BS ISO 21484:2017

BSI Standards Publication

Nuclear Energy — Fuel technology — Determination of the O/M ratio in MOX pellets by the gravimetric method

BS ISO 21484:2017 BRITISH STANDARD

National foreword

This British Standard is the UK implementation of ISO 21484:2017.

The UK participation in its preparation was entrusted to Technical Committee NCE/9, Nuclear fuel cycle technology.

A list of organizations represented on this committee can be obtained on request to its secretary.

This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application.

© The British Standards Institution 2017. Published by BSI Standards Limited 2017

ISBN 978 0 580 84498 0

ICS 17.240; 27.120.30

Compliance with a British Standard cannot confer immunity from legal obligations.

This British Standard was published under the authority of the Standards Policy and Strategy Committee on 28 February 2017.

Amendments/Corrigenda issued since publication

Date Text affected

INTERNATIONAL STANDARD

ISO 21484:2017 ISO 21484

Second edition 2017-01

Nuclear Energy — Fuel technology — Determination of the O/M ratio in MOX pellets by the gravimetric method

Énergie nucléaire — Technologie du combustible — Détermination du rapport O/M dans les pastilles MOX par la méthode gravimétrique

BS ISO 21484:2017 ISO 21484:2017(E)

COPYRIGHT PROTECTED DOCUMENT

© ISO 2017, Published in Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Ch. de Blandonnet 8 • CP 401 CH-1214 Vernier, Geneva, Switzerland Tel. +41 22 749 01 11 Fax +41 22 749 09 47 copyright@iso.org www.iso.org

Contents		
Fore	reword	iv
1	Scope	1
2	Normative references	1
3	Terms and definitions	1
4	Principle	
5	Reactions	
6	Reagents and materials	
7	Apparatus	
8	Sampling	
9	Procedure 9.1 Preliminary test 9.2 Preparing the crucibles 9.3 Weighing the sample 9.4 Heat treatment cycles 9.4.1 General 9.4.2 Example 1 9.4.3 Example 2 9.5 Final weighing	
10	Calculation 10.1 Mean atomic mass of oxide after heat treatment 10.2 Calculation of O/M ratio	4
11	Precision 11.1 Accuracy 11.2 Precision 11.3 Sensitivity	
12	Test report	
Dihl:	liography	6

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see the following URL: www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 85, *Nuclear energy, nuclear technologies, and radiological protection,* Subcommittee SC 5, *Nuclear installations, processes and technologies.*

This second edition cancels and replaces the first edition (ISO 21484:2008), which has been technically revised.

Nuclear Energy — Fuel technology — Determination of the O/M ratio in MOX pellets by the gravimetric method

1 Scope

This document describes a method for determining the Oxygen-to-Metal (O/M) ratio in mixed uranium-plutonium oxide (U,Pu)O $_{2\pm X}$ pellets. The parameters given in the following paragraphs are relevant for pellets within a range of O/M ratio corresponding to 1,98 to 2,01. The method described in the document is adapted, with regard to the parameters, if the expected values of O/M ratio are outside the range.

2 Normative references

There are no normative references in this document.

3 Terms and definitions

No terms and definitions are listed in this document.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at http://www.iso.org/obp
- IEC Electropedia: available at http://www.electropedia.org/

4 Principle

The $(U,Pu)O_{2\pm X}$ sample is submitted to controlled oxidation-reduction under thermodynamic conditions designed to change the O/M ratio to a value of 2,000. The initial stoichiometric deviation, X, is determined from the sample mass difference before and after heat treatment.

5 Reactions

The main reactions are as follows:

- a) $(U,Pu)O_{2\pm X}\pm x/2 O_{2} \rightarrow (U,Pu)O_{2,000};$
- b) $(U,Pu)O_{2+x} + xH_2 \rightarrow (U,Pu)O_{2,000} + xH_2O.$

6 Reagents and materials

During the analysis, unless otherwise stated, use only reagents of recognized analytical grade and distilled or demineralized water or water of equivalent purity.

- **6.1 Nitric acid solution**, 50 % per volume nitric acid aqueous solution.
- 6.2 Purge gas.
- **6.2.1 Air**, a volume fraction of 99,99 % purity grade is recommended.
- **6.2.2 Inert gas**, such as Argon or nitrogen can be used with a recommended volume fraction of 99,99 % purity grade $[0_2 < 0,000 5 \% (5 \text{ ppm}), H_2O < 0,000 5 \% (5 \text{ ppm}), N_2 < 0,000 5 \% (5 \text{ ppm})].$

6.2.3 Hydrogen or mixture of hydrogen and inert gas, a volume fraction of 99,99 % purity grade to which water vapour may be added to obtain an oxygen potential (ΔG_0) near -420 kJ/mol (-100 kcal/mol).

7 Apparatus

- **7.1 Furnace,** one of the following furnaces can be used.
- **7.1.1 Muffle furnace**, controlled up to 950 °C, having a device for measuring the temperature and having sweeping possibility with various gases.
- **7.1.2 Other furnaces**, other furnaces, with same performance can also be used such as Infrared gold image furnace (IR lamp heating).
- **7.2 Crucibles**, use platinum or quartz crucibles.
- **7.3 Analytical balance**, use an analytical balance with an accuracy of at least ± 0.1 mg when muffle furnace is used or at least ± 0.01 mg if samples are smaller.

8 Sampling

A representative sample shall be taken from the pellet batch for analysis. If necessary, crush pellets to make smaller samples according to the furnace type or the crucible size.

If necessary, care shall be taken to avoid sample oxidation during the sampling procedure and the sample preparation. Typical precautions include performing the sampling operation under argon atmosphere, placing the sample in an argon-filled bottle, etc. The laboratory performing the analyses shall establish the procedure.

9 Procedure

9.1 Preliminary test

The balance shall be checked at regular intervals using a standard mass.

9.2 Preparing the crucibles

The crucibles shall be clean and weighed before use. An example of a cleaning procedure that could be used is as follows.

- a) Clean the crucibles by heating them in nitric acid (6.1) near the boiling point.
- b) Rinse thoroughly with deionized water.
- c) Dry the crucibles in the furnace for 30 min at 150 °C under inert atmosphere.
- d) Allow the crucibles to cool to 35 °C in the furnace under inert atmosphere.
- e) Remove each crucible from the furnace and weigh it to within ±0,1 mg or better.
- f) Record the crucible mass, m_0 , in grams.

9.3 Weighing the sample

9.3.1 Place the sample, sampled as indicated in <u>Clause 8</u>, in an empty crucible.

- **9.3.2** Weigh the crucible containing the pellets to within ± 0.1 mg or better.
- **9.3.3** Record the mass, m_1 , in grams of the crucible containing the pellets.

9.4 Heat treatment cycles

9.4.1 General

The sample shall be heat treated in such a way that the O/M ratio is changed to exactly 2,000. The duration of the oxidation-reduction cycles and the gas flow rates in the furnace shall be optimized according to the nature of the furnace used, the number of sample pellets measured, the pellet composition, etc.

Load the furnace with the crucible containing the sample pellets. Apply the desired heat treatment cycle.

9.4.2 Example 1

- **9.4.2.1** Under argon sweeping, raise the temperature to 900 °C ± 30 °C and hold for 5 min.
- **9.4.2.2** Under air sweeping, maintain the furnace temperature for 1 min to 7 min at 900 °C \pm 30 °C.
- **9.4.2.3** Under argon sweeping, maintain the furnace temperature for 5 min at 900 °C \pm 30°C.
- **9.4.2.4** Under argon +5 % to 7 % H_2 sweeping, maintain the furnace temperature for 8 h to 13 h at 900 °C ± 30 °C.
- **9.4.2.5** Under argon +5 % to 7 % H_2 sweeping, shut off the furnace heating and allow the temperature to drop to 35 °C.

9.4.3 Example 2

- **9.4.3.1** Heat the samples for 16 h at 800 °C, in an atmosphere comprising a volume fraction of 4 % H₂ in argon saturated with water at room temperature.
- **9.4.3.2** Cool under dry argon containing a volume fraction of 4 % H₂.

9.5 Final weighing

- **9.5.1** Remove the crucible from the furnace.
- **9.5.2** Weigh the crucible to within 0,1 mg or better.
- **9.5.3** Record the mass, m_2 , in grams of the crucible after oxidation-reduction heat treatment.

10 Calculation

10.1 Mean atomic mass of oxide after heat treatment

Calculate the mean atomic mass of the oxide after treatment, when O/M = 2,000 exactly, by using Formula (1):

$$m_{a} = \frac{m(Pu) \cdot x_{Pu} + m(U) \cdot x_{U} + m(Am) \cdot x_{Am}}{x_{Pu} + x_{U} + x_{Am}} + 2m(0)$$
(1)

where

 m_a is the mean atomic mass of the oxide of heavy metals;

m(Pu) is the mean atomic mass of plutonium in the oxide;

m(U) is the mean atomic mass of uranium in the oxide;

m(Am) is the mean atomic mass of americium in the oxide;

 x_{Pu} is the mole fraction in percent of plutonium in the oxide;

 $x_{\rm U}$ is the mole fraction in percent of uranium in the oxide;

 $x_{\rm Am}$ is the mole fraction in percent of americium in the oxide;

m(0) is the atomic mass of oxygen (15,999 4);

 $x_{\text{Pu}} + x_{\text{U}} + x_{\text{Am}} = 100 \%.$

10.2 Calculation of O/M ratio

Calculate the O/M ratio by using Formula (2):

$$O/M = 2,000 - \frac{m_a \times (m_2 - m_1)}{m(O) \times (m_2 - m_0)}$$
(2)

where

 m_0 is the mass of empty crucible, in g;

 m_1 is the mass of crucible with test sample before oxidation-reduction, in g;

 m_2 is the mass of crucible with test sample after oxidation-reduction heat treatment, in g;

m(0) is the atomic mass of oxygen (15,999 4);

 m_a is the mean atomic mass of the oxide of heavy metals.

11 Precision

11.1 Accuracy

30 determinations on stoichiometric mixed oxide pellets containing approximately 7 % plutonium gave a mean 0/M ratio of 2,000.

11.2 Precision

The standard deviation calculated from 30 determinations by two operators on a control sample of stoichiometric mixed oxide pellets containing approximately 7 % plutonium is better than 0,001.

11.3 Sensitivity

Typically for a 15 g sample a change in weight of 0,5 mg results in a change in O/M ratio of 0,001.

12 Test report

The test report shall contain the following information:

- a) all information necessary for identification of the sample tested;
- b) a reference to this document, i.e ISO 21484:2017;
- c) the method used;
- d) the results of the test, including the results of the individual determinations and their mean, calculated as specified in <u>Clause 10</u>;
- e) any deviations from the procedure specified;
- f) any unusual features (anomalies) observed during the test;
- g) the date of the test.

Bibliography

 $[1] \hspace{0.5cm} \textbf{ISO 3696, Water for an alytical laboratory use-Specification and test methods} \\$

British Standards Institution (BSI)

BSI is the national body responsible for preparing British Standards and other standards-related publications, information and services.

BSI is incorporated by Royal Charter. British Standards and other standardization products are published by BSI Standards Limited.

About us

We bring together business, industry, government, consumers, innovators and others to shape their combined experience and expertise into standards -based solutions.

The knowledge embodied in our standards has been carefully assembled in a dependable format and refined through our open consultation process. Organizations of all sizes and across all sectors choose standards to help them achieve their goals.

Information on standards

We can provide you with the knowledge that your organization needs to succeed. Find out more about British Standards by visiting our website at bsigroup.com/standards or contacting our Customer Services team or Knowledge Centre.

Buying standards

You can buy and download PDF versions of BSI publications, including British and adopted European and international standards, through our website at bsigroup.com/shop, where hard copies can also be purchased.

If you need international and foreign standards from other Standards Development Organizations, hard copies can be ordered from our Customer Services team.

Copyright in BSI publications

All the content in BSI publications, including British Standards, is the property of and copyrighted by BSI or some person or entity that owns copyright in the information used (such as the international standardization bodies) and has formally licensed such information to BSI for commercial publication and use.

Save for the provisions below, you may not transfer, share or disseminate any portion of the standard to any other person. You may not adapt, distribute, commercially exploit, or publicly display the standard or any portion thereof in any manner whatsoever without BSI's prior written consent.

Storing and using standards

Standards purchased in soft copy format:

- A British Standard purchased in soft copy format is licensed to a sole named user for personal or internal company use only.
- The standard may be stored on more than 1 device provided that it is accessible
 by the sole named user only and that only 1 copy is accessed at any one time.
- A single paper copy may be printed for personal or internal company use only.

Standards purchased in hard copy format:

- A British Standard purchased in hard copy format is for personal or internal company use only.
- It may not be further reproduced in any format to create an additional copy.
 This includes scanning of the document.

If you need more than 1 copy of the document, or if you wish to share the document on an internal network, you can save money by choosing a subscription product (see 'Subscriptions').

Reproducing extracts

For permission to reproduce content from BSI publications contact the BSI Copyright & Licensing team.

Subscriptions

Our range of subscription services are designed to make using standards easier for you. For further information on our subscription products go to bsigroup.com/subscriptions.

With **British Standards Online (BSOL)** you'll have instant access to over 55,000 British and adopted European and international standards from your desktop. It's available 24/7 and is refreshed daily so you'll always be up to date.

You can keep in touch with standards developments and receive substantial discounts on the purchase price of standards, both in single copy and subscription format, by becoming a **BSI Subscribing Member**.

PLUS is an updating service exclusive to BSI Subscribing Members. You will automatically receive the latest hard copy of your standards when they're revised or replaced.

To find out more about becoming a BSI Subscribing Member and the benefits of membership, please visit bsigroup.com/shop.

With a **Multi-User Network Licence (MUNL)** you are able to host standards publications on your intranet. Licences can cover as few or as many users as you wish. With updates supplied as soon as they're available, you can be sure your documentation is current. For further information, email subscriptions@bsigroup.com.

Revisions

Our British Standards and other publications are updated by amendment or revision.

We continually improve the quality of our products and services to benefit your business. If you find an inaccuracy or ambiguity within a British Standard or other BSI publication please inform the Knowledge Centre.

Useful Contacts

Customer Services

Tel: +44 345 086 9001

Email (orders): orders@bsigroup.com **Email (enquiries):** cservices@bsigroup.com

Subscriptions

Tel: +44 345 086 9001

Email: subscriptions@bsigroup.com

Knowledge Centre

Tel: +44 20 8996 7004

 $\textbf{Email:} \ knowledge centre @bsigroup.com$

Copyright & Licensing

Tel: +44 20 8996 7070 Email: copyright@bsigroup.com

BSI Group Headquarters

389 Chiswick High Road London W4 4AL UK

