #### internal fluorescence peak any spectral feature that is produced by fluorescence within the detector, rather than from excitation of the specimen EXAMPLE The condition in a semiconductor EDS in which a photon is absorbed photoelectrically in the dead layer just below the front surface of the electrode, and the subsequent emission of the characteristic photon of the detector material (e.g. Si) appears as a contribution to the measured spectrum as an equivalent low-intensity source apparently arising in the specimen. #### 4.6.4.4 #### microcalorimeter EDS energy-dispersive spectrometer that operates on the basis of photoelectric absorption and subsequent thermalization of the photon energy followed by thermometry to determine the temperature rise in the absorber #### 4.6.4.5 #### semiconductor EDS energy-dispersive spectrometer that operates on the basis of photoelectric absorption in a semiconductor crystal and inelastic scattering of the photoelectron leading to charge deposition and measurement #### 4.6.4.5.1 #### intrinsic Ge EDS energy-dispersive spectrometer that operates on the basis of photoelectric absorption in an intrinsic Ge crystal #### 4.6.4.5.2 #### lithium-drifted silicon detector EDS #### Si-Li EDS energy-dispersive spectrometer that operates on the basis of photoelectric absorption in an Lidoped Si crystal #### 4.6.4.5.3 #### silicon drift detector EDS #### **SDD EDS** energy-dispersive spectrometer that operates on the basis of photoabsorption in a silicon crystal in which electric fields transverse to the detector surface are used to guide electrons to the collection anode #### 4.6.4.6 #### escape peak peak that occurs as a result of the loss of incident photon energy by fluorescence of the detector material such as Si in an Si-Li EDS detector Note 1 to entry: Escape peaks occur at an energy equal to that of the incident characteristic peak minus the energy of the X-ray line(s) emitted by the element(s) in the detector (1,74 keV for Si). Note 2 to entry: Escape peaks cannot occur below the critical excitation energy of the material, so in an Si-Li EDS detector an Si K escape peak does not occur for energies below 1,84 keV. #### 4.6.4.7 #### sum peak artefact peak that arises from pulse coincidence effects which occur within the pulse pair resolution of the pileup inspection circuitry Note 1 to entry: Sum peaks appear at energies corresponding to the sum of the energies of the photons which arrive at the detector essentially simultaneously. #### 4.6.4.8 #### system peak artefact peak in an EDS spectrum caused by excitation of the specimen stage, the collimator, the chamber and the polepiece remote from the specimen due to an unfocussed component of the primary incident beam and/or backscattering from the specimen #### 4.6.5 #### energy-dispersive X-ray spectrometry #### **EDX** #### **EDS** form of X-ray spectrometry in which the energy of the individual photons is measured and is used to build up a digital histogram representing the distribution of X-rays with energy #### 4.6.6 #### energy resolution width of a peak as measured by an energy-dispersive X-ray spectrometer and expressed as the full peak width at half the maximum of the peak height Note 1 to entry: For EDS, energy resolution is usually specified as the value for Mn K α (5,890 keV) because this line can be obtained from a radioactive iron-55 isotope source. Note 2 to entry: Spectrometers that claim detection of X-rays lower than 1 keV shall also be specified by the FWHM of the C-K and the F-K lines. The specified FWHM shall be an upper limit. Note 3 to entry: Adapted from ISO 15632:2012. #### 4.6.7 #### full peak width at half maximum #### **FWHM** measure of the breadth of an X-ray peak in which the background is first removed to reveal the complete peak profile Note 1 to entry: The maximum peak intensity is determined by fitting the full set of peak channels, and the width is determined at half the peak height. #### 4.6.8 #### in-hole spectrum X-ray spectrum measured while the beam is placed within a Faraday cup/cage placed at the position where a specimen would normally undergo analysis Note 1 to entry: This procedure is used to determine the extent of stray radiation in an electron beam instrument. #### 4.6.9 #### interfering peak composite peak containing intensity contributions from more than one characteristic X-ray peak #### 4.6.10 #### natural line width natural peak width finite width of a characteristic X-ray peak which is a consequence, through the Heisenberg uncertainty principle, of the finite lifetime $\mathrm{d}t$ of the excited state of a photo-ionized atom resulting in an uncertainty $\mathrm{d}E$ in the photon energy #### 4.6.11 #### peak shift change in the position of an X-ray peak, typically caused by chemical bonding effects #### 4.6.12 #### pulse height analysis technique for separating X-rays of different energies that diffract at the same WDS setting Note 1 to entry: In diffraction-based wavelength dispersive spectrometers, peak interference can occur when photons of two different energies but which have the same value of the product $n\lambda$ diffract at the same spectrometer setting $(n\lambda = 2d\sin\theta)$. By operating the high-voltage gas ionization detector in
the voltage regime where charge collected on the central wire is proportional to photon energy, the distribution of pulses coming from the detector will have a separate peak for each of the two photon energies entering the detector. Discrimination of the pulse peaks is achieved by placing a voltage acceptance window in the pulse processing amplification chain. #### 4.6.13 #### spectrometer efficiency fraction of photons incident upon an X-ray spectrometer that are actually detected #### 4.6.14 #### $wavelength\hbox{-} dispersive\ spectrometer$ #### **WDS** device for determining X-ray intensity as a function of the wavelength of the radiation, where separation is based upon Bragg's law, $n\lambda = 2d\sin\theta$, where n is an integer, λ is the X-ray wavelength, d is the spacing of the atom planes of the crystal or the repeated layers of a synthetic diffractor and θ is the angle at which constructive interference takes place Note 1 to entry: X-rays diffracted at a particular angle are directed to a gas counter operated in the proportional response regime where the charge produced is proportional to the photon energy. #### 4.6.14.1 #### d-spacing spacing of the atomic planes in a crystal or the repeat distance in a synthetic multilayer structure used as a diffractor #### 4.6.14.2 #### defocussing deviations of the X-ray source from the Rowland circle, due for example to the beam displacement caused by scanning Note 1 to entry: The wavelength-dispersive spectrometer with curved diffracting crystals has optical focussing properties such that the position of the X-ray source, the diffractor and the detector must all lie on the Rowland circle. Defocussing may cause a loss in spectrometer transmission, especially if the motion is in the direction perpendicular to the diffractor thickness or out of the diffractor plane. #### 4.6.14.3 #### diffracting crystal X-ray scattering element in a wavelength-dispersive X-ray spectrometer, consisting of a periodic array of atoms obtained either in a natural crystal or in a synthetic multilayer #### 4.6.14.4 #### high-order diffraction peak observed with a wavelength-dispersive X-ray spectrometer for which the order n of the diffraction (in the Bragg equation $n\lambda = 2d\sin\theta$) is greater than 1 #### 4.6.14.5 #### horizontal geometry arrangement in WDS where the plane of the spectrometer (or Rowland circle) is perpendicular to the electron beam axis #### 4.6.14.6 #### inclined geometry arrangement in WDS in which a significant fraction of the plane of the spectrometer (or Rowland circle) is projected onto the electron beam axis #### 4.6.14.7 #### Johann optics wavelength-dispersive X-ray spectrometer in which the diffractor is bent to a radius twice that of the Rowland circle, achieving a "semifocussing" situation #### 4.6.14.8 #### **Iohansson optics** wavelength-dispersive X-ray spectrometer in which the diffractor is bent to a radius twice that of the Rowland circle and then its surface ground to the radius, achieving a fully focussing situation #### 4.6.14.9 #### layered synthetic microstructure #### **LSM** diffractor created artificially by alternating layers of a material (e.g. tungsten) with strong X-ray scattering power and a weak scattering material (e.g. carbon) to create large grating spacings for diffracting low-energy (long-wavelength) X-rays #### 4.6.14.10 #### LDE crystal layered synthetic microstructure diffractor having a wide spacing to permit diffraction of long-wavelength (low-energy) X-rays #### 4.6.14.11 #### **Rowland circle** circle of focus along which the X-ray source, the diffractor and the detector must all lie to satisfy the Bragg condition and obtain constructive interference #### 4.6.14.12 #### vertical geometry arrangement in WDS where the plane of the spectrometer (or Rowland circle) is parallel to the electron beam axis z #### 4.6.15 #### wavelength-dispersive spectrometry #### wavelength-dispersive X-ray spectrometry #### WDX method for examining the intensity of X-rays as a function of the photon wavelength #### 4.6.16 #### wavelength resolution full peak width at half maximum of a peak in terms of wavelength ($\Delta\lambda$) obtained from a single X-ray transition by a WDS #### 4.6.17 #### wavelength resolving power $\lambda/\Delta\lambda$ reciprocal of the ratio of the full peak width at half maximum of a peak in terms of wavelength ($\Delta\lambda$) obtained from a single X-ray transition by a WDS to the wavelength (λ) of that peak #### 5 Definitions of terms used in EPMA methodology #### 5.1 #### accelerating voltage potential difference applied between the filament and the anode to accelerate the electrons emitted from the source #### 5.1.1 #### incident electron energy kinetic energy of beam electrons as they enter the specimen #### 5.1.2 #### optimum accelerating potential applied accelerating voltage providing the ideal beam energy for the measurement of a particular X-ray peak Note 1 to entry: The optimum accelerating potential is based upon the need to establish sufficient overvoltage for excitation while avoiding too great a depth of production and subsequent loss of intensity due to self-absorption within the specimen. #### 5.1.3 #### overvoltage ratio ratio of the incident beam energy to the critical excitation energy for a particular atomic shell Note 1 to entry: This factor must be greater than unity for characteristic X-ray production to occur from that atomic shell. #### 5.2 #### detection limit smallest amount of an element or compound that can be measured under specific analysis conditions Note 1 to entry: By convention, the detection limit is often taken to correspond to the amount of material for which the total signal for that material minus the background signal is three times the standard deviation of the signal above the background signal. This convention may not be applicable to all measurements and, for a fuller discussion of detection limits, Reference [7] should be consulted. Note 2 to entry: The detection limit may be expressed in many ways depending on the purpose. Examples of expressions are mass or weight fraction, atomic fraction, concentration, number of atoms and mass or weight. Note 3 to entry: The detection limit will generally be different for different materials. [ISO 18115-1:2010] #### 5.2.1 #### absolute detection limit detection limit expressed as the equivalent mass of the element of interest within the interaction volume #### 5.2.2 #### analytical sensitivity for the particular measurement conditions in use, ability to distinguish, for a given element, between two concentrations C and C' that are nearly equal Note 1 to entry: The sensitivity is limited by the background statistical fluctuations (concentration limit of detection) and described by an appropriate statistical expression. #### 5.2.3 #### background non-characteristic component of an X-ray spectrum arising (ideally) from the X-ray continuum #### 5.2.3.1 #### background filtering mathematical technique for spectrum processing, based upon a frequency filtering approach in which low-frequency components of the spectrum, which include the background, are selectively removed so that only the characteristic peaks remain #### 5.2.3.2 #### background modelling mathematical technique for spectrum processing to extract characteristic peaks from background based upon a mathematical description of the background (e.g. Kramers' law) in terms of beam energy, photon energy and specimen composition #### 5.2.3.3 #### linear interpolation method of background subtraction in which a background channel is selected on each side of a peak, and a linear fit is performed between these channels to estimate the background under the peak #### 5.2.4 #### background statistical fluctuation deviations with time in the production of continuum X-ray photons #### 5.2.5 #### relative detection limit detection limit expressed as the concentration (mass fraction) of the element of interest #### 5.3 #### experimental data correction correction applied to the experimental data in order to obtain a quantitative analysis #### 5.3.1 #### background correction separation of the characteristic intensity from the underlying background intensity Note 1 to entry: Background intensity includes X-ray continuum as well as background associated with artefacts. #### 5.3.2 #### beam current correction correction of the measured X-ray intensity for deviations in the incident beam current during the counting period Note 1 to entry: This correction typically assumes that the beam current drift is linear with time. #### 5.3.3 #### dead time correction correction of the measured X-ray intensity for the loss of X-ray photons due to coincidence effects arising from the finite pulse processing time of the counting system #### 5.3.4 #### integrated beam current correction correction of the measured X-ray intensity by the use of a periodic beam current monitoring system that records a measurement of the beam current throughout the period of an X-ray measurement #### 5.4 #### quantitative analysis determination of the quantities of elemental constituents in an analysis volume of micrometer scale by electron-excited X-ray spectrometry Note 1 to entry: The analyte may be elemental or compound in nature. Note 2 to entry: The amount may be expressed, for example, as atomic or mass percent, atomic or mass fraction, moles or mass per unit volume, number (of atoms) per unit area or number (of atoms) per unit volume, as appropriate or as desired. Note 3 to entry: The specimen material may be inhomogeneous so that a particular model structure may be assumed in the interpretation. Details of that model need to be stated. #### 5.4.1 #### empirical method method of quantitative X-ray microanalysis, based upon the use of the hyperbolic relationship between the k-value and the mass concentration c Note 1 to entry: See *intensity ratio* (5.4.4). #### 5.4.1.1 #### alpha
factor alpha coefficient α constant in the hyperbolic equation between k and c in the empirical method #### 5.4.1.2 #### calibration curve graphical representation of the analytical signal as a function of the concentration of the analyte, generally determined at two or more fixed points corresponding to independently known reference materials #### 5.4.2 #### error natural deviation from the true value in a measured quantity arising from (1) random counting fluctuations in a time-distributed phenomenon (e.g. X-ray photons) and (2) systematic deviations from the true value introduced during application of calculated correction factors (e.g. ZAF matrix correction factors) to convert the measured quantity (e.g. X-ray photons) to a different dimension (e.g. concentration) #### 5.4.2.1 #### confidence level range of analytical error expected to contain the true value with a stated uncertainty as estimated from a statistical model of the measurement process #### 5.4.2.2 #### error distribution range of errors associated with a measured quantity #### 5.4.2.3 #### error estimation application of statistical models to a measured quantity to develop an estimate of the error associated with the measurement #### 5.4.2.4 #### error histogram distribution of errors in a measured quantity, plotted as a histogram of frequency (on the vertical axis) versus the magnitude of the error value (on the horizontal axis) #### 5.4.2.5 #### error propagation mathematical technique of estimating the impact of uncertainty in one or more parameters of a correction scheme to determine the error impact on the final calculated value #### 5.4.2.6 #### relative error accuracy %RE method of expressing measurement error in which %RE = [(measured value - true value)/true value] × 100 % Note 1 to entry: In this definition, overestimates are positive-going errors, and underestimates are negative-going errors. #### 5.4.3 #### Hall method method of quantitative X-ray microanalysis typically applied to biological specimens which attempts to compensate for electron-beam-induced mass loss through the measurement of the X-ray continuum at a high photon energy (> 10 keV) as an internal standard #### 5.4.4 #### intensity ratio *k*-value *k*-ratio *K*-value ratio of the X-ray photon intensity *I* measured for a particular characteristic peak from the unknown specimen to the value measured for the same X-ray peak from a reference material of known composition under identical conditions of beam energy, spectrometer efficiency and electron dose and given by the equation $k = I_{\text{unknown}}/I_{\text{reference material}}$ Note 1 to entry: Any changes in instrumental conditions between specimen and reference material, such as electron dose, must be taken into account when calculating the intensity ratio for quantitative determination of a given element. #### 5.4.5 #### normalization mathematical procedure of dividing each concentration by the sum of the concentrations, so as to force the modified values to a sum of unity in quantitative X-ray microanalysis #### 5.4.6 #### standardless analysis procedure for quantitative X-ray microanalysis in which the standard intensity in the k-value expression is supplied from purely physical calculations, referred to as "first principles" standardless analysis, or from a partial suite of reference materials, with empirical fitting or physical calculations being used to provide missing reference materials or to adjust the reference materials suite to a different set of experimental conditions #### 5.4.7 #### **ZAF** matrix correction method of quantitative electron probe X-ray microanalysis in which separate multiplicative factors are used to correct for differences between the specimen and the reference material in electron scattering and retardation (Z), X-ray absorption (A) and secondary X-ray fluorescence (F) Note 1 to entry: See *X-ray fluorescence effect* (3.4.8). Note 2 to entry: The Z, A and F factors are derived from a combination of experimental measurements, empirical fits and theoretical calculations. #### 5.4.8 #### $\phi(\rho z)$ matrix correction method of quantitative electron probe X-ray microanalysis in which correction factors are calculated from empirical equations developed from fits to experimental data of X-ray production as a function of depth, the so-called $\phi(\rho z)$ function Note 1 to entry: The term is pronounced "phi rho zed". #### 5.5 #### quantitative analysis correction correction applied to the elemental intensity ratios in order to obtain a quantitative elemental analysis #### 5.5.1 #### absorption correction matrix correction arising from the loss of X-ray intensity for element A while the X-rays are propagating through the specimen in the direction of the X-ray spectrometer due to photoelectric absorption by all elements within the specimen #### 5.5.2 #### atomic number correction matrix correction for the modification of the X-ray intensity for element A due to electron backscattering and stopping power, which are influenced by all elements in the analytical volume #### 5.5.3 #### backscattering correction matrix correction which accounts for the loss of X-ray production due to backscattering of beam electrons (fraction and energy distribution) #### 5.5.4 #### certified reference material #### **CRM** reference material, accompanied by documentation issued by an authoritative body and providing one or more specified property values with associated uncertainties and traceabilities, using valid procedures [ISO/IEC Guide 99:2007] Note 1 to entry: In order for a certified reference material to serve as a reference material for electron probe microanalysis, the microscopic homogeneity at the micrometer scale must be certified as well as the composition. #### 5.5.5 #### characteristic fluorescence correction matrix correction arising from the excess generation of X-rays of element A due to the absorption of characteristic X-rays from element B whose energy exceeds the critical excitation (ionization) energy for A #### 5.5.6 #### continuous fluorescence correction matrix correction arising from the excess generation of X-rays of element A due to the absorption of continuous X-rays whose energy exceeds the critical excitation (ionization) energy for A #### 5.5.7 #### matrix correction interelement correction calculated correction for modifications of the characteristic X-ray intensity for element A caused by the presence of other elements B, C, D, etc., within the interaction volume through their influence on electron scattering and stopping power, X-ray generation and propagation, and secondary fluorescence Note 1 to entry: See *X-ray fluorescence effect* (3.4.8). #### 5.5.8 #### reference material #### **RM** material, sufficiently homogeneous and stable with reference to specified properties, which has been established to be fit for its intended use in measurement or in examination of nominal properties [ISO/IEC Guide 99:2007] Note 1 to entry: For electron probe microanalysis, a material whose overall composition is known from independent, ideally absolute, measurements (e.g. separations and gravimetric analysis) and that is microscopically homogeneous on a sufficiently fine scale that any location measured with an electron probe microanalyser produces the same X-ray intensities, within counting statistics. #### 5.5.9 #### research material material that appears to have the physical and chemical characteristics required of a CRM, but which is to be examined in detail, including the determination of chemical composition, stability, and micro- and macro-heterogeneity, before certification as a CRM #### 5.5.10 #### specimen stability (general) resistance of a specimen to chemical and physical change during long-term storage at normal temperature and pressure #### 5.5.11 #### specimen stability (EPMA) resistance of a specimen to changes in chemical composition during electron bombardment, i.e. the resistance to change of the intensity of the relevant characteristic X-rays observed during the time the specimen is exposed to the electron beam #### 5.5.12 #### stopping power correction matrix correction which accounts for the modification of X-ray production caused by the rate of energy loss of the beam electrons as they penetrate into the specimen #### 5.5.13 #### uncertainty quantitative statement that provides a value for the expected deviation of a measurement from an estimate of the value of the specific measured quantity #### 5.6 #### specimen to be analysed specimen whose composition and microstructure are to be determined by EPMA #### 5.6.1 #### bulk specimen specimen whose thickness dimension exceeds the ranges for all possible sources of X-ray generation (primary production by beam electrons and secondary fluorescence by characteristic and continuum X-rays) so that the maximum possible X-ray production occurs and none is lost due to anomalous escape through the bottom or sides of the specimen #### 5.6.2 #### charging accumulation of charge in the specimen during primary electron beam bombardment due to the lack of an adequate conduction path to ground Note 1 to entry: In insulating materials, the resistance of the material itself may inhibit establishing a conducting path, whereas in a nominal conductor, such as a metal, charging may still occur if a conducting path from the specimen to ground (wire, conducting tape, etc.) is not attached. #### 5.6.3 #### conductive coating #### coating thin (typically 2 nm to 20 nm) coating of a low-resistance material (e.g. aluminium, gold, carbon, chromium) applied to the surface of an insulating specimen to provide a conductive path to ground for surface charge that can accumulate under electron bombardment #### 5.6.3.1 #### coating artefact undesirable modification of the specimen structure and/or X-ray spectrum arising from the characteristics of the coating material and which may interfere with the interpretation of the true specimen details
5.6.3.2 #### conductive layer (in a specimen that is homogeneous laterally but inhomogeneous with depth) region that has a high electrical conductivity, distinguished from other regions which may be insulating or semiconducting #### 5.6.4 #### contamination foreign material found on a specimen as a result of its environment, due to preparation artefacts or due to exposure to the residual gases in the microscope environment #### 5.6.4.1 #### carbon contamination progressive accumulation under electron bombardment of carbon and carbon-containing materials due to electron-induced reaction of pre-existing foreign species on the specimen surface and/or species present in the residual gas of the vacuum system #### 5.6.4.2 #### contamination layer thin layer of foreign material deposited on the specimen #### 5.6.5 #### field-induced migration effect occurring in insulators where internal electric fields created by ion or electron bombardment cause the migration of specimen atoms [ISO 18115-1:2010] #### 5.6.6 #### geometric effects influences due to the specimen size and shape which introduce modifications to the generation and/or propagation of X-rays through the specimen, resulting in variations in the measured X-ray intensities that are not related to compositional variations #### 5.6.7 #### homogeneity condition of a specimen in which each and every measured location has the same composition #### 5.6.8 #### mass effect geometric effect of a specimen on generated X-ray intensity, which arises as a result of beam penetration through the particle boundaries #### 5.6.9 #### matrix effect interelement effect modification of the generation and intensity of emission of the X-rays for an element A due to the presence of an element B #### 5.6.10 #### radiation sensitive condition of a material in which it is modified by electron bombardment, resulting in some type of damage, such as mass loss, elemental migration, molecular bond breaking, colour change, etc. #### 5.6.11 #### thin specimen specimen whose thickness dimension is less than the electron beam and X-ray penetration ranges, such that X-ray production is reduced and spatial resolution is improved compared to that in materially equivalent bulk specimens #### 5.7 #### spatial resolution measure of the spatial specificity of microanalysis Note 1 to entry: It is usually expressed in terms of the excitation volume. #### 5.7.1 #### analytical spatial resolution spatial resolution defined for a particular X-ray excitation edge Note 1 to entry: In a multi-element specimen, the spatial resolution will be different for each edge energy, with the measured volume increasing in size as the edge energy decreases. #### 5.7.1.1 #### analysis area area, projected by the interaction volume on the beam entrance surface, from which X-rays are emitted (at a defined fraction, e.g. 95 % of the total) and collected by the spectrometer #### 5.7.1.2 #### analysis depth maximum depth from which a defined fraction (e.g. 95% of the total) of the X-rays are emitted from the interaction volume after absorption #### 5.7.1.3 #### analysis volume volume from which a defined fraction (e.g. 95 % of the total) of the X-rays are emitted after generation and absorption #### 5.7.2 #### electron interaction volume electron excitation volume electron scattering volume three-dimensional region within which the incident beam electrons spread due to elastic and inelastic scattering #### 5.7.3 #### electron trajectory range distance an incident electron travels if its trajectory is completely contained within the specimen (i.e. no backscattering) and if a continuous energy loss law (e.g. Bethe's law) is applied #### 5.7.4 #### fluorescent X-ray excitation volume three-dimensional region within which a specific characteristic X-ray of interest can be excited due to secondary fluorescence induced by another characteristic X-ray present in the specimen #### 5.7.5 #### low beam energy analysis analysis performed with a beam energy below 5 keV Note 1 to entry: This is the lowest beam energy for which a K-, L- or M-shell X-ray can be excited with an overvoltage of at least 1,25 for all elements with Z > 4. #### 5.7.6 #### X-ray excitation volume three-dimensional region within which the incident beam electrons are capable of exciting a specific characteristic X-ray of interest (overvoltage > 1) #### 5.8 #### X-ray intensity number of X-ray photons of a given energy as determined by X-ray counting #### 5.8.1 #### background counting determination of the count rate with the WDS tuned to the wavelength position of the continuous background radiation, generally in the vicinity of a peak of interest #### 5.8.2 #### integrated beam current beam current measured continuously during an X-ray counting interval #### 583 #### normalized counting X-ray counting in which a correction is applied for changes in the beam current over the counting interval #### 5.8.4 #### peak counting determination of the count rate with a WDS tuned to the wavelength position of a peak of interest #### 5.8.5 #### peak-to-background ratio ratio of the characteristic X-ray intensity to the continuous X-ray intensity in a defined energy (or wavelength) range at the peak of interest #### 5.8.6 #### X-ray counting measurement of individual X-ray photons with a counter in an X-ray spectrometer #### 5.8.7 #### X-ray counting rate number of X-ray photons counted per unit time #### **Bibliography** - [1] ISO 704, Terminology work Principles and methods - [2] ISO 1087-1, Terminology work Vocabulary Part 1: Theory and application - [3] ISO 18115-1:2010, Surface chemical analysis Vocabulary Part 1: General terms and terms used in spectroscopy - [4] ISO 18115-2:2010, Surface chemical analysis Vocabulary Part 2: Terms used in scanning-probe microscopy - [5] ISO 15632:2012, Microbeam analysis Selected instrumental performance parameters for the specification and checking of energy-dispersive X-ray spectrometers for use in electron probe microanalysis - [6] ISO/IEC Guide 99:2007, International vocabulary of metrology Basic and general concepts and associated terms (VIM) - [7] CURRIE L.A. Nomenclature in evaluation of analytical methods including detection and quantification capabilities. *Pure Appl. Chem.* 1995, **67** (10) pp. 1699–1723 - [8] GOLDSTEIN J.I., NEWBURY D.E., ECHLIN P., JOY D.C., LYMAN C.E., LIFSHIN E. et al. *Scanning Electron Microscopy and X-ray Microanalysis*. Plenum Press, New York, Third Edition, 2003 - [9] Heinrich K.F.J. *Electron Beam X-ray Microanalysis*. Van Nostrand, New York, 1981 - [10] REED S.J.B. *Electron Microprobe Analysis*. Cambridge University Press, Cambridge, Second Edition, 1993 - [11] SCOTT V.D., LOVE G., REED S.J.B. *Quantitative Electron-Probe Microanalysis*. Ellis Howrwood, Hemel Hempstead, UK, Second Edition, 1995 - [12] VAN GRIEKEN R.E., & MARKOWICZ A.A. *Handbook of X-ray Spectrometry*. Marcel Dekker, Inc, New York, Second Edition, 2002 ## British Standards Institution (BSI) BSI is the national body responsible for preparing British Standards and other standards-related publications, information and services. BSI is incorporated by Royal Charter. British Standards and other standardization products are published by BSI Standards Limited. #### About us We bring together business, industry, government, consumers, innovators and others to shape their combined experience and expertise into standards -based solutions. The knowledge embodied in our standards has been carefully assembled in a dependable format and refined through our open consultation process. Organizations of all sizes and across all sectors choose standards to help them achieve their goals. #### Information on standards We can provide you with the knowledge that your organization needs to succeed. Find out more about British Standards by visiting our website at bsigroup.com/standards or contacting our Customer Services team or Knowledge Centre. #### **Buying standards** You can buy and download PDF versions of BSI publications, including British and adopted European and international standards, through our website at bsigroup.com/shop, where hard copies can also be purchased. If you need international and foreign standards from other Standards Development Organizations, hard copies can be ordered from our Customer Services team. #### **Subscriptions** Our range of subscription services are designed to make using standards easier for you. For further information on our subscription products go to bsigroup.com/subscriptions. With **British Standards Online (BSOL)** you'll have instant access to over 55,000 British and adopted European and international standards from your desktop. It's available 24/7 and is refreshed daily so you'll always be up to date. You can keep in touch with standards developments and receive substantial discounts on the purchase price of standards, both in single copy and subscription format, by becoming a **BSI Subscribing Member**. **PLUS** is an updating service exclusive to BSI Subscribing Members. You will automatically receive the latest hard copy of your standards when they're revised or replaced. To find out more about becoming a BSI Subscribing Member and the benefits of membership, please visit bsigroup.com/shop. With a **Multi-User Network Licence (MUNL)** you are able to host standards publications on your intranet. Licences can cover as few or as many users as you wish. With updates supplied as soon as they're available, you can be sure your documentation is current. For further information, email bsmusales@bsigroup.com. #### **BSI Group Headquarters** 389 Chiswick High Road London W4 4AL UK #### **Revisions** Our British Standards and other publications are updated by amendment or revision. We continually improve the quality of our products and services to benefit your business. If you find an inaccuracy or ambiguity within a British Standard or other BSI publication please inform the Knowledge Centre.
Copyright All the data, software and documentation set out in all British Standards and other BSI publications are the property of and copyrighted by BSI, or some person or entity that owns copyright in the information used (such as the international standardization bodies) and has formally licensed such information to BSI for commercial publication and use. Except as permitted under the Copyright, Designs and Patents Act 1988 no extract may be reproduced, stored in a retrieval system or transmitted in any form or by any means – electronic, photocopying, recording or otherwise – without prior written permission from BSI. Details and advice can be obtained from the Copyright & Licensing Department. #### **Useful Contacts:** #### **Customer Services** Tel: +44 845 086 9001 Email (orders): orders@bsigroup.com Email (enquiries): cservices@bsigroup.com #### Subscriptions Tel: +44 845 086 9001 Email: subscriptions@bsigroup.com #### Knowledge Centre Tel: +44 20 8996 7004 Email: knowledgecentre@bsigroup.com #### **Copyright & Licensing** Tel: +44 20 8996 7070 Email: copyright@bsigroup.com