BS ISO 19603:2016 ## **BSI Standards Publication** Fine ceramics (advanced ceramics, advanced technical ceramics) — Test method for determining elastic modulus and bending strength of thick ceramic coatings BS ISO 19603:2016 BRITISH STANDARD #### National foreword This British Standard is the UK implementation of ISO 19603:2016. The UK participation in its preparation was entrusted to Technical Committee RPI/13, Advanced technical ceramics. A list of organizations represented on this committee can be obtained on request to its secretary. This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application. © The British Standards Institution 2016. Published by BSI Standards Limited 2016 ISBN 978 0 580 86513 8 ICS 81.060.30 Compliance with a British Standard cannot confer immunity from legal obligations. This British Standard was published under the authority of the Standards Policy and Strategy Committee on 30 November 2016. Amendments/corrigenda issued since publication Date Text affected ## INTERNATIONAL STANDARD ISO 19603:2016 ISO 19603 First edition 2016-11-01 Fine ceramics (advanced ceramics, advanced technical ceramics) — Test method for determining elastic modulus and bending strength of thick ceramic coatings Céramiques techniques — Méthode d'essai relative à la détermination du module élastique et de la résistance en flexion des revêtements de céramique épais BS ISO 19603:2016 ISO 19603:2016(E) #### **COPYRIGHT PROTECTED DOCUMENT** $\, @ \,$ ISO 2016, Published in Switzerland All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester. ISO copyright office Ch. de Blandonnet 8 • CP 401 CH-1214 Vernier, Geneva, Switzerland Tel. +41 22 749 01 11 Fax +41 22 749 09 47 copyright@iso.org www.iso.org | Contents | | | | | | | |----------|---------------------------------------|--|----|--|--|--| | Fore | word | | iv | | | | | 1 | Scope | | | | | | | 2 | Normative references | | | | | | | 3 | 3 Terms and definitions | | | | | | | 4 | Svm | bols | 2 | | | | | 5 | • | | | | | | | 6 | Apparatus | | | | | | | 7 | Test pieces | | 3 | | | | | | 7.1 | Test piece size | | | | | | | 7.2 | Test piece preparation | | | | | | | | 7.2.1 Test piece machining | | | | | | | | 7.2.2 Test piece handling and storage | 4 | | | | | 8 | Toct | procedure | | | | | | U | 8.1 Testing machine and loading speed | | | | | | | | 8.2 Elastic modulus measurement | | | | | | | | 8.3 Bending strength measurement | | | | | | | | 8.4 Coating thickness measurement | | | | | | | | 8.5 Temperature and relative humidity | | | | | | | 9 | | ulation of results | | | | | | | 9.1 | Calculation of elastic modulus | | | | | | | | 9.1.1 Calculation of elastic modulus in bending test | | | | | | | 0.2 | 9.1.2 Mean value and standard deviation for elastic modulus | | | | | | | 9.2 | Calculation of bending strength | | | | | | | | 9.2.2 Mean value and standard deviation for bending strength | | | | | | 10 | Analysis of precision and uncertainty | | | | | | | 11 | Test report | | | | | | | | iogrank | • | 11 | | | | #### **Foreword** ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives). Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents). Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement. For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see the following URL: www.iso.org/iso/foreword.html. The committee responsible for this document is ISO/TC 206, *Fine ceramics*. # Fine ceramics (advanced ceramics, advanced technical ceramics) — Test method for determining elastic modulus and bending strength of thick ceramic coatings #### 1 Scope This document specifies a testing method for determining the elastic modulus and bending strength of thick ceramic coatings at ambient temperature by three-point bending tests. Procedures for test piece preparation, test modes and load rates, data collection and reporting are given. This document applies to thick, brittle coatings on metal or ceramic substrates. This test method can be used for material research, quality control, characterization and design data-generation purposes. #### 2 Normative references The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. ISO 3611, Geometrical product specifications (GPS) — Dimensional measuring equipment: Micrometers for external measurements — Design and metrological characteristics ISO 7500-1, Metallic materials — Calibration and verification of static uniaxial testing machines — Part 1: Tension/compression testing machines — Calibration and verification of the force-measuring system #### 3 Terms and definitions For the purposes of this document, the following terms and definitions apply. ISO and IEC maintain terminological databases for use in standardization at the following addresses: - IEC Electropedia: available at http://www.electropedia.org/ - ISO Online browsing platform: available at http://www.iso.org/obp #### 3.1 #### elastic modulus ratio of stress to strain Note 1 to entry: Also known as Young's modulus. #### 3.2 #### bending strength maximum tensile stress at fracture under bending load #### 3.3 #### modulus ratio ratio of the coating modulus to the substrate modulus #### 3.4 #### thickness ratio ratio of the coating thickness to the substrate thickness ## 3.5 deflection ratio ratio of the deflection increment of uncoated substrate to the deflection increment of coated test piece under a given load increment for three-point bending test #### 4 Symbols For the purposes of this document, the symbols and designations given in **Table 1** apply. Table 1 — Symbols and designations | Symbol | Designation | Unit | References | |------------------|--|-----------------|--| | Н | Thickness of substrate | mm | <u>Figure 1</u>
Formula (1) | | h | Thickness of coating | mm | <u>Figure 1</u> | | В | Width of test piece | mm | Figure 1 | | P | Peak load | N | Figure 2 | | L | L Span of test piece | | Formula (1)
Formula (5) | | Е | Elastic modulus | GPa | Formula (1) | | $E_{\rm c}$ | E _c Elastic modulus of coating | | Formula (2) | | E_{S} | Elastic modulus of substrate | GPa | Formula (2) | | α | Ratio of the elastic modulus of the coating to that of the substrate | | Formula (2)
Formula (5) | | f | Deflection | mm | Formula (1) | | $\sigma_{ m c}$ | Bending strength of coating | МРа | Formula (5) | | P_{C} | Critical fracture load | N | Formula (5) | | Ус | Distance from the tensile surface to the neutral axis | mm | Formula (5) | | I | Moment of inertia of the test pieces | mm ⁴ | Formula (5) | | ΔΡ | Load increment | N | Formula (1) | | Δf | Deflection increment | mm | Formula (1) | | n | Effective test number | numerical | Formula (3)
Formula (4)
Formula (6)
Formula (7) | | $ar{\sigma}$ | Mean value of bending strength | МРа | Formula (6)
Formula (7) | | σ_i | Bending strength of the <i>i</i> th test piece | МРа | Formula (6)
Formula (7) | | \overline{E} | Mean value of elastic modulus | GPa | Formula (3)
Formula (4) | | E_i | Elastic modulus of the <i>i</i> th test piece | GPa | Formula (3)
Formula (4) | | Se | Standard deviation of measured elastic modulus | GPa | Formula (4) | | s_{σ} | Standard deviation of measured bending strength | MPa | Formula (7) | #### 5 Principle The elastic modulus and bending strength of thick ceramic coatings on metal or ceramic substrates can be evaluated using three-point bending tests. The elastic modulus of the coating is deduced by comparing the deformation of a coated test piece and of the uncoated substrate under identical loads. A precondition of this method is that the elastic modulus of the substrate is known or can be measured before or after the test. The bending strength of the coating is determined using the critical load for cracking in the coating and the sample size. This indirect test method is called the relative method. #### 6 Apparatus #### 6.1 Testing machine A suitable testing machine capable of applying a uniform crosshead speed and compliant with ISO 7500-1 shall be used. The loading speed should be constant. The measuring error shall be 1 % or lower. #### 6.2 Data acquisition Record the applied load as a function of crosshead displacement or testing time in order to determine the maximum applied load. An analog chart recorder or digital data collection system should be used. The error of the recording system shall be $1\,\%$ or lower. The minimum data collection frequency shall be $15\,$ Hz, and a response frequency of $50\,$ Hz is deemed adequate. #### 6.3 Dimensional measuring devices The dimensions of the test piece shall be measured using a Vernier caliper complying with ISO 3611 and with a precision of 0,02 mm or better, or other calibrated measuring device providing the same or better measurement accuracy. Coating thickness shall be measured by using a calibrated optical microscope with magnification of 1 000 times or better. Sample displacement shall be measured using a calibrated electronic micrometer with a precision of at least 0,001 mm and resolution of 0,000 5 mm or better, or other measuring device providing the same or better measurement accuracy. All calibrations shall be traceable to national standards. #### 7 Test pieces #### 7.1 Test piece size In order to simplify the preparation of test pieces, rectangular section test pieces with three different coating configurations are considered: coating on lower surface of the test pieces only [single-face coating, Figure 1 a)], coating on upper and lower surfaces of the test pieces only [two-face coating, Figure 1 b)] and coating on four surfaces of a test pieces [around coating, Figure 1 c)]. Any of the three coating configurations may be used for evaluating the properties of the coating layer. The geometrical dimensions of coated test piece are displayed in Figure 1. Test piece dimensions shall be 36 mm long, 4 mm wide and 2 mm thick or larger with the same dimensional ratio. The thickness ratio, h/H, should be larger than 1/100. The thickness of the coating shall be larger than 20 μ m. Figure 1 — Schematic of cross-section of test piece with different coating configurations #### 7.2 Test piece preparation #### 7.2.1 Test piece machining The test pieces may be obtained from two approaches. - a) The test pieces are cut from some coated components, carefully grinding and polishing the test piece to keep the surfaces parallel and flat. - b) The test pieces are prepared by coating a substrate; in this case, the modulus of the substrate shall be measured before preparing coating. The detail test procedure is described below. Before applying the coating, mark each test piece substrate with a unique identifier which will be visible after coating. Measure the flatness of each uncoated test piece, for example, by mounting in an unstressed state on the x-y stage of a calibrated optical microscope and measuring the z coordinate of the surface with an accuracy of $\pm 2~\mu m$ at 10 equally spaced positions along its length. Record the results for each test piece. For both single-face and two-face coating, carefully mask the faces to remain free from coating, ensuring that the masking material does not prevent the coating from completely covering the faces to be coated. Coat the test pieces using the processing conditions of interest, taking care to obtain the same coating thickness on all faces of interest. If necessary, coat an extra test piece using the same processing parameters and measure the coating thickness on this to determine coating uniformity prior to starting modulus and bending strength measurements. If the observed non-uniformity in coating thickness on different faces is greater than 5 % between the thickest and the thinnest values measured, new test piece should be prepared. Remove the masking from the uncoated faces and repeat the flatness measurement for each test piece and record the results. #### 7.2.2 Test piece handling and storage The test pieces shall be handled with care to avoid the introduction of damage after test piece preparation. The test pieces shall be stored separately and not allowed to impact or scratch each other. #### 7.2.3 Number of test pieces A minimum of 6 test pieces are required for the test; the maximum load for fracture could be estimated by using the first test piece. Minimum of 30 test pieces is recommended if a statistical bending strength analysis (e.g. a Weibull analysis) is to be made. The use of 30 test pieces will help obtain good confidence limits for the elastic modulus and bending strength distribution parameters including a Weibull modulus. #### 8 Test procedure #### 8.1 Testing machine and loading speed Use a universal mechanical testing machine with a crosshead speed of 0,5 mm/min for the three-point bending tests. #### 8.2 Elastic modulus measurement The elastic modulus of the substrate should be known or should be measured using an uncoated sample. The elastic modulus of a homogenous material can be calculated through the ratio of load increment, ΔP , to deflection increment, Δf , at the mid-span of a rectangular beam specimen in three-point bending. $$E = \frac{L^3}{4H^3B \cdot 1000} \cdot \frac{\Delta P}{\Delta f} \tag{1}$$ where *E* is the elastic modulus, in GPa; *L* is the span of test pieces, in mm; *H* is the thickness of test pieces, in mm; *B* is the width of test pieces, in mm; ΔP is the load increment within the scope of elastic deformation of the substrate, in newtons (N); Δf is the equivalent deflection increment, in mm. Mount the first test piece in the three-point bend apparatus, ensuring that any curvature detected after coating is concave on the side to which the bending load will be applied. Bring the loading head into contact with the test piece mid-way between the two mounting rollers, ensuring uniform contact between the pressure head and the test piece. Bring the probe of the deflection measuring device (electronic micrometer) into contact with the opposite side of the test piece and directly opposite the pressure head, ensuring a positive deflection reading is obtained; see Figure 2. Record this reading. Apply a test load incrementally from 0,1 P_c to 0,5 P_c (or less, if necessary, to maintain the bending of the test piece in the elastic regime of the substrate) at the specified rate, recording the incremental deflection, with an accuracy of 0,001 mm or better, as a function of incremental load, measured with an accuracy of ± 1 % or better. Calculate the elastic modulus of the coated test piece using Formula (1) and the equivalent incremental load and incremental deflection measurements. #### Key - 1 specimen - 2 micrometer Figure 2 — Schematic of measurement of load-deflection relation in three-point bending test #### 8.3 Bending strength measurement To measure the bending strength of the coating, put each test piece in the fixture, as shown in Figure 2. Ensure uniform contact between the pressure head and the test piece. Apply the test force at the specified rate and record the peak load, P, during the fracture process. The bending strength of the ceramic coating can be calculated from the critical load and sample size. Measure the peak load with an accuracy of ± 1 % or better. The acoustic emission technique is recommended to determine the critical load for the test piece with metal substrate. Note that the critical load would be the peak load in many cases of brittle substrate. #### 8.4 Coating thickness measurement Following the bending strength measurement on the first test piece, measure the coating thickness on all coated faces to ensure the thickness uniformity is better than 10 % between the thickest and the thinnest values measured. If the uniformity is worse than this, it will be necessary to prepare new test pieces with better coating uniformity. The use of one face coating will help to avoid this issue. Care needs to be taken with the preparation of the side of the sample so that good contrast is obtained between the coating and substrate so that good measurements of coating thickness can be obtained. #### 8.5 Temperature and relative humidity Measure and record the laboratory ambient relative humidity during the test process. #### 9 Calculation of results #### 9.1 Calculation of elastic modulus #### 9.1.1 Calculation of elastic modulus in bending test The elastic modulus of coating, E_c , is given by Formula (2): $$E_{c} = E_{s} \times \alpha \tag{2}$$ where E_s is the elastic modulus of the substrate; α is the ratio of the elastic modulus of the coating to that of the substrate. Under a fixed load increment, the deflection increment for a substrate sample is f_1 before coating and f_2 after coating, which can be measured by electronic micrometer as shown in Figure 2. The modulus ratio, α , for three coating test pieces is shown in Table 2. If the modulus and the dimensions of the substrate is known, the deflection under a given three-point bending load, f_1 , can be calculated based on Formula (1), without test. Table 2 — Relationship between the modulus ratio and deflection ratio for three coating test pieces | No. | Different coating configurations | lpha value | | |---------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--| | 1 | Single-face coating [Figure 1 a)] | $\alpha = \frac{-A + \sqrt{A^2 + C}}{2R^3}$ where | | | | | R = h/H; | | | | | $F = f_1/f_2 ;$ | | | | | $A = 4R^2 + 6R + 4 - F \; ;$ | | | | | $C=4R^2(F-1).$ | | | 2 | Two-face coating [Figure 1 b)] | $\alpha = I_0 \left(\frac{f_1}{f_2} - 1 \right) / \left[\frac{Bh^3}{6} + \frac{Bh(h+H)^2}{2} \right]$ | | | 3 | Around coating [see Figure 1 c)] | $\alpha = I_0 \left(\frac{f_1}{f_2} - 1 \right) / \left[\frac{h(2h+H)^3}{6} + \frac{Bh^3}{6} + \frac{Bh(h+H)^2}{2} \right]$ | | | where | | | | | $I_0 = \frac{BH^3}{12}$ is the moment of inertia of the original sample without coating, in mm ⁴ ; | | | | | f_1 | 12 | bstrate sample without coating, in mm; | | | f_2 | is the deflection increment for a su | bstrate sample after coating, in mm; | | | h | is the thickness of coating, in mm; | | | | Н | is the thickness of the substrate sample, in mm; | | | | В | is the width of the substrate sampl | e, in mm. | | The modulus of the coating is determined according to following steps. - a) Measure the deflection increment f_1 and the elastic modulus, E_s . - b) Measure the deflection increment f_2 with the same load increment. - c) Determine the modulus ratio, α , based on <u>Table 2</u>. - d) Calculate the modulus of the coating, E_c , by Formula (2). If only the coated samples are available, step b) should be carried out first, and then the coating layer should be removed, e.g. by grinding, to expose the substrate, then step a) should be done. It is essential that $f_2 < f_1$ under same ΔP . #### 9.1.2 Mean value and standard deviation for elastic modulus The mean elastic modulus, \overline{E} , and the standard deviation, s_e , are given by Formula (3) and Formula (4): $$\overline{E} = \frac{\sum_{i=1}^{n} E_i}{n} \tag{3}$$ $$s_{e} = \left[\frac{\sum_{i=1}^{n} (E_{i} - \overline{E})^{2}}{n-1} \right]^{1/2}$$ (4) where E_i is the elastic modulus of the *i*th test piece; *n* is the total number of test piece. #### 9.2 Calculation of bending strength #### 9.2.1 Calculation for bending strength of the ceramic coating The bending strength of the ceramic coating is calculated using Formula (5): $$\sigma_{c} = \frac{\alpha P_{c} \cdot L}{4I} \times y_{c} \tag{5}$$ where - α is the ratio of the elastic modulus of coating to that of substrate, determined using the formulae given in Table 2; - P_c is the critical load for crack initiation in the coating, in newtons (N); - L is the span in three-point bending test, in mm; - y_c is the distance from the tensile surface to the neutral axis, in mm, obtained from the formulae in <u>Table 3</u> for the different coating configurations; - *I* is the moment of inertia of the test pieces, in mm⁴, obtained from the formulae in <u>Table 3</u> for the different coating configurations. | Table 3 — Summary of the formulae for the distance from the tensile surface to the neutral | |-------------------------------------------------------------------------------------------------| | axis, y_c , and moment of inertia, I , of test pieces for different coating configurations. | | No. | Coating configurations | y _c value | Value of I | |-----|----------------------------------------------|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 1 | Single-face coating [see <u>Figure 1</u> a)] | $\frac{H(H+2\alpha h)+\alpha h^2}{2(H+\alpha h)}$ | $I = \frac{BH^3}{12} + \frac{\alpha B_1 h^3}{12} + BH \left[\frac{\alpha h (H+h)}{2(\alpha h + H)} \right]^2 + \alpha Bh \left[\frac{H^2 + Hh}{2(\alpha h + H)} \right]^2$ | | 2 | Two-face coating [see Figure 1 b)] | 0,5 <i>H</i> + <i>h</i> | $I = \frac{\alpha Bh^3}{6} + \frac{\alpha Bh}{2} (h+H)^2 + \frac{BH^3}{12}$ | | 3 | Around coating [see Figure 1 c)] | 0,5 <i>H</i> + <i>h</i> | $I = \frac{\alpha h (2h+H)^3}{6} + \frac{\alpha B h^3}{6} + \frac{\alpha B h}{2} (h+H)^2 + \frac{BH^3}{12}$ | The elastic modulus of the coating should be determined prior to the strength calculation, since α is used in the calculation. The influence of possible residual stress on the coating layer is not considered here. #### 9.2.2 Mean value and standard deviation for bending strength The mean bending strength and the standard deviation are given by Formula (6) and Formula (7): $$\overline{\sigma} = \frac{\sum_{i=1}^{n} \sigma_i}{n} \tag{6}$$ $$s_{\sigma} = \left\lceil \frac{\sum_{i=1}^{n} (\sigma_i - \overline{\sigma})^2}{n-1} \right\rceil^{1/2} \tag{7}$$ where σ_i is the bending strength of the *i*th test piece; *n* is the total number of the test pieces. #### 10 Analysis of precision and uncertainty The precision of the modulus and strength measurement of ceramic coatings may be effected by many factors, e.g. the uniformity of the thickness, effects of the thickness ratio and the changes of the test condition. Under a given load increase, the measured deflection of a coated test piece should be smaller than that of the test piece without coating, i.e. $f_2 < f_1$. Otherwise, the resultant modulus would be minus. If the measured deflection increments indicates $f_2 > f_1$ under a given load increment, a most possible reason is that the substrate of two test pieces are not the same one. The coated test piece and the uncoated test piece should own identical substrate, rather than two substrates with the same sizes, because there is a possibility that the stiffness of the uncoated sample is different from the substrate of the coated piece. In some cases, there is a transfor layer between the ceramic coating and the substrate. If the transfor layer is generated during the coating process and its properties are not the same as the substrate, it is better to test the coated piece first, then grind off the coating and take the remains as a composite substrate. #### 11 Test report The test report shall contain at least the following information: - a) the name and address of the testing establishment; - b) the date of the test, customer name and address, and signatory; - c) a reference to this document, i.e. ISO 19603; - d) the test piece shape, size, and the thickness ratio; - e) a description of the test material (material type of the substrate and the coating); - f) the number of tests carried out and the number of valid results obtained; - g) the valid results, mean value, and standard deviations of the elastic modulus and bending strength; - h) the temperature and humidity of the laboratory. ### **Bibliography** - [1] BAO Y.W., ZHOU Y.C., BU X.X. Evaluating elastic modulus and strength of hard coatings by relative method. *Mater. Sci. Eng. A.* 2007, **458** (1-2) pp. 268–274 - [2] BAO Y.W., & ZHOU Y.C. Evaluating high-temperature modulus and elastic recovery of Ti_3SiC_2 and Ti_3AlC_2 ceramics. *Mater. Lett.* 2003, **57** (24) pp. 4018–4022 ## British Standards Institution (BSI) BSI is the national body responsible for preparing British Standards and other standards-related publications, information and services. BSI is incorporated by Royal Charter. British Standards and other standardization products are published by BSI Standards Limited. #### About us We bring together business, industry, government, consumers, innovators and others to shape their combined experience and expertise into standards -based solutions. The knowledge embodied in our standards has been carefully assembled in a dependable format and refined through our open consultation process. Organizations of all sizes and across all sectors choose standards to help them achieve their goals. #### Information on standards We can provide you with the knowledge that your organization needs to succeed. Find out more about British Standards by visiting our website at bsigroup.com/standards or contacting our Customer Services team or Knowledge Centre. #### **Buying standards** You can buy and download PDF versions of BSI publications, including British and adopted European and international standards, through our website at bsigroup.com/shop, where hard copies can also be purchased. If you need international and foreign standards from other Standards Development Organizations, hard copies can be ordered from our Customer Services team. #### Copyright in BSI publications All the content in BSI publications, including British Standards, is the property of and copyrighted by BSI or some person or entity that owns copyright in the information used (such as the international standardization bodies) and has formally licensed such information to BSI for commercial publication and use. Save for the provisions below, you may not transfer, share or disseminate any portion of the standard to any other person. You may not adapt, distribute, commercially exploit, or publicly display the standard or any portion thereof in any manner whatsoever without BSI's prior written consent. #### Storing and using standards Standards purchased in soft copy format: - A British Standard purchased in soft copy format is licensed to a sole named user for personal or internal company use only. - The standard may be stored on more than 1 device provided that it is accessible by the sole named user only and that only 1 copy is accessed at any one time. - A single paper copy may be printed for personal or internal company use only. Standards purchased in hard copy format: - A British Standard purchased in hard copy format is for personal or internal company use only. - It may not be further reproduced in any format to create an additional copy. This includes scanning of the document. If you need more than 1 copy of the document, or if you wish to share the document on an internal network, you can save money by choosing a subscription product (see 'Subscriptions'). #### **Reproducing extracts** For permission to reproduce content from BSI publications contact the BSI Copyright & Licensing team. #### **Subscriptions** Our range of subscription services are designed to make using standards easier for you. For further information on our subscription products go to biggroup com/subscriptions. With **British Standards Online (BSOL)** you'll have instant access to over 55,000 British and adopted European and international standards from your desktop. It's available 24/7 and is refreshed daily so you'll always be up to date. You can keep in touch with standards developments and receive substantial discounts on the purchase price of standards, both in single copy and subscription format, by becoming a **BSI Subscribing Member**. **PLUS** is an updating service exclusive to BSI Subscribing Members. You will automatically receive the latest hard copy of your standards when they're revised or replaced. To find out more about becoming a BSI Subscribing Member and the benefits of membership, please visit bsigroup.com/shop. With a **Multi-User Network Licence (MUNL)** you are able to host standards publications on your intranet. Licences can cover as few or as many users as you wish. With updates supplied as soon as they're available, you can be sure your documentation is current. For further information, email subscriptions@bsigroup.com. #### Revisions Our British Standards and other publications are updated by amendment or revision. We continually improve the quality of our products and services to benefit your business. If you find an inaccuracy or ambiguity within a British Standard or other BSI publication please inform the Knowledge Centre. #### **Useful Contacts** **Customer Services** Tel: +44 345 086 9001 **Email (orders):** orders@bsigroup.com **Email (enquiries):** cservices@bsigroup.com Subscriptions Tel: +44 345 086 9001 Email: subscriptions@bsigroup.com Knowledge Centre **Tel:** +44 20 8996 7004 $\textbf{Email:} \ knowledge centre @bsigroup.com$ Copyright & Licensing Tel: +44 20 8996 7070 Email: copyright@bsigroup.com #### **BSI Group Headquarters** 389 Chiswick High Road London W4 4AL UK