BS ISO 20647:2015 # **BSI Standards Publication** Infant formula and adult nutritionals — Determination of total iodine — Inductively coupled plasma mass spectrometry (ICP-MS) BS ISO 20647:2015 BRITISH STANDARD ## National foreword This British Standard is the UK implementation of ISO 20647:2015. The UK participation in its preparation was entrusted to Technical Committee AW/5, Chemical analysis of milk and milk products. A list of organizations represented on this committee can be obtained on request to its secretary. This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application. © The British Standards Institution 2015. Published by BSI Standards Limited 2015 ISBN 978 0 580 90423 3 ICS 67.050 Compliance with a British Standard cannot confer immunity from legal obligations. This British Standard was published under the authority of the Standards Policy and Strategy Committee on 30 November 2015. Amendments/corrigenda issued since publication Date Text affected # INTERNATIONAL STANDARD ISO 20647:2015 ISO 20647 **IDF** 234 First edition 2015-11-01 # Infant formula and adult nutritionals — Determination of total iodine — Inductively coupled plasma mass spectrometry (ICP-MS) Formules infantiles et produits nutritionnels pour adultes — Détermination de la teneur en iode total — Spectrométrie de masse avec plasma à couplage inductif (ICP-SM) BS ISO 20647:2015 ISO 20647:2015(E) IDF 234:2015(E) # COPYRIGHT PROTECTED DOCUMENT © ISO and IDF 2015, Published in Switzerland All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester. ISO copyright office Ch. de Blandonnet 8 • CP 401 CH-1214 Vernier, Geneva, Switzerland Tel. +41 22 749 01 11 Fax +41 22 749 09 47 copyright@iso.org www.iso.org International Dairy Federation Silver Building • Bd Auguste Reyers 70/B • B-1030 Brussels Tel. + 32 2 325 67 40 Fax + 32 2 325 67 41 info@fil-idf.org www.fil-idf.org | Coı | ntent | S | Page | |------|---|--|------| | Fore | words | | iv | | 1 | Scope | e | 1 | | 2 | Princ | ciple | 1 | | 3 | Reag | ents and materials | 1 | | 4 | Appa | ıratus | 5 | | 5 | Proce | edure | 6 | | | 5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12 | Reconstitution Sample preparation Addition of reagents Oven digestion Open vessel microwave digestion Sample filtering Sample dilution Determination Conditioning Calibration Sample analysis Data acceptability | 66 | | 6 | Calcu | ılation | 10 | | 7 | Preci 7.1 7.2 7.3 | ision Interlaboratory tests Repeatability Reproducibility | | | Ann | ex A (inf | formative) Precision data | 12 | | Bibl | iograph | ıy | 13 | BS ISO 20647:2015 ISO 20647:2015(E) IDF 234:2015(E) # **Forewords** **ISO** (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance wit the editorial rules of ISO/IEC Directives, Part 2 (see www.iso.org/directives). Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents). Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement. For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the WTO principles in the Technical Barriers Trade (TBT) see the following URL: Foreword - Supplementary information The committee responsible for this document is ISO/TC 34, *Food products*, Subcommittee SC 5, *Milk and milk products* and the International Dairy Federation (IDF), in collaboration with AOAC INTERNATIONAL. It is being published jointly by ISO and IDF and separately by AOAC INTERNATIONAL. The method described in this International Standard is equivalent to the AOAC Official Method 2012.15: *Total iodine in infant formula and adult/pediatric nutritional formula – inductively coupled plasma-mass spectrometry.* **IDF (the International Dairy Federation)** is a non-profit private sector organization representing the interests of various stakeholders in dairying at the global level. IDF members are organized in National Committees, which are national associations composed of representatives of dairy-related national interest groups including dairy farmers, dairy processing industry, dairy suppliers, academics and governments/food control authorities. ISO and IDF collaborate closely on all matters of standardization relating to methods of analysis and sampling for milk and milk products. Since 2001, ISO and IDF jointly publish their International Standards using the logos and reference numbers of both organizations. Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. IDF shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents). Any trade name used in this document is information given for the convenience of users and does not constitute and endorsement. ISO 20647 | IDF 234 was prepared by the IDF Standing Committee on Analytical Methods for Composition and the ISO Technical Committee ISO/TC 34, Food products, Subcommittee SC 5, Milk and milk products, in collaboration with AOAC INTERNATIONAL. It is being published jointly by ISO and IDF, and separately by AOAC INTERNATIONAL. The method described in this International Standard is equivalent to the AOAC Official Method 2012.15: Total iodine in infant formula and adult/pediatric nutritional formula – inductively coupled plasma-mass spectrometry. All work was carried out by the ISO-IDF Project Group C37 of the Standing Committee on *Analytical Methods for Composition* under the aegis of its project leader, Mr Erik Konings (CH). # Infant formula and adult nutritionals — Determination of total iodine — Inductively coupled plasma mass spectrometry (ICP-MS) WARNING — The use of this International Standard can involve hazardous materials, operations and equipment. This International Standard does not purport to address all the safety problems associated with its use. It is the responsibility of the user of this International Standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. # 1 Scope This International Standard specifies a method for the quantitative determination of total iodine in infant formula and adult nutritional formula. The method is applicable to the measurement of total iodine in infant formula and adult nutritional formula from 0,5 μ g/100g to 1 500 μ g/100g reconstituted final product and for ready-to-feed products from 2,5 μ g/100 g to 1 000 μ g/100 g using ICP-MS. Using various infant formula and adult nutritional products, the method was subjected to an interlaboratory study. Levels obtained ranged from 3,47 μ g/100 g to 124 μ g/100 g. For all precision data related to the interlaboratory study, see <u>Table A.1</u> located in <u>Annex A</u>. # 2 Principle Digestion occurs using a potassium hydroxide (KOH) solution in an oven or open-vessel microwave system. Iodine is stabilized with ammonium hydroxide and sodium thiosulfate after digestion. The solution is brought to volume followed by filtration. The filtrate is analysed directly or after dilution by inductively coupled plasma mass spectrometry (ICP-MS). # 3 Reagents and materials During the analysis, unless otherwise stated, use only reagents of recognized analytical grade and distilled or demineralized water or water of equivalent purity. Equivalent chemicals and reagents may be used. **3.1 KOH pellets,** certified ACS grade, e.g. Fisher Scientific, Fairlawn, NJ¹). NOTE KOH may contribute background levels of iodine. - **3.2 Ammonium hydroxide (NH₄OH)**, 28 % to 30 % (m/m), certified ACS PLUS, Fisher Scientific¹). - 3.3 Sodium thiosulfate (Na₂S₂O₃), purity \geq 99,99 %, metal basis, Fisher Scientific¹). - **3.4 Surfactant**, e.g. Triton®X-100, Sigma, St. Louis, MO¹). - **3.5 Concentrated nitric acid (HNO₃)**, Optima, high purity, Fisher Scientific¹). - **3.6 Perchloric acid (HClO₄)**, 70 % (m/m). ¹⁾ This is an example of a suitable product available commercially. This information is given for the convenience of users of this document and does not constitute an endorsement by either ISO or IDF of the product named. Equivalent products may be used if they can be shown to lead to the same results. - 3.7 **Purified water**, $18 \text{ M}\Omega/\text{cm}$. - 3.8 Reference standards - **3.8.1 Iodide standard solution in water**, mass concentration $\rho = 1\,000\,\mu\text{g/ml}$, SPEX CertiPrep¹). - 3.8.2 Iodide standard solution in 1 % triethylamine (TEA), $\rho = 1~000~\mu g/ml$, Inorganic Ventures¹). - **3.8.3 Standard Reference Material (SRM)**, National Institute of Standards and Technology (NIST) SRM 1849a, Infant/Adult Nutritional Formula. Either stock iodide reference solutions may be used for intermediate and working standard solutions preparation. The remaining source may be used as a continuing calibration verification (CCV) standard. Equivalent reference standards may be substituted. 'Iodide' may be referred to as 'iodine' throughout this International Standard. # 3.9 Internal standards # **3.9.1 Praseodymium (Pr) standard solution in 5 % HNO**₃, $\rho = 10 \, \mu \text{g/ml}$, Inorganic Ventures¹). Individual values of iodine are reported for each test sample using praseodymium as the internal standard. Equivalent stock internal standard solutions may be substituted. # 3.10 Preparation of reagent solutions # **3.10.1** General Prepare all reagent solutions as recommended by either mass per volume or volume per volume. Adjusting for purity and/or concentration is not required. # **3.10.2 KOH solution**, $\rho = 50 \text{ g/l}$ Dissolve 25 g of KOH pellets in an appropriate amount of purified water, then dilute to 500 ml with purified water. This solution may be added using a re-pipet volumetric bottle top dispenser. Store this solution at room temperature. Reagent expires 6 months after preparation date. # 3.10.3 Stabilizer concentrate Dissolve 5 g of $Na_2S_2O_3$ in an appropriate amount of purified water, add 50 ml of NH_4OH , then dilute to 500 ml with purified water. The resulting concentration is 10 % NH_4OH and 1 % $Na_2S_2O_3$ in purified water. Store this solution at room temperature. Reagent expires 6 months after preparation date. # 3.10.4 Wash solution (rinse) Dissolve 2 g of surfactant (3.4) in an appropriate amount of purified water, add 20 ml of NH $_4$ OH, then dilute to 2 000 ml with purified water. The resulting concentration is 1 % NH $_4$ OH and 0,1 % surfactant in purified water. This solution may be added using a re-pipet volumetric bottle top dispenser. Store this solution at room temperature. Reagent expires 6 months after preparation date. # **3.10.5** Diluent Dissolve 10 g of KOH pellets and 0.4 g $Na_2S_2O_3$ in an appropriate amount of purified water, add 4 ml NH_4OH , then dilute to 2 000 ml with purified water. Store this solution at room temperature. Reagent expires 6 months after preparation date. Alternatively, for a smaller volume, dilute 50 ml of 5 % KOH and 10 ml of stabilizer concentrate (3.10.3) to 500 ml with purified water. The resulting concentrations for both preparations are 0,5 % KOH, 0,2 % NH₄OH, and 0,02 % Na₂S₂O₃ in purified water. Store this solution at room temperature. Reagent expires 6 months after preparation date. # 3.10.6 Conditioning solution Prepare by aliquoting 25 ml of KOH solution (3.10.2), then dilute to 250 ml with purified water. Use this solution to prepare the instrument for analysis. The resulting concentration is 5 g/l KOH. Store this solution at room temperature. Reagent expires 6 months after preparation date. # 3.10.7 Carrier solution This solution is equivalent to the wash solution (3.10.4). The carrier solution is used to deliver the sample solution to the nebulizer through the ICP-MS autosampler introduction system. The carrier solution is introduced via a peristaltic pump using 0,76 mm inside diameter (id) two-stop polyvinyl chloride pump tubing. Store this solution at room temperature. Reagent expires 6 months after preparation date. # 3.11 Preparation of standard solutions # **3.11.1 General** Stock solutions are stable until the end date indicated on the certificate of analysis. Intermediate stock standard, calibration standard, continuing calibration verification and internal standard solutions are stable at room temperature until the earliest expiration date of all components used to prepare the solution. These solutions are ready to use for analysis. Do not subject them to any of the various procedures used to prepare actual samples (i.e. infant formulas and adult nutritionals) for analysis. # 3.11.2 Stock iodine and praseodymium solutions Purchase of stock iodine and praseodymium standard solutions with accompanying certificates of analysis is recommended. # 3.11.3 Intermediate stock standard (ISS) iodine solutions Prepare the intermediate stock standard iodine solutions according to <u>Table 1</u>. These ISS solutions are used for calibration standard preparation and are typically prepared according to <u>Table 1</u>. The ISS concentrations presented are nominal. Using the stock iodine concentration found on the certificate of analysis, determine the exact concentration of each ISS. An electronic adjustable volume pipet, capable of delivering $100~\mu l$ to $5~000~\mu l$ should be used. | Table 1 — Preparation | of intermediate stoc | k standard (ISS | (i) iodine solutions | |-----------------------|----------------------|-----------------|----------------------| | | | | | | Iodine standard
solution ID | ID of solution used for preparation | Initial iodine concentration ng/ml | Aliquot volume
ml | Final
volume
ml | Final iodine concentration ng/ml | |--------------------------------|-------------------------------------|------------------------------------|----------------------|-----------------------|----------------------------------| | 10 000 (ISS) | Stock | 1 000 000 | 0,5 | 50 | 10 000 | | 1 000 (ISS) | 10 000 (ISS) | 10 000 | 5 | 50 | 1 000 | | 10,0 (ISS) | 1 000 (ISS) | 1 000 | 0,5 | 50 | 10,0 | Aliquot the appropriate amount of iodine standard solution into a single use 50 ml tube (4.1) and add 5 ml of stabilizer concentrate (3.10.3), fill to the 50 ml mark on the tube with water, cap the tube and then mix thoroughly. The resulting matrix concentration is $1 \% NH_4OH$ and $0.1 \% Na_2S_2O_3$ in water. # 3.11.4 Calibration standard (CS) iodine solutions Prepare the intermediate stock standard iodine solutions according to <u>Table 2</u>. Typical CS standard concentrations are nominally 0,250 ng/ml, 0,500 ng/ml, 1,00 ng/ml, 10,0 ng/ml, 50,0 ng/ml and 100 ng/ml iodine and are typically prepared according to Table 2. The calibration blank is the zero point of the curve. The curve type used, if using a Perkin Elmer²⁾ ICP-MS with ELAN²⁾ software, should be linear through zero. If using an Agilent²⁾ or Thermo²⁾ ICP-MS, force the curve through the calibration blank. The calibration curve shall have a correlation coefficient (r) of \geq 0,998 to be acceptable. Determine the exact concentration of each CS (traceable back to the certificate of analysis) and assign these values to the curve points used to generate the final results. An electronic adjustable volume pipet, capable of delivering 100 μ l to 5 000 μ l should be used. Table 2 — Preparation of calibration standard (CS) iodine and calibration blank (CB) solutions | Iodine standard
solution ID | ID of solution used for preparation | Initial iodine concentration ng/ml | Aliquot volume
ml | Final
volume
ml | Final iodine
concentration
ng/ml | |--------------------------------|-------------------------------------|------------------------------------|----------------------|-----------------------|--| | 100 (CS) | 1 000 (ISS) | 1 000 | 5 | 50 | 100 | | 50,0 (CS) | 1 000 (ISS) | 1 000 | 2,5 | 50 | 50,0 | | 10,0 (CS) | 1 000 (ISS) | 1 000 | 0,5 | 50 | 10,0 | | 1,00 (CS) | 10,0 (ISS) | 10,0 | 5 | 50 | 1,00 | | 0,500 (CS) | 10,0 (ISS) | 10,0 | 2,5 | 50 | 0,500 | | 0,250 (CS) | 10,0 (ISS) | 10,0 | 1,25 | 50 | 0,250 | | Blank (CB) | n.a. ^a | n.a. ^a | n.a. ^a | 50 | 0 | Aliquot the appropriate amount of iodine standard solution into a single use 50 ml tube (4.1) and add 5 ml of 5 % KOH and 1 ml of stabilizer concentrate (3.10.3), fill to the 50 ml mark on the tube with water, cap the tube and then mix thoroughly. The resulting matrix concentration is 0,5 % KOH and approximately 0,2 % NH_4OH and approximately 0,02 % $Na_2S_2O_3$ in water. # 3.11.5 Intermediate continuing calibration verification (ICCV), continuing calibration verification (CCV) iodine solutions and continuing calibration blank (CCB) solution A CCV solution shall be prepared from a source other than that used for the CS solutions. For example, if a stock solution from SPEX CertiPrep² was used to prepare the CS solutions, do not use this same solution to prepare the CCV solution. Instead use a stock solution from Inorganic Ventures² (or another suitable manufacturer) to prepare the CCV solution. Prepare the intermediate continuing calibration verification, continuing calibration verification standards solutions and continuing calibration blank according to <u>Table 3</u>. ICCV solutions are used for preparation of the CCV standard solution and are typically prepared according to <u>Table 3</u>. The ICCV and CCV concentrations presented are nominal. Using the stock iodine concentration found on the certificate of analysis (from the second source), determine the exact concentration of each ICCV. With this information, determine the exact concentration of the CCV standard. An electronic adjustable volume pipet, capable of delivering 100 µl to 5 000 µl should be used. n.a. is not applicable ²⁾ This is an example of a suitable product available commercially. This information is given for the convenience of users of this document and does not constitute an endorsement by either ISO or IDF of the product named. Equivalent products may be used if they can be shown to lead to the same results. Table 3 — Preparation of intermediate continuing calibration verification (ICCV), continuing calibration verification (CCV) iodine solutions and continuing calibration blank (CCB) solution | Iodine standard
solution ID | ID of solution used for preparation | Initial iodine
concentration
ng/ml | Aliquot volume
ml | Final
volume
ml | Final iodine
concentration
ng/ml | |--------------------------------|-------------------------------------|--|----------------------|-----------------------|--| | 10 000 (ICCV) | Stock | 1 000 000 | 0,5 | 50 | 10 000 | | 1 000 (ICCV) | 10 000 (ICCV) | 10 000 | 5 | 50 | 1 000 | | 10,0 (CCV) | 1 000 (ICCV) | 1 000 | 0,5 | 50 | 10,0 | | Blank (CCB) | n.a.a | n.a.a | n.a. ^a | 50 | 0 | Aliquot the appropriate amount of iodine standard solution into a single use 50 ml tube (4.1), fill to the 50 ml mark on the tube with diluent (3.10.5), cap the tube and then mix thoroughly. The resulting matrix concentration is 0,5 % KOH, approximately 0,2 % NH_4OH and approximately 0,02 % $Na_2S_2O_3$ in water. For the blank (CCB), fill a single use 50 ml tube (4.1) to the 50 ml mark on the tube with diluent (3.10.5), cap the tube and then mix thoroughly. # 3.11.6 Internal standard (IS) solution Prepare the internal standard solutions according to Table 4. The IS concentration typically used for analysis is 30 ng/ml Pr. <u>Table 4</u> outlines a typical preparation scheme for the internal standard concentration. Table 4 — Preparation of internal standard (IS) solution | Standard solution
ID | ID of solution used for preparation | Initial concentration ng/ml | Aliquot volume
ml | Final
volume
ml | Final iodine
concentration
ng/ml | |-------------------------|-------------------------------------|-----------------------------|----------------------|-----------------------|--| | 30,0 (Pr) | Stock | 10 000 | 1,5 | 500a | 30,0 | ^a After aliquoting the 10000 ng/ml Pr solution into the 500 ml vessel, add approximately 100 ml of water, 10 ml of HNO₃, 0,5 ml of HClO₄, 0,05 g of Triton[®] X-100 and then bring to volume with water and mix thoroughly. The resulting concentration is 2 % HNO₃, 0,1 % HClO₄ and 0,01 % Triton[®] X-100 in water. NOTE As some ICP-MS instruments provide greater sensitivity, the concentration of Pr may be adjusted accordingly to provide intensities similar to the intensity generated by the 50,0 ng/ml iodine standard. # 4 Apparatus Usual laboratory glassware and equipment and, in particular, the following. Equivalent apparatus may be used. All laboratory plasticware should be single-use whenever possible. If reuse is necessary, wash using $10\,\%$ nitric acid, then rinse thoroughly with purified water prior to use. When needed, general laboratory acid-washed glassware may also be used. Filter membranes < 1 μ m (e.g. 0,25 μ m or 0,45 μ m) may be used. Adherence as close as possible to the recommended inside diameters of the pump tubing is critical. The ratio of the pump tubing inside diameter (id) (0,76 mm) used for the carrier solution (see 3.10.7) to the pump tubing id (0,38 mm) used for the internal standard solution (see 3.11.6) may be used as a guideline (0,76/0,38 = 2). For best performance, the ratio should remain as close to 2 as possible. Vast differences in id between the carrier solution pump tubing and the internal standard solution pump tubing (e.g. 1,02/0,19, respectively) may result in poor accuracy. - **4.1 Polypropylene tubes**, capacity 50 ml and 100 ml. - **4.2 Oven**, e.g. warming or drying oven, set to maintain $105 \,^{\circ}\text{C} \pm 5 \,^{\circ}\text{C}$. a n.a. is not applicable - **4.3** Open-vessel microwave digestion unit, optional. - **4.4 Analytical balance**, capable of weighing to 0,0001 g. - **4.5 Top-loader balance**, capable of weighing to 0,01 g. - **4.6 ICP-MS system**, ELAN DRC II³) Perkin Elmer, or equivalent. - **4.7 Autosampler for ICP-MS**, SC4-DX³), Elemental Scientific, or equivalent. - **4.8** Adjustable volumetric pipets, electronic or manual, capacity 100 µl to 5 000 µl. - **4.9 Re-pipet volumetric dispensers**, of adjustable volume. - **4.10** Polypropylene or polytetrafluoroethylene (PTFE) bottles, for storage of reagents. - **4.11 Disposable plastic syringes**, e.g. capacity 10 ml, with Luer Lok connections. - **4.12 Syringe filters**, with 1 µm membrane, e.g. GMF-150³) or PTFE. - **4.13** Beakers, of assorted sizes. - **4.14 Stir bars**, 7,9 mm x 50 mm, or appropriate size. - **4.15 Stir plate**, adjustable speed. - **4.16 Pump tubing**, peristaltic, 0,76 mm inside diameter (id), two-stop polyvinyl chloride (PVC), used for introducing carrier solution (see 3.10.7). - **4.17 Pump tubing**, peristaltic, 0,38 mm id, two-stop PVC, used for introducing internal standard solution (see <u>3.11.6</u>). # 5 Procedure # 5.1 Reconstitution All powdered samples, with the exception of NIST SRM 1849a, are required to be analysed on a reconstituted basis. Do not reconstitute ready-to-feed (RTF) samples. Accurately weigh 25 g \pm 0,01 g of powdered test sample into an appropriate vessel (e.g. 400 ml beaker) and record the mass. Without zeroing the balance, add water to make approximately 225 g. Record the sample plus water mass. Place a stir bar in the mixture and stir on a stir plate to form a homogenous slurry/suspension. This reconstituted solution should be discarded after 24 h. Proceed to sample preparation. # 5.2 Sample preparation For reconstituted material, accurately weigh an aliquot of approximately 6 g of the reconstituted test sample into a 50 ml tube (4.1) or 12 g into a 100 ml tube (4.1). ³⁾ This is an example of a suitable product available commercially. This information is given for the convenience of users of this document and does not constitute an endorsement by either ISO or IDF of the product named. Equivalent products may be used if they can be shown to lead to the same results. For the standard reference material, accurately weigh approximately 0.5 g of NIST SRM 1849a reference material into a 50 ml tube (4.1) or 1 g into a 100 ml tube (4.1). For ready-to-feed (RTF) material, accurately weigh approximately 1 g of the RTF test sample into a 50 ml tube (4.1) or 2 g into a 100 ml tube (4.1). The remaining RTF material should be transferred to a sealed, brown polypropylene container and held at refrigerated conditions between 2 °C to 8 °C. The solutions should be discarded after five days. For the blank, designate at least one 50 ml tube (4.1) or a 100 ml tube (4.1) digestion vessel as the digest blank. The digestion blank(s) should be treated in the same manner as the samples. Proceed to 5.3. # 5.3 Addition of reagents Add 10 ml of purified water to each 50 ml tube or 20 ml to each 100 ml tube. Add 5 ml of KOH solution (3.10.2) if the material was weighed into a 50 ml tube or add 10 ml of KOH solution (3.10.2) if the material was weighed into a 100 ml tube. Seal the vessels and swirl or use a vortex apparatus to mix. Avoid inverting as this may allow the sample to adhere to the inner walls of the vessel above the level of digestion solution. Proceed to 5.4 or to 5.5. # 5.4 Oven digestion Digest the samples in an oven (4.2) set to maintain 105 °C ± 5 °C until the dissolution of iodine is complete, approximately 1 h. The digestion vessels may either be tightened completely or loosened slightly while in the oven. Carefully swirl by hand each digestion vessel at approximately halfway through the digestion/extraction procedure. After removal of the samples from the oven, add 1 ml of stabilizer concentrate (3.10.3) to the 50 ml tube or add 2 ml if the material was weighed into a 100 ml tube. Allow the samples to cool to room temperature. Alternatively, allow samples to cool to room temperature first and then add the stabilizer concentrate. If 50 ml or 100 ml vessels were used for digestion, bring the samples to a final volume of 50 ml or 100 ml respectively with purified water. Cap all vessels and then invert a minimum of three times to mix thoroughly. # 5.5 Open vessel microwave digestion Place the digestion vessels into the carousel of the open-vessel microwave digestion unit. If less than the maximum capacity is to be digested, distribute the vessels evenly throughout the carousel. Digest the samples in the microwave until the dissolution of iodine is complete. See <u>Table 5</u> for suggested open-vessel microwave digestion parameters. Using AOAC method iodine 2012.15^[1] the parameters in <u>Table 5</u>, with the corresponding number of vessels, produced acceptable results for NIST SRM 1849a material for infant and adult nutritional formula. The microwave used was a CEM MARS 5^{4}) or a CEM MARS 6^{4}). For each range of vessels, if fewer vessels than the minimum are placed in the microwave, overheating may occur resulting in loss of sample or injury. If a greater than the suggested number of vessels is placed in the microwave, the digestion may not be complete. CAUTION — While using the microwave, ensure vessels do not completely seal (bursting hazard) or overheat (as melting may occur). ⁴⁾ This is an example of a suitable product available commercially. This information is given for the convenience of users of this document and does not constitute an endorsement by either ISO or IDF of the product named. Equivalent products may be used if they can be shown to lead to the same results. Table 5 — Open vessel microwave digestion parameters | Number of 50 ml vessels | Power
W | Power percentage
% | Time
min | |-------------------------|------------|-----------------------|--------------------| | 6 | 400 | 10 | 5 | | | 400 | 20 | 6 | | | 400 | 20 | 7 | | 12 to 18 | 400 | 25 | 10 | | | 400 | 40 | 10 | | 24 | 400 | 25 | 10 | | | 400 | 40 | 10 | | | 400 | 65 | 10 | The vessel caps should be loosened slightly (from fully tightened) during the digestion procedure. Alternatively, instead of just loosening the caps, drill small holes (approximately 3 mm) in the caps. In this way the caps can be tightened, but venting (thus the 'open' vessel) can occur. The caps may be reused after acid washing. After removal of samples from the microwave digestion unit, add 1 ml of stabilizer concentrate (3.10.3) to the 50 ml tube samples or add 2 ml if the material was weighed into a 100 ml tube. Allow the samples to cool to room temperature. NOTE Alternatively, allow samples to cool to room temperature first, and then add the stabilizer concentrate. If 50 ml or 100 ml vessels were used for digestion, bring the samples to a final volume of 50 ml or 100 ml respectively with purified water. Cap all vessels and then invert a minimum of three times to mix thoroughly. # 5.6 Sample filtering Filter each sample solution by filling a disposable syringe with the digested sample solution, attach a $1 \mu m$ membrane filter, then filter an adequate amount (e.g. at least $5 \mu m$) into an appropriate vessel (e.g. $15 \mu m$) ml polypropylene centrifuge tube or autosampler vial) to be used for analysis. Samples may be difficult to filter. Use of multiple filter membranes may be required. To ease filtration, allow the inverted sample digestates to rest for a period of time (e.g. 1 h) before filtering. Digested sample solutions may be stored at ambient temperature. Samples may be stored at ambient temperature indefinitely, as long as the results for the applicable digest blank(s) and/or control sample(s) are acceptable when analysed. # 5.7 Sample dilution Aliquot 5 ml of each sample's filtrate into an appropriate volumetric vessel and then bring to a final volume of 10 ml with diluent (3.10.5). Analyse all samples diluted 5 ml to 10 ml. # 5.8 Determination The following parameters were applied satisfactorily when using an ICP-MS from Perkin Elmer, ELAN DRC II: - Mode: Standard (STD); - Gas: Argon (≥99,998 %, high purity); - Rinse: 0,1 % Triton/1 % NH₄OH in purified water; Sweeps/readings: 20; Readings/replicate: 1; — Replicates: 3; Nebulizer gas flow: optimized daily; Auxiliary gas flow: 1,2 l/min; Plasma gas flow: 15,00 l/min; Lens voltage: optimized daily; ICP radio frequency power: 1 500 W; Peristaltic pump: rate optimized. Equivalent ICP-MS instrumentation may be used. Parameters of other manufacturer's instruments may be optimized accordingly to ensure the instrument's minimum daily performance requirements are met. All analysis shall be performed using STD mode (use of a reaction or collision gas is not required or allowed). # 5.9 Conditioning Condition the ICP-MS sample introduction system. Analyse the conditioning solution (3.10.6) while concomitantly introducing internal standard solution online (e.g. through a mixing block or T-piece) until conditioned (approximately 1 h). The internal standard solution is introduced via a peristaltic pump using 0,38 mm inside diameter two-stop polyvinyl chloride (PVC) pump tubing. After conditioning, begin to aspirate carrier solution (3.10.7) while continuing to add internal standard. Analyse samples using ICP-MS. Ensure the wash solution (rinse) (3.10.4) is available and ready for use to rinse out the sample lines and introduction system between each analysis. If acidic sample solutions are typically analysed on the ICP-MS, perform a thorough cleaning of the entire sample introduction system prior to conditioning. Background counts for the iodine and the internal standard should be relatively stable (e.g. not ascending or descending). A dedicated set of cones (sampler and skimmer), if possible, is recommended. Analysis of acid type (e.g. HNO₃) matrices with the same set of cones used for iodine analysis may increase conditioning time or produce elevated background levels. Analysing several (e.g. at least six) digested samples (to further conditioning) prior to calibration is recommended. Due to the nature of the digestion/extraction solution (i.e. KOH) and the amount of organic material in the sample solutions, additional maintenance may be required (as compared to typical acid matrix digestions/analysis). Lenses in instruments and/or lens stack assemblies may require more frequent cleaning. Once cleaned, a period of reconditioning may be required. # 5.10 Calibration In addition to a calibration blank, use working standards of 0,250 ng/ml, 0,500 ng/ml, 1,00 ng/ml, 10,0 ng/ml, 50,0 ng/ml and 100 ng/ml. Calibrate the ICP-MS using an autosampler or manually. The curve type used should be linear, forced through the calibration blank. All standards shall be included in the calibration curve. Consistent background throughout the entire analytical run is imperative for a successful analysis. This will be evident based on the results obtained for the continuing calibration blank (see 5.12). # 5.11 Sample analysis Analyse a 5 ml to 10 ml dilution of each digested filtered sample using ICP-MS. For the purpose of the collaborative study (see Annex A), a 5 ml to 10 ml dilution of the sample was analysed. Diluting the samples reduces the matrix load on the plasma and may reduce the frequency of maintenance (e.g. cleaning cones). For other applications, samples digested with 50 g/l KOH solution may be analysed directly or diluted (if necessary) so that the iodine concentration will fall within the calibration range. Alternative volume aliquots may be prepared by placing an aliquot of the filtrate into an appropriate volumetric vessel, then diluting to an appropriate final volume with diluent (3.10.5). # 5.12 Data acceptability The calibration curve shall include a calibration blank (as a calibration point). The calibration curve shall have a correlation coefficient (r) of ≥ 0.998 to be acceptable. The individual back-calculated calibration standard concentrations shall be within 90 % to 110 % of the theoretical concentrations to be acceptable. The 0,250 ng/ml signal shall be \geq 1,5 times the calibration blank signal. A continuing calibration blank (CCB) is analysed after calibration, at least every 10 samples, and after the last sample in the analysis batch to monitor background. A CCB should be of the same matrix as the standards used for calibration. Iodine levels \leq 30 % of the lowest calibration standard are considered acceptable. With each batch of samples, at least one digest blank should be prepared in the same manner as the samples. An iodine result of ≤ 30 % pf the lowest calibration standard is considered acceptable. A continuing calibration verification (CCV) standard solution containing iodine from a source other than that of the calibration standards is used to verify acceptable calibration and to evaluate the on-going performance of the instrument. The CCV should be analysed after calibration, at least every 10 samples, and after the last sample in the analysis. A CCV should be of the same matrix as the standards used for calibration. A CCV result if considered acceptable when the result is within 90 % to 110 % of the theoretical concentrations. # 6 Calculation If reconstitution was performed, use Formula (1) to determine the amount of iodine in the sample: $$\rho_i = \frac{(c \times V) \times d}{m_s \times 10} \tag{1}$$ where ρ_i is the concentration of iodine in the sample, in $\mu g/100$ g reconstituted as fed basis; *c* is the sample concentration, in ng/ml, sample solution reading on the curve; *V* is the final volume after digestion, in ml; d is the dilution factor (if not applicable, d = 1); $m_{\rm S}$ is the mass of reconstitution aliquoted during sample preparation, in g. If reconstitution was not performed, use Formula (2) to determine the amount of iodine in the sample: $$\rho_i = \frac{(c \times V) \times d}{m \times 10} \tag{2}$$ where ρ_i is the concentration of iodine in the sample, in $\mu g/100$ g; c is the sample concentration, in ng/ml, sample solution reading on the curve; - *V* is the final volume after digestion, in ml; - d is the dilution factor (if not applicable, d = 1); - m is the mass of the sample, in g. # 7 Precision # 7.1 Interlaboratory tests Interlaboratory trials were conducted, according to ISO 5725-2 and AOAC-IUPAC Harmonized Protocol for collaborative study procedures, to assess precision characteristics of a method of analysis. The values for repeatability and reproducibility described in this International Standard have been published. The values derived from these trials might not be applicable to concentration ranges and matrices other than those given in Annex A. # 7.2 Repeatability The absolute difference between two independent single test results, obtained using the same method on identical test material in the same laboratory by the same operator using the same equipment within a short interval of time, will exceed the repeatability limit r in not more than 5 % of the cases. # 7.3 Reproducibility The absolute difference between two single test results, obtained using the same method on identical test material in different laboratories with different operators using different equipment, will exceed the reproducibility limit *R* in not more than 5 % of the cases. # **Annex A** (informative) # Precision data The data given in <u>Table A.1</u> were obtained in an interlaboratory study and published in 2015,[2] in accordance with ISO 5725-2[3] and AOAC-IUPAC Harmonized Protocol for collaborative study procedures, to assess precision characteristics of a method of analysis.[4] More information on the validation of the method can be found at http://standards.iso.org/iso/20647 Table A.1 — Precision data for iodine | Sample | 1a | 2b | 3c | 4d | 5e | 6 ^f | 7g,j | |--|-------|-------|-------|-------|-------|----------------|-------| | Year of interlaboratory test | 2014 | 2014 | 2014 | 2014 | 2014 | 2014 | 2014 | | Number of laboratories retained after eliminating outliers | 13 | 11 | 11 | 13 | 11 | 11 | 12 | | Number of outliers (laboratories) ^k | 0 | 2 | 2 | 0 | 2 | 2 | 1 | | Mean value, \bar{x} , $\mu \mathrm{g}/100~\mathrm{g}^{\mathrm{i}}$ | 5,48 | 12,4 | 18,5 | 5,45 | 3,47 | 7,03 | 1,24 | | Repeatability standard deviation s_r , $\mu g/100 \ g$ | 0,262 | 0,313 | 0,693 | 0,226 | 0,135 | 0,137 | 0,010 | | Reproducibility standard deviation s_R , $\mu g/100 \ g$ | 0,507 | 0,945 | 1,39 | 0,626 | 0,278 | 0,503 | 0,067 | | Repeatability relative standard deviation, RSD _r , % | 4,78 | 2,53 | 3,75 | 4,16 | 3,87 | 1,94 | 0,77 | | Reproducibility relative standard deviation, RSD _R , % | 9,25 | 7,62 | 7,54 | 11,5 | 8,01 | 7,15 | 5,42 | | Repeatability limit r [r = 2,8 × s_r], $\mu g/100 g$ | 0,734 | 0,876 | 1,94 | 0,633 | 0,378 | 0,384 | 0,028 | | Reproducibility limit R [R = $2.8 \times s_R$], $\mu g/100 g$ | 1,42 | 2,65 | 3,89 | 1,75 | 0,778 | 1,41 | 0,188 | | HorRat value, according to Reference [5] | 1,06 | 0,98 | 1,03 | 1,31 | 0,85 | 0,85 | 0,35 | Infant formula RTF, milk based-1, b Infant formula powder,soy based, c Infant formula powder, milk based, d Infant formula RTF, milk based-2, c Child formula powder, f Adult nutritional powder, low fat, g NIST SRM 1849a, i Result expressed as $\mu g/100$ g reconstituted final product, j Result expressed as mg/kg, k Values from outlier laboratories were not used in statistical calculations. # **Bibliography** - [1] AOAC INTERNATIONAL Official Method 2012.15 Determination of Total Iodine in Infant Formula and Adult/Pediatric Nutritional Formula by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) First Action 2012 - [2] OMA 2012.15, Determination of Total Iodine in Infant Formula and Adult/Pediatric Nutritional Formula by Inductively Coupled Plasma Mass Spectrometry (ICP-MS): Collaborative Study - [3] ISO 5725-2:1994, Accuracy (trueness and precision) of measurement methods and results Part 2: Basic method for the determination of repeatability and reproducibility of a standard measurement method - [4] AOAC INTERNATIONAL. AOAC Official Methods Program, Associate Referee's Manual on development Study, Review, an Approval Process. Part IV AOAC Guidelines for Collaborative Studies, 1995, pp. 23–51. - [5] THOMPSON M. Recent Trends in Inter-Laboratory Precision at ppb and sub-ppb Concentrations in Relation to Fitness for Purpose Criteria in Proficiency Testing. Analyst (Lond.). 2000, **125** pp. 385–386 # British Standards Institution (BSI) BSI is the national body responsible for preparing British Standards and other standards-related publications, information and services. BSI is incorporated by Royal Charter. British Standards and other standardization products are published by BSI Standards Limited. #### About us We bring together business, industry, government, consumers, innovators and others to shape their combined experience and expertise into standards -based solutions. The knowledge embodied in our standards has been carefully assembled in a dependable format and refined through our open consultation process. Organizations of all sizes and across all sectors choose standards to help them achieve their goals. ## Information on standards We can provide you with the knowledge that your organization needs to succeed. Find out more about British Standards by visiting our website at bsigroup.com/standards or contacting our Customer Services team or Knowledge Centre. # **Buying standards** You can buy and download PDF versions of BSI publications, including British and adopted European and international standards, through our website at bsigroup.com/shop, where hard copies can also be purchased. If you need international and foreign standards from other Standards Development Organizations, hard copies can be ordered from our Customer Services team. # **Subscriptions** Our range of subscription services are designed to make using standards easier for you. For further information on our subscription products go to bsigroup.com/subscriptions. With **British Standards Online (BSOL)** you'll have instant access to over 55,000 British and adopted European and international standards from your desktop. It's available 24/7 and is refreshed daily so you'll always be up to date. You can keep in touch with standards developments and receive substantial discounts on the purchase price of standards, both in single copy and subscription format, by becoming a **BSI Subscribing Member**. **PLUS** is an updating service exclusive to BSI Subscribing Members. You will automatically receive the latest hard copy of your standards when they're revised or replaced. To find out more about becoming a BSI Subscribing Member and the benefits of membership, please visit bsigroup.com/shop. With a **Multi-User Network Licence (MUNL)** you are able to host standards publications on your intranet. Licences can cover as few or as many users as you wish. With updates supplied as soon as they're available, you can be sure your documentation is current. For further information, email bsmusales@bsigroup.com. # **BSI Group Headquarters** 389 Chiswick High Road London W4 4AL UK # **Revisions** Our British Standards and other publications are updated by amendment or revision. We continually improve the quality of our products and services to benefit your business. If you find an inaccuracy or ambiguity within a British Standard or other BSI publication please inform the Knowledge Centre. # Copyright All the data, software and documentation set out in all British Standards and other BSI publications are the property of and copyrighted by BSI, or some person or entity that owns copyright in the information used (such as the international standardization bodies) and has formally licensed such information to BSI for commercial publication and use. Except as permitted under the Copyright, Designs and Patents Act 1988 no extract may be reproduced, stored in a retrieval system or transmitted in any form or by any means – electronic, photocopying, recording or otherwise – without prior written permission from BSI. Details and advice can be obtained from the Copyright & Licensing Department. #### **Useful Contacts:** #### **Customer Services** Tel: +44 845 086 9001 Email (orders): orders@bsigroup.com Email (enquiries): cservices@bsigroup.com # Subscriptions Tel: +44 845 086 9001 Email: subscriptions@bsigroup.com #### Knowledge Centre Tel: +44 20 8996 7004 Email: knowledgecentre@bsigroup.com #### **Copyright & Licensing** Tel: +44 20 8996 7070 Email: copyright@bsigroup.com