BS ISO 23551-10:2016 ## **BSI Standards Publication** # Safety and control devices for gas burners and gas-burning appliances — Particular requirements Part 10: Vent valves #### National foreword This British Standard is the UK implementation of ISO 23551-10:2016. The UK participation in its preparation was entrusted to Technical Committee GSE/22, Safety and control devices for gas and oil burners and gas burning appliances. A list of organizations represented on this committee can be obtained on request to its secretary. This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application. © The British Standards Institution 2016. Published by BSI Standards Limited 2016 ISBN 978 0 580 91598 7 ICS 27.060.20 Compliance with a British Standard cannot confer immunity from legal obligations. This British Standard was published under the authority of the Standards Policy and Strategy Committee on 31 July 2016. Amendments/corrigenda issued since publication Date Text affected BS ISO 23551-10:2016 # INTERNATIONAL STANDARD ISO 23551-10 First edition 2016-08-01 ## Safety and control devices for gas burners and gas-burning appliances — Particular requirements — Part 10: **Vent valves** Dispositifs de commande et de sécurité pour brûleurs à gaz et appareils à gaz — Exigences particulières — Partie 10: Robinets d'évent BS ISO 23551-10:2016 ISO 23551-10:2016(E) #### **COPYRIGHT PROTECTED DOCUMENT** #### © ISO 2016, Published in Switzerland All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester. ISO copyright office Ch. de Blandonnet 8 • CP 401 CH-1214 Vernier, Geneva, Switzerland Tel. +41 22 749 01 11 Fax +41 22 749 09 47 copyright@iso.org www.iso.org | Con | Contents | | | | | | |-------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|--|--| | Fore | word | | v | | | | | Intro | ductio | n | vi | | | | | 1 | Scon | e | 1 | | | | | 2 | - | | | | | | | _ | Normative references | | | | | | | 3 | Term | is and definitions | 2 | | | | | 4 | Classification | | | | | | | | 4.1 | Classes of controls | | | | | | | 4.2 | Groups of controls | 3 | | | | | 5 | Test | Test conditions | | | | | | 6 | Construction | | | | | | | | 6.1 | General | 3 | | | | | | 6.2 | Construction requirements | | | | | | | | 6.2.1 Appearance | | | | | | | | 6.2.2 Holes | | | | | | | | 6.2.3 Breather holes 6.2.4 Screwed fastenings | | | | | | | | 6.2.5 Jointing | | | | | | | | 6.2.6 Moving parts | | | | | | | | 6.2.7 Sealing caps | | | | | | | | 6.2.8 Dismantling and reassembling for servicing and/or adjustment | | | | | | | | 6.2.9 Auxiliary channels | | | | | | | | 6.2.10 Open position indicator switch | | | | | | | 6.3 | 6.2.11 Controls assembled to a valve | | | | | | | 0.5 | 6.3.1 General material requirements | | | | | | | | 6.3.2 Housing | | | | | | | | 6.3.3 Springs | | | | | | | | 6.3.4 Resistance to corrosion and surface protection | | | | | | | | 6.3.5 Impregnation | | | | | | | | 6.3.6 Seals for glands for moving parts | | | | | | | 6.4 | 6.3.7 Closure member Gas connections | | | | | | | 0.4 | 6.4.1 Making connections | | | | | | | | 6.4.2 Connection sizes | | | | | | | | 6.4.3 Threads | | | | | | | | 6.4.4 Union joints | | | | | | | | 6.4.5 Flanges | | | | | | | | 6.4.6 Compression fittings | | | | | | | | 6.4.7 Nipples for pressure tests 6.4.8 Strainers | | | | | | | | 6.4.9 Pneumatic and hydraulic actuating mechanisms | | | | | | 7 | Donfo | | | | | | | 7 | Performance 7.1 General | | | | | | | | 7.1 | Leak-tightness | | | | | | | | 7.2.1 Criteria | | | | | | | | 7.2.2 Test for leak-tightness | | | | | | | 7.3 | | | | | | | | 7.4 | | | | | | | | 7.5 | Durability Experience to a surremental section of the t | | | | | | | 7.6 | Functional requirements | | | | | | | | 7.6.2 Test of opening function | | | | | ## BS ISO 23551-10:2016 ISO 23551-10:2016(E) | | 7.7 | Endurance | 7 | | |--------------------------------------------------------------------------|----------|----------------------------------------------------------------|----|--| | | | 7.7.1 Requirement | | | | | | 7.7.2 Endurance test | 7 | | | | | 7.7.3 Endurance test for open position indicator switch | 8 | | | | 7.8 | Opening force | 8 | | | | | 7.8.1 Requirement | | | | | | 7.8.2 Test of opening force | | | | | 7.9 | Opening time | 8 | | | | | 7.9.1 Requirement | | | | | | 7.9.2 Test of opening time | | | | | 7.10 | Delay time and closing time | | | | | | 7.10.1 Requirement | | | | | | 7.10.2 Test of delay time and closing time | | | | | 7.11 | Open position indicator switch | | | | | | 7.11.1 Requirement | | | | | | 7.11.2 Test of open position indicator switch | 9 | | | 8 | EMC, | /Electrical requirements | 9 | | | 9 | Mark | xing, installation and operating instructions | | | | | 9.1 | Marking | 9 | | | | 9.2 | Installation and operating instructions | | | | | 9.3 | Warning notice | 10 | | | Ann | ex A (in | formative) Leak-tightness test — Volumetric method | 11 | | | Ann | ex B (in | formative) Leak-tightness test — Pressure-loss method | 12 | | | Ann | ex C (no | rmative) Conversion of pressure loss into leakage rate | 13 | | | Ann | ex D (no | ormative) Test for immunity to power-frequency magnetic fields | 14 | | | Annex E (normative) Specific regional requirements in European countries | | | | | | Annex F (normative) Specific regional requirements in Canada and USA | | | | | | Annex G (normative) Specific regional requirements in Japan | | | | | | Rihli | iogranh | | 18 | | #### Foreword ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives). Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents). Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement. For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see the following URL: www.iso.org/iso/foreword.html. The committee responsible for this document is ISO/TC 161, *Control and protective devices for gas and/or oil burners and appliances*. A list of all parts in the ISO 23551 series, published under the general title *Safety and control devices for gas burners and gas-burning appliances* — *Particular requirements*, can be found on the ISO website. #### Introduction This part of ISO 23551 is designed to be used in combination with ISO 23550. This part of ISO 23551 together with ISO 23550 establishes the full requirements as they apply to the product covered by this part of ISO 23551. This part of ISO 23551 adapts ISO 23550, where needed, by stating "with the following modification," "with the following addition," "is replaced by the following" or "is not applicable," in the corresponding clause. In order to identify specific requirements that are particular to this part of ISO 23551 that are not already covered by ISO 23550, this part of ISO 23551 may contain clauses or subclauses that are additional to the structure of ISO 23550. These clauses are numbered starting from 101 or, in the case of an Annex, are designated AA, BB, CC, etc. In an attempt to develop a full International Standard, it has been necessary to take into consideration the differing requirements resulting from practical experience and installation practices in various regions of the world and to recognize the variation in basic infrastructure associated with gas and/or oil controls and appliances, some of which are addressed in Annexes E, \underline{F} and \underline{G} . This part of ISO 23551 intends to provide a basic framework of requirements that recognize these differences. # Safety and control devices for gas burners and gas-burning appliances — Particular requirements — #### Part 10: #### Vent valves #### 1 Scope This part of ISO 23551 specifies the safety, design, construction and performance requirements and testing for automatic vent valves (hereafter referred to as "valves") for use with gas burners, gas appliances burning one or more gaseous fuels. This part of ISO 23551 is applicable to valves with declared maximum inlet pressures up to and including 500 kPa (5 bar) of nominal connection sizes up to and including DN 100 (4"). This part of ISO 23551 is applicable to - normally open valves, - electrically operated valves and to valves actuated by fluids where the control valves for these fluids are actuated electrically, but not to any external devices for switching the control signal or actuating energy, and - valves fitted with open position indicator switches. This part of ISO 23551 is not applicable to valves for burners and appliances using renewables and/or waste gases (i.e. gases having corrosive characteristics). In case valves are in contact with renewables and/or waste gases, it is recommend to use this part of ISO 23551 only if explicit information is provided and relevant test methods and requirements are specified. - valves for appliances intended to be installed in the open air and exposed to the outdoor environment, - valves that are connected directly to mains pipe-work or to a container that maintains a standard distribution pressure, and - valves suitable with oil. This part of ISO 23551 is applicable to type testing only. NOTE Provisions for final product inspection and testing by the manufacturer are not specified. #### 2 Normative references The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. ISO 23550:2011, Safety and control devices for gas burners and gas-burning appliances — General requirements #### 3 Terms and definitions For the purposes of this document, the terms and definitions given in ISO 23550 and the following apply. ISO and IEC maintain terminological databases for use in standardization at the following addresses: - IEC Electropedia: available at http://www.electropedia.org/ - ISO Online browsing platform: available at http://www.iso.org/obp #### 3.1 #### automatic vent valve device which closes when energized and opens automatically when de-energized #### 3.2 #### actuating mechanism part of the valve which moves the closure member #### 3.3 #### open position indicator switch device fitted to a valve which indicates when the closure member is in the open position #### 3.4 #### actuating energy required energy for the actuating mechanism to move the closure member to the closed position Note 1 to entry: The actuating energy can have an external source (electrical, pneumatic or hydraulic) and can be transformed inside the valve. #### 3.5 #### opening force force required to open the valve, independent of any force provided by fuel gas pressure #### 3.6 #### frictional force largest force required to move the actuating mechanism and the closure member from the closed position to the open position with the opener spring removed, independent of any force provided by fuel gas pressure #### 3.7 #### actuating pressure hydraulic or pneumatic pressure supplied to the actuating mechanism of the valve #### 3.8 #### opening time time interval between de-energising the valve and the closure member attaining the open position #### 3.9 #### closing time time interval between energising the valve and the closure member attaining the closed position #### 3.10 #### delay time time interval between energising the valve and the start of the closure member moving to the closed position #### 3.11 #### control valve device which controls the fluid (e.g. compressed air) supplied to the actuating mechanism #### 3.12 #### rated voltage voltage as stated in the installation and operating instructions at which the valve may be operated #### 3.13 #### rated current current as stated in the installation and operating instructions at which the valve may be operated #### 4 Classification #### 4.1 Classes of controls ISO 23550:2011, 4.1 is not applicable. #### 4.2 Groups of controls This subclause shall be according to ISO 23550:2011, 4.2. #### 5 Test conditions This clause shall be according to ISO 23550:2011, Clause 5. #### 6 Construction #### 6.1 General This subclause shall be according to ISO 23550:2011, 6.1. #### **6.2 Construction requirements** #### 6.2.1 Appearance This subclause shall be according to ISO 23550:2011, 6.2.1. #### 6.2.1.1 **Design** There shall be no exposed shafts or operating levers which could adversely affect the ability of valves to open. #### **6.2.2** Holes This subclause shall be according to ISO 23550:2011, 6.2.2. #### 6.2.3 Breather holes This subclause shall be according to ISO 23550:2011, 6.2.3. #### 6.2.4 Screwed fastenings This subclause shall be according to ISO 23550:2011, 6.2.4. #### 6.2.5 Jointing This subclause shall be according to ISO 23550:2011, 6.2.5. #### 6.2.6 Moving parts This subclause shall be according to ISO 23550:2011, 6.2.6. #### 6.2.7 Sealing caps This subclause shall be according to ISO 23550:2011, 6.2.7. #### 6.2.8 Dismantling and reassembling for servicing and/or adjustment This subclause shall be according to ISO 23550:2011, 6.2.8. #### 6.2.9 Auxiliary channels This subclause shall be according to ISO 23550:2011, 6.2.9. #### 6.2.10 Open position indicator switch Open position indicator switches, where fitted, shall not impair the correct operation of valves. Adjusters shall be sealed to indicate interference. Any drift of the switch and actuating mechanism from its setting shall not impair correct valve operation. #### 6.2.11 Controls assembled to a valve Other controls assembled to a valve shall not interfere with its opening function. #### 6.3 Materials #### 6.3.1 General material requirements This subclause shall be according to ISO 23550:2011, 6.3.1. #### 6.3.2 Housing This subclause shall be according to ISO 23550:2011, 6.3.2. #### 6.3.3 Springs ISO 23550:2011, 6.3.3 is replaced by the following. Opening force shall be provided by spring action. Springs providing the opening force for any closure member of the valve shall be calculated and designed in such a way as to withstand oscillating loads and at least 10⁶ operations. If a satisfactory calculation cannot be submitted to the test laboratory, the springs shall be subjected to an endurance test of 2×10^6 operations under normal operating conditions. Springs with a diameter up to and including 2,5 mm shall be made from corrosion-resistant materials. Springs with wire diameter above 2,5 mm shall be made either from corrosion-resistant materials or shall be protected against corrosion. #### 6.3.4 Resistance to corrosion and surface protection This subclause shall be according to ISO 23550:2011, 6.3.4. #### 6.3.5 Impregnation This subclause shall be according to ISO 23550:2011, 6.3.5. #### 6.3.6 Seals for glands for moving parts This subclause shall be according to ISO 23550:2011, 6.3.6. #### 6.3.7 Closure member Closure members shall either have a mechanical support (e.g. metallic) to carry the opening force or shall be made of metal. #### 6.4 Gas connections #### 6.4.1 Making connections This subclause shall be according to ISO 23550:2011, 6.4.1. #### 6.4.2 Connection sizes This subclause shall be according to ISO 23550:2011, 6.4.2. #### 6.4.3 Threads This subclause shall be according to ISO 23550:2011, 6.4.3. #### 6.4.4 Union joints This subclause shall be according to ISO 23550:2011, 6.4.4. #### 6.4.5 Flanges This subclause shall be according to ISO 23550:2011, 6.4.5. #### 6.4.6 Compression fittings This subclause shall be according to ISO 23550:2011, 6.4.6. #### 6.4.7 Nipples for pressure tests This subclause shall be according to ISO 23550:2011, 6.4.7 #### 6.4.8 Strainers This subclause shall be according to ISO 23550:2011, 6.4.8 with the following addition. Strainers fitted to valves of DN 25 and above shall be accessible for cleaning or replacement without removing the valve body by dismantling threaded or welded pipework. #### 6.4.9 Pneumatic and hydraulic actuating mechanisms Pneumatically or hydraulically actuated valves shall be provided with protection to ensure that the blockage of an orifice in the control system does not adversely affect the performance requirements as given in <u>Clause 7</u>. #### 7 Performance #### 7.1 General This subclause shall be according to ISO 23550:2011, 7.1 with the following addition. - Valves shall open automatically when de-energized or in the absence of actuating energy. - Valves with DC supplies shall fulfil the requirements of this part of ISO 23551 from the minimum rated voltage to the maximum rated voltage, as stated in the installation and operating instructions. - For DC supplies, a tolerance of 20 % to the minimum and the maximum rated voltage applies. - The electrical control valve of pneumatic or hydraulic actuating mechanisms shall also meet these requirements. - The closing of pneumatically or hydraulically actuated valves shall be ensured over the range from 85% to 110% of the actuating pressure or pressure range as stated in the installation and operating instructions. #### 7.2 Leak-tightness #### 7.2.1 Criteria This subclause shall be according to ISO 23550:2011, 7.2.1 with the following addition. Replace the values in the column for internal leak tightness by 1 dm³/h. #### 7.2.2 Test for leak-tightness ISO 23550:2011, 7.2.2 is not applicable. NOTE 1 Further information on the leak-tightness test is given in Annexes A, B and C. NOTE 2 Specific regional requirements are given in ISO 23550:2011, F.7.2.2. #### 7.3 Torsion and bending This subclause shall be according to ISO 23550:2011, 7.3. #### 7.4 Rated flow rate This subclause shall be according to ISO 23550:2011, 7.4. #### 7.5 Durability This subclause shall be according to ISO 23550:2011, 7.5. #### 7.6 Functional requirements #### 7.6.1 Requirement Valves shall open automatically on reducing the voltage or current to 15 % of the minimum rated value. Valves with pneumatic or hydraulic actuating mechanisms shall open automatically on reducing the voltage or current to 15 % of the minimum rated voltage of the control valve. Valves shall open automatically on removal of the voltage or current of between 15 % of the minimum rated value and the maximum rated value including the tolerance according to $\frac{7.1}{1}$. In all cases, the opening time shall be in accordance with 7.8. #### 7.6.2 Test of opening function Energize the valve at the maximum rated voltage or current and at the maximum actuating pressure, if applicable. Slowly reduce the voltage or current to 15 % of the minimum rated value. Verify that the valve has opened. Energize the valve at the maximum rated voltage or current and at the maximum actuating pressure, if applicable. Increase the voltage or current to the maximum rated value increased by the tolerance according to 7.1, keeping the actuating pressure, if any, unchanged. De-energize the valve and verify that it has opened. For AC valves, remove the voltage at the peak of the current waveform. #### 7.7 Endurance #### 7.7.1 Requirement After the endurance test described in $\underline{7.11.2}$, the valve shall conform to the requirements of $\underline{7.2}$, $\underline{7.3}$, and $\underline{7.6}$ to $\underline{7.10}$. #### 7.7.2 Endurance test Carry out tests according to 7.11.1, before the endurance test, after the test at 55 °C and after the test at 20 °C. Energize the valve at the maximum rated voltage or current increased by the tolerance according to 7.1, at maximum ambient temperature for a period of at least 24 h. Without de-energising the valve, slowly reduce the voltage or current to 15 % of the minimum rated value. Verify that the valve has opened. Connect the gas inlet to an air supply at the maximum inlet pressure. Do not exceed 10 % of the maximum rated flow rate. Operate the valve to the number of cycles given in <u>Table 1</u> with a cycle period of no less than that the valve is designed for. Ensure that the valve travels to the fully closed and fully opened position during each cycle. The test at maximum ambient temperature shall be carried out at maximum rated voltage or current. For the test at 20 $^{\circ}$ C, carry out 50 % of the cycles at the maximum rated voltage or current and 50 % at the minimum rated voltage or current. If the minimum ambient temperature is below 0 °C, carry out 25 000 cycles at −15 °C at the minimum rated voltage or current. Reduce the number of cycles for the test at 20 °C by 25 000 cycles. Where the valve has a pneumatic or hydraulic actuating mechanism, carry out the endurance test at the maximum actuating pressure. Check the operation of the valve throughout the endurance test, for example by monitoring the outlet pressure or the flow rate. | Nominal inlet size | Number of cycles at: | | | |--------------------|-------------------------------------------------------|-------------|--| | DN | Maximum ambient temperature -
at least (55 ± 5) °C | (20 ± 5) °C | | | DN ≤ 25 | 50 000 | 150 000 | | | 25 < DN ≤ 80 | 25 000 | 75 000 | | | 80 < DN ≤ 100 | 25 000 | 25 000 | | **Table 1 — Operating cycles** #### 7.7.3 Endurance test for open position indicator switch Carry out the endurance test described in 7.11.2 on an unmodified valve with the maximum inductive or capacitive load on the open position indicator switch as stated in the installation and operating instructions. During the test, monitor the switch to ensure that it indicates that the valve is open when it is deenergized and closed when energized. After the endurance test, carry out the test for indication of opening according to 7.10.2. #### 7.8 Opening force #### 7.8.1 Requirement Valves shall have an opening force of: - at least 5 times the value of the frictional force where the frictional force is up to and including 5 N; - at least 2,5 times the value of the frictional force but at least 25 N where the frictional force is above 5 N. The frictional force is measured in the ungreased condition. #### 7.8.2 Test of opening force Measure the minimum opening force over the travel of the closure member from the closed position to the open position. Remove the spring(s) providing the opening force from the valve and measure the maximum force required to move the closure member from the closed position to the open position. NOTE Specific regional requirements are given in ISO 23550:2011, F.7.2. #### 7.9 Opening time #### 7.9.1 Requirement The opening time for valves shall not exceed 1 s when tested to $\frac{7.8.2}{1}$. #### 7.9.2 Test of opening time Measure the time interval between de-energising the valve and the closure member attaining an open position with a flow rate, at least equal to the rated flow rate, under the following conditions: - at the maximum inlet pressure, at the maximum rated voltage or current increased by the tolerance according to 7.1, and at the maximum actuating pressure, if applicable; - at an inlet pressure of 0,6 kPa (6 mbar), at the maximum rated voltage or current increased by the tolerance according to 7.1, and at the maximum actuating pressure, if applicable. #### 7.10 Delay time and closing time #### 7.10.1 Requirement The delay time and the closing time shall be: — within ±20 % of the value for times above 1 s as stated in the installation and operating instructions; — less than 1 s for declared times \leq 1 s. #### 7.10.2 Test of delay time and closing time Measure the time interval between energising the valve and the start of the closure member moving to the closed position. Measure the time interval between energising the valve and the attainment of a flow rate equal to 5% of the rated flow rate. Carry out the tests under the following conditions, allowing the de-energized valve to reach thermal equilibrium before carrying out the tests: - at 55 °C (or at the maximum ambient temperature, if higher), at the maximum inlet pressure, at a pressure difference for which the valve is designed, at the minimum rated voltage or current decreased by the tolerance according to 7.1, and at the minimum actuating pressure, if applicable; - at 0 °C (or at the minimum ambient temperature, if lower), at an inlet pressure of 0,6 kPa (6 mbar), at the minimum pressure difference for which the valve is designed, at the minimum rated voltage or current decreased by the tolerance according to 7.1, and at the minimum actuating pressure, if applicable. #### 7.11 Open position indicator switch #### 7.11.1 Requirement An open position indicator switch shall indicate the open position of the valve. The switch shall indicate opening when either - the flow rate is equal to or greater than 80 % of the rated flow rate at the same pressure difference, or - the closure member is within 1 mm of its open position. #### 7.11.2 Test of open position indicator switch Modify a single valve to enable the closure member to be moved and positioned in any partially open position. Slowly move the closure member until the switch just indicates valve open. Measure the rated flow rate, if applicable. #### 8 EMC/Electrical requirements This clause shall be according to ISO 23550:2011, Clause 8 with the following addition. Controls which may be affected by power-frequency magnetic fields (e.g. Hall effect) shall comply with the test in Annex D. #### 9 Marking, installation and operating instructions #### 9.1 Marking This subclause shall be according to ISO 23550:2011, 9.1. #### 9.2 Installation and operating instructions This subclause shall be according to ISO 23550:2011, 9.2. #### BS ISO 23551-10:2016 ISO 23551-10:2016(E) #### 9.3 Warning notice This subclause shall be according to ISO 23550:2011, 9.3. ## Annex A (informative) ## $Leak-tightness\ test-Volumetric\ method$ This Annex shall be according to ISO 23550:2011, Annex A. #### **Annex B** (informative) ## Leak-tightness test — Pressure-loss method This Annex shall be according to ISO 23550:2011, Annex B. # Annex C (normative) ## Conversion of pressure loss into leakage rate This Annex shall be according to ISO 23550:2011, Annex C. ## Annex D (normative) ## Test for immunity to power-frequency magnetic fields This Annex shall be according to ISO 23550:2011, Annex D. ## **Annex E** (normative) ## Specific regional requirements in European countries This Annex shall be according to ISO 23550:2011, Annex E. #### **Annex F** (normative) ### Specific regional requirements in Canada and USA This Annex shall be according to ISO 23550:2011, Annex F with the following addition. #### F.1 General For the purposes of this part of ISO 23551, the specific regional requirements given in <u>F.2</u> modify this part of ISO 23551 as it applies in Canada and the United States. Only the affected subclauses are mentioned, hence the numbering is non-consecutive. #### F.2 Additional requirements and modifications This subclause shall be according to ISO 23550:2011, F.2. #### F.2.1 Test for leak-tightness This subclause shall be according to ISO 23550:2011, F.7.2.2. # Annex G (normative) ## Specific regional requirements in Japan This subclause shall be according to ISO 23550:2011, Annex G. $\,$ #### **Bibliography** - [1] ISO 6708, Pipework components Definition and selection of DN (nominal size) - [2] ISO 8655-1, Piston-operated volumetric apparatus Part 1: Terminology, general requirements and user recommendations - [3] ISO 23551 (all parts), Safety and control devices for gas burners and gas-burning appliances Particular requirements - [4] ISO 23552-1, Safety and control devices for gas and/or oil burners and gas and/or oil appliances Particular requirements Part 1: Fuel/air ratio controls, electronic type - [5] ISO 23553-1, Safety and control devices for oil burners and oil-burning appliances Particular requirements Part 1: Automatic and semi-automatic valves - [6] IEC 61010 (all parts), Safety requirements for electrical equipment for measurement, control and laboratory use - [7] IEC 61508 (all parts), Functional safety of electrical/electronic/programmable electronic safety-related systems - [8] ANSI/ASME B 1.1:1989, Unified inch screw threads (UN and UNR thread form) - [9] ANSI/ASME B 1.20.1, Pipe threads, general purpose (inch) - [10] ANSI/ASME B 16.1, Gray iron pipe flanges and flanged fittings: classes 25, 125, and 250 - [11] ANSI/SAE J 512, Automotive tube fittings - [12] ANSI/SAE J 514, Hydraulic tube fittings - [13] JIS B 0202, Parallel pipe threads - [14] JIS B 0203, Taper pipe threads - [15] JIS B 2220, Steel pipe flanges - [16] IIS B 2239, Cast iron pipe flanges - [17] IIS B 2240, Copper alloy pipe flanges - [18] JIS B 2241, Aluminium alloy pipe flanges - [19] JIS B 2301, Screwed type malleable cast iron pipe fittings - [20] JIS B 2302, Screwed type steel pipe fittings - [21] JIS B 2311, Steel butt-welding pipe fittings for ordinary use - [22] JIS B 2312, Steel butt-welding pipe fittings - [23] JIS B 2316, Steel socket-welding pipe fittings - [24] JIS H 3401, Pipe fittings of copper and copper alloys ## British Standards Institution (BSI) BSI is the national body responsible for preparing British Standards and other standards-related publications, information and services. BSI is incorporated by Royal Charter. British Standards and other standardization products are published by BSI Standards Limited. #### About us We bring together business, industry, government, consumers, innovators and others to shape their combined experience and expertise into standards -based solutions. The knowledge embodied in our standards has been carefully assembled in a dependable format and refined through our open consultation process. Organizations of all sizes and across all sectors choose standards to help them achieve their goals. #### Information on standards We can provide you with the knowledge that your organization needs to succeed. Find out more about British Standards by visiting our website at bsigroup.com/standards or contacting our Customer Services team or Knowledge Centre. #### **Buying standards** You can buy and download PDF versions of BSI publications, including British and adopted European and international standards, through our website at bsigroup.com/shop, where hard copies can also be purchased. If you need international and foreign standards from other Standards Development Organizations, hard copies can be ordered from our Customer Services team. #### Copyright in BSI publications All the content in BSI publications, including British Standards, is the property of and copyrighted by BSI or some person or entity that owns copyright in the information used (such as the international standardization bodies) and has formally licensed such information to BSI for commercial publication and use. Save for the provisions below, you may not transfer, share or disseminate any portion of the standard to any other person. You may not adapt, distribute, commercially exploit, or publicly display the standard or any portion thereof in any manner whatsoever without BSI's prior written consent. #### Storing and using standards Standards purchased in soft copy format: - A British Standard purchased in soft copy format is licensed to a sole named user for personal or internal company use only. - The standard may be stored on more than 1 device provided that it is accessible by the sole named user only and that only 1 copy is accessed at any one time. - A single paper copy may be printed for personal or internal company use only. Standards purchased in hard copy format: - A British Standard purchased in hard copy format is for personal or internal company use only. - It may not be further reproduced in any format to create an additional copy. This includes scanning of the document. If you need more than 1 copy of the document, or if you wish to share the document on an internal network, you can save money by choosing a subscription product (see 'Subscriptions'). #### **Reproducing extracts** For permission to reproduce content from BSI publications contact the BSI Copyright & Licensing team. #### **Subscriptions** Our range of subscription services are designed to make using standards easier for you. For further information on our subscription products go to bsigroup.com/subscriptions. With **British Standards Online (BSOL)** you'll have instant access to over 55,000 British and adopted European and international standards from your desktop. It's available 24/7 and is refreshed daily so you'll always be up to date. You can keep in touch with standards developments and receive substantial discounts on the purchase price of standards, both in single copy and subscription format, by becoming a **BSI Subscribing Member**. **PLUS** is an updating service exclusive to BSI Subscribing Members. You will automatically receive the latest hard copy of your standards when they're revised or replaced. To find out more about becoming a BSI Subscribing Member and the benefits of membership, please visit bsigroup.com/shop. With a **Multi-User Network Licence (MUNL)** you are able to host standards publications on your intranet. Licences can cover as few or as many users as you wish. With updates supplied as soon as they're available, you can be sure your documentation is current. For further information, email subscriptions@bsigroup.com. #### Revisions Our British Standards and other publications are updated by amendment or revision. We continually improve the quality of our products and services to benefit your business. If you find an inaccuracy or ambiguity within a British Standard or other BSI publication please inform the Knowledge Centre. #### **Useful Contacts** **Customer Services** Tel: +44 345 086 9001 **Email (orders):** orders@bsigroup.com **Email (enquiries):** cservices@bsigroup.com Subscriptions Tel: +44 345 086 9001 Email: subscriptions@bsigroup.com Knowledge Centre **Tel:** +44 20 8996 7004 $\textbf{Email:} \ knowledge centre @bsigroup.com$ Copyright & Licensing Tel: +44 20 8996 7070 Email: copyright@bsigroup.com #### **BSI Group Headquarters** 389 Chiswick High Road London W4 4AL UK