#### BS ISO 22241-5:2012 ### **BSI Standards Publication** # Diesel engines — NOx reduction agent AUS 32 Part 5: Refilling interface for passenger cars BS ISO 22241-5:2012 #### National foreword This British Standard is the UK implementation of ISO 22241-5:2012. The UK participation in its preparation was entrusted to Technical Committee MCE/22, Engines for road vehicles. A list of organizations represented on this committee can be obtained on request to its secretary. This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application. © The British Standards Institution 2012. Published by BSI Standards Limited 2012 ISBN 978 0 580 69314 4 ICS 43.060.40 Compliance with a British Standard cannot confer immunity from legal obligations. This British Standard was published under the authority of the Standards Policy and Strategy Committee on 31 December 2012. Amendments issued since publication Date Text affected ## INTERNATIONAL STANDARD ISO 22241-5:2012 ISO 22241-5 First edition 2012-12-01 ## Diesel engines — NOx reduction agent AUS 32 — Part 5: **Refilling interface for passenger cars** Moteurs diesel — Agent AUS 32 de réduction des NOx — Partie 5: Interface de remplissage pour voitures particulières BS ISO 22241-5:2012 ISO 22241-5:2012(E) #### **COPYRIGHT PROTECTED DOCUMENT** © ISO 2012 All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester. ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org Published in Switzerland Page #### Contents | <b>Forew</b> | /ord | iv | |--------------|------------------------------------------------------------------|----| | Introd | luction | ν | | 1 | Scope | 1 | | 2 | Normative references | 1 | | 3 | Terms and definitions | 1 | | 4 | Requirements | 2 | | 4.1<br>4.2 | Functional requirementsFiller neck | | | 4.3 | Filler nozzle | 6 | | 4.4<br>4.4.1 | Clearance space | | | 4.4.2 | Minimum clearance "Class A" | 8 | | 4.4.3 | Minimum clearance "Class B" | | | 5 | Testing | 10 | | 5.1 | General test requirements | | | 5.2<br>5.3 | Determination of spillage from nozzle | | | 5.3.1 | Determination of smellGeneral | | | 5.3.1 | Preconditioning the system to establish constant test conditions | | | 5.3.3 | Test procedure | | | 5.4 | Minimum strength of filler neck | | | 5.4.1 | General | | | 5.4.2 | Testing simulating misuse | | | 5.4.3 | Testing in axial direction | 13 | | Annex | x A (informative) Filler neck with ribs | 15 | | Biblio | graphy | 16 | #### **Foreword** ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2. The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote. Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. ISO 22241-5 was prepared by Technical Committee ISO/TC 22, Road vehicles, Subcommittee SC 5, Engine tests. ISO 22241 consists of the following parts, under the general title *Diesel engines* — *NOx reduction agent AUS 32*: - Part 1: Quality requirements - Part 2: Test methods - Part 3: Handling, transportation and storing - Part 4: Refilling interface - Part 5: Refilling interface for passenger cars #### Introduction The refilling system specified in this part of ISO 22241 has been developed in accordance with passenger vehicle manufacturer's specifications. The functional requirements include a filling system that has minimal obtrusive odours, has minimal spill risk, limits pressure build-up and includes mismatch prevention. The system should be designed to prevent the deleterious effects of AUS 32, including, but not limited to, uncontrolled flow into gaps in body work with the potential to cause corrosion, smell nuisance and crystal formation. #### Diesel engines — NOx reduction agent AUS 32 — #### Part 5: #### Refilling interface for passenger cars #### 1 Scope This part of ISO 22241 applies to diesel engine powered road vehicles using selective catalytic reduction (SCR) technology. It is primarily intended for use by passenger cars and light commercial vehicles including buses with a gross vehicle mass of not more than 3.5 t, but may also be used by vehicles with a gross vehicle mass of over 3,5 t. This part of ISO 22241 specifies the refilling interface for the NOx reduction agent AUS 32 in compliance with ISO 22241-1, which is needed to operate converters with selective catalytic reduction (SCR) exhaust treatment system. This part of ISO 22241 specifies the essential functional and geometric requirements of the refilling system in order to ensure compatibility between the on-board refilling system and the off-board refilling system. For light commercial vehicles and buses having a gross vehicle mass of not more than 3,5 t, the open refilling system specified in ISO 22241-4 can be used. NOTE Throughout this part of ISO 22241, the term "NOx reduction agent AUS 32" is abbreviated to "AUS 32". #### 2 Normative references The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. ISO 22241-3, Diesel engines — NOx reduction agent AUS 32 — Part 3: Handling, transportation and storing #### 3 Terms and definitions For the purposes of this document, the following terms and definitions apply. #### 3.1 #### refilling system off-board system and on-board system including their refilling interface for dispensing AUS 32 into the on-board tank of the vehicles #### 3.2 #### canister container of size 1 to 10 litres capacity, with spout used to refill the vehicle on-board tank #### 3.3 #### off-board refilling system stationary equipment for dispensing AUS 32 into the on-board tank of the vehicles, consisting typically of storage tank, pump, hose and **filler nozzle** (3.5) #### 3.4 #### on-board refilling system equipment of the vehicles necessary for refilling AUS 32 and consisting typically of **filler neck** (3.6), **filler cap** (3.7) and on-board tank #### 3.5 #### filler nozzle interfacing part of an **off-board refilling system** (3.3) which allows the operator to control the flow of AUS 32 during the filling, consisting of a nozzle spout with a defined interface geometry and an automatic shut-off system #### 3.6 #### filler neck interfacing part of the on-board refilling system (3.4) #### 3.7 #### filler cap part which is fitted to the **filler neck** (3.6) to prevent spillage as well as to minimize contamination of AUS 32 and which is temporarily opened or removed for refilling #### 4 Requirements #### 4.1 Functional requirements The on-board refilling system and the off-board refilling system shall comply with the following basic functional requirements | — minimal | spillage; | |-----------|-----------| |-----------|-----------| | <br>minimal | smell | nuisance; | |-------------|-------|-----------| | | | , | | <br>minimal | pressure; | |-------------|-----------| | minima | pressure, | | <ul> <li>mismatching p</li> </ul> | revention | |-----------------------------------|-----------| The detailed requirements specified in Table 1 apply. Details not specified are left to the manufacturer's choice. Table 1 — Basic functional requirements | No. | Characteristic | Requirements | Remark | |-----|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------| | 1 | Flow rate | Not less than 5 Litres per minute Not more than 10 Litres per minute | Flow rates do not apply to — canister filling; — production line filling. | | 2 | Automatic shut-off of filler nozzle | Automatic shut-off feature required. The maximum amount of flow after automatic stop shall be not more than 50 ml. | Feature required in compliance with EN 13012 or equivalent standards | | 3 | Maximum filling level in AUS 32 on-board tank | The automatic shut-off system of the nozzle shall be used to protect against filling above maximum level. | | | 4 | Spillage | Less than 0,4 ml per refilling with filler neck angle from the horizontal ≥ 30°. | For test procedure see 5.2 | | 5 | Pressure in the filler neck | At five seconds after starting the refilling process, the pressure in the filler neck shall be not more than +/- 3 mbar. At the end of refilling process, there shall be ambient pressure in the filler neck. | | | 6 | Ventilation during refilling | The filler neck shall be used for ventilation of the AUS 32 on-board tank. During refilling, not more than 15 ppm ammonia concentration may be measured. | For test procedure see 5.3 | | 7 | Operational temperature range | - 30 °C to + 80 °C for components installed on the vehicle - 20 °C to + 40 °C for components at the service station For specific regions, the temperature range specified may not be sufficient. In such a case, a wider temperature range, representative of that specific region, shall be considered. For specific regions, the temperature range specified may be excessive. In such a case, a narrower temperature range, representative of that specific region, may be considered. | | | 8 | Misfilling of fuel into the AUS 32 on-board tank | Feature required to prevent dispensing of fuel into the AUS 32 on-board tank. | The geometry of the filler neck specified in Figure 1 is significantly smaller than the filler nozzles for fuel in service; thus misuse is precluded. | Table 1 (continued) | No. | Characteristic | Requirements | Remark | | |------|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--| | 9 | Misfilling of AUS 32 into the diesel fuel tank | Feature required to prevent dispensing of AUS 32 in the fuel onboard tank. | | | | | | The design and geometry of the filler nozzle shall be such that the insertion of this device in the filler neck of onboard fuel tank is not feasible; thus misuse is precluded. For canister filling such design and geometry is recommended. | | | | 10 | Materials | Materials in contact with AUS 32 shall<br>be compatible with AUS 32 to avoid<br>contamination of AUS 32 as well as<br>corrosion of the devices used. | | | | | | Suitable materials in accordance with ISO 22241-3 shall be selected. | | | | 11 | Cleanliness | A high level of cleanliness of all components of the on-board and off-board refilling systems shall be secured during the manufacturing, assembly and installation processes in order to minimize contamination of AUS 32. | | | | | | Regarding cleanliness level for the components of the off-board refilling system, see ISO 22241-3. | | | | | | Cleanliness level for the components of the on-board refilling system shall be agreed between vehicle and component manufacturers, in compliance with state of the art. | | | | 12 | Reliability | The filler neck and the filler cap shall be designed and manufactured to be fully functional for the life of the vehicle as defined by national regulations or vehicle manufacturers. | | | | 13 | Crystallization REC | Protection recommended | Contact with air should be minimized. | | | 14 | Marking REC | See symbol specified in ISO 2575 and see marking specified in ISO 22241-1. Or use equivalent standards. | Blue is the recommended colour for filler caps. | | | NOTE | NOTE Characteristics marked REC are recommendations only. | | | | #### 4.2 Filler neck The dimensional characteristics of the filler neck on the vehicle shall be in accordance with the specifications of Figure 1. The interface of the filler neck shall be furnished with a buttress thread S 36 x 4 as specified in Figure 1, Figure 2 and Table 2. The front face of the filler neck shall be designed as sealing surface having a surface finish as specified in Figure 1. The thread on the filler neck shall withstand a torque of at least 5 Nm. The vehicle manufacturer should be aware of the potential for insufficient venting with nozzle filling. One possibility for a design with improved venting capability is a filler neck with ribs as shown in Annex A. NOTE Buttress thread: a thread with an asymmetrical ridge that has one straight and one angled flank. #### Key - a top surface of filler neck - b nominal dimension for thread details see Figure 2 and Table 2 - c thread reference point at Y-Axis 0,0mm at Ø29,0 mm for measuring point for start of thread on Z-Axis - d position of surface thread start surface to adjust at six o'clock position - e venting of internal vapour through the filler neck - f area for venting pipe - g horizontal line - h minimum straight portion of filler neck Figure 1 — Filler neck #### Key - 1 nut - 2 screw Figure 2 — Buttress thread #### 4.3 Filler nozzle If the filler nozzle is of screw-coupling design, the dimensional characteristics shall be as specified in Figure 2 and Table 2. The screw-on filler nozzle shall be furnished with a gasket. The gasket shall be made of suitable material and the shape of the gasket shall be such that the leakage of ammonia meets 5.2 and 5.3. For screw-coupling designs, the filler nozzle shall be designed to limit the maximum screwing torque to 5 Nm in order to protect the filler neck thread. A screw-coupled nozzle shall include internal vapour recovery to avoid pressurizing the tank system during refill. The back pressure in the filler neck generated by the vapour recovery during the refilling shall be lower than +/- 3mbar five seconds after starting the refilling process. There shall be ambient pressure in the filler neck at the end of the filling process. Table 2 — Buttress thread Dimensions in millimetres | Symbol | Screw thread | Nut thread | |-----------------------|--------------|------------| | Symbol | S36x4 | S37,6x4 | | D, d | 36 | 37,6 | | Р | 4 | | | <b>d</b> <sub>3</sub> | 29,058 | | | <i>D</i> <sub>1</sub> | | 30 | | d <sub>2</sub> | 33 | | | $D_2$ | | 35,235 | | а | 0,2 | | | h <sub>3</sub> | 3,471 | | | H <sub>1</sub> | | 3,8 | | R | 0,496 | | | W | 1,056 | | | a <sub>c</sub> | 0,472 | | | е | | 0,856 | NOTE This table sheet is a calculation and is based on DIN 513 (see Bibliography). Tolerances are recommended to calculate in accordance to the material, etc. #### 4.4 Clearance space #### 4.4.1 General The vehicle manufacturer shall inform his customer, which kind of filling process the customer must use and choose the freespace accordingly. The following three options are possible. The Class A-freespace (see 4.4.2), which is primarily for canister filling, the Class B-freespace (see 4.4.3), which is primarily for nozzle filling, or a combination of both freespaces. #### 4.4.2 Minimum clearance "Class A" Capability of refilling only by use of canisters is required. Therefore, vehicle manufacturers shall ensure that the minimum space defined in Figure 3 is available and is not obstructed by any components in order to permit unrestricted access to the filler neck for insertion of the nozzle spout of appropriate canisters. Dimensions in millimetres #### Key a top surface of filler neck (see Figure 1) Figure 3 — Required free space "Class A" #### 4.4.3 Minimum clearance "Class B" The vehicle manufacturer shall ensure that the clearance dimensions in accordance with Figure 4 are provided to ensure safe handling when coupling and uncoupling a filler nozzle. #### Key - a top surface of filler neck (see Figure 1) - b free space for operator's hand Figure 4 — Required free space "Class B" #### 5 Testing #### 5.1 General test requirements The filler neck shall be able to withstand loads induced by the filler nozzle during and after life cycle testing. Testing of filler necks shall be conducted with new samples and with samples aged in AUS 32 at 60° C for 168 hours. Testing shall be conducted at the following temperatures unless other temperatures are specified: | — | - | 30 | °C; | |---|---|----|-----| | | | | | room temperature (21°C ± 5°C); — + 45°C. #### 5.2 Determination of spillage from nozzle Five nozzles, each tested five times, shall be used for the following test. Compliance with the specified spillage limit shall be determined by the following test procedure: - 1) Pre-conditioning of nozzle samples and equipment at room temperature (21°C ± 5°C), tank empty - 2) Filler neck to be positioned at 30° + 10°/ 0° from horizontal - 3) Unscrew filler cap - 4) Couple/ insert the filler nozzle at six o'clock position - 5) Fill with flow rate as specified in Table 1 until automatic shut-off - 6) Wait 6 seconds - Remove nozzle from filler neck and, after removal, collect any existing droplets - 8) Turn the nozzle upwards into vertical position, then 180° backwards to collect the droplets in a measuring device for 60 seconds Determine and record spillage. The average test result of 25 measurements (5 nozzles, 5 measurements each) shall be in compliance with the specified spillage limit in Table 1. It is acceptable to weigh the spillage amount. #### 5.3 Determination of smell #### 5.3.1 General For the purpose of this test the on-board tank shall be replaced by a container having a volume of 25 l. A filler neck according to this standard is fixed on the container by means of a 200 mm long filling pipe (internal diameter = 18 mm) and a ventilation pipe (internal diameter = 8 mm) as shown in Figure 5. The ventilation pipe and the filling pipe are connected to each other by the filler neck as specified. Dimensions in millimetres Figure 5 — Equipment for determination of smell #### 5.3.2 Preconditioning the system to establish constant test conditions The container is filled with $5 \text{ l} \pm 1 \text{ l}$ of unused (new) AUS 32. The container is closed, stored in a heating cabinet at 60 °C for 96 hours. Then the container should be cooled down to room temperature (21 °C $\pm$ 5 °C). One hour after reaching room temperature the test procedure should start. #### 5.3.3 Test procedure The equipment for measuring the ammonia concentration shall be installed at a distance of 65 cm $\pm$ 5 cm from the top of the filler neck in line with the axis of the filler neck. After removing the filler cap the nozzle shall then be inserted into the filler neck. The refilling shall be started immediately and 16 l $\pm$ 1 l of unused (new) AUS 32 at room temperature (21 °C $\pm$ 5 °C) shall be filled into the container while measuring the ammonia concentration. Test chamber shall be a closed room having a size of not more than 54 m³ and having no mechanical air ventilation. The measuring of the ammonia concentration should start from 30 s +/- 2 s after the start of the refilling procedure. The measuring time shall be at least 1 minute. The average value shall be determined and noted. The use of detector tubes is acceptable. The test shall be performed in two positions of the nozzle on the filler neck (normal six o'clock position and a position shifted 45° with respect to the normal position) and at a flow rate of 10 l/min. Every measurement shall be started with a preconditioned system according to 5.3.2 in an ammonia free environment and shall be carried out at least three times. The average ammonia concentration during one series of measurements shall not exceed 15 ppm. © ISO 2012 – All rights reserved #### 5.4 Minimum strength of filler neck #### 5.4.1 General The filler neck shall be tested in vehicle representative implementation. The tests specified in this subclause shall be carried out to prove the ability of the refilling system to disconnect, in the case of the driver failing to uncouple the filler nozzle correctly. Upon completion of the tests, the on-board refilling system shall show no deformation which will render it unsuitable for use, and it shall be evident that the filler nozzle of the off-board refilling system is the weak part of the coupling. Drive-off nozzle disconnection incidents (also known as breakaway) shall follow national standards or laws. The following test in 5.4.2 and 5.4.3 shall be conducted separately. #### 5.4.2 Testing simulating misuse Testing shall be conducted with two dummy nozzles specified in Figure 6 and Figure 7. A force of 500 N shall be applied with each dummy nozzle. The force F of 500 N shall be applied as shown in Figures 6 and 7. The test force shall be applied within 30 s after coupling dummy nozzle and shall be maintained for at least 30 s. The test is considered passed if there is no damage on the filler neck in terms of functional characteristics of Table 1. Dimensions in millimetres NOTE The filler neck angle used in the test is depended on angles in the vehicle. Figure 6 — Plug in dummy Dimensions in millimetres NOTE The filler neck angle used in the test is depended on angles in the vehicle. Figure 7 — Screw-on dummy #### 5.4.3 Testing in axial direction #### a) Static load An axial force $F_A$ of 500 N shall be applied using a screw-on dummy nozzle (see Figure 7). The screw-on dummy nozzle shall provide a rigid connection to a filler neck. The test force shall be applied within 30 s after coupling dummy nozzle and shall be maintained for at least 30 s. #### b) Dynamic (impact test) A test body as shown in Figure 8 having the following characteristics shall be applied: A cylinder (tube) made of steel or aluminium, having - an outer diameter of 70 mm; - a length of 100 mm; - a mass of 1 kg; - corners of front face radiused 5 mm. The test body shall impact the filler neck in the area of the sealing face. Loading of the filler neck shall be 3 J. Dimensions in millimetres #### Key - 1 test body (m = 1 kg) - a apply impact on this face (3J) NOTE The filler neck angle used in the test is depended on angles in the vehicle. Figure 8 — Dynamic impact test #### c) Extraction force A force $F_E$ of 500 N as shown in Figure 7 shall be applied using a screw-on dummy nozzle. The screw-on dummy nozzle shall provide a rigid connection to a filler neck. The test force shall be applied within 30 s after coupling dummy nozzle and shall be maintained for at least 30 s. The test is considered passed if there is no damage on the filler neck in terms of functional characteristics of Table 1. ## Annex A (informative) #### Filler neck with ribs The vehicle manufacturer should be aware of the potential for insufficient venting with nozzle filling. One possibility for a design with improved venting capability is a filler neck with ribs as shown in Figure A.1. Dimensions in millimetres Figure A.1 — Filler neck with ribs © ISO 2012 – All rights reserved #### **Bibliography** - [1] DIN 513-1, Metric buttress threads; thread profiles - [2] DIN 513-2, Metric buttress threads; general plan - [3] ISO 2575, Road vehicles Symbols for controls, indicators and tell-tales - [4] ISO 3833, Road vehicles Types Terms and definitions - [5] SAE 2402, Road Vehicles Symbols for Controls, Indicators, and Tell-Tales - [6] EN 13012, Petrol filling stations Construction and performance of automatic nozzles for use on fuel dispensers - [7] ISO 22241-1, Diesel engines NOx reduction agent AUS 32 Part 1: Quality requirements Price based on 16 pages ## British Standards Institution (BSI) BSI is the national body responsible for preparing British Standards and other standards-related publications, information and services. BSI is incorporated by Royal Charter. British Standards and other standardization products are published by BSI Standards Limited. #### About us We bring together business, industry, government, consumers, innovators and others to shape their combined experience and expertise into standards -based solutions. The knowledge embodied in our standards has been carefully assembled in a dependable format and refined through our open consultation process. Organizations of all sizes and across all sectors choose standards to help them achieve their goals. #### Information on standards We can provide you with the knowledge that your organization needs to succeed. Find out more about British Standards by visiting our website at bsigroup.com/standards or contacting our Customer Services team or Knowledge Centre. #### **Buying standards** You can buy and download PDF versions of BSI publications, including British and adopted European and international standards, through our website at bsigroup.com/shop, where hard copies can also be purchased. If you need international and foreign standards from other Standards Development Organizations, hard copies can be ordered from our Customer Services team. #### **Subscriptions** Our range of subscription services are designed to make using standards easier for you. For further information on our subscription products go to bsigroup.com/subscriptions. With **British Standards Online (BSOL)** you'll have instant access to over 55,000 British and adopted European and international standards from your desktop. It's available 24/7 and is refreshed daily so you'll always be up to date. You can keep in touch with standards developments and receive substantial discounts on the purchase price of standards, both in single copy and subscription format, by becoming a **BSI Subscribing Member**. **PLUS** is an updating service exclusive to BSI Subscribing Members. You will automatically receive the latest hard copy of your standards when they're revised or replaced. To find out more about becoming a BSI Subscribing Member and the benefits of membership, please visit bsigroup.com/shop. With a **Multi-User Network Licence (MUNL)** you are able to host standards publications on your intranet. Licences can cover as few or as many users as you wish. With updates supplied as soon as they're available, you can be sure your documentation is current. For further information, email bsmusales@bsigroup.com. #### **BSI Group Headquarters** 389 Chiswick High Road London W4 4AL UK #### **Revisions** Our British Standards and other publications are updated by amendment or revision. We continually improve the quality of our products and services to benefit your business. If you find an inaccuracy or ambiguity within a British Standard or other BSI publication please inform the Knowledge Centre. #### Copyright All the data, software and documentation set out in all British Standards and other BSI publications are the property of and copyrighted by BSI, or some person or entity that owns copyright in the information used (such as the international standardization bodies) and has formally licensed such information to BSI for commercial publication and use. Except as permitted under the Copyright, Designs and Patents Act 1988 no extract may be reproduced, stored in a retrieval system or transmitted in any form or by any means – electronic, photocopying, recording or otherwise – without prior written permission from BSI. Details and advice can be obtained from the Copyright & Licensing Department. #### **Useful Contacts:** #### **Customer Services** Tel: +44 845 086 9001 Email (orders): orders@bsigroup.com Email (enquiries): cservices@bsigroup.com #### Subscriptions Tel: +44 845 086 9001 Email: subscriptions@bsigroup.com #### **Knowledge Centre** Tel: +44 20 8996 7004 Email: knowledgecentre@bsigroup.com #### **Copyright & Licensing** Tel: +44 20 8996 7070 Email: copyright@bsigroup.com