BS ISO 20637:2015

BSI Standards Publication

Infant formula and adult nutritionals — Determination of myo-inositol by liquid chromatography and pulsed amperometry

BS ISO 20637:2015 BRITISH STANDARD

National foreword

This British Standard is the UK implementation of ISO 20637:2015.

The UK participation in its preparation was entrusted to Technical Committee AW/-/2, Food Technical Committee Chairmen.

A list of organizations represented on this committee can be obtained on request to its secretary.

This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application.

© The British Standards Institution 2015. Published by BSI Standards Limited 2015

ISBN 978 0 580 90420 2

ICS 67.050

Compliance with a British Standard cannot confer immunity from legal obligations.

This British Standard was published under the authority of the Standards Policy and Strategy Committee on 30 November 2015.

Amendments/corrigenda issued since publication

Date Text affected

INTERNATIONAL STANDARD

ISO 20637:2015 20637

First edition 2015-11-01

Infant formula and adult nutritionals — Determination of myo-inositol by liquid chromatography and pulsed amperometry

Formules infantiles et produits nutritionnels pour adultes — Détermination de la teneur en myo-inositol par chromatographie liquide et ampérométrie pulsée

BS ISO 20637:2015 **ISO 20637:2015(E)**

COPYRIGHT PROTECTED DOCUMENT

© ISO 2015, Published in Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Ch. de Blandonnet 8 • CP 401 CH-1214 Vernier, Geneva, Switzerland Tel. +41 22 749 01 11 Fax +41 22 749 09 47 copyright@iso.org www.iso.org

Con	tent	S.S.	Page				
Forev	vord		iv				
1	Scon	ne	1				
2	•	ns and definitions					
		ciple					
3		•					
4	Reag	gents and materials	1				
5	Appa	aratus	3				
6	Procedure						
	6.1	Free myo-inositol					
		6.1.1 Sample preparation					
		6.1.2 Extraction					
	6.2	Myo-inositol bound as phosphatidylinositol					
		6.2.1 Sample preparation					
		6.2.2 Extraction 6.2.3 Cleanup					
		6.2.3 Cleanup					
	6.3	HPLC analysis					
	0.5	6.3.1 Instrument operating conditions					
		6.3.2 PAD settings with gold electrode					
		6.3.3 Instrument startup					
		6.3.4 Standard and sample analysis					
		6.3.5 System shutdown	8				
7	Calc	ulations	8				
	7.1	General					
	7.2	Concentration of calibration standards					
	7.3	Preparation of standard curve					
	7.4	Calculation of free or free plus bound myo-inositol in samples					
		7.4.1 Calculation of free myo-inositol					
		7.4.2 Calculation of bound myo-inositol					
		7.4.3 Calculation of free plus bound myo-inositol					
		formative) Examples of chromatograms					
Anne	x B (in	formative) Precision data	12				
Riblic	orank	nv	15				

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2. www.iso.org/directives

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received. www.iso.org/patents

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the WTO principles in the Technical Barriers to Trade (TBT) see the following URL: Foreword - Supplementary information

The committee responsible for this document is ISO/TC 34, *Food products* in collaboration with AOAC INTERNATIONAL. It is being published by ISO and separately by AOAC INTERNATIONAL. The method described in this International Standard is equivalent to the AOAC Official Method 2011.18: *Myo-inositol* (free and bound as phosphatidyl inositol) in infant and pediatric formula and adult nutritional.

Infant formula and adult nutritionals — Determination of myo-inositol by liquid chromatography and pulsed amperometry

WARNING — The use of this International Standard can involve hazardous materials, operations and equipment. This International Standard does not purport to address all the safety problems associated with its use. It is the responsibility of the user of this International Standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

1 Scope

This International Standard specifies a method for the determination of myo-inositol (free or free plus bound as phosphatidylinositol) in infant formula and adult nutritionals using liquid chromatography and pulsed amperometry with column switching.

2 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

2.1

adult nutritional

nutritionally complete, specially formulated food, consumed in liquid form, which may constitute the sole source of nourishment, made from any combination of milk, soy, rice, whey, hydrolysed protein, starch and amino acids, with and without intact protein

2.2

infant formula

breast-milk substitute specially manufactured to satisfy, by itself, the nutritional requirements of infants during the first months of life up to the introduction of appropriate complementary feeding

[SOURCE: Codex Standard 72-1981]

3 Principle

Free myo-inositol and phosphatidyl bound myo-inositol are extracted using two different sample preparation procedures. Free myo-inositol is extracted from samples with dilute hydrochloric acid and water. Phosphatidylinositol is extracted from samples with chloroform and separated from other fats with silica solid phase extraction cartridges. Myo-inositol is then released from the glycerol backbone with concentrated acetic and hydrochloric acid at 120°C. The ion chromatographic method uses a combination of two different ion exchange columns with column switching and pulsed amperometric detection (PAD). The concentration of myo-inositol is calculated by comparison with external standards of known concentration.

4 Reagents and materials

During the analysis, unless otherwise stated, use only reagents of recognized analytical grade and distilled or demineralized water or water of equivalent purity.

BS ISO 20637:2015 **ISO 20637:2015(E)**

- 4.1 Chemicals and solvents
- **4.1.1 Acetic acid**, glacial, ACS.
- **4.1.2 Chloroform**, high-purity, HPLC grade.
- **4.1.3 Diethyl ether**, anhydrous, HPLC grade.
- **4.1.4 Drierite**, (desiccant), anhydrous calcium sulfate, 8 mesh.
- **4.1.5 Helium**, zero grade or equivalent.
- **4.1.6 Hexane**, HPLC grade.
- **4.1.7 Hydrochloric acid**, concentrated (36 % to 38 %), ACS.
- **4.1.8 Metaphosphoric acid**, ACS.
- **4.1.9 Methanol**, HPLC grade.
- **4.1.10 Myo-inositol**, primary reference standard, official lot, store desiccated. See standard label for purity.
- 4.1.11 Sodium chloride, ACS.
- **4.1.12 Sodium hydroxide**, 50 % (m/m), low carbonate form.
- 4.2 Preparation of reagents and standard solutions
- **4.2.1 General**. All solutions can be scaled up or down for convenience provided good laboratory practices are observed. Solutions can be stored at refrigerated or at ambient temperature in tight, inert containers unless otherwise specified.
- **4.2.2 Myo-inositol stock standard solution** (approximately 2 000 mg/l). Accurately weigh approximately 0,100 g myo-inositol and quantitatively transfer to a 50 ml volumetric flask. Dilute to volume with water. Mix well. Store refrigerated. Expiration: 3 months.
- **4.2.3 Myo-inositol intermediate standard solution** (approximately 200 mg/l). Dilute 10,0 ml stock standard ($\frac{4.2.2}{2.0}$) to 100 ml with water and mix well. Discard after use.
- 4.2.4 Preparation of calibration standard solutions
- **4.2.4.1 Myo-inositol calibration standard solutions high,** (approximately 4 mg/l, 2 mg/l, 1 mg/l, 0,5 mg/l).

Into separate volumetric flasks, dilute 2,0 ml, 1,0 ml and 0,5 ml myo-inositol intermediate standard (4.2.3) to 100 ml with water. Dilute 0,5 ml myo-inositol intermediate standard (4.2.3) to 200 ml with water. Expiration: 2 weeks

4.2.4.2 Myo-inositol calibration standard solutions low, (approximately 0,2 mg/l and 0,05 mg/l).

Into separate volumetric flasks, dilute 4 ml and 1 ml of the 0,5 mg/l myo-inositol calibration standard to 10 ml with water. Expiration: 2 weeks.

- **4.2.5 Hydrochloric acid**, 0,5 %. Add 1,25 ml concentrated hydrochloric acid to approximately 200 ml water in a 250 ml volumetric flask. Dilute to volume with water and mix well. Expiration: 6 months.
- **4.2.6 Sodium chloride**, 1 mol/l. Dissolve 5,8 g sodium chloride and dilute to 100 ml with water. Expiration: 1 month.
- **4.2.7 Sodium hydroxide**, 0,12 % or 30 mmol (Pump 1). Quickly weigh $(4,8 \pm 0,1)$ g of 50 % sodium hydroxide into a 2 000 ml volumetric flask containing approximately 1 900 ml water. It is important that the sodium hydroxide does not absorb carbon dioxide from the air. Swirl to mix well. Dilute to volume with water and mix well. Expiration: 1 month.
- **4.2.8 Sodium hydroxide**, 4.0 % or 1 mol/l (Pump 2). Quickly weigh (160 ± 3) g of 50 % sodium hydroxide into a 2 000 ml volumetric flask containing approximately 1 900 ml water. It is important that the sodium hydroxide does not absorb carbon dioxide from the air. Swirl to mix well. Dilute to volume with water and mix well. Expiration: 1 month.
- **4.2.9 Metaphosphoric acid**, 6 %. Weigh 6,0 g metaphosphoric acid into a 100 ml volumetric flask. Dissolve and dilute to volume with water. Mix well. Store refrigerated. Expiration: 1 week.
- **4.2.10 Phosphatidylinositol extraction solutions**. Prepare fresh on day of use.
- **4.2.10.1 Chloroform:methanol (2:1)**. Mix 60 ml chloroform and 30 ml methanol.
- **4.2.10.2 Hexane:diethyl ether (80:20)**. Mix 80 ml hexane and 20 ml diethyl ether.
- **4.2.10.3 Hexane:diethyl ether (50:50)**. Mix 50 ml hexane and 50 ml diethyl ether.
- **4.2.10.4 Methanol:chloroform:water (75:15:10)**. Mix 75 ml methanol, 15 ml chloroform and 10 ml water.

5 Apparatus

Usual laboratory glassware and equipment and, in particular, the following.

- **5.1 Analytical balance**, minimum weighing capacity of at least 0,000 1 g.
- 5.2 Centrifuge.
- 5.3 Desiccator.
- **5.4 Nitrogen evaporator**, with water bath or equivalent.
- **5.5 Oven**, capable of maintaining 120 °C.
- **5.6 pH-meter**, with pH 4 and 7 buffers.
- **5.7 Stir plate**, multiposition with stir bars.
- 5.8 Vacuum manifold.
- 5.9 Vortex mixer.

BS ISO 20637:2015 **ISO 20637:2015(E)**

- **5.10 System HPLC**, with corrosion-resistant components including an autosampler, two isocratic pumps, 6-port switching valve, pulsed amperometry detector with a gold electrode and PEEK or polytetrafluoroethylene (PTFE) 0,18 mm to 0,25 mm (0,007 inch to 0,01 inch) internal diameter tubing. Autosampler capable of injecting 20 μ l.
- **5.11 Columns**, Dionex CarboPac¹⁾ MA1 (4 mm \times 250 mm) P/N, 44066, MA1 (4 mm \times 50 mm) P/N 44067, and PA1 (4 \times 50 mm) P/N 43096, or equivalent.
- **5.12** Beakers, assorted sizes.
- **5.13 Centrifuge tubes**, 50 ml with polytetrafluoroethylene (PTFE)-coated caps.
- **5.14 Syringe filters**, polyamide, 0,45 μm and 0,2 μm.
- **5.15 Filter paper**, Whatman 2V¹) or equivalent.
- **5.16 Conical flasks**, 50 ml or 125 ml or equivalent.
- **5.17 Volumetric flasks**, assorted sizes.
- **5.18 Funnels**, suitable for use with filter paper.
- **5.19 Pipets**, volumetric, assorted sizes.
- **5.20 Solid-phase extraction (SPE) cartridge**, silica, 1 g²).
- **5.21 Syringes**, 1 ml disposable and 25 ml gas-tight glass with 100 mm (4 in) stainless steel needles.

6 Procedure

6.1 Free myo-inositol

6.1.1 Sample preparation

6.1.1.1 General

Prepared samples that are constantly stored at 1 °C to 8 °C in closed containers are stable for up to 5 days. After 5 days, samples shall be prepared again. Mix liquid samples well to ensure homogeneity. If the powder sample homogeneity is unknown, assume that it is non-homogenous and proceed with the preparation of dry blended/non-homogenous powder samples as given in <u>6.1.1.3</u>.

6.1.1.2 Liquid samples

For ready-to-feed liquid samples, accurately weigh (0.5 ± 0.05) g to (5 ± 0.5) g of product into a 100 ml volumetric flask and record the mass to the nearest 0.0001 g.

¹⁾ This is an example of a suitable product available commercially. This information is given for the convenience of users of this document and does not constitute an endorsement by ISO of the product named. Equivalent products may be used if they can be shown to lead to the same results.

²⁾ J.T. Baker P/N 7086-07 (<u>www.avantormaterials.com</u>) is an example of a suitable product available commercially. This information is given for the convenience of users of this document and does not constitute an endorsement by ISO of the product named. Equivalent products may be used if they can be shown to lead to the same results.

6.1.1.3 Dry blended powder samples

For dry blended/non-homogenous powder samples, reconstitute per the product label instructions. Accurately weigh 0,5 g to 5 g reconstituted product into a 100 ml volumetric flask. Record the mass to the nearest $0,000\,1\,\mathrm{g}$.

6.1.1.4 Wet blended powder samples

For wet blended/homogenous powder samples, accurately weigh 0,25 g to 1,5 g powder into a 100 ml volumetric flask and record the mass to the nearest 0,000 1 g. Add approximately 10 ml to 15 ml water to the volumetric flask and swirl or stir to completely dissolve the powder.

6.1.2 Extraction

Add enough 0,5 % hydrochloric acid (4.2.5) to each sample to adjust the sample pH to 4,5 \pm 0,2 and swirl to mix.

Allow the samples to react with 0.5 % hydrochloric acid for a minimum of 2 min and then dilute to volume with water. Mix well. Filter samples through filter paper (5.15) into 125 ml conical flasks or appropriate glassware.

NOTE Although some samples will filter cloudy, the filtrates can still be used.

Filter an aliquot of sample filtrate through a 0,45 µm syringe filter (5.14) into an autosampler vial.

6.2 Myo-inositol bound as phosphatidylinositol

6.2.1 Sample preparation

6.2.1.1 General

Prepared samples that are constantly stored at 1 $^{\circ}$ C to 8 $^{\circ}$ C in closed containers are stable for up to 5 days. After 5 days, samples shall be prepared again. Thoroughly mix or stir products prior to sampling. Mix liquid samples well to ensure homogeneity. If the powder sample homogeneity is unknown, assume that it is non-homogenous and proceed with the preparation of dry blended/non-homogenous powder samples given in <u>6.2.1.3</u>.

6.2.1.2 Liquid samples

For ready-to-feed liquid samples, accurately weigh (4 ± 0.4) g of product into a 50 ml centrifuge tube and record the mass to the nearest 0.000 1 g.

6.2.1.3 Dry blended powder samples

For dry blended/non-homogenous powder samples, reconstitute per the product label instructions. Accurately weigh (4 ± 0.4) g reconstituted sample into a 50 ml centrifuge tube. Record the mass to the nearest 0.0001 g.

6.2.1.4 Wet blended powder samples

For wet blended homogenous powder samples, accurately weigh (1 ± 0.1) g powder into a 50 ml centrifuge tube and record the mass to the nearest 0,000 1 g. Add 4 ml water centrifuge tube and mix well.

6.2.2 Extraction

In a fume hood, add 10 ml methanol to each sample and stir for at least 20 min or vortex for at least 1 min and allow samples to set for at least 20 min. Add 20 ml chloroform and stir for at least 5 min or vortex for at least 1 min and allow samples to set for at least 5 min. If large clumps form when chloroform is

BS ISO 20637:2015 **ISO 20637:2015(E)**

added, cap tube and shake well for at least 1 min to mix sample. Add 5 ml 6 % metaphosphoric acid (4.2.9) and 1 ml 1 mol/l NaCl (4.2.6) and mix well. Centrifuge until layers separate. Using a 25 ml glass gas-tight syringe with a stainless steel needle (5.21), transfer the bottom chloroform layer to a clean 50 ml centrifuge tube and evaporate the chloroform with nitrogen in a 60 °C water bath.

6.2.3 Cleanup

In a fume hood, condition a 1 g silica SPE cartridge (5.20) with 6 ml hexane. Dissolve residue in the bottom of the centrifuge tube in 1 ml chloroform:methanol (2:1). Quantitatively transfer dissolved residue to the conditioned silica SPE cartridge. Rinse the 50 ml centrifuge tube with 3 ml hexane:diethyl ether (80:20) and then transfer to the SPE cartridge. Discard the eluent. Rinse the 50 ml centrifuge tube with 3 ml hexane:diethyl ether (50:50) and then transfer to the SPE cartridge. Collect eluent in a clean 50 ml centrifuge tube. Rinse 50 ml centrifuge tube with 4 ml methanol and then transfer to the SPE cartridge. Collect eluent in the same 50 ml centrifuge tube. Rinse 50 ml centrifuge tube with 4 ml methanol:chloroform:water (75:15:10) and transfer to the SPE cartridge. Collect eluent in the same 50 ml centrifuge tube. Evaporate eluents collected from SPE cartridge with nitrogen in a 60 °C water bath.

6.2.4 Hydrolysis

In a fume hood, add 40 μ l glacial acetic acid (4.1.1) and 2 ml concentrated hydrochloric acid (4.1.7) to the residue in the centrifuge tube from the sample cleanup step. Tightly cap tube. Heat in a 120 °C oven for 2 h. Cool. Add approximately 10 ml of water and swirl to mix. Add 1,25 ml 50 % (m/m) sodium hydroxide (4.1.12). Transfer sample to a 50 ml volumetric flask and dilute to volume with water. Filter an aliquot of sample filtrate through a 0,45 μ m syringe filter into an autosampler vial.

6.3 HPLC analysis

6.3.1 Instrument operating conditions

Pump 1 pressure limit 13 790 kPa (2 000 psi)

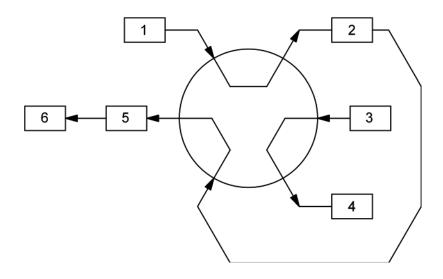
Pump 1 mobile phase 0,12 % (30 mmol/l) NaOH

Pump 1 flow rate 0,40 ml/min

Pump 2 pressure limit 13 790 kPa (2 000 psi)

Pump 2 mobile phase 4 % (1 mol/l) NaOH

Pump 2 flow rate 0,40 ml/min

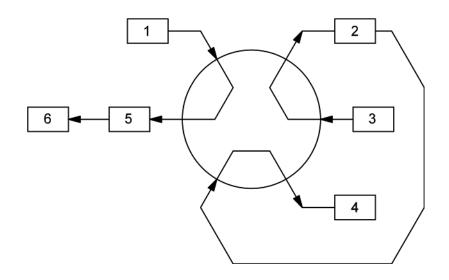

Injection volume 20 µl

Myo-inositol retention time 11 min to 13 min

Run time 25 min

Switching valve configuration time:

0,00 min	Configuration 1	See <u>Figure 1</u>
1,50 min	Configuration 2	See <u>Figure 2</u>
13,50 min	Configuration 1	See <u>Figure 1</u>



Key

- 1 Pump 1
- 2 PA1 guard column
- 3 Pump 2

- 4 waste
- 5 MA1 guard and analytical columns
- 6 electrochemical detector

Figure 1 — Switching valve configuration 1

Key

- 1 Pump 1
- 2 PA1 guard column
- 3 Pump 2

- 4 waste
- 5 MA1 guard and analytical columns
- 6 electrochemical detector

Figure 2 — Switching valve configuration 2

6.3.2 PAD settings with gold electrode

Analog range: 1 μC

Detector program: Dionex ICS 3000 or ICS 5000³)

0,0 s +0,10 V 0,20 s +0,10 V 0,40 s +0,10 V 0,41 s -2,00 V 0,42 s -2,00 V 0,43 s +0,60 V 0,44 s -0,10 V

Integration period: 0,20 s to 0,40 s

-0.10 V

Examples of typical standard chromatograms are shown in Annex A.

6.3.3 Instrument startup

0.50 s

Prepare mobile phases. If necessary, helium sparge mobile phases and/or pressurize mobile phase reservoirs. If necessary, clean and polish the gold working electrode. Turn on the detector and pump mobile phase over the columns at a flow rate of 0,40 ml/min for at least 30 min to equilibrate the system. Verify that the detector is stable before beginning an analysis. Inject 20 μ l of the most concentrated standard at least 5 times and note the peak areas or heights. If the system is equilibrated, the relative standard deviation (RSD) of the peak areas or heights of the last three standard injections should be $\leq 2,0$ %.

6.3.4 Standard and sample analysis

Once the system has equilibrated, inject one standard at each concentration (4.2.4 and 4.2.5). After a set of standards has been injected, samples and a control sample can be injected before another set of standards should be injected.

6.3.5 System shutdown

After all samples and standards have been analysed, inject 20 μ l of water to clean out the autosampler needle and tubing. Store the analytical columns in mobile phase [0,12 % (30 mmol/l) sodium hydroxide]. Turn off the electrochemical cell. Flush the pump heads with water to remove sodium hydroxide.

7 Calculations

7.1 General

Before calculating myo-inositol concentrations in samples, compare the myo-inositol standard peaks with the myo-inositol sample peaks and confirm that there are not any interfering compounds and that the myo-inositol sample peak areas or heights are within the range of the myo-inositol standard peak areas or heights. The concentration of myo-inositol cannot be calculated if there are interferences or if

³⁾ This is an example of a suitable product available commercially. This information is given for the convenience of users of this document and does not constitute an endorsement by ISO of the product named. Equivalent products may be used if they can be shown to lead to the same results.

the separation is poor. The myo-inositol retention time should be 11 min to 13 min depending on the individual analytical column.

7.2 Concentration of calibration standards

Calculate the concentration of calibration standards using Formula (1):

$$C_{W} = m \times \frac{1}{0.05} \times \frac{1}{10} \times \frac{A_{1}}{V_{1}} \times \frac{A_{2}}{V_{2}} \times p = m \times 2 \times \frac{A_{1}}{V_{1}} \times \frac{A_{2}}{V_{2}} \times p \tag{1}$$

where

 C_{W} is the concentration of the calibration standard solution in milligrams per litre;

m is the mass, in milligrams, of myo-inositol standard weighed;

0,05 is the dilution volume of the stock standard in litres (see 4.2.2);

1/10 is the intermediate standard dilution (10 ml to 100 ml);

 A_1 is the aliquot of intermediate standard used, in millilitres (see <u>4.2.4.1</u>);

 V_1 is the dilution volume of the calibration standard high in millilitres (see <u>4.2.4.1</u>);

 A_2 is the aliquot of calibration standard high used, in millilitres, if applicable (see 4.2.4.2);

 V_2 is the dilution volume of the calibration standard low in millilitres, if applicable (see 4.2.4.2):

p is the purity in mg/mg from the primary standard label or determined experimentally.

7.3 Preparation of standard curve

For each calibration standard concentration, average the peak areas or heights from each two consecutive sets of standards. Prepare a standard curve by performing linear least squares (regression) on the concentrations versus the averaged peak areas or heights.

7.4 Calculation of free or free plus bound myo-inositol in samples

7.4.1 Calculation of free myo-inositol

The concentration of free myo-inositol in a prepared sample is extrapolated from the standard curve prepared in <u>7.3</u>. From the diluted, prepared sample concentration, the product concentration can be calculated using Formula (2):

$$C_{\rm f} = \frac{C_{\rm d} \times 100}{m_{\rm c}} \tag{2}$$

where

 C_f is the concentration of free myo-inositol in the product sample in milligrams per kilogram;

 $C_{\rm d}$ is the concentration of myo-inositol in the prepared sample in milligrams per litre;

100 is the dilution volume in millilitres;

 $m_{\rm S}$ is the sample mass in grams.

7.4.2 Calculation of bound myo-inositol

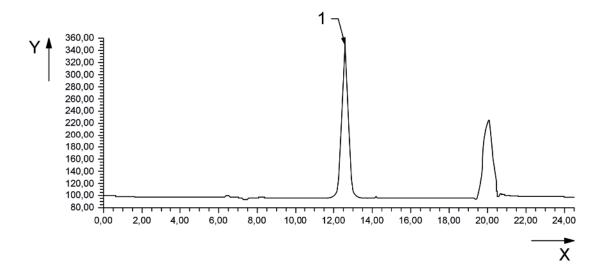
The concentration of bound myo-inositol in a prepared sample is extrapolated from the standard curve prepared in 7.3. From the diluted, prepared sample concentration, the product concentration can be calculated using Formula (3):

$$C_{\rm b} = \frac{C_{\rm d} \times 50}{m_{\rm s}} \tag{3}$$

where

- C_b is the concentration of bound myo-inositol in the product sample in milligrams per kilogram;
- $C_{\rm d}$ is the concentration of myo-inositol in the prepared sample in milligrams per litre;
- is the dilution volume in millilitres;
- $m_{\rm S}$ is the sample mass in grams.

7.4.3 Calculation of free plus bound myo-inositol

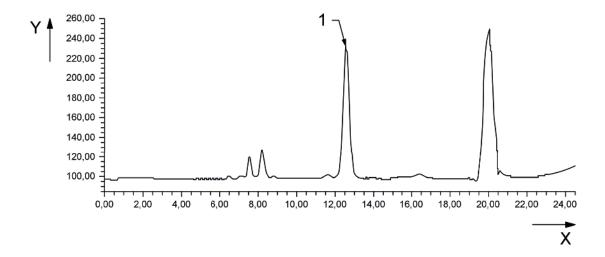

The concentration of free plus bound myo-inositol in a prepared sample is calculated using Formula (4):

$$C_{\mathrm{T}} = C_{\mathrm{f}} + C_{\mathrm{h}} \tag{4}$$

where C_T is the concentration of free plus bound myo-inositol in product sample in milligrams per kilogram.

Annex A (informative)

Examples of chromatograms


Key

X time, in min

Y arbitrary units

1 myo-inositol

Figure A.1 — Example of a typical standard chromatogram

Key

X time, in min

Y arbitrary units

1 myo-inositol

Figure A.2 — Example of a SRM 1849a chromatogram

Annex B (informative)

Precision data

The data given in Tables B.1, B.2 and B.3 were obtained in an interlaboratory study and published in 2015, [3] in accordance with ISO 5725-2[4] and the AOAC-IUPAC Harmonized Protocol for collaborative study procedures, to assess precision characteristics of a method of analysis. [5] The method was validated for the quantitation of free myo-inositol and myo-inositol from phosphatidylinositol in infant and adult nutritionals. Repeatability was determined from duplicate analyses performed on multiple days. Accuracy was determined from spike recovery experiments (free myo-inositol and myo-inositol from phosphatidylinositol). Instrument limits of detection and quantitation were determined statistically from injections of low-level standards and by spiking samples with low levels of free myo-inositol. The study was performed based on requirements given in Reference [6].

More information on the validation of the method can be found at http://standards.iso.org/iso/20637

Table B.1 — Unbound (free) myo-inositol

Sample type	Total No. laboratories excluding outliers	Number of outlier laborato- ries	Total No. replicates accepted	Mean (mg/100 g RTF)	Sr	SR	$C_{V,r}$	$C_{V,R}$	HorRata
NIST SRM 1849a	10	0	22	412b	11,3	11,4	2,75	2,77	0,43
Infant formula powder soy- based	10	0	22	4,22	0,127	0,305	3,03	7,26	0,80
Infant formula powder milk- based	10	0	20	4,26	0,168	0,232	3,95	5,43	0,60
Infant formula RTF milk-based	9	0	20	7,17	0,095	0,207	1,33	2,89	0,34
Infant formula powder partial hydrolysed milk- based	10	0	22	3,65	0,035	0,412	0,97	11,4	1,22
Infant formula powder partial hydrolysed soy- based	10	0	22	3,11	0,089 9	0,389	2,92	12,61	1,32
Child formula powder	10	0	22	5,10	0,185	0,246	3,61	4,81	0,54
Infant elemental powder	10	0	22	5,10	0,227	0,318	4,45	6,24	0,71
Infant formula RTF milk-based, unfortified	9	0	20	3,17	0,058 2	0,091 0	1,84	2,87	0,30

^a HorRat value, according to Reference [7].

RTF is ready-to-feed.

b Results in mg/kg powder.

 ${\bf Table~B.2-Myo-inositol~bound~as~phosphatidy linositol}$

Sample type	Total No. laboratories excluding outliers	Number of outlier laborato- ries	Total No. replicates accepted	Mean (mg/100 g RTF)	Sr	SR	$C_{V,r}$	$C_{V,R}$	HorRata
NIST SRM 1849a	9	0	20	9,51 ^b	1,82	2,62	18,7	26,8	2,36
Infant formula powder soy- based	9	0	20	2,10	0,150	0,501	6,94	23,2	2,30
Infant formula powder milk- based	9	0	18	0,667	0,026 1	0,172	3,92	25,9	2,15
Infant formula RTF milk-based	8	0	18	0,348	0,030 1	0,0909	8,36	25,2	1,91
Infant formula powder partial hydrolysed milk- based	9	0	20	0,214	0,010 3	0,057 6	4,72	26,4	1,86
Infant formula powder partial hydrolysed soy- based	9	0	20	1,64	0,093 6	0,358	5,53	21,1	2,02
Child formula powder	9	0	20	0,328	0,023 4	0,087 8	6,89	25,8	1,94
Infant elemental powder	9	0	20	0,00	0,00	0,00	0,00	0,00	0,00
Infant formula RTF milk-based, unfortified	8	0	18	0,305	0,024 4	0,085 0	7,71	26,9	2,00

^a HorRat value, according to Reference [7].

RTF is ready-to-feed.

b Results in mg/kg powder.

Table B.3 — Unbound (free) myo-inositol plus myo-inositol bound as phosphatidylinositol

Sample type	Total No. laboratories excluding outliers	Number of outlier laborato- ries	Total No. replicates accepted	Mean (mg/100 g RTF)	Sr	SR	C _{V,r}	$C_{V,R}$	HorRat ^a
NIST SRM 1849a	9	0	20	422b	11,9	11,9	2,83	2,83	0,44
Infant formula powder soy-based	9	0	20	6,27	0,147	0,446	2,32	7,05	0,82
Infant formula powder milk- based	9	0	18	4,92	0,184	0,314	3,74	6,38	0,72
Infant formula RTF milk-based	8	0	18	7,50	0,106	0,218	1,41	2,90	0,35
Infant formula powder partial hydrolysed milk- based	9	0	20	3,84	0,035	0,426	0,91	11,2	1,21
Infant formula powder partial hydrolysed soy- based	9	0	20	4,71	0,152	0,357	3,22	7,55	0,84
Child formula powder	9	0	20	5,42	0,203	0,307	3,73	5,63	0,64
Infant elemental powder	9	0	20	5,08	0,237	0,324	4,67	6,40	0,72
Infant formula RTF milk-based, unfortified	8	0	18	3,46	0,065 9	0,128	1,90	3,70	0,39

a HorRat value, according to Reference [7].

RTF is ready-to-feed.

b Results in mg/kg powder.

Bibliography

- [1] J. AOAC Int. 2012, **95** p. 937
- [2] J. AOAC Int. 2012, **95** p. 295
- [3] 2011.18, Determination of Myo-Inositol in Infant, Pediatric, and Adult Formulas by IC-PAD and Column Switching: Collaborative Study
- [4] ISO 5725-2:1994, Accuracy (trueness and precision) of measurement methods and results Part 2: Basic method for the determination of repeatability and reproducibility of a standard measurement method
- [5] AOAC INTERNATIONAL. AOAC Official Methods Program, Associate Referee's Manual on Development, Study, Review, and Approval Process. Part IV AOAC Guidelines for Collaborative Studies, 1995, pp. 23–51
- [6] AOAC SMPR 2011.07, Standard Method Performance Requirements for Myo-inositol in infant formula and Adult/Pediatric Nutritional formula
- [7] THOMPSON M. Recent Trends in Inter-Laboratory Precision at ppb and sub-ppb Concentrations in Relation to Fitness for Purpose Criteria in Proficiency Testing. Analyst (Lond.). 2000, **125** pp. 385–386

British Standards Institution (BSI)

BSI is the national body responsible for preparing British Standards and other standards-related publications, information and services.

BSI is incorporated by Royal Charter. British Standards and other standardization products are published by BSI Standards Limited.

About us

We bring together business, industry, government, consumers, innovators and others to shape their combined experience and expertise into standards -based solutions.

The knowledge embodied in our standards has been carefully assembled in a dependable format and refined through our open consultation process. Organizations of all sizes and across all sectors choose standards to help them achieve their goals.

Information on standards

We can provide you with the knowledge that your organization needs to succeed. Find out more about British Standards by visiting our website at bsigroup.com/standards or contacting our Customer Services team or Knowledge Centre.

Buying standards

You can buy and download PDF versions of BSI publications, including British and adopted European and international standards, through our website at bsigroup.com/shop, where hard copies can also be purchased.

If you need international and foreign standards from other Standards Development Organizations, hard copies can be ordered from our Customer Services team.

Subscriptions

Our range of subscription services are designed to make using standards easier for you. For further information on our subscription products go to bsigroup.com/subscriptions.

With **British Standards Online (BSOL)** you'll have instant access to over 55,000 British and adopted European and international standards from your desktop. It's available 24/7 and is refreshed daily so you'll always be up to date.

You can keep in touch with standards developments and receive substantial discounts on the purchase price of standards, both in single copy and subscription format, by becoming a **BSI Subscribing Member**.

PLUS is an updating service exclusive to BSI Subscribing Members. You will automatically receive the latest hard copy of your standards when they're revised or replaced.

To find out more about becoming a BSI Subscribing Member and the benefits of membership, please visit bsigroup.com/shop.

With a **Multi-User Network Licence (MUNL)** you are able to host standards publications on your intranet. Licences can cover as few or as many users as you wish. With updates supplied as soon as they're available, you can be sure your documentation is current. For further information, email bsmusales@bsigroup.com.

BSI Group Headquarters

389 Chiswick High Road London W4 4AL UK

Revisions

Our British Standards and other publications are updated by amendment or revision.

We continually improve the quality of our products and services to benefit your business. If you find an inaccuracy or ambiguity within a British Standard or other BSI publication please inform the Knowledge Centre.

Copyright

All the data, software and documentation set out in all British Standards and other BSI publications are the property of and copyrighted by BSI, or some person or entity that owns copyright in the information used (such as the international standardization bodies) and has formally licensed such information to BSI for commercial publication and use. Except as permitted under the Copyright, Designs and Patents Act 1988 no extract may be reproduced, stored in a retrieval system or transmitted in any form or by any means – electronic, photocopying, recording or otherwise – without prior written permission from BSI. Details and advice can be obtained from the Copyright & Licensing Department.

Useful Contacts:

Customer Services

Tel: +44 845 086 9001

Email (orders): orders@bsigroup.com
Email (enquiries): cservices@bsigroup.com

Subscriptions

Tel: +44 845 086 9001

Email: subscriptions@bsigroup.com

Knowledge Centre

Tel: +44 20 8996 7004

Email: knowledgecentre@bsigroup.com

Copyright & Licensing

Tel: +44 20 8996 7070 Email: copyright@bsigroup.com

