BS ISO 19150-2:2015

o —
: B

Geographic information —
Ontology

Part 2: Rules for developing ontologies in
the Web Ontology Language (OWL)

[
bSlo ..making excellence a habit.

BS ISO 19150-2:2015 BRITISH STANDARD

National foreword
This British Standard is the UK implementation of ISO 19150-2:2015.

The UK participation in its preparation was entrusted to Technical
Committee IST/36, Geographic information.

A list of organizations represented on this committee can be
obtained on request to its secretary.

This publication does not purport to include all the necessary
provisions of a contract. Users are responsible for its correct
application.

© The British Standards Institution 2015. Published by BSI Standards
Limited 2015

ISBN 978 0 580 80469 4
ICS 35.240.70

Compliance with a British Standard cannot confer immunity from
legal obligations.

This British Standard was published under the authority of the
Standards Policy and Strategy Committee on 30 June 2015.

Amendments issued since publication
Date Text affected

BS ISO 19150-2:2015

INTERNATIONAL ISO
STANDARD 19150-2

First edition
2015-07-01

Geographic information — Ontology —

Part 2:
Rules for developing ontologies in the
Web Ontology Language (OWL)

Information géographique — Ontologie —

Partie 2: Régles pour le développement d’ontologies dans le langage
d’ontologie Web (OWL)

-_— Reference number
=) — 1SO 19150-2:2015(E)

©1S0 2015

BS ISO 19150-2:2015
ISO 19150-2:2015(E)

COPYRIGHT PROTECTED DOCUMENT

© IS0 2015, Published in Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form
or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior
written permission. Permission can be requested from either ISO at the address below or ISO’s member body in the country of
the requester.

ISO copyright office

Ch. de Blandonnet 8 « CP 401
CH-1214 Vernier, Geneva, Switzerland
Tel. +41 22 749 01 11

Fax +41 22 749 09 47
copyright@iso.org

Www.iso.org

ii © ISO 2015 - All rights reserved

BS ISO 19150-2:2015

IS0 19150-2:2015(E)
Contents Page
FOT@WOT ... et eeeeeeeeeeeeeeeeeeereeseeeee v
LU o0 Yo L0 Ut 5 () ¢ OSSOSO vi
1 S0P ... 1
2 L000) 1 10 @ 4 1T 1 4 U Y00 1
3 NOIMALIVE FEECT@INCESoooooooeoeeeeeeee et 1
4 Terms, definitions, abbreviations, and namespaces..
4.1 Terms and definitions ...,
4.2 Abbreviations
4.3 INQITIESPACES ...ttt
INAITMESPIACEoe ke 7
Rules for mapping ISO geographic information UML models to OWL ontologies 8
6.1 General ..8
6.2 L\ =1 6 LT ..9
6.2.1 SCOPING AN NAMESPACESoooovrrevrevresiesisesiss s 9
6.2.2 ONEOLOZY MMAIMNIE ..ot
6.2.3 RDF namespace for ONTOLOZY ...t
6.2.4 ClassS NaAME......coooooooooooeeeeeeeeeeee

6.2.5 Datatype name
6.2.6 Property name
6.2.7 Names for codelists and their members.
6.3 PaCKAGE ..o
6.3.1
6.3.2
6.3.3
6.4 Class

6.4.3
6.5 Abstract class

6.5.1
6.5.2
6.5.3 Rules
6.6 N o o]0 < 50O
6.6.1 UML Notation....
6.6.2 OWL notation.....
6.6.3 Rules....
6.7 Enumerated type......
6.7.1 Enumeration.
L 0o Y [T £ O
6.8 L0550 6 el = T
6.8.1
6.8.2
6.8.3
6.9 Multiplicity ...
6.9.1 UML notation
6.9.2 L0 07 I 50 Y 7= 1 (o) o
LSRG T U1 | V=T3S
6.10 Relationship
6.10.1 Generalization/INNETTEANICE ...
(ST O N o Yo = o) o 1O
6.10.3 Aggregation..
L 700 1 O 070 13 =0 OO

© 1S0 2015 - All rights reserved iii

BS ISO 19150-2:2015

ISO 19150-2:2015(E)
6.11.1 UML notation.....
6.11.2 OWL notation...
0.11.3 RULES .o
7 Rules for formalizing an application schema in OWL ..., 46
7.1 GEEIIETAL ..
7.2 RULES fOr 1d@NETTICATION ..o
7.3 Rules for ontology documentation........
7.3.1 Ontology documentation...................
7.3.2 Ontology component documentation......

7.4 Rules for integration
7.5 Rules for FeatureType...

7.6 PLOPEIEYTYPE .ttt
T.6.1 ATETIDULE oot
7.6.2 Rules for Operation..........e:
7.6.3 Rules for FeatureAssociationRole....
7.7 Rules for FeatureAssociationType........
7.8 Rules for FeatureAggregationType......
7.9 Rules for FeatureCompositionType.........
7.10 Rules for SpatialASSOCIAtIONTYPE ...t
7.11 Rules for TemporalASSOCIAtIONTYPE ..o
7.12 Rules for InheritanceRelation
713 RULES fOI COMSIIAINTS ..ottt
7.14 Rules for ValU@ASSIGNIMENT. ...ttt st
7.14.1 Role of Association class........
7.14.2 ValueAssignment property
7.14.3 RDF 1eification PaterTi.. ...
7.14.4 SPARQL named-graph Patterml ...
7.14.5 Rules for ValueAssignment in OWL teIN ... 63
Annex A (normative) ADSTIACt ST SUITE ... 65
Annex B (normative) Namespaces and component names for geographic
INFOrMAtion ONEOLOZIES ...t 85
Annex C (informative) Augmented Backus Naur Form Notation ... 87
Annex D (normative) "base” ONEOLOZY ... 88
Annex E (informative) Application ontology: The PropertyParcel example............. 90
BIBLIOGTAPIY ... 101

iv © ISO 2015 - All rights reserved

BS ISO 19150-2:2015
ISO 19150-2:2015(E)

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out
through ISO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.
ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the
different types of ISO documents should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2. www.iso.org/directives

Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any
patent rights identified during the development of the document will be in the Introduction and/or on
the ISO list of patent declarations received. www.iso.org/patents

Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity
assessment, as well as information about ISO’s adherence to the WTO principles in the Technical Barriers
to Trade (TBT) see the following URL: Foreword - Supplementary information.

The Committee responsible for this document is ISO/TC 211, Geographic information/Geomatics.

ISO 19150 consists of the following parts, under the general title Geographic information — Ontology:
— Part 1: Framework

— Part 2: Rules for developing ontologies in the Web Ontology Language (OWL)

Semantic operators, Service ontology, Domain ontology registry and Service ontology registry are planned
to be covered in future Parts.

© IS0 2015 - All rights reserved v

http://www.iso.org/directives
http://www.iso.org/patents
http://www.iso.org/iso/home/standards_development/resources-for-technical-work/foreword.htm

BS ISO 19150-2:2015
ISO 19150-2:2015(E)

Introduction

Fundamentally, ontology comes from philosophy and refers to the study of the nature of the world itself.
Theinformation technology and artificial intelligence communities borrowed this term of ontology for the
explicit specification of a conceptualization.[2] Information technology and artificial intelligence consider
that reality may be abstracted differently depending on the context from which “things” are perceived
and, as such, recognize that multiple ontologies about the same part of reality may exist. In geographic
information, ontology refers to a formal representation of phenomena of a universe of discourse with an
underlying vocabulary including definitions and axioms that make the intended meaning explicit and
describe phenomena and their interrelationships.[1] An ontology can be formalized differently ranging
from weak to strong semantics: taxonomy, thesaurus, conceptual model, logical theory.[2]

Ontology is a fundamental notion for semantic interoperability on the Semantic Web since it defines
the meaning of data and describes it in a format that machines and applications can read. As such, an
application using data also has access to theirinherent semantics through the ontology associated withit.
Therefore, ontologies can support integration of heterogeneous data captured by different communities
by relating them based on their semantic similarity. The W3C has proposed the Web Ontology Language
(OWL) family of knowledge representation languages for authoring ontologies characterised by formal
semantics on the Web.[411]

Semantics is an important topic in the field of geographic information. The meaning of geographic
information is essential for their discovery, sharing, integration, and use. Geographic information
standards have recognized this fact in the standards on rules for application schema (ISO 19109) and
the methodology for feature cataloguing (ISO 19110),[Z] which are both based on the General Feature
Model (GFM). Basically, semantics relates phenomena and signs used to represent them (i.e. data) by the
way of concepts. Typically, concepts are maintained in repositories called ontologies.

The ISO geographic information standards have chosen the conceptual modelling language UMLI[10.12]
for the formal representation of abstraction of the reality. Additionally as introduced in ISO/TS 19150-
1:2012, there is a need to provide formal representation of abstraction of the reality in OWL to support
the Semantic Web. Accordingly, this part of ISO 19150 defines rules to convert UML static views of
geographic information and application schemas into OWL ontologies in order to benefit and support
interoperability of geographic information over the Semantic Web. These rules are required for:

— ontology description completeness;

— consistency in the set of OWL ontologies for geographic information;
— consistency in conversion of UML diagrams to OWL ontologies; and
— cohesion and unity between UML models and ontologies.

These rules are based on but also extend the OMG’s Ontology Definition Metamodel.[11] OWL ontologies
are complementary to UML static views and serve different purposes.

vi © ISO 2015 - All rights reserved

BS I1SO 19150-2:2015
INTERNATIONAL STANDARD ISO 19150-2:2015(E)

Geographic information — Ontology —

Part 2:

Rules for developing ontologies in the Web Ontology
Language (OWL)

1 Scope

This part of ISO 19150 defines rules and guidelines for the development of ontologies to support better
the interoperability of geographic information over the Semantic Web. The Web Ontology Language
(OWL) is the language adopted for ontologies.

This part of ISO 19150 defines the conversion of the UML static view modeling elements used in the
ISO geographic information standards into OWL. It further defines conversion rules for describing
application schemas based on the General Feature Model defined in ISO 19109 into OWL.

This part of ISO 19150 does not define semantics operators, rules for service ontologies, and does not
develop any ontology.

2 Conformance

Any application ontology or profile claiming conformance with this part of ISO 19150 shall pass the
requirements described in the abstract test suite, presented in Annex A.

The abstract test suite is organized in two conformance classes that address the following purposes:

— Conversion of a UML package from the ISO/TC 211 Harmonized Model to OWL (conformance class
19150-20owl-conf); and

— Formalization of an application schema in OWL (conformance class 19150-2app-conf).

3 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are
indispensable for its application. For dated references, only the edition cited applies. For undated
references, the latest edition of the referenced document (including any amendments) applies.

IS0 19103:—1), Geographic information — Conceptual schema language

IS0 19107:2003, Geographic information — Spatial schema

[SO 19108:2002, Geographic information — Temporal schema

IS0 19109:—2), Geographic information — Rules for application schema

[SO 19112:2003, Geographic information — Spatial referencing by geographic identifiers
ISO 19115-1:2014, Geographic information — Metadata — Part 1: Fundamentals

IS0 19123:2005, Geographic information — Schema for coverage geometry and functions

1) To be published. (Revision of ISO/TS 19103:2005)
2) To be published. (Revision of ISO 19109:2005)

© ISO 2015 - All rights reserved 1

BS ISO 19150-2:2015
ISO 19150-2:2015(E)

ISO 19156:2011, Geographic information — Observations and measurements
[SO 19157:2013, Geographic information — Data quality

W3C OWL 2, OWL 2 Web Ontology Language: Structural Specification and Functional-Style Syntax (W3C
Recommendation 27 October 2009)

W3C OWL 2 RDF, OWL 2 Web Ontology Language RDF-Based Semantics (W3C Recommendation 27
October 2009)

W3C SKOS, SKOS Simple Knowledge Organization System Reference (W3C Recommendation 18 August 2009)
IETF RFC 5234, Augmented BNF for Syntax Specifications: ABNF
IETF RFC 3986, Uniform Resource Identifier (URI): Generic Syntax

4 Terms, definitions, abbreviations, and namespaces

4.1 Terms and definitions

4.1.1

aggregation

<UML> special form of association (4.1.6) that specifies a whole-part relationship between the aggregate
(whole) and a component part

Note 1 to entry: See composition (4.1.12).
[SOURCE: 1SO 19103:—1), 4.1]

4.1.2
annotation
<OWL> additional information associated to ontologies, entities, and axioms

[SOURCE: OWL]

4.1.3
annotation property
<OWL> element used to provide a textual annotation (4.1.2) for an ontology (4.1.29), axiom, or an IRI

[SOURCE: OWL]

4.1.4
application ontology
ontology (4.1.29) representing the concepts and relationships in an application schema (4.1.5)

4.1.5
application schema
conceptual schema (4.1.14) for data (4.1.16) required by one or more applications

[SOURCE: ISO 19101-1:2014, 4.1.2]

4.1.6
association
<UML> semantic relationship that can occur between typed instances

Note 1 to entry: A binary association is an association among exactly two classifiers (including the possibility of
an association from a classifier to itself).

[SOURCE: OMG UML, Superstructure, version 2.4.1, 7.3.3]

2 © IS0 2015 - All rights reserved

BS ISO 19150-2:2015
ISO 19150-2:2015(E)

4.1.7
attribute
<UML> feature within a classifier that describes a range of values that instances of the classifier may hold

[SOURCE: ISO 19103:—1), 4.5]

4.1.8
cardinality
<UML> number of elements in a set

Note 1 to entry: Contrast with multiplicity (4.1.24), which is the range of possible cardinalities a set may hold.
[SOURCE: ISO 19103:—1), 4.6]

4.1.9
class
<OWL> set of individuals (4.1.20)

[SOURCE: OWL]

4.1.10

class

<UML> description of a set of objects that share the same attributes (4.1.7), operations (4.1.30), methods,
relationships, and semantics

[SOURCE: ISO 19103:—1), 4.7]

4.1.11
codelist
value domain including a code for each permissible value

[SOURCE: ISO 19136:2007, 4.1.7]

4.1.12

composition

<UML> aggregation (4.1.1) where the composite object (whole) has responsibility for the existence and
storage of the composed objects (parts)

[SOURCE: ISO 19103:—1), 4.10]

4.1.13
conceptual model
model that defines concepts of a universe of discourse (4.1.36)

[SOURCE: ISO 19101-1:2014, 4.1.5]

4.1.14
conceptual schema
formal description of a conceptual model (4.1.13)

[SOURCE: 1SO 19101-1:2014, 4.1.6]

4.1.15

constraint

<UML> condition or restriction expressed in natural language text or in a machine readable language
for the purpose of declaring some of the semantics of an element

[SOURCE: 1SO 19103:—1), 4.13]

© ISO 2015 - All rights reserved 3

BS ISO 19150-2:2015
ISO 19150-2:2015(E)

4.1.16

data

reinterpretable representation of information in a formalized manner suitable for communication,
interpretation, or processing

[SOURCE: ISO/IEC 2382:2015, 2121272]

4.1.17
data property
<OWL> semantic association (4.1.6) between an individual (4.1.20) and a typed literal (4.1.21)

Note 1 to entry: Data properties were sometimes referred to as ‘concrete properties’ in Description Logic.
[SOURCE: OWL]

4.1.18
datatype
<OWL> entities that refer to a set of concrete data (4.1.16) values

EXAMPLE xsd:string, xsd:integer, xsd:decimal

Note 1 to entry: Datatypes are distinct from classes (4.1.9) of individuals (4.1.20), the latter are denoted by URIs
and may be used by reference.

[SOURCE: OWL]

4.1.19

generalization

<UML> taxonomic relationship between a more general element and a more specific element of the
same element type

Note 1 to entry: An instance of the more specific element can be used where the more general element is allowed.
[SOURCE: IS0 19103:—1), 4.18]

4.1.20

individual

instance of a class (4.1.9)

Note 1 to entry: It refers to a resource belonging to the extension of the class.

[SOURCE: Adapted from the OWL Web Ontology Language Guide]

4.1.21

literal value

literal

constant, explicitly specified value

EXAMPLE “1"~xsd:integer, “abc”**xsd:string
Note 1 to entry: This contrasts with a value that is determined by resolving a chain of substitution (e.g. a variable).
[SOURCE: ISO 19143:2010, 4.15]

4.1.22
localName
reference to a local object directly accessible from a namespace (4.1.25)

[SOURCE: ISO 19103:—1), modified - Derived from 7.5.5.1]

4 © IS0 2015 - All rights reserved

BS ISO 19150-2:2015
ISO 19150-2:2015(E)

4.1.23
metadata
information about a resource

[SOURCE: ISO 19115-1:2014, 4.10]

4.1.24
multiplicity
<UML> specification of the range of allowable cardinalities that a set may assume

[SOURCE: ISO 19103:—1), 4.24]

4.1.25
namespace
<general> domain in which names, expressed by character strings, can be mapped to objects

Note 1 to entry: The names can be subject to local constraints (4.1.15) enforced by the namespace.
[SOURCE: ISO 19103:—1), modified - Derived from 7.5.2.1]

4.1.26
namespace
<RDF> common URI prefix or stem used in identifiers for a set of related resources

Note 1 to entry: The RDF namespace is concatenated with the localName (4.1.22) to create the complete URI
identifier for an RDF resource. Every RDF resource is identified by a URI. In contrast, an XML namespace URI
scopes a local XML component name, but there is no rule for combining these into a single identifier string.

4.1.27

namespace

<XML> collection of names, identified by a URI reference, that are used in XML documents as element
names and attribute (4.1.7) names

[SOURCE: ISO/TS 19139:2007, 4.1]

4.1.28
object property
<OWL> semantic association (4.1.6) between a pair of individuals (4.1.20)

Note 1 to entry: Object properties have sometimes been referred to as ‘abstract properties’ in Description Logic.
[SOURCE: OWL]

4.1.29

ontology

formal representation of phenomena of a universe of discourse (4.1.36) with an underlying vocabulary
including definitions and axioms that make the intended meaning explicit and describe phenomena and
their interrelationships

[SOURCE: ISO 19101-1:2014, 4.1.26]

4.1.30

operation

<UML> behavioural <UML> feature of a classifier that specifies the name, type, parameters, and
constraints (4.1.15) for invoking an associated behaviour

[SOURCE: ISO 19103:—1), 4.26]

4.1.31
package
<UML> general purpose mechanism for organizing elements into groups

Note 1 to entry: A package provides a namespace (4.1.27) for the grouped elements.

© IS0 2015 - All rights reserved 5

BS ISO 19150-2:2015
ISO 19150-2:2015(E)

[SOURCE: ISO 19103:—1), 4.27]

4.1.32

property restriction

<OWL> special kind of class (4.1.9) description through the definition of constraints (4.1.15) on values
and cardinalities

[SOURCE: OWL]

4.1.33

qualified cardinality

<OWL> cardinality (4.1.8) restriction that applies to literals (4.1.21) or individuals (4.1.20) that are
connected by a data property (4.1.17) or an object property (4.1.28) and are instance of the qualifying
range [datatype (4.1.18) or class (4.1.9)]

[SOURCE: OWL]

4.1.34
source document
document that contains the original definition of a resource

4.1.35

stereotype

<UML> extension of an existing metaclass that enables the use of platform or domain specific terminology
or notation in place of, or in addition to, the ones used for the extended metaclass

[SOURCE: ISO 19103:—1), 4.33]

4.1.36
universe of discourse
view of the real or hypothetical world that includes everything of interest

[SOURCE: ISO 19101-1:2014, 4.1.38]

4.1.37

unqualified cardinality

<OWL> cardinality (4.1.7) restriction that applies to all literals (4.1.21) or individuals (4.1.20) that are
connected by a data property (4.1.17) or an object property (4.1.28)

[SOURCE: OWL]

4.2 Abbreviations

DL Description Logic

IRI Internationalized Resource Identifier

MOF MetaObject Facility

OMG Object Management Group

OWL Web Ontology Language (version 2)

RDF Resource Description Framework

RDFS RDF Schema

SKOS Simplified Knowledge Organization System

UML Unified Modeling Language

6 © IS0 2015 - All rights reserved

BS ISO 19150-2:2015
ISO 19150-2:2015(E)

URI Universal Resource Identifier

XML eXtensible Markup Language

XSD XML Schema Definition

4.3 Namespaces

dc Dublin Core http://purl.org/dc/elements/1.1/(5]

dct Dublin Core http://purl.org/dc/terms

owl Web Ontology Language http://www.w3.0rg/2002/07/owl#

rdf Resource Description Framework http://www.w3.0rg/1999/02/22-rdf-syn-
tax-ns#

rdfs RDF Schema http://www.w3.org/2000/01/rdf-schema#

skos Simple Knowledge Organization System http://www.w3.0rg/2004/02/skos/
corett

19150-20wl Requirements class for conversion of a UML package from the ISO/TC 211

19150-2owl-conf

19150-2app

19150-2app-conf

Harmonized Model to OWL http://standards.iso.org/iso/19150-2/req/owl

Conformance class for conversion of a UML package from the ISO/TC 211
Harmonized Model to OWL http://standards.iso.org/iso/19150-2/conf/owl

Requirements class for formalization of an application schema in OWL http://
standards.iso.org/iso/19150-2/req/applicationSchema

Conformance class for formalization of an application schema in OWL http://
standards.iso.org/iso/19150-2/conf/applicationSchema

is019150-2 Base ontology elements required for formalization of UML models and appli-
cation schemas in OWL http://def.isotc211.org/is019150-2/2012/base#

exPk Generic prefix for examples for UML and conceptual schema language rules
http://def.isotc211.org/example/aPackage#

exPkCode Generic prefix for examples of code-lists for UML and conceptual schema
language rules http://def.isotc211.org/example/aPackage/code/

myapp Dummy prefix for examples, representing an application schema namespace

xsd XML Schema Definition http://www.w3.0org/2001/XMLSchema#

gfm ontology describing the General Feature Model (ISO 19109:—2))

5 Namespace

A namespace is a collection of names identified by a URI reference.[13] The definition of namespaces
shall follow the rules for URI definition as documented in Annex B. In RDF applications (including OWL)
every resource, including definitions and datatypes as well as individuals, is identified by an IRI.

NOTE The prefix that references a namespace within an ontology in OWL is identified in the namespace
declaration as part of the ontology header element (see 6.3).

© ISO 2015 - All rights reserved 7

http://purl.org/dc/elements/1.1/
http://purl.org/dc/terms/
http://www.w3.org/2002/07/owl#
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/2000/01/rdf-schema#
http://www.w3.org/2004/02/skos/core#
http://www.w3.org/2004/02/skos/core#
http://standards.iso.org/iso/19150-2/req/owl
http://standards.iso.org/iso/19150-2/conf/owl
http://standards.iso.org/iso/19150-2/req/applicationSchema
http://standards.iso.org/iso/19150-2/req/applicationSchema
http://standards.iso.org/iso/19150-2/conf/applicationSchema
http://standards.iso.org/iso/19150-2/conf/applicationSchema
http://def.isotc211.org/iso19150-2/2012/base#
http://def.isotc211.org/example/aPackage#
http://def.isotc211.org/example/aPackage/code/
http://www.w3.org/2001/XMLSchema#

BS ISO 19150-2:2015
ISO 19150-2:2015(E)

6 Rules for mapping ISO geographic information UML models to OWL ontologies

6.1 General

As introduced in ISO/TS 19150-1:2012, Clause 6 defines the conversion of UML static view modeling
elements that are used in the ISO geographic information standards into OWL. These elements are name,
package, class, stereotype, enumeration, code list, attribute, multiplicity, generalization/inheritance,
association, aggregation, composition, and constraints.

ISO 19103:—1) defines the profile of UML used in conceptual modelling in ISO geographic information
standards. Among others, three important aspects of the UML profile are:

a) every navigable association-end must have a role-name (I1SO 19103:—1), 6.8.2);

b) class stereotypes «CodeList» and «Union» indicate a special behaviour different to normal classes
(ISO 19103:—1), 6.10);

c) asetof primitive datatypes are provided.

Item a) means that the UML models under consideration map easily to the RDF model where all properties
have semantic names. This allows for a more streamlined mapping from UML to OWL than, for example, the
generic approach taken by OMG, which supports all the options implied by the MOF and UML meta model.

Item b) means that different UML-OWL transformation rules are required for classes with these
stereotypes compared with standard classes. There are also standard stereotypes provided by UML,
such as «enumeration».

Item c) requires that mappings from the UML classes representing datatypes to specific constructs
using RDF, RDFS, OWL and the XSD datatypes accessible to OWL be defined.

The conversion rules are limited to OWL 2 RL, meaning that OWL RL shall be used for the definitions of
the rules (see W3C OWL 2 and W3C OWL 2 RFD).

NOTE OWL2 RL profile corresponds approximately with OWL version 1 DL profile. This profile ensures a
level of computability which is generally considered desirable for rigorous ontologies.

Clause 6 uses Augmented Backus Naur Form notation (see IETF RFC 5234), which is summarized in Annex C.

This part of ISO 19150 requires the use of standard HTTP URIs to identify resources in geographic
information for the purpose of ontologies. The URI structures are defined in Annex B.

This partof ISO 19150 requires an ontology that defines additional annotation properties, properties and
classes to support the representation of ISO geographic information UML models into OWL ontologies.
This ontology and its namespace are documented in Annex D.

The requirements for representing a UML package from a standard in the series of ISO geographic
information standards in OWL comprise a single requirements class (Table 1), identified as http://
standards.iso.org/iso/19150-2/req/2owl and abbreviated as 19150-2owl.

Table 1 — Requirements class for representing a UML package from a standard in the series of
ISO geographic information standards in OWL

Requirements class
19150-2package = http://standards.iso.org/iso/19150-2/req/package

Target type Ontology

Dependency http://www.w3.org/TR/owl2-syntax/ (OWL)

Dependency http://tools.ietf.org/html/rfc3986 (URI Syntax)

Dependency http://standards.iso.org/iso/19103/ed-2/en/ (Conceptual schema language)

8 © IS0 2015 - All rights reserved

http://standards.iso.org/iso/19150-2/req/2owl
http://standards.iso.org/iso/19150-2/req/2owl
http://standards.iso.org/iso/19150-2/req/package
http://www.w3.org/TR/owl2-syntax/
http://tools.ietf.org/html/rfc3986
http://standards.iso.org/iso/19103/ed-2/en/

BS ISO 19150-2:2015
ISO 19150-2:2015(E)

Table 1 (continued)
Requirements class
19150-2package = standards.iso.org/iso/19150-2/req/package
Requirement 19150-2package:name
Requirement 19150-2package:ontologyName
Requirement 19150-2package:rdfNamespace
Requirement 19150-2package:className
Requirement 19150-2package:datatypeName
Requirement 19150-2package:propertyName
Requirement 19150-2package:codeName
Requirement 19150-2package:package
Requirement 19150-2package:class
Requirement 19150-2package:abstractClass
Requirement 19150-2package:attribute-dataProperty
Requirement 19150-2package:attribute-objectProperty
Requirement 19150-2package:enumeration
Requirement 19150-2package:codelist
Requirement 19150-2package:codelistextension
Requirement 19150-2package:union
Requirement 19150-2package:multiplicity
Requirement 19150-2package:relationship-generalization
Requirement 19150-2package:relationship-association
Requirement 19150-2package:relationship-aggregation
Requirement 19150-2package:constraint
6.2 Name

6.2.1 Scoping and namespaces

The first set of requirements deals with the construction of URIs used to identify ontology namespaces,
classes, datatypes and properties, and is summarized in Annex B.

UML sets a number of restrictions and conventions on element names. Key restrictions are that (a) each
class shall have a unique name within the context of a package, and (b) each attribute and role has a
unique name within the context of a class. Hence, a UML package provides the namespace for its classes,
and a UML class provides the namespace for its attributes and association roles. Therefore, an attribute
name attributeName that is used in a ClassA can also be used in a ClassB both having a specific semantics
in the context of each class (Figure 1). The class is therefore a namespace for its attributes.

ClassA ClassB

+ attributeName + attributeName

Figure 1 — UML class and attribute names

© ISO 2015 - All rights reserved 9

http://standards.iso.org/iso/19150-2/req/package

BS ISO 19150-2:2015
ISO 19150-2:2015(E)

Naming rulesin OWL inherit from RDF and are different to those in UML. Each resource (Class, DataType,
Property) is denoted by a URI. A set of related resources are usually denoted by URIs with the same stem
or base URI, known as the RDF Namespace. Within the context of an RDF namespace the localName for
each class, datatype, and property must be unique and distinct from each other.

NOTE1 OWL Ontologies are identified with a URI which is usually closely related to the namespace URI for the
elements of the ontology. Under such a naming convention the resources are scoped to the ontology.

NOTE 2 The URIs used in an RDF document can be abbreviated using the QName syntax [XML Namespace],
where the prefix stands for the URI of an RDF namespace.

NOTE3 InOWL 2 the same URI can denote both a class and an individual. This is called ‘punning’. However, use
of punning limits reasoning performance and behaviour, so is generally avoided if possible. The profile of OWL
used in this part of ISO 19150 does not allow punning.

The key resources that need naming within an OWL representation of a model are packages, classes,
attributes and association roles.

Table 2 sets the general requirements for name.

Table 2 — General name requirement

Requirement

19150-2package:name
URISs for all resources in geographic information shall the these representation restrictions:

— no space characters;

— dash and underscore characters allowed;

— other punctuation characters from the source are replaced by underscore characters.

6.2.2 Ontology name

The ontology name is constructed by appending an abbreviation of the package name to a base URI
corresponding to the document or standard, with the “/” used as the separator. Table 3 sets the

requirement for ontology name.

Table 3 — Ontology name requirement

Requirement

19150-2package:ontologyName
The ontology name URI shall be based on the name of the corresponding UML package, according to the expression:

ontologyName = URIbase “/” umlPackageName

— URIbase is a base URI in a domain owned by the organization that maintains the model or ontology (see
Annex B),

— umlPackageName is an abbreviation for the name of the UML package corresponding to the ontology,
which also follows the syntax rules for a segment as described in RFC 3986, 3.3.

umlPackageName shall follow these representation restrictions:

— lower case;

— only the semantic part of the package name is represented (see Annex B for examples).

6.2.3 RDF namespace for ontology

The ontology namespace is constructed by appending a “#” character at the end of the ontology name.
Table 4 sets the requirement for RDF namespace for ontology:.

10 © IS0 2015 - All rights reserved

BS ISO 19150-2:2015
ISO 19150-2:2015(E)

Table 4 — RDF namespace for ontology

Requirement

19150-2package:rdfNamespace

The RDF namespace for ontology items shall be based on the ontology name of the corresponding UML package,
according to the expression:

rdfNamespace = ontologyName “#”

NOTE The generic URI syntax uses the “#” style of URI to identify resources that are secondary to a primary
resource (RFC 3986 §3.5). This is the most common pattern used to identify components of ontologies that describe
classes and properties. As HTTP does not transmit the fragment after the “#” to the server, arequest for a resource
identified in this way results in the primary resource being retrieved, i.e. in this case a complete ontology.

6.2.4 Class name

Each class name is constructed by appending the UML class name to the RDF namespace. Table 5 sets the
requirement for class name in ontology:.

Table 5 — Class name

Requirement

19150-2package:className
The class URI shall be based on the name of the corresponding UML class, according to the expression:

className = rdfNamespace umlClassName
— umlClassName is the name of the corresponding UML Class.

umlClassName shall follow these representation restrictions:

— upper camel case.

6.2.5 Datatype name

Datatype name follows a similar pattern to class name. The local name for a datatype is appended to the
RDF namespace. Table 6 sets the requirement for datatype name in ontology.

Table 6 — Datatype name

Requirement

19150-2package:datatypeName
The datatype URI shall be based on the name of the corresponding UML class, according to the expression:

datatypeName = rdfNamespace datatypelLocalName
— datatypeLocalName is the local name of the datatype.

datatypeLocalName shall follow these representation restrictions:

— upper camel case.

6.2.6 Property name

Attribute names are not required to be unique within a package in UML. However, it is uncommon to
have multiple attributes with the same name with different semantics within a package. This part of
ISO 19150 identifies a property by its localName scoped to the package where it is unique within the
package, or scoped to its class where the same property name appears more than once in a package with
different meanings. Table 7 sets the requirement for property name in ontology.

© ISO 2015 - All rights reserved 11

BS ISO 19150-2:2015
ISO 19150-2:2015(E)

Table 7 — Property name

Requirement

19150-2package:propertyName

The property URI shall be based on the name of the corresponding UML attribute or association role name
according to the expression:

propertyName = rdfNamespace [umlClassName “.”] propertyLocalName
propertyLocalName = umlAttributeName / umlRoleName

— umlAttributeName means the name of a UML attribute,

— umlRoleName means the name of a UML association role.

umlAttributeName and umlRoleName shall follow these representation restrictions:

— lower camel case.

NOTE In addtition to its propertyLocalName, a propertyName can optionally include its umlClassName when
the property is scoped to the class or if the same propertyLocalName may be used by another property of another
class with a different semantics.

6.2.7 Names for codelists and their members

Codelist classes and their members require specific treatment. As described in 6.8.2, a codelist class
shall be implemented in OWL/RDF as both an OWL Class and as a SKOS ConceptScheme, and its members
as SKOS Concepts.

SKOS (Simplified Knowledge Organization System) is a W3C standard that has been broadly adopted
for vocabulary formalization. SKOS is formulated as an OWL ontology, and instances can be integrated
with an OWL ontology. SKOS supports the codelist requirements of membership and extensibility. SKOS
also supports the recording of basic thesaurus-like semantic relationships between members (broader,
narrower, etc).

SKOS ConceptScheme and SKOS Concept resources are each individuals, as they have a specific rdf:type
property thatrelates them to the class to which they belong. In the OWL context, the distinction between
individuals and other ontology elements is important, and is often reflected in the use of different styles
of URI to denote these different kinds of resources.

In particular, while classes and properties are normally used primarily in the context of the other classes
and properties in an ontology, individuals are commonly accessed individually, Hence, while ‘#" URIs
are commonly used to denote classes and properties in an ontology, it is common to denote individuals
using ‘/’ URIs. Table 8 sets the requirement for code names in ontology.

12 © IS0 2015 - All rights reserved

BS ISO 19150-2:2015
ISO 19150-2:2015(E)

Table 8 — Code name

Requirement

19150-2package:codeName

The URI for a codelist shall be based on the name of the corresponding UML class stereotyped «CodeList» accord-
ing to the expression:

codeNamespace = ontologyName “/code/”
conceptSchemeName = codeNamespace className
collectionName = codeNamespace className “Collection”

— className means the name of the class stereotyped «CodeList».
className shall follow these representation restrictions:
— upper camel case.

The URI for a codelist value shall be based on the name of the corresponding UML class stereotyped «CodeList»
and the name of the codelist value (presented in UML similarly as a class attribute) according to the expression:

conceptName = conceptSchemeName “/” umlCodelistValueName
— umlCodelistValueName means the name of a codelist value.

umlCodelistValueName shall follow these representation restrictions:

— lower camel case.

6.3 Package

6.3.1 UML notation

PACKAGE is the UML mechanism to group elements and to provide a namespace for the members of the
group. A package may contain other packages. The UML notation of a PACKAGE is depicted as in Figure 2.

myPackage

Figure 2 — UML PACKAGE notation

PACKAGEs may be stereotyped to extend their semantics.

6.3.2 OWL notation

In OWL, ‘ontology’ is the resource that provides for the grouping of elements. [t may be uniquely identified
by an IRI (see Annex B). It may also provide additional information with ontology annotation such as the
version, the name or comments. It may also import other ontologies.

6.3.3 Rules

The UMLmodel ofeach ISO geographicinformation standard correspondsto one or more Ontology <OWL>
using an owl:Ontology declaration. An rdfs:label annotation property declaration provides the full name
of the corresponding UML PACKAGE.

A dct:source annotation property declaration provides the title of the Ontology <OWL> reference
document or standard and, when applicable, the hierarchy of PACKAGE names.

© ISO 2015 - All rights reserved 13

BS ISO 19150-2:2015
ISO 19150-2:2015(E)

An owl:versionInfo declaration provides the date corresponding to the reference document or standard. If
no document or standard corresponds to the Ontology <OWL>, the owl:versioninfo declaration provides
the date of the official release of the Ontology <OWL>. The date is given according to ISO 8601.[6]

In the case where a UML PACKAGE depends on one or more other packages, each dependency package
shall correspond to a specific Ontology <OWL>. The owl:imports declaration is used to set the dependency
between Ontologies <OWL>.

Table 9 sets the requirement for the description of PACKAGESs in Ontology <OWL>.

Table 9 — Package

Requirement

19150-2package:package

The UML model of each ISO geographic information standard shall correspond to one or more ontologies.

An Ontology <OWL> shall import the ontology denoted http://def.isotc211.org/is019150/-2/2012 /base to include
the resources supporting this International Standard.

An Ontology <OWL> shall be annotated with:
— the full name of the corresponding UML PACKAGE, using rdfs:label,

— the source for the ontology, using dct:source for a citation for the standard containing the definition,
according to the expression:

title = [documentNumber “,”] documentTitle [*[“ : “ packageName]]
— documentNumber means the number of the document;
— documentTitle means the title of the document;
— packageName means the name of the package;

— the version date of the reference document or the ontology, using owl:versioninfo.

NOTE Integration of both the resources of this part of ISO 19150, and other dependencies between ontologies, use the
owl:imports mechanism.

Additional annotation for the Ontology <OWL> may be provided such as:

— human-readable description, using an rdfs:comment declaration,

— version IR], using an owl:versionIRI declaration to specify the prior version of the Ontology <OWL>,
— information on prior version, using an owl:priorVersion declaration,

— backward compatibility, using an owl:backwardCompatibleWith declaration to specify the previous
version of the Ontology <OWL> that is compatible with the current version of the containing
Ontology <OWL> and using an owl:incompatibleWith declaration to specify the prior version of the
Ontology <OWL> that is incompatible with the current version of the containing Ontology <OWL>,

— deprecation, using an owl:deprecated declaration with the value equal to “true”*”xsd:boolean if the
Ontology <OWL> is deprecated, and

— superseding ontology, using a dct:replaces declaration to identify the Ontology <OWL> it supersedes
and using a dct:isReplacedBy declaration to identify the Ontology <OWL> that has superseded it.

The following example illustrates the specification of an Ontology <OWL>.

NOTE This example and all the following examples are not complete definitions. The prefix descriptions
provided in 4.3 can help reading the examples.

EXAMPLE

RDF/Turtle serialization
</is019107/2003/SpatialSchema> a owl:Ontology ;

14 © IS0 2015 - All rights reserved

http://def.isotc211.org/iso19150/-2/2012/base

BS ISO 19150-2:2015
ISO 19150-2:2015(E)

rdfs:label “ISO 19107:2003 Spatial Schema” ;
dct:source “ISO 19107:2003, Geographic information - Spatial schema” ;
owl:versionInfo “2003-05-01";

owl:imports <http://www.isotc211.org/tc211ontologies/is019107/2003/7/Geometry> .

RDF/XML serialization

<rdf:RDF xmlns="http://def.isotc211.org”>

<owl:Ontology rdf:about="/is019107/2003/SpatialSchema”>
<rdfs:label>ISO 19107:2003 Spatial Schema</rdfs:label>
<dct:source>ISO 19107:2003, Geographic information - Spatial schema</dct:source >
<owl:versionInfo>2003-05-01</owl:versionInfo>

<owl:imports rdf:resource="http://www.isotc211.org/tc211ontologies/is019107/2003/7/Geometry”/>

</owl:Ontology>
</rdf:RDF>

6.4 Class

6.4.1 UML notation

CLASS is the UML classifier that describes a set of objects sharing the same specifications of features,
constraints, and semantics. CLASSes may be abstract or concrete. The CLASS classifier may contain
attributes and operations. The UML notation of a CLASS is depicted as in Figure 3.

ClassA

Figure 3 — UML CLASS notation

6.4.2 OWL notation

Class <OWL> is the resource corresponding to a set of individuals.

6.4.3 Rules
A UML CLASS corresponds to a Class <OWL> using an owl:Class declaration.

A Class <OWL> is annotated with a label, its definition, and the source of its definition. The label
provides the name of the Class <OWL> as used in the UML CLASS and uses a rdfs:label declaration. The
definition provides the semantic of the Class <OWL> and uses a skos:definition declaration. The source
of the definition identifies the resource defining this Class <OWL>. It uses a rdfs:isDefinedBy declaration
to specify the IRI of the source document.

Table 10 sets the requirement for the description of CLASSes in Ontology <OWL>.

© IS0 2015 - All rights reserved 15

http://www.isotc211.org/tc211ontologies/iso19107/2003/7/Geometry
http://def.isotc211.org
http://www.isotc211.org/tc211ontologies/iso19107/2003/7/Geometry

BS ISO 19150-2:2015
ISO 19150-2:2015(E)

Table 10 — Class

Requirement

19150-2package:class

A UML CLASS shall correspond to a Class <OWL> using an owl:Class declaration.
A Class <OWL> shall be annotated with:
— a label, using rdfs:label,

— the source of the definition, using rdfs:isDefinedBy for the IRI of the source document.

Additional annotation for the Class <OWL> may be provided such as its definition, using a skos:definition
declaration, and if the Class <OWL> is deprecated, using an owl:deprecated annotation property
declaration with its value set to “true”“xsd:boolean.

The following example illustrates the specification of a Class <OWL>.
EXAMPLE
RDF/Turtle serialization
exPk:ClassA a owl:Class;
rdfs:label “ClassA” ;
skos:definition “ClassA definition” ;

rdfs:isDefinedBy <http://sourceDefinitionIRI> .

RDF/XML serialization

<owl:Class rdf:about="&exPk;ClassA”>
<rdfs:label>ClassA</rdfs:label>
<skos:definition>ClassA definition</skos:definition>
<rdfs:isDefined By>http://sourceDefinitionIRI</rdfs:isDefinedBy>

</owl:Class>

6.5 Abstract class

6.5.1 UML notation

In UML, a CLASS can be specified as ABSTRACT. This means that such a CLASS cannot be instantiated
and is usually subtyped by implementable or concrete CLASSes. Although they are not instantiable,
ABSTRACT CLASSes are useful for classification purposes and, as such, provide important meaning. The
UML notation of an ABSTRACT CLASS is depicted as in Figure 4 with its name shown in italic characters.

ClassA

Figure 4 — UML ABSTRACT CLASS notation

16 © IS0 2015 - All rights reserved

BS ISO 19150-2:2015
ISO 19150-2:2015(E)

6.5.2 OWL notation

OWL does not have a built-in mechanism to identify a Class <OWL> as abstract.

6.5.3 Rules

A UML ABSTRACT CLASS shall correspond to a Class <OWL>. The Class <OWL> is annotated to identify
it as abstract.

To support identification of Class <OWL> as abstract, this part of ISO 19150 defines an annotation
property iso19150-2:isAbstract formalized in the base ontology (Annex D):

OWL Definition 1

RDF/Turtle serialization
is019150-2:isAbstract a owl:AnnotationProperty ;
rdfs:domain owl:Class;

rdfs:range xsd:Boolean .

RDF/XML serialization
<owl:AnnotationProperty rdf:about="&is019150-2;isAbstract”>
<rdfs:range rdf:resource="&xsd;boolean”/>
<rdfs:domain rdf:resource="&owl;Class”/>

</owl:AnnotationProperty>

This annotation property provides the mechanism for documenting if a Class <OWL> is abstract.
is019150-2:isAbstract is set to “true”*"xsd:boolean when a Class <OWL> is abstract. The default value is
false when iso19150-2:isAbstract is not specified.

Table 11 sets the requirement for the description of ABSTRACT CLASSes in Ontology <OWL>.

Table 11 — Abstract class

Requirement
19150-2package:abstractClass

A UML ABSTRACT CLASS shall correspond to a Class <OWL>. The Class <OWL> shall be annotated to identify it
as abstract using an iso19150-2:isAbstract annotation property declaration.

The following example illustrates the identification of an abstract ‘class.’
EXAMPLE
RDF/Turtle serialization
exPk:ClassA a owl:Class;
rdfs:label “ClassA” ;
skos:definition “ClassA definition” ;

rdfs:isDefinedBy <http://sourceDefinitionIRI>;

© ISO 2015 - All rights reserved 17

BS ISO 19150-2:2015
ISO 19150-2:2015(E)

is019150-2:isAbstract “true”**xsd:boolean .

RDF/XML serialization
<owl:Class rdf:about="&exPk;ClassA”>
<rdfs:label>ClassA</rdfs:label>
<skos:definition>ClassA definition</skos:definition>
<rdfs:isDefinedBy>http://sourceDefinitionIRI</rdfs:isDefinedBy>
<is019150-2:isAbstract rdf:datatype="&xsd;boolean”>true</iso19150-2:isAbstract>

</owl:Class>

6.6 Attribute

6.6.1 UML Notation

In UML, an ATTRIBUTE is a property related to a classifier (i.e., a class or a datatype) by the way of
ownedAttribute. It associates an instance of a class to a value or set of values of the type specified in the
attribute declaration. The general notation for an attribute is:

property = [visibility] [“/”] name [“:”prop-type] [“[“ multiplicity “]”]
["=" default] [“{"“ prop-modifier *[“,” prop-modifier] “}”]

_ VlSlblllty — “+" / A\ S/ / \\#II / A\ /4

“«w,n

— “4+” means public;
“-” means private;
— “#” means protected;

«_»
~

means package;

— “/” signifies that the property is derived;

— name is the name of the property;

— prop-type is the name of the type of the property;

— multiplicity is the multiplicity of the property. If this term is omitted, it implies a multiplicity of 1
(exactly one);

— default is an expression that evaluates to the default value or values of the property;

— prop-modifier = “readOnly” / “union” / “subsets” property-name / “redefines”
property-name / “ordered” / “unique” / “nonunique” / prop-constraint

— “readOnly” means that the property is read only;
— “union” means that the property is a derived union of its subsets;

— “subsets” property-name means that the property is a proper subset of the property identified
by <property-name>;

— “redefines” property-name means that the property redefines an inherited property identified
by <property-name>;

18 © IS0 2015 - All rights reserved

BS ISO 19150-2:2015
ISO 19150-2:2015(E)

— “ordered” means that the property is ordered;
— “unique” means that there are no duplicates in a multi-valued property;

— prop-constraint is an expression that specifies a constraint that applies to the property. It is
usually shown in the compartment below the class name compartment of the class notation.

The UML notation of an ATTRIBUTE is depicted as in Figure 5.

ClassA

att1: String
att2: Integer

attn

Figure 5 — UML ATTRIBUTE notation

6.6.2 OWL notation
OWLdefines twokinds ofresources for ATTRIBUTEs: Data Property <OWL> and Object Property <OWL>.

A Data Property <OWL> connects a (literal) data value to the property of the Class <OWL>. It is defined
with an owl:DatatypeProperty declaration. A Data Property <OWL> is connected to a Class <OWL> by
specifying its domain with an rdfs:domain declaration. The target type of a Data Property <OWL> is
specified by its range with an rdfs:range declaration. Table 12 provides a mapping of the ISO 19103:—1)
datatypes to OWL datatypes.

Table 12 — Datatype mapping

ISO 19103 types OWL datatypes gcoDataypes
(GCOLiterala)
Prim- CharacterString xsd:string gco:CharacterString
ti}t,ipvees Date xsd_:date (in con_juction gco:Date
with rdf:XMLLiteral)
DateTime xsd:dateTime gco:DateTime
Integer xsd:integer gco:Integer
Decimal xsd:decimal gco:Decimal
Real xsd:double gco:Real
Boolean xsd:boolean gco:Boolean
Name GenericName <URI> gco:AbstractGenericName
types xsd:Name
LocalName xsd:NCName gco:LocalName
ScopedName <URI> gco:ScopedName
TypeName xsd:NCName gco:TypeName
MemberName xsd:Name gco:MemberName
a Allowed XML representations in conjunction with the use of is019150-
2:GCOLiteral

Additionally, this part of ISO 19150 defines the is019150-2:GCOLiteral datatype, which allows
the representation of ISO 19103:—1) datatypes in RDF based on the gco namespace as defined in

ISO/TS 19139:2007(9] (s
OWL Definition 2

ee Table 12).

© ISO 2015 - All rights reserved

BS ISO 19150-2:2015
ISO 19150-2:2015(E)

RDF/Turtle serialization
is019150-2:GCOLiteral a rdfs:Datatype ;

rdfs:label “GCOLiteral” ;

rdfs:isDefinedBy <http://standards.iso.org/iso/ts/19139/ed-1/en/> ;

owl:equivalentClass rdf:XMLLiteral .

RDF/XML serialization
<rdfs:Datatype rdf:about="&is019150-2;GCOLiteral”>

<rdfs:label>GCOLiteral</rdfs:label>
<rdfs:isDefinedBy>http://standards.iso.org/iso/ts/19139/ed-1/en/</rdfs:isDefined By >

<owl:equivalentClass rdf:resource="&rdf;XMLLiteral"/>

</rdfs:Datatype>

The cardinality (i.e. the number of occurrences) for data properties can be from zero to multiple. How to
set cardinality is specified in 6.10.

An Object Property <OWL> connects an instance or an individual of a Class <OWL> to the property of
the Class <OWL>. It is defined with an owl:ObjectProperty declaration. An Object Property <OWL> is
connected to a Class <OWL> by specifying its domain with an rdfs:domain declaration. The target type
of an Object Property <OWL> is specified by its range with an rdfs:range declaration. The possible value
types for the rdfs:range declaration are any valid Class <OWL>, The arity for Object Property <OWL>
can be from zero to multiple. How to set arities is defined in 6.9.

6.6.3 Rules

6.6.3.1 OWL data property rules

A UML ATTRIBUTE described by a data value (e.g. number, character string, Boolean value, etc.)
corresponds to a Data Property <OWL>. It is connected to the Class <OWL> it is associated with using
an rdfs:domain declaration. The type of data values is specified using an rdfs:range declaration.

A Data Property <OWL> is annotated with a label and its source document. The label provides the name
of the UML ATTRIBUTE and uses a rdfs:label declaration. The source document identifies the resource
defining this UML ATTRIBUTE. It uses rdfs:isDefinedBy to declare the IRI of the source document.

Table 13 sets the requirement for the description of ATTRIBUTEs through Data Property <OWL> in
Ontology <OWL>,

20 © IS0 2015 - All rights reserved

http://standards.iso.org/iso/ts/19139/ed-1/en/
http://standards.iso.org/iso/ts/19139/ed-1/en/</rdfs:isDefinedBy

BS ISO 19150-2:2015
ISO 19150-2:2015(E)

Table 13 — Attribute - OWL data property

Requirement

19150-2package:attribute-dataProperty

A UML ATTRIBUTE described by a data value shall correspond to a Data Property <OWL> and use an owl:Da-
tatypeProperty declaration. It shall be connected to the Class <OWL> it is associated with using an rdfs:domain
declaration. The type of data values shall be specified using an rdfs:range declaration.

A Data Property <OWL> shall be annotated with:
— a label for the name of the UML ATTRIBUTE, using rdfs:label,
— asource document defining this UML ATTRIBUTE, using rdfs:isDefinedBy to declare the IRI of the resource.

Additional annotation for the Data Property <OWL> may be provided such as:
— definition, using a skos:definition declaration to provide the semantics of the UML ATTRIBUTE, and

— deprecation, using an owl:deprecated declaration, which is set to “true”*”xsd:boolean if the Data
Property <OWL> is deprecated.

The following example illustrates the definition of a ‘'data property’ for an attribute definition of a ‘class’.
EXAMPLE
RDF/Turtle serialization
exPk:ClassA.attl a owl:DatatypeProperty ;
rdfs:label “attl”;
skos:definition “att1 definition” ;
rdfs:isDefinedBy <http://sourceDefinitionIRI>;
rdfs:domain exPk:ClassA ;

rdfs:range xsd:string .

RDF/XML serialization

<owl:DatatypeProperty rdf:about="&exPk;ClassA.att1”>
<rdfs:label>att1</rdfs:label>
<rdfs:isDefinedBy>http://sourceDefinitionIRI</rdfs:isDefinedBy>
<rdfs:domain rdf:resource="&exPk;ClassA”/>
<rdfs:range rdf:resource="&xsd;string”/>

</owl:DatatypeProperty>

NOTE As illustrated in this example, att1 is restricted to the domain of ClassA. This is consistent with the
UML metamodel that bind attributes to classes. This UML to OWL conversion preserves this binding.

6.6.3.2 OWL object property rules

A UML ATTRIBUTE described by another UML CLASS corresponds to an Object Property <OWL>. It is
connected to the Class <OWL> resources it is associated with using an rdfs:domain declaration. The
types of the Object Property <OWL> resources are specified using an rdfs:range declaration.

© ISO 2015 - All rights reserved 21

BS ISO 19150-2:2015
ISO 19150-2:2015(E)

A Object Property <OWL> is annotated with alabel and its source document. The label provides the name
of the UML ATTRIBUTE and uses a rdfs:label declaration. The source document identifies the resource
defining this UML ATTRIBUTE. It uses rdfs:isDefinedBy to declare the IRI of the source document.

Table 14 sets the requirement for the description of ATTRIBUTESs through Object Property <OWL> in
Ontology <OWL>.

Table 14 — Attribute - OWL object property

Requirement

19150-2package:attribute-objectProperty

A UML ATTRIBUTE described by another UML CLASS shall correspond to a Object Property <OWL> and use an
owl:ObjectProperty declaration. It shall be connected to the Class <OWL> resources it is associated with using an
rdfs:domain declaration. The type of the Object Property <OWL> resources shall be specified using an rdfs:range
declaration.

An Object Property <OWL> shall be annotated with:
— a label for the name of the UML ATTRIBUTE, using rdfs:label, and
— asource document defining this UML ATTRIBUTE, using rdfs:isDefinedBy to declare the IRI of the resource.

Additional annotation for the Object Property <OWL> may be provided such as:
— definition, using a skos:definition declaration to provide the semantics of the UML ATTRIBUTE, and

— deprecation, using an owl:deprecated declaration, which is set to “true” “xsd:boolean if the Object
Property <OWL> is deprecated.

The following example illustrates the definition of an ‘object property’ for an attribute definition of a ‘class’.
EXAMPLE
RDF/Turtle serialization
exPk:ClassA.attl a owl:ObjectProperty ;
rdfs:label “attl”;
skos:definition “att1 definition” ;
rdfs:isDefinedBy <http://sourceDefinitionIRI> ;
rdfs:domain exPk:ClassA ;
rdfs:range exPk:ClassB .
exPk:ClassB a owl:Class;
rdfs:label “ClassB” ;
skos:definition “ClassB definition” ;

rdfs:isDefinedBy <http://sourceDefinitionIRI> .

RDF/XML serialization
<owl:ObjectProperty rdf:about="&exPk;ClassA.att1">
<rdfs:label>att1</rdfs:label>
<rdfs:isDefinedBy>sourceDefinitionIRI</rdfs:isDefinedBy>

<rdfs:domain rdf:resource="&exPk;ClassA”/>

22 © IS0 2015 - All rights reserved

BS ISO 19150-2:2015
ISO 19150-2:2015(E)

<rdfs:range rdf:resource="&exPk;ClassB”/>
</owl:ObjectProperty>
<owl:Class rdf:about="&exPk;ClassB”>
<rdfs:label>ClassB</rdfs:label>
<skos:definition>ClassB definition</skos:definition>
<rdfs:isDefinedBy>http://sourceDefinitionIRI</rdfs:isDefinedBy>

</owl:Class>

6.7 Enumerated type
6.7.1 Enumeration

6.7.1.1 UML notation

In UML,an ENUMERATION corresponds to a datatype defining a closed list of valid mnemonic identifiers.
The list is part of the model as an enumeration literal. As such, the extension of an enumeration type
implies a schema modification for most implementation mappings. An enumeration shall be used only
when the membership is logically closed, so it is clear that there are no possible extensions. Attributes
of a given enumeration type can take values only from this list. The notation for an ENUMERATION uses
the STEREOTYPE «enumeration» and lists members as CLASS ATTRIBUTESs, as shown in Figure 6.

«enumeration»
ClassA

value1
value2
value3

Figure 6 — UML ENUMERATION notation

6.7.1.2 OWL notation

OWL supports enumerations of literals directly using a Datatype <RDFS> specified with an rdfs:Datatype
declaration and an owl:oneOf restriction declaration over a collection specification.

6.7.1.3 Rules

A UML ENUMERATION corresponds to a Datatype <RDFS> using an rdfs:Datatype declaration. The
Datatype <RDFS> specifies the restricted list of literals using an owl:oneOf declaration over an rdf:List
declaration of enumerated values.

The Datatype <RDFS> is annotated with a label and its source document. The label annotation provides
the name of the UML ENUMERATION - i.e. the name of the UML ENUMERATION CLASS and uses a
rdfs:label declaration. The source document identifies the resource defining this enumeration. It uses a
rdfs:isDefinedBy declaration to specify the IRI of the resource.

Table 15 sets the requirement for the description of ENUMERATIONS in Ontology <OWL>.

© ISO 2015 - All rights reserved 23

BS ISO 19150-2:2015
ISO 19150-2:2015(E)

Table 15 — Enumeration

Requirement

19150-2package:enumeration

A UML ENUMERATION shall correspond to a Datatype <RDFS> using an rdfs:Datatype declaration. The

Datatype <RDFS> shall specify the restricted list of literals using an owl:oneOf declaration over an rdf:List decla-
ration of enumerated values.

The Datatype <RDFS> shall be annotated with:
— a label for the name of the UML ENUMERATION, using rdfs:label, and

— a source document defining this UML ENUMERATION, using rdfs:isDefinedBy to declare the IRI of the
resource.

Additional annotation for the Datatype <RDFS> may be provided such as a definition annotation, which
provides the semantics of the UML ENUMERATION, using a skos:definition.

The following example illustrates the definition of an enumeration.
EXAMPLE 1
RDF/Turtle serialization
exPk:ClassA a rdfs:Datatype ;
rdfs:label “ClassA” ;
rdfs:isDefinedBy <http://sourceDefinitionIRI>;

owl:oneOf (“valuel” “value2” “value3”) .

RDF/XML serialization
<rdfs:Datatype rdf:about="&exPk;ClassA”>
<rdfs:label>ClassA</rdfs:label>
<rdfs:isDefinedBy>http://sourceDefinitionIRI</rdfs:isDefinedBy>
<owl:equivalentClass>
<rdfs:Datatype>
<owl:oneOf>
<rdf:List >
<rdf:first rdf:datatype="&xsd;string”>valuel</rdf:first>
<rdfirest>
<rdf:List >
<rdf:first rdf:datatype="&xsd;string”>value2</rdf:first>
<rdf:rest>
<rdf:List>
<rdf:first rdf:datatype="&xsd;string”>value3</rdf:first>
<rdf:rest rdf:resource="&rdf;nil”/>

</rdf:List>

24 © IS0 2015 - All rights reserved

BS ISO 19150-2:2015
ISO 19150-2:2015(E)

</rdf:rest>
</rdf:List>
</rdf:rest>
</rdf:List>
</owl:oneOf>
<rdfs:Datatype>
<owl:equivalentClass>

</rdfs:Datatype>

This part of ISO 19150 connects a Data Property <OWL> of a Class <OWL> to a Datatype <RDFS> of
enumerated values with the use of an rdfs:range declaration as shown in the following. In this example,
a Data Property <OWL> attl is defined and associated with ClassB. Its range is specified by the
rdfs:Datatype ClassA defined in Example 1.

The following example illustrates the definition of an enumeration.
EXAMPLE 2
RDF/Turtle serialization
exPk:ClassB.att1 a owl:DatatypeProperty ;
rdfs:label “att1”;
skos:definition “att1 definition”;
rdfs:isDefinedBy <http://sourceDefinitionIRI>;
rdfs:domain exPk:ClassB ;

rdfs:range exPk:ClassA .

RDF/XML serialization

<owl:DatatypeProperty rdf:about="&exPk;ClassB.att1”>
<rdfs:label>att1l</rdfs:label>
<skos:definition>att1 definition</skos:definition>
<rdfs:isDefinedBy>http://sourceDefinitionIRI</rdfs:isDefined By >
<rdfs:domain rdf:resource="&exPk;ClassB”/>
<rdfs:range rdf:resource="&exPk;ClassA”/>

</owl:DatatypeProperty>

6.7.2 Code list

6.7.2.1 UML notation

1SO 19103:—1) defines the UML extension CODELIST. A CODELIST corresponds to a datatype defining an
open list of likely mnemonic identifiers. It expresses a list of potential values. Its UML notation is very

© IS0 2015 - All rights reserved 25

BS ISO 19150-2:2015
ISO 19150-2:2015(E)

similar to an ENUMERATION. A CODELIST is used only when use of other values apart from those in the
initial list is allowed. The UML notation for a CODELIST uses the STEREOTYPE «CodeList» and lists the
initial members as CLASS ATTRIBUTESs, as shown in Figure 7.

«CodelList»
ClassA

+ value1
value2
+ value3

+

Figure 7 — UML CODELIST notation

6.7.2.2 OWL notation

SKOS has been broadly adopted for vocabulary formalization. SKOS supports the codelist requirements
of membership and extensibility.

6.7.2.3 Rules

A CODELIST is implemented as a Class <OWL> and as a skos:ConceptScheme. The code list Class <OWL> is
a subclass of skos:Concept. Since a concept scheme resource is an RDF individual, the concept scheme and
OWL classes corresponding to the CODELIST are identified by different URIs for compliancy with OWL
as used in this part of ISO 19150. The link between the OWL class and the concept scheme representing
the CODELIST must therefore be formally asserted with an explicit property.

The members of the CODELIST are implemented as RDF resources that are members of the code
list Class <OWL>, i.e. as individuals whose rdf:type is the code list Class <OWL>. Since the code list
Class <OWL> is a subclass of skos:Concept, this entails that each member is itself an individual whose
rdf:type is skos:Concept. The code list members are associated with the concept scheme using the
standard skos:inScheme property. The concept scheme representing the code list is associated with its
members using the standard skos:hasTopConcept property.

Table 16 sets the requirement for the description of CODELISTs in Ontology <OWL>.

Table 16 — Code list

Requirement
19150-2package:codelist

A CODELIST shall correspond to a Class <OWL>, a ConceptScheme <SKOS>, and a Collection <SKOS>. The Class <OWL>
shall be a subclass of skos:Concept. The SKOS concept scheme shall be related to the Class <OWL> using a dct:is-
FormatOfproperty. Each member of the CODELIST shall correspond to an individual whose type is the Class <OWL>
corresponding to the CODELIST, and with a skos:inScheme property whose value is the ConceptScheme <SKOS>
corresponding to the CODELIST. Additionally, each member of the CODELIST shall also be member of the Collec-
tion <SKOS> using a skos:members declaration. Each of the resources shall be annotated with the following:

— a label, using rdfs:label,

— a source for the definition, using rdfs:isDefinedBy for the IRI of the resource.

The following example illustrates the construction of a CodeList using the OWL and SKOS elements.

EXAMPLE
RDF/Turtle serialization

exPk:ClassA a owl:Class;

subClassOf skos:Concept ;

26 © IS0 2015 - All rights reserved

BS ISO 19150-2:2015
ISO 19150-2:2015(E)

rdfs:label “ClassA”;

rdfs:isDefinedBy <http://sourceDefinitionIRI>.
exPkCode:ClassA a skos:ConceptScheme ;

skos:prefLabel “ClassA - ConceptScheme” ;

rdfs:isDefinedBy <http://sourceDefinitionIRI>;

dct:isFormatOf exPk:ClassA .
exPkCode:ClassA/valuel a exPk:ClassA, skos:Concept ;

skos:prefLabel “valuel”;

skos:inScheme exPkCode:ClassA ;

rdfs:isDefinedBy <http://sourceDefinitionIRI> .
exPkCode:ClassA/value2 a exPk:ClassA, skos:Concept ;

skos:prefLabel “value2”;

skos:inScheme exPkCode:ClassA ;

rdfs:isDefinedBy <http://sourceDefinitionIRI> .
exPkCode:ClassA/value3 a exPk:ClassA , skos:Concept ;

skos:prefLabel “value3”;

skos:inScheme exPkCode:ClassA ;

rdfs:isDefinedBy <http://sourceDefinitionIRI>.
exPkCode: ClassACollection a skos:Collection ;

skos:prefLabel “ClassA - Concepts” ;

skos:members exPkCode: ClassA/valuel , exPkCode: ClassA/value2 , exPkCode: ClassA/value3.

RDF/XML serialization

<owl:Class rdf:about="&exPk;ClassA”>
<rdfs:label>ClassA</rdfs:label>
<rdfs:isDefinedBy>http://sourceDefinitionIRI</rdfs:isDefinedBy>
<rdfs:subClassOf rdf:resource="&skos;Concept”/>

</owl:Class>

<skos:ConceptScheme rdf:about="&exPkCode;ClassA”>
<skos:prefLabel>ClassA - ConceptScheme</skos:prefLabel>
<rdfs:isDefinedBy>http://sourceDefinitionIRI</rdfs:isDefinedBy>
<dct:isFormatOf rdf:resource="&exPk;ClassA”/>

</skos:ConceptScheme>

<exPk:ClassA rdf:about="&exPkCode;ClassA/valuel”>

<rdf:type rdf:resource="skos:Concept”/>

© IS0 2015 - All rights reserved 27

BS ISO 19150-2:2015
ISO 19150-2:2015(E)

<skos:prefLabel>valuel</skos:prefLabel>
<skos:inScheme rdf:resource="exPkCode:ClassA”/>
<rdfs:isDefinedBy>http://sourceDefinitionIRI</rdfs:isDefinedBy>
</exPk:ClassA>
<exPk:ClassA rdf:about="&exPkCode;ClassA/value2”>
<rdf:type rdf:resource="skos:Concept”/>
<skos:prefLabel>value2</skos:prefLabel>
<skos:inScheme rdf:resource="exPkCode:ClassA"/>
<rdfs:isDefinedBy>http://sourceDefinitionIRI</rdfs:isDefinedBy>
</exPk:ClassA>
<exPk:ClassA rdf:about="&exPkCode;ClassA/value3”>
<rdf:type rdf:resource="skos:Concept”/>
<skos:prefLabel>value3</skos:prefLabel>
<skos:inScheme rdf:resource="exPkCode:ClassA"/>
<rdfs:isDefinedBy>http://sourceDefinitionIRI</rdfs:isDefinedBy>
</exPk:ClassA>
<skos:Collection rdf:about="&exPkCode;ClassACollection”>
<skos:prefLabel>ClassA - Concepts</skos:prefLabel>
<skos:members rdf:parseType="Collection”>
<skos:Concept rdf:resource="&exPkCode;ClassA/valuel”/>
<skos:Concept rdf:resource="&exPkCode;ClassA/value2”/>
<skos:Concept rdf:resource="&exPkCode;ClassA/value3”/>
</skos:members>

</owl:Collection>

Inthe example shown above all the members ofthe code listappeared inthe UML class. The corresponding
SKOS resources are identified by URIs clearly related to the URI denoting the concept scheme, which is
also in the same domain with the same owner as the classes and properties in the ontology. This is
appropriate for the code list members defined in the original UML model. However, additional code list
members will not necessarily be denoted by a URI in the same domain.

Table 17 sets the requirement for additional CODELISTs items in Ontology <OWL>.

Table 17 — Code list extension

Requirement

19150-2package:codelistextension

If a CODELIST is extended with additional items that were not identified in the original model, the URI denoting
a new member shall be in a URI domain appropriate to its governance. This should not be the same as the URI
domain for the initial members unless the new members are defined by the same authority.

28 © IS0 2015 - All rights reserved

BS ISO 19150-2:2015
ISO 19150-2:2015(E)

The SKOS semantic relations are available to record relations amongst items in code lists, where these are
known. The mapping relations (broadMatch, closeMatch, exactMatch, narrowMatch, relatedMatch) are
used to map to related items in other schemes, while the thesaurus relations (broaderTransitive, broader,
narrower, narrowerIransitive, related) are used to record relationships with other items in the same scheme.

Relationships amongst members of a code list may be recorded using skos:broaderTransitive, skos:broader,
skos:narrower, skos:narrowerTransitive, skos:related properties.

Relationships between members of a code list and members of other concept schemes may be recorded
usingskos:broadMatch, skos:closeMatch, skos:exactMatch, skos:narrowMatch, skos:relatedMatch properties.

6.8 Union class

6.8.1 UML notation

In UML, a UNION CLASS is composed of member classes, one of which must be instantiated at run time.
A UNION CLASS thus supports selection from an arbitrary set of CLASSes. This may be compared with
generalization hierarchies, in which specification of a generalized CLASS in a model supports selection
of one of its specializations. The UML notation for a UNION uses the STEREOTYPE «Union» and lists the
members as CLASS ATTRIBUTEs, as shown in Figure 8.

«uniony»
ClassA

+ member1
+ member2
+ member3

Figure 8 — UML UNION notation

6.8.2 OWL notation

In OWL, a UNION is implemented using the owl:unionOf declaration.

6.8.3 Rules

A UML UNION class corresponds to a Class <OWL> using an owl:unionOf property whose value is a
collection of classes.

Table 18 sets the requirement for UNION CLASS in Ontology <OWL>.

Table 18 — Union class

Requirement

19150-2package:union

A UNION class shall be implemented as a Class <OWL> with the members of the union provided as values of an
owl:unionOf property.

The following example illustrates the construction of a Union using the OWL elements.

EXAMPLE
RDF/Turtle serialization

owl:equivalentClass [

aowl:Class;

© ISO 2015 - All rights reserved 29

BS ISO 19150-2:2015
ISO 19150-2:2015(E)

owl:unionfOf (exPk:ClassA exPk:ClassB)
].
exPk:ClassA a owl:Class .

exPk:ClassB a owl:Class .

RDF/XML serialization

<owl:equivalentClass>
<owl:Class>
<owl:unionOf rdf:parseType="Collection”>
<owl:Class rdf:about="&exPk;ClassA”/>
<owl:Class rdf:about="&exPk;ClassB”/>
</owl:unionOf>
</owl:Class>

</owl:equivalentClass>

6.9 Multiplicity

6.9.1 UML notation

In UML, MULTIPLICITY specifies the allowable cardinalities for the instantiation of an element. It is
expressed by the pair of lower and upper bounds of the number of times the element can be instantiated.
The lower and upper bounds are non-negative integers. The lower bound shall be equal or greater than
“0”; the upper bound shall be greater than “0”, shall be equal or greater than the lower bound, and can be
infinite. The default values for lower and upper bounds is “1.” The notation for multiplicity is as follows:

”

Multiplicity = lower-bound “..” upper-bound

— Jower-bound means minimum number of times the element can be instantiated;

— upper-bound means maximum number of times the element can be instantiated; the star character
(*) can be used to represent an unlimited (or infinite) value.

6.9.2 OWL notation

OWL defines cardinalities of elements through property Restrictions <OWL>. It allows the specification
of minimum, maximum, and exact cardinalities. A cardinality value is always a non-negative integer.
The minimum cardinality specifies the smallest number of individuals that are connected to the class
individuals through the property. The maximum cardinality specifies the largest number of individuals
thatare connected to the class individuals through the property. The exact cardinality specifies the strict
number of individuals that are connected to the class individuals through the property. Cardinalities
can be qualified or unqualified. Qualified cardinality only applies to the type connected to the property
by its range definition whereas unqualified applies to all individuals that are connected to the property.

6.9.3 Rules
A UML MULTIPLICITY corresponds to a Restrictions <OWL> on a property (Data Property <OWL>

or Object Property <OWL>) using an owl:Restriction declaration in combination with cardinality
specifications. Cardinality specifications are restricted to the use of cardinalities only with the use of

30 © IS0 2015 - All rights reserved

BS ISO 19150-2:2015
ISO 19150-2:2015(E)

owl:cardinality, owl:minCardinality, and owl:maxCardinality declarations. This rule aligns with the Data
Property <OWL> and Object Property <OWL> rules for range specification.

NOTE When no cardinalities are specified, the default values are “0” for the minimum cardinality and
“unlimited” for the maximum cardinality.

Table 19 sets the requirement for the description of MULTIPLICITY in Ontology <OWL>.

Table 19 — Multiplicity

Requirement
19150-2package:multiplicity

UML MULTIPLICITY shall correspond to Restrictions <OWL> on a property (Data Property <OWL> or Object
Property <OWL>) using an owl:Restriction declaration in combination cardinality specifications. Cardinality
specifications are restricted to the use of cardinalities only using owl:cardinality, owl:minCardinality, and owl:-

maxCardinality together with owl:allValuesFrom.

Examples 1 to 4 below show how to specify cardinality restriction on Class <OWL> for properties.
In Example 1, the minimum cardinality of the property attl of ClassA is set to “1” and the maximum
cardinality is unlimited, since the maximum cardinality is not specified.

NOTE In examples 1 to 5, the definition of the exPk:ClassA.att1 property follows its definition from either of
the examples in 6.6.3.1 and 6.6.3.2.

EXAMPLE 1
RDF/Turtle serialization
exPk:ClassA a owl:Class ;
rdfs:label “ClassA” ;
skos:definition “Class A definition” ;
rdfs:isDefinedBy <http://sourceDefinitionIRI> ;
rdfs:subClassOf
[
a owl:Restriction ;
owl:onProperty exPk:ClassA.att1 ;
owl:minCardinality “1"**xsd:nonNegativelnteger ;

]
rdfs:subClassOf

[

a owl:Restriction ;
owl:onProperty exPk:ClassA.att1 ;

owl:allValuesFrom exPk:ClassB ;

RDF/XML serialization

<owl:Class rdf:about="&exPk;ClassA”>

© ISO 2015 - All rights reserved 31

BS ISO 19150-2:2015
ISO 19150-2:2015(E)

<rdfs:label>ClassA</rdfs:label>
<skos:definition>Class A definition</skos:definition>
<rdfs:isDefinedBy>http://sourceDefinitionIRI</rdfs:isDefinedBy>
<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="&exPk;ClassA.att1"/>

<owl:minCardinality rdf:datatype="&xsd;nonNegativelnteger”>1</owl:minCardinality>

</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="&exPk;ClassA.att1"/>
<owl:allValuesFrom rdf:resource="&exPk;ClassB”/>
</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

In the following example, the maximum cardinality of the attribute att1 of ClassA is set to “3” and the

minimum cardinality is “0”, since to minimum cardinality is not specified.
EXAMPLE 2
RDF/Turtle serialization
exPk:ClassA a owl:Class ;
rdfs:label “ClassA”;
skos:definition “Class A definition” ;
rdfs:isDefinedBy <http://sourceDefinitionIRI>;
rdfs:subClassOf
[
a owl:Restriction ;
owl:onProperty exPk:ClassA.att1 ;
owl:maxCardinality “3”"**xsd:nonNegativelnteger ;
15
rdfs:subClassOf
[
a owl:Restriction ;

owl:onProperty exPk:ClassA.attl ;

32

© ISO 2015 - All rights reserved

BS ISO 19150-2:2015
ISO 19150-2:2015(E)

owl:allValuesFrom exPk:ClassB ;

RDF/XML serialization
<owl:Class rdf:about="& exPk;ClassA”>
<rdfs:label>ClassA</rdfs:label>
<skos:definition>Class A definition</skos:definition>
<rdfs:isDefinedBy>http://sourceDefinitionIRI</rdfs:isDefinedBy>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="&exPk;ClassA.att1"/>
<owl:maxCardinality rdf:datatype="&xsd;nonNegativelnteger”>3</owl:maxCardinality>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="&exPk;ClassA.att1"/>
<owl:allValuesFrom rdf:resource="&exPk;ClassB”/>
</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

NOTE The OWL syntax for restrictions is somewhat convoluted. In natural language this can be read as
“ClassA is a subclass of the classes about which the only thing we know is that their members have a maximum of
three attl properties”.

In the following example, the minimum cardinality of the attribute att1 of ClassA is set to “1” and the
maximum cardinality is set to “3".

EXAMPLE 3
RDF/Turtle serialization
exPk:ClassA a owl:Class;
rdfs:label “ClassA” ;
skos:definition “Class A definition” ;
rdfs:isDefinedBy <http://sourceDefinitionIRI>;
rdfs:subClassOf
[

a owl:Restriction ;

© IS0 2015 - All rights reserved 33

BS ISO 19150-2:2015
ISO 19150-2:2015(E)

owl:onProperty exPk:ClassA.attl ;
owl:minCardinality “1"**xsd:nonNegativelnteger ;
1
rdfs:subClassOf
[
a owl:Restriction ;
owl:onProperty exPk:ClassA.attl ;
owl:maxCardinality “3”"**xsd:nonNegativelnteger ;
I
rdfs:subClassOf
[
a owl:Restriction ;
owl:onProperty exPk:ClassA.att1 ;

owl:allValuesFrom exPk:ClassB ;

RDF/XML serialization

<owl:Class rdf:about="&exPk;ClassA”>
<rdfs:label>ClassA</rdfs:label>
<skos:definition>Class A definition</skos:definition>
<rdfs:isDefinedBy>http://sourceDefinitionIRI</rdfs:isDefinedBy>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="&exPk;ClassA.att1”/>
<owl:minCardinality rdf:datatype="&xsd;nonNegativelnteger”’>1</owl:minCardinality>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="&exPk;ClassA.att1"/>
<owl:maxCardinality rdf:datatype="&xsd;nonNegativelnteger”>3</owl:maxCardinality>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>

<owl:Restriction>

34 © IS0 2015 - All rights reserved

BS ISO 19150-2:2015
ISO 19150-2:2015(E)

<owl:onProperty rdf:resource="&exPk;ClassA.att1”/>
<owl:allValuesFrom rdf:resource="&exPk;ClassB”/>
</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

In the following two examples, the cardinality of the property att1 of ClassA is set to “1” exactly, i.e. the
minimum and the maximum cardinality is “1”.

EXAMPLE 4
RDF/Turtle serialization
exPk:ClassA a owl:Class ;
rdfs:label “ClassA” ;
skos:definition “Class A definition” ;
rdfs:isDefinedBy <http://sourceDefinitionIRI>;
rdfs:subClassOf
[
a owl:Restriction ;
owl:onProperty exPk:ClassA.att1 ;
owl:cardinality “1”**xsd:nonNegativelnteger ;
I
rdfs:subClassOf
[
a owl:Restriction ;
owl:onProperty exPk:ClassA.att1 ;

owl:allValuesFrom exPk:ClassB ;

RDF/XML serialization
<owl:Class rdf:about="&exPk;ClassA”>
<rdfs:label>ClassA</rdfs:label>
<skos:definition>Class A definition</skos:definition>
<rdfs:isDefinedBy>http://sourceDefinitionIRI</rdfs:isDefinedBy>
<rdfs:subClassOf>
<owl:Restriction>

<owl:onProperty rdf:resource="&exPk;ClassA.att1”/>

© IS0 2015 - All rights reserved 35

BS ISO 19150-2:2015
ISO 19150-2:2015(E)

<owl:cardinality rdf:datatype="&xsd;nonNegativelnteger”>1</owl:cardinality>

</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="&exPk;ClassA.att1"/>
<owl:allValuesFrom rdf:resource="&exPk;ClassB”/>
</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

EXAMPLE 5
RDF/Turtle serialization
exPk:ClassA a owl:Class;
rdfs:label “ClassA”;
skos:definition “Class A definition” ;
rdfs:isDefinedBy <http://sourceDefinitionIRI> ;
rdfs:subClassOf
[
a owl:Restriction ;
owl:onProperty exPk:ClassA.attl ;
owl:minCardinality “1"*"xsd:nonNegativelnteger ;
I
rdfs:subClassOf
[
a owl:Restriction ;
owl:onProperty exPk:ClassA.att1 ;
owl:maxCardinality “1"*"xsd:nonNegativelnteger ;
I;
rdfs:subClassOf
[
a owl:Restriction ;
owl:onProperty exPk:ClassA.att1 ;

owl:allValuesFrom exPk:ClassB ;

36

© ISO 2015 - All rights reserved

BS ISO 19150-2:2015
ISO 19150-2:2015(E)

RDF/XML serialization

<owl:Class rdf:about="&exPk;ClassA”>
<rdfs:label>ClassA</rdfs:label>
<skos:definition>Class A definition</skos:definition>
<rdfs:isDefinedBy>http://sourceDefinitionIRI</rdfs:isDefinedBy>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="&exPk;ClassA.att1”/>
<owl:minCardinality rdf:datatype="&xsd;nonNegativelnteger”>1</owl:minCardinality>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="&exPk;ClassA.att1”/>
<owl:maxCardinality rdf:datatype="&xsd;nonNegativelnteger”>1</owl:maxCardinality>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="&exPk;ClassA.att1”/>
<owl:allValuesFrom rdf:resource="&exPk;ClassB”/>
</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

6.10 Relationship
6.10.1 Generalization/inheritance

6.10.1.1 UML notation

In UML, a GENERALIZATION is a classification relationship that exists from a more general to a more
specific classifier. The specific classifier inherits the features of the more general classifier. Each instance
of the specific classifier is de facto also an instance of the general classifier. The UML notation for a
GENERALIZATION is shown in Figure 9.

© ISO 2015 - All rights reserved 37

BS ISO 19150-2:2015
ISO 19150-2:2015(E)

ClassA

+ att1
att2
+ att3

+

ClassB

+ att1
+ att2
+ att3
:ClassA
+ att1
+ att2
+ att3

Figure 9 — UML GENERALIZATION notation

6.10.1.2 OWL notation

OWL allows the generalization relation between classes by the way of the SubClassOf <RDFS> axiom.
This axiom expresses that a class ClassB is a subclass of a class ClassA and as such ClassB is more specific
than ClassA. Similarly to the UML GENERALIZATION, it allows the definition of a classification system or
taxonomy of classes and subclasses.

6.10.1.3 Rules
A UML GENERALIZATION is implemented as a SubClassOf <RDFS> using an rdfs:subClassOf declaration.
Table 20 sets the requirement for the description of GENERALIZATIONSs in Ontology <OWL>.

Table 20 — Relationship - generalization

Requirement

19150-2package:relationship-generalization
A UML GENERALIZATION shall be implemented as a SubClassOf <RDFS> using an rdfs:subClassOf declaration.

The following example illustrates the definition of a ‘subclass’ between the specialized ‘class’ ClassB and
the generalized ‘class’ ClassA.

EXAMPLE
RDF/Turtle serialization
exPk:ClassA a owl:Class.
exPk:ClassB a owl:Class ;

rdfs:subClassOf exPk:ClassA.

RDF/XML serialization

<owl:Class rdf:about="&exPk;ClassA”/>

38 © IS0 2015 - All rights reserved

BS ISO 19150-2:2015
ISO 19150-2:2015(E)

<owl:Class rdf:about="&exPk;ClassB">
<rdfs:subClassOf rdf:resource="&exPk;ClassA”/>

</owl:Class>

6.10.2 Association

6.10.2.1 UML notation

An ASSOCIATION in UML specifies how classifiers are semantically related together. UML allows N-ary
(i.e. binary, ternary, quaternary, etc.) associations that relate together multiple classifiers. IS0 19103:—1)
requires to avoid N-ary association and to use binary association to limit the complexity of models. An
association between two classes can be named and can be either unidirectional - i.e. navigable from one
end to the other end, or bidirectional - i.e. navigable in both directions. Each end that is navigable must
have a multiplicity and a role set as shown in Figure 10.

. +rB1
ClassA Association1 ClassB

0.*

+A Association2 *rB2
0..1 0.*

Figure 10 — UML association notation

6.10.2.2 OWL notation

The manner OWL deals with ASSOCIATIONSs, more specifically with ASSOCIATION ROLEs, is similar to
ATTRIBUTESs. An ASSOCIATION ROLE takes the form of an Object Property <OWL>.

OWL has no specific mechanism for the description of an ASSOCIATION name. ASSOCIATION names are
defined in UML mostly for documentation purposes.

6.10.2.3 Rules

AROLE in a UML ASSOCIATION corresponds to an Object Property <OWL>. The Object Property <OWL>
connects the Classes <OWL> it associates by specifying its domain -i.e. the Class <OWL> that uses the
role, and its range -i.e. the Class <OWL> that plays the role.

The Object Property <OWL> is annotated with a label and its source document. The label provides the
name of the UML ASSOCIATION ROLE and uses a rdfs:label declaration. The source document identifies
the resource defining this ASSOCIATION ROLE. It uses a rdfs:isDefinedBy declaration.

If the association is named, the Object Property <OWL> is annotated with the name of the ASSOCIATION.
Consequently, this part of ISO 19150 defines an annotation property associationName formalized in the
base ontology (Annex D).

OWL Definition 3
RDF/Turtle serialization
is019150-2:associationName a owl:AnnotationProperty ;
rdfs:domain owl:Class ;

rdfs:range xsd:String .

© IS0 2015 - All rights reserved 39

BS ISO 19150-2:2015
ISO 19150-2:2015(E)

RDF/XML serialization
<owl:AnnotationProperty rdf:about="&is019150-2;associationName”/>
<rdfs:range rdf:resource="&xsd;string”/>
<rdfs:domain rdf:resource="&owl;Class”/>

</owl:AnnotationProperty>

It provides the documentation mechanism for association name. Therefore, the Object Property <OWL>
corresponding to ASSOCIATION ROLE is annotated with the name of the ASSOCIATION, using the
annotation property iso19150-2:associationName.

In a bidirectional ASSOCIATION, one of the two Object Property <OWL> corresponding to ASSOCIATION
ROLE is set as the inverse of the other using an owl:inverseOf declaration. As such, when an Object
Property <OWL> connects an individual I1 to an individual 12, its inverse Object Property <OWL>
connects also 12 to I1.

Table 21 sets the requirement for the description of ASSOCIATIONSs in Ontology <OWL>.

Table 21 — Relationship - association

Requirement

19150-2package:relationship-association

A navigable ROLE in a UML ASSOCIATION shall correspond to an Object Property <OWL>, using an owl:Object-
Property declaration. It shall be connected to the Class <OWL> resources it is associated with using an rdfs:domain
declaration. The type of the Object Property <OWL> resources shall be specified using an rdfs:range declaration.

The Object Property <OWL> shall be annotated with:
— a label for the name of the ASSOCIATION ROLE, using rdfs:label, and

— a source document defining this ASSOCIATION ROLE, using rdfs:isDefinedBy to declare the IRI of the
resource.

If the ASSOCIATION is named, the Object Property <OWL> shall be annotated with the name of the association,
using iso19150-2:associationName.

In a bidirectional ASSOCIATION, one of the two Object Property <OWL> shall be declared as the inverse of the
other, using an owl:inverseOf declaration.

Additional annotation for the Object Property <OWL> corresponding to the ASSOCIATION ROLE may be
provided such as:

— definition, using a skos:definition declaration to provides the semantics of the UML ATTRIBUTE, and

— deprecation, using an owl:deprecated declaration, which is set to “true” “xsd:boolean if the Object
Property <OWL> is deprecated.

The following example illustrates the OWL representation of a unidirectional association between
ClassA and ClassB. It defines the classes ClassA and ClassB with the Object Property <OWL> rB1 where
its domain is ClassA and its range is ClassB.

EXAMPLE 1
RDF/Turtle serialization
exPk:ClassA a owl:Class.

exPk:ClassB a owl:Class .

40 © IS0 2015 - All rights reserved

BS ISO 19150-2:2015

ISO 19150-2:2015(E)

exPk:ClassA.rB1 a owl:ObjectProperty ;
rdfs:label “rB1”;
rdfs:isDefinedBy <http://sourceDefinitionIRI>;
is019150-2:associationName “Association1”;
rdfs:domain exPk:ClassA ;

rdfs:range exPk:ClassB .

RDF/XML serialization

<owl:Class rdf:about="&exPk;ClassA”/>

<owl:Class rdf:about="&exPk;ClassB”/>

<owl:ObjectProperty rdf:about="&exPk;ClassA.rB1">
<rdfs:label>rBl</rdfs:label>
<rdfs:isDefinedBy>http://sourceDefinitionIRI</rdfs:isDefinedBy>
<is019150-2:associationName>Association1</is019150-2:associationName>
<rdfs:domain rdf:resource="&exPk;ClassA”/>
<rdfs:range rdf:resource="&exPk;ClassB”/>

</owl:ObjectProperty>

The following example illustrates a bidirectional association in OWL.
EXAMPLE 2
RDF/Turtle serialization
exPk:ClassA a owl:Class.
exPk:ClassB a owl:Class .
exPk:ClassA.rB2 a owl:ObjectProperty ;
rdfs:label “rB2”;
rdfs:isDefinedBy <http://sourceDefinitionIRI>;
is019150-2:associationName “Association2” ;
rdfs:domain exPk:ClassA ;
rdfs:range exPk:ClassB.
exPk:ClassB.rA> a owl:ObjectProperty ;
rdfs:label “rA”;
rdfs:isDefinedBy <http://sourceDefinitionIRI> ;
is019150-2:associationName “Association2”;
rdfs:domain exPk:ClassB ;

rdfs:range exPk:ClassA ;

© ISO 2015 - All rights reserved

41

BS ISO 19150-2:2015
ISO 19150-2:2015(E)

owl:inverseOf exPk:ClassA.rB2 .

RDF/XML serialization

<owl:Class rdf:about="&exPk;ClassA”/>

<owl:Class rdf:about="&exPk;ClassB"/>

<owl:ObjectProperty rdf:about="&exPk;ClassA.rB2”>
<rdfs:label>rB2</rdfs:label>
<rdfs:isDefinedBy>http://sourceDefinitionIRI</rdfs:isDefinedBy>
<is019150-2:associationName>Association2</19150-2:associationName>
<rdfs:domain rdf:resource="&exPk;ClassA”/>
<rdfs:range rdf:resource="&exPk;ClassB"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="&exPk;ClassB.rA”>
<rdfs:label>rA</rdfs:label>
<rdfs:isDefinedBy>http://sourceDefinitionIRI</rdfs:isDefinedBy>
<is019150-2:associationName>Association2</is019150-2:associationName>
<rdfs:domain rdf:resource="&exPk;ClassB”/>
<rdfs:range rdf:resource="&exPk;ClassA”/>
<owl:inverseOf rdf:resource="&exPk;ClassA.rB2”/>

</owl:ObjectProperty>

Multiplicities in associations are specified through property restrictions as described in 6.9.
6.10.3 Aggregation

6.10.3.1 UML notation

An AGGREGATION represents a part-whole association between two CLASSes. UML defines two kinds of
AGGREGATION. The first one is the ordinary aggregation also called “shared” AGGREGATION. This kind
of aggregation associates the various parts that make a whole feature. The second kind of aggregation
is the COMPOSITION also called the “composite” AGGREGATION. This kind of aggregation is a stronger
form of aggregation compared to an ordinary aggregation. It requires a part instance be included in at
most one composite at a time. When a composite is deleted, all its parts are deleted at the same time.

The UML notation uses a hollow diamond for a “shared” AGGREGATION and a filled diamond for a
“composite” AGGREGATION at the whole end of the association as illustrated in Figure 11.

42 © IS0 2015 - All rights reserved

BS ISO 19150-2:2015
ISO 19150-2:2015(E)

ClassA ClassB
Association1 +rB
0.*

ClassA ClassB
Association1 B
0..*

Figure 11 — UML notation for shared (top) and composite (bottom) AGGREGATIONS

6.10.3.2 OWL notation

There is no specific mechanism in OWL for aggregation.

6.10.3.3 Rules

AGGREGATIONS follow the same rules as for ASSOCIATIONS described in 6.10.2. However in the specific
case of AGGREGATION, the Object Property <OWL> playing the partrole is annotated with an annotation
providing details on the kind of aggregation.

This part of ISO 19150 defines an annotation property aggregationType formalized in the base
ontology (Annex D).

OWL Definition 4
RDF/Turtle serialization
is019150-2:aggregationType a owl:AnnotationProperty ;
rdfs:domain owl:Class;

rdfs:range xsd:String .

RDF/XML serialization
<owl:AnnotationProperty rdf:about="&is019150-2;aggregationType”/>
<rdfs:range rdf:resource="&xsd;string”/>
<rdfs:domain rdf:resource="&owl;Class”/>

</owl:AnnotationProperty>

This annotation property provides the documentation mechanism for the kind of aggregation. The
acceptable values for this annotation are:

— “partOfSharedAggregation” means shared aggregation;
— “partOfCompositeAggregation” means composite aggregation.

Table 22 sets the requirement for the description of AGGREGATIONSs in Ontology <OWL>.

© ISO 2015 - All rights reserved 43

BS ISO 19150-2:2015
ISO 19150-2:2015(E)

Table 22 — Relationship - aggregation

Requirement

19150-2package:relationship-aggregation

UML AGGREGATIONS shall follow the requirement for UML ASSOCIATIONS (requirement 19150-2package:rela-
tionship-association documented in Table 21).

Additionally, the Object Property <OWL> playing the part role shall be annotated using an iso19150-2:aggrega-
tionType according to the expression:

1s019150-2:aggregationType = “partOfSharedAggregation” / “partOfCompositeAggregation”

— “partOfSharedAggregation” means shared aggregation;

— “partOfCompositeAggregation” means composite aggregation.

The following example illustrates an association role playing the parts in an aggregation association in OWL:
EXAMPLE
RDF/Turtle serialization
exPk:ClassA.rB a owl:ObjectProperty ;
rdfs:label “rB” ;
rdfs:isDefinedBy <http://sourceDefinitionIRI>;
is019150-2:aggregationType “partOfSharedAggregation” ;
is019150-2:associationName “Associationl” ;
rdfs:domain exPk:ClassA ;

rdfs:range exPk:ClassB.

RDF/XML serialization
<owl:ObjectProperty rdf:about="&exPk;ClassA.rB”>

<rdfs:label>rB</rdfs:label>
<rdfs:isDefinedBy>http://sourceDefinitionIRI</rdfs:isDefinedBy>
<is019150-2:aggregationType>partOfSharedAggregation</iso19150-2:aggregationType>
<is019150-2:associationName>Association1</is019150-2:associationName>
<rdfs:domain rdf:resource="&exPk;ClassA”/>

<rdfs:range rdf:resource="&exPk;ClassB"/>

</owl:ObjectProperty>

6.11 Constraint

6.11.1 UML notation

A UML CONSTRAINT is a condition or restriction for the purpose of declaring some of the semantics of an
element. [t can be expressed in natural language text or in a machine readable language. Ina UML model, a
constraint may appear as close as possible to the element it constrains in brace symbol (“{aConstraint}”).
It may appear just after the element in a class symbol or as a note symbol attached to the element.

44 © IS0 2015 - All rights reserved

BS ISO 19150-2:2015
ISO 19150-2:2015(E)

6.11.2 OWL notation

Although OWL has mechanisms for specifying constraints (e.g. functional, transitive, reflexive
objectProperties and functional datatype properties), these constraints are somewhat different to or
have a different purpose of UML CONSTRAINTS.

6.11.3 Rules

A UML CONSTRAINT on a UML PACKAGE, CLASS, ASSOCIATION, or ATTRIBUTE is expressed in an
Ontology <OWL>, Class <OWL>, Data Property <OWL>, or Object Property <OWL> using an annotation.

This partofISO 19150 defines an annotation property constraint formalized in the base ontology (Annex D).
OWL Definition 5
RDF/Turtle serialization
is019150-2:constraint a owl:AnnotationProperty ;
rdfs:domain owl:Class;

rdfs:range xsd:String .

RDF/XML serialization

<owl:AnnotationProperty rdf:about="&is019150-2;constraint”/>
<rdfs:range rdf:resource="&xsd;string”/>
<rdfs:domain rdf:resource="&owl;Class”/>

</owl:AnnotationProperty>

This annotation property provides a mechanism for documenting constraints for classes and properties.

Table 23 sets the requirement for the description of CONSTRAINTSs in Ontology <OWL>.

Table 23 — Constraint

Requirement

19150-2package:constraint

A UML CONSTRAINT on a UML CLASS or ATTRIBUTE shall be expressed in a Class <OWL>, Data Property <OWL>,
or Object Property <OWL> using an iso19150-2:constraint annotation.

The following example illustrates a constraint on an object property in OWL.
EXAMPLE
RDF/Turtle serialization
exPk:ClassA.attl a owl:ObjectProperty ;
rdfs:label “att1”;
rdfs:isDefinedBy <http://sourceDefinitionIRI>;
is019150-2:constraint “aConstraint” ;

rdfs:domain exPk:ClassA ;

© IS0 2015 - All rights reserved 45

BS ISO 19150-2:2015
ISO 19150-2:2015(E)

rdfs:range exPk:ClassB.

RDF/XML serialization
<owl:ObjectProperty rdf:about="&exPk;ClassA.att1">
<rdfs:label>att1</rdfs:label>
<rdfs:isDefinedBy>http://sourceDefinitionIRI</rdfs:isDefinedBy>
<is019150-2:constraint>aConstraint</iso19150-2:constraint>
<rdfs:domain rdf:resource="&exPk;ClassA”/>
<rdfs:range rdf:resource="&exPk;ClassB"/>

</owl:ObjectProperty>

7 Rules for formalizing an application schema in OWL

7.1 General

An application schema provides a model for geographic data in a specific universe of discourse or
application domain. It supports the access and the exchange of geographic data between suppliers and
users, which can then be understood by human and computer systems. ISO 19109:—2) provides a meta
model for application schemas (i.e. the General Feature Model), and a set of rules for formalizing a specific
application schema using a UML profile defined in ISO 19103:—1) ISO 19103:—1) defines constraints on
the UML profile used in conceptual modelling of geographic application schemas, and ISO 19109:—2) and
ISO 19136:2007[8] provide additional elements used in application schemas. UML models that conform to
ISO 19109:—2) are in packages stereotyped «applicationSchema». Taken together these allow definition
of a specific UML-OWL encoding rule for geographic information models.

This may be contrasted with generic UML-OWL encoding rules, such as those developed by OMG, which
support all the options implied by the UML meta model. Three important aspects of the profiles are:

— IS0 19103:—1 requires that every navigable association-end must have a role-name;

— IS0 19136:2007[8] defines the stereotype «featureType» for classes that instantiate the meta class
FeatureType from ISO 19109:—2);

— ISO 19109:—2) defines the stereotype «applicationSchema» for packages that formalize an
Application Schema.

OWL has been especially designed to enable data to be understood and processable by machines
within the Semantic Web environment. It is therefore necessary to provide a parallel set of rules for the
formalization of geographic information ontologies using OWL.

Clause 7 defines rules that shall be applied to develop ISO geographic information ontologies in OWL.
The same basic meta model is used (i.e. the General Feature Model) and the rules described below follow
the general structure of ISO 19109:—2), Clause 7. Annex E provides an example of an ISO geographic
information ontologY in OWL derived from an application schema in UML.

The requirements for representing an application schema in OWL comprise a single requirements class
(Table 24), identified as http://standards.iso.org/iso/19150-2/req/applicationSchema and abbreviated
as 19150-2app.

46 © IS0 2015 - All rights reserved

http://standards.iso.org/iso/19150-2/req/applicationSchema

BS ISO 19150-2:2015
ISO 19150-2:2015(E)

Table 24 — Requirements class for representing an application schema in OWL

Requirements class

19150-2app=h

Target type Ontology

Dependency http://www.w3.org/TR/owl2-syntax/ (OWL)

Dependency http://tools.ietf.org/html/rfc3986 (URI Syntax)

Dependency http://standards.iso.org/iso/19107/ed-1/en/ (Spatial schema)
Dependency http://standards.iso.org/iso/19108/ed-1/en/ (Temporal schema)
Dependency http://standards.iso.org/iso/19109/ed-2/en/ (Rules for application schema)
Dependency http://standards.iso.org/iso/19112/ed-1/en/ (Spatial referencing by geographic identifiers)
Dependency http://standards.iso.org/iso/19115-1/ed-1/en/ (Metadata - Fundamentals)
Dependency http://standards.iso.org/iso/19123/ed-1/en/ (Schema for coverage geometry and functions)
Dependency http://standards.iso.org/iso/19156/ed-1/en/ (Obeservation and measurement)
Dependency http://standards.iso.org/iso/19157/ed-1/en/ (Data quality)

Dependency 19150-2package:enumeration

Dependency 19150-2package:codelist

Dependency 19150-2package:union

Dependency http://def.isotc211.0rg/is019150/-2/2012/base

Dependency http://def.isotc211.org/is019103/2015/Schemal.anguage

Dependency http://def.isotc211.0rg/is019107/2003/SpatialSchema

Dependency http://def.isotc211.0rg/is019108/2002/TemporalSchema

Dependency http: fi 211.0rg/is019109/2015/ApplicationSchem

Dependency http: fi 211.org/is019112/2 L ionByldentifier

Dependency http://def.iisotc211.org/is019115/-1/2014/ MetadataFundamentals
Dependency http://def.isotc211.org/is019123/2005/Coverages

Dependency http://def.iisotc211.0rg/is019157/2013/DataQuality

Requirement 19150-2app:identification

Requirement 19150-2app:documentation-ontology

Requirement 19150-2app:documentation-ontologyComponent

Requirement 19150-2app:integration

Requirement 19150-2app:featureType

Requirement 19150-2app:attributeType

Requirement 19150-2app:thematicAttributeType

Requirement 19150-2app:coverageFunctionAttributeType

Requirement 19150-2app:locationAttributeType

Requirement 19150-2app:spatial AttributeType

Requirement 19150-2app:temporal AttributeType

Requirement 19150-2app:metadataAttributeType

Requirement 19150-2app:qualityAttributeType

Requirement 19150-2app:attributeOfAttribute

Requirement 19150-2app:operation

Requirement 19150-2app:featureAssociationRole

Requirement 19150-2app:featureAssociationType

© ISO 2015 - All rights reserved 47

http://standards.iso.org/iso/19150-2/req/applicationSchema
http://www.w3.org/TR/owl2-syntax/
http://tools.ietf.org/html/rfc3986
http://standards.iso.org/iso/19107/ed-1/en/
http://standards.iso.org/iso/19108/ed-1/en/
http://standards.iso.org/iso/19109/ed-2/en/
http://standards.iso.org/iso/19112/ed-1/en/
http://standards.iso.org/iso/19115-1/ed-1/en/
http://standards.iso.org/iso/19123/ed-1/en/
http://standards.iso.org/iso/19156/ed-1/en/
http://standards.iso.org/iso/19157/ed-1/en/
http://def.isotc211.org/iso19150/-2/2012/base
http://def.isotc211.org/iso19103/2015/SchemaLanguage
http://def.isotc211.org/iso19107/2003/SpatialSchema
http://def.isotc211.org/iso19108/2002/TemporalSchema
http://def.isotc211.org/iso19109/2015/ApplicationSchema
http://def.isotc211.org/iso19112/2005/LocationByIdentifier
http://def.isotc211.org/iso19115/-1/2014/
http://def.isotc211.org/iso19123/2005/Coverages
http://def.isotc211.org/iso19157/2013/DataQuality

BS ISO 19150-2:2015
ISO 19150-2:2015(E)

Table 24 (continued)
Requirements class
19150-2app = http://standards.iso.org/iso/19150-2/req/applicationSchema
Requirement 19150-2app:featureAggregationType
Requirement 19150-2app:featureCompositionType
Requirement 19150-2app:spatialAssociationType
Requirement 19150-2app:temporalAssociationType
Requirement 19150-2app:inheritanceRelation
Requirement 19150-2app:constraint
Requirement 19150-2app:valueAssignment

7.2 Rules for identification

In OWL, an application schema is described in an Ontology <OWL> using an owl:Ontology declaration.
The Ontology <OWL> consists of a set of RDF triples that specifies the components of the application
schema. The owl:Ontology declaration carries the name of the application schema and its version as
required for the documentation of an application schema.

The name consists of two components:
1) anIRIthatidentifies the Ontology <OWL>;
2) the title of the application schema that provides a human readable identification.

The IR is specified in the owl:Ontology declaration. The title of the application schema is specified with
an annotation property using an rdfs:label declaration.

The version of the Ontology <OWL> has also two components:

1) a character string providing the version number or version date of the Ontology <OWL> using an
owl:versionInfo declaration;

2) aversionIRIthatidentifiesthe Ontology <OWL>includingits version usingan owl:versionIRI declaration.

NOTE The IRI of the Ontology <OWL> refers to the most recent version of the ontology whereas the version
IRI refers to a specific version of the Ontology <OWL>.

Table 25 sets the requirement for the identification of an application schema in Ontology <OWL>.

Table 25 — Identification

Requirement
19150-2app:identification
An application schema shall be identified in an Ontology <OWL> using an owl:Ontology declaration.

The Ontology <OWL> shall be annotated with:
— its title, using an rdfs:label declaration,

— its version, using an owl:versioninfo declaration; and

— its version IRI, using an owl:versionIRI declaration.

The following example illustrates the definition of an Ontology <OWL> corresponding to an
application schema.

EXAMPLE

RDF/Turtle serialization

48 © IS0 2015 - All rights reserved

http://standards.iso.org/iso/19150-2/req/applicationSchema

BS ISO 19150-2:2015
ISO 19150-2:2015(E)

<http://my organization.org/MyOntology> a owl:Ontology ;

rdfs:label “My application schema ontology name” ;
owl:versionInfo “2012”;

owl:versionIRI http://my organization.org/MyOntology/2012.

RDF/XML serialization

<owl:Ontology rdf:about="http://my_organization.org/MyOntolo
<rdfs:label>My application schema ontology name</rdfs:label>
<owl:versionIlnfo>2012</owl:versionInfo>

<owl:versionIRI>http://my _organization.org/MyOntology/2012</owl:versionIRI>

</owl:Ontology>

7.3 Rules for ontology documentation

7.3.1 Ontology documentation

Table 26 sets the requirement for the documentation of application schema in Ontology <OWL>.

Table 26 — Ontology documentation

Requirement

19150-2app:documentation-ontology

The documentation of an application schema in Ontology <OWL> shall use, where applicable, the annotation
properties listed hereafter:

— rdfs:label for a human-readable title of the application schema;

— rdfs:isDefinedBy for an IRI of the resource providing information about the definition of the application
schema;

— rdfs:comment for additional human-readable information;

— owl:deprecated, when set to “true”””*xsd:boolean, to identify that the Ontology <OWL> is deprecated;
— owl:versionInfo for a version number or a version date;

— owl:versionIRI for a version IRI;

— owl:priorVersion for the identification of the previous version;

— owl:backwardCompatibleWith for the identification of the previous version of the Ontology <OWL> that
is compatible with the current Ontology <OWL>;

— owl:incompatibleWith for the identification of the previous version of the Ontology <OWL> that is not
compatible with the current Ontology <OWL>.

7.3.2 Ontology component documentation

Table 27 sets the requirement for the documentation of application schema components in
Ontology <OWL>.

© ISO 2015 - All rights reserved 49

http://my_organization.org/MyOntology
http://my_organization.org/MyOntology/2012
http://my_organization.org/MyOntology
http://my_organization.org/MyOntology/2012</owl:versionIRI

BS ISO 19150-2:2015
ISO 19150-2:2015(E)

Table 27 — Ontology component documentation

Requirement

19150-2app:documentation-ontologyComponent

The documentation of components of an application schema in Ontology <OWL> shall use, where applicable, the
following annotation properties:

— rdfs:label for a human-readable name of an application schema component;
— skos:definition for a human-readable definition in natural language of an application schema component;

— rdfs:isDefinedBy for IRI of the source document providing information about the application schema
component;

— rdfs:seeAlso for IRl providing additional information on the Ontology <OWL> component being described;

— owl:deprecated, when set to “true”*"xsd:boolean, to identify that the Ontology <OWL> component being
described is deprecated;
— owl:versioninfo for a version of the Ontology <OWL> component being described;

— is019150-2:isAbstract, when set to “true””**xsd:boolean, to identify that the Ontology <OWL> component
being described is abstract;

— is0o19150-2:associationName for an identifier of the association in which an Object Property <OWL> par-
ticipates;

— is019150-2:aggregationType for the type of aggregation in which an Object Property <OWL> participates;

— is019150-2:constraint for a description of a constraint associated with a Class <OWL>, a Data Prop-
erty <OWL>, or an Object Property <OWL>.

7.4 Rules for integration

Aninformation model is frequently broken into several independent parts that are afterward integrated.
As such, an application schema can refer to other application schemas or part of them as well as to SO
geographic information models.

In OWL, the dependency of an Ontology <OWL> with another is specified with an owl:imports declaration.

Table 28 sets the requirement for the integration of Ontologies <OWL> corresponding to different
application schemas.

Table 28 — Integration

Requirement

19150-2app:integration
The dependency of an Ontology <OWL> with another shall be specified using an owl:imports declaration.

7.5 Rules for FeatureType

As defined in ISO 19109:—2), a feature type of an application schema is an instance of FeatureType. A
feature type is represented by a CLASS having the stereotype «FeatureType». The most general feature
typeis '‘AnyFeature’, which is the class of all features. Accordingly, it is the superclass of all feature types.
’AnyFeature’ is stereotyped «FeatureType».

To support the implementation of feature type in OWL, the ontology corresponding to ISO 19109:—2)
introduces a Class <OWL> AnyFeature, which is the most generic feature type.

In OWL, a feature type corresponds to a Class <OWL> using an owl:Class declaration. This Class <OWL>
is a subclass of the Class <OWL> AnyFeature.

Table 29 sets the requirement for the documentation of instances of FeatureType (i.e. feature types) in
Ontology <OWL>.

50 © IS0 2015 - All rights reserved

BS ISO 19150-2:2015
ISO 19150-2:2015(E)

Table 29 — FeatureType

Requirement

19150-2app:featureType

An instance of FeatureType (i.e. a feature type) shall be implemented as a Class <OWL> using an owl:Class decla-
ration. The Class <OWL> shall be:

— identified with a unique IRI,

— declared as a subclass of the Class <OWL> AnyFeature defined in the ontology corresponding to ISO 19109:—2)
using an rdfs:subClassOf declaration,

— annotated with a human readable name, using a rdfs:label declaration,

— if available, annotated with a human readable definition, using a skos:definition declaration, and

— if abstract, annotated with the iso19150-2:isAbstract annotation property set to true””*boolean.

Other annotation properties from 7.3.2 may be used to document additional information on a feature type.
The following example illustrates the definition of a feature type in an Ontology <OWL>.
EXAMPLE
RDF/Turtle serialization
myapp:AFeatureType a owl:Class ;
rdfs:subClassOf gfm:AnyFeature ;

rdfs:label “a feature type”.

RDF/XML serialization
<owl:Class rdf:about="&myapp;AFeatureType”>
<rdfs:subClassOf rdf:resource="&gfm;AnyFeature”/>
<rdfs:label>a feature type</rdfs:label>

</owl:Class>

7.6 PropertyType
7.6.1 Attribute

7.6.1.1 Rules for AttributeType

An attribute of an application schema is an instance of AttributeType. Itis represented by an ATTRIBUTE.
In OWL, an attribute corresponds to a Data Property <OWL> if its value is represented as a literal, and
to an Object Property <OWL> if its value is represented as an individual of a Class <OWL> defined by an
ISO geographic information standard, an application schema, or another class.

Table 30 sets the requirement for the description of instances of AttributeType (i.e. attributes) in
Ontology <OWL>.

© IS0 2015 - All rights reserved 51

BS ISO 19150-2:2015
ISO 19150-2:2015(E)

Table 30 — AttributeType

Requirement

19150-2app:attributeType

An instance of AttributeType shall be implemented as:
— a Data Property <OWL>, ifits value is represented as a literal, using an owl:DatatypeProperty declaration,

— an Object Property <OWL>, if its value is represented as an individual of a Class <OWL>, using an owl:-
ObjectProperty declaration,

Data Property <OWL> and Object Property <OWL> shall:
— have their type specified using an rdfs:range declaration, and
— be annotated with:

— aname, using a rdfs:label declaration, and

— adefinition, using a skos:definition declaration.

Cardinalities of a property shall be specified with an owl:minCardinality and an owl:maxCardinality declaration
together with owl:allValuesFrom.

NOTE1 When no cardinalities are declared the default values are “0” for the minimum cardinality and
“unlimited” for the maximum cardinality.

Data Property <OWL> and Object Property <OWL> can be connected to the Class <OWL> itis associated
with using an rdfs:domain declaration.

NOTE 2 Properties will be most re-usable if a generalized property domain is indicated. The best way to do
this is to use the class corresponding to the UML stereotype as the domain - i.e. gfm:AnyFeature or iso19150-

2:datatype. Cardinaility constraints can then be used to indicate usage patterns for specific properties in the
context of a class.

Other annotation properties from 7.3.2 can be used to document additional information on an
attribute such as:

— rdfs:isDefinedBy for the source document. and
— owl:deprecated set to “true”"xsd:boolean for the identification as deprecated.
The following example illustrates the definition of an ‘attribute’ through ‘data property’ and ‘object property.’
EXAMPLE
RDF/Turtle serialization
myapp:AFeatureType a owl:Class .
myapp:AnotherFeatureType a owl:Class .
myapp:attributeTypel a owl:DatatypeProperty ;
rdfs:label “A first attribute type”;
skos:definition “Definition of a first attribute type” ;
rdfs:domain gfm:AnyFeature ;

rdfs:range <http://www.w3.org/2001/XMLSchemat#string> .

myapp:AFeatureType.attributeType2 a owl:DatatypeProperty ;
rdfs:label “A second attribute type”;
skos:definition “Definition of a second attribute type”;

rdfs:domain myapp:AFeatureType ;

52 © IS0 2015 - All rights reserved

http://www.w3.org/2001/XMLSchema#string

BS ISO 19150-2:2015
ISO 19150-2:2015(E)

rdfs:range <http://www.w3.org/2001/XMLSchema#string> .

myapp:attributeType3 a owl:ObjectProperty ;
rdfs:label “A third attribute type”;
skos:definition “Definition of a third attribute type”;
rdfs:domain gfm:AnyFeature ;
rdfs:range myapp:AnotherFeatureType .
myapp:AFeatureType.attributeType4 a owl:ObjectProperty ;
rdfs:label “A fourth attribute type”;
skos:definition “Definition of a fourth attribute type”;
rdfs:domain myapp:AFeatureType ;

rdfs:range myapp:AnotherFeatureType .

RDF/XML serialization

<owl:Class rdf:about="&myapp;AFeatureType “/>

<owl:Class rdf:about="&myapp;AnotherFeatureType”/>

<owl:DatatypeProperty rdf:about="&myapp;attributetypel”>
<rdfs:label>A first attribute type</rdfs:label>
<skos:definition>Definition of a first attribute type</skos:definition >

<rdfs:domain rdf:resource="&gfm;AnyFeature”/>

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string”/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:about="&myapp;AFeatureType.attributetype2”>
<rdfs:label>A second attribute type</rdfs:label>
<skos:definition>Definition of a second attribute type</skos:definition >

<rdfs:domain rdf:resource="&myapp;AFeatureType”/>

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string”/>
</owl:DatatypeProperty>
<owl:ObjectProperty rdf:about="&myapp;attributetype3”>
<rdfs:label>A third attribute type</rdfs:label>
<skos:definition>Definition of a third attribute type</skos:definition >
<rdfs:domain rdf:resource="&gfm;AnyFeature”/>
<rdfs:range rdf:resource="&myapp;AnotherFeatureType”/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:about="&myapp;AFeatureType.attributetype4”>

<rdfs:label>A fourth attribute type</rdfs:label>

© IS0 2015 - All rights reserved 53

http://www.w3.org/2001/XMLSchema#string
http://www.w3.org/2001/XMLSchema#string
http://www.w3.org/2001/XMLSchema#string

BS ISO 19150-2:2015
ISO 19150-2:2015(E)

<skos:definition>Definition of a fourth attribute type</skos:definition >
<rdfs:domain rdf:resource="&myapp;AFeatureType”/>
<rdfs:range rdf:resource="&myapp;AnotherFeatureType”/>

</owl:ObjectProperty>

There are subtypes of AttributeType: ThematicAttributeType, LocationAttributeType,
SpatialAttributeType, TemporalAttributeType, and MetadataAttributeType. The above rule and
requirement for AttributeType apply to all of them but additional attention is required and described in
7.6.1.2 to 7.6.1.8.

7.6.1.2 Rules for ThematicAttributeType

An instance of ThematicAttributeType carries descriptive information other than those specified in
7.6.1.3t0 7.6.1.8.

Table 31 sets the requirement for the description of instances of ThematicAttributeType in
Ontology <OWL>.

Table 31 — ThematicAttributeType

Requirement
19150-2app:thematicAttributeType

An instance of ThematicAttributeType shall be implemented as:

— a Data Property <OWL> using an owl:DatatypeProperty declaration when its type corresponds to an
ISO 19103:—1) basic type as listed in Table 12; and

— an Object Property <OWL> using an owl:ObjectProperty declaration when its type corresponds to any
other ISO 19103:—1 types than the ones listed in Table 12 or a user defined type.

The range of the Data Property <OWL> shall be associated with its corresponding OWL datatype as identified
in Table 12 using an rdfs:range declaration. The range of the Object Property <OWL> shall be associated with a
Class <OWL> of the ISO 19103:—1) ontology corresponding to the type used or a Class <OWL> corresponding to
the user defined type using an rdfs:range declaration.

The property may be connected to the Class <OWL> it describes using an rdfs:domain declaration.

7.6.1.3 Rules for CoverageFunctionAttributeType

An instance of CoverageFunctionAttributeType carries thematic information whose value varies as a
function of spatiotemporal position within the scope of a feature.

Table 32 sets the requirement for the description of instances of CoverageFunctionAttributeType in
Ontology <OWL>.

Table 32 — CoverageFunctionAttributeType

Requirement

19150-2app:coverageFunctionAttributeType

An instance of CoverageFunctionAttributeType shall be implemented as an Object Property <OWL>
using an owl:ObjectProperty declaration.

The range of the Object Property <OWL> shall be associated with a Class <OWL> corresponding to
CV_Coverage or its subclasses of the ISO 19123:2005 ontology, using an rdfs:range declaration.

The property may be connected to the Class <OWL> it describes using an rdfs:domain declaration.

54 © IS0 2015 - All rights reserved

BS ISO 19150-2:2015
ISO 19150-2:2015(E)

7.6.1.4 Rules for LocationAttributeType
An instance of LocationAttributeType carries locational information.

Table 33 sets the requirement for the description of instances of LocationAttributeType in
Ontology <OWL>.

Table 33 — LocationAttributeType

Requirement

19150-2app:locationAttributeType

An instance of LocationAttributeType shall be implemented as an Object Property <OWL> using an owl:Object-
Property declaration.

The range of the Object Property <OWL> shall be associated with a Class <OWL> of the ISO 19112:2003 ontology
corresponding to SI_LocationInstance, using an rdfs:range declaration.

The property may be connected to the Class <OWL> it describes using an rdfs:domain declaration.

7.6.1.5 Rules for SpatialAttributeType
An instance of SpatialAttributeType carries spatial information, either geometric or topologic.

Table 34 setsthe requirement for the description of instances of Spatial AttributeType in Ontology <OWL>.

Table 34 — SpatialAttributeType

Requirement
19150-2app:spatial AttributeType

Aninstance of Spatial AttributeType shall be implemented as an Object Property <OWL> using an owl:ObjectProp-
erty declaration.

The range of the Object Property <OWL> shall be associated with a Class <OWL> of the ISO 19107:2003 ontology
corresponding to a spatial object of Table 35, using an rdfs:range declaration.

The property may be connected to the Class <OWL> it describes using an rdfs:domain declaration.

Table 35 — Valid spatial objects

Geometric objects Topological objects
Geometric Geometric Geometric Topological Topological
primitives complexes aggregates primitives complexes
GM_Point GM_CompositePoint GM_Aggregate TP_Node TP_Complex
GM_Curve GM_CompositeCurve GM_MultiPoint TP_Edge
GM_Surface GM_CompositeSurface |GM_MultiCurve TP_Face
GM_Solid GM_CompositeSolid GM_MultiSurface TP_Solid
GM_Complex GM_MultiSolid TP_DirectedNode
TP_DirectedEdge
TP_DirectedFace
TP_DirectedSolid
NOTE The table lists only the highest level classes of spatial objects. Subtypes of these may also be used.

7.6.1.6 Rules for TemporalAttributeType

An instance of TemporalAttributeType carries temporal information, either temporal geometric or
temporal topologic.

Table 36 sets the requirement for the description of instances of TemporalAttributeType in
Ontology <OWL>.

© IS0 2015 - All rights reserved 55

BS ISO 19150-2:2015
ISO 19150-2:2015(E)

Table 36 — TemporalAttributeType

Requirement

19150-2app:temporal AttributeType
An instance of TemporalAttributeType shall be implemented as an Object Property <OWL> using an owl:Object-
Property declaration.

The range of the Object Property <OWL> shall be associated with a Class <OWL> of the ISO 19108:2002 ontology
corresponding to a temporal object of Table 37, using an rdfs:range declaration.

The property may be connected to the Class <OWL> it describes using an rdfs:domain declaration.

Table 37 — Valid temporal objects

Temporal geometric primitives | Temporal topological primitives Topological complexes
TM_Instant TM_Node TM _TopologicalComplex
TM_Period TM_Edge

7.6.1.7 Rules for MetadataAttributeType
An instance of MetadataAttributeType carries metadata information.

Table 38 sets the requirement for the description of instances of MetadataAttributeType in
Ontology <OWL>.

Table 38 — MetadataAttributeType

Requirement

19150-2app:metadataAttributeType

An instance of MetadataAttributeType shall be implemented as an Object Property <OWL> using an owl:Object-
Property declaration.

The range of the Object Property <OWL> shall be associated with a Class <OWL> of the ISO 19115-1:2014 ontology,
using an rdfs:range declaration.

The property may be connected to the Class <OWL> it describes using an rdfs:domain declaration.

7.6.1.8 Rules for QualityAttributeType
An instance of QualityAttributeType carries quality information.

Table 39 setstherequirement for the description ofinstances of QualityAttributeType in Ontology <OWL>.

Table 39 — QualityAttributeType

Requirement
19150-2app:qualityAttributeType

An instance of QualityAttributeType shall be implemented as an Object Property <OWL> using an owl:Object-
Property declaration.

The range of the Object Property <OWL> shall be associated with a Class <OWL> of the ISO 19157:2013 ontology,
using an rdfs:range declaration.

The property may be connected to the Class <OWL> it describes using an rdfs:domain declaration.

7.6.1.9 Rules for attribute of attribute

Table 40 sets the requirement for the description of attribute of attribute in Ontology <OWL>.

56 © IS0 2015 - All rights reserved

BS ISO 19150-2:2015
ISO 19150-2:2015(E)

Table 40 — Attribute of attribute

Requirement
19150-2app:attributeOfAttribute
In the case where an attribute is characterized by other attributes, the following steps shall be taken:

a) define a new Class <OWL> and name it according to the attribute that is characterized by other attributes;

b) define a property (either Data Property <OWL> or Object Property <OWL>) for each attribute (i.e. the
attribute that is characterized and the other attributes) with their respective name. The properties shall comply
with the requirement 19150-2app:attributeType (see 7.6.1.1). The domain of these properties shall be associated
with the new Class <OWL> defined in step a) using an rdfs:domain declaration;

) define an Object Property <OWL>) for the attribute being characterized by these attributes with an
appropriate name and the new Class <OWL> set as its range. The domain of this new Object Property <OWL>
shall be set to the Class <OWL> corresponding to the CLASS owning the attribute.

7.6.2 Rules for Operation
Instances of Operation are not implemented in Ontology <OWL>.

NOTE In the context of application schema, the implementation of operations is considered not mature
enough within the OWL technology. Various frameworks and languages are under development and no single

solution has been adopted.

Table 41 sets the requirement for the description of Operation in Ontology <OWL>.

Table 41 — Operation

Requirement

19150-2app:operation
Instances of Operation shall not be implemented in Ontology <OWL>.

7.6.3 Rules for FeatureAssociationRole

Arole of an application schema is an instance of FeatureAssociationRole. It is represented by a role name
of an association end.

Table 42 sets the requirement for the description of instances of FeatureAssociationRole in
Ontology <OWL>.

Table 42 — FeatureAssociationRole

Requirement

19150-2app:featureAssociationRole

An instance of FeatureAssociationRole (i.e. a role) shall be implemented as an Object Property <OWL> and shall
comply with the requirement 19150-2app:attributeType (see 7.6.1.1).

The Object Property <OWL> can be connected to the Class <OWL> it is associated with using an
rdfs:domain declaration.

7.7 Rules for FeatureAssociationType

An association of an application schema is an instance of FeatureAssociationType. It is represented
by an ASSOCIATION. ISO 19109:—2) identifies two cases of association. In the first case, an association
links feature types. In the second case, an ASSOCIATION is characterized by instances of PropertyType

additionally.

© IS0 2015 - All rights reserved 57

BS ISO 19150-2:2015
ISO 19150-2:2015(E)

Table 43 sets the requirement for the description of instances of FeatureAssociationType in
Ontology <OWL>.

Table 43 — FeatureAssociationType

Requirement

19150-2app:featureAssociationType
Case 1:

Aninstance of FeatureAssociationType (i.e. an association) linking instances of FeatureType shall be implemented
by the way of the roles at its association ends.

Eachrole shall be implemented as an Object Property <OWL> and shall comply with the requirement 19150-2app:-
featureAssociationRole (see 7.6.3). Each Object Property <OWL> shall have its range specified to the Class <OWL>
that plays the role, using an rdfs:range declaration. Cardinalities for each Object Property <OWL> in the context
of the associated Classes <OWL> shall be set using owl:minCardinality, owl:maxCardinality, and owl:cardinality
declarations together with owl:allValuesFrom.

In a bidirectional association, the Object Property <OWL> corresponding to each end of the association shall be
the inverse of each other, using owl:inverseOf declarations.

If the association is named, the name shall be documented as part of each Object Property <OWL> using the
annotation property iso19150-2:associationName.

Case 2:

An association characterized by instances of PropertyType shall be implemented as a Class <OWL>, using an
owl:Class declaration.

Each instance of PropertyType shall be implemented as either Data Property <OWL> or Object Property <OWL>
(see 7.6).

An Object Property <OWL> shall be defined to link the Class <OWL> standing for the association to each Class <OWL>
corresponding to an associated feature type. It shall be identified by a unique IRI and shall be annotated with a
rdfs:label declaration to provide a human readable name. Also, its definition shall be documented with a skos:def-
inition declaration. Range of each Object Property <OWL> must be set accordingly using rdfs:range declarations.
Cardinalities for each Object Property <OWL> in the context of the created Class <OWL> and the associated
Class <OWL> shall be set using owl:minCardinality, owl:maxCardinality, and owl:cardinality declarations together
with owl:allValuesFrom.

In a bidirectional association, the Object Property <OWL> corresponding to each end of the association shall be
the inverse of each other, using owl:inverseOf declarations.

If the association is named, the name shall be documented as part of each Object Property <OWL> using the
annotation property iso19150-2:associationName.

7.8 Rules for FeatureAggregationType

An aggregation of an application schema is an instance of FeatureAggregationType. It is represented by
an AGGREGATION.

Table 44 sets the requirement for the description of instances of FeatureAggregationType in
Ontology <OWL>.

Table 44 — FeatureAggregationType

Requirement

19150-2app:featureAggregationType

Aninstance of FeatureAggregationType shall be implemented similarly to an instance of FeatureAssociationType
and shall comply with the requirement 19150-2app:featureAssociationType (see 7.7).

Additionally, the aggregation association shall be documented as part of the Object Property <OWL> playing the
partrole using an is019150-2:aggregationType annotation property set to partOfSharedAggregation (see 6.10.3).

58 © IS0 2015 - All rights reserved

BS ISO 19150-2:2015
ISO 19150-2:2015(E)

7.9 Rules for FeatureCompositionType

A composition of an application schema is an instance of FeatureCompositionType. It is represented by
a COMPOSITION.

Table 45 sets the requirement for the description of instances of FeatureCompositionType in
Ontology <OWL>.

Table 45 — FeatureCompositionType

Requirement

19150-2app:featureCompositionType

Aninstance of FeatureCompositionType shall be implemented similarly to an instance of FeatureAssociationType
and shall comply with the requirement 19150-2app:featureAssociationType (see 7.7).

Additionally, the composition association shall be documented as part of the Object Property <OWL> playing the
partrole using an iso19150-2:aggregationType annotation property set to partOfCompositeAggregation (see 6.10.3).

7.10 Rules for SpatialAssociationType

A spatial or topological association of an application schema is an instance of Spatial AssociationType. It
is represented by an ASSOCIATION.

Table 46 sets the requirement for the description of instances of SpatialAssociationType in
Ontology <OWL>.

Table 46 — SpatialAssociationType

Requirement

19150-2app:spatialAssociationType

An instance of SpatialAssociationType shall be implemented similarly to an instance of FeatureAssociationType
and shall comply with the requirement 19150-2app:featureAssociationType (see 7.7).

7.11 Rules for TemporalAssociationType

A temporal association of an application schema is an instance of TemporalAssociationType. It is
represented by an ASSOCIATION.

Table 47 sets the requirement for the description of instances of TemporalAssociationType in
Ontology <OWL>.

Table 47 — TemporalAssociationType

Requirement

19150-2app:temporalAssociationType

Aninstance of TemporalAssociationType shall be implemented similarly to an instance of FeatureAssociationType
and shall comply with the requirement 19150-2app:featureAssociationType (see 7.7).

7.12 Rules for InheritanceRelation

A generalization relation of an application schema is an instance of InheritanceRelation. It is represented
by a GENERALIZATION relation.

Table 48 sets the requirement for the description of instances of InheritanceRelation in Ontology <OWL>.

© IS0 2015 - All rights reserved 59

BS ISO 19150-2:2015
ISO 19150-2:2015(E)

Table 48 — InheritanceRelation

Requirement

19150-2app:inheritanceRelation

Aninstance of InheritanceRelation shall be implemented as a subclass between a specialized Class <OWL>and a
generalized Class <OWL> using an rdfs:subClassOf declaration as part of the specialized Class <OWL> (see 6.10.1).

7.13 Rules for constraints

Table 49 sets the requirement for the description of constraint in Ontology <OWL>.

Table 49 — Constraint

Requirement

19150-2app:constraint

A constraint shall be documented using an annotation property, using iso19150-2:constraint, as part of the
Class <OWL>, Data Property <OWL>, or Object Property <OWL> it constrains (see 6.11).

7.14 Rules for ValueAssignment

7.14.1 Role of Association class

ISO 19109:—2) defines a meta-class ValueAssignment, instances of which carry metadata describing a
property value instance. The primary application of this is to provide information about the way that a
specific property value was assigned, for example information about an observation that provided an
estimate of the property value. This is expected to be available when the attribute or association role
has the stereotype «estimated». Other value assignment mechanisms might include an algorithm for
derivation from other properties, or a rule for assignment by a competent authority. The intention is to
allow this extra information to be provided in a standard way rather than using an application-specific
mechanism, so all applications can provide value metadata in the same way.

7.14.2 ValueAssignment property

To support the ValueAssignment requirement the property iso19150-2:valueAssignment is formalized in
the base ontology (Annex D):

OWL Definition 6
RDF/Turtle serialization

is019150-2:valueAssignment a owl:ObjectProperty ;

rdfs:label “value assignment” ;

skos:definition “property that can be attached to any statement that describes a feature property

instance, to support a link to the evidence for the value” ;

rdfs:isDefinedBy <http://standards.iso.org/iso/19109/ed-2/en> ;
rdfs:domain rdf:Statement.

RDF/XML serialization

<owl:ObjectProperty rdf:about="&is019150-2;valueAssignment”>
<rdfs:label>value assignment</rdfs:label>

<skos:definition>property that can be attached to a statement that describes a feature property

60 © IS0 2015 - All rights reserved

http://standards.iso.org/iso/19109/ed-2/en

BS ISO 19150-2:2015
ISO 19150-2:2015(E)

instance, to support a link to the evidence for the value</skos:definition>

<rdfs:isDefinedBy>http://standards.iso.org/iso/19109/ed-2/en</rdfs:isDefined By>

<rdfs:domain rdf:resource="&rdf;Statement”/>

</owl:ObjectProperty>

7.14.3 RDF reification pattern

Additional information about a property can be provided using RDF Reification.[16] The reified statement
name is a URI, which can be the subject of a statement linking to the value assignment information.

EXAMPLE
A person may be described as a feature using a simple type ns:Person, with two properties, height and 1Q:
RDF/Turtle serialization
john:Doe a ns:Person ;
ns:height [
a basic:Measure ;
ns:value “1.7”""*xsd:decimal ;
ns:uom unit:m.
I

ns:IQ “150”**xsd:positivelnteger .

RDF/XML serialization
<ns:Person rdf:about="&john;Doe”>
<basic:Measure rdf:about="&ns;height”>
<ns:value rdf:datatype="&xsd;decimal”>1.7</ns:value>
<ns:uom rdf:resource="&unit;m”/>
</basic:Measure>
<ns:1Q rdf:datatype="&xsd; positivelnteger”>150</ns:1Q>

</ns:Person>

The property values were each determined by some observation procedure: height through a
measurement designated http://example.org/measurement/abc123, and IQ through a test designated
http://example.org/test/zyx987. These are indicated using RDF reification as follows:

RDF/Turtle serialization

john:height a rdf:Statement ;

rdf:subject john:Doe ;

rdf:predicate ns:height;

© ISO 2015 - All rights reserved 61

http://standards.iso.org/iso/19109/ed-2/en</rdfs:isDefinedBy
http://example.org/measurement/abc123
http://example.org/test/zyx987

BS ISO 19150-2:2015
ISO 19150-2:2015(E)

rdf:object [a basic:Measure ;
ns:value “1.7"*"xsd:decimal ;
ns:uom unit:m .

].

john:height is019150-2:valueAssignment <http://example.org/measurement/abc123> .

RDF/XML serialization
<rdf:Description rdf:about="&john;height”>

<rdf:subject resource="&john;Doe”/>

<rdf:predicate resource="&ns;height”/>

<rdf:object>
<ns:value rdf:datatype="&xsd;decimal”’>1.7</ns:value>
<ns:uom rdf:resource="&unit;m"/>

</rdf:object>

<rdf:type resource="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#Statement”/>

<is019150-2:valueAssignment>http://example.org/measurement/abc123</is019150-
2:valueAssignment>

</rdf:Description>

RDF/Turtle serialization
john:IQ a rdf:Statement ;
rdf:subject john:Doe ;
rdf:predicate ns:IQ ;

rdf:object “150”"**xsd:positivelnteger .
john:1Q is019150-2:valueAssignment <http://example.org/test/zyx987> .

RDF/XML serialization
<rdf:Description rdf:about="&john;1Q">
<rdf:subject resource="&john;Doe”/>
<rdf:predicate resource="&ns;1Q"/>
<rdf:object rdf:datatype="&xsd;positivelnteger >150</rdf:object>

<rdf:type resource="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#Statement”/>

<is019150-2:valueAssignment>http://example.org/test/zyx987</is019150-2:valueAssignment>

</rdf:Description>

62 © IS0 2015 - All rights reserved

http://example.org/measurement/abc123
http://www.w3.org/1999/02/22-rdf-syntax-ns#Statement
http://example.org/measurement/abc123</iso19150-
http://example.org/test/zyx987
http://www.w3.org/1999/02/22-rdf-syntax-ns#Statement
http://example.org/test/zyx987</iso19150-2:valueAssignment

BS ISO 19150-2:2015
ISO 19150-2:2015(E)

NOTE RDF reification is only supported in OWL Full.

7.14.4 SPARQL named-graph pattern

SPARQLI15] named-graphs are an alternative method to give identity to a set of RDF statements, for
which TriG[Z] provides a serialization syntax. The graph name is a URI, which can be the subject of a
statement linking to the value assignment information.

EXAMPLE

Using the same data as in the previous (reification) example the value assignment statements are indicated using
named graphs as follows:

TriG serialization
john:height
{
john:Doe ns:height [
a basic:Measure ;
ns:value “1.7”"""xsd:decimal ;

ns:uom unit:m .

}
john:height is019150-2:valueAssignment <http://example.org/measurement/abc123>.

john:1Q
{

john:Doe ns:IQ “150”"*xsd:positivelnteger .

}

john:1Q is019150-2:valueAssignment <http://example.org/test/zyx987>.

NOTE SPARQL named-graphs and TriG syntax are not yet supported by all RDF/OWL tools.

7.14.5 Rules for ValueAssignment in OWL tern

Either of these patterns provides a URI for a value assignment statement, allowing a link to be attached
to the value assignment information, while also preserving a simple path from a feature instance to the
value within the RDF graph.

Table 50 sets the requirement for the description of value assignment in Ontology <OWL>.

© ISO 2015 - All rights reserved 63

http://example.org/measurement/abc123
http://example.org/test/zyx987

BS ISO 19150-2:2015
ISO 19150-2:2015(E)

Table 50 — ValueAssignment

Requirement

19150-2app:valueAssignment

An instance of ValueAssignment shall be implemented by creating either
— a RDF resource that reifies the property instance, or
— anamed graph containing the property instance.

The reified property or graph shall have a single property iso19150-2:valueAssignment, whose value identifies a
description of the value assignment process used for this value.

64 © IS0 2015 - All rights reserved

BS ISO 19150-2:2015
ISO 19150-2:2015(E)

Annex A
(normative)

Abstract test suite

A.1 Conformance classes

Annex A describes tests corresponding to each requirement. They are packaged in two conformance classes:

Conformance class for conversion of a UML package from the ISO/TC 211 Harmonized Model to OWL,
19150-2package-conf = http://standards.iso.org/iso/19150-2/conf/package

Conformance class for formalization of an application schema in OWL:
19150-2app-conf = http://standards.iso.org/iso/19150-2/conf/applicationSchema

The conformance class 19150-2package-conf includes the following tests:

Name;

Ontology name;

RDF namespace for ontology;
Class name;

Datatype name;

Property name;

Names for code lists and their members;
UML package;

UML class;

UML abstract class;

Data property;

Object property;

UML enumeration;

UML code list;

Union class;

UML multiplicity;

UML generalization/inheritance;
UML association;

UML aggregation;

UML constraint.

© IS0 2015 - All rights reserved 65

http://standards.iso.org/iso/19150-2/conf/package
http://standards.iso.org/iso/19150-2/conf/applicationSchema

BS ISO 19150-2:2015
ISO 19150-2:2015(E)

The conformance class 19150-2app-conf includes the following tests:
— Application schema, rules for identification;

— Application schema, rules for ontology documentation;

— Application schema, rules for ontology component documentation;
— Application schema, rules for integration;

— Application schema, rules for FeatureType;

— Application schema, rules for AttributeType;

— Application schema, rules for ThematicAttributeType;

— Application schema, rules for CoverageFunctionAttributeType;

— Application schema, rules for LocationAttributeType;

— Application schema, rules for Spatial AttributeType;

— Application schema, rules for TemporalAttributeType;

— Application schema, rules for MetadataAttributeType;

— Application schema, rules for QualityAttributeType;

— Application schema, rules for attribute of attribute;

— Application schema, rules for Operation;

— Application schema, rules for FeatureAssociationRole;

— Application schema, rules for FeatureAssociationType linking instances of FeatureType;
— Application schema, rules for FeatureAssociationType characterized by instances of PropertyType;
— Application schema, rules for FeatureAggregationType;

— Application schema, rules for FeatureCompositionType;

— Application schema, rules for SpatialAssociationType;

— Application schema, rules for TemporalAssociationType;

— Application schema, rules for InheritanceRelation;

— Application schema, rules for constraints;

— Application schema, rules for ValueAssignment.

A.2 Naming

A.2.1 Name
The test 19150-2package-conf:name for “ name” is as follows:

a) Testpurpose Verifythatall names of the ontology don’t use space characters and that punctuation
characters different than dash and underscore are replaced by underscore characters.

66 © IS0 2015 - All rights reserved

b) Test method

c) Reference

d) Testtype

BS ISO 19150-2:2015
ISO 19150-2:2015(E)

Inspect the owl:Ontology, owl:Class, rdfs:Datatype, owl:DatatypeProperty, owl:Object-
Property, skos:ConceptScheme, skos:Concept, and skos:Collection declarations of the
Ontology <OWL>.

Requirement 19150-2package:name (6.2.1).

Capability test.

A.2.2 Ontology name

The test 19150-2package-conf:ontologyName for “ontology name” is as follows:

a) Test purpose

b) Test method
c) Reference

d) Testtype

Verify that the ontology name URI consists of a base URI and the UML package sep-
arated by a “/” character.

Inspect the owl:Ontology declaration of the Ontology <OWL>.
Requirement 19150-2package:ontologyName (6.2.2).

Capability test.

A.2.3 RDF namespace for ontology

The test 19150-2package-conf:rdfNamespace for “RDF namespace for ontology” is as follows:

a) Testpurpose

b) Test method
c) Reference

d) Testtype

A.2.4 Class name

Verify that the RDF namespace of the ontology consists of the ontology name with
the “#” character appended at the end.

Inspect the namespace declarations of the Ontology <OWL>.
Requirement 19150-2package:rdfNamespace (6.2.3).

Capability test.

The test 19150-2package-conf:className for “class name” is as follows:

a) Testpurpose

b) Test method
c) Reference

d) Testtype

Verify that each class name consists of the RDF namespace of the ontology followed
by the UML class name.

Inspect the owl:Class declarations of the Ontology <OWL>.
Requirement 19150-2package:className (6.2.4).

Capability test.

A.2.5 Datatype name

The test 19150-2package-conf:datatypeName for “datatype name” is as follows:

a) Testpurpose

b) Test method
c) Reference

d) Testtype

Verify that each datatype name consists of the RDF namespace of the ontology
followed by the local name of the datatype.

Inspect the rdfs:Datatype declarations of the Ontology <OWL>.
Requirement 19150-2package:datatypeName (6.2.5).

Capability test.

© IS0 2015 - All rights reserved 67

BS ISO 19150-2:2015
ISO 19150-2:2015(E)

A.2.6 Property name

The test 19150-2package-conf:propertyName for “property name” is as follows:

a) Testpurpose

b) Test method

c) Reference

d) Testtype

Verify that each property name consists of the RDF namespace of the ontology
followed by the UML ATTRIBUTE localName if the attribute is scoped to the UML
package or the UML CLASS name followed in order by a “.” (full stop) and the UML
ATTRIBUTE localName if the ATTRIBUTE is scoped to the UML CLASS.

Inspect the owl:DatatypeProperty and owl:ObjectProperty declarations of the
Ontology <OWL>.

Requirement 19150-2package:propertyName (6.2.6).

Capability test.

A.2.7 Names for code lists and their members

The test 19150-2package-conf:codeName for “names for code lists and their members” is as follows:

a) Testpurpose

b) Test method
c) Reference

d) Testtype

Verify that each skos:ConceptScheme corresponding to a codeList class consists of the
ontology URI followed by the string “/code/” followed by the UML CLASS name. Verify
that each skos:Concept corresponding to a codeList item consists of the concept-scheme
URI followed by the string “/” followed by the UML ATTRIBUTE localName.

Inspect the skos:ConceptScheme and skos:Concept declarations of the Ontology <OWL>.
Requirement 19150-2package:codeName (6.2.7).

Capability test.

A.3 UML package
The test 19150-2package-conf:package for “UML package” is as follows:

a) Testpurpose

b) Test method

c) Reference

d) Testtype

68

Verify the existence of one or more OWL ontologies for each ISO geographic infor-
mation standard UML model and included PACKAGEs and their respective owl:On-
tology declaration. Verify the annotation property declarations for the ontologies:
rdfs:label for the full name of the ontology, dct:source for the source for the ontology,
owl:versionInfo for the version date of the reference document or the ontology. Verify
that each sub package corresponds to specific ontology and that the dependency is
set in the parent ontology with owl:imports.

Inspect:

— existence of one or more Ontology <OWL> for each ISO geographic information
standard UML model,

— owl:Ontology, rdfs:label, dct:source, and owl:versionInfo declarations,
— owl:imports declaration in the parent ontology, and

— owl:imports of the 19150-2 base ontology.

Requirement 19150-2package:package (6.3).

Capability test.

© ISO 2015 - All rights reserved

A.4 UML class

BS ISO 19150-2:2015
ISO 19150-2:2015(E)

The test 19150-2package-conf:class for “UML class” is as follows:

a) Test purpose

b) Test method

c) Reference

d) Testtype

Verify the existence of a Class <OWL> for each UML CLASS definition and their
respective owl:Class declaration. Verify the annotation property declarations for
the class: rdfs:label for its label name and rdfs:isDefinedBy for the source document.

Inspect the Ontology <OWL> for:

— Inspect the existence of an Class <OWL> for each UML CLASS, and
— owl:Class, rdfs:label and rdfs:isDefined By declarations.
Requirement 19150-2package:class (6.4).

Capability test.

A.5 UML abstract class

The test 19150-2package-conf:abstractClass for “UML abstract class” is as follows:

a) Test purpose

b) Test method

c) Reference

d) Testtype

Verify the existence of a Class <OWL> for each UML ABSTRACT CLASS definition and
their respective owl:Class declaration. Verify the compliancy with the A.4 abstract
test for UML CLASS. Verify the annotation property declaration for the abstract
class: is019150-2:isAbstract for its identification as abstract class.

Inspect the Ontology <OWL> for:
— the existence of a Class <OWL> for each UML CLASS, and

— owl:Class, rdfs:label, skos:definition, rdfs:isDefinedBy, and is019150-2:isAbstract
declarations.

Requirement 19150-2package:abstractClass (6.5).

Capability test.

A.6 UML attribute

A.6.1 Data property

The test 19150-2package-conf:attribute-dataProperty for “data property” is as follows:

a) Testpurpose

b) Test method

Verify the existence of a Data Property <OWL> for each UML ATTRIBUTE described
by data values and their respective owl:DatatypeProperty declaration. Verify the
linkage for each Data Property <OWL> to its related Class <OWL> with the rdfs:do-
main declaration. Verify the data value type for each Data Property <OWL> with
the rdfs:range declaration. Verify the annotation property declarations for the Data
Property <OWL>: rdfs:label for its label name, and rdfs:isDefinedBy for the source
document.

Inspect the Ontology <OWL> for:

— existence of a Data Property <OWL> for each UML ATTRIBUTE described by data
values, and

© ISO 2015 - All rights reserved 69

BS ISO 19150-2:2015
ISO 19150-2:2015(E)

— owl:DatatypeProperty, rdfs:domain, rdfs:range, rdfs:label, and rdfs:isDefined By

declarations.
c) Reference Requirement 19150-2package:attribute-dataProperty (6.6.3.1).
d) Testtype Capability test.

A.6.2 Object property

The test 19150-2package-conf:attribute-objectProperty for “object property” is as follows:

a) Testpurpose Verify the existence of an Object Property <OWL> for each UML ATTRIBUTE
described by a UML CLASS and their respective owl:ObjectProperty declaration.
Verify the linkage for each Object Property <OWL> to its related Class <OWL>
with the rdfs:domain declaration. Verify the type for each Object Property <OWL>
with the rdfs:range declaration. Verify the annotation property declarations for
the Object Property <OWL>: rdfs:label for its label name, and rdfs:isDefinedBy for
the source document.

b) Test method Inspect the Ontology <OWL> for:

— existence of an Object Property <OWL> for each UML ATTRIBUTE described

by a UML CLASS, and
— owl:ObjectProperty, rdfs:domain, rdfs:range, rdfs:label, and rdfs:isDefinedBy
source.

c) Reference Requirement 19150-2package:attribute-objectProperty (6.6.3.2).

d) Testtype Capability test.

A.7 Enumeration
The test 19150-2package-conf:enumeration for “enumeration” is as follows:

a) Testpurpose Verify the existence of a Datatype <RDFS> for each UML ENUMERATION and their
respective rdfs:Datatype declaration. Verify the enumeration of values with the
owl:oneOf and rdf:List declarations. Verify the annotation property declarations
for the datatype: rdfs:label for its label name, and rdfs:isDefinedBy for the source
document.

b) Test method Inspect the Ontology <OWL> for:
— existence of a Datatype <RDFS> for each UML ENUMERATION, and
— owl:oneOf, rdfs:range, rdfs:label, and rdfs:isDefinedBy declarations.
c) Reference Requirement 19150-2package:enumeration (6.7.1).

d) Testtype Capability test.

70 © IS0 2015 - All rights reserved

BS ISO 19150-2:2015
ISO 19150-2:2015(E)

A.8 Code list
The test 19150-2package-conf:codelist for “code list” is as follows:

a) Testpurpose Verifythe existence ofaClass <OWL>,a ConceptScheme <SKOS>, and Collection <SKOS>-
for each UML code list and assertions of the relationship between them. Verify the
existence of a Concept <SKOS> for each UML code list item and their membership
in the concept scheme and collection. Verify the annotation property declarations
for the datatype: rdfs:label for its label name, and rdfs:isDefinedBy for the source for
the definition.

b) Testmethod Inspectthe Ontology <OWL> for:
— existence of a Class <OWL> for each code list,

— existence of a ConceptScheme <SKOS> for each codelist, with the property dct:is-
FormatOf [class implementing the code list],

— existence of a Concept <SKOS> for each item on each codelist, with a property
rdf:type [class implementing the code list] and a property skos:inScheme [concept
scheme implementing the code list],

— existence of a Collection <SKOS> for each codelist, and
— rdfs:label, rdfs:isDefinedBy and rdfs:isDefinedBy properties.
c) Reference Requirement 19150-2package:codelist (6.7.2).

d) Testtype Capability test.

A.9 Union class
The test 19150-2package-conf:union for “union class” is as follows:

a) Testpurpose Verifythe existence of a Class <OWL> for each UML class with the stereotype «Union»,
with membership corresponding to the class extension of the UNION. Verify the
annotation property declarations rdfs:label for its label name, and rdfs:isDefinedBy
for the source for the definition.

b) Testmethod Inspectthe Ontology <OWL> for:

— existence of a Class <OWL> for each UNION CLASS, with the property owl:unionOf
whose value is a collection of classes corresonding with the class extension of the
UNION CLASS, and

— rdfs:label and rdfs:isDefinedBy declarations.

c) Reference Requirement 19150-2package:union (6.8).
d) Testtype Capability test.
A.10 UML multiplicity

The test 19150-2package-conf:multiplicity for “multiplicity” is as follows:

a) Testpurpose Verifythe Restriction <OWL> for cardinality corresponding to UML MULTIPLICITY
and their respective rdfs:Restriction, owl:cardinality, owl:minCardinality, owl:maxCar-
dinality and owl:allValuesFrom declarations.

© IS0 2015 - All rights reserved 71

BS ISO 19150-2:2015
ISO 19150-2:2015(E)

b) Testmethod Inspectthe Ontology <OWL> for:
— default cardinality and explicit cardinality specifications, and

— owl:Restriction, owl:cardinality, owl:minCardinality, owl:maxCardinality and
owl:allValuesFrom declarations.

c) Reference Requirement 19150-2package:multiplicity (6.9).

d) Testtype Capability test.

A.11UML generalization/inheritance
The test 19150-2package-conf:relationship-generalization for “generalization/inheritance” is as follows:

a) Testpurpose Verify the existence of SubClassOf <RDFS> assertion for each Class <OWL> corre-
sponding to a UML specialized CLASS in a UML generalization/inheritance relation
and the respective rdfs:subClassOf declaration.

b) Test method Inspect the Ontology <OWL> for:
— existence of SubClassOf <RDFS> assertion for each UML specialized CLASS, and

— rdfs:subClassOf declaration.

c) Reference Requirement 19150-2package:relationship-generalization (6.10.1).
d) Testtype Capability test.
A.12 UML association

The test 19150-2package-conf:relationship-association for “association” is as follows:

a) Testpurpose Verify the existence of an Object Property <OWL> for each UML ROLE in an ASSOCI-
ATION and its respective owl:ObjectProperty declaration. Verify the linkage for each
Object Property <OWL> to its related Class <OWL> with the rdfs:domain declaration.
Verify the Class <OWL> playing the role for each Object Property <OWL> with the
rdfs:range declaration. Verify the annotation property declarations for the object
property: rdfs:label for its label name, and rdfs:isDefinedBy for the source document.

b) Test method Inspect the Ontology <OWL> for:
— existence of an Object Property <OWL> for each UML ASSOCIATION ROLE, and

— owl:ObjectProperty, rdfs:domain, rdfs:range, rdfs:label, and rdfs:isDefinedBy

declarations.
c) Reference Requirement 19150-2package:relationship-association (6.10.2).
d) Testtype Capability test.
A.13UML aggregation

The test 19150-2package-conf:relationship-aggregation for “aggregation” is as follows:

a) Testpurpose Verify the compliancy with the A.12 abstract test for UML ASSOCIATION. Verify
the existence of the annotation property iso19150-2:aggregationType in the Object
Property <OWL> playing the part role and its value.

72 © IS0 2015 - All rights reserved

b) Test method

c) Reference

d) Testtype

BS ISO 19150-2:2015
ISO 19150-2:2015(E)

Inspect the Ontology <OWL> for:

— existence of an Object Property <OWL> for each UML ROLE in an AGGREGATION
or COMPOSITION association, and

— owl:ObjectProperty, rdfs:domain, rdfs:range, rdfs:label, rdfs:isDefinedBy, and
is019150-2:aggregationType declarations.

Requirement 19150-2package:relationship-aggregation (6.10.3).

Capability test.

A.14 UML constraint

The test 19150-2package-conf:constraint for “constraint” is as follows:

a) Testpurpose

b) Test method

c) Reference

d) Testtype

Verify the existence of an annotation property corresponding to each UML
CONSTRAINT associated either to a UML CLASS or a UML ATTRIBUTE and its
is019150-2:constraint declaration. Verify the annotation property is part of its
corresponding Class <OWL>, Data Property <OWL>, or Object Property <OWL>.

Inspect the Ontology <OWL> for:
— existence of an annotation property for each UML CONSTRAINT,
— is019150-2:constraint declaration, and

— corresponding owl:Class, owl:DatatypeProperty, and owl:ObjectProperty dec-
laration.

Requirement 19150-2package:constraint (6.11).

Capability test.

A.15 Application schema, rules for identification

The test 19150-2app-conf:identification for “application schema, rules for identification” is as follows:

a) Testpurpose

b) Test method

c) Reference

d) Testtype

Verify the existence of an Ontology <OWL> for the application schema and its owl:On-
tology declaration. Verify the annotation property declarations for the ontology:
rdfs:label for the full name of the Ontology <OWL>, owl:versionInfo for its version
number or the version date, and owl:versionIRI for its version IRI.

Inspect the existence of an Ontology <OWL> for the application schema, and
owl:Ontology, rdfs:label, owl:versionInfo, and owl:versionIRI declarations.

Requirement 19150-2app:identification (7.2).

Capability test.

© IS0 2015 - All rights reserved 73

BS ISO 19150-2:2015
ISO 19150-2:2015(E)

A.16 Application schema, rules for documentation

A.16.1 Application schema, rules for ontology documentation
The test 19150-2app-conf:documentation-ontology for “ontology documentation” is as follows:

a) Testpurpose Verifythe Ontology <OWL>documentation corresponding to the application schema
uses the following annotation property: rdfs:label, rdfs:isDefinedBy, rdfs:comment,
owl:deprecated, owl:versionInfo, owl:versionIRI, owl:priorVersion, owl:backwardCom-
patibleWith, and owl:incompatibleWith.

b) Testmethod Inspectthe Ontology <OWL> annotation properties.
c) Reference Requirement 19150-2app:documentation-ontology (7.3.1).

d) Testtype Capability test.

A.16.2 Application schema, rules for ontology component documentation

Thetest19150-2app-conf: mentation-ontol mponent for “ontology component documentation”
is as follows:

a) Testpurpose Verify the Ontology <OWL> component documentation corresponding to the appli-
cation schema uses the following annotation property: rdfs:label, skos:definition,
rdfs:isDefinedBy, rdfs:seeAlso, owl:deprecated, owl:versionInfo, iso19150-2:isAbstract,
is019150-2:associationName, iso19150-2:aggregationType, and iso19150-2:constraint.

b) Testmethod Inspectthe Ontology <OWL> components annotation properties.
c) Reference Requirement 19150-2app:documentation-ontologyComponent (7.3.2).

d) Testtype Capability test.

A.17 Application schema, rules for integration
The test 19150-2app-confiintegration for “application schema, rules for integration” is as follows:

a) Testpurpose Verify the existence of dependencies in the Ontology <OWL> with others and their
correspondence with the dependencies that the application schema has with other
application schemas. Verify the owl:imports declarations in the Ontology <OWL>.

b) Testmethod Inspectthe Ontology <OWL> for:
— existence of dependencies in the Ontology <OWL> for the application schema, and
— owl:imports declarations.

c) Reference Requirement 19150-2app:integration (7.4).

d) Testtype Capability test.

74 © IS0 2015 - All rights reserved

BS ISO 19150-2:2015
ISO 19150-2:2015(E)

A.18 Application schema, rules for FeatureType
The test 19150-2app-conf:featureType for “application schema, rules for FeatureType” is as follows:

a) Testpurpose Verify the existence of a Class <OWL> for each instance of FeatureType of the
application schema and their respective owl:Class declaration. Verify the anno-
tation property declarations: rdfs:label for its label name, skos:definition for its
definition, and is0o19150-2:isAbstract. Verify that the Class <OWL> is a subclass of
the Class <OWL> AnyFeature from the ontology corresponding to ISO 19109:—2)

b) Test method Inspect the Ontology <OWL> for:

— existence of a Class <OWL> for each instance of FeatureType the application
schema, and

— owl:Class, rdfs:label, skos:definition, rdfs:subClassOf, and is019150-2:isAbstract

declarations.
c) Reference Requirement 19150-2app:featureType (7.5).
d) Testtype Capability test.

A.19 Application schema, rules for AttributeType
The test 19150-2app-conf:attributeType for “application schema, rules for AttributeType” is as follows:

a) Testpurpose Verify the existence of a Data Property <OWL> or an Object Property <OWL> for
each instance of AttributeType of the application schema and their respective owl:-
DatatypeProperty or owl:ObjectProperty declaration. Verify the annotation property
declarations for the Data Property <OWL> or an Object Property <OWL>: rdfs:label for
its label name and skos:definition for its definition. Verify the rdfs:range declaration.

b) Testmethod Inspectthe Ontology <OWL> for:

— existence of a Data Property <OWL> or an Object Property <OWL> for each
instance of AttributeType of the application schema, and

— owl:DatatypeProperty, owl:ObjectProperty, rdfs:label, skos:definition, and
rdfs:range declarations.

c) Reference Requirement 19150-2app:attributeType (7.6.1.1).

d) Testtype Capability test.

A.20 Application schema, rules for ThematicAttributeType

The test 19150-Zapp-conf:ithematicAttributeType for “application schema, rules for
ThematicAttributeType” is as follows:

a) Testpurpose Verify the existence of a Data Property <OWL> or an Object Property <OWL> for
each instance of ThematicAttributeType of the application schema and their respec-
tive owl:DatatypeProperty or owl:ObjectProperty declaration. Verify the annotation
property declarations for the Data Property <OWL> or an Object Property <OWL>:
rdfs:label for its label name and skos:definition for its definition. Verify the rdfs:range
declaration.

b) Testmethod Inspectthe Ontology <OWL> for:

© IS0 2015 - All rights reserved 75

BS ISO 19150-2:2015
ISO 19150-2:2015(E)

c) Reference

d) Testtype

— existence of a Data Property <OWL> or an Object Property <OWL> for each
instance of ThematicAttributeType of the application schema, and

— owl:DatatypeProperty, owl:ObjectProperty, rdfs:label, skos:definition, rdfs:range
declarations.

Requirement 19150-2app:thematicAttributeType (7.6.1.2).

Capability test.

A.21 Application schema, rules for CoverageFunctionAttributeType

The test 19150-2app-conf:coverageFunctionAttributeType for “application schema, rules for
CoverageFunctionAttributeType” is as follows:

a) Testpurpose

b) Test method

c) Reference

d) Testtype

Verify the existence of an Object Property <OWL> for each instance of CoverageGeom-
etryAttributeType of the application schema and their respective owl:ObjectProperty
declaration. Verify the compliancy with the A.19 abstract test “application schema,
rules for AttributeType.” Verify that the range of the object property declaration
corresponds to a Class <OWL> of the ISO 19123:2005 ontology.

Inspect the Ontology <OWL> for:

— existence of an Object Property <OWL> for each instance of CoverageFunction-
AttributeType of the application schema, and

— owl:ObjectProperty, rdfs:label, skos:definition, and rdfs:range declarations.
Requirement 19150-2app:coverageGeometryAttributeType (7.6.1.3).

Capability test.

A.22 Application schema, rules for LocationAttributeType

Thetest19150-2app-conf:location AttributeTypefor“applicationschema,rulesforLocationAttributeType”

is as follows:

a) Testpurpose

b) Test method

c) Reference

d) Testtype

76

Verify the existence of an Object Property <OWL> for each instance of Location-
AttributeType of the application schema and their respective owl:ObjectProperty
declaration. Verify the compliancy with the A.20 abstract test “application schema,
rules for AttributeType.” Verify that the range of the object property declaration
corresponds to a Class <OWL> of the ISO 19112:2003 SI_LocationInstance UML class.

Inspect the Ontology <OWL> for:

— existence of an Object Property <OWL> for each instance of LocationAttributeType
of the application schema, and

— owl:ObjectProperty, rdfs:label, skos:definition, rdfs:subPropertyOf, and rdfs:range
declarations.

Requirement 19150-2app:locationAttributeType (7.6.1.4).

Capability test.

© ISO 2015 - All rights reserved

BS ISO 19150-2:2015
ISO 19150-2:2015(E)

A.23 Application schema, rules for SpatialAttributeType

The test 19150-2app-conf:spatial AttributeType for “application schema, rules for SpatialAttributeType”
is as follows:

a) Testpurpose Verifythe existence of an Object Property <OWL> for each instance of Spatial Attrib-
uteType of the application schema and their respective owl:ObjectProperty declara-
tion. Verify the compliancy with the A.19 abstract test “application schema, rules for
AttributeType.” Verify that the range of the object property declaration corresponds
to a Class <OWL> of the ISO 19107:2003 ontology.

b) Testmethod Inspectthe Ontology <OWL> for:

— existence of an Object Property <OWL> for each instance of SpatialAttributeType
of the application schema, and

— owl:ObjectProperty, rdfs:label, skos:definition, and rdfs:range declarations.
c) Reference Requirement 19150-2app:spatial AttributeType (7.6.1.5).

d) Testtype Capability test.

A.24 Application schema, rules for TemporalAttributeType

The test 19150-2app-conf:temporalAttributeType for “application schema, rules for
TemporalAttributeType” is as follows:

a) Testpurpose Verify the existence of an Object Property <OWL> for each instance of Tempo-
ralAttributeType of the application schema and their respective owl:ObjectProperty
declaration. Verify the compliancy with the A.19 abstract test “application schema,
rules for AttributeType.” Verify that the range of the object property declaration
corresponds to a Class <OWL> of the ISO 19108:2002 ontology.

b) Test method Inspect the Ontology <OWL> for:

— existence of an Object Property <OWL> for each instance of Temporal Attribute-
Type of the application schema, and

— owl:ObjectProperty, rdfs:label, skos:definition, and rdfs:range declarations.
c) Reference Requirement 19150-2app:temporal AttributeType (7.6.1.6).

d) Testtype Capability test.

A.25 Application schema, rules for MetadataAttributeType

The test 19150-2app-conf:metadataAttributeType for “application schema, rules for
MetadataAttributeType” is as follows:

a) Testpurpose Verify the existence of an Object Property <OWL> for each instance of Metadata-
AttributeType of the application schema and their respective owl:ObjectProperty
declaration. Verify the compliancy with the A.19 abstract test “application schema,
rules for AttributeType.” Verify that the range of the object property declaration
corresponds to a Class <OWL> of the ISO 19115-1:2014 ontology.

b) Testmethod Inspectthe Ontology <OWL> for:

© IS0 2015 - All rights reserved 77

BS ISO 19150-2:2015
ISO 19150-2:2015(E)

c) Reference

d) Testtype

— existence of an Object Property <OWL> for each instance of MetadataAttribute-
Type of the application schema, and

— owl:ObjectProperty, rdfs:label, skos:definition, and rdfs:range declarations.
Requirement 19150-2app:metadataAttributeType (7.6.1.7).

Capability test.

A.26 Application schema, rules for QualityAttributeType

The test 19150-2app-conf:qualityAttributeType for “application schema, rules for QualityAttributeType”

is as follows:

a) Testpurpose

b) Test method

c) Reference

d) Testtype

Verify the existence of an Object Property <OWL> for each instance of QualityAt-
tributeType of the application schema and their respective owl:ObjectProperty
declaration. Verify the compliancy with the A.19 abstract test “application schema,
rules for AttributeType.” Verify that the range of the object property declaration
corresponds to a Class <OWL> of the ISO 19157:2013 ontology.

Inspect the Ontology <OWL> for:

— existence of an Object Property <OWL> for each instance of MetadataAttribute-
Type of the application schema, and

— owl:ObjectProperty, rdfs:label, skos:definition, and rdfs:range declarations.

Requirement 19150-2app:qualityAttributeType (7.6.1.8).

Capability test.

A.27 Application schema, rules for attribute of attribute

The test 19150-2app-conf:attributeOfAttribute for “application schema, rules for attribute of attribute”

is as follows:

a) Testpurpose

b) Test method

78

Verify the existence of Data Property <OWL> or Object Property <OWL> for each
ATTRIBUTE of CLASSes of the application schema described by other ATTRIBUTEs.
Verify the existence of Data Property <OWL> or Object Property <OWL> for each
ATTRIBUTE of CLASSes of the application schema characterizing described AT TRIB-
UTESs. Verify the existence of domain declarations for each Data Property <OWL>
and Object Property <OWL> set to a Class <OWL> that owns them. Verify the exist-
ence of an Object Property <OWL>, its range declaration sets to one of the above
Class <OWL>, and its domain declaration sets to the Class <OWL> correponding to
the CLASS of the application schema that owns the respective ATTRIBUTE.

Inspect the Ontology <OWL> for:

— existence of Data Property <OWL> or Object Property <OWL> for each ATTRIB-
UTE of CLASSes of the application schema described by other ATTRIBUTESs, and
their owl:DatatypeProperty or owl:ObjectProperty declarations,

— existence of Data Property <OWL> or Object Property <OWL> for each ATTRIB-
UTE of CLASSes of the application schema characterizing described ATTRIBUTEs,
and their owl:DatatypeProperty or owl:ObjectProperty declarations,

© ISO 2015 - All rights reserved

c) Reference

d) Testtype

BS ISO 19150-2:2015
ISO 19150-2:2015(E)

— existence of domain declarations for each Data Property <OWL> and Object
Property <OWL> set to a Class <OWL> that owns it, and its respective owl:Class
and rdfs:domain declarations,

— existence of Object Property <OWL>, its range declaration sets to one of the above
Class <OWL>, and its domain declaration sets to the Class <OWL> correponding to
the CLASS of the application schema that owns the respective ATTRIBUTE, and its
rdfs:range, rdfs:domain, and owl:Class declarations.

Requirement 19150-2app:attributeOfAttribute (7.6.1.9).

Capability test.

A.28 Application schema, rules for Operation

The test 19150-2app-conf:0peration for “application schema, rules for Operation” is as follows:

a) Test purpose

b) Test method
c) Reference

d) Testtype

Verify that instances of Operation are non implemented in any manner in the Ontol-
ogy <OWL>.

Inspect the Ontology <OWL> for any instances of implementation of Operation.
Requirement 19150-2app:operation (7.6.2).

Basic/Capability test.

A.29 Application schema, rules for FeatureAssociationRole

The test 19150-2app-conf:featureAssociationRole for “application schema, rules for
FeatureAssociationRole” is as follows:

a) Testpurpose

b) Test method

c) Reference

d) Testtype

Verify the existence of an Object Property <OWL> for each instance of FeatureAs-
sociationRole of the application schema and their respective owl:ObjectProperty
declaration. Verify the compliancy with A.19 abstract test “application schema, rules
for AttributeType.”

Inspect the Ontology <OWL> for:

— existence of an Object Property <OWL> for each instance of FeatureAssociation-
Role of the application schema, and

— compliancy of the owl:ObjectProperty declaration with A.19 abstract test “appli-
cation schema, rules for AttributeType.”

Requirement 19150-2app:featureAssociationRole (7.6.3).

Capability test.

© IS0 2015 - All rights reserved 79

BS ISO 19150-2:2015
ISO 19150-2:2015(E)

A.30 Application schema, rules for FeatureAssociationType

A.30.1 Application schema, rules for FeatureAssociationType linking instances of
FeatureType

The test 19150-2app-conf:featureAssociationType-LinkingFeatureTypes for “FeatureAssociationType
linking instances of FeatureType” is as follows:

a) Testpurpose Verify the existence of an Object Property <OWL> for each role of an instance of a
FeatureAssociationType in the application schema and their respective owl:Object-
Property declaration. Verify the compliancy with A.29 abstract test “application
schema, FeatureAssociationRole.” Verify the domain of the Object Property <OWL>,
its rdfs:domain declaration. Verify the range of the Object Property <OWL>, its
rdfs:range declaration. Verify the cardinalities according to the cardinalities of the
application schema, with their rdfs:Restriction, owl:cardinality, owl:minCardinality,
and owl:maxCardinality declarations together with owl:allValuesFrom. Verify for
bidirectional associations that Object Properties <OWL> are inverse of each other,
and the owl:inverseOf declaration. Verify the annotation property iso19150-2:associ-
ationName of the Object Properties <OWL> for named associations.

b) Testmethod Inspectthe Ontology <OWL> for:

— existence of an Object Property <OWL> for each role of a FeatureAssociationType,
and

— owl:ObjectProperty, rdfs:domain, rdfs:range, rdfs:label, skos:definition, rdfs:Re-
striction, owl:cardinality, owl:minCardinality, owl:maxCardinality, owl:allValuesFrom,
owl:inverseOf, and iso19150-2:associationName declarations.

c) Reference Requirement 19150-2app:featureAssociationType (7.7).

d) Testtype Capability test.

A.30.2 Application schema, rules for FeatureAssociationType characterized by
instances of PropertyType

The test 19150-2app-conf:featureAssociationType-CharacteizedByProperties for
“FeatureAssociationType characterized by instances of PropertyType” is as follows:

a) Testpurpose Verify the existence of a Class <OWL> for each instance of FeatureAssociationType
characterized by instances of PropertyType in the application schema and its respec-
tive owl:Class declaration. Verify the existence of a Data Property <OWL> or an Object
Property <OWL> for each instance of PropertyType characterizing this instance
of FeatureAssociationType with their owl:DatatypeProperty or owl:ObjectProperty
declaration.

Verify the existence of Object Properties <OWL> that link this Class <OWL>, corre-
sponding to the instance of FeatureAssociationType, to the other Classes <OWL>, cor-
responding to the associated feature types with their owl:ObjectProperty declaration.
Verify the annotation properties rdfs:label for human readable name and skos:definition
for definition. Verify the domain and range of the Object Properties <OWL> with
their rdfs:domain and rdfs:range declarations. Verify the cardinalities according to
the cardinalities of the application schema, with their rdfs:Restriction, owl:cardinality,
owl:minCardinality, and owl:maxCardinality declarations together with owl:allValues-
From. Verify for bidirectional associations that Object Properties <OWL> are inverse
of each other, and the owl:inverseOf declaration. Verify the annotation property
is019150-2:associationName of the Object Properties <OWL> for named associations.

80 © IS0 2015 - All rights reserved

b) Test method

c) Reference

d) Testtype

BS ISO 19150-2:2015
ISO 19150-2:2015(E)

Inspect the Ontology <OWL> for:

— existence of a Class <OWL> for each instance of FeatureAssociationType charac-
terized by instances of GF_PropertyType in the application schema,

— existence of a Data Property <OWL> or an Object Property <OWL> for each instance
of PropertyType characterizing this instance of FeatureAssociationType,

— existence of Object Properties <OWL> that associate this Class <OWL> standing
for the instance of FeatureAssociationType to the other Classes <OWL> standing for
associated instances of FeatureType,

— existence of domain and range of all OWL properties,
— cardinalities, and

— owl:Class, owl:DatatypeProperty, owl:ObjectProperty, rdfs:domain, rdfs:range,
rdfs:Restriction, owl:cardinality, owl:minCardinality, owl:maxCardinality, owl:all-
ValuesFrom, owl:inverseOf, and iso19150-2:associationName declarations.

Requirement 19150-2app:featureAssociationType (7.7).

Capability test.

A.31 Application schema, rules for FeatureAggregationType

The test 19150-Zapp-conf:featureAggregationType for “application schema, rules for
FeatureAggregationType” is as follows:

a) Testpurpose

b) Test method

c) Reference

d) Testtype

Verify the compliancy with A.30.1 abstract test “application schema, rules for
FeatureAssociationType linking instances of FeatureType” or A.30.2 abstract test
“application schema, rules for FeatureAssociationType characterized by instances
of PropertyType” for each instance of AggregationType. Verify the existence of an
annotation property iso19150-2:aggregationType in the object property playing the
part role and its value set to partOfSharedAggregation.

Inspect the Ontology <OWL> for:

— compliancy with A.30.1 abstract test “application schema, rules for FeatureAs-
sociationType linking instances of FeatureType” or A.30.2 abstract test “application
schema, rules for FeatureAssociationType characterized by instances of Property-
Type” for each instance of FeatureAggregationType, and

— owl:ObjectProperty, rdfs:domain, rdfs:range, rdfs:label, skos:definition,
is019150-2:associationName, and is019150-2:aggregationType declarations.

Requirement 19150-2app:featureAggregationType (7.8).

Capability test.

© IS0 2015 - All rights reserved 81

BS ISO 19150-2:2015
ISO 19150-2:2015(E)

A.32 Application schema, rules for FeatureCompositionType

The test 19150-2app-conf:featureCompositionType for “application schema, rules for
FeatureCompositionType” is as follows:

a) Testpurpose Verify the compliancy with A.30.1 abstract test “application schema, rules for
FeatureAssociationType linking instances of FeatureType” or A.30.2 abstract test
“application schema, rules for FeatureAssociationType characterized by instances
of PropertyType” for each instance of AggregationType. Verify the existence of an
annotation property iso19150-2:aggregationType in the object property playing the
partrole and its value set to partOfCompositeAggregation.

b) Testmethod Inspectthe Ontology <OWL> for:

— compliancy with A.30.1 abstract test “application schema, rules for FeatureAs-
sociationType linking instances of FeatureType” or A.30.2 abstract test “application
schema, rules for FeatureAssociationType characterized by instances of Property-
Type” for each instance of FeatureCompositionType, and

— owl:ObjectProperty, rdfs:domain, rdfs:range, rdfs:label, skos:definition, is019150-2:as-
sociationName, and is019150-2:aggregationType declarations.

c) Reference Requirement 19150-2app:featureCompositionType (7.9).

d) Testtype Capability test.

A.33 Application schema, rules for SpatialAssociationType

The test 19150-2app-conf:spatialAssociationType for “application schema, rules for
SpatialAssociationType” is as follows:

a) Testpurpose Verify the compliancy with A.30.1 abstract test “application schema, rules for
FeatureAssociationType linking instances of FeatureType” or A.30.2 abstract test
“application schema, rules for FeatureAssociationType characterized by instances
of PropertyType” for each instance of Spatial AssociationType.

b) Test method Inspect the Ontology <OWL> for:

— compliancy with A.30.1 abstract test “application schema, rules for FeatureAs-
sociationType linking instances of FeatureType” or A.30.2 abstract test “application
schema, rules for FeatureAssociationType characterized by instances of Property-
Type” for each instance of SpatialAssociationType, and

— owl:ObjectProperty, rdfs:domain, rdfs:range, rdfs:label, skos:definition, and
is019150-2:associationName declarations.

c) Reference Requirement 19150-2app:spatialAssociationType (7.10).

d) Testtype Capability test.

82 © IS0 2015 - All rights reserved

BS ISO 19150-2:2015
ISO 19150-2:2015(E)

A.34 Application schema, rules for TemporalAssociationType

The test 19150-2app-conf:temporalAssociationType for “application schema, rules for
TemporalAssociationType “ is as follows:

a) Test purpose Verify the compliancy with A.30.1 abstract test “application schema, rules for
FeatureAssociationType linking instances of FeatureType” or A.30.2 abstract test
“application schema, rules for FeatureAssociationType characterized by instances
of PropertyType” for each instance of TemporalAssociationType.

b) Test method Inspect the Ontology <OWL> for:

— compliancy with A.30.1 abstract test “application schema, rules for FeatureAs-
sociationType linking instances of FeatureType” or A.30.2 abstract test “application
schema, rules for FeatureAssociationType characterized by instances of Property-
Type” for each instance of TemporalAssociationType, and

— owl:ObjectProperty, rdfs:domain, rdfs:range, rdfs:label, skos:definition, and
is019150-2:associationName declarations.

c) Reference Requirement 19150-2app:temporalAssociationType (7.11).

d) Testtype Capability test.

A.35 Application schema, rules for InheritanceRelation

The test 19150-2app-conf:inheritanceRelation for “application schema, rules for InheritanceRelation”
is as follows:

a) Test purpose Verify the existence of RDFS subclass assertion for each specialized class partic-
ipating in an instance of InheritanceRelation and their respective rdfs:subClassOf
declaration. Verify that the OWL resource of the RDFS subclass assertion corre-
sponds to the generalized class in the instance of the InheritanceRelation.

b) Test method Inspect the Ontology <OWL> for:

— existence of RDFS subclass assertion for Class <OWL> corresponding to each
specialized class of an application schema within the OWL ontology, and

— rdfs:subClassOf declaration.
c) Reference Requirement 19150-2app:inheritanceRelation (7.12).

d) Testtype Capability test.

A.36 Application schema, rules for constraints
The test 19150-2app-conf:constraint for “application schema, rules for constraints” is as follows:

a) Test purpose Verify the existence of an annotation property for constraint of the application
schema and its is019150-2:constraint declaration. Verify that the annotation prop-
ertyis part of the Class <OWL>, Data Property <OWL>, or Object Property <OWL>
it constrains.

b) Test method Inspect the Ontology <OWL> for:

— existence of an OWL annotation property for each constraint of the application
schema,

© IS0 2015 - All rights reserved 83

BS ISO 19150-2:2015
ISO 19150-2:2015(E)

— is019150-2:constraint declaration, and

— corresponding owl:Class, owl:DatatypeProperty, and owl:ObjectProperty dec-

laration.
c) Reference Requirement 19150-2app:constraint (7.13)
d) Testtype Capability test.

A.37 Application schema, rules for ValueAssignment
Thetest 19150-2app-conf:valueAssignment for “application schema, rules for ValueAssignment” is as follows:

a) Test purpose Verify the existence in the data instance of a RDF resource that reifies the property
instance, or named-graph that contains the property instance. Verify the existence
is019150-2:valueAssignment property describing the value assignment process for
this value.

b) Test method Inspect the Ontology <OWL> for:

— existence in the data instance of a RDF resource that reifies the property instance,
or named-graph that contains the property instance, and

— existence of one is019150-2:valueAssignment property for this property instance.
c) Reference Requirement 19150-2app:valueAssignment (7.14)

d) Testtype Capability test.

84 © IS0 2015 - All rights reserved

BS ISO 19150-2:2015
ISO 19150-2:2015(E)

Annex B
(normative)

Namespaces and component names for geographic information
ontologies

B.1 General

This part of ISO 19150 adopts HTTP Universal Resource Identifier (URI) for the identification of
ontologies, concepts, properties, individuals, and other elements for the purpose of geographic
information. Therefore, it becomes necessary to adopt standard URI structures for ISO geographic
information ontologies and geographic information application ontologies. Annex B defines the standard
structures for URI that shall be used.

B.2 ISO geographic information

B.2.1 HTTP URI structure of ontology name

The structure of ISO/TC 211 HTTP URI for ontology name shall be as follows:

ontologyName = URIbase “/” ontology
URIbase = scheme “://” authority “/” absolutePath

scheme = “http”
authority = “def.isotc2ll.org”
absolutePath = “iso” standardNumber [“/” “-” partNumber] [“/” year]

ontology = ontologyDocumentName / umlPackageName

— umlPackageName = abbreviation for the name of the UML package corresponding to the ontology,
which also follows the syntax rules for a segment as described in RFC 3986, 3.3.

— ontologyDocumentName = name of the document, which physically contains the ontology stored in
a particular way.

EXAMPLES

— http://defisotc211.0rg/iso19107/2003/geometryroot

— http://defisotc211.0rg/is019107/2003/coordinategeometry

B.2.2 HTTP URI structure of ontology RDF namespace

The structure of ISO/TC 211 HTTP URI for ontology RDF namespaces shall be as follows:
RDFNamespace = ontologyName “#”
EXAMPLES

— http://defisotc211.0rg/is019107/2003 /geometryroot#

— http://def.isotc211.org/is019107/2003/coordinategeometry#

B.2.3 HTTP URI structure of ontology component names

The structure of ISO/TC 211 HTTP URI of component names of ISO geographic information ontology
shall be as follows:

© IS0 2015 - All rights reserved 85

http://def.isotc211.org/iso19107/2003/geometryroot
http://def.isotc211.org/iso19107/2003/coordinategeometry
http://def.isotc211.org/iso19107/2003/geometryroot#
http://def.isotc211.org/iso19107/2003/coordinategeometry#

BS ISO 19150-2:2015
ISO 19150-2:2015(E)

componentName = RDFNamespace component

component = umlClassName / datatypelocalName / propertyName / annotationPropertyName
propertyName = [className “.”] propertyLocalName

propertyLocalName = umlAttributeName / umlRoleName

— umlClassName is the name of the corresponding UML Class

— datatypeLocalName is the local name of the datatype.

— className means the name of an OWL class

— umlAttributeName means the name of a UML attribute;

— umlRoleName means the name of a UML association role.

EXAMPLES

— http://def.isotc211.0org/is019107/2003/geometryroot#GM_Object

— http://def.isotc211.org/is019107/2003/coordinategeometry#coordinate

86 © IS0 2015 - All rights reserved

http://def.isotc211.org/iso19107/2003/geometryroot#GM_Object
http://def.isotc211.org/iso19107/2003/coordinategeometry#coordinate

Annex C

BS ISO 19150-2:2015
ISO 19150-2:2015(E)

(informative)

Augmented Backus Naur Form Notation

This part of ISO 19150 uses the Augmented Backus Naur Form (ABNF) notation, which is summarized

hereafter:

Construct Syntax
terminal symbol o
nonterminal symbol

rule form =
concatenation white space
optional []

repetition

alternative /

© ISO 2015 - All rights reserved

Example

“inout”
visibility

title = docTitle

mumble = foo bar foo
[visibility]
*foo

\\+II / W __ / \\#" / A\ D74

87

BS ISO 19150-2:2015
ISO 19150-2:2015(E)

Annex D
(normative)

"base” ontology

D.1 General

Annex D sets an OWL ontology for the purpose of ISO geographic information ontologies. The
ontology name is http://def.isotc211.org/iso19150/-2/2012/base and its namespace is http://def.isotc211.

org/iso19150/-2/2012/base# with the prefix iso19150-2.
The ontology is available on the Internet at http://def.isotc211.0rg/iso19150/-2/2012/base.

D.2 Ontology

<rdf:RDF xmlns="http://def.isotc21l.0rg/is0l19150/-2/2012/base#”
xml :base="http://def.isotc211l.0rg/1s019150/-2/2012/base”
xmlns:owl="http://www.w3.0rg/2002/07/owl#”
xmlns:xsd="http://www.w3.0rg/2001/XMLSchemat”
xmlns:rdfs="http://www.w3.0rg/2000/01/rdf-schema#”
xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#”
xmlns:dc="http://purl.org/dc/elements/1.1/”
xmlns:skos="http://www.w3.0rg/2004/02/skos/core#”
xmlns:i1s019150-2="http://def.isotc21ll.0rg/is019150/-2/2012/base#”>

D S e T T A a2 o o S o
+

+ Ontology

+

T o A e L o L s E L e o e o D

<owl:0Ontology rdf:about="http://def.isotc21ll.0rg/is019150/-2/2012/base”>
<rdfs:1label>IS019150-2, Rules for ontology in OWL</rdfs:label>
<dct:source>IS019150-2, Rules for ontology in OWL</dct:source>
<owl:versionInfo>2012-05-25</owl:versionInfo>

</owl:0Ontology>

e o R T o
+

+ Annotation properties

+

B e e e o e 20 T e o e o o et o A R

<owl:AnnotationProperty rdf:about="&rdfs;label”/>
<owl:AnnotationProperty rdf:about="&rdfs;comment”/>
<owl:AnnotationProperty rdf:about="&owl;versionInfo”/>
<owl:AnnotationProperty rdf:about="&1is0l19150-2;isAbstract”>
<rdfs:domain rdf:resource="g&owl;Class”/>
<rdfs:range rdf:resource="&xsd;boolean”/>
</owl:AnnotationProperty>
<owl:AnnotationProperty rdf:about="&1is019150-2;associationName”>
<rdfs:domain rdf:resource="g&owl;Class”/>

<rdfs:range rdf:resource="&xsd;string”/>
</owl:AnnotationProperty>

88 © IS0 2015 - All rights reserved

http://def.isotc211.org/iso19150/-2/2012/base
http://def.isotc211.org/iso19150/-2/2012/base#
http://def.isotc211.org/iso19150/-2/2012/base#
http://def.isotc211.org/iso19150/-2/2012/base

BS ISO 19150-2:2015
ISO 19150-2:2015(E)

<owl:AnnotationProperty rdf:about="&1is019150-2;aggregationType”>
<rdfs:domain rdf:resource="&owl;Class”/>

<rdfs:range rdf:resource="&xsd;string”/>
</owl:AnnotationProperty>

<owl:AnnotationProperty rdf:about="&1is0l19150-2;constraint”>

<rdfs:domain rdf:resource="&owl;Class”/>

<rdfs:range rdf:resource="&xsd;string”/>
</owl:AnnotationProperty>

D e e T e o
n

+ Datatypes
+

e s
<!-- 1s5019150-2: GCOLiteral -->

<rdfs:Datatype rdf:about="61s019150-2;gcoLiteral”>
<rdfs:label>gcoLiteral</rdfs:label>
<rdfs:isDefinedBy>http://standards.iso.org/iso/19139/ed-1/en</rdfs:isDefinedBy>
<owl:equivalentClass rdf:resource="&rdf;XMLLiteral” />

</rdfs:Datatype>

e e e i e e L o T e o o o o
+

+ Object Properties

+
o R D

<!-- 15019150-2:valueAssignment -->

<owl:0ObjectProperty rdf:about="&1s019150-2;valueAssignment”>
<rdfs:label>value assignment</rdfs:label>
<skos:definition>property that can be attached to a statement that describes
a property feature instance, to support a link to the evidence for the value
property </skos:definition>
<rdfs:isDefinedBy>http://standards.iso.org/is0/19109/ed-2/en</rdfs:isDefinedBy>
<rdfs:domain rdf:resource="&rdf;Statement”/>

</owl:0ObjectProperty>

</rdf :RDF>

© IS0 2015 - All rights reserved 89

BS ISO 19150-2:2015
ISO 19150-2:2015(E)

Annex E
(informative)

Application ontology: The PropertyParcel example

The example of ontology for an application schema is based on the application schema example depicted
in 8.3.2 of SO 19109:—2) (see Figure E.1). The example has three feature type Property parcel, Building,
and Loan. The feature type Property parcel has three attributes: Identification, Name, and Area. The
feature type Building has height attributes: Code, Centre point, Shape, Address, Type, Horizontal accuracy,
Vertical accuracy, and Owner. Horizontal accuracy and Vertical accuracy describe the quality of Centre
point. The feature type Loan has three attributes: Amount, Period, and Classification. The Property parcel
is associated with Building through the role contains; an instance of Property parcel contains 0 to many
instances of Building. The Building is associated with Loan through the role financed; an instance of
Building is financed by 0 to many instances of Loan.

«FeatureType» «FeatureType»
PropertyParcel Building
+thePropertyParcel +contains
+ identification: Propertyld + owner: Cl_Party
+ name: CharacterString 0..* 0..*| + address: Sl_Locationlnstance
+ border: TP_Face + type: BuildingType = private
+ updates: MD_Maintenancelnformation
0..* |+theAD_Building
«enumeration»
BuildingType
Propertyld +shape | 0..1
tourist
+ municipalityNumber: Integer private
+ propertyNumber: Integer public «type»
property ’ 9 GM_Surface
+centre_point 1 +financed (, 0.
«DataType» «FeatureType»

PositionWithQuality Loan
+ position: GM_Point + amount: Currency
+ horizontalAccuracy: DQ_AbsoluteExternalPositionalAccuracy [0..1] + classification: MD_LegalConstraints
+ verticalAccuracy: DQ_RelativelnternalPositionalAccuracy [0..1] + period: TM_Period

Figure E.1 — UML model of the property parcel example

The corresponding ontology is as following:

<rdf:RDF xmlns="http://my organization.org/Parcels#”
xml:base="http://my organization.org/parcels”
xmlns:example="http://my organization.org/parcels#”
xmlns:owl="http://www.w3.0rg/2002/07/owl#”
xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#”
xmlns:rdfs="http://www.w3.0rg/2000/01/rdf-schema#”
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema#”
xmlns:skos="http://www.w3.0rg/2004/02/skos/core#”
xmlns:dc="http://purl.org/dc/elements/1.1/”
xmlns:1s019150-2="http://def.isotc21ll.0rg/1s019150-2/2012/base#”
xmlns:GM Primitive="http://def.isotc21l.0rg/1is019107/2003/GeometicPrimitive#”
xmlns:TP Primitive="http://def.isotc21l.0rg/is019107/2003/
TopologicPrimitive#”
xmlns:gfm="http://def.isotc211l.0rg/1s019109/2013/GeneralFeatureModel#”

90 © IS0 2015 - All rights reserved

BS ISO 19150-2:2015
ISO 19150-2:2015(E)

xmlns:TM Object="http://def.isotc21l.0rg/is019108/2002/TemporalObjects#”
xmlns:1s019112="http://def.isotc21ll.0rg/is019112/2003/1is019112#"

xmlns:MD Constraints="http://def.isotc2ll.0rg/is0l19115/-1/2014/
ConstraintInformation#”
xmlns:metaquality=http://def.isotc2ll.0rg/1s019157/2013/Metaquality#
xmlns:citation=http://def.isotc2ll.0rg/1is019115/-1/2014/CitationInformation#
xmlns:maintenance="http://def.isotc21l.0rg/is0l19115/-1/2014/
MaintenanceInformation#”>

L A e L Lt e e St o o o 3
+

+ Ontology

+

L e e L I o e DS

<owl:Ontology rdf:about="http://my organization.org/Parcels”>
<rdfs:label>Parcel ontology example</rdfs:label>
<owl:versionInfo>ed-1</owl:versionInfo>
<owl:versionIRI rdf:ressource="http://my organization.org/2013/Parcels”/>
<owl:imports rdf:resource="http://def.isotc21l.0rg/is019150-2/2012/base”/>
<owl:imports rdf:resource="http://def.isotc21ll.0rg/is019107/2003/
GeometicPrimitive” />
<owl:imports rdf:resource="http://def.isotc21l1l.0rg/1s019107/2003/
TopologicalPrimitive” />
<owl:imports rdf:resource="http://def.isotc21ll.0rg/is019108/2002/
TemporalObjects” />
<owl:imports rdf:resource="http://def.isotc2ll.0rg/1s019109/2013/
GeneralFeatureModel” />
<owl:imports rdf:resource="http://def.isotc2ll.0org/is019112/2003/
is0l19112”/>
<owl:imports rdf:resource="http://def.isotc2ll.0rg/1s019115/-1/2014/
ConstraintInformation”/>
<owl:imports rdf:resource="http://def.isotc2ll.0org/is019157/2013/
Metaquality” />
<owl:imports rdf:resource="http://def.isotc2ll.0rg/1s019115/-1/2014/
CitationInformation”/>
<owl:imports rdf:resource="http://def.isotc2ll.0org/is0l19115/-1/2014/
MaintenanceInformation”/>

</owl:0Ontology>

S e L e o o L L et o o o o i o
+

+ FeatureTypes

+

B T o S Lt e i o b Lt o o o o o

<!-- example:building -->

<owl:Class rdf:about="&example;Building”>
<rdfs:label>Building</rdfs:label>
<skos:definition>roofed and walled structure built for permanent
use</skos:definition>
<rdfs:subClassOf rdf:resource="&gfm;AnyFeature”/>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="s&example;address” />
<owl:cardinality
rdf:datatype="&xsd; nonNegativelnteger”>1</owl:cardinality>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="g&example;address” />
<owl:allValuesFrom rdf:resource="&is019112;SI LocationInstance”/>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="gexample;centre point”/>

© IS0 2015 - All rights reserved 91

BS ISO 19150-2:2015
ISO 19150-2:2015(E)

<owl:cardinality
rdf:datatype="&xsd;nonNegativeInteger”>1</owl:cardinality>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="gexample;centre point”/>
<owl:allValuesFrom rdf:resource="g&example;PositionWithQuality” />
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="&example;shape”/>
<owl:maxCardinality
rdf:datatype="&xsd;nonNegativeInteger”>1</owl:maxCardinality>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="&example;shape”/>
<owl:allValuesFrom rdf:resource="&GM Primitive;GM Surface”/>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="&example;owner” />
<owl:cardinality
rdf:datatype="&xsd;nonNegativelnteger”>1</owl:cardinality>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="&example;owner”/>
<owl:allValuesFrom rdf:resource="&citation;CI_Party”/>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="&example;Building.type”/>
<owl:cardinality
rdf:datatype="&xsd; nonNegativelInteger”>1</owl:cardinality>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="gexample;Building.type”/>
<owl:allValuesFrom rdf:resource="&example;BuildingType”/>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="&example;financed” />
<owl:allValuesFrom rdf:resource="&example;Loan”/>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="g&example;thePropertyParcel”/>
<owl:allValuesFrom rdf:resource="&example;PropertyParcel” />
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:isDefinedBy>http://standards.iso.org/iso/19109/ed-
2/en</rdfs:isDefinedBy>
</owl:Class>

<!-- example:Loan -->
<owl:Class rdf:about="&example;Loan”>

<rdfs:label>Loan</rdfs:label>
<skos:definition>money lent</skos:definition>

92 © IS0 2015 - All rights reserved

BS ISO 19150-2:2015
ISO 19150-2:2015(E)

<rdfs:subClassOf rdf:resource="&gfm;AnyFeature”/>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="g&example;period”/>
<owl:cardinality
rdf:datatype="&xsd;nonNegativeInteger”>1</owl:cardinality>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="&example;period”/>
<owl:allValuesFrom rdf:resource="&TM Object;TM Period”/>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="g&example;amount”/>
<owl:cardinality
rdf:datatype="&xsd;nonNegativeInteger”>1</owl:cardinality>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="g&example;amount”/>
<owl:allValuesFrom rdf:resource="g&example;Currency” />
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="&example;Loan.classification”/>
<owl:cardinality
rdf:datatype="&xsd; nonNegativelnteger”>1</owl:cardinality>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="g&example;Loan.classification”/>
<owl:allValuesFrom
rdf:resource="&MD Constraints;MD LegalConstraints”/>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="&example;Loan.theAD Building”/>
<owl:allValuesFrom rdf:resource="s&example;Building”/>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:isDefinedBy>http://standards.iso.org/is0/19109/ed-
2/en</rdfs:isDefinedBy>
</owl:Class>

<!-- example:PropertyParcel -->

<owl:Class rdf:about="&example;PropertyParcel”>
<rdfs:label>PropertyParcel</rdfs:label>
<rdfs:subClassOf rdf:resource="&gfm;AnyFeature”/>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty
rdf:resource="&example; PropertyParcel.identification”/>
<owl:cardinality
rdf:datatype="6&xsd;nonNegativeInteger”>1</owl:cardinality>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty
rdf:resource="&example; PropertyParcel.identification”/>
<owl:allValuesFrom rdf:resource="&example;PropertyID”/>
</owl:Restriction>
</rdfs:subClassOf>

© IS0 2015 - All rights reserved 93

BS ISO 19150-2:2015
ISO 19150-2:2015(E)

<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="&example;border”/>
<owl:cardinality
rdf:datatype="&xsd; nonNegativelInteger”>1</owl:cardinality>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="&example;border”/>
<owl:allValuesFrom rdf:resource="&TP Primitive;TP_Face”/>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="&example;name”/>
<owl:cardinality
rdf:datatype="&xsd;nonNegativeInteger”>1</owl:cardinality>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="&example;name” />
<owl:allValuesFrom rdf:resource="&xsd;string”/>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="&example;updates”/>
<owl:cardinality
rdf:datatype="&xsd;nonNegativeInteger”>1</owl:cardinality>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="&example;updates”/>
<owl:allValuesFrom
rdf:resource="s&maintenance;MD MaintenanceInformation”/>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="&example;contains”/>
<owl:allValuesFrom rdf:resource="gsexample;Building”/>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:isDefinedBy>http://standards.iso.org/iso/19109/ed-
2/en</rdfs:isDefinedBy>
</owl:Class>

L i L e e o S S e ke e o o s o o o o o o
+

+ Datatypes

+

B e e L o e o o e o o e o o S S

<!-- example:PositionWithQuality -->

<owl:Class rdf:about="&example;PositionWithQuality”>
<rdfs:label>PositionWithQuality</rdfs:label>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="s&example;position”/>
<owl:cardinality
rdf:datatype="&xsd;nonNegativeInteger”>1</owl:cardinality>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="&example;position”/>

94 © IS0 2015 - All rights reserved

BS ISO 19150-2:2015
ISO 19150-2:2015(E)

<owl:allValuesFrom rdf:resource=”&GM_Primitive;GM_Point”/>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="&example;verticalAccuracy”/>
<owl:maxCardinality
rdf:datatype="&xsd; nonNegativelInteger”>1</owl:maxCardinality>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="g&example;verticalAccuracy”/>
<owl:allValuesFrom
rdf:resource="smetaquality;DQ RelativeInternalPositionalAccuracy”/>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="g&example;horizontalAccuracy”/>
<owl:maxCardinality
rdf:datatype="&xsd;nonNegativeInteger”>1</owl:maxCardinality>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="&example;horizontalAccuracy”/>
<owl:allValuesFrom
rdf:resource="&metaquality;DQ AbsoluteExternalPositionalAccuracy”/>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:isDefinedBy>http://standards.iso.org/is0/19109/ed-
2/en</rdfs:isDefinedBy>
</owl:Class>

e e L e L o 1 N S a2 o
+

+ Other Classes

+

S o o i S 1 1 2 e o 0 o S D

<!-- example:Currency -->

<owl:Class rdf:about="&example;Currency”>
<rdfs:label>Currency</rdfs:label>
<skos:definition>type of money</skos:definition>
</owl:Class>

<!-- example:PropertyID -->

<owl:Class rdf:about="&example;PropertyID”>
<rdfs:label>PropertyID</rdfs:label>
<skos:definition>identifier of the property scoped to the
municipality</skos:definition>
<rdfs:subClassOf rdf:resource="&1s019150-2;datatype”/>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="gexample;municipalityNumber” />
<owl:cardinality
rdf:datatype="6&xsd;nonNegativeInteger”>1</owl:cardinality>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="&example;municipalityNumber”/>
<owl:allValuesFrom rdf:resource="&xsd;integer”/>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>

© IS0 2015 - All rights reserved 95

BS ISO 19150-2:2015
ISO 19150-2:2015(E)

<owl:Restriction>
<owl:onProperty rdf:resource="gexample;propertyNumber” />
<owl:cardinality
rdf:datatype="&xsd;nonNegativelnteger”>1</owl:cardinality>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="&example;propertyNumber” />
<owl:allValuesFrom rdf:resource="g&xsd;integer”/>
</owl:Restriction></rdfs:subClassOf>
<rdfs:isDefinedBy>http://standards.iso.org/iso/19109/ed-
2/en</rdfs:isDefinedBy>
</owl:Class>

D e S L e e S 0 A e e 6
+

+ Enumerations

+

T T A e o A L T i e o T o I e P

<!-- example:BuildingType -->

<rdfs:Datatype rdf:about="&example;BuildingType”>
<rdfs:label>BuildingType</rdfs:label>
<owl:equivalentClass>
<rdfs:Datatype>
<owl:oneOf>
<rdf:List>
<rdf:first rdf:datatype="&xsd;string”>tourist</rdf:first>
<rdf:rest>
<rdf:List>
<rdf:first rdf:datatype="&xsd;string”>private</rdf:first>
<rdf:rest>
<rdf:List>
<rdf:first
rdf:datatype="&xsd; string”>public</rdf:first>
<rdf:rest rdf:resource="&rdf;nil” />
</rdf:List>
</rdf:rest>
</rdf:List>
</rdf:rest>
</rdf:List>
</owl:oneOf>
</rdfs:Datatype>
</owl:equivalentClass>
<rdfs:isDefinedBy>http://standards.iso.org/iso/19109/ed-
2/en</rdfs:isDefinedBy>
</rdfs:Datatype>

e e i o o o o
+

+ Object Properties

+

L o B o e o o o R o e

<!-- example:financed -->

<owl:0bjectProperty rdf:about="&example;financed”>
<rdfs:label>financed</rdfs:label>
<skos:definition>furnished with necessary funds</skos:definition>
<rdfs:domain rdf:resource="example:Building”/>
<rdfs:range rdf:resource="gexample;Loan”/>
<rdfs:isDefinedBy>http://standards.iso.org/iso/19109/ed-
2/en</rdfs:isDefinedBy>

</owl:0ObjectProperty>

<!-- example:Loan.classification -->

96 © IS0 2015 - All rights reserved

BS ISO 19150-2:2015
ISO 19150-2:2015(E)

<owl:ObjectProperty rdf:about="&example;Loan.classification”>
<rdfs:label>classification</rdfs:label>
<skos:definition>legal constraint category</skos:definition>
<rdfs:domain rdf:resource="gexample;Loan” />
<rdfs:range rdf:resource:"&MD_Constraints;MD_LegalConstraints"/>
<rdfs:isDefinedBy>http://standards.iso.org/iso/19109/ed-
2/en</rdfs:isDefinedBy>

</owl:0ObjectProperty>

<!-- example:contains -->

<owl:ObjectProperty rdf:about="&example;contains”>
<skos:definition>is within a property parcel</skos:definition>
<rdfs:label>contains</rdfs:label>
<rdfs:domain rdf:resource="g&example;PropertyParcel” />
<rdfs:range rdf:resource="gexample;Building”/>
<rdfs:isDefinedBy>http://standards.iso.org/iso/19109/ed-
2/en</rdfs:isDefinedBy>

</owl:0ObjectProperty>

<!-- example:PropertyParcel.identification -->

<owl:ObjectProperty rdf:about="&example;PropertyParcel.identification”>
<rdfs:label>identification</rdfs:label>
<skos:definition>evidence of identity</skos:definition>
<rdfs:domain rdf:resource="gexample;PropertyParcels” />
<rdfs:range rdf:resource="&example;PropertyID”/>
<rdfs:isDefinedBy>http://standards.iso.org/iso/19109/ed-
2/en</rdfs:isDefinedBy>

</owl:0ObjectProperty>

<!-- example:address -->

<owl:0ObjectProperty rdf:about="&example;address”>
<skos:definition>designation of a place for delivery</skos:definition>
<rdfs:label>address</rdfs:label>
<rdfs:range rdf:resource="&is0l19112;SI LocationInstance”/>
<rdfs:isDefinedBy>http://standards.iso.org/iso/19109/ed-
2/en</rdfs:isDefinedBy>

</owl:0ObjectProperty>

<!-- example:border -->

<owl:ObjectProperty rdf:about="&example;border”>
<skos:definition>surface delimited by lines</skos:definition>
<rdfs:label>border</rdfs:label>
<rdfs:range rdf:resource="&TP Primitive;TP Face”/>
<rdfs:isDefinedBy>http://standards.iso.org/1is0/19109/ed-
2/en</rdfs:isDefinedBy>

</owl:0bjectProperty>

<!-- example:centre point -->

<owl:ObjectProperty rdf:about="&example;centre point”>
<skos:definition>point representing the most important position of an
object</skos:definition>
<rdfs:label>centre point</rdfs:label>
<i1s5019150-2:aggregationType>partOfCompositeAggregation</iso019150-
2:aggregationType>
<rdfs:range rdf:resource="gexample;PositionWithQuality” />
<rdfs:isDefinedBy>http://standards.iso.org/iso/19109/ed-
2/en</rdfs:isDefinedBy>

</owl:0ObjectProperty>

© IS0 2015 - All rights reserved 97

BS ISO 19150-2:2015
ISO 19150-2:2015(E)

98

<!-- example:horizontalAccuracy -->

<owl:0ObjectProperty rdf:about="&example;horizontalAccuracy”>
<skos:definition>closeness of a reported geographic position to
values accepted as being true</skos:definition>
<rdfs:label>horizontalAccuracy</rdfs:label>
<rdfs:range
rdf:resource="&metaquality;DQ AbsoluteExternalPositionalAccuracy”/>
<rdfs:isDefinedBy>http://standards.iso.org/iso0/19109/ed-
2/en</rdfs:isDefinedBy>

</owl:0ObjectProperty>

<!-- example:period —-->

<owl:ObjectProperty rdf:about="&example;period”>
<rdfs:label>period</rdfs:label>
<skos:definition>portion of time</skos:definition>
<rdfs:range rdf:resource="&TM Object;TM Period”/>
<rdfs:isDefinedBy>http://standards.iso.org/iso/19109/ed-
2/en</rdfs:isDefinedBy>

</owl:0ObjectProperty>

<!-- example:position -->

<owl:0ObjectProperty rdf:about="&example;position”>
<rdfs:label>position</rdfs:label>
<skos:definition>point occupied by something</skos:definition>
<rdfs:range rdf:resource="&GM Primitive;GM Point”/>
<rdfs:isDefinedBy>http://standards.iso.org/iso/19109/ed-
2/en</rdfs:isDefinedBy>

</owl:0ObjectProperty>

<!-- example:shape -->

<owl:ObjectProperty rdf:about="&example;shape”>
<skos:definition>spatial form</skos:definition>
<rdfs:label>shape</rdfs:label>
<1s019150-2:aggregationType>partOfCompositeAggregation</is0l19150-
2:aggregationType>
<rdfs:range rdf:resource="&GM Primitive;GM Surface”/>
<rdfs:isDefinedBy>http://standards.iso.org/iso0/19109/ed-
2/en</rdfs:isDefinedBy>

</owl:0ObjectProperty>

<!-- example:verticalAccuracy -->

<owl:0ObjectProperty rdf:about="&example;verticalAccuracy”>
<skos:definition>closeness of the relative position of the feature in
high or depth in the scope to its respective relative position accepted
being true</skos:definition>
<rdfs:label>verticalAccuracy</rdfs:label>
<rdfs:range
rdf:resource="s&metaquality;DQ RelativelInternalPositionalAccuracy”/>
<rdfs:isDefinedBy>http://standards.iso.org/iso/19109/ed-
2/en</rdfs:isDefinedBy>

</owl:0ObjectProperty>

<!-- example:amount -->

<owl:0ObjectProperty rdf:about="&example;amount”>
<rdfs:label>amount</rdfs:label>
<skos:definition>total number</skos:definition>
<rdfs:range rdf:resource="gexample;Currency”/>
<rdfs:isDefinedBy>http://standards.iso.org/iso0/19109/ed-
2/en</rdfs:isDefinedBy>

</owl:0ObjectProperty>

© ISO 2015 - All rights reserved

as

BS ISO 19150-2:2015
ISO 19150-2:2015(E)

<!-- example:updates -->

<owl:0ObjectProperty rdf:about="&example;updates”>
<rdfs:label>updates</rdfs:label>
<skos:definition>maintenance update</skos:definition>
<rdfs:range rdf:resource="&maintenance;MD MaintenanceInformation”/>
<rdfs:isDefinedBy>http://standards.iso.org/is0/19109/ed-
2/en</rdfs:isDefinedBy>

</owl:0bjectProperty>

<!-- example:owner —-->

<owl:0ObjectProperty rdf:about="&example;owner”>
<skos:definition>someone who has or hold something as
property</skos:definition>
<rdfs:label>owner</rdfs:label>
<rdfs:range rdf:resource="&citation;CI Party”/>
<rdfs:isDefinedBy>http://standards.iso.org/is0/19109/ed-
2/en</rdfs:isDefinedBy>

</owl:0bjectProperty>

<!-- example:thePropertyParcel -->

<owl:0ObjectProperty rdf:about="&example;thePropertyParcel”>
<skos:definition>parcel of land</skos:definition>
<rdfs:label>thePropertyParcel</rdfs:label>
<rdfs:domain rdf:resource="&example;Building”/>
<rdfs:range rdf:resource="&example;PropertyParcel” />
<rdfs:isDefinedBy>http://standards.iso.org/is0/19109/ed-
2/en</rdfs:isDefinedBy>

</owl:0bjectProperty>

<!-- example:Loan.theAD Building -->

<owl:ObjectProperty rdf:about="&example;Loan.theAD Building”>
<skos:definition>the related building</skos:definition>
<rdfs:label>theAD Building</rdfs:label>
<rdfs:domain rdf:resource="&example;Loan” />
<rdfs:range rdf:resource="sexample;Building”/>
<rdfs:isDefinedBy>http://standards.iso.org/is0/19109/ed-
2/en</rdfs:isDefinedBy>

</owl:0bjectProperty>

B e e T L 2 e i 0 2 0 2 o o o 3
+

+ Data Properties

+

T T T T L e LAt s o 2 S o S o o D

<!-- example:Building.type -->

<owl:DatatypeProperty rdf:about="g&example;Building.type”>
<rdfs:label>type</rdfs:label>
<skos:definition>category of building</skos:definition>
<rdfs:domain rdf:resource="gexample;Building”/>
<rdfs:range rdf:resource="g&example;BuildingType”/>
<rdfs:isDefinedBy>http://standards.iso.org/iso/19109/ed-
2/en</rdfs:isDefinedBy>

</owl:DatatypeProperty>

<!-- example:municipalityNumber -->
<owl:DatatypeProperty rdf:about="g&example;municipalityNumber”>

<skos:definition>number that identifies a municipality
uniquely</skos:definition>

© IS0 2015 - All rights reserved 99

BS ISO 19150-2:2015
ISO 19150-2:2015(E)

<rdfs:label>municipalityNumber</rdfs:label>
<rdfs:range rdf:resource="&xsd;integer”/>
<rdfs:isDefinedBy>http://standards.iso.org/iso/19109/ed-
2/en</rdfs:isDefinedBy>

</owl:DatatypeProperty>

<!-- example:name -->

<owl:DatatypeProperty rdf:about="&example;name”>
<rdfs:label>name</rdfs:label>
<skos:definition>distinctive designation of a person or
thing</skos:definition>
<rdfs:range rdf:resource="&xsd;string”/>
<rdfs:isDefinedBy>http://standards.iso.org/iso/19109/ed-
2/en</rdfs:isDefinedBy>

</owl:DatatypeProperty>

<!-- example:propertyNumber -->

<owl:DatatypeProperty rdf:about="&example;propertyNumber”>
<skos:definition> number that identifies a property uniquely in
municipality</skos:definition>
<rdfs:label>propertyNumber</rdfs:label>
<rdfs:range rdf:resource="&xsd;integer”/>
<rdfs:isDefinedBy>http://standards.iso.org/iso/19109/ed-
2/en</rdfs:isDefinedBy>

</owl:DatatypeProperty>

</rdf :RDF>

100

© ISO 2015 - All rights reserved

(3]
[4]

(5]

(6]

[7]
(8]
[9]
[10]

[11]

[12]

[13]
[14]

BS ISO 19150-2:2015
ISO 19150-2:2015(E)

Bibliography

BRODEUR]. Revisiting the Concept of Geospatial Data Interoperability within the Scope of a
Human Communication Process. Trans. GIS. 2003, 7 (2) pp. 243-265

DAacoNTA M.C., OBRST L.J.,, SMITH K.T. The Semantic Web: A Guide to the Future of XML, Web
Services, and Knowledge Management. Wiley Publishing, Inc, 2003

GRUBER T.R. A translation approach to portable ontologies. Knowl. Acquis. 1993, 5 pp. 199-220

HITZLER P., KROTZSCH M., RUDOLPH S. 2010, Foundations of Semantic Web Technologies (Chapman
&Hall/CRC (Taylor & Francis Group)).

IETF RFC 5013, The Dublin Core Metadata Element Set, Available at <http://www.ietf.org/rfc/
rfc5013.txt >

ISO 8601:2004, Data elements and interchange formats — Information interchange —
Representation of dates and times

[SO 19110, Geographic information — Methodology for feature cataloguing
[SO 19136, Geographic information — Geography Markup Language (GML)
[SO/TS 19139, Geographic information — Metadata — XML schema implementation

OBJECT MANAGEMENT GROUP. 2011, OMG Unified Modeling Language (OMG UML),
Superstructure (Version 2.4.1) (Object Management Group), http://www.omg.org/spec
UML/2.4.1/Superstructure.

OBJECT MANAGEMENT GROUP. Ontology Definition Metamodel, formal/2009-05-01. OMG,
Needham, MA, 2009

RUMBAUGH]J.,JAcOBSON I.,BoocH G. The Unified Modeling Language Reference Manual. Addison-
Wesley Professional, Second Edition, 2005

W3C, 2008, Cool URIs for the Semantic Web, W3C. Available at <http://www.w3.org/TR/cooluris/>

W3C, 2012, OWL 2 Web Ontology Language Primer (Second Edition) W3C Recommendation 11
December 2012, W3C. Available at <http://www.w3.org/TR/owl-primer/>

W3C, 2013, SPARQL 1.1 Query Language, W3C Recommendation 21 March 2013, W3C. Available
at <http://www.w3.org/TR/spargll11-query/>

W3C, 2014, RDF 1.1 Concepts and Abstract Syntax, W3C Recommendation 25 February 2014,
W3C. Available at <http://www.w3.org/TR/rdf11-concepts/>

W3C, 2014, RDF 1.1 TriG, W3C Recommendation 25 February 2014, W3C. Available at <http://
www.w3.org/TR/trig/>

W3C RDF/XML, RDF/XML Syntax Specification (W3C Recommendation 10 February 2004)
W3C Turtle, Terse RDF Triple Language (Working Draft 10 July 2012)
ISO/IEC 2382:2015, Information technology — Vocabulary

© ISO 2015 - All rights reserved 101

http://www.ietf.org/rfc/rfc5013.txt
http://www.ietf.org/rfc/rfc5013.txt
http://www.omg.org/spec/UML/2.4.1/Superstructure
http://www.omg.org/spec/UML/2.4.1/Superstructure
http://www.w3.org/TR/cooluris/
http://www.w3.org/TR/owl-primer/
http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/rdf11-concepts/
http://www.w3.org/TR/trig/
http://www.w3.org/TR/trig/

BS ISO 19150-2:2015
ISO 19150-2:2015(E)

ICS 35.240.70
Price based on 101 pages

© ISO 2015 - All rights reserved

This page deliberately left blank

NO COPYING WITHOUT BSI PERMISSION EXCEPT AS PERMITTED BY COPYRIGHT LAW

British Standards Institution (BSI)

BSI is the national body responsible for preparing British Standards and other
standards-related publications, information and services.

BSI is incorporated by Royal Charter. British Standards and other standardization
products are published by BSI Standards Limited.

About us

We bring together business, industry, government, consumers, innovators
and others to shape their combined experience and expertise into standards
-based solutions.

The knowledge embodied in our standards has been carefully assembled in
a dependable format and refined through our open consultation process.
Organizations of all sizes and across all sectors choose standards to help
them achieve their goals.

Information on standards

We can provide you with the knowledge that your organization needs
to succeed. Find out more about British Standards by visiting our website at
bsiaroun.com/standards or contacting our Customer Services team or

Knowledge Centre.

Buying standards

You can buy and download PDF versions of BSI publications, including British
and adopted European and international standards, through our website at
bsiaroun.com/shop, where hard copies can also be purchased.

If you need international and foreign standards from other Standards Development
Organizations, hard copies can be ordered from our Customer Services team.

Subscriptions

Our range of subscription services are designed to make using standards
easier for you. For further information on our subscription products go to
bsiaroun.com/subscrintions.

With British Standards Online (BSOL) you'll have instant access to over 55,000
British and adopted European and international standards from your desktop.

It's available 24/7 and is refreshed daily so you'll always be up to date.

You can keep in touch with standards developments and receive substantial
discounts on the purchase price of standards, both in single copy and subscription
format, by becoming a BSI Subscribing Member.

PLUS is an updating service exclusive to BSI Subscribing Members. You will
automatically receive the latest hard copy of your standards when they're

revised or replaced.

To find out more about becoming a BSI Subscribing Member and the benefits

of membership, please visit bsiaroun.com/shop.

With a Multi-User Network Licence (MUNL) you are able to host standards
publications on your intranet. Licences can cover as few or as many users as you
wish. With updates supplied as soon as they're available, you can be sure your
documentation is current. For further information, email bsmusales@bsigroup.com.

BSI Group Headquarters
389 Chiswick High Road London W4 4AL UK

bsi.

Revisions
Our British Standards and other publications are updated by amendment or revision.
We continually improve the quality of our products and services to benefit your

business. If you find an inaccuracy or ambiguity within a British Standard or other
BSI publication please inform the Knowledge Centre.

Copyright

All the data, software and documentation set out in all British Standards and
other BSI publications are the property of and copyrighted by BSI, or some person
or entity that owns copyright in the information used (such as the international
standardization bodies) and has formally licensed such information to BSI for
commercial publication and use. Except as permitted under the Copyright, Designs
and Patents Act 1988 no extract may be reproduced, stored in a retrieval system
or transmitted in any form or by any means — electronic, photocopying, recording
or otherwise — without prior written permission from BSI. Details and advice can
be obtained from the Copyright & Licensing Department.

Useful Contacts:

Customer Services

Tel: +44 845 086 9001

Email (orders): orders@bsigroup.com
Email (enquiries): cservices@bsigroup.com

Subscriptions
Tel: +44 845 086 9001
Email: subscriptions@bsigroup.com

Knowledge Centre
Tel: +44 20 8996 7004
Email: knowledgecentre@bsigroup.com

Copyright & Licensing
Tel: +44 20 8996 7070
Email: copyright@bsigroup.com

..making excellence a habit’

www.bsigroup.com/standards
www.bsigroup.com/shop
www.bsigroup.com/shop
www.bsigroup.com/subscriptions

	Foreword
	Introduction
	1	Scope
	2	Conformance
	3	Normative references
	4	Terms, definitions, abbreviations, and namespaces
	4.1	Terms and definitions
	4.2	Abbreviations
	4.3	Namespaces
	5	Namespace
	6	Rules for mapping ISO geographic information UML models to OWL ontologies
	6.1	General
	6.2	Name
	6.2.1	Scoping and namespaces
	6.2.2	Ontology name
	6.2.3	RDF namespace for ontology
	6.2.4	Class name
	6.2.5	Datatype name
	6.2.6	Property name
	6.2.7	Names for codelists and their members
	6.3	Package
	6.3.1	UML notation
	6.3.2	OWL notation
	6.3.3	Rules
	6.4	Class
	6.4.1	UML notation
	6.4.2	OWL notation
	6.4.3	Rules
	6.5	Abstract class
	6.5.1	UML notation
	6.5.2	OWL notation
	6.5.3	Rules
	6.6	Attribute
	6.6.1	UML Notation
	6.6.2	OWL notation
	6.6.3	Rules
	6.7	Enumerated type
	6.7.1	Enumeration
	6.7.2	Code list
	6.8	Union class
	6.8.1	UML notation
	6.8.2	OWL notation
	6.8.3	Rules
	6.9	Multiplicity
	6.9.1	UML notation
	6.9.2	OWL notation
	6.9.3	Rules
	6.10	Relationship
	6.10.1	Generalization/inheritance
	6.10.2	Association
	6.10.3	Aggregation
	6.11	Constraint
	6.11.1	UML notation
	6.11.2	OWL notation
	6.11.3	Rules
	7	Rules for formalizing an application schema in OWL
	7.1	General
	7.2	Rules for identification
	7.3	Rules for ontology documentation
	7.3.1	Ontology documentation
	7.3.2	Ontology component documentation
	7.4	Rules for integration
	7.5	Rules for FeatureType
	7.6	PropertyType
	7.6.1	Attribute
	7.6.2	Rules for Operation
	7.6.3	Rules for FeatureAssociationRole
	7.7	Rules for FeatureAssociationType
	7.8	Rules for FeatureAggregationType
	7.9	Rules for FeatureCompositionType
	7.10	Rules for SpatialAssociationType
	7.11	Rules for TemporalAssociationType
	7.12	Rules for InheritanceRelation
	7.13	Rules for constraints
	7.14	Rules for ValueAssignment
	7.14.1	Role of Association class
	7.14.2	ValueAssignment property
	7.14.3	RDF reification pattern
	7.14.4	SPARQL named-graph pattern
	7.14.5	Rules for ValueAssignment in OWL tern
	Annex A (normative) Abstract test suite
	Annex B (normative) Namespaces and component names for geographic information ontologies
	Annex C (informative) Augmented Backus Naur Form Notation
	Annex D (normative) ”base” ontology
	Annex E (informative) Application ontology: The PropertyParcel example
	Bibliography

